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Chapter 1

Kingman’s coalescent

1.1 The Wright–Fisher model

Consider a population of fixed size N , which evolves in discrete generations.
Each individual of generation k chooses his father uniformly among the indi-
viduals of the previous generation, independently of the choices of the other
individuals.

Looking backward in time, if we sample n individuals in the present
population, we want to describe at which generation any two of those had
the same common ancestor, until we reach the most recent common ancestor
of the sample.

1.2 Cannings’ model

We can generalize the Wright–Fisher model as follows. Suppose at each
generation, we label the N individuals randomly. For r ≥ 0, 1 ≤ i ≤ N , let
νri denote the number of offsprings in generation r+ 1 of the i–th individual
from generation r. Clearly those r. v.’s must satisfy the requirement that

νr1 + · · ·+ νrN = N.

Cannings’ model stipulates moreover that

νr, r ≥ 0 are i. i. d. copies of ν,

and that the law of ν is exchangeable, i. e.

(ν1, . . . , νN) ' (νπ(1), . . . , νπ(N)),∀π ∈ SN .
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6 CHAPTER 1. KINGMAN’S COALESCENT

The above conditions imply that IEν1 = 1. To avoid the trivial case where
IP(ν1 = · · · = νN = 1) = 1, we assume that Var(ν1) > 0. A particular case
of Cannings’ model is the Wright–Fisher model, in which ν is multinomial.

1.3 Looking backward in time

Consider a population of fixed size N , which has been reproducing for ever
according to Cannings’ model. We sample n < N individuals from the
present generation, and label them 1, 2, . . . , n. For each r ≥ 0, we introduce
the equivalence relation on the set {1, . . . , n} : i ∼r j if the individuals i
and j have the same ancestor r generations back in the past. Denote this
equivalence relation by RN,n

r . For r ≥ 0, RN,n
r is a random equivalence

relation, which can be described by its associated equivalence classes, which
is a random partition of (1, . . . , n). Thus {RN,n

r ; r ≥ 0} is a Markov chain
with values in the set En of the partitions of (1, . . . , n), which starts from
the trivial finest partition ({1}, . . . {n}), and eventually reaches the coarsest
partition consisting of the set {1, . . . , n} alone. We denote by PN,n

ξ,η the
transition matrix of that chain.

The probability that two individuals in today’s population have the same
ancestor in the previous generation is

cN =

∑N
i=1 IE

[(
νi
2

)]
(
N
2

) =

∑N
i=1 IE[νi(νi − 1)]

N(N − 1)
=

IE[ν1(ν1 − 1)]

N − 1
.

Provided that cN → 0 as N →∞, if r = t/cN ,

IP(1 6∼r 2) = (1− cN)r ≈ e−t.

This suggests to consider

RN,n
t := RN,n

[t/cN ], t ≥ 0.
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1.4 Kingman’s coalescent

Let {Rn
t ; t ≥ 0} be a continuous time En–valued jump Markov process with

the rate matrix given by (for η 6= ξ)

Qξη =

{
1 , if η is obtained from ξ by merging exactly two classes,

0 , otherwise.

(1.4.1)
This is Kingman’s n coalescent. In order for RN,n to converge to Kingman’s
coalescent, we certainly need that merges of 3 or more lineages are asymptot-
ically negligible. The probability that three individuals in today’s population
have the same ancestor in the previous generation is

dN :=

∑N
i=1 IE

[(
νi
3

)]
(
N
3

) =
IE[ν1(ν1 − 1)(ν1 − 2)]

(N − 1)(N − 2)
.

Exercise 1.4.1. Compute cN and dN in the Wright–Fisher model, as well
as in the model where at each generation a common father of all individuals
of the next generation is chosen uniformly in the present generation.

Theorem 1.4.2. RN,n ⇒ Rn in D(IR+; En) iff, as N →∞, both
cN → 0,

dN
cN
→ 0.

(1.4.2)

Remark 1.4.3. Non-constant population size This result assumes in an
essential way that the size of the population is constant in time. What is the
effect of modifying the population size ? Assume (that is true in particular
for the Wright–Fisher model) that IE[ν1(ν1−1)]→ c > 0 as N →∞. In that
case our theorem says roughly that for large N , RN,n

Nt/c ' Rn
t . Then for any

x > 0, we have similarly that RxN,n
xNt/c ' Rn

t . In other words, RxN,n
Nt/c ' Rn

t/x.
This means that if we multiply the size of the population by a factor x, we
should accelerate time by a factor 1/x, or, what is exactly the same, multiply
the pairwise coalescence rate by the factor 1/x. This argument can be justified
in the case of a varying population size. The rule is to multiply at each time
t the pairwise coalescence rate by 1 over the “renormalized population size”.
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Proof: The sufficiency will follow from the standard Lemma 1.4.4 below
and the fact that (1.4.2) implies that

PN,n
ξ,η = δξ,η + cNQξ,η + ◦(cN),

where the error term is small, uniformly with respect to ξ, η ∈ En. It follows
from exchangeability that for any f : {0, 1, . . . , N} → IR+,

(N − 1)IE[ν2f(ν1)] =
N∑
j=2

IE[νjf(ν1)]

= IE[(N − ν1)f(ν1)]

≤ NIE[f(ν1)],

hence

IE[ν2f(ν1)] ≤
N

N − 1
IE[f(ν1)]. (1.4.3)

From the Markov inequality and (1.4.2), with the notations (ν)2 = ν(ν − 1),
(ν)3 = ν(ν − 1)(ν − 2), if εN ≥ 2,

IP(ν1 > εN) ≤ IE[(ν1)3]

(εN)3

=
◦(NIE[(ν1)2])

ε3N3
,

consequently
IP(ν1 > εN) ≤ ε−3 ◦ (cN/N). (1.4.4)

Next

IE[(ν1)2(ν2)2] ≤ εNIE[(ν1)2ν2; ν2 ≤ εN ] +N2IE[(ν1)2; ν2 > εN ]

≤ εNIE[(ν1)2ν2] +N3IE[ν1; ν2 > εN ]

≤ εN
N

N − 1
IE[(ν1)2] +N3 N

N − 1
IP(ν2 > εN),

where we have used (1.4.3) twice in the last inequality. Combining this with
(1.4.4), we conclude that for all ε > 0,

lim sup
N→∞

IE[(ν1)2(ν2)2]

NIE[(ν1)2]
≤ ε+ lim sup

N→∞

IP(ν1 > εN)

cN/N

= ε.
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Let I1, . . . , In denote the parents of n ordered randomly chosen individuals
of a given generation. We have the following identities

IP(I1 = I2) = cN

IP(I1 = I2 = I3) = dN

IP(I1 = I2 6= I3 = I4) =

∑
1≤i<j≤N IE

[(
νi
2

)(
νj
2

)]
(
N
4

)
= 3

IE[(ν1)2(ν2)2]

(N − 2)(N − 3)
.

Hence we deduce from the last estimate that

lim
N→∞

IP(I1 = I2 6= I3 = I4)

IP(I1 = I2)
= 0, (1.4.5)

while (1.4.2) tells us that

lim
N→∞

IP(I1 = I2 = I3)

IP(I1 = I2)
= 0. (1.4.6)

We now conclude, using (1.4.5) and (1.4.6). Let ξ = (C11, C12, C2, . . . , Ca)
and η = (C1, C2, . . . , Ca), where C1 = C11 ∪ C12. We have

IP(I1 = I2)− IP({I1 = I2} ∩ {∃3 ≤ m ≤ a+ 1; Im = I1})
− IP({I1 = I2} ∩ {∃3 ≤ ` < m ≤ a+ 1; I` = Im 6= I1})
≤ PN,n

ξ,η ≤ IP(I1 = I2).

From (1.4.6),

IP({I1 = I2} ∩ {∃3 ≤ m ≤ a+ 1; Im = I1}) ≤ (a− 1)IP(I1 = I2 = I3)

= ◦(IP(I1 = I2)),

and from (1.4.5),

IP({I1 = I2} ∩ {∃3 ≤ ` < m ≤ a+ 1; I` = Im 6= I1}) ≤
(
a− 1

2

)
IP(I1 = I2 6= I3 = I4)

= ◦(IP(I1 = I2))
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We have proved that for such a pair (ξ, η), PN,n
ξ,η = cN + ◦(cN). If η′ is

obtained from ξ by merging more than two classes, then there must be at
least either a triple merger or two double mergers, hence from (1.4.6), (1.4.5),
PN,n
ξ,η′ = ◦(cN). Finally, since |En| <∞ and

∑
η∈En P

N,n
ξ,η = 1,

PN,n
ξ,ξ = 1−

(
|ξ|
2

)
cN + ◦(cN)

= 1 +Qξ,ξcN + ◦(cN).

�

It remains to prove :

Lemma 1.4.4. Let E be a finite set and {Xt, t ≥ 0} a continuous time
E–valued jump Markov process, with generator Q = (Qx,y)x,y∈E. Let for each
N ∈ IN XN be a discrete time Markov chain with transition matrix satisfying

PN
x,y = δx,y + cNQx,y + ◦(cN), x, y ∈ E,

where cN → 0, as N →∞. Then whenever XN
0 ⇒ X0,

{XN
[t/cN ], t ≥ 0} ⇒ {Xt, t ≥ 0} in D([0,+∞);E).

Proof: The fact that for any x, y ∈ E, s, t > 0,

IP(XN
[(t+s)/cN ] = y|XN

[t/cN ] = x)→ IP(Xt+s = y|Xt = x),

together with the Markov property, implies the convergence of finite dimen-
sional distributions. Indeed this follows easily from the fact that

IP(XN
[(t+s)/cN ] = y|XN

[t/cN ] = x) =
(
PN
)s/cN
xy

= (I + cNQ+ ◦(cN))s/cNxy

= (ecNQ + ◦(cN))s/cNxy

→ (esQ)xy

It remains to prove tightness in D([0,∞);E). This follows essentially from
the fact that the probability that XN jumps more than once in an interval
of length δ is of the order ◦(δ), uniformly in N . We skip the details. �

Let {Rn
t ; t ≥ 0} start from the trivial partition of (1, . . . , n). For 2 ≤

k ≤ n, let Tk denote the length of the time interval during which there are
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k branches alive. From the Markov property of the coalescent, and the form
of the generator, we deduce that

Tn, Tn−1, . . . , T2 are independent,

Tk ' Exp

((
k
2

))
, 2 ≤ k ≤ n,

and consequently the expected time till the Most Recent Common Ancestor
in the sample is

n∑
k=2

2

k(k − 1)
= 2

n∑
k=2

(
1

k − 1
− 1

k

)
= 2

(
1− 1

n

)
.

For n′ > n, denote by dn the restriction to En of an element of En′ . Kingman’s
n–coalescents have the consistency property that

dn

(
{Rn′

t , t ≥ 0}
)
' {Rn

t , t ≥ 0}.

This, together with the fact that
∑

k≥2 Tk < ∞ a. s., since the series of the
expectations converges, allows us to define Kingman’s coalescent {Rt, t ≥ 0}
as the limit limn→∞{Rn

t , t ≥ 0}. It is readily seen that Kingman’s coalescent
comes down from infinity, in the sense that, while R0 is the trivial partition
of IN∗, hence |R0| =∞, |Rt| <∞, ∀t > 0.

1.5 The height and the length of Kingman’s

coalescent

The height of Kingman’s n–coalescent is the r. v.

Hn =
n∑
k=2

Tk,

where the Tk are as above. This prescribes the law of Hn, which does not
obey any simple formula. Note that

IE(Hn) = 2

(
1− 1

n

)
, Var(Hn) =

n∑
k=2

4

k2(k − 1)2
.
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IE(Hn)→ 2 as n→∞, and supn Var(Hn) <∞.
The length of Kingman’s n–coalescent (i. e. the sum of the lengths of the

branches of this tree) is the r. v.

Ln =
n∑
k=2

kTk =
n∑
k=2

Uk,

where the Uk are independent, Uk is an Exp((k−1)/2) r. v. The distribution
function of Ln is given by

Proposition 1.5.1. For all x ≥ 0,

IP(Ln ≤ x) = (1− e−x/2)n−1.

This Proposition follows from the fact that the law of Ln is that of the
sup over n− 1 i. i. d. Exp(1/2) r. v.’s, which is a consequence of the

Proposition 1.5.2. Let V1, V2, . . . , Vn be i. i. d. Exp(λ) r. v.’s, and
V(1) < V(2) < · · · < V(n) denote the same random sequence, but arranged
in increasing order. Then V(1), V(2) − V(1), . . . , V(n) − V(n−1) are independent
exponential r. v.’s with respective parameters nλ, (n− 1)λ, . . . , λ.

Proof: For any Borel measurable function f : IRn
+ → IR+,

IEf(V(1), V(2) − V(1), . . . , V(n) − V(n−1))
= n!IE [f(V1, V2 − V1, . . . , Vn − Vn−1);V1 < V2 < · · · < Vn]

= n!

∫
0<x1<x2<···<xn

f(x1, x2 − x1, . . . , xn − xn−1)λne−λ
∑n

k=1 xkdx1dx2 · · · dxn

=
n∏
k=1

(kλ)

∫ ∞
0

· · ·
∫ ∞
0

f(y1, y2, . . . , yn)
n∏
k=1

e−kλyn+1−kdy1dy2 · · · dyn.

The result follows. �

Exercise 1.5.3. A Yule tree of rate λ is a random tree which develops as
follows. Let Tk, k ≥ 1 be independent r. v.’s, Tk being exponential with
parameter λk. For 0 ≤ t < T1, the tree has a unique branch issued from the
root. At time T1 this branch splits into 2. For T1 ≤ t < T1 + T2, there are
two branches. At time T1 +T2, we choose one of the two branches with equal
probability, and that branch splits into 2, etc...
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Deduce from Proposition 1.5.2 that the law of the number Yt of branches
of the tree at time t is geometric with parameter e−λt, in the sense that for
k ≥ 0,

IP(Yt ≥ k) = (1− e−λt)k.

1.5.1 More on the length of Kingman’s coalescent

The following result will be useful for analysing the effect of mutations.

Proposition 1.5.4. The expected total length of edges in the N coalescent
supporting exactly i leaves is 2/i, 1 ≤ i ≤ N − 1.

It is remarkable that this quantity does not depend upon N . As N
increases, there are more such branches, but they tend to be shorter.
Proof: We shall use the notation(

n
k

)
=


n!

k!(n−k)! , if n > k;

1, if n = k;

0, if n < k.

Let us first establish the elementary identity(
n

j − 1

)
=

(
n+ 1
j

)
−
(
n
j

)
, (1.5.1)

which follows from(
n

j − 1

)
+

(
n
j

)
=

n!

(j − 1)!(n− j + 1)!
+

n!

j!(n− j)!

=
n!j + n!(n− j + 1)

j!(n− j + 1)!

=
(n+ 1)!

j!(n+ 1− j)!
.

Consider a portion of an edge of the coalescent, while there are k active
lineages. What is the probability of a configuration where this edge supports
exactly i leaves ? Since while going down towards the leaves each new split
concerns any of the active lineages with equal probability, it is not hard to
see that this probability equals

(i− 1)! (k − 1)(k(k + 1) · · · (N − i− 1)

k(k + 1) · · · (N − 1)
.
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The number of such configurations is

(
N − k
i− 1

)
, and each of the k active

lineages has the same probability of supporting exactly i leaves. Multiplying
by 2

k(k−1) , the mean length of time when there are k active lineages, and
summing upon k, we obtain that if LN,i denotes the total length of all those
edges which support exactly i leaves,

IE[LN,i] =
N∑
k=2

(
N − k
i− 1

)
(
N − 1
i

) k − 1

i

2

k − 1

=
2

i

1(
N − 1
i

) N∑
k=2

(
N − k
i− 1

)

=
2

i

1(
N − 1
i

) N∑
k=2

[(
N − (k − 1)

i

)
−
(
N − k
i

)]

=
2

i

1(
N − 1
i

) [N−1∑
k=1

(
N − k)

i

)
−

N∑
k=2

(
N − k
i

)]

=
2

i
,

where we have used (1.5.1) at the third step. �

1.6 Kingman’s unlabeled n–coalescent

We have introduced Kingman’s n–coalescent as a process denoted as {Rn
t ; t ≥

0}, with values in the set En of partitions of the set {1, 2, . . . , n}. Let
Rn
t := |Rn

t | denote the number of blocks of the partition Rn
t . It is easily

seen from the above considerations that {Rn
t ; t ≥ 0} is again a Markov pro-

cess, in fact a pure death process, with death rate

(
k
2

)
while Rt = k. Clearly

the process Rn
t carries less information than the process Rn

t .
There is in fact an intermediate coalescent process, called Kingman’s

unlabeled coalescent, which records how many individuals at time t are the



1.6. KINGMAN’S UNLABELED N–COALESCENT 15

Figure 1.1: The edges supporting exactly 2 leaves
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ancestors of j individuals from the sample at time 0, 1 ≤ j ≤ n, without
specifying which individual are their descendants. In other words, we record
how many active lineages at time t subtend j leaves, for j = 1, . . . , n. We
denote this process by {Rn

t , t ≥ 0}.
Rn
t takes its values in the set F = ∪ni=1F

(i)
n , where for each 1 ≤ i ≤ n,

F(i)
n =

{
fi = (fi,1, fi,2, . . . , fi,n) ∈ ZZn+;

n∑
j=1

jfi,j = n,

n∑
j=1

fi,j = i

}
.

The process Rn
t starts from Rn

0 = (n, 0, . . . , 0) and reaches eventually the
value (0, . . . , 0, 1) when the sample finds its MRCA. Those are the unique

points in F(n)
n and F(1)

n respectively. The process Rn
t jumps first from (n, 0, . . . , 0)

to (n− 2, 1, 0, . . . , 0), then to a point in F(n−2)
n , etc... Not all trajectories are

possible. Let

Gn =
{
f = (fn, fn−1, . . . , f1); fi ∈ F(i)

n , 1 ≤ i ≤ n and fi−1 ≺ fi, 2 ≤ i ≤ n
}
,

where for fi ∈ F(i)
n , fi′ ∈ F(i−1)

n ,

fi′ ≺ fi ⇔ there exists 1 ≤ k, ` < n such that fi′ = fi − ek − e` + ek+`,

with the notation ek = (0, . . . , 0, 1, 0, . . . , 0), the unique nonzero coordinate
of ek being the kth coordinate. The sequence of the successive states visited
by the jump Markov process Rn

t (i. e. its embedded chain) belongs a. s. to
Gn. Let (Un

n , U
n
n−1, . . . , U

n
1 ) denote that sequence. We have the

Proposition 1.6.1. For any f ∈ Gn,

IP((Un
n , U

n
n−1, . . . , U

n
1 ) = f) =

2∏
j=n

Pfj ,fj−1
,

where

Pfj ,fj−1
=



fj,kfj,`

(
j

2

)−1
, if fj−1 = fj − ek − e` + ek+`, k 6= `;(

fj,k

2

)(
j

2

)−1
, if fj−1 = fj − 2ek + e2k;

0, otherwise.



1.6. KINGMAN’S UNLABELED N–COALESCENT 17

Proof: It is not hard to see that indeed (Un
n , U

n
n−1, . . . , U

n
1 ) is a non homo-

geneous Markov chain, which has the transition probability described in the
statement of the proposition. �

We can further describe the marginal laws of the Un
k ’s.

Proposition 1.6.2. For any 1 ≤ j ≤ n, any fj ∈ F(j)
n ,

IP(Un
j = fj) =

i!∏j
k=1 fj,k!

(
n− 1
j − 1

)−1
.

The following follows readily from Propositions 1.6.1 and 1.6.2 and Bayes
formula.

Proposition 1.6.3.

IP((Un
n , U

n
n−1, . . . , U

n
1 ) = f) =

2∏
j=n

Qfj−1,fj ,

where for eah 1 ≤ j ≤ n,

Qfj−1,fj =


2fj−1,k+`

n−j+1
, if fj = fj−1 + ek + e` − ek+`, k 6= `;

fj−1,2k

n−j+1
, if fj = fj−1 + 2ek − e2k;

0, otherwise.

Remark 1.6.4. The relevance of the unlabeled coalescent comes from the
following fact. In the framework of the infinitely many sites mutation model
which we shall describe below, the so–called Site Frequency Spectrum records
how many individuals have been jointly affected by each given mutation, with-
out recording who was affected by which mutation. This gives us informa-
tions about the trajectory back in time of the unlabeled coalescent of our given
sample. The refer the interested reader to [16] for more details about how to
exploit that information in a Bayesian context.
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Chapter 2

Mutations : the infinitely many
alleles model

Suppose now that mutations arise on each branch of the coalescence tree,
according to a Poisson process with parameter θ/2, see Figure 2.1. Assume
that each mutation gives birth to a new type, different for all the others.
For instance we may assume that the different types are i. i. d. r. v.’s
following the uniform law on [0, 1]. We want to record the different types in
a sample drawn at present time, we can as well “kill” the lineages which hit a
mutation while going backward in time, which changes Figure 2.1 into Figure
2.2, which we can as well change into Figure 2.3. The killed coalescent can
be produced by the following procedure : Any pair of active classes merges
at rate 1, any active class is killed at rate θ/2. When a class is killed, all its
elements are assigned the same (different from all other classes) type. Finish
when there are no classes left. Note that we add a mutation at the root of
the tree.

2.1 Hoppe’s urn

Assume that there are k active classes in the killed coalescent described
above. Then the probability that the next (backward in time) event is a

19
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xx

x

x

x

Figure 2.1: The coalescent with mutations
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xx
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Figure 2.2: The lineages are killed above the mutations
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x

x

x

x

Figure 2.3: Equivalent to Figure 2.2
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coalescence is (
k
2

)
(
k
2

)
+ k θ

2

=
k − 1

k − 1 + θ
,

and the probability that that event is a mutation (i. e. a killing) is

k θ
2(

k
2

)
+ k θ

2

=
θ

k − 1 + θ
.

Moreover, given the type of event, all possible coalescence (resp. mutations)
are equally likely. The history of a sample of size n is described by n events
en, en−1, . . . , e1 ∈ {coal, mut}. Note that the event ek happens just before
(forward in time) k lineages are active, and each of those events corresponds
backward in time to the reduction by one of the number of active lineages.
The probability to observe a particular sequence is thus∏n

k=1

(
θ1{ek=mut} + (k − 1)1{ek=coal}

)∏n
k=1(k − 1 + θ)

. (2.1.1)

Hoppe [8] noted that one can generate this sequence forward in time using
the following urn model.
Hoppe’s urn model. We start with an urn containing one unique black ball
of mass θ. At each step, a ball is drawn from the urn, with probability
proportional to its mass. If the drawn ball is black return it to the urn,
together with a ball of mass 1, of a new, not previously used, colour; if the
drawn ball is coloured, return it together with another ball of mass 1 of the
same colour.

At the k–th step, there are k balls, more precisely k − 1 coloured balls,
plus the black (so called mutation) ball. The probability to pick the black
ball is thus θ/(k − 1 + θ) while the probablity to pick a coloured ball is
(k − 1)/(k − 1 + θ). If we define

ek =

{
mut, if in the k–step the black ball is drawn,

coal, otherwise.

Clearly the probability to observe a particular sequence (e1, . . . , en) is given
by (2.1.1). Moreover, given that ek = coal, each of the k−1 present coloured
balls is equally likely to be picked.
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Consequently, the distribution of the family sizes generated by the n
coloured balls in Hoppe’s urn after n steps is the same as the one induced by
the n–coalescent in the infinitely–many–alleles mutation model.

2.2 Ewens’ sampling formula

Theorem 2.2.1. Let b1, . . . , bn ∈ IN be such that
∑n

j=1 jbj = n. The probabil-
ity of observing bj different types, each with j representatives, (j = 1, . . . , n)
in a sample of size n is given by (here k =

∑n
j=1 bj)

n!

1b12b2 · · ·nbn
· 1

b1!b2! · · · bn!
· θk

θ(θ + 1) · · · (θ + n− 1)
. (2.2.1)

Proof: We shall prove that the distribution of the type spectrum (B1, . . . , Bn)
in a sample of size n is the product of the measures Poi(θ/j), j = 1, . . . , n,
conditionned on

∑n
j=1 jBj = n.

We start from the statement at the very end of the previous section.
Now we describe another way of constructing the output of Hope’s urn after
n steps. Consider on IR+ a Poisson process of immigrants with parameter θ.
Each new immigrant starts immediately upon arrival to develop a Yule tree
of parameter 1 (that is a new branch appears after a waiting time which is
exponential with parameter 1, .. when they are k branches alive, a k + 1–st
appears after a waiting time which is exponential with parameter k, etc..,
the successive waiting times being mutually independent and independent of
the time of arrival of the founder of the tree), and moreover the various trees
are mutually independent. It follows from Exercise 1.5.3 that the number
of branches of a Yule tree at time t (the tree being started at time 0) is
geometric with parameter e−t.

We can describe this model as follows. Consider the Markov process
{Yt, t ≥ 0} with values in the subset E of IN∞ consisting of those sequences
whose only a finite number of components are non zero. Y0 = (0, 0, . . .),
immigrants enter at rate θ, the first immigrant creates the first tree, the
second immigrant creates the second tree, etc...Each tree is a Yule tree,
with develops independently of the other trees and of the arrivals of new
immmigrants. Yt = (Y 1

t , Y
2
t , . . .), where Y k

t denotes the number of branches
at time t of the k–th Yule tree. Define

|Yt| =
∑
k≥1

Y k
t
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the total number of branches of all the trees at time t. |Yt| is a birth Markov
process, the waiting time for the next birth when |Yt| = k being exponential
with parameter θ + k.

It is easily seen that what we have just constructed is exactly a continuous
time embedding of Hope’s urn (just compute at each time s < t what is
the probability that the next event is the arrival of a new immigrant, or the
appearance of a new branch on an existing tree). Hence the output of Hoppe’s
urn has the same law as the set Yt of Yule trees which this construction
produces, if we look at it at the time when |Yt| reaches the value n. It
follows from Exercise 2.2.2 below that this law is the same as the law of Yt,
conditionned upon |Yt| = n, for all t > 0.

This continuous time model can be considered as a Poisson process on
[0, t]× IN, with the intensity measure θds× G(e−(t−s)), where for 0 < p < 1,
G(p) denotes the geometric measure of parameter p. A point of this Poisson
process is a pair (s, j), where s ∈ [0, t] and j ≥ 1. The point (s, j) corresponds
to an immigrant which has appeared at time s, and whose associated Yule
tree at time t has exactly j branches. Now for j ≥ 1, let Zj(t) denote
the number of points of the above Poisson process whose second component
equals j. It follows from well–known properties of Poisson processes that the
Zj(t), j ≥ 1 are mutually independent r. v.’s, the law of Zj(t) being Poisson
with parameter∫ t

0

θe−(t−s)
(
1− e−(t−s)

)j−1
ds =

θ

j
(1− e−t)j.

The above arguments show that the probability of observing bj different
types, each with j representatives, (j = 1, . . . , n) in a sample of size n equals

IP

(
Z1(t) = b1, . . . , Zn(t) = bn

∣∣∣∣∣
n∑
j=1

jZj(t) = n

)
.

This is true for any t > 0. We can as well let t → ∞, and we deduce that
the same probability equals

IP

(
Z1 = b1, . . . , Zn = bn

∣∣∣∣∣
n∑
j=1

jZj = n

)
,

where Z1, . . . , Zn are independent, and for each 1 ≤ j ≤ n, the law of Zj is
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Poisson with parameter θ/j. This quantity is equal to

C(n, θ)
n∏
j=1

e−θ/j
(θ/j)bj

bj!
,

where the normalization constant satisfies

C(n, θ)−1 = IP

(
n∑
j=1

jBj = n

)
.

The result is proved, provided we check that

C(n, θ) =
n! exp[θ

∑n
j=1 1/j]

θ(θ + 1) · · · (θ + n− 1)
.

This will be done below in Lemma 2.2.3. Note however that we have already
identified the Ewens sampling formula up to a normalization constant. �

Exercise 2.2.2. Let {Xt, t ≥ 0} be a continuous time jump–Markov process,
which takes values in a countable set E. Let T0 = 0 and Tn, n ≥ 1 denote
the n–th jump time of Xt. Let {Zn, n ≥ 0} denote the associated embedded
Markov chain, i. e. Z0 = X0, and for all n ≥ 1, Zn = XTn. We know that
there exists a function q : E → (0,∞) such that for each n ≥ 0,the law of
Tn+1 − Tn is exponential with parameter q(Zn). Suppose that there exists a
function h : IN → (0,∞) such that q(Zn) = h(n), n ≥ 0. Conclude that the
sequences {Tn, n ≥ 1} and {Zn, n ≥ 1} are mutually independent. Why is
this last property not true in general ?

Apply this result to the process {Yt, t ≥ 0} from the previous proof. Show
that the condition on q is satisfied here with h(n) = θ+ n. Prove that for all
t > 0, the law of Zn equals the conditional law of Yt, given that |Yt| = n.

We finally prove the

Lemma 2.2.3. If B1, . . . , Bn are independent, each Bj being Poisson with
parameter θ/j, then

IP

(
n∑
j=1

jBj = n

)
=
θ(θ + 1) · · · (θ + n− 1)

n! exp[θ
∑n

j=1 1/j]
.
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Proof: The left hand side of the identity to be established equals∑
k1,...,kn;

∑
jkj=n

e−θ/j (θ/j)kj /kj! = exp[−θ
n∑
j=1

1/j]
∑
k

α(n, k)θk,

where

α(n, k) =
∑

k1,...,kn;
∑
kj=k,

∑
jkj=n

(
n∏
j=1

jkjkj!

)−1
.

It remains to show that

θ(θ + 1) · · · (θ + n− 1) = n!
n∑
k=1

α(n, k)θk.

Let s(n, k) = n!α(n, k). Splitting the last factor in the above left hand side
into θ plus n− 1, we deduce that

s(n, k) = s(n− 1, k − 1) + (n− 1)s(n− 1, k).

This shows that s(n, k) can be interpreted as the number of permutations of
{1, . . . , n} which contain exactly k cycles. Now that number is given by

s(n, k) =
∑

k1,...,kn,
∑
kj=k,

∑
jkj=n

n!∏n
j=1(jkj)!

×
n∏
j=1

(
(jkj)!

(j!)kj
1

kj!
[(j − 1)!]kj

)

= n!
∑

k1,...,kn,
∑
kj=k,

∑
jkj=n

n∏
j=1

1

jkjkj!
.

Indeed in the above formula,

n!∏n
j=1(jkj)!

is the number of possibilities of choosing the elements for the cycles of size
j, j varying from 1 to n,

(jkj)!

(j!)kj
1

kj!

is the number of ways in which one can distribute the jkj elements in the kj
cycles of size j, and

[(j − 1)!]kj
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is the number of different possible orderings of the elements in the kj cycles
of size j. �

We now define Kn to be the number of different types oberved in a sample
of size n, or equivalently the number of different colours in Hoppe’s urn after
n steps. Then

Kn = X1 + · · ·+Xn,

where

Xk = 1Ak
, Ak = {the black ball is drawn at the k–th step},

consequently the events A1, . . . , An are independent, with IP(Ak) = θ/(θ +
k − 1), 1 ≤ k ≤ n. Consequently

IEKn =
n∑
i=1

θ

θ + i− 1
' θ log(n),

Var(Kn) =
n∑
i=1

θ

θ + i− 1
· i− 1

θ + i− 1
' θ log(n),

Kn − IEKn√
Var(Kn)

⇒ N(0, 1), as n→∞.

Exercise 2.2.4. Prove the last assertion, via a characteristic function com-
putation.



Chapter 3

Mutations : the infintely many
sites model

We now assume that each new mutation hits a new site, different from the
sites hit by all other mutations. This is a reasonable assumption if the
genomes under consideration are huge. A mathematical idealized model of
the infinitely many sites model is to assume that the various mutations are
i. i. d. random variables, all uniform on the interval [0, 1]. Again muta-
tions arrise according to a Poisson process along the branches of Kingman’s
coalescent tree, with intensity θ/2.

3.1 The number of segregating sites

Let Sn denote the number of sites in the genome where the various individuals
in the sample of size n do not coincide. This is the total number of sites hit
by a mutation, i. e. the total number of mutations. Conditionnally upon
Ln, Sn is Poisson with parameter θLn/2. Consequently

IESn = IE [IE(Sn|Ln)]

=
θ

2
IELn

= θ

n−1∑
j=1

1

j
.

29
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Let an :=
∑n−1

j=1 1/j. Watterson’s estimator of θ is the unbiased estimator

θ̂W =
Sn
an
.

Let us now compute the variance of θ̂W . We have

Sn =
n∑
k=2

Sn,k,

where Sn,k is the number of mutations which hit one of the ancestors of the
sample, while there were k lineages ancestral to the sample. The Sn,k’s are
independent, and if Tk is the duration of time during which there were k
lineages active in the genealogy of the sample, the conditional law of Sn,k,
given Tk, is Poisson with parameter θkTk/2. Now, with an defined as above
and bn =

∑n−1
j=1 j

−2,

Var(Sn) =
n∑
k=2

Var(Sn,k),

IE[S2
n,k] = IE

[
IE(S2

n,k|Tk)
]
,

IE(S2
n,k|Tk) =

(
θ

2
kTk

)2

+
θ

2
kTk

IE[S2
n,k] =

θ

k − 1
+ 2

(
θ

k − 1

)2

,

IE(Sn,k) =
θ

k − 1

Var(Sn,k) =
θ

k − 1
+

(
θ

k − 1

)2

,

Var(Sn) = θan + θ2bn,

Var
(
θ̂W

)
=

θ

an
+ θ2

bn
a2n
.

We see that Var
(
θ̂W

)
→ 0, as n→∞.

3.2 Pairwise mismatches

For 1 ≤ i 6= j ≤ n, let Πij denote the number of mismatches between the
genome i and the genome j, which is the number of mutations which has hit
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either i of j, but not both jointly. Tajima’s estimator is

θ̂T = πn =
2

n(n− 1)

∑
i<j

Πij.

We have

IE[πn] =
2

n(n− 1)

∑
i<j

IE[Πij]

= IE[Π12]

= θIE[T2]

= θ,

so that Tajima’s estimator is unbiased. In order to compute te variance of πn,
let us first compute the law of Π12. Π12 is the number of mutations on either
branch 1 or 2, which happen before those two lineages coalesce. Following
the lineages back in time, mutations on the two lineages happen at rate θ,
and coalescence comes at rate 1. Hence at any time before the coalescence,
the next event is a mutation with probability θ/(θ + 1). Consequently for
k ≥ 0,

IP(Π12 = k) =

(
θ

θ + 1

)k
1

θ + 1
.

This is a geometric distribution starting at 0 (sometimes called the “shifted
geometric” distribution). Standard results yield

IE[Π12] = θ, Var(Π12) = θ + θ2.

From this we deduce

Lemma 3.2.1. (Tajima) We have

Var(πn) =
n+ 1

3(n− 1)
θ +

2(n2 + n+ 3)

9n(n− 1)
θ2.

Proof: Note that

π2
n =

4

n2(n− 1)2

∑
i1<j1

∑
i2<j2

Πi1j1Πi2j2 .

In this double sum, there are three types of terms
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n(n−1)
2

terms with i1 = i2, j1 = j2,

n(n− 1)(n− 2) terms with i1 = i2, j1 6= j2, or i1 = j2, or j1 = i2,

n(n−1)(n−2)(n−3)
4

terms with {i1, j1} ∩ {i2, j2} = ∅.

Define with distinct indices i, j, k, `

U2 = IE(Π2
ij)− θ2,

U3 = IE(ΠijΠik)− θ2,
U4 = IE(ΠijΠk`)− θ2.

With these notations we have

Var(πn) =
2

n(n− 1)

(
U2 + 2(n− 2)U3 +

(n− 2)(n− 3)

2
U4

)
.

The above computations yield U2 = θ + θ2. Tajima’s strategy consists in
computing Var(π3) and Var(π4), and use the last formula to deduce U3 and
U4. We refer the reader to Tajima’s original paper (1983) or Durrett [7] for
the details. �

We note that Var(θ̂T )→ 1
3
θ + 2

9
θ2 as n→∞.

3.3 Tajima’s D test statistics

We have seen two unbiased estimates of the same parameter θ. It is expected
that the difference between those two estimates should be small. Tajima has
introduced a normalized version of that difference, namely the quantity

D =
θ̂T − θ̂W√

e1Sn + e2Sn(Sn − 1)
,

where

e1 =
n+ 1

3an(n− 1)
− 1

a2n
,

e2 =
1

a2n + bn

(
2(n2 + n+ 3)

9n(n− 1)
− n+ 2

nan
+
bn
a2n

)
.
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The motivation for this choice of the denominator in the formula for D is
that the variance of the numerator equals e1θ + e2θ

2, see [7].
Tajima showed that the distribution of D is close to a beta distribution.

|D| ≤ 2 should be interpreted as the fact that the data confirm that the
genealogy of our sample is well represented by Kingman’s coalescent. Can
should be deduce if D > 2, and if D < −2 ?

Two extreme violations of Kingman’s coalescent can be imagined. In the
first one, all lineages diverged at an initial time, and evolved independently.
In that case any single mutation is counted n − 1 times in the sum of the
Πij’s. Consequently

θ̂T − θ̂W =
2

n
Sn −

Sn
an

< 0

as soon as n > 2. Suppose now that all but the last coalescence have hap-
pened very near the present time, and that the two long branches of the
tree support each n/2 of the lineages. Then if we assume that all mutations
happen of one of the two long branches,

θ̂T − θ̂W =
n

2(n− 1)
Sn −

Sn
an

> 0.

Note that departure from Kingman’s coalescent can be in particular the
effect of variable population size, or selection.

3.4 Two final remarks

In these short notes, we have neglected two very important aspects of popu-
lation genetics

Remark 3.4.1. Selection So far we have assumed that all mutations are
neutral, i. e. that there is no advantage nor disadvantage associated to them.
In the case of selective mutations (i. e. mutations which gives a selective
advantage – or disadvantage – to those who carry it), the coalescent process
is modified by the mutation, or in other words there is an interaction between
the process of mutations and the coalescent.

Remark 3.4.2. Recombinations One important aspect of the genetics of
most species is recombinations. The rate of recombinations for human beings
is higher than the rate of mutations.



34 CHAPTER 3. INFINITELY MANY SITES

Going back to the MRCA, besides coalescence events, we have recombi-
nation events, which means that a genome splits into two parts, each one
“recombining” with a complementary part from another genome. Since our
sample is small compared to the total population size, we can assume that
all recombinations are done with a genome which does not contain ances-
tral material to the sample. Taking into account recombinations means that
Kingman’s coalescent tree should be replaced by an ancestral recombination
graph. While there are k ancestral to the sample, recombinations happen at
rate kρ/2, while coalescences happen at rate k(k − 1)/2. The number of an-
cestors to our sample follows a birth and death process, with birth rate kρ/2
and death rate k(k− 1)/2. This is a bit simplified, since in that way we may
follow lineages which do not contain any genomic material ancestral to the
sample. At any rate, this process reaches eventually 1, which means that the
MRCA of the sample has been found.

Another way of describing recombinations is to note that Kingman’s coa-
lescent tree is different from one locus of the genome to another one. It is in
fact possible to describe the evolution of the coalescent tree along the genome,
see Leocard, Pardoux [11].

The Ewens sampling formula is still correct at any particular locus. The
various allelic distributions at various loci are conditionally independent given
the ancestral recombination graph, but their joint law is still unknown, except
for very small samples.

Finally let us comment on the interaction between recombinations and
selection. Suppose that an advantageous mutation appears at a particular
locus (which we call below the “selective locus”) in one individual of the
population. If that mutation happens to get fixed in the population, at the
end of the period of fixation (called the selective sweep), all individuals carry
that same allele at the advantageous locus. Because recombinations happen
during the sweep, the alleles at neutral loci may differ among individuals in
the population. However, if the sweep is rather short, a certain number of
alleles at neutral loci close to the selective one are identical in all individuals
of the population (and identical to the particular alleles which were carried by
the individual who experienced the selective mutation). This is called “genetic
hitchhiking”, and can be used to detect positive selection.



Bibliography

[1] David Aldous, Exchangeability and related topics, in Ecole d’Ete St
Flour 1983 Lecture Notes in Math. 1117, 1–198, Springer 1985.

[2] Patrick Billingsley, Convergence of probability measures, 2d ed., Wiley
1999.

[3] Patrick Billingsley, Probability and measures, 3d ed. Wiley 1995.

[4] Matthias Birkner, Stochastic models from population biology, lec-
ture notes for a course at TU Berlin, summer 2005 http://www.wias-
berlin.de/people/birkner/smpb-30.6.05.pdf

[5] L. Breiman : Probability, Addison–Wesley, 1968. New edition SIAM
1992.

[6] P. Donnelly, T. Kurtz, A countable representation of the Fleming–Viot
measure–valued diffusion, Annals Probab. 24, 698–742, 1996.

[7] Rick Durrett, Probability models for DNA sequence evolution, Probabil-
ity and its applications, Springer 2002.

[8] Fred Hoppe, Polya–like urns and the Ewens sampling formula, J. Math.
Biol. 20, 91–94, 1984.

[9] J. F. C. Kingman, The coalescent, Stoch. Proc. Appl. 13, 235–248, 1982.

[10] Amaury Lambert, Population dynamics and random genealogies, Stoch.
Models 24 45–163.
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