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1.1 Bienaymé–Galton–Watson processes . . . . . . . . . . . . . . . 7
1.2 A continuous time Bienaymé–Galton–Watson process . . . . . 11
1.3 Convergence to a continuous branching process . . . . . . . . 13
1.4 The continuous branching process . . . . . . . . . . . . . . . . 13
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Chapter 1

Branching processes

1.1 Bienaymé–Galton–Watson processes

Consider a Bienaymé–Galton–Watson process, i. e. a process {Zn, n ≥ 0}
with values in IN such that

Zn+1 =
Zn∑
k=1

ξn,k,

where {ξn,k, n ≥ 0, k ≥ 1} are i. i. d. r. v.’s with as joint law that of ξ
whose generating function f satisfies

µ := IE[ξ] = f ′(1) = 1 + r, and 0 < q := f(0) = IP(ξ = 0) < 1.

We call f the probability generating function (p. g. f. in short) of the
Bienaymé–Galton–Watson process {Zn, n ≥ 0}. In order to exclude trivial
situations, we assume that IP(ξ = 0) = f(0) > 0, and that IP(ξ > 1) > 0.
This last condition implies that s → f(s), which is increasing on [0, 1], is a
strictly convex function.

The process is said to be subcritical if µ < 1 (r < 0), critical if µ = 1
(r = 0), and supercritical if µ > 1 (r > 0). We shall essentially be interested
in the supercritical case.

First note that the process {Zn, n ≥ 0} is a Markov process, which has
the so–called branching property, which we now formulate. For x ∈ IN, let
IPx denote the law of the Markov process {Zn, n ≥ 0} starting from Z0 = x.
The law of {Zn, n ≥ 0} under IPx+y is the same as that of the sum of two

7



8 CHAPTER 1. BRANCHING PROCESSES

independent copies of {Zn, n ≥ 0}, one having the law IPx, the other the
law IPy.

We next define

T = inf{k > 0;Zk = 0},

which is the time of extinction. We first recall the

Proposition 1.1.1. Assume that Z0 = 1. Then the probability of extinction
IP(T <∞) is one in the subcritical and the critical cases, and it is the unique
root η < 1 of the equation f(s) = s in the supercritical case.

Proof: Let f ◦n(s) := f ◦ · · · ◦ f(s), where f has been composed n times
with itself. It is easy to check that f ◦n is the generating function of the r. v.
Zn.

On the other hand, clearly {T ≤ n} = {Zn = 0}. Consequently

IP(T <∞) = lim
n

IP(T ≤ n)

= lim
n

IP(Zn = 0)

= lim
n
f ◦n(0).

Now the function s → f(s) is continuous, increasing and strictly convex,
starts from q > 0 at s = 0, and ends at 1 at s = 1. If µ = f ′(1) ≤ 1, then
limn f

◦n(0) = 1. If however f ′(1) = 1 + r > 1, then there exists a unique
0 < η < 1 such that f(η) = η, and it is easily seen that η = limn f

◦n(0). �

Note that the state 0 is absorbing for the Markov chain {Zn, n ≥ 0}, and
it is accessible from each state. It is then easy to deduce that all other states
are transient, hence either Zn → 0, or Zn →∞, as n→∞. In other words,
the population tends to infinity a. s. on the set {T =∞}.

Denote σ2 = Var(ξ), which is assumed to be finite. We have the

Lemma 1.1.2.

IEZn = µnIEZ0

IE[Z2
n] =

µ2n − µn

µ2 − µ
σ2IEZ0 + µ2nIE(Z2

0).
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Proof: We have

IEZn = IE

[
IE

[
Zn−1∑
k=1

ξn−1,k|Zn−1

]]
= µIEZn−1

= µnIEZ0,

and

IE[Z2
n] = IE

IE

(Zn−1∑
k=1

ξn−1,k

)2

|Zn−1


= µ2IE[Zn−1(Zn−1 − 1)] + (σ2 + µ2)IEZn−1

= µ2IE[Z2
n−1] + σ2IEZn−1

= µ2IE[Z2
n−1] + σ2µn−1IEZ0.

Consequently an := µ−2nIE[Z2
n] satisfies

an = an−1 + σ2µ−(n+1)IEZ0

= a0 + σ2IEZ0

n∑
k=1

µ−(k+1).

�

Let now Z∗n denote the number of individuals in generation n with an
infinite line of descent. Under IP1, {T =∞} = {Z∗0 = 1}. ξ denoting a r. v.
whose law is that of the number of offsprings of each individual, let ξ∗ ≤ ξ
denote the number of those offsprings with an infinite line of descent. Let
q := 1− q. We have the

Proposition 1.1.3. Assume that Z0 = 1.

1. Conditional upon {T =∞}, {Z∗n, n ≥ 0} is again a Bienaymé–Galton–
Watson process, whose p. g. f. is given by

f ∗(s) = [f(q + qs)− q]/q.

2. Conditional upon {T < ∞}, the law of {Zn, n ≥ 0} is that of a
Bienaymé–Galton–Watson process, whose p. g. f. is given by

f̃(s) = f(qs)/q.
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3. For all 0 ≤ s, t ≤ 1,

IE
[
sξ−ξ

∗
tξ
∗]

= f(qs+ qt)

IE
[
sZn−Z

∗
ntZ

∗
n
]

= f ◦n(qs+ qt).

4. Conditional upon {T =∞}, the law of {Zn, n ≥ 0} is that of {Z∗n, n ≥
0} to which we add individuals with finite line of descent, by attaching
to each individual of the tree of the Z∗n’s N independent copies of a
Bienaymé–Galton–Watson tree with p. g. f. f̃ , where

IE[sN |Z∗] =
Dnf(qs)

Dnf(q)
,

where Dnf denotes the n–th derivative of f , and n is the number of
sons of the considered individual in the tree Z∗.

Proof: Let us first prove the first part of 3. Consider on the same proba-
bility space mutually independent r. v.’s {ξ, Yi, i ≥ 1}, where the law of ξ
is given as above, and IP(Yi = 1) = q = 1− IP(Yi = 0), ∀i ≥ 1. Note that q
is the probability that any given individual has an infinite line of descent, so
that the joint law of (ξ − ξ∗, ξ∗) is that of(

ξ∑
i=1

(1− Yi),
ξ∑
i=1

Yi

)
.

IE
[
sξ−ξ

∗
tξ
∗]

= IE
[
IE
[
sξ−ξ

∗
tξ
∗|ξ
]]

= IE
[
s

Pξ
i=1(1−Yi)t

Pξ
i=1 Yi

]
= IE

[
IE[s1−Y1tY1 ]ξ

]
= IE[(qs+ qt)ξ]

= f(qs+ qt).

A similar computation yields the second statement in 3. Indeed

IE
[
sZn−Z

∗
ntZ

∗
n
]

= IE
[
IE
(
sZn−Z

∗
ntZ

∗
n|Zn−1

)]
= IE

[(
IE
[
sξ−ξ

∗
tξ
∗])Zn−1

]
= f ◦(n−1)(f(qs+ qt))
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We next prove 1 as follows

IE
(
tξ
∗|ξ∗ > 0

)
=

IE(1ξ−ξ
∗
tξ
∗
; ξ∗ > 0)

IP(ξ∗ > 0)

=
IE(1ξ−ξ

∗
tξ
∗
)− IE(1ξ−ξ

∗
tξ
∗
; ξ∗ = 0)

IP(ξ∗ > 0)

=
f(q + qt)− f(q)

q

=
f(q + qt)− q

q
.

We now prove 2. It suffices to compute

IE
(
sξ|ξ∗ = 0

)
= IE

(
sξ−ξ

∗|ξ∗ = 0
)

=
f(sq + 0q)

q
.

Finally we prove 4. All we have to show is that

IE[sξ−ξ
∗|ξ∗ = n] =

Dnf(qs)

Dnf(q)
.

This follows from the two following identities

n!IE[sξ−ξ
∗
; ξ∗ = n] = qnDnf(qs+ qt)|t=0

= qnDnf(qs),

n!IP(ξ∗ = n) = qnDnf(qs+ qt)|s=1,t=0

= qnDnf(q).

�

1.2 A continuous time Bienaymé–Galton–Watson

process

Consider a continuous time IN–valued branching process Z = {Zk
t , t ≥ 0, k ∈

IN}, where t denotes time, and k is the number of ancestors at time 0. Such
a process is a Bienaymé–Galton–Watson process in which to each individ-
ual is attached a random vector describing its lifetime and its numbers of
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offsprings. We assume that those random vectors are i. i. d.. The rate of
reproduction is governed by a finite measure µ on IN, satisfying µ(1) = 0.
More precisely, each individual lives for an exponential time with parameter
µ(IN), and is replaced by a random number of children according to the prob-
ability µ(IN)−1µ. Hence the dynamics of the continuous time jump Markov
process Z is entirely characterized by the measure µ. We have the

Proposition 1.2.1. The generating function of the process Z is given by

IE
(
sZ

k
t

)
= ψt(s)

k, s ∈ [0, 1], k ∈ IN,

where
∂ψt(s)

∂t
= Φ(ψt(s)), ψ0(s) = s,

and the funcion Φ is defined by

Φ(s) =
∞∑
n=0

(sn − s)µ(n), s ∈ [0, 1].

Proof: Note that the process Z is a continuous time IN–valued jump
Markov process, whose infinitesimal generator is given by

Qn,m =


0, if m < n− 1,

nµ(m+ 1− n), if m ≥ n− 1 and m 6= n,

−nµ(IN), if m = n.

Define f : IN → [0, 1] by f(k) = sk, s ∈ [0, 1]. Then ψt(s) = Ptf(1). It
follows from the backward Kolmogorov equation for the process Z (see e. g.
Theorem 7.6 in [21]) that

dPtf(1)

dt
= (QPtf)(1)

∂ψt(s)

∂t
=
∞∑
k=0

Q1,kψt(s)
k

=
∞∑
k=0

µ(k)ψt(s)
k − ψt(s)

∞∑
k=0

µ(k)

= Φ(ψt(s)).

�

The branching process Z is called immortal if µ(0) = 0.
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1.3 Convergence to a continuous branching

process

To each integerN , we associate a Bienaymé–Galton-Watson process {ZN
n , n ≥

0} starting from ZN
0 = N . We now define the continuous time process

XN
t := N−1ZN

[Nt].

We shall let the p. g. f. of the Bienaymé–Galton-Watson process depend
upon N in such a way that

IE[ξN ] = f ′N(1) = 1 +
α

N
Var[ξN ] = β,

where α ∈ IR, β > 0, and we assume that the sequence of r. v.’s {ξ2
N , N ≥ 1}

is uniformly integrable. Let t ∈ IN/N and ∆t = N−1. It is not hard to check
that

IE[XN
t+∆t −XN

t |XN
t ] = αXN

t ∆t,

IE[(XN
t+∆t −XN

t )2|XN
t ] = βXN

t ∆t+ α2(XN
t )2(∆t)2.

As N →∞, XN ⇒ X, where {Xt, t ≥ 0} solves the SDE

dXt = αXtdt+
√
βXtdBt, t ≥ 0. (1.3.1)

The detailed proof of the convergence will be treated in the next chapter, for
a slightly different model.

1.4 The continuous branching process

Denote by {Xt(x), x > 0, t > 0} the solution of the SDE (1.3.1), starting
from x at time t = 0, i. e. such that X0(x) = x. For x > 0 and y > 0
consider {Xt(x), t > 0} and {X ′t(y), t > 0}, where {X ′t(y), t > 0} is
a copy of {Xt(y), t > 0} which is independent of {Xt(x), t > 0}. Let
Y x,y
t = Xt(x) +X ′t(y). We have

dY x,y
t = α(Xt(x) +X ′t(y))dt+

√
βXt(x)dBt +

√
βX ′t(y)dB′t

= αY x,y
t dt+

√
βY x,y

t dWt,

Y x,y
0 = x+ y
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where {Bt, t ≥ 0} and {B′t, t ≥ 0} are two mutually independent standard
Brownian motions, and {Wt, t ≥ 0} is also a standard Brownian motion.
Then clearly {Y x,y

t , t ≥ 0} and {Xt(x+ y), t ≥ 0} have the same law. This
shows that {Xt(x), x > 0, t > 0} possesses the branching property.

This property entails that for all t, λ > 0, there exists u(t, λ) such that

IE [exp(−λXt(x))] = exp[−xu(t, λ)]. (1.4.1)

From the Markov property of the process t → Xt(x), we deduce readily the
semigroup identity

u(t+ s, λ) = u(t, u(s, λ)).

We seek a formula for u(t, λ). Let us first get by a formal argument an ODE
satisfied by u(·, λ). For t > 0 small, we have that

Xt(x) ' x+ αxt+
√
βxBt,

hence
IE
(
e−λXt(x)

)
' exp (−λx[1 + αt− βλt/2]) ,

and
u(t, λ)− λ

t
' αλ− β

2
λ2.

Assuming that t→ u(t, λ) is differentiable, we deduce that

∂u

∂t
(0, λ) = αλ− β

2
λ2.

This, combined with the semigroup identity, entails that

∂u

∂t
(t, λ) = αu(t, λ)− β

2
u2(t, λ), u(0, λ) = λ. (1.4.2)

It is easy to solve that ODE explicitly, and we now prove rigorously that u
is indeed the solution of (1.4.2), without having to go through the trouble of
justifying the above argument. Let γ = 2α/β, γt = γ(1− e−αt)−1.

Lemma 1.4.1. The function (t, λ) → u(t, λ) which appears in (1.4.1) is
given by the formula

u(t, λ) =
γeαt

eαt − 1 + γ/λ
=

λγt
λ+ γte−αt

, (1.4.3)

and it is the unique solution of (1.4.2).
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Proof: It suffices to show that {Mx
s , 0 ≤ s ≤ t} defined by

Mx
s = exp

(
− γeα(t−s)

eα(t−s) − 1 + γ/λ
Xs(x)

)
is a martingale, which follows from Itô’s calculus. �

Remark 1.4.2. In the critical case (i. e. the case α = 0),

u(t, λ) =
λ

1 + λtβ/2
,

which is the limit as α → 0 of (1.4.3). This particular formula can also be
established by checking that in the case α = 0,

Nx
s = exp

(
− λ

1 + λβ(t− s)/2
Xs(x)

)
is a martingale.

The function Ψ : IR+ → IR given by

Ψ(r) =
β

2
r2 − αr

is called the branching mechanism of the continuous branching process X.
For each fixed t > 0, x → Xt(x) has independent and homogeneous

increments with values in IR+. We shall consider its right–continuous modi-
fication, which then is a subordinator. Its Laplace exponent is the function
λ → u(t, λ), which can be rewritten (like for any subordinator, see section
7.4 below) as

u(t, λ) = d(t)λ+

∫ ∞
0

(1− e−λr)Λ(t, dr),

where d(t) ≥ 0 and
∫∞

0
(r ∧ 1)Λ(t, dr) < ∞. Comparing with (1.4.3), we

deduce that d(t) = 0, and

Λ(t, dr) = p(t) exp(−q(t)r)dr,
where p(t) = γ2

t e
−αt, q(t) = γte

−αt. (1.4.4)

We have defined the two parameter process {Xt(x); x ≥ 0, t ≥ 0}. Xt(x)
is the population at time t made of descendants of the initial population
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of size x at time 0. We may want to introduce three parameters, if we
want to discuss the descendants at time t of a population of a given size at
time s. The first point, which is technical but in fact rather standard, is
that we can construct the collection of those random variables jointly for all
0 ≤ s < t, x ≥ 0, so that all the properties we may reasonably wish for them
are satisfied. More precisely, following [3], we have the

Lemma 1.4.3. On some probability space, there exists a three parameter
process

{Xs,t(x), 0 ≤ s ≤ t, x ≥ 0},

such that

1. For every 0 ≤ s ≤ t, Xs,t = {Xs,t(x), x ≥ 0} is a subordinator with
Laplace exponent u(t− s, ·).

2. For every n ≥ 2, 0 ≤ t1 < t2 < · · · < tn, the subordinators Xt1,t2 , . . . , Xtn−1,tn

are mutually independent, and

Xt1,tn(x) = Xtn−1,tn ◦ · · · ◦Xt1,t2(x), ∀x ≥ 0, a. s.

3. The processes {X0,t(x), t ≥ 0, x ≥ 0} and {Xt(x), t ≥ 0, x ≥ 0} have
the same finite dimensional distributions.

Now consider {Xs,t(x), x ≥ 0} for fixed 0 ≤ s ≤ t. It is a subordinator
with Laplace exponent (the functions p and q are given in (1.4.4))

u(t− s, λ) = p(t− s)
∫ ∞

0

(1− e−λr)e−q(t−s)rdr.

We shall give a probabilistic description of the process {Xs,t(x), x ≥ 0} in a
further section. For now on, we shall write Xt(x) for X0,t(x).

Let us first study the large time behaviour of the process Xt(x). Consider
the extinction event

E = {∃t > 0, s. t. Xt(x) = 0}.

We define again γ = 2α/β.

Proposition 1.4.4. If α ≤ 0, IPx(E) = 1 a.s. for all x > 0. If α > 0,
IPx(E) = exp(−xγ) and on Ec, Xt(x)→ +∞ a. s.
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Proof: If α ≤ 0, {Xt(x), t ≥ 0} is a positive supermartingale. Hence it
converges a. s. The limit r. v. X∞(x) takes values in the set of fixed points of
the SDE (1.3.1), which is {0,+∞}. But from Fatou and the supermartingale
property,

IE( lim
t→∞

Xt(x)) ≤ lim
t→∞

IE(Xt(x)) ≤ x.

Hence IP(X∞(x) = +∞) = 0, and Xt(x)→ 0 a. s. as t→∞.
If now α > 0, it follows from It’s formula that

e−γXt(x) = e−γx − γ
∫ t

0

e−γXs(x)
√
βXs(x)dBs,

hence {Mt = e−γXt(x), t ≥ 0} is a martingale with values in [0, 1], hence it
converges a. s. as t → ∞. Consequently Xt(x) = −γ log(Mt) converges a.
s., and as above its limit belongs to the set {0,+∞}. Moreover

IP(E) = lim
t→∞

IP(Xt(x) = 0)

= lim
t→∞

IE[exp{−xu(t,∞)}]

= lim
t→∞

exp

{
−x γeαt

eαt − 1

}
= exp{−xγ}.

It remains to prove that

IP(Ec ∩ {Xt → 0}) = 0. (1.4.5)

Define the stopping times

τ1 = inf{t > 0, Xt(x) ≤ 1}, and for n ≥ 2,

τn = inf{t > τn−1 + 1, Xt(x) ≤ 1}.
On the set {Xt(x)→ 0, as t→∞}, τn <∞, ∀n. Define for n ≥ 1

An = {τn+1 <∞, Xτn+1(x) > 0}.
For all N > 0,

IP(Ec ∩ {Xt → 0}) ≤ IP(∩Nn=1An)

≤ IE

(
N∏
n=1

IP(An|Fτn)

)
≤ (IP(X1(1) > 0))N

→ 0, as N →∞,
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where we have used the strong Markov property, and the fact that

IP(An|Xτn) ≤ IP(X1(1) > 0).

�

1.5 Back to Bienaymé–Galton–Watson

1.5.1 The individuals with an infinite line of descent

Let us go back to the discrete model, indexed by N . For each t ≥ 0, let
Y N
t denote the individuals in the population ZN

[Nt] with an infinite line of

descent. Let us describe the law of Y N
0 . Each of the N individuals living at

time t = 0 has the probability 1− qN of having an infinte line of descent. It
then follows from the branching property that the law of Y N

0 is the binomial
law B(N, 1 − qN). It remains to evaluate qN , the unique solution in the
interval (0, 1) of the equation fN(x) = x. Note that

f ′′N(1) = IE[ξN(ξN − 1)] = β − α

N
+
( α
N

)2

.

We deduce from a Taylor expansion of f near x = 1 that

qN = 1− 2α

Nβ
+ ◦

(
1

N

)
, 1− qN =

2α

Nβ
+ ◦

(
1

N

)
.

Consequently, Y N
0 converges in law, as N →∞, towards a Poisson distribu-

tion with parameter γ = 2α/β.

1.5.2 The individuals whose progeny survives during
tN generations

The result of the last section indicates that if we consider only the prolific
individuals, i. e. those with an infinite line of descent, in the limit N →∞,
we should not divide by N , also ZN

[Nt] → +∞, as N → ∞, for all t ≥ 0. If

now we consider those individuals whose progeny is still alive at time tN (i.
e. those whose progeny contributes to the population at time t > 0 in the
limit as N → ∞), then again we should not divide by N . Indeed, we have
the (we use again the notation γ = 2α/β)
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Theorem 1.5.1. Under the assumptions from the beginning of section 1.3,
with the notation

γt = γ
(
1− e−αt

)−1
,

1. for N large,

IP1(ZN
[Nt] > 0) =

γt
N

+ ◦
(

1

N

)
,

and

2. as N →∞,

IE1

(
exp[−λZN

[Nt]/N ]|ZN
[Nt] > 0

)
→ γte

−αt

λ+ γte−αt
.

Proof of 1 : It follows from the branching property that

IP1(ZN
[Nt] > 0) = 1− IP1(ZN

[Nt] = 0)

= 1− IPN(ZN
[Nt] = 0)1/N

= 1− IP1(XN
t = 0)1/N .

But

log
[
IP1(XN

t = 0)1/N
]

=
1

N
log IP1(XN

t = 0)

=
1

N
log IP1(Xt = 0) + ◦

(
1

N

)
.

From (1.4.1) and (1.4.3), we deduce that

IP1(Xt = 0) = lim
λ→∞

exp[−u(t, λ)]

= exp(−γt).

We then conclude that

IP1(ZN
[Nt] > 0) = 1− exp

[
−γt
N

+ ◦
(

1

N

)]
=
γt
N

+ ◦
(

1

N

)
.
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Proof of 2 :

IE1 exp[−λZN
[Nt]/N ] =

(
IEN exp[−λZN

[Nt]/N ]
)1/N

' (IE1 exp[−λXt])
1/N

= exp

(
− λγt
N(λ+ γte−αt)

)
,

since again from (1.4.1) and (1.4.3),

IE1 exp(−λXt) = exp

(
− λγt
λ+ γte−αt

)
.

But

IE1

(
exp[−λZN

[Nt]/N ]|ZN
[Nt] > 0

)
=

IE1

(
exp[−λZN

[Nt]/N ];ZN
[Nt] > 0

)
IP1(ZN

[Nt] > 0)

=
IE1

(
exp[−λZN

[Nt]/N ]
)
− 1 + IP1(ZN

[Nt] > 0)

IP1(ZN
[Nt] > 0)

= 1 +
IE1

(
exp[−λZN

[Nt]/N ]
)
− 1

IP1(ZN
[Nt] > 0)

' 1− λ

λ+ γte−αt
,

from which the result follows. �

1.6 Back to the continuous branching process

Note that the continuous limit {Xt} has been obtained after a division by N ,
so that Xt no longer represents a number of individuals, but a sort of density.
The point is that there are constantly infinitely many births and deaths, most
individuals having a very short live. If we consider only those individuals at
time 0 whose progeny is still alive at some time t > 0, that number is finite.
We now explain how this follows from the last Theorem, and show how it
provides a probabilistic description of the subordinator which appeared at
the end of section 1.3.
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The first part of the theorem tells us that for large N , each of the N
individuals from the generation 0 has a progeny at the generation [Nt] with
probability γt/N + ◦(1/N), independently of the others. Hence the number
of those individuals tends to the Poisson law with parameter γt. The sec-
ond statement says that those individuals contribute to Xt a quantity which
follows an exponential random variable with parameter γte

−αt. This means
that

X0,t(x) =
Zx∑
i=1

Yi,

where Zx, Y1, Y2, . . . are mutually independent, the law of Zx being Poisson
with parameter xγt, and the law of each Yi exponential with parameter γte

−αt.
Taking into account the branching property, we have more precisely that

{X0,t(x), x ≥ 0} is a compound Poisson process, the set of jump locations
being a Poisson process with intensity γt, the jumps being i. i. d., exponential
with parameter γte

−αt. We can recover from this description the formula for
the Laplace exponent of Xt(x). Indeed

IE exp

(
−λ

Zx∑
i=1

Yi

)
=
∞∑
k=0

(
IEe−λY1

)k
IP(Zx = k)

= exp

(
−x λγt

λ+ γte−αt

)
.

We can now describe the genealogy of the population whose total mass
follows the SDE (1.3.1).

Suppose that Z ancestors from t = 0 contribute respectively Y1, Y2, . . . , YZ
to X0,t(x). Consider now X0,t+s(x) = Xt,t+s(X0,t(x)). From the Y1 mass
at time t, a finite number Z1 of individuals, which follows a Poisson law
with parameter Y1γs, has a progeny at time t + s, each one contributing an
exponential r. v. with parameter γse

−αs to X0,t+s(x).
Fo any y, z ≥ 0, 0 ≤ s < t, we say that the individual z in the population

at time t is a descendant of the individual y from the population at time s if
y is a jump location of the subordinator x→ Xs,t(x), and moreover

Xs,t(y
−) < z < Xs,t(y).

Note that ∆Xs,t(y) = Xs,t(y)−Xs,t(y
−) is the contribution to the population

at time t of the progeny of the individual y from the population at time s.
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1.7 The prolific individuals

We want to consider again the individuals with an infinite line of descent, but
directly in the continuous model. Those could be defined as the individuals
such that ∆X0,t(y) > 0, for all t > 0. However, it should be clear from
Proposition 1.4.4 that an a. s. equivalent definition is the following

Definition 1.7.1. The individual y from the population at time s is said to
be prolific if ∆Xs,t(y)→∞, as t→∞.

For any s ≥ 0, x > 0, let

Ps(x) = {y ∈ [0, Xs(x)]; ∆Xs,t(y)→∞, as t→∞},
Ps(x) = card(Ps(x)).

Define the conditional probability, given extinction

IPe = IP(·|E)

= exγIP(· ∩ E)

It follows from Theorem 4.8.1 below

Proposition 1.7.2. Under IPe, there exists a standard Brownian motion
{Be

t , t ≥ 0} such that X·(x) solves the SDE

Xt(x) = x− α
∫ t

0

Xs(x)ds+

∫ t

0

√
βXs(x) dBe

s .

The branching mechanism of X under IPe is given by

Ψe(r) =
β

2
r2 + αr = Ψ(γ + r).

Next we identify the conditional law of Xt(x), given that Pt(x) = n, for
n ≥ 0.

Proposition 1.7.3. For any Borel measurable f : IR→ IR+,

IE[f(Xt(x))|Pt(x) = n] =
IEe[f(Xt(x))(Xt(x))n]

IEe[(Xt(x))n]
.
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Proof: Recall that the law of P0(x) is the Poisson distribution with param-
eter xγ. Clearly from the Markov property of X·(x), the conditional law of
Pt(x), given Xt(x), is the Poisson law with parameter Xt(x)γ. Consequently
for λ > 0, 0 ≤ s ≤ 1,

IE
(
exp[−λXt(x)]sPt(x)

)
= IE (exp[−λXt(x)] exp[−γ(1− s)Xt(x)])

= IE (exp[−(λ+ γ)Xt(x)] exp[γsXt(x)])

=
∞∑
n=0

(sγ)n

n!
IE (exp[−(λ+ γ)Xt(x)](Xt(x))n) .

Now define
h(t, λ, x, n) = IE (exp[−λXt(x)]|Pt(x) = n) .

Note that

IP(Pt(x) = n) = IE [IP(Pt(x) = n|X(t, x))]

=
γn

n!
IE
(
e−γXt(x)(Xt(x))n

)
.

Consequently, conditioning first upon the value of Pt(x), and then using the
last identity, we deduce that

IE
(
exp[−λXt(x)]sPt(x)

)
=
∞∑
n=0

(sγ)n

n!
h(t, λ, x, n)IE (exp[−γXt(x)](Xt(x))n) .

Comparing the two series, and using the fact that, on Ft, IPe is absolutely
continuous with respect to IP, with density exγ exp[−γXt(x)], we deduce that
for all n ≥ 0,

h(t, λ, x, n) =
IE (exp[−(λ+ γ)Xt(x)](Xt(x))n)

IE (exp[−γXt(x)](Xt(x))n)

=
IEe (exp[−λXt(x)](Xt(x))n)

IEe [(Xt(x))n]
.

�

To any probability law ν on IR+ with finite mean c, we associate the so–
called law of its size–biased picking as the law on IR+ c−1yν(dy). We note
that the conditional law of Xt(x), given that Pt(x) = n+ 1 is obtained from
the conditional law of Xt(x), given that Pt(x) = n by sized–biased picking.
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We now describe the law of {Pt(x), t ≥ 0}, for fixed x > 0. Clearly this
is a continuous time B–G–W process as considered in section 1.2 above. We
have the

Theorem 1.7.4. For every x > 0, the process {Pt(x), t ≥ 0} is an IN–valued
immortal Branching process in continuous time, with initial distribution the
Poisson law with parameter xγ, and reproduction measure µP given by

µP (n) =

{
α, if n = 2,

0, if n 6= 2.

In other words, {Pt(x), t ≥ 0} is a Yule tree with the intensity α.

Remark 1.7.5. If we call ΦP the Φ–function (with the notations of sec-
tion 1.2) associated to the measure µP , we have in terms of the branching
mechanism Ψ of X

ΦP (s) = α(s2 − s) =
1

γ
Ψ(γ(1− s)).

Note that Ψe describes the branching process X, conditioned upon extinction,
while ΦP describes the immortal part of X. ΦP depends upon the values
Φ(r), 0 ≤ r ≤ γ, while Ψe depends upon the values Φ(r), γ ≤ r ≤ 1. The
mapping Ψ → (Ψe,ΦP ) should be compared with the mapping f → (f̃ , f ∗)
from Proposition 1.1.3.

Proof: The process P inherits its branching property from that of X. The
immortal character is obvious. P0(x) is the number of individuals from the
population at time 0, whose progeny survives at time t, for all t > 0. Hence
it is the limit as t → ∞ of the law of the number of jumps of {Xt(y), 0 ≤
y ≤ x}, which is the Poisson distribution with parameter xγ. This coincides
with the result in the subsection 1.5.1, as expected.

Now from the Markov property of X, the conditional law of Pt(x), given
Xt(x), is the Poisson law with parameter Xt(x)γ. Consequently

IE
(
sPt(x)

)
= IE (exp[−(1− s)γXt(x)])

= exp[−xu(t, (1− s)γ)].

Moreover, if we call ψt(s) the generating function of the continuous time
B–G–W process {Pt(x), t ≥ 0}, we have that

IE
(
sPt(x)

)
= IE

(
ψt(s)

P0(x)
)

= exp[−xγ(1− ψt(s))].
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Comparing those two formulas, we deduce that

1− ψt(s) =
1

γ
u(t, (1− s)γ).

Taking the derivative with respect to the time variable t, we deduce from the
differential equations satisfied by ψt(·) and by u(t, ·) the identity

ΦP (ψt(s)) =
1

γ
Ψ(u(t, (1− s)γ)) =

1

γ
Ψ(γ(1− ψt(s))).

Consequently

ΦP (r) =
1

γ
Ψ(γ(1− r)).

The measure µP is then recovered easily from ΦP . �

We next note that the pair (Xt(x), Pt(x)), which we now write (Xt(x), Pt(x)),
enjoys the Branching property, in the following sense. For every x > 0, n ∈
IN, denote by (X·(x, n), P·(x, n)) a version of the process {(Xt(x), Pt(x)), t ≥
0}, conditioned upon P0(x) = n. What we mean here by the branching prop-
erty is the fact that for all x, x′ > 0, n, n′ ∈ IN,

(X·(x+ x′, n+ n′), P·(x+ x′, n+ n′))

has the same law as

(X·(x, n), P·(x, n)) + (X ′· (x
′, n′), P ′· (x

′, n′)),

where the two processes (X·(x, n), P·(x, n)) and (X ′· (x
′, n′), P ′· (x

′, n′)) are mu-
tually independent.

We now characterize the joint law of (Xt(x, n), Pt(x, n)).

Proposition 1.7.6. For any λ ≥ 0, s ∈ [0, 1], t ≥ 0, x > 0, n ∈ IN,

IE
(
exp[−λXt(x, n)]sPt(x,n)

)
= exp[−x(u(t, λ+ γ)− γ)]

(
u(t, λ+ γ)− u(t, λ+ γ(1− s))

γ

)n
.

Proof: First consider the case n = 0. We note that X·(x, 0) is a version
of the continuous branching process conditioned upon extinction, i. e. with
branching mechanism Ψe(r) = Ψ(γ + r), while Pt(x, 0) ≡ 0. Hence

IE
(
exp[−λXt(x, 0)]sPt(x,0)

)
= exp[−x(u(t, λ+ γ)− γ)]. (1.7.1)
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Going back to the computation in the beginning of the proof of Proposition
1.7.3, we have

IE
(
exp[−λXt(x)]sPt(x)

)
= IE (exp[−(λ+ γ(1− s))Xt(x)])

= exp[−xu(t, λ+ γ(1− s))].

Since the law of P0(x) is Poisson with parameter xγ,

IE
(
exp[−λXt(x)]sPt(x)

)
=
∞∑
n=0

e−xγ
(xγ)n

n!
IE
(
exp[−λXt(x, n)]sPt(x,n)

)
.

From the branching property of (X,P ),

IE
(
exp[−λXt(x, n)]sPt(x,n)

)
= IE

(
exp[−λXt(x, 0)]sPt(x,0)

)
×
[
IE
(
exp[−λXt(0, 1)]sPt(0,1)

)]n
.

(1.7.2)

Combining the four above identities, we obtain

∞∑
n=0

(xγ)n

n!

[
IE
(
exp[−λXt(0, 1)]sPt(0,1)

)]n
= exp {x [u(t, λ+ γ)− u(t, λ+ γ(1− s))]}

=
∞∑
n=0

{x [u(t, λ+ γ)− u(t, λ+ γ(1− s))]}n

n!
.

Identifying the coefficients of x in the two series yields

IE
(
exp[−λXt(0, 1)]sPt(0,1)

)
=
u(t, λ+ γ)− u(t, λ+ γ(1− s))

γ
.

The result follows from this, (1.7.1) and (1.7.2). �

1.8 Bibliographical comments

We have essentially followed the treatment from [18] in section 1.1. Section
1.2 is inspired from [16]. Section 1.4 owes much to [16], [3] and [17]. The
subsection 1.5.1 is taken from [19], 1.5.2 from [20]. Section 1.7 is a translation
of the results in [2] to our particular case.



Chapter 2

Genealogical models for
fixed–size populations

Consider a population of fixed size N , which evolves in discrete generations.
Assume that each individual can be of two different types (a and A, say).

2.1 The simplest Wright–Fisher model

Consider first the case where those are neutral, i. e. there is no selective
advantage attached to either of those two types, and there is no mutation.

Reproduction is random (and asexual). More precisely, we assume that
each individual picks his parent uniformly from the previous generation (with
replacement), and copy his type. Denote

Y N
k := number of type A individuals in generation k.

Clearly

IP(Y N
k+1 = i|Y N

k = j) = Ci
N

(
j

N

)i(
1− j

N

)N−i
.

From this, we see that {Y N
k , k ≥ 0} is both a finite state Markov chain, and

a bounded martingale. Note that the two states 0 and N are absorbing, and
all other states are transient. Consequently

Y N
∞ = lim

k→∞
Y N
k ∈ {0, N}.

Moreover
j = IE[Y N

∞ |Y N
0 = j] = NIP(Y N

∞ = N),

27
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hence the probability of fixation of type A is its initial frequency j/N .

The next question is what can we say about the time we have to wait
until the population is homogeneous (i. e. Y N

k = 0 or N) ?

If we want to study this and other questions for large N , we should
understand the behaviour of the proportions of both alleles in a population
of infinite size. Define the following continuous time process :

XN
t = N−1Y N

[Nt], t ≥ 0.

This means that we consider the fraction of type A–individuals, and the time
is a number of generations divided by the size of the population.

Let t ∈ IN/N and ∆t = N−1. It is not hard to check that

IE[XN
t+∆t −XN

t |XN
t ] = 0, IE[(XN

t+∆t −XN
t )2|XN

t ] = XN
t (1−XN

t )∆t.

We now want to let N →∞.

Theorem 2.1.1. Suppose that XN
0 ⇒ X0, as N → ∞. Then XN ⇒ X in

D(IR+; [0, 1]), where {Xt, t ≥ 0} solves the SDE

dXt =
√
Xt(1−Xt)dBt, t ≥ 0.

Proof: The idea is to prove that ∀f ∈ C3([0, 1]), the process

M f
t := f(Xt)− f(X0)− 1

2

∫ t

0

Xs(1−Xs)f
′′(Xs)ds, t ≥ 0 (2.1.1)

is a martingale (with respect to its own filtration).

It is known that this martingale problem has a unique solution (the SDE
has a unique strong solution, see next chapter). Hence the theorem follows
from the two following statements

1. the sequence {XN , N = 1, 2, . . .} is tight;

2. any weak limit of a sub–sequence solves the above martingale problem.

Proof of 1. Also the sequence is a sequence in the space D(IR+; [0, 1]) of
discontinuous processes, since the limit is continuous, a tightness criteria in
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C(IR+; [0, 1]) is good enough. It will prove at the same time that any limit
point has continuous paths. For 0 ≤ i < j, let s = i/N , t=j/N . We have

IE
[
|XN

t −XN
s |4
]

= N−4IE

[ j−1∑
k=i

(Y N
k+1 − Y N

k )

]4


= N−4IE

j−1∑
k1,...,k4=i

4∏
`=1

(Y N
k`+1 − Y N

k`
)

= N−4
(

IE

j−1∑
k=i

(Y N
k+1 − Y N

k )4 + 2IE
∑

i≤k1<k2≤j−1

(Y N
k1+1 − Y N

k1
)2(Y N

k2+1 − Y N
k2

)2

+ IE
∑

i≤k1<k2≤j−1

(Y N
k1+1 − Y N

k1
)(Y N

k2+1 − Y N
k2

)3

+ 2IE
∑

i≤k1<k2<k3≤j−1

(Y N
k1+1 − Y N

k1
)(Y N

k2+1 − Y N
k2

)(Y N
k3+1 − Y N

k3
)2
)

≤ C

(
j − i
N

)2

= C(t− s)2.

Indeed, we first note that

IE
[
(Y N

k+1 − Y N
k )2

]
= IE

{
IE
[
(Y N

k+1 − Y N
k )2|Y N

k

]}
≤ N/4,

from which it follows that the second term above has the right size. Con-
cerning the first term, we note that

IE
[
(Y N

k+1 − Y N
k )4

]
= IE

{
IE
[
(Y N

k+1 − Y N
k )4|Y N

k

]}
Conditionally upon Y N

k = y, Y N
k+1 follows the binomial law B(N, p) where

p = y/N . But if Z1, . . . , Zn are Bernoulli with IP(Zi = 1) = p, then

IE

[ N∑
i=1

(Zi − p)

]4
 = IE

N∑
i=1

(Zi − p)4 + 4IE
∑

1≤i<j≤N

(Zi − p)2(Zj − p)2

≤ 2N2

Consequently
IE
[
(Y N

k+1 − Y N
k )4

]
≤ 2N2,
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and the first term is bounded by cN−1(t− s) ≤ c(t− s)2, since 1 ≤ N(t− s).
Moreover we have

IE
[
(Y N

k+1 − Y N
k )3|Y N

k

]
= Y N

k

(
1− Y N

k

N

)(
1− 2

Y N
k

N

)
,∣∣IE [(Y N

k+1 − Y N
k )3|Y N

k

]∣∣ ≤ N,∣∣IE [(Y N
k1+1 − Y N

k1
)(Y N

k2+1 − Y N
k2

)3
]∣∣ ≤ N2.

Consequently the third term is estimated exactly as the second one. It re-
mains to consider the last term, which is bounded above by

N−4IE
∑
i<k<j

(Y N
k − Y N

i )2(Y N
k+1 − Y N

k )2 ≤ N−3
∑
i<k<j

IE[(Y N
k − Y N

i )2]

= N−3
∑
i<k<j

∑
i≤`<k

IE[(Y N
`+1 − Y N

` )2]

≤ N−2
∑
i<k<j

(k − i)

≤ (t− s)2.

The wished estimate of IE[|XN
t − XN

s |4] is established. Keeping in mind
that our process takes values in the compact set [0, 1], it remains to apply
Theorem 12.3 page 95 from Billingsley [4] (see also theorem 7.2.1 below), in
conjunction with Proposition 3.10.4 page 149 from Ethier, Kurtz [11].

Proof of 2. With the same notations as above, in particular ∆t = N−1,

GNf(x) := IE
[
f(XN

t+∆t)− f(XN
t )|XN

t = x
]

= IE

[
f

(
N−1

N∑
i=1

Zi

)
− f(x)

]

=
1

2
IE

(N−1

N∑
i=1

Zi − x

)2
 f ′′(x) +

1

6
IE

(N−1

N∑
i=1

Zi − x

)3

f ′′′(ξ)


=

1

2N
x(1− x)f ′′(x) + rN(x),
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where rN(x) = O(N−3/2), since

1

6
IE

∣∣∣∣∣∣
(
N−1

N∑
i=1

Zi − x

)3

f ′′′(ξ)

∣∣∣∣∣∣ ≤ 1

6
‖f ′′′‖∞ sup

0≤x≤1
IE

∣∣∣∣∣N−1

N∑
i=1

Zi − x

∣∣∣∣∣
3


≤ 1

6
‖f ′′′‖∞ sup

0≤x≤1

IE

∣∣∣∣∣N−1

N∑
i=1

Zi − x

∣∣∣∣∣
4
3/4

= O(N−3/2).

Now it is easily seen that

MN
t := f(XN

t )− f(XN
0 )−

[Nt]−1∑
i=0

GNf(XN
i/N)

= f(XN
t )− f(XN

0 )− 1

2

∫ [Nt]/N

0

XN
s (1−XN

s )f ′′(XN
s )ds−

∫ [Nt]/N

0

NrN(XN
s )ds

is a bounded martingale (with respect to the natural filtration generated by
the process XN).

This means that for any 0 ≤ s < t and any bounded and continuous
function ϕ : D([0, s); [0, 1])→ IR,

IE
[
MN

t ϕ
(
(XN

r )0≤r≤s
)]

= IE
[
MN

s ϕ
(
(XN

r )0≤r≤s
)]
.

Taking the limit along any converging subsequence, we get that any limit
point X satisfies (2.1.1). �

2.2 Wright–Fisher model with mutations

Assume that mutation converts at birth an A–type to an a–type with prob-
ability α1, and converts an a–type to an A–type with probability α0. Here

IP(Y N
k+1 = i|Y N

k = j) = Ci
Np

i
j (1− pj)N−i ,

where

pj =
j(1− α1) + (N − j)α0

N
.
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We now want to let N →∞. Assume that α0 and α1 are of the form

α1 = γ1/N, α0 = γ0/N, where γ1 > 0, γ0 > 0 are fixed,

and define again the continuous time process

XN
t = N−1Y N

[Nt], t ≥ 0.

IE[XN
t+∆t −XN

t |XN
t ] = [−γ1X

N
t + γ0(1−XN

t )]∆t,

IE[(XN
t+∆t −XN

t )2|XN
t ] = XN

t (1−XN
t )∆t+O(∆t2).

As N →∞, XN ⇒ X, where {Xt, t ≥ 0} solves the SDE

dXt = γ0(1−Xt)dt− γ1Xtdt+
√
Xt(1−Xt)dBt, t ≥ 0.

2.3 Wright–Fisher model with selection

Assume that type A is selectively superior to type a. Then

IP(Y N
k+1 = i|Y N

k = j) = Ci
Np

i
j (1− pj)N−i ,

where

pj =
j(1 + s)

j(1 + s) +N − j
.

If we want to combine mutations and selection, we choose

pj =
(1 + s)[j(1− α1) + (N − j)α2]

(1 + s)[j(1− α1) + (N − j)α2] + jα1 + (N − j)(1− β)
.

We again want to let N → ∞. Let α1 = 0, α0 = 0, and s = β/N , with
β > 0. We define the continuous time process

XN
t = N−1Y N

[Nt], t ≥ 0.

IE[XN
t+∆t −XN

t |XN
t ] = βXN

t (1−XN
t )]∆t+ 0(∆t2),

IE[(XN
t+∆t −XN

t )2|XN
t ] = XN

t (1−XN
t )∆t+ 0(∆t2).
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As N →∞, XN ⇒ X, where {Xt, t ≥ 0} solves the SDE

dXt = βXt(1−Xt)dt+
√
Xt(1−Xt)dBt, t ≥ 0.

Suppose now that α0 = α1 = γ/N . Then

IE[XN
t+∆t −XN

t |XN
t ] = βXN

t (1−XN
t )]∆t+ γ(1− 2XN

t )]∆t+ 0(∆t2),

IE[(XN
t+∆t −XN

t )2|XN
t ] = XN

t (1−XN
t )∆t+ 0(∆t2).

Then as N →∞, XN ⇒ X, where {Xt, t ≥ 0} solves the SDE

dXt = [βXt(1−Xt) + γ(1− 2Xt)]dt+
√
Xt(1−Xt)dBt, t ≥ 0.

2.4 Bibliographical comments

Section 2.1 is essentially borrowed from [6], while the next sections are in-
spired by [15].
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Chapter 3

Connections between branching
and fixed–size population
models

3.1 Discrete models

Consider a B–G–W process {Zn, n ≥ 0} with initial condition Z0 = N , and
Poisson offspring distribution with mean λ.

Proposition 3.1.1. For any T ≥ 1, the law of {Zn, 0 ≤ n ≤ T}, conditioned
upon {Zn = N, 0 ≤ n ≤ T}, is the law of the Wright–Fisher model.

Proof: Let ξi denote the number of offsprings in generation 1 of individual i
from the 0 generation. For any 0 ≤ k1, . . . , kN ≤ N satisfying k1 + · · ·+kN =
N , since the law of the sum of N independent Poisson (λ) r. v.’s is Poisson
(Nλ),

IP(ξ1 = k1, . . . , ξN = kN |ξ1 + · · ·+ ξN = N) =
IP(ξ1 = k1)× · · · × IP(ξN = kN)

IP(Z1 = N |Z0 = N)

=
e−λ λ

k1

k1!
× · · · × e−λ λkN

kN !

e−Nλ (Nλ)N

N !

=
N !

k1!× · · · × kN !

(
1

N

)N
.

We recognize the multinomial distribution. �
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Consider now the two–types Wright–Fisher model where the initial pop-
ulation contains ` type A individuals and N − ` type a individuals, and
there is no selection and no mutation. Denote by Y N

k the number of type A
individuals in generation k.

Proposition 3.1.2. If Y N
0 → Z0 as N → ∞, then Y N ⇒ Z as N → ∞,

where {Zk, k ≥ 0} is a B–G–W process with Poisson(1) offspring distribu-
tion.

Proof: It suffices to prove the weak convergence of finite dimensional distri-
butions. But the conditional law of Y N

k+1, given that Y N
k = r is the binomial

law with parameters (N, r
N

), which, as N →∞, converges to the Poisson(r)
distribution. �

3.2 Diffusion models

Consider the Wright–Fisher model with selection

dXt = βXt(1−Xt)dt+
√
Xt(1−Xt)dBt.

Define the increasing process

At =

∫ t

0

(1−Xs)ds,

and its inverse
σt = inf{s; As > t},

which is defined for all 0 ≤ t ≤ A∞, where

A∞ =

∫ τ

0

(1−Xs)ds, τ = inf{s; Xs = 1}.

Note that {τ = ∞} = {A∞ = ∞}. Define the process Yt = Xσt for 0 ≤ t <
A∞. {Yt; 0 ≤ t < A∞} solves the SDE

dYt = βYtdt+
√
YtdBt,

which is a continuous branching diffusion.

3.3 Bibliographical comments

Section 3.1 is borrowed from [16].



Chapter 4

One–dimensional diffusions

4.1 A uniqueness theorem of Yamada–Watanabe

We consider the one–dimensional SDE of the form{
dXt = b(Xt)dt+ σ(Xt)dBt, t ≥ 0;

X0 = x;
(4.1.1)

where x ∈ IR, {Bt, t ≥ 0} is a one dimensional standard Brownian motion,
b : IR→ IR is uniformly Lipschitz continuous and σ : IR→ IR satisfies

there exists a function ρ : IR+ → IR+ such that

(i) ρ is strictly increasing, ρ(0) = 0,

(ii)

∫
0+

dr

ρ2(r)
= +∞,

(iii) |σ(x)− σ(y)| ≤ ρ(|x− y|), x, y ∈ IR.

(4.1.2)

Note that ρ(r) = r1/2 satisfies (4.1.2) (i) and (ii). We have the

Theorem 4.1.1. Under the above assumptions, if moreover |σ(x)| ≤ K(1 +
|x|) ∀x ∈ IR, then the equation (4.1.1) has at most one solution.

Proof: Let 1 = a0 > a1 > a2 > · · · > 0 be such that

∀n ≥ 1,

∫ an−1

an

dr

ρ2(r)
= n.

37
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Clearly, an → 0, as n→∞. For each n ≥ 1, let ψn be a continuous function
with support in (an, an−1) such that

0 ≤ ψn(r) ≤ 2

nρ2(r)
and

∫ an−1

an

ψn(r)dr = 1.

Set

ϕn(x) =

∫ |x|
0

dy

∫ y

0

ψn(r)dr, x ∈ IR.

It is easily seen that ϕn ∈ C2(IR), |ϕ′n(x)| ≤ 1, and ϕn(x) ↑ |x| as n→∞.
Let X1 and X2 be two solutions of (4.1.1).Then from It’s formula

IE[ϕn(X1
t −X2

t )] = IE

∫ t

0

ϕ′n(X1
s −X2

s )[b(X1
s )− b(X2

s )]ds+

+
1

2

∫ t

0

ϕ′′n(X1
s −X2

s )[σ(X1
s )− σ(X2

s )]2ds

≤ K

∫ t

0

IE[|X1
s −X2

s |]ds+ t/n,

where we have used (4.1.2) (iii) and ψn(r) ≤ 2/nρ2(r) for the last inequality.
Taking the limit as n→∞ in this inequality yields

IE[|X1
t −X2

t |] ≤ K

∫ t

0

IE[|X1
s −X2

s |]ds.

The result now follows from Gronwall’s Lemma. �

Remark 4.1.2. The Lipschitz condition on b can be replaced by the more
general condition

|b(x)− b(y)| ≤ κ(|x− y|),
with κ : IR+ → IR+ concave and increasing, satisfying κ(0) = 0 and

∫
0+
κ−1(r)dr =

∞ if we use Bihari’s generalization of Gronwall’s Lemma.

We now have the

Corollary 4.1.3. Under the assumptions of Theorem 4.1.1, the SDE (4.1.1)
has a unique weak solution, i. e. there exists a probability space with a fil-
tration (Ω,F , (Ft)t≥0, IP) on which one can define a progressively measurable
process {(Xt, Bt), t ≥ 0} such that B is a standard Brownian motion, and
(4.1.1) is satisfied, and moreover the law of {Xt, t ≥ 0} on C(IR+) is uniquely
determined by that statement.
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Proof: Since the coefficients b and σ are continuous, it is not hard to
construct a solution of the martingale problem by weak convergence of an
approximating Markov chain, as in Theorem 2.1.1. the existence of a solution
in the sense of the statement then follows from the martingale representation
Theorem 7.3.1 below.

It remains to prove the uniqueness of the law of {Xt, t ≥ 0}. Let Cx
denote the space of continuous functions from IR+ into IR which start from x
at time 0. Let {(Xt, Bt), t ≥ 0} and {(X ′t, B′t), t ≥ 0} denote two solutions
of (4.1.1) (possibly defined on different probability spaces), and let IPx (resp.
IP′x) be its law on Cx × C0. If we denote by Π the projection in Cx × C0 onto
its second coordinate, then we have that

Π(IPx) = Π(IP′x) = W,

where W denotes the Wiener maesure (i. e. the law of the standard Brownian
motion) on C0. Let Qw2(dw1) [resp. Q′w2(dw1)] denote a regular conditional
probability distribution of w1, given w2 under IPx [resp. under IP′x]. This
means that

1. ∀w2 ∈ C0, Qw2 and Q′w2 are two probability measures on (Cx,B(Cx)).

2. ∀A ∈ B(Cx), w2 → Qw2(A) and w2 → Q′w2(A) are B(C0–measurable.

3. ∀A ∈ B(Cx), B ∈ B(C0),

IPx(A×B) =

∫
B

Qw2(A)W (dw2),

IP′x(A×B) =

∫
B

Q′w2(A)W (dw2).

Consider the measure

Q(dw1, dw2, dw3) = Qw3(dw1)Q′w3(dw2)W (dw3)

on the space (Ω,F), where Ω = Cx × Cx × C0 and F is its Borel σ–field,
completed with the class N of Q–null sets. We equip this probability space
with the filtration

Ft = ∩ε>0 (Bt+ε ∨N ) ,

where Bt = Bt(Cx)× Bt(Cx)× Bt(C0).
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Then the law of (w1, w3) [resp. of (w2, w3)] under Q is IPx [resp. P ′x].
But (w1, w3) and (w2, w3) are two solutions of (4.1.1), defined on the same
probability space. Hence from Theorem 4.1.1, w1 = w2 Q a. s. But since for
W almost all w3, w1 and w2 are independent, this implies that there exists a
measurable mapping F : IR× C0 such that W a. s.

Qw3(dw) = Q′w3(dw) = ∆F (x,w3)(dw).

Hence certainly for all A ∈ B(Cx),

IP(X ∈ A) =

∫
C0
Qw(A)W (dw) =

∫
C0
Q′w(A)W (dw) = IP(X ′ ∈ A),

which proves the uniqueness in law. �

Remark 4.1.4. With a little more effort, one can deduce from the above
argument that given the Brownian motion {Bt, t ≥ 0} defined on a probability
space (Ω,F , (Ft)t≥0, IP), one can construct the solution {Xt, t ≥ 0} of (4.1.1)
driven by that Brownian motion as X = F (x,B) (with the notation from the
preceding proof) which is then unique from Theorem 4.1.1. The point is that
weak existence and pathwise uniqueness implies existence of a unique strong
solution, see [13] for details.

4.2 The local time of a one dimensional dif-

fusion

4.2.1 Local time of the Brownian motion

Note that Brownian motion spends zero time at any point x ∈ IR. We shall
now define a process, called the local time, which in a sense measures the
time spent by the Brownian motion near any point x ∈ IR. The local time
at x of the Brownian motion up to time t can be intuitively defined as

Lxt =

∫ t

0

δx(Bs)ds,

where δx is the Dirac measure at the point x. It can be rigorously defined
through the Itô–Tanaka formula, which says that for all x ∈ IR, t ≥ 0,

(Bt − x)+ = (B0 − x)+ +

∫ t

0

1{Bs>x}dBs +
1

2
Lxt . (4.2.1)
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Since all terms except the last one in this formula are well defined, that for-
mula provides a definition of the process {Lxt , t ≥ 0}. Note that the intuitive
definition given above is related to the fact that, if we take any reasonable
approximation of the Dirac measure at x by a sequence of functions fn (for
instance with compact support), and apply Itô’s formula to a function whose
second derivative if fn, then we obtain the Itô–Tanaka formula in the limit.

It is easily seen from the definition that for each x ∈ IR, t → Lxt is
continuous and increasing. We have moreover the

Proposition 4.2.1. There exists a version of the two–parameter process
{Lxt , x ∈ IR, t ≥ 0} whose trajectories are jointly continuous with respect to
(t, x).

Proof: �

A very important result is the occupation times formula :

Theorem 4.2.2. If f : IR→ IR is locally integrable, then for all t ≥ 0, a. s.,∫ t

0

f(Bs)ds =

∫
IR

f(x)Lxt dx.

Proof: It suffices to proves the result in the case f has a compact support.
For such an f , let

F (x) :=

∫ x

−∞
f(y)dy, F(x) :=

∫ x

−∞
F (y)dy.

The following two identities are easy to check :

F (Bt) =

∫
IR

f(x)1{Bt>x}dx, F(Bt) =

∫
IR

f(x)(Bt − x)+dx.

The result now follows by multiplying the Itô–Tanaka formula by f(x), inte-
grating over IR with respect to Lebesgue’s measure, and interchanging the
Lebesgue integral with respect to dx and the Itô integral with respect to dBt.
The justification of that point is left to the reader. �
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4.2.2 Local time of a one–dimensional diffusion

If {Xt, t ≥ 0} is the solution of a one–dimensional SDE, it is in particular a
continuous semimartingale. We can now state the

Proposition 4.2.3. For any real number x, there exists a continuous in-
creasing process Lx called the local time of X at x, such that

|Xt − x| = |X0 − x|+
∫ t

0

sign(Xs − x)dXs + Lxt , (4.2.2)

where

sign(x) =

{
−1 , if x ≤ 0;

+1 , if x > 0.

Proof: For any ε > 0, let y → ϕε(y) be defined by

ϕε(y) =

{
|y−x|2

2ε
, if y ∈ [x− ε, x+ ε];

|y − x| − ε/2, if y 6∈ [x− ε, x+ ε].

Note that

ϕ′ε(y) =

(
y − x
ε
∧ 1

)
∨ (−1), ϕ′′ε(y) = ε−11[x−ε,x+ε](y), y ∈ IR.

Itô’s formula (taking the limit along a regularizing sequence made of C2

approximations of ϕε whose second derivative increases to that of ϕε) yields

ϕε(Xt) = ϕε(X0) +

∫ t

0

ϕ′ε(Xs)dXs + Lx,εt , (4.2.3)

where

Lx,εt =
1

2ε

∫ t

0

1[x−ε,x+ε](Xs)d〈X,X〉s.

As ε→ 0, the three first terms in the identity (4.2.3) converge to the corre-
sponding terms of (4.2.2), hence Lx,εt → Lxt in probability as ε → 0. The a.
s. continuity follows from that of the other terms in (4.2.2). The fact that
t→ Lxt is a. s. increasing follows from the smae property for Lx,εt . �

Exercise 4.2.4. Justify the argument leading to formula (4.2.3).
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Let us prove the

Proposition 4.2.5. (Occupation times formula) 0utside a IP–negligible sub-
set of Ω, for all t > 0 and Borel measurable functions ϕ from IR into IR+,∫ t

0

ϕ(Xs)d〈X,X〉s =

∫
IR

ϕ(x)Lxt dx.

Proof: It suffices to prove the result for ϕ continuous with compact support.
With such a ϕ, define

f(x) =
1

2

∫
IR

|x− y|ϕ(y)dy.

Then f ∈ C2(IR),

f ′(x) =
1

2

∫
IR

sign(x− y)ϕ(y)dy, f ′′(x) = ϕ(x).

It follows from Itô’s formula that a. s. for all t ≥ 0,

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d〈X,X〉s.

On the other hand, if we multiply equation (4.2.2) by ϕ(x)/2 and integrate
over IR with respect to dx, we deduce that a. s. for all t ≥ 0,

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫
IR

Lxtϕ(x)dx. (4.2.4)

The result follows from the comparison of the two last identities. �

Exercise 4.2.6. Justify the argument leading to the identity (4.2.4).

4.3 A comparison theorem

Consider two one–dimensional SDEs

X
(1)
t = x1 +

∫ t

0

b1(X(1)
s )ds+

∫ t

0

σ(X(1)
s )dBs, (4.3.1)

X
(2)
t = x2 +

∫ t

0

b2(X(2)
s )ds+

∫ t

0

σ(X(2)
s )dBs. (4.3.2)

The aim of this section is to prove the
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Theorem 4.3.1. Let {X(1)
t , t ≥ 0} (resp. {X(2)

t , t ≥ 0}) be a solution of
equation (4.3.1) (resp. (4.3.2)). Assume that σ satisfies the same condition
as in Theorem 4.1.1, that either b1 or b2 is globally Lipschitz. If moreover
x1 ≤ x2, b1(x) ≤ b2(x), ∀x ∈ IR, then X

(1)
t ≤ X

(2)
t for all t ≥ 0, a. s.

Proof:

4.4 Classification of boundary points

As we will see, all we need to understand is the behaviour at 0 of Bessel
square processes. Let {Wt, t ≥ 0} be a d–dimensional standard Brownian
motion, starting from y 6= 0. Define Xt := |Wt|2, x = |y|2. From Itô’s
formula,

Xt = x+ d× t+ 2

∫ t

0

< Ws, dWs > .

Note that the continuous martingale Mt =
∫ t

0
< Ws, dWs > has its quadratic

variation given by < M >t=
∫ t

0
Xsds. Hence there exists a one–dimensional

Brownian motion {Bt, t ≥ 0} such that

Mt =

∫ t

0

√
XsdBs,

and {Xt, t ≥ 0} solves the SDE

Xt = x+ d× t+ 2

∫ t

0

√
XsdBs.

We now consider for any δ ≥ 0, x > 0, the SDE{
dXt = δ × dt+ 2

√
XtdBt,

X0 = x.
(4.4.1)

From a well–known result of Yamada–Watanabe (see e. g. [22] Theorem 3.5
page 371), the SDE (4.4.1) has a unique strong solution. It is not hard to
see that the solution remains non negative for all t > 0. The only delicate
question is whether or not the point 0 can be reached in finite time (whether
it is accessible or inaccessible).
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Theorem 4.4.1. The left endpoint 0 is accessible whenever δ < 2, in par-
ticular it is an exit point (absorbing) if δ = 0, instantaneously reflecting if
0 < δ < 2; it is inaccessible (and an entrance point) if δ ≥ 2.

Proof: For δ = 1, Xt is the absolute value of a one–dimensional Brownian
motion, hence 0 is accessible. We deduce by comparison that the same is true
for 0 ≤ δ ≤ 1. Now the point 0 is polar for the two–dimensional Brownian
motion, hence 0 is inaccessible in case δ = 2, hence also by comparison if
δ ≥ 2. For the other cases, we refer for the proof to [22] p. 423.
An alternative proof of the Theorem. We consider the diffusion
{Yt; t ≥ 0}, solution of the SDE

Yt = x+ δ

∫ t

0

Ysds+ 2

∫ t

0

YsdBs.

That SDE has the explicit solution

Yt = x exp [(δ − 2)t+ 2Bt] , t ≥ 0.

We note that

lim sup
t→∞

Yt =

{
+∞, if δ ≥ 2;

0, if δ < 2.

The case δ ≥ 2 In that case,

A(t) :=

∫ t

0

Ysds→∞ a. s., as t→∞.

Consequently

σ(t) = inf{s; A(s) > t} = A−1(t)

is defined for all t > 0. Let Xt := Yσ(t). It is not hard to see that

Xt = x+ δt+ 2

∫ t

0

√
XsdBs, X0 = x. (4.4.2)

Indeed, we have

Yt = x+ δA(t) + 2Mt, with < M >t=

∫ t

0

Y 2
s ds.
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Now Xt = x + δt + 2Nt, where Nt = Mσ(t) is a martingale from Doob’s
optional stopping theorem, since the σ(t)’s are stopping times, and

< N >t =< M >σ(t)

=

∫ σ(t)

0

Y 2
s ds

=

∫ t

0

Y 2
σ(r)σ

′(r)dr

=

∫ t

0

Yσ(r)dr

=

∫ t

0

Xsds,

where we have used the fact that σ′(r) = 1/A′(σ(r)) = 1/Yσ(r). It remains to
make use of the martingale representation theorem 7.3.1 in order to conclude
(4.4.2).

But since Yt > 0, ∀t ≥ 0, the same is true for X. Hence 0 is inaccessible.
The case δ < 2 Since Bt/t → 0 a. s., as t → ∞, T (ω) > 0 such that IP a.
s.,

Yt(ω) ≤ exp [(δ − 2)t/2] , ∀t ≥ T (ω).

As a consequence, A(t) → A(∞), with A(∞) < ∞ a. s., as t → ∞. Now
σ(t) < ∞, ∀t < A(∞), and σ(t) → ∞, as t → A(∞). Consequently,
Xt = Yσ(t) → 0, as t→ A(∞). Consequently XA(∞) = 0, and 0 is accessible.
�

4.5 Application to the Wright–Fisher diffu-

sion

Let us first translate the last result for the diffusion{
dXt = ct+

√
XtdBt,

X0 = x.
(4.5.1)

We can transform (4.5.1) into (4.4.1) either by time change, or by a change of
spatial scale. At any rate, the result translates to the fact that the solution of
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(4.5.1) never hits zero iff c ≥ 1/2. Consider first the Wright–Fisher diffusion
without mutation nor selection

dXt =
√
Xt(1−Xt)dBt.

Clearly it behaves near 0 as the solution of (4.5.1) with c = 0, and similarly
near 1, i. e. both end points are accessible and absorbing. The Wright–Fisher
diffusion with selection

dXt = βXt(1−Xt)dt+
√
Xt(1−Xt)dBt

has the same behaviour, since it is obtained from the previous one by an
absolute continuous Girsanov transformation (one can also use a comparison
argument). The fact that the two end points are absorbing follows easily
from pathwise uniqueness, which is a consequence a Theorem 4.1.1. Consider
finally the Wright–Fisher diffusion with mutation

dXt = γ0(1−Xt)dt− γ1Xtdt+
√
Xt(1−Xt)dBt, t ≥ 0.

0 is inaccessible iff γ0 ≥ 1/2, 1 is inaccessible iff γ1 ≥ 1/2. Neither point is
absorbing, unless the corresponding γ vanishes.

4.6 Probability of fixation and time to fixa-

tion

We consider here the Wright–Fisher diffusion without mutations, with or
without selection.

It is easy to deduce from the Markov property that for all 0 < x < 1,
IPx(τ0,1 < ∞) = 1. As we have said, both 0 and 1 are absorbing, hence
Xt = Xt∧τ0,1 . We are interested in the probability of the event that the allele
A gets fixed, i. e. that τ1 < τ0 =∞. Define

u(x) = IPx(τ1 <∞).

Applying the semigroup of the Wright–Fisher diffusion to the function u, we
deduce

Ptu(x) = IEx [IPXt(τ1 <∞)]

= IEx [IPx(τ1 <∞|Ft)]
= IPx(τ1 <∞)

= u(x).
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From this we conclude that u belongs to the domain of the generator L of
the diffusion X, and that Lu(x) ≡ 0.

Consider first the case β = 0. In that case, Lu = 0 implies u′′ = 0. Since
u(0) = 0 and u(1) = 1, we deduce that u(x) = x. Note that the same result
can be deduced from the remark that {Xt, t ≥ 0} is a bounded martingale,
hence

IPx(τ1 <∞) = IEx[Xτ0,1 ] = x.

We can also compute the expected time until there is fixation of either allele.
Denote by x→ v(x) the solution of the boundary value problem{

Lv(x) + 1 = 0, 0 < x < 1;

v(0) = v(1) = 0.

Applying Itô’s formula to develop v(Xt∧τ0,1), taking the expectation and let-
ting t → ∞, we deduce that v(x) = IEx[τ0,1]. The unique solution of the
above equation is given as follows

v′′(x) = − 2

x(1− x)

= − 2

1− x
− 2

x

v′(x) = 2 log
1

x
− 2 log

1

1− x

v(x) = 2(1− x) log
1

1− x
+ 2x log

1

x
.

Consider now the case β > 0. The identity Lu(x) = 0 implies that(
e2βxu′

)′
(x) = 0, 0 < x < 1.

This, together with u(0) = 0, u(1) = 1 implies that

IPx(τ1 <∞) = u(x) =
1− e−2βx

1− e−2β
.

We note that this quantity is increasing both in x and in β, as it should be,
and that it converges to x as β → 0.
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4.7 More on the Wright–Fisher diffusion

Consider the Wright–Fisher diffusion without mutation nor selection, i. e.

dXt =
√
Xt(1−Xt)dBt, t ≥ 0.

All the invariant probability measures of that Markov process are the mea-
sures {λδ0 + (1− λ)δ1; 0 ≤ λ ≤ 1}.

Consider now the same process with values in the state space E = (0, 1),
where the process is considered to be killed when it reaches either 0 or 1.
Clearly that process is transient, it cannot possibly possess an invariant prob-
ability measure. However the measure

dx

x(1− x)
, on (0, 1)

is an invariant σ–finite measure, and the process is in fact reversible with
respect to that invariant σ–finite measure. Indeed, the infinitesimal generator
of the Wright–Fisher diffusion on (0, 1) is (D(L), L), where the set

A = {f ∈ C2(0, 1) ∩ C[0, 1], f(0) = f(1) = 0}

is dense is D(L) and for f ∈ A,

Lf(x) =
1

2
x(1− x)f ′′(x).

For any f, g ∈ A, we have∫ 1

0

f(x)(Lg)(x)
dx

x(1− x)
=

1

2

∫ 1

0

f(x)g′′(x)dx

= −
∫ 1

0

f ′(x)g′(x)dx

=

∫ 1

0

g(x)(Lf)(x)
dx

x(1− x)

If we call µ(dx) = dx
x(1−x)

, we have just shown that the oprerator is a self–

adjoint unbounded negative operator on L2((0, 1);µ(dx)).
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4.8 Conditioning

We are interested in conditioning the Wright–Fisher diffusion upon fixation
of the allele A, that is we want to study {Xt, t ≥ 0}, under the law

IPx( · |τ1 <∞).

Recall the notation u(x) = IPx(τ1 <∞).

Theorem 4.8.1. The process {u(Xt), t ≥ 0} is a positive bounded martin-
gale and

IPx(A|τ1 <∞) = IEx

(
u(Xt)

u(x)
;A

)
, x ∈ (0, 1), A ∈ Ft.

Moreover, the generator L∗ of the process X conditonned upon {τ1 < ∞},
acts as follows on f ∈ C2(0, 1) :

L∗f(x) =
L(uf)(x)

u(x)
, x ∈ (0, 1).

Proof: The martingale property of {u(Xt), t ≥ 0} follows readily from the
fact that Lu ≡ 0. Let f ∈ C2(0, 1).

P ∗t f(x) =
IEx [f(Xt); {τ1 <∞}]

IPx(τ1 <∞)

=
IEx [f(Xt)u(Xt)]

u(x)

=
Pt(uf)(x)

u(x)
.

The first statement follows upon replacing f(Xt) by 1A, with A ∈ Ft. The
second follows by subtracting f(x), dividing by t and letting t→ 0. �

Consider now the Wright–Fisher diffusion with selection, i. e.

dXt = βXt(1−Xt)dt+
√
Xt(1−Xt)dBt, X0 = x.

If follows from the formula for u(x) in the last section that the generator of
that diffusion, conditioned upon fixation of the advantageous allele, is

L∗f(x) = βx(1− x) coth(βx)f ′(x) +
1

2
x(1− x)f ′′(x).
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The corresponding SDE reads

dXt = βXt(1−Xt) coth(βXt)dt+
√
Xt(1−Xt)dBt, X0 = x.

Since limx→0 βx(1 − x) coth(βx) = 1, it follows from Theorem 4.4.1 that
0 is an entrance boundary for that SDE. While 0 is an exit point for the
unconditioned Wright–Fisher diffusion, it is an entrance point for the Wright–
Fisher diffusion conditioned upon fixation.

Note that the limit as β → 0 of the last SDE is

dXt = (1−Xt)dt+
√
Xt(1−Xt)dBt, X0 = x,

which coincides with the Wright–Fisher diffusion without selection, condi-
tioned upon fixation.

4.9 Invariant measure

Consider the Wright–Fisher diffusion with selection and mutation, i. e. the
solution of the SDE

dXt = [βXt(1−Xt) + γ(1− 2Xt)]dt+
√
Xt(1−Xt)dBt, t ≥ 0.

This diffusion is irreducible, in the sense that starting from any point x ∈
[0, 1], any interval I ⊂ [0, 1] with |I| > 0, all t > 0, IPx(Xt ∈ I) > 0. Since
moreover the process {Xt, t ≥ 0} is a homogeneous Markov process with
values in a compact set, it has a unique invariant probability distribution,
which has the density

Kxγ−1(1− x)θ−1eβx, x ∈ [0, 1],

whre K is a normalizing constant.

4.10 Bibliographical comments

Section 4.1 follows mainly the treatment in [13]. Section 4.8 follows [16].



52 CHAPTER 4. ONE–DIMENSIONAL DIFFUSIONS



Chapter 5

The coalescent

Consider again the discrete Wright–Fisher model, but this time we consider
that each of the N individuals of the initial generation is of a different type.
The process describing the types of the individuals of the successive gener-
ations (i. e. who was their grand–grand father in the initial generation) is
a again a Markov chain, which reaches eventually one of the N absorbing
states consisting of all the individuals being the grand–grand children of the
same initial ancestor.

Looking backward in time, if we sample n individuals in the present
population, we want to describe at which generation any two of those had
the same common ancestor, until we reach the most recent common ancestor
of the sample.

5.1 Cannings’ model

We can generalize the Wright–Fisher model as follows. Suppose at each
generation, we label the N individuals randomly. For r ≥ 0, 1 ≤ i ≤ N , let
νri denote the number of offsprings in generation r+ 1 of the i–th individual
from generation r. Clearly those r. v.’s must satisfy the requirement that

νr1 + · · ·+ νrN = N.

Cannings’ model stipulates moreover that

νr, r ≥ 0 are i. i. d. copies of ν,

53
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and that the law of ν is exchangeable, i. e.

(ν1, . . . , νN) ' (νπ(1), . . . , νπ(N)),∀π ∈ SN .

The above conditions imply that IEν1 = 1. To avoid the trivial case where
IP(ν1 = · · · = νN = 1) = 1, we assume that Var(ν1) > 0. A particular case
of Cannings’ model is the Wright–Fisher model, in which ν is multinomial.

5.2 Looking backward in time

Consider a population of fixed size N , which has been reproducing for ever
according to Cannings’ model. We sample n < N individuals from the
present generation, and label them 1, 2, . . . , n. For each r ≥ 0, we introduce
the equivalence relation on the set {1, . . . , n} : i ∼r j if the individuals i
and j have the same ancestor r generations back in the past. Denote this
equivalence relation by RN,n

r . For r ≥ 0, RN,n
r is a random equivalence

relation, which can be described by its associated equivalence classes, which
is a random partition of (1, . . . , n). Thus {RN,n

r ; r ≥ 0} is a Markov chains
with values in the set En of the partitions of (1, . . . , n), which starts from
the trivial finest partition ({1}, . . . {n}), and eventually reaches the coarsest
partition consisting of the set {1, . . . , n} alone. We denote by PN,n

ξ,η the
transition matrix of that chain.

The probability that two individuals in today’s population have the same
ancestor in the previous generation is

cN =

∑N
i=1 IE

[(
νi
2

)]
(
N
2

) =

∑N
i=1 IE[νi(νi − 1)]

N(N − 1)
=

IE[ν1(ν1 − 1)]

N − 1
.

Provided that cN → 0 as N →∞, if r = t/cN ,

IP(1 6∼r 2) = (1− cN)r ≈ e−t.

This suggests to consider

RN,n
t := RN,n

[t/cN ], t ≥ 0.



5.3. KINGMAN’S COALESCENT 55

5.3 Kingman’s coalescent

Let {Rn
t ; t ≥ 0} be a continuous time En–valued Markov chain with the rate

matrix given by (for η 6= ξ)

Qξη =

{
1 , if η is obtained from ξ by merging exactly two classes,

0 , otherwise.

(5.3.1)
This is Kingman’s n coalescent. In order for RN,n to converge to Kingman’s
coalescent, we certainly need that merges of 3 or more lineages are asymptot-
ically negligible. The probability that three individuals in today’s population
have the same ancestor in the previous generation is

dN :=

∑N
i=1 IE

[(
νi
3

)]
(
N
3

) =
IE[ν1(ν1 − 1)(ν1 − 2)]

(N − 1)(N − 2)
.

Theorem 5.3.1. RN,n ⇒ Rn in D(IR+; En) iff, as N →∞, both
cN → 0,

dN
cN
→ 0.

(5.3.2)

Proof: The sufficiency will follow from the standard Lemma 5.3.2 below
and the fact that (5.3.2) implies that

PN,n
ξ,η = δξ,η + cNQξ,η + ◦(cN),

where the error term is small, uniformly with respect to ξ, η ∈ En. It follows
from exchangeability that for any f : {0, 1, . . . , N} → IR+,

(N − 1)IE[ν2f(ν1)] =
N∑
j=2

IE[νjf(ν1)]

= IE[(N − ν1)f(ν1)]

≤ NIE[f(ν1)],

hence

IE[ν2f(ν1)] ≤ N

N − 1
IE[f(ν1)]. (5.3.3)
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From the Markov inequality and (5.3.2), with the notations (ν)2 = ν(ν − 1),
(ν)3 = ν(ν − 1)(ν − 2), if εN ≥ 2,

IP(ν1 > εN) ≤ IE[(ν1)3]

(εN)3

=
◦(NIE[(ν1)2])

ε3N3
,

consequently
IP(ν1 > εN) ≤ ε−3 ◦ (cN/N). (5.3.4)

Next

IE[(ν1)2(ν2)2] ≤ εNIE[(ν1)2ν2; ν2 ≤ εN ] +N2IE[(ν1)2; ν2 > εN ]

≤ εNIE[(ν1)2ν2] +N3IE[ν1; ν2 > εN ]

≤ εN
N

N − 1
IE[(ν1)2] +N3 N

N − 1
IP(ν2 > εN),

where we have used (5.3.3) twice in the last inequality. Combining this with
(5.3.4), we conclude that for all ε > 0,

lim sup
N→∞

IE[(ν1)2(ν2)2]

NIE[(ν1)2]
≤ ε+ lim sup

N→∞

IP(ν1 > εN)

cN/N

= ε.

Let I1, . . . , In denote the parents of n ordered randomly chosen individuals
of a given generation. We have the following identities

IP(I1 = I2) = cN

IP(I1 = I2 = I3) = dN

IP(I1 = I2 6= I3 = I4) =

∑
1≤i<j≤N IE

[(
νi
2

)(
νj
2

)]
(
N
4

)
= 3

IE[(ν1)2(ν2)2]

(N − 2)(N − 3)
.

Hence we deduce from the last estimate that

lim
N→∞

IP(I1 = I2 6= I3 = I4)

IP(I1 = I2)
= 0, (5.3.5)
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while (5.3.2) tells us that

lim
N→∞

IP(I1 = I2 = I3)

IP(I1 = I2)
= 0. (5.3.6)

We now conclude, using (5.3.5) and (5.3.6). Let ξ = (C11, C12, C2, . . . , Ca)
and η = (C1, C2, . . . , Ca), where C1 = C11 ∪ C12. We have

IP(I1 = I2)− IP({I1 = I2} ∩ {∃3 ≤ m ≤ a+ 1; Im = I1})
− IP({I1 = I2} ∩ {∃3 ≤ ` < m ≤ a+ 1; I` = Im 6= I1})
≤ PN,n

ξ,η ≤ IP(I1 = I2).

From (5.3.6),

IP({I1 = I2} ∩ {∃3 ≤ m ≤ a+ 1; Im = I1}) ≤ (a− 1)IP(I1 = I2 = I3)

= ◦(IP(I1 = I2)),

and from (5.3.5),

IP({I1 = I2} ∩ {∃3 ≤ ` < m ≤ a+ 1; L` = Im 6= I1}) ≤
(
a− 1

2

)
IP(I1 = I2 6= I3 = I4)

= ◦(IP(I1 = I2))

We have proved that for such a pair (ξ, η), PN,n
ξ,η = cN + ◦(cN). If η′ is

obtained from ξ by merging more than two classes, then there must be at
least either a triple merger or two double mergers, hence from (5.3.6), (5.3.5),
PN,n
ξ,η′ = ◦(cN). Finally, since |En| <∞ and

∑
η∈En P

N,n
ξ,η = 1,

PN,n
ξ,ξ = 1−

(
|ξ|
2

)
cN + ◦(cN)

= 1−Qξ,ξcN + ◦(cN).

�

Lemma 5.3.2. Let E be a finite set and {Xt, t ≥ 0} a continuous time E–
valued Markov chain, with generator Q = (Qx,y)x,y∈E. Let for each N ∈ IN
XN be a discrete time Markov chain with transition matrix satisfying

PN(x, y) = δx,y + cNQx,y + ◦(cN), x, y ∈ E,

where cN → 0, as N →∞. Then whenever XN
0 ⇒ X0,

{XN
[t/cN ], t ≥ 0} ⇒ {Xt, t ≥ 0} in D(IR+;E).
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Let {Rn
t ; t ≥ 0} start from the trivial partition of (1, . . . , n). For 2 ≤

k ≤ n, let Tk denote the length of the time interval during which there are
k branches alive. From the Markov property of the coalescent, and the form
of the generator, we deduce that

Tn, Tn−1, . . . , T2 are independent,

Tk ' Exp

((
k
2

))
, 2 ≤ k ≤ n,

and consequently the expected time till the Most Recent Common Ancestor
in the sample is

n∑
k=2

2

k(k − 1)
= 2

n∑
k=2

(
1

k − 1
− 1

k

)
= 2

(
1− 1

n

)
.

For n′ > n, denote by dn the restriction to En of an element of En′ . Kingman’s
n–coalescents have the consistency property that

dn

(
{Rn′

t , t ≥ 0}
)
' {Rn

t , t ≥ 0}.

This, together with the fact that
∑

k≥2 Tk < ∞ a. s., since the series of the
expectations converges, allows us to define Kingman’s coalescent {Rt, t ≥ 0}
as the limit limn→∞{Rn

t , t ≥ 0}. It is readily seen that Kingman’s coalescent
comes down from infinity, in the sense that, while R0 is the trivial partition
of IN∗, hence |R0| =∞, |Rt| <∞, ∀t > 0.

5.3.1 The height and the length of Kingman’s coales-
cent

The height of Kingman’s n–coalescent is the r. v.

Hn =
n∑
k=2

Tk,

where the Tk are as above. This prescribes the law of Hn, which does not
obey any simple formula. Note that

IE(Hn) = 2

(
1− 1

n

)
, Var(Hn) =

n∑
k=2

4

k2(k − 1)2
.
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IE(Hn)→ 2 as n→∞, and supn Var(Hn) <∞.
The length of Kingman’s n–coalescent (i. e. the sum of the lengths of the

branches of this tree) is the r. v.

Ln =
n∑
k=2

kTk =
n∑
k=2

Uk,

where the Uk are independent, Uk is an Exp((k−1)/2) r. v. The distribution
function of Ln is given by

Proposition 5.3.3. For all x ≥ 0,

IP(Ln ≤ x) = (1− e−x/2)n−1.

This Proposition follows from the fact that the law of Ln is that of the
sup over n− 1 Exp(1/2) r. v.’s, which is a consequence of the

Proposition 5.3.4. Let V1, V2, . . . , Vn be i. i. d. Exp(λ) r. v.’s, and
V(1) < V(2) < · · · < V(n) denote the same random sequence, but arranged
in increasing order. Then V(1), V(2) − V(1), . . . , V(n) − V(n−1) are independent
exponential r. v.’s with respective parameters nλ, (n− 1)λ, . . . , λ.

Proof: For any Borel measurable function f : IRn
+ → IR+,

IEf(V(1), V(2) − V(1), . . . , V(n) − V(n−1))

= n!IE [f(V1, V2 − V1, . . . , Vn − Vn−1);V1 < V2 < · · · < Vn]

= n!

∫
0<x1<x2<···<xn

f(x1, x2 − x1, . . . , xn − xn−1)λne−λ
Pn
k=1 xkdx1dx2 · · · dxn

=
n∏
k=1

(kλ)

∫ ∞
0

· · ·
∫ ∞

0

f(y1, y2, . . . , yn)
n∏
k=1

e−kλyn+1−kdy1dy2 · · · dyn.

The result follows. �

5.4 The speed at which Kingman’s coalescent

comes down from infinity

Consider Kingman’s coalescent {Rt, t ≥ 0} starting from the trivial partition
of IN∗. Let Rt = |Rt|, t ≥ 0. Let {Tn, n ≥ 2} be a sequence of independent
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r. v.’s, the law of Tn being the exponential law with parameter

(
n
2

)
. We let

Sn =
∞∑

k=n+1

Tk, n ≥ 1.

Now the process {Rt, t ≥ 0} can be represented as follows.

Rt =
∞∑
n=1

n1{Sn≤t<Sn−1}.

We know that Rt →∞, as t→ 0. We state two results, which give a precise
information, as to the speed at which Rt diverges, as t→ 0. We first state a
strong law of large numbers

Theorem 5.4.1. As t→ 0,

tRt

2
→ 1 a. s.

We next have a central limit theorem

Theorem 5.4.2. As t→ 0,√
6

t

(
tRt

2
− 1

)
⇒ N(0, 1).

Remark 5.4.3. As we will see in the proof, the behaviour of Rt as t → 0
is intimately connected to the behaviour of Sn, as n → ∞. But while in
the classical asymptotic results of probability theory we add more and more
random variable as n → ∞, here as n increases, Sn is the sum of less and
less random variables (but always an infinite number of those).

5.4.1 Proof of the strong law of large numbers

We first need to compute some moments of Sn.

Lemma 5.4.4. We have

IE(Sn) =
2

n
(5.4.1)

Var(Sn) =
∞∑
k=n

4

k2(k + 1)2
(5.4.2)

IE
(
|Sn − IESn|4

)
≤ c

n6
, (5.4.3)
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where c is a universal constant. Moreover

n3Var(Sn)→ 4

3
, as n→∞. (5.4.4)

Proof: (5.4.1) follows readily from

IE(Sn) =
∞∑

k=n+1

2

k(k − 1)

=
∞∑
k=n

(
2

k
− 2

k + 1

)

Similarly

Var(Sn) =
∞∑

k=n+1

Var(Tk)

=
∞∑
k=n

4

k2(k + 1)2

This proves (5.4.2). Now (5.4.4) follows from

4

3n3
=

∫ ∞
n

4

x4
dx ≤

∞∑
n

4

(k + 1)4
≤ Var(Sn)

≤
∞∑
n

4

k4
≤
∫ ∞
n−1

4

x4
dx =

4

3(n− 1)3
.

We finally prove (5.4.3). Note that IE(|Tk−IETk|4) = 24/k4(k−1)4. Moreover

IE
(
|Sn − IESn|4

)
= IE

∞∑
k=n+1

|Tk − IETk|4 + 6IE
∑
n<k<`

|Tk − IETk|2|T` − IET`|2

=
∞∑
k=n

24

k4(k + 1)4
+ 4× 4!

∑
n≤k<`

1

k2(k + 1)2`2(`+ 1)2

≤ 24

7(n− 1)7
+

4× 4!

32(n− 1)6
.

�

Theorem 5.4.1 will follow from



62 CHAPTER 5. THE COALESCENT

Proposition 5.4.5. As n→∞,

Sn
IESn

→ 1 a. s.

Proof: The result follows from Borel–Cantelli’s lemma and the next esti-
mate, where we make use of (5.4.3) and (5.4.1)

IE

(∣∣∣∣Sn − IESn
IESn

∣∣∣∣4
)
≤ c

n4

n6
= cn−2.

�

Proof of Theorem 5.4.1 All we need to show is that for all ε > 0,

IP

({
lim sup
t→0

∣∣∣∣tRt

2
− 1

∣∣∣∣ > ε

})
= 0.

But {
lim sup
t→0

∣∣∣∣tRt

2
− 1

∣∣∣∣ > ε

}
⊂ lim sup

n→∞
An,

where

An =

{
sup

Sn≤t<Sn−1

∣∣∣∣tn2 − 1

∣∣∣∣ > ε

}
Now

An ⊂
{∣∣∣∣nSn2

− 1

∣∣∣∣ > ε

}
∪
{∣∣∣∣nSn−1

2
− 1

∣∣∣∣ > ε

}
⊂
{∣∣∣∣nSn2

− 1

∣∣∣∣ > ε

}
∪
{∣∣∣∣(n− 1)Sn−1

2
− 1

∣∣∣∣ > ε/2

}
,

as soon as (ε+ 1)/n ≤ ε/2. But it follows from Proposition 5.4.5 that

IP(lim sup
n

An) = 0.

�
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5.4.2 Proof of the central limit theorem

Define for each n ≥ 1 the r. v.

Zn =
√

3n
Sn − IESn

IESn
.

Let us admit for a moment the

Proposition 5.4.6. As n→∞,

Zn ⇒ N(0, 1).

Proof of Theorem 5.4.2 Define, for all t > 0,

τ(t) = inf{0 < s ≤ t; Rs = Rt}.

Proposition 5.4.6 tells us that, as t→ 0,√
3Rt

(
τ(t)Rt

2
− 1

)
⇒ N(0, 1).

Combining with Theorem 5.4.1, we deduce that√
6

t

(
τ(t)Rt

2
− 1

)
⇒ N(0, 1).

It remains to show that

t− τ(t)√
t

Rt → 0 a. s. as t→ 0.

From Theorem 5.4.1, this is equivalent to

t− τ(t)

t3/2
→ 0 a. s. as t→ 0.

But

lim sup
t→0

t− τ(t)

t3/2
≤ lim sup

n→∞

Tn

S
3/2
n

,

and from Proposition 5.4.5, the right hand side goes to zero if and only if
n3/2Tn → 0 as n → ∞. We have that IE(|n3/2Tn|4) ≤ cn−2, hence from
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Bienaymé–Tchebychef and Borel–Cantelli, n3/2Tn → 0 a. s. as n→∞, and
the theorem is proved. �

We finally give the
Proof of Proposition 5.4.6 Let ϕn denote the characteristic function of
the r. v. Zn. If we let cn =

√
3n, an =

√
3n3, we have Zn = −cn + anSn/2,

hence

ϕn(t) = e−itcn
∞∏

k=n+1

IE
[
e−itanTk/2

]
= e−itcn

∞∏
k=n+1

(
1− itan

k(k − 1)

)−1

= e−itcn exp

{
∞∑

k=n+1

log

(
1 + i

tan
k(k − 1)

− t2 a2
n

k2(k − 1)2
+ 0(a3

nk
−6)

)}

= e−itcn exp

{
∞∑

k=n+1

(
i

tan
k(k − 1)

− t2

2

a2
n

k2(k − 1)2
+ 0(a3

nk
−6)

)}

= e−itcneitan/n exp

(
−t

2

2

∞∑
k=n+1

3n3

k2(k − 1)2
+ 0(n−1/2)

)
→ exp

(
−t2/2

)
,

where we have used again the argument leading to (5.4.4). The result follows.

5.5 Duality between Kingman’s coalescent and

Wright–Fisher’s diffusion

We associate to Kingman’s coalescent again the process {Rt, t ≥ 0} defined
by Rt = |Rt|. {Rt, t ≥ 0} is a pure death process on IN∗, with transition

from n to n − 1 happening at rate

(
n
2

)
. Consider moreover {Xt, t ≥ 0} a

Wright–Fisher diffusion, i. e. the solution of the SDE

dXt =
√
Xt(1−Xt)dBt, t ≥ 0; X0 = x,

where 0 < x < 1.
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Proposition 5.5.1. The following duality relation holds

IE[Xn
t |X0 = x] = IE[xRt|R0 = n], t ≥ 0. (5.5.1)

Proof: We fix n ≥ 1. Define

u(t, x) = IE[xRt |R0 = n].

Since {Rt; t ≥ 0} is a Markov process with gnerator Q defined by

Qf(n) =
n(n− 1)

2
[f(n− 1)− f(n)],

for any f : IN→ IR+,

N f
t = f(Rt)− f(R0)−

∫ t

0

(
Rs

2

)
[f(Rs − 1)− f(Rs)]ds

is a martingale. Let us explicit the above identity for the particular choice
f(n) = xn :

xRt = xn +

∫ t

0

Rs(Rs − 1)

2
[xRs−1 − xRs ]ds+Nt

= xn +
x(1− x)

2

∫ t

0

Rs(Rs − 1)xRs−2ds+Nt.

Writing that IE[Nt|R0 = n] = 0, we deduce that for each n ∈ IN,

u(t, x) = u(0, x) +
x(1− x)

2

∫ t

0

∂2u

∂x2
(s, x)ds.

This means that u solves the following linear parabolic PDE
∂u

∂t
(t, x) =

x(1− x)

2

∂2u

∂x2
(t, x) t ≥ 0, 0 < x < 1;

u(0, x) = xn, u(t, 0) = 0, u(t, 1) = 1

It is easily checked that x → u(t, x) is smooth. We then may apply Itô’s
calculus to develop u(t− s,Xs), which yields, since u solves the above PDE,

u(0, Xt) = u(t, x) +Mt,

where Mt is a zero–mean martingale. Taking the expectation in the last
identity yields u(t, x) = IEx[X

n
t ]. �

We deduce from the above a simple proof of the uniqueness in law of the
solution of the Wright–Fisher SDE.
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Corollary 5.5.2. The law of the solution {Xt, t ≥ 0} of Wright–Fisher
SDE is unique.

Proof: Since the solution is a homogeneous Markov process, it suffices to
show that the transition probabilities are uniquely determined. But for all
t > 0, x ∈ [0, 1], the conditional law of Xt, given that X0 = x is determined
by its moments, since Xt is a bounded r. v. The result then follows from
Proposition 5.5.1.

Remark 5.5.3. As t gets large, both terms of the identity (5.5.1) tend to x.
The left hand side because it behaves for t large as IP(Xt = 1)→ x, and the
right hand side since IP(Rt = 1)→ 1, as t→∞.

5.6 The Ewens sampling formula

5.6.1 Coalescence with mutations : the infinite many
alleles model

Suppose now that mutations arise on each branch of the coalescence tree,
according to a Poisson process with parameter θ/2, see Figure 5.1. Assume
that each mutation gives birth to a new type, different for all the others.
For instance we may assume that the different types are i. i. d. r. v.’s
following the uniform law on [0, 1]. We want to record the different types in
a sample drawn at present time, we can as well “kill” the lineages which hit a
mutation while going backward in time, which changes Figure 5.1 into Figure
5.2, which we can as well change into Figure 5.3. The killed coalescent can
be produced by the following procedure : Any pair of active classes is merged
at rate 1, any active class is killed at rate θ/2. When a class is killed, all its
elements are assigned the same (different from all other classes) type. Finish
when there are no classes left.

5.6.2 Hoppe’s urn

Assume that there are k active classes in the killed coalescent described
above. Then the probability that the next (backward in time) event is a
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xx

x

x

x

Figure 5.1: The coalescent with mutations
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xx

x

x

x

Figure 5.2: The lineages are killed above the mutations
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x

x

x

x

Figure 5.3: Equivalent to Figure 5.2
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coalescence is (
k
2

)
(
k
2

)
+ k θ

2

=
k − 1

k − 1 + θ
,

and the probability that that event is a mutation (i. e. a killing) is

k θ
2(

k
2

)
+ k θ

2

=
θ

k − 1 + θ
.

Moreover, given the type of event, all possible coalescence (resp. mutations)
are equally likely. The history of a sample of size n is described by n events
en, en−1, . . . , e1 ∈ {coal, mut}. Not that the event ek happens just before
(forward in time) k lineages are active, and each of those events corresponds
backward in time to the reduction by one of the number of active lineages.
The probability to observe a particular sequence is thus∏n

k=1

(
θ1{ek=mut} + (k − 1)1{ek=coal}

)∏n
k=1(k − 1 + θ)

. (5.6.1)

Hoppe [12] noted that one can generate this sequence forward in time using
the following urn model.
Hoppe’s urn model. We start with an urn containing one unique black ball
of mass θ. At each step, a ball is drawn from the urn, with probability
proportional to its mass. If the drawn ball is black return it to the urn,
together with a ball of mass 1, of a new, not previously used, colour; if the
drawn ball is coloured, return it together with another ball of mass 1 of the
same colour.

At the k–th step, there are k balls, more precisely k − 1 coloured balls,
plus the black (so called mutation) ball. The probability to pick the black
ball is thus θ/(k − 1 + θ) while the probablity to pick a coloured ball is
(k − 1)/(k − 1 + θ). If we define

ek =

{
mut, if in the k–step the black ball is drawn,

coal, otherwise.

Clearly the probability to observe a particular sequence (e1, . . . , en) is given
by (5.6.1). Moreover, given that ek = coal, each of the k−1 present coloured
balls is equally likely to be picked.
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Consequently, the distribution of the family sizes generated by the n
coloured balls in Hoppe’s urn after n steps is the same as the one induced by
the n–coalescent in the infinitely–many–alleles mutation model.

Define Kn to be the number of different types oberved in a sample of
size n, or equivalently the number of different colours in Hoppe’s urn after n
steps. Then

Kn = X1 + · · ·+Xn,

where

Xk = 1Ak , Ak = {the black ball is drawn at the k–th step},

consequently the events A1, . . . , An are independent, with IP(Ak) = θ/(θ +
k − 1), 1 ≤ k ≤ n. Consequently

IEKn =
n∑
i=1

θ

θ + i− 1
' θ log(n),

Var(Kn) =
n∑
i=1

θ

θ + i− 1
· i− 1

θ + i− 1
' θ log(n),

Kn − IEKn√
Var(Kn)

⇒ N(0, 1), as n→∞.

5.6.3 Ewens’ sampling formula

Theorem 5.6.1. Let b1, . . . , bn ∈ IN be such that
∑n

j=1 jbj = n. The proba-
bility to observe bj different types, each with j representatives, (j = 1, . . . , n)
in a sample of size n is given by (here k =

∑n
j=1 bj)

n!

1b12b2 · · ·nbn
· 1

b1!b2! · · · bN !
· θk

θ(θ + 1) · · · (θ + n− 1)
. (5.6.2)

Remark 5.6.2. An alternative way to write Ewens’ formula is

C(n, θ)×
n∏
j=1

e−θ/j
(θ/j)bj

bj!
, (5.6.3)

with

C(n, θ) =
n! exp[θ

∑n
j=1 1/j]

θ(θ + 1) · · · (θ + n− 1)
.
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Hence the distribution of the type spectrum (B1, . . . , Bn) in a sample of size
n is the product of the measures Poi(θ/j), j = 1, . . . , n, conditionned on∑n

j=1 jBj = n. For the justification of that statement, see Remark 5.6.3
below.

Proof: We consider an n–coalescent, in which the sampled individuals are
artificially labelled 1, 2, . . . , n. Mutations happen at rate θ/2 on each lineage.
Once a lineage has hit a mutation, it is killed, and we do not follow it anymore
backward in type. We consider what we call a protocol, which is a sequence
e1, e2, . . . , en of n succesive elementary events, which each will be either of
type

mut(i), i. e. lineage i hits a mutation event, or

coal(i→ j), i. e. lineage i coalesces into lineage j (6= i)

for some i (and possibly some j) ∈ {1, . . . , n}. Here we keep track of whom
coalesces into whom. Both elementary events mut(i) and coal(i→ j) make
i inactive, hence that lineage cannot appear in another elementary event
further in the protocol, which clearly must satisfy that consistency condition.

The coalescence rate is 1/2 per ordered pair of alive lineages, and the
mutation rate is θ/2 per alive lineage. Before the m–th elementary event,
there are n−m+1 active lineages so the probability of observing a particular
em equals

1/2

(n−m)(n−m+ 1)/2 + θ(n−m+ 1)/2
=

1

(n−m+ 1)(n−m+ θ)
,

if em is a coalescence,

θ/2

(n−m)(n−m+ 1)/2 + θ(n−m+ 1)/2
=

θ

(n−m+ 1)(n−m+ θ)
,

if em is a mutation.

Hence the probability of observing a given consistent protocol which contains
k(≤ n) mutation events, which means that it describes a possible history of
a sample which contains k different types, is

θk∏n
m=1(n−m+ 1)(n−m+ θ)

=
θk

n!θ(θ + 1) · · · (θ + n− 1)
. (5.6.4)

For a given type spectrum b1, . . . , bn with
∑n

j=1 bj = k, and of course
∑n

j=1 jbj =
n, we need to compute how many consitent protocols yield exactly that type
spectrum.
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Assume that there are k artificially labelled types. Consider the corre-
sponding family sizes n` ∈ IN for ` = 1, . . . , k such that ]{`, n` = j} = bj,
j = 1, 2, . . . , n. We now use a more precise description of our protocol, in
the sense that we write mut`(i) for the elementary event which consists in
the fact hat the lineage i hits a mutation which produces the new type `.
This enriched protocol must satisfy the new consistency condition that each
of the types from the set {1, . . . , k} appears exactly in one mutation event.

One way to describe an enriched protocol which produces a sample with
n` representatives of type `, ` = 1, . . . , k is as follows :

1. Fix the order in which the lineages become inactive. There are n!
possibilities.

2. Assign a type to each lineage. This amounts to putting n distinguish-
able balls (the lineages) into k distinguishable boxes (the types), such
that n` balls land in box `, ` = 1, . . . , k. There are n!

n1!n2!···nk!
possibili-

ties.

3. Prescribe the coalescence program within each type. Consider type `.
Assume that in step 2 we have decided that the lineages i1, i2, . . . , in`
are of that type, and that step 1 prescribes that i1 is lost first, i2 is lost
second, etc. We still are free to choose into which of the n` − 1 other
lineages the lineage i1 coalesces, into which of the n`− 2 other lineages
the lineage i2 coalesces, etc, leading to (n` − 1)! possible choices, this
for each type, so that alltogether the number of possible choices at this
step is

(n1 − 1)!× (n2 − 1)!× · · · × (nk − 1)!.

Combining the number of possible choices at each step yields

n!× n!

n1!n2! · · ·nk!
×(n1−1)!×(n2−1)!×· · ·×(nk−1)! =

(n!)2∏k
`=1 n`

=
(n!)2∏n
j=1 j

bj

different enriched protocols with labelled types, which produce n` represen-
tatives of type ` (` = 1, . . . , k) in the sample.

From an enriched protocol, we deduce a standard one by ignoring the
labels. Now b1!·b2! · · · bn! labelled protocols correspond to the same unlabelled
one. Consequently, we find that there are

(n!)2∏n
j=1(bj!jbj)

(5.6.5)
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different protocols. Multiplying (5.6.4) with (5.6.5) yields (5.6.2). �

Remark 5.6.3. We want to justify the statement in Remark 5.6.2. All we
need to show is that is B1, . . . , Bn are independent, each Bj is Poisson with
parameter θ/j, then

IP

(
n∑
j=1

jBj = n

)
=
θ(θ + 1) · · · (θ + n− 1)

n! exp[θ
∑n

j=1 1/j]
.

But the left hand side of the above equals∑
k1,...,kn;

P
jkj=n

e−θ/j (θ/j)kj /kj! = exp[−θ
n∑
j=1

1/j]
∑
k

α(n, k)θk,

where

α(n, k) =
∑

k1,...,kn;
P
kj=k,

P
jkj=n

(
n∏
j=1

jkjkj!

)−1

.

It remains to show that

θ(θ + 1) · · · (θ + n− 1) = n!
n∑
k=1

α(n, k)θk.

Let s(n, k) = n!α(n, k). Splitting the last term in the above left hand side
into θ plus n− 1, we deduce that

s(n, k) = s(n− 1, k − 1) + (n− 1)s(n− 1, k).

This shows that s(n, k) can be interpreted as the number of permutations of
{1, . . . , n} which contain exactly k cycles. Now that number is given by

s(n, k) =
∑

k1,...,kn,
P
kj=k,

P
jkj=n

n!∏n
j=1(jkj)!

×
n∏
j=1

(
(jkj)!

(j!)kj
1

kj!
[(j − 1)!]kj

)

= n!
∑

k1,...,kn,
P
kj=k,

P
jkj=n

n∏
j=1

1

jkjkj!
.

Indeed in the above formula,

n!∏n
j=1(jkj)!
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is the number of possibilities of choosing the elements for the cycles of size
j, j varying from 1 to n,

(jkj)!

(j!)kj
1

kj!

is the number of ways in which one can distribute the jkj elements in the kj
cycles of size j, and

[(j − 1)!]kj

is the number of different possible orderings of the elements in the kj cycles
of size j.

5.7 Bibliographical comments

This chapter is mainly inspired by the presentation of the same material in
[6].
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Chapter 6

The look–down approach to
Wright–Fisher and
Fleming–Viot models

6.1 Introduction

Here we shall first define an alternative to the Wright–Fisher model, namely
the continuous–time Moran model. We shall then present the look–down
construction due to Donnelly and Kurtz [9] (see also [10]), and show that
this particular version of the Moran model converges a. s., as the population
size N tends to infinity, towards the Wright–Fisher diffusion.

6.2 The Moran model

Consider a population of fixed size N , which evolves in continuous time ac-
cording to the following rule. For each ordered pair (i, j) with 1 ≤ i 6= j ≤ N ,
at rate 1/2N individual i gives birth to an individual who replaces individual
j, independently of the other ordered pairs. This can be graphically repre-
sented as follows. For each ordered pair (i, j) we draw arrows from i to j
at rate 1/2N . If we denote by P the set of ordered pairs of elements of the
set {1, . . . , N}, µ the counting measure on P , and λ the Lebesgue measure
on IR+, the arrows constitute a Poisson process on P × IR+ with intensity
measure (2N)−1µ× λ.

Consider the Harris diagram for the Moran model in Figure 6.1. Time

77
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flows down. If we follow the diagram backward from the bottom to the top,
and coalesce any pair of individuals whenever they find a common ancestor,
we see that starting from the trivial partition

{{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}},

after the first arrow has been reached we get

{{1}, {2}, {3, 4}, {5}, {6}, {7}, {8}, {9}},

next
{{1}, {2}, {3, 4}, {5}, {6, 9}, {7}, {8}},

next
{1, 3, 4}, {2}, {5}, {6, 9}, {7}, {8}},

the fourth arrow does not modify the partition, next

{{1, 3, 4, 5}, {2}, {6, 9}, {7}, {8}},

next
{{1, 3, 4, 5}, {2}, {6, 7, 9}, {8}},

the next arrow has no effect, then

{{1, 3, 4, 5, 8}, {2}, {6, 7, 9}}

and the last arrow (the first on from the top) has no effect.
It is not hard to see that the coalescent which is imbedded in the Moran

model looked at backward in time is exactly Kingman’s coalescent – here
more precisely Kingman’s N–coalescent.

Suppose now that as in the preceding chapter the population includes
two types of individuals, type a and type A. Each offspring is of the same
type as his parent, we do not consider mutations so far. Denote

Y N
t = number of type A individuals at time t.

Provided we specify the initial number of type A indviduals, the above model
completely specifies the law of {Y N

t , t ≥ 0}. We now introduce the proportion
of type A individuals in rescaled time, namey

XN
t = N−1Y N

Nt, t ≥ 0.

Note that in this new time scale, the above Poisson process has the intensity
measure µ× λ. We have, similarly as in Theorem 2.1.1,
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Figure 6.1: The Moran model



80 CHAPTER 6. LOOK–DOWN

Theorem 6.2.1. Suppose that XN
0 ⇒ X0, as N → ∞. Then XN ⇒ X in

D(IR+; [0, 1]), where {Xt, t ≥ 0} solves the SDE

dXt =
√
Xt(1−Xt)dBt, t ≥ 0.

Proof: As for Theorem 2.1.1, the proof goes through two steps.
Proof of tightness One needs to show that IE[|XN

t −XN
s |4] ≤ c(t− s)2.

Identification of the limit Note that the process {ZN
t := Y N

Nt, t ≥ 0}
is a jump Markov process with values in the finite set {0, 1, 2, . . . , N}, which,
when in state k, jumps to

1. k − 1 at rate k(N − k)/2,

2. k + 1 at rate k(N − k)/2.

In other words if QN denotes the infinitesimal generator of this process,

QNf(ZN
t ) = ZN

t (N − ZN
t )

[
f(ZN

t + 1) + f(ZN
t − 1)

2
− f(ZN

t )

]
.

In other words,

IE
[
f(XN

t+∆t)− f(XN
t )|XN

t = x
]

= N2x(1− x)

[
f
(
x+ 1

N

)
+ f

(
x− 1

N

)
2

− f(x)

]
∆t+ o(∆t)

=
x(1− x)

2
f ′′(x)∆t+ o(∆t),

since from two applications of the order two Taylor expansion,

f
(
x+ 1

N

)
+ f

(
x− 1

N

)
2

− f(x) =
1

2N2
f ′′(x) + o(N−2).

�

6.3 The look–down construction

The construction which we are going to present here is often called in the
literature the modified look–down construction.

Let us again consider first the case where the size N of the population is
finite and fixed. We redraw the Harris diagram of Moran’s model, forbidding
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Figure 6.2: The look–down construction

half of the arrows. We consider only arrows from left to right. Considering
immediately the rescaled time, for each 1 ≤ i < j ≤ N , we put arrows from
i to j at rate 1 (twice the above 1/2). At such an arrow, the individual at
level i puts a child at level j. Individuals previously at levels j, . . . , N − 1
are shifted one level up; individual at site N dies.

Note that in this construction the level one individual is immortal, and
the genealogy is not exchangeable.

However the partition at time t induced by the ancestors at time 0 is
exchangeable, since going back each pair coalesces at rate 1.

Consider now the case where there are two types of individuals, type a,
represented by black, and type A, represented by red. We want to choose
the types of the N individuals at time 0 in an exchangeable way, with the
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constraint that the proportion of type red individuals is given. One possibility
is to draw whithout replacement N balls from an urn where we have put k
red balls and N−k black balls. At each draw, each of the balls which remain
in the urn has the same probability of being chosen.

It follows from the above considerations that at each time t > 0, the types
of the N individuals are exchangeable.

6.4 a. s. convergence to the Wright–Fisher

diffusion

Our goal now is to take the limit in the above quantities as N → ∞. The
look–down construction can be defined directly with an infinite population.
The description is the same as above, except that we start with an infinite
number of lines, and no individual dies any more.

Note that the possibility of doing the same construction for N = ∞ is
related to the fact that in any finite interval of time, if we restrict ourselves to
the first N individuals, the evolution is determined by finitely many arrows.
This would not be the case with the standard Moran model, which could
not be described in the case N = ∞. Indeed in the Moran model with
infinitely many individuals, there would be infinitely many arrows towards
any individual i, in any time interval of positive length. This is a great
advantage of the look–down construction.

Consider now the case of two types of individuals. Suppose that the initial
colours of the various individuals at time t = 0 are i. i. d., each red with
probability x, black with probability 1− x. Define

ηt(k) =

{
1, if the k–th individual is red at time t;

0, if the k–th individual is black at time t.

{η0(k), k ≥ 1} are i. i. d. Bernoulli random variables, while at each
t > 0, {ηt(k), k ≥ 1} is an exchangeable sequence of {0, 1}–valued random
variables. A celebrated theorem due to de Finetti (see Corollary 7.5.6 below)
says that an exchangeable sequence of {0, 1}–valued r. v. is a mixture of i.
i. d. Bernoulli. Consequently the following limit exists a. s.

Xt = lim
N→∞

1

N

N∑
i=1

ηi(t) = lim
N→∞

XN
t . (6.4.1)
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Before stating the main theorem of this section, let us establish three auxil-
iary results which we shall need in its proof.

Proposition 6.4.1. Let {ξ1, ξ2, . . .} be a countable exchangeable sequence of
{0, 1}–valued r. v.’s and T denote its tail σ–field. Let H be some additional
σ–algebra. If conditionally upon T ∨ H, the r. v.’s are exchangeable, then
conditionally upon T ∨ H they are i. i. d.

Proof: Let f : {0, 1}n → IR be an arbitrary mapping. It follows from the
assumption that

IE (f(ξ1, . . . , ξn)|T ∨ H) = IE

(
N−1

N∑
k=1

f(ξ(k−1)n+1, . . . , ξkn)
∣∣∣T ∨ H)

= IE (f(ξ1, . . . , ξn)|T ) ,

where the second equality follows from the fact that the quantity inside the
previous conditional expectation converges a. s. to IE (f(ξ1, . . . , ξn)|T ) as
N → ∞, as a consequence of exchangeability and de Finetti’s theorem (see
Corollary 7.5.6 below). �

Lemma 6.4.2. Let {Xn, n ≥ 1} and X be real–valued random variables
such that Xn → X a. s. as n→∞, and A,B ∈ F . If

IP(A ∩ C) = IP(B ∩ C), ∀C ∈ σ(Xn), ∀n ≥ 1,

then
IP(A ∩ C) = IP(B ∩ C), ∀C ∈ σ(X).

Proof: The assumption implies that for all f ∈ Cb(IR), all n ≥ 1,

IE[f(Xn);A] = IE[f(Xn);B],

from which we deduce by bounded convergence that

IE[f(X);A] = IE[f(X);B].

The result follows. �

Let Sn denote the group of permutations of {1, 2, . . . , n}. If π ∈ Sn,
a ∈ {0, 1}n, we shall write π∗(a) = (aπ(1), . . . , aπ(n)). Recall that a partition
P of {1, . . . , n} induces an equivalence relation, whose equivalence classes
are the blocks of the partition. Hence we shall write i 'P j whenever i and
j are in the same block of P . Finally we write #P for the number of blocks
of the partition P .
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Proposition 6.4.3. For all n ≥ 1, 0 < r < s, a ∈ {0, 1}n, p such that
0 ≤ np ≤ n is an integer, π ∈ Sn,

IP({ηns = a} ∩ {Xn
r = p}) = IP({ηns = π∗(a)} ∩ {Xn

r = p}).

Proof: Denote by Pa the set of partitions P of {1, 2, . . . , n} which are such
that i 'P j ⇒ ai = aj.

The arrows between time r and time s in the look–down construction
pointing to levels between 2 and n prescribe in particular which individuals
at time s have the same ancestor back at time r. This corresponds to a
partition {1, 2, . . . , n} which is the result of the coalescent process backward
from time s to time r. {coalrs = P} is the event that that partition is P .
Suppose that #P = k. The look–down construction prescribes that the block
containing 1 carries the type of the individual siting on level 1 at time r, the
block containing the smallest level not in that first block carries the type of
the individual sitting on level 2 at time r, ... Thus the event

{ηns = a} ∩ {coalrs = P},

which is non empty iff P ∈ Pa, determines the values of ηnr (1), . . . , ηnr (k) if
k = #P . There is a finite (possibly zero) number of possible values b for ηnr
which respect both the above condition and the restriction n−1

∑n
i=1 bi = p.

We denote by Ar,s(a,P , p) ⊂ {0, 1}n the set of those b’s. Note that this set
is empty if the restriction n−1

∑n
i=1 bi = p contradicts the conditions ηns = a

and coalrs = P .
We then have

{ηns = a} ∩ {Xn
r = p} =

⋃
P∈Pa

⋃
b∈A(a,P,p)

{coalrs = P} ∩ {ηnr = b},

and from the independence of coalrs and ηnr

IP(ηns = a,Xn
r = p) =

∑
P∈Pa

∑
b∈Ar,s(a,P,p)

IP(coalrs = P)IP(ηnr = b).

Similarly, if π∗(P) is defined by i 'P j ⇔ π(i) 'π∗(P) π(j),

IP(ηns = π∗(a), Xn
r = p) =

∑
P∈Pπ∗(a)

∑
b∈Ar,s(π∗(a),P,p)

IP(coalrs = P)IP(ηnr = b)

=
∑
P∈Pa

∑
b∈Ar,s(π∗(a),π∗(P),p)

IP(coalrs = π∗(P))IP(ηnr = b),
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We now describe a one–to–one correspondence ρπ between Ar,s(a,P , p) and
Ar,s(π∗(a), π∗(P), p). Suppose that #P = k. Then #π∗(P) = k as well. Let
b ∈ Ar,s(a,P , p). The values of bj, 1 ≤ j ≤ k are specified by the pair (a,P).
We define b′ = ρπ(b) as follows. b′1, . . . , b

′
k are specified by (π∗(a), π∗(P)).

Note that the definitions of π∗(a) and π∗(P) imply that

(b′1, . . . , b
′
k) = (bπ′(1), . . . , bπ′(k)), for some π′ ∈ Sk.

We complete the definition of b′ by the conditions

b′j = bj, k < j ≤ n.

Clearly there exists π′′ ∈ Sn such that b′ = π′′∗(b).
Consequently∑

b∈Ar,s(π∗(a),π∗(P),p)

IP(coalrs = π∗(P))IP(ηnr = b)

=
∑

b∈Ar,s(a,P,p)

IP(coalrs = π∗(P))IP(ηnr = ρπ(b))

=
∑

b∈Ar,s(a,P,p)

IP(coalrs = P)IP(ηnr = b),

where the last identity follows from the fact that both ηnr and coalrs are
exchangeable. The result follows from the three identities proved above. �

We can now prove

Theorem 6.4.4. The [0, 1]–valued process {Xt, t ≥ 0} defined by (6.4.1)
possesses a continuous modification which is a weak sense solution of the
Wright–Fisher SDE, i. e. there exists a standard Brownian motion {Bt, t ≥
0} such that

dXt =
√
Xt(1−Xt)dBt, t ≥ 0.

Proof: Need to add : ∃ a continuous modification.
Step 1 We first need to show that {Xt, t ≥ 0} is a Markov process. We
know that conditionally upon Xs = x, the ηs(k) are i. i. d. Bernoulli with
parameter x. Now for any t > s, Xt depends only upon the ηs(k) and the
arrows which are drawn between time s and time t, which are independent
from {Xr, 0 ≤ r ≤ s}. So all we need to show is that conditionally upon
σ(Xr, 0 ≤ r ≤ s), the ηs(k) are i. i. d. In view of Proposition 6.4.1, it
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suffices to prove that conditionally upon σ(Xr, 0 ≤ r ≤ s), the ηs(k) are ex-
changeable. This will follow from the fact that the same is true conditionally
upon σ(Xr1 , . . . , Xrk , Xs) for all k ≥ 1, 0 ≤ r1 < r2 < · · · < rk < s.

We first prove this in the case k = 1. Write ηns = (ηs(1), . . . , ηs(n)).
All we have to show is that for all n ≥ 1, a ∈ {0, 1}n, π ∈ Sn, if π∗(a) =
(aπ(1), . . . , aπ(n)), Ar ∈ σ(Xr) and As ∈ σ(Xs),

IP ({ηns = a} ∩ Ar ∩ As) = IP ({ηns = π∗(a)} ∩ Ar ∩ As) . (6.4.2)

In view of Lemma 6.4.2, a sufficient condition for (6.4.2) is that for all m ≥ n,
p, q > 0 such that 0 ≤ mp,mq ≤ m are integers,

IP ({ηns = a} ∩ {Xm
r = p,Xm

s = q}) = IP ({ηns = π∗(a)} ∩ {Xm
r = p,Xm

s = q}) ,

and clearly it suffices to prove that result for n = m, which is done in
Proposition 6.4.3.

A similar proof shows that the ηs(k) are conditionally exchangeable given
σ(Xr1 , . . . , Xrk , Xs). The Markov property of the process {Xt, t ≥ 0} is
established.

Step 2 It remains to show that the process {Xt, t ≥ 0} has the right
transition probability, which will follow (see Proposition 5.5.1) from the fact
that for all n ≥ 1, x ∈ [0, 1],

IEx[X
n
t ] = IEn[xRt ].

For all n ≥ 1,

Xn
t = IP(ηt(1) = · · · = ηt(n) = 1|Xt),

consequently

IEx[X
n
t ] = IEx [IP(ηt(1) = · · · = ηt(n) = 1|Xt)]

= IPx(ηt(1) = · · · = ηt(n) = 1)

= IPx(the ancestors at time 0 of 1, . . . , n are red)

= IEn

[
xRt
]
,

where {Rt, t ≥ 0} is a pure death continuous–time process, which jumps
from k to k − 1 at rate k(k − 1)/2. �
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6.5 The MRCA

In this section, we consider that all individuals are different. Let first ignore
mutations. Consider an individual, e. g. the one who was at position k
at time 0. As soon as an arrow points to a vertical line indexed by some
1 ≤ ` ≤ k, this type is pushed to the right. Moreover, the mean number of
pushes to the right per time unit is k(k − 1)/2 for an individual at position
k. This number is quadratic in the position. It is easy to deduce that each
individual other than the one at position 1 at time 0 is pushed to +∞ in finite
time, i. e. out of the population (this is an explosion in terms of ODE). At
the time when the individual who occupied initially the position 2 is pushed
out, all the individuals are sons of the one who occupied initially position
1. The expectation of the time until the individual initially at position 2 is
pushed out equals

∞∑
k=2

2

k(k − 1)
= 2

∞∑
k=2

(
1

k − 1
− 1

k

)
= 2.

Note that in the two–types case, the probability that type A eventually gets
fixed equals the probability that the individual 1 at time 0 has type A, which
is x, as should be. We also get that the mean time to fixation, given that
the type A gets fixed, equals

2(1− x)
∞∑
k=1

xk−1

k
= 2

1− x
x

log

(
1

1− x

)
,

since the type of the individuals are i. i. d., all having type A with probability
x. Compare with the results of section 4.6.

Let us go back to the situation where all individuals have distinct types.
At time S1, which is exponential with parameter 1, the first individual gives
birth to a son who occupies site 2. That son has pushed away all other
individuals who were originally in the population by time T1, which is ex-
ponential with expectation 2. In fact T1 − S1 is exponential with parameter
1, and independent of S1. At time S2, which is such that the pair (S1, S2)
has the same law as (S1, T1), the individual at site 1 gives birth to a second
child, who pushes the first child and its progeny to the right, and eventually
suppresses that subpopulation by time T2, etc. Not counting the individual
at site 1 in the population, we have that at successive times {Tk, k ≥ 1} the
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Most Recent Common Ancestor of the whole population changes for a more
recently born individual.

Consider the process which describes the age of the MRCA. The trajec-
tory of this process is clearly made of segments of straight lines with slope
one, interrupted at the fixation times of the successive sons of the individual
located at site 1 by negative jumps, see figure 6.3.

The expectation of the heights of the minima (this is the age of the
MRCA at the time of fixation) is 1, while the expectation of the heights of
the maxima is 2 (this is the age of a MRCA, just before it gets replaced by
a new one). Now if t > 0 is arbitrary, what is the age of the current MRCA,
and the waiting time until a new one takes over ?

6.6 Mutations, the infinitely many sites model

Suppose now that all individuals are subject to mutations, which arise accord-
ing to a Poisson process with rate θ/2. We assume that each new mutation
hit a new (never hit before) site on the genome. What is the number of
mutations which fixate at the time when a new MRCA takes over ? If we
call M that random number, we have that

IP(M = m) =

(
θ

2 + θ

)m
2

2 + θ
, m = 0, 1, 2, . . .

Let us go back to the finite size population model (size = N), in the case
of the Moran model. We ask the question : how many mutations do we
expect that are carried by i individuals ? Mutations appear somewhere at
rate Nθ/2, which means that singleton families are born at rate Nθ/2. The
size of each family changes according to the Moran dynamics, i. e. it jumps

from i to i+ 1 at rate i(N − i)/2,
from i to i− 1 at rate i(N − i)/2.

The size of the family carrying a given mutation is a {1, 2, 3, . . . , N − 1}–
valued continuous time birth and death process. N is an absorbing state.
When the family size reaches that state, the mutation is fixed in the popu-
lation. We no longer consider it as a mutation. The process describing the
family sizes of all the mutations is a continuous time jump Markov process
{Xt, t ≥ 0} with values in the state space

E = {∅} ∪ ∪∞n=1En, where En ⊂ {1, 2, . . . , N − 1}n
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tT1 T2 T3

Age of the MRCA

Figure 6.3: The age of the MRCA
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is the set of increasing sequences of length n, made of numbers between 1
and N − 1. The infinitesimal generator of the process {Xt} is not easy to
describe. The reason is that, while the size of each family changes only by
jumps of ±1, as noted above, the number of families whose size changes at
a given jump time is arbitrary (it depends upon the number of mutations
carried by the two individuals concerned by the arrow of the Moran model),
so that at a jump time of t least one family size, the jumps of the concerned
coordinates of Xt can be anything as 0, 1, 2, 3, . . ..

For 1 ≤ i ≤ N − 1, let Φi(x) := #{k, xk = i}. Then Ki(t) = Φi(Xt)
denote the number of mutations which are carried by exactly i individuals in
the population at time t. For each 1 ≤ i ≤ N −1, an increase (or a decrease)
of Ki(t)is necessarily compensated by a decrease (or an increase) either of
Ki−1(t)or of Ki+1(t) (or of both), such that at a jump time, i. e. a time t
where

∑
j |∆Kj(t)| 6= 0, there exists 1 ≤ i ≤ N − 1 such that

∆Ki−1(t) + ∆Ki(t) + ∆Ki+1(t) = 0.

Note that ∆K0(t) and ∆KN(t) should be interpreted in a very peculiar way.
Indeed, 0 and N are sinks where families get lost. Of course, 0 is also a
source, in the sense that families of size 1 get birn at rate θ/2.

Write fi(t) := IE[Ki(t)]. From the above considerations follow the fact
that

d

dt
f1(t) =

θN

2
− (N − 1)f1(t) + (N − 2)f2(t)

d

dt
fi(t) =

(i+ 1)(N − i− 1)

2
fi+1(t) +

(i− 1)(N − i+ 1)

2
fi−1(t)

− i(N − i)fi(t), 1 < i < N − 1,

d

dt
fN−1(t) = (N − 2)fN−2(t)− (N − 1)fN−1(t).

At equilibrium the time derivatives vanish. If we write ξi = ifi, 1 ≤ i ≤ N−1,
we deduce from the last of the above identities that ξN−1 = ξN−2, from the
middle one that ξi+1 − ξi = ξi − ξi−1, 1 < i < N − 1, hence the first identity
implies that ξ1 = ξ2 = · · · = ξN−1 = θ. In other words

Proposition 6.6.1. In the Moran model with mutations appearing each at
a new site at rate θ/2, at equilibrium the mean number of families of size i
is fi = θ/i, 1 ≤ i ≤ N − 1.
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Let us now reconsider this result from the point of view of the coalescent
picture. A mutation which is shared by i individuals is a mutation which,
in the N–coalescent, appears in a segment which supports exactly i leaves.
Since mutations happen at rate θ/2 on each branch of the coalescent tree,
we have (see figure 6.4)

Corollary 6.6.2. The expected total length of edges in the N coalescent
supporting exactly i leaves is 2/i, 1 ≤ i ≤ N − 1.

It is remarkable that this quantity does not depend upon N . As N
increases, there are more such branches, but they tend to be shorter.

Consider now the case N =∞. Sample n individuals in this population,
and ask how many mutations should we expect which are shared by exactly
i individuals in the sample, where 1 ≤ i ≤ n. Let us emphasize that in the
case i = n, we consider only those mutations which have not been fixed in
the total population.

Proposition 6.6.3. The expected number of mutations which are shared by
exactly i individuals in the sample (and which in particular are not fixed in
the total infinite population), equals θ/i, 1 ≤ i ≤ n.

First proof of Proposition 6.6.3 If i ≤ n− 1, the result is clearly that
given by Proposition 6.6.1 (just let the population size N in this Proposition
be the present sample size n).We only have to establish the result for i = n.
In that case, we look for the expected number of mutations which appear in
the coalescent tree above the MRCA of the n sample, but below the MRCA of
the infinite population. The expected height of the n coalescent is 2(1−1/n),
while the expected height of the infinite coalescent is 2. Hence the expected
length of segment supporting the n leaves of the sample, and not supporting
the full infinite coalescent is 2/n. Since mutations arise at rate θ/2, the
expected number of mutations which are shared by the whole sample, but
not fixed in the total population, is θ/n. �

Exercise 6.6.4. Second proof of Proposition 6.6.3 Prove the result
of corollary 6.6.2 directly, by computing IE[Ln,i], where Ln,i denotes the total
length of all those edges which support exactly i leaves, in a tree with n leaves,
by recurrence on both n and i. Deduce the result of Proposition 6.6.3.
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Figure 6.4: The edges supporting exactly 2 leaves
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6.7 Expected number of families of a given

size in the infinite population model

The aim of this section is to show that when N is infinite, the density of the
expected number of families of relative size x, 0 < x < 1, is f(x) = θ/x. We
will then deduce Proposition 6.6.3 as a consequence of this result.

Suppose first that N is very large, and that a mutation occurs at time
t = 0. What is the fate of that mutation at a given time t > 0 ? The
probability that the relative size of that family belongs to A ∈ B[0, 1] is

IP1/N(XN
t ∈ A),

where {XN
t , t ≥ 0} stands for the continuous–time solution of the Moran

model, which is well approximated by the Wright–Fisher diffusion. Note that
by time homogeneity of whatever model we use, ∀A ∈ B([0, 1]),

IP−t,1/N(XN
0 ∈ A) = IP1/N(XN

t ∈ A).

If mutations have appeared for ever at the constant rate θ/2 on each lineage,
then the expected number of families of relative size in A ∈ B[0, 1] at time
t = 0 is given by

θN

2

∫ 0

−∞
IPt,1/N(XN

0 ∈ A)dt =
θN

2

∫ ∞
0

IP1/N(XN
t ∈ A)dt

The main result of this section is

Theorem 6.7.1. Let {XN
t , t ≥ 0} be the solution of Moran model. Then

∀A ∈ B(0, 1), as N →∞,

θN

2

∫ ∞
0

IP1/N(XN
t ∈ A)dt→

∫
A

f(x)dx,

where

f(x) =
θ

x
, x ∈ [0, 1].

Proof: In order to make our method of proof more transparent, we first do
the



94 CHAPTER 6. LOOK–DOWN

Proof of the result with XN replaced by its limit X Let us
compute the limit of

N

∫ ∞
0

IP1/N(Xt ∈ A)dt = NIE1/N

∫ τ0,1

0

1A(Xt)dt, (6.7.1)

where {Xt, t ≥ 0} denotes the solution of the Wright–Fisher SDE and τ0,1 :=
inf{t > 0, Xt ∈ {0, 1}}. From the occupation times formula (see Proposition
4.2.5), if

ϕ(x) = [x(1− x)]−11A(x),

we have ∫ t

0

1A(Xs)ds =

∫ t

0

ϕ(Xs)d〈X,X〉s

=

∫
A

Lyt
dy

y(1− y)
.

In other words,

IEx

∫ τ0,1

0

1A(Xt)dtdt =

∫
A

IE
(
Lyτ0,1

) dy

y(1− y)
. (6.7.2)

It remains to compute the expectation of the local time. From the very
definition of the local time of the diffusion X,

|Xt − y| = |x− y|+
∫ t

0

sign(Xs − y)dXs + Lyt .

Consequently

IEx(|Xt∧τ0,1 − y|) = |x− y] + IEx

(
Lyt∧τ0,1

)
.

We can take the limit as t → ∞ by bounded convergence for the left hand
side and monotone convergence for the right hand side, yielding

IEx(|Xτ0,1 − y|) = |x− y] + IEx

(
Lyτ0,1

)
.

From the results in section 4.6,

IPx(Xτ0,1 = 0) = 1− x, IPx(Xτ0,1 = 1) = x.



6.7. INFINITE POPULATION MODEL 95

The last computations yield, in the case 0 < x < y < 1,

IEx

(
Lyτ0,1

)
= 2x(1− y). (6.7.3)

The result follows from (6.7.1), (6.7.2) and (6.7.3).

Proof of the Theorem We shall mimic the above proof, the arguments
being simpler when we replace the diffusion Xt by the continuous time jump
Markov process XN

t with values in {0, 1/N, 2/N, . . . , (N−1)/N, 1}. Consider
the evolution of the process |XN

t − y|, where y = k/N , 1 ≤ k ≤ N − 1. First
note that the rate of the jumps is XN

t (1 − XN
t ). If XN

t 6= y just before
the jump of XN

t , then the jump of |XN
t − y| is 1/N with probability 1/2,

and −1/N with probability 1/2. On the other hand, if XN
t = y just before

the jumps of XN
t , then the jump of |XN

t − y| is 1/N . Consequently, if
τ0,1 = inf{t, XN

t ∈ {0, 1}}

IEx(|XN
t∧τ0,1 − y|) = |x− y|+NIEx

∫ t∧τ0,1

0

XN
s (1−XN

s )1{XN
s =y}ds,

= |x− y|+Ny(1− y)IEx

∫ t∧τ0,1

0

1{XN
s =y}ds,

and letting t→∞, we deduce by bounded and monotone convergence

IEx(|XN
τ0,1
− y|) = |x− y] +Ny(1− y)IEx

∫ τ0,1

0

1{XN
s =y}ds.

Since the jumps of NXN
t are 1 with probability 1/2 and −1 with probability

1/2, the embedded chain is the symmetric random walk, and we know from
Exercise 2.13 page 51 in [21] that if x = `/N , IPx(X

N
τ0,1

= 0) = 1 − x,

IPx(X
N
τ0,1

= 1) = x. Finally if 0 < x < y < 1, we have that

IEx

∫ τ0,1

0

1{XN
s =y}ds =

2

N

x

y
.

In particular we have for 1 ≤ k ≤ N − 1

θ

2
N

∫ ∞
0

IP1/N

(
XN
t =

k

N

)
dt =

θ

k
.
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Finally if A is a subinterval of (0, 1) and f stands for the function in the
statement,

θN

2

∫ ∞
0

IP1/N(XN
t ∈ A)dt =

∑
k; k
N
∈A

θN

2

∫ ∞
0

IP1/N

(
XN
t =

k

N

)
dt

=
∑
k; k
N
∈A

1

N
f

(
k

N

)

→
∫
A

f(y)dy,

as N →∞. �

Remark 6.7.2. The above result should be understood as follows. We assume
that there has been since time −∞ a Poissonian flow of mutations affecting
each individual at rate θ. This means a countable number of mutations. At
most a countable number of those are still present in the population at time
0 (i. e. they have neither been fixed nor gone extinct). For i ≥ 1, denote by
ξi the fraction of the total population which carries the mutation number i.
Let g : (0, 1) → IR+ be a Borel measurable function. In the limit as the size
N of the population goes to ∞,

IE
∞∑
i=1

g(ξi) = θ

∫ 1

0

g(y)
dy

y
.

Remark 6.7.3. Theorem 6.7.1 could be proved by a more analytic argument.
Note that ∫ ∞

0

IPx(Xt ∈ A)dt =

∫
A

G(x, y)dy,

where G(x, y) denotes the Green kernel of Markov process {Xt}. G is the
fundamental solution of the differential equation

Lu+ f = 0, u(0) = u(1) = 0.

In other words, G solves

1

2
x(1− x)G′′xx(x, y) + δx−y = 0, G(0, y) = G(1, y) = 0.
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The solution reads

G(x, y) =

{
2x
y
, if x < y;

21−x
1−y , if x ≥ y.

The same approach can be used to prove that

IE

∫ ∞
0

1{XN
s =y}ds =

2x

Ny
.

Indeed, if we call GN(x, y) the left hand side, we have, with QN the infinites-
imal generator induced by the Moran model,

QNGN(x, y)+1{x=y} = 0, x, y ∈ {0, 1

N
, . . . ,

N − 1

N
, 1}, G(0, y) = G(1, y) = 0.

It is easily seen that the solution of this difference equation is

G(x, y) =

{
2x
Ny

, for x ≤ y;
2(1−x)
N(1−y)

, for x > y.

Exercise 6.7.4. Show that in the more general case of diffusion of the form

dXt = h(Xt)dt+
√
XtdBt

which admits 0 and 1 as exit points,

G(x, y) = 2m(y)
S(x)(S(1)− S(y))

S(1)
,

where S is a scale function of the above diffusion, defined for an arbitrary
z ∈ [0, 1] as

S(x)

∫ x

z

exp

{
−
∫ y

z

2[h(v)/g(v)]dv

}
dy,

note that S(Xt) is a martingale, and m(x) is the density of the speed measure
of the same difusion, defined as

m(x) = [g(x)s(x)]−1, where s(x) = S ′(x).

Show finally that as N →∞,

N

∫ ∞
0

IP1/N(Xt ∈ A)dt→
∫
A

f(y)dy,

where f(y) = 2m(y)IPy(Xτ0,1 = 0).
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We can now discuss again the question which was adressed in Proposition
6.6.3. How many families of size i do we expect to find in a sample of size
n, where 1 ≤ i ≤ n (we consider only mutations which are not fixed in the
population) ?
Third proof of Proposition 6.6.3 Remind that there are at most count-
ably many mutations which are present in our model. If one of those is present
in the population with the proportion 0 < y < 1, then the probability that
that particular mutation is carried by i individuals in a sample of size n is(

n
i

)
yi(1− y)n−i.

The quantity which we are looking at is then the integral of the above against
f(y)dy, i. e.∫ 1

0

(
n
i

)
yi(1− y)n−if(y)dy = θ

n

i

∫ 1

0

(
n− 1
i− 1

)
yi−1(1− y)n−idy

=
θ

i
,

where the computation of the integral on the right hand side is easily done
by integration by parts. �

In fact the above result is also true for i = 0. In an infinite population
at equilibrium, the expected number of mutation which is carried by no
individual from a sample of size n ≥ 1 equals +∞. We also have

Proposition 6.7.5. The expectation of the number of families of relative
size y ∈ [a, b], where 0 ≤ a < b ≤ 1, to which a randomly selected individual
belongs equals θ(b− a).

Proof: The probability that a randomly selected individual belongs to a
family of relative size y is precisely y. Summing over all families of relative
size between a and b and taking the expectation is the same as integrating
from a to b with respect to f(y)dy. �

6.8 The case of two population which have

been separated for a while

Consider now the case of a infinite population which splits into two infinite
populations, say population 1 and population 2, which between time −t and
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time 0 have no contact (so that there is no exchange of genetic material
between them).

Consider one individual, let us call him A, in population 2, and a sample
of size m in population 1, both randomly chosen at time 0. We ask the
question : what is the expectation of the number of mutations carried A
which are shared by exactly i individuals in the sample from population 1, i =
0, 1, . . . ,m. We consider only mutations which are present in population 1,
in particular which have not gone extinct in that population (this restriction
is relevant in the case i = 0) and have also not been fixed (this restriction is
relevant in the case i = m). The answer is given by

Proposition 6.8.1. The expected number of mutations which are shared
between A and exactly i individuals from a sample of size m from population
1, is

θ

m+ 1
e−t, ∀0 ≤ i ≤ m.

Proof: Consider the mutations which the ancestor at time −t of individual
A was carrying. From Proposition 6.7.5, the density of the expectation of
the number of families to which this ancestor was belonging at time −t is
constant over the interval [0, 1] of relative family sizes, equal to θ. According
to Lemma 6.8.2 below, the density of those family sizes is constant equal to
e−tθ at time 0. Now we sample m individuals at random. The probability
that exactly 0 ≤ i ≤ m among them share a mutation which is carried by a
family of relative size y is (

m
i

)
yi(1− y)m−i.

Hence the answer to our question is given by the integral of that quantity
against the uniform density e−tθ on the interval [0, 1], i. e.

e−tθ

(
m
i

)∫ 1

0

yi(1− y)m−idy =
θ

m+ 1
e−t.

�

Lemma 6.8.2. Let {Xt, t ≥ 0} denote the Wright–Fisher diffusion started
at time t = 0 with the uniform probability on the interval [0, 1], i. e. the
Lebesgue measure λ on [0, 1]. Then for each t > 0 the measure

µt := e−tλ+
1− e−t

2
(δ0 + δ1)
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is the law of Xt.

Proof: It is sufficient to show that for each n ≥ 0,

IEλ[X
n
t ] =

∫
[0,1]

xnµt(dx).

Clearly ∫
[0,1]

xnµt(dx) =
e−t

n+ 1
+

1− e−t

2
=

1

2

(
1− n− 1

n+ 1
e−t
)
.

But from the duality formula between the Wright–Fisher diffusion and King-
man’s coalescent (see Proposition 5.5.1)

IEx[X
n
t ] = IEn[xRt ].

Hence

IEλ[X
n
t ] =

∫ 1

0

IEn[xRt ]dx

= IEn

[
1

Rt + 1

]
.

The result then follows from the next Exercise. �

Exercise 6.8.3. 1. Prove that 2IE2

[
1

Rt+1

]
= 1− e−t/3.

2. Compute 2IEn

[
1

Rt+1

]
in terms of 2IEn−1

[
1

Rt+1

]
, by conditioning upon

Tn, the time spend by the process Rt in the state n.

3. Deduce by recurrence upon n that

2IEn

[
1

Rt + 1

]
= 1− n− 1

n+ 1
e−t.

We could also show that the collection {µt, t ≥ 0} given in the statement
solves the Fokker–Planck equation associated to Xt, i. e.
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Exercise 6.8.4. Prove that for all f ∈ C2(IR),

d

dt
< µt, f >=< µt, Lf >, ∀t ≥ 0,

where

Lf(x) =
1

2
x(1− x)f ′′(x).

Note that deducing the Lemma 6.8.2 from Exercise 6.8.4 would imply
proving a uniqueness result for the Fokker–Planck equation, which can be
done but is not very easy.

6.9 Selection

In this section we want to discuss how selection can be introduced into the
look–down construction. Suppose that the individuals in the infinite popula-
tion are of two different types, say red or black, and that the red individuals
have a selective advantage which we quantify by a positive parameter α. We
introduce the following additional feature in the look–down construction :
the black individuals die at rate α. One way of doing so is to put crosses
on Harris’ diagram on each level at rate α, independently of the arrows.
Whenever a red individual hits a cross, nothing happens. Whenever a black
individual hits a cross, he dies and the empty level is filled by shifting all
individuals on its right one level down.

Suppose that the initial colours are i. i. d., red with probability x,
black with probability 1 − x, and denote again by Xt the proportion of red
individuals in the population at time t. We want to show the analog of
Theorem 6.4.4

Theorem 6.9.1. The [0, 1]–valued process {Xt, t ≥ 0} solves the Wright–
Fisher SDE with selection

dXt = αXt(1−Xt)dt+
√
Xt(1−Xt)dBt, t ≥ 0; X0 = x.

Proof:
�

Now conditioning upon fixation of the advantageous allele amounts to
colouring the particle 1 red at time t = 0.
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6.10 The Fleming–Viot measure–valued pro-

cess

Consider again the look–down construction of the Moran model, where now
each individual at time t = 0 is assigned, independently of all other individu-
als, a type which is the value of a U [0, 1] random variable. In other words, the
{η0(k), k ≥ 1} are i. i. d. U [0, 1]’s. Arrows are drawn from k to ` at rate 1,
for all 1 ≤ k < `. The evolution of the ηt(k) is described as in the preceding
section. For ech N ≥ 1, let {ρNt , t ≥ 0} denote the measure–valued process
defined as

ρNt ([a, b]) = N−1

N∑
k=1

1{ηk(t)∈[a,b]}, 0 ≤ a < b ≤ 1.

It is easily seen that ρN0 ⇒ U [0, 1], as N →∞.
Consider now the distribution function of the random mesures ρNt . For

each 0 ≤ z ≤ 1, the result of the previous section shows that for all t ≥ 0,
ρNt [0, z]→ Xt(z), where {Xt(z), t ≥ 0} is a Wright–Fisher diffusion starting
from X0(z) = z. From this a. s. convergence and obvious inequalities
concerning the ρNt [0, z], we deduce that z → ρt[0, z] is a. s. increasing for
all t ≥ 0. Moreover we know that for each t ≥ 0, Xt(z) → 0 as z → 0, and
Xt(z)→ 1 as z → 1, a. s. Clearly ρt is the distribution function of a random
probability on [0, 1], which we still denote ρt. That measure valued process
is the a. s. weak limit of the approximating ρNt . We have the following
characterization of that process.

Proposition 6.10.1. For any bounded Borel measurable function g : [0, 1]→
IR, {

∫
[0,1]

g(x)ρt(dx), t ≥ 0} is a martingale whose quadratic variation Vt(g)
is given as

Vt(g) =
1

2

∫ t

0

ds

∫ ∫
[0,1]2

[g(x)− g(y)]2ρs(dx)ρs(dy). (6.10.1)

Proof: Consider the case where g = 1[0,z]. In that case,
∫

[0,1]
g(x)ρt(dx) =

Xt(z), which is a Wright–Fisher diffusion, hence a martingale with the quadratic
variation ∫ t

0

ds

[∫
[0,z]

ρs(dx)−
(∫

[0,z]

ρs(dx)

)2
]
,
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which is easily identified with the right hand side of 6.10.1 for our particular
choice of g. The formula is easily extended to g’s which are step functions,
and to arbitrary bounded Borel measurable g’s by approximation. �

We easily deduce from the previous result

Proposition 6.10.2. For each Borel subset A ⊂ [0, 1], {ρt(A), t ≥ 0} is a
martingale whose quadratic variation is given by

〈ρ(A)〉t =

∫ t

0

[
ρs(A)− ρs(A)2

]
ds.

If A,B ⊂ [0, 1] and A ∩B = ∅, then

〈ρ(A), ρ(B)〉t = −
∫ t

0

ρs(A)ρs(B)ds.

We now prove the following result, which is reminiscent of some of the
properties of the Feller branching diffusion, see chapter 1 above.

Theorem 6.10.3. Assume that ρ0 = U [0, 1]. Then a. s. for all t > 0, the
support of the probability measure ρt is a finite set.

Proof: This result is a consequence of the duality between Kingman’s
coalescent and the Fleming–Viot process, and the coming down from infinity
property of Kingman’s coalescent.

Consider the m first individuals in the look–down construction at time
t > 0. Going back in time, each pair of those individuals coalesce at rate 1.
Thus the types of the individuals {1, 2, . . . ,m} at time t coincide with the
types of the individuals {ξt(1), ξt(2), . . . , ξt(m)} where for 1 ≤ k ≤ m, ξt(k) is
the number between 1 and m of the individual to which following backward
the look–down graphical representation leads to. The important fact is that
ξt(k) = ξt(`) if and only if the lineages k and ` belong to the same bloc of
Kingman’s m–coalescent partition at time t. If we write IPU for the law of
the Fleming–Viot process started with ρ0 = U [0, 1], and IPm for the law of
the m–Kigman coalescent, we have

IEU

∫
[0,1]m

f(y1, y2, . . . , ym)ρt(dy1)ρt(dy2) · · · ρt(dym)

= IEm

∫
[0,1]m

f(yξt(1), yξt(2), . . . , yξt(m))ρ0(dy1)ρ0(dy2) · · · ρ0(dym).
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Note that the values of the indices ξt(k) are biased towards 1 by the look–
down construction, but this does not change the value of the above right
hand side. The important fact is that the number of different values taken
by that sequence of indices remains bounded a. s., as m→∞.

6.11 Bibliographical comments

Section 6.2 to 6.9 were inspired by a set of beautiful lectures given by Anton
Wakolbinger in La Londe les Maures in septembre 2008. I am indebted to
Vlada Limic for suggestions which led to the proof of the Markov property
in Theorem 6.4.4. Section 6.10 started from a lecture given by Vlada Limic.



Chapter 7

Appendix

7.1 A Ray–Knight theorem

Consider a function g ∈ C1(IR; IR+) with compact support equal to [0, a].
We then have

Lemma 7.1.1. The two–point boundary value problem{
F ′′(t) = g(t)F (t), 0 ≤ t ≤ a;

F (0) = 1, F ′(a) = 0;
(7.1.1)

has a unique decreasing and positive solution {Fg(t), 0 ≤ t ≤ a}.

Proof: For any z ∈ IR, denote by {Fz(t), 0 ≤ t ≤ a} the solution of the
ODE with initial condition{

F ′′(t) = g(t)F (t), 0 ≤ t ≤ a;

F (0) = 1, F ′(0) = z.

The mapping z → F ′z(a) is continuous, it is not hard to show that it is strictly
increasing, F ′0(a) > 0 and F ′z(a) < 0 for z < 0, large enough in absolute value.
Hence there is a unique z0 < 0 such that F ′z0(a) = 0. It is not hard to show
that Fz0(a) > 0. It is enough for our purpose to show that Fz0(a) ≥ 0. If
that would not be the case, there would exist 0 < s < a such that Fz0(s) = 0,
F ′z0(s) ≤ 0, Fz0(t) < 0 for s < t ≤ a. Then from the equation F ′′z0(t) < 0
for s < t ≤ a, and consequently F ′z0(t) < 0 for s < t ≤ a, which contradicts
the condition F ′z0(a) = 0. It is easily seen that {Fz0(t), 0 ≤ t ≤ a} has all

105
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the required properties, and that it is the unique solution of the two–point
boundary value problem (7.1.1). �

Definition 7.1.2. For each x ≥ 0, δ ∈ IR, we denote by QF δ
x the law of the

solution of the SDE

Zδ
t = x+ δ

∫ t

0

Zsds+ 2

∫ t

0

√
Zδ
sdBs. (7.1.2)

Consider now the process

Xs = Bs +
1

2
L0
s, s ≥ 0,

where {Bs, s ≥ 0} is a one–dimensional standard Brownian motion, and
{Lts, s ≥ 0, t ≥ 0} denotes the local time of X accumulated at level t by
time s, hence X is “reflected Brownian motion”.

Remark 7.1.3. Brownian motion reflected on IR+ is by definition the unique
process X such that

Xs = Bs +Ks, K0 = 0,

Xs ≥ 0, K is continuous and increasing,

∫ s

0

XrdKr = 0.

It is well known and easy to verify that Ks = − inf0≤r≤sBr. But this is not
the expression for Ks which we are seeking here.

It follows from Tanaka’s formula that

Xs = X+
s =

∫ s

0

1{Xr>0}dBr +
1

2
L0
s = Bs +

1

2
L0
s,

if L0 denotes the local time at level 0 of the process X. Comparing the two
above formulas, we deduce that Ks = 1

2
L0
s. This justifies the above definition

of reflected Brownian motion.

For x > 0, let
τx = inf{s > 0; L0

s > x}.

The following result is due to Ray and Knight

Theorem 7.1.4. The law of the process {Ltτx , t ≥ 0} is Q0
x.
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Proof: Let g and Fg be as in Lemma 7.1.1. Define f ∈ C(IR2) as

f(y, x) = Fg(x) exp[−F ′g(0)y/2].

It follows from Itô’s formula that

f(L0
s, Xs) = 1 +

∫ s

0

[
f ′y(L

0
r, Xr) +

1

2
f ′x(L

0
r, Xr)

]
dL0

r

+

∫ s

0

f ′x(L
0
r, Xr)dBr

+
1

2

∫ s

0

f ′′x2(L0
r, Xr)dr.

Clearly in the dL0
r integral, Xr can be replaced by 0. Then from the choice

of the function f , the dL0
r integral vanishes. Moreover

f ′′x2(L0
r, Xr) = g(Xr)f(L0

r, Xr).

Then

exp

(
−1

2

∫ s

0

g(Xr)dr

)
f(L0

s, Xs) = 1+

∫ s

0

exp

(
−1

2

∫ r

0

g(Xr′)dr
′
)
f ′x(L

0
r, Xr)dBr.

It is easily seen that this last stochastic integral is a bounded martingale,
hence by optional stopping and the occupation times formula

IE

[
exp

(
−1

2

∫ τx

0

g(Xs)ds

)]
= IE

[
exp

(
−1

2

∫ ∞
0

g(t)Ltτxdt

)]
= exp

(x
2
F ′g(0)

)
.

The result follows from the next Lemma. �

Lemma 7.1.5. For any g and Fg as in Lemma 7.1.1, if {Zt, t ≥ 0} denotes
the solution of (7.1.2) with δ = 0,

IE

[
exp

(
−1

2

∫ ∞
0

Ztg(t)dt

)]
= exp

(
F ′g(0)

x

2

)
.
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Proof: Let Hg(t) = F ′g(t)/Fg(t). Note that H ′g(t) = g(t)−H2
g (t). Hence

Hg(t)Zt = Hg(0)x+

∫ t

0

Hg(s)dZs +

∫ t

0

g(s)Zsds−
∫ t

0

H2
g (s)Zsds,

and the following is a local martingale

Mt = exp

(
1

2

∫ t

0

Hg(s)dZs −
1

2

∫ t

0

ZsH
2
g (s)ds

)
= exp

(
1

2

{
Hg(t)Zt −Hg(0)x−

∫ t

0

g(s)Zsds

})
which is bounded on [0, a]. The result follows by writing

IE(Ma) = IE(M0).

�

Remark 7.1.6. We could as well have defined X as Brownian motion, in-
stead of reflected Brownian motion. The result would have been the same,
and the proof esntially identical, except that we should have started with de-
veloping the quantity f(L0

s, (Xs)
+). It is not surprising that the result is the

same for the local time of Brownian motion and the local time of Brownian
motion reflected in IR+, see Lemma 7.1.8 below.

Consider now for each δ ∈ IR, a > 0, the process

Xδ,a
s =

δ

2
s+Bs +

1

2
L0
s(δ, a)− 1

2
Las(δ, a), s ≥ 0, (7.1.3)

where L(δ, a) denotes the local time of Xδ,a, which is Brownian motion with
drift δ/2, reflected in the interval [0, a]. We next define

τx(δ, a) = inf{s > 0, L0
s(δ, a) > x}.

In the case δ < 0, the reflection at 0 is necessary, if we want to make sure
that the process L0(δ, a) reaches the value x. Similarly, the reflection at a is
necessary in the case δ > 0. We first need to show that the reflection at a
does not distort our object of study. This follows from

Proposition 7.1.7. For all 0 < a < b, the two processes {Ltτx(δ, a), 0 ≤ t ≤
a} and {Ltτx(δ, b), 0 ≤ t ≤ a} have the same law.
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Proposition 7.1.7 is an immediate consequence of the next Lemma. Be-
fore stating it, we need to introduce some notations. For any a > 0, ϕ ∈
C(IR+; IR+), define

Aas(ϕ) =

∫ s

0

1{ϕ(r)≤a}dr, s ≥ 0,

Ca
s (ϕ) = inf{r ≥ 0, Aar(ϕ) > s}, s ≥ 0,

πa(ϕ) = ϕ ◦ Ca(ϕ).

Lemma 7.1.8. For any 0 < a < b, πa(X
δ,b) has the same law as Xδ,a.

Proof: In this proof, we shall use the notations

A(s) = Aas(X
δ,b), C(s) = Ca

s (Xδ,b).

Note that

πa(X
δ,b)s = Xδ,b

C(s)

=
δ

2
C(s) +BC(s) +

1

2
L0
C(s) −

1

2
LbC(s)

=

∫ C(s)

0

1{Xδ,b
r ≤a}(dBr +

δ

2
dr) +

1

2
L0
C(s)

+

∫ C(s)

0

1{Xδ,b
r >a}(dBr +

δ

2
dr)− 1

2
LbC(s).

Tanaka’s formula tells us that

(Xδ,b
r − a)+ =

∫ r

0

1{Xδ,b

r′ >a}
dXδ,b

r′ +
1

2
Lar ,

which choosing r = C(s) gives∫ C(s)

0

1{Xδ,b
r >a}dX

δ,b
r +

1

2
LaC(s) = 0,

from which we deduce that∫ C(s)

0

1{Xδ,b
r >a}(dBr +

δ

2
dr)− 1

2
LbC(s) +

1

2
LaC(s) = 0.
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Combining this and the previous identity gives

Xδ,b
C(s) =

∫ C(s)

0

1{Xδ,b
r ≤a}(dBr +

δ

2
dr) +

1

2
L0
C(s) −

1

2
LaC(s).

Define X̃δ,b
s = Xδ,b

C(s). We have

X̃δ,b
s = B′s +

δ

2
A ◦ C(s) +

1

2
L0
C(s) −

1

2
LaC(s).

Note that A ◦ C(s) = s and B′ is a standard Brownian motion. Indeed B′

is a continuous local martingale (this follows from Doob’s optional stopping
theorem), whose quadratic variation process equals

〈B′〉s =

∫ C(s)

0

1{Xδ,b
r ≤a]}dr = A ◦ C(s) = s.

Let Ks := 1
2
L0
C(s) −

1
2
LaC(s). We note that we have

X̃b,δ
s = B′s +

δ

2
s+Ks, Xs ∈ [0, a], ∀s ≥ 0, a. s.,

Ks =

∫ s

0

1{X̃r=0}d|K|r −
∫ s

0

1{X̃r=a}d|K|r∫ s

0

1{X̃r 6∈{0,a}}d|K|r = 0.

This means that X̃ is Brownian motion plus drift equal to δ/2, reflected in
the interval [0, a], in other words, if L̃(b, δ) denotes the local time of X̃b,δ,

X̃b,δ
s = B′s +

δ

2
s+

1

2
L̃0
s(b, δ)−

1

2
L̃as(b, δ).

The result follows. �

It follows from Proposition 7.1.7 that there exists a continuous process
{Ltτx(δ), t ≥ 0} such that for each a > 0, {Ltτx(δ), 0 ≤ t ≤ a} has the same
law as {Ltτx(δ, a), 0 ≤ t ≤ a}. We now show

Theorem 7.1.9. The law of {Ltτx(δ), t ≥ 0} is QF δ
x .
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Proof: We first show that for some a > 0, the law of {Ltτx(δ), 0 ≤ t ≤ a}
is the restriction of QF δ

x to C([0, a]). For the rest of this proof, we choose
a > 0 arbitrary if δ < 0, and 0 < a < 2/δ if δ > 0.

Since we shall be using Girsanov’s theorem, in the proof we shall index
the expectation by δ (writing IEδ), and drop the index δ from the processes
themselves.

Let again g be a continuous function from IR+ into IR+, with support in-
cluded in [0, a], for some arbitrary a > 0. It follows from Girsanov’s theorem
that

IEδ

[
exp

(
−
∫ τx∧n

0

g(Xa
s )ds

)]
= IE0

[
exp

(
δ

2
Bτx∧n −

δ2

8
τx ∧ n−

∫ τx∧n

0

g(Xa
s )ds

)]
.

Under IP0

−x
2
≤ −1

2
L0
τx∧n ≤ Bτx∧n ≤ a+

1

2
Laτx∧n ≤ a+

1

2
Laτx ,

so we can take the limit as n → ∞ in the above identity with the help of
Lebesgue’s dominated convergence theorem, provided either δ < 0, or

IE0

[
exp

(
δ

4
Laτx

)]
<∞. (7.1.4)

But we know exactly the law of Laτx under IP0. Indeed, from the results in
section 1.6, Laτx is the sum Y1 + · · · + YZ , where Z, Y1, Y2, . . . are mutually
independent, Z is Poisson with parameter x/2a, and the Yk are exponential
with parameter 1/2a. Hence (7.1.4) holds iff δ < 2/a, which is exactly our
standing assumption.

IEδ

[
exp

(
−
∫ τx

0

g(Xa
s )ds

)]
= IE0

[
exp

(
δ

2
Bτx −

δ2

8
τx −

∫ τx

0

g(Xa
s )ds

)]
= IE0

[
exp

(
δ

4

(
Laτx − x

)
− δ2

8
τx −

∫ τx

0

g(Xa
s )ds

)]
= IE0

[
exp

(
δ

4

(
Laτx − x

)
−
∫ a

0

(
g(t) +

δ2

8

)
Ltτxdt

)]
= IE0

[
exp

(
δ

2
(Zx

a − x)−
∫ a

0

(
g(t) +

δ2

8

)
Zx
t dt

)]
= IE0

[
exp

(
δ

2

∫ a

0

√
Zx
t dBt −

∫ a

0

(
g(t) +

δ2

8

)
Zx
t dt

)]
= IEδ

[
exp

(
−
∫ a

0

g(t)Zx
t dt

)]
,
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where we have used (7.1.3) for the second equality and the fact that from
Theorem 7.1.4 under IP0 the law of {Ltτx(a), 0 ≤ t ≤ a} is Q0

x restricted
to C([0, a]) at the fourth equality, and again Girsanov’s theorem at the last
equality. The reason why we are in a position to apply Girsanov’s theorem
is that the same argument which leads to (7.1.4) shows that for some c > 0
(e. g. c = δ/4, but this is unimportant)

IE0 [exp (cZx
t )] = IE0

[
exp

(
cLtτx

)]
<∞, 0 ≤ t ≤ a.

Now an argument similar to the one leading to Proposition 7.1.7 shows
that the law of the portion of the trajectory of Xδ,b which lives between the
levels a and b (where a < b) is the same as the law of δ

2
s + Bs reflected in

[a, b]. This says in particular that {Ltτx(δ, b), a ≤ t ≤ b} is conditionally
independent of {Ltτx(δ, b), 0 ≤ t ≤ a}, given Laτx(δ, b), and establishes the
Markov property of the process {Ltτx(δ), t ≥ 0}.

The above argument allows us to identify the conditional law of {La+t
τx (δ, 2a),

0 ≤ t ≤ a} given that Laτx(δ, 2a) = y as the law QF δ
y , restricted to C([0, a]).

Combining this with the previous result tells us that the law of {Ltτx(δ), 0 ≤
t ≤ 2a} is QF δ

x restricted to C([0, 2a]). Repeating the argument gives the
same statement with 2a replaced by ka, for any k ∈ IN. The Theorem fol-
lows. �

7.2 Tightness in C

We prove the following particular case of Theorem 12.3 in Billingsley [4] page
95 :

Theorem 7.2.1. A sufficient condition for a sequence {Xn
t , : t ≥ 0}n≥1 of

continuous IRd–valued martingales to be tight in C(IR+; IRd) is that

1. The sequence {Xn
0 }n≥1 is tight.

2. There exists c > 0 such that for all 0 ≤ s ≤ t,

IE
(
|Xn

t −Xn
s |

4) ≤ c|t− s|2. (7.2.1)
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Proof: It suffices to prove tightness in C([0, T ]; IRd) for all T > 0. For the
sake of simplifying our notations, we shall prove tightness in C := C([0, 1]).
The denote by

w(x, δ) = sup
|t−s|≤δ

|x(t)− x(s)|

the modulus of continuity of an arbitrary element x ∈ C. Let us first check
that a sufficient condition for tightness in C of the random sequence {Xn}
is, together with 1, the fact that for all ε, η > 0, we can find δ > 0 such that

IP(w(Xn, δ) ≥ ε) ≤ η, ∀n ≥ 1. (7.2.2)

Indeed, in that case ∀η > 0, k ≥ 1, there exists δk > 0 such that

IP

(
w(Xn, δk) >

1

k

)
≤ η

2k
.

Hence

IP

(⋂
k

{
w(Xn, δk) ≤

1

k

})
≥ 1− η.

Consequently, combining with 1, we deduce that for M large enough,
IP(Xn ∈ K) ≥ 1− 2η, where

K :=

{
x, |x(0)| ≤M and w(x, δk) ≤

1

k
, ∀k ≥ 1

}
is compact from the Arzelà–Ascoli theorem.

For each n ≥ 1, 0 ≤ t ≤ 1, ε > 0, δ > 0, define the event

Ant,δ,ε =

{
sup

t≤s≤(t+δ)∧1

|Xn
s −Xn

t | ≥ ε

}
.

Since each {Xn
t , 0 ≤ t ≤ 1} is a martingale, it follows from Doob’s inequality

and (7.2.1) that

IP(Ant,δ,ε) ≤ c′
δ2

ε4
.

Now the pairs (s, t) which count in the definition of w(Xn, δ) belong either
to the same or to two neighbouring intervals of the form [iδ, (i + 1)δ]. Con-



114 CHAPTER 7. APPENDIX

sequently

IP(w(Xn, δ) ≥ 3ε) ≤ IP
(
∪i<δ−1Aniδ,δ,ε

)
≤
∑
i<δ−1

IP(Aniδ,δ,ε)

≤ c′
δ

ε4
.

(7.2.2) clearly now follows by an appropriate choice of δ. �

7.3 A martingale representation theorem

We state and prove the result in dimension 1, since we will need it only in
that case.

Theorem 7.3.1. Let {Mt, t ≥ 0} be a one dimensional continuous martin-
gale, defined on a probability space (Ω,F ,Ft, IP), with associated increasing
process

〈M〉t =

∫ t

0

Asds,

where {At, t ≥ 0} is an Ft–progressively measurable IR+–valued process.
Then there exists, possibly on an enlarged probability space (Ω′,F ′, IP′), a
standard Brownian motion such that

Mt =

∫ t

0

√
AsdBs, t ≥ 0. (7.3.1)

Proof: Let (Ω′,F ′, IP′) = (Ω×C(IR+),F ⊗C, IP×W), where C denote the
Borel σ field over C(IR+), and W the Wiener measure on (C(IR+), C). Let
{Wt, t ≥ 0} denote the canonical process defined on (C(IR+), C,W). Define
the two following Ft–progressively measurable processes

For t ≥ 0, at =

{
A
−1/2
t , if At > 0,

0, if At = 0.

bt =

{
0, if At > 0,

1, if At = 0.
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Let now

Bt =

∫ t

0

asdMs +

∫ t

0

bsdWs, t ≥ 0.

It is easy to check that {Bt, t ≥ 0} is a continuous martingale. Moreover,
since M and W are independent,

〈B〉t =

∫ t

0

a2
sAsds+

∫ t

0

b2
sds

=

∫ t

0

1{As>0}ds+

∫ t

0

1{As=0}ds

= t,

hence {Bt, t ≥ 0} is a Brownian motion, and (7.3.1) holds.

7.4 The Lévy–Khinchin formula

Definition 7.4.1. The law of the real–valued r. v. X is said to be infinitely
divisible if for every n > 1, there exist n i. i. d. r. v.’s Xn

1 , . . . , X
n
n such that

L(X) = L(Xn
1 + · · ·+Xn

n ).

The characteristic function of an infinitely divisible r. v. X can be written
as

ϕX(u) = IE [exp(iuX)] = exp(−Ψ(u)),

with a unique characteristic exponent Ψ ∈ C(IR; C) satisfying Ψ(0) = 0,
specified by the celebrated Lévy–Khintchin formula (see e. g. [7])

Theorem 7.4.2. A function Ψ : IR ∈ C is the characteristic exponent of an
infinitely divisible distribution on IR iff there are α ∈ IR, β ≥ 0, Λ a measure
on IR\{0}, called the Lévy measure, which satisfies

∫
(1 ∧ |x|2)Λ(dx) < ∞,

such that

Ψ(u) = iαu+ βu2 +

∫
IR

(1− eiux + iux1{|x|≤1})Λ(dx). (7.4.1)

In the particular case of a positive valued infinitely divisible r. v., we
prefer to explicit the Laplace exponent of X, i. e. for λ ≥ 0

ψ(λ) = log {− exp [−λX]}
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which takes the form

ψ(λ) = dλ+

∫ ∞
0

(1− e−λx)Λ(dx), (7.4.2)

again with λ ≥ 0. Here d ≥ 0 is called the drift coefficient, and the Lévy
measure Λ is in this case a measure on (0,+∞) which satisfies∫

IR+

(1 ∧ x)Λ(dx) <∞.

7.5 de Finetti’s theorem

A permutation π of the set {1, 2, . . .} is said to be finite if |{i, π(i) 6= i}| <∞.
Let us formulate the

Definition 7.5.1. The countably infinite sequence {Xn, n ≥ 1} is said to be
exchangeable if for all finite permutation π of {1, 2, . . .},

(X1, X2, . . .)
L
= (Xπ(1), Xπ(2), . . .).

It is not too hard to show that

Lemma 7.5.2. Given a countably infinite sequence of r. v.’s {X1, X2, . . .},
the three following properties are equivalent

1. The sequence {X1, X2, . . .} is exchangeable.

2. For all n > 1,

(X1, . . . , Xn−1, Xn, Xn+1, . . .)
L
= (Xn, . . . , Xn−1, X1, Xn+1, . . .).

3. For all sequence {ni, i ≥ 1} of distinct integers,

(X1, X2, X3, . . .)
L
= (Xn1 , Xn2 , Xn3 , . . .).

Let us recall the well–known “reversed martingale convergence theorem”
(see e. g. [5])

Theorem 7.5.3. Let {Gn, n ≥ 1} be a decreasing sequence of sub–σ–fields
of F , G = ∩nGn. Then for any integrable r. v. Z, IE(Z|Gn)→ IE(Z|G) a. s.
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We now prove an easy lemma

Lemma 7.5.4. Let Y be a bounded r. v., and H ⊂ G be two sub–σ–fields

of F . Then IE [IE(Y |H)2] = IE [IE(Y |G)2] ( or a fortiori IE(Y |H)
L
= IE(Y |G))

implies that IE(Y |H) = IE(Y |G) a. s.

Proof: The result follows readily from the identity

IE
[
(IE(Y |G)− IE(Y |H))2] = IE

[
(IE(Y |G))2]− IE

[
(IE(Y |H))2] .

�

We now state the celebrated de Finetti’s theorem. Our proof follows one
of the proofs given in [1]. See also [5] for the case of {0, 1}–valued r. v. ’s.

Theorem 7.5.5. An exchangeable (countably infinite) sequence {Xn, n ≥ 1}
of r. v.’s is a mixture of i. i. d. sequences, in the sense that conditionally
upon T (the tail σ–field of the sequence {Xn}, the Xn are i. i. d.

Proof: For each n ≥ 0, let Gn := σ(Xn+1, Xn+2, . . .), and let T := ∩nGn
the tail σ–field. By exchangeability, for all n ≥ 2,

(X1, X2, X3, . . .)
L
= (X1, Xn+1, Xn+2, . . .).

Consequently for any bounded Borel measurable function ϕ : IR→ IR, n ≥ 2,

IE(ϕ(X1)|G1)
L
= IE(ϕ(X1)|Gn).

Theorem 7.5.3 implies that

IE(ϕ(X1)|Gn)→ IE(ϕ(X1)|T ) a. s., as n→∞.

We deduce that
IE(ϕ(X1)|G1)

L
= IE(ϕ(X1)|T ).

Now Lemma 7.5.4 implies that the equality holds a. s. This implies that

X1 and G1 are conditionally independent given T .

The same argument applied to (Xn, Xn+1, . . .) says that for all n ≥ 1,

Xn and Gn are conditionally independent given T .
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This implies that the whole sequence {Xn, n ≥ 1} is conditionally indepen-
dent given T . Now exchangeability says that for all n ≥ 1,

(X1, Xn+1, Xn+2, . . .)
L
= (Xn, Xn+1, Xn+2, . . .).

So for the same ϕ’s as above,

IE(ϕ(X1)|Gn) = IE(ϕ(Xn)|Gn) a. s..

Taking the conditional expectation given T yields

IE(ϕ(X1)|T ) = IE(ϕ(Xn)|T ) a. s..

Hence, conditionally upon T , the Xn are also identically distributed. �

We now deduce the

Corollary 7.5.6. Let {Xn, n ≥ 1} be an exchangeable (countably infinite)
sequence of {0, 1}–valued r. v.’s. Then, conditionally upon

a. s. lim
n
n−1

n∑
k=1

Xk = x,

the Xn are i. i. d. Bernoulli with parameter x.
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