Large Deviations for Epidemiological Models

E. Pardoux
December 2, 2015

Contents

1 Law of Large Numbers and Girsanov theorem
2 The rate function

3 Preliminary Lemmas

4 The Lower Bound

5 The Upper Bound

6 Time of exit from a domain

6.1 Auxiliary results . . . . .. ..o
6.2 Mainresults . . . . . . ..o
6.3 The case of a characteristic boundary . . . . . . ... ... ..
6.4 Applications . . . . . . ...

Introduction

We consider the vector of proportions in our model as

(1) ZN(t) = 2 + zi: (/ NB;j(ZN(s

)



Again, the P;’s are mutually independent standard Poisson processes. The
process ZN(t) lives in the set

d

A={zeR% Zzigl}.

1=1

We shall denote by Dy 4 the set of functions defined on [0,7] with values
in A which are right continuous with left limits at every ¢, and ACp 4 will
denote the subset of absolutely continuous functions. For ¢,¢ € Dyp 4, we

define ||¢ — ¥||r = supy<icq [¢r — ¢i|. Let IPY denote the law of ZV, i.e.
PY(B) =1P(Z" € B), VB € B,

where B denote the Borel o—field of Dy 4.

We want to show that the collection of probability measures {IPY, N > 1}
satisfies a Large Deviations Principle, in the sense that there exists a rate
function I (to be defined below) such that

1
— inf Ip(¢) < liminf —logIP(ZY € G), if G C Dy 4 is open,
N—ooco N ’

e
1
— inf I7(¢) > limsup — logIP(ZY € F), if F C Dy 4 is closed.
¢eF N—oo N ’

The main difficulty in proving such a large deviations principle comes
from the fact that some of the rates 8; may vanish at the boundary of the
set A. To each a > 0 (small enough) we associate the sets

d
B*={z€ A, 2" >a,1<i<d, andl—ZziZa},
i=1

Ra:{quACT,A, ¢ € BY, OStST}

We suppose that there exists a collection of mappings ¢, : A — A, defined
for each a > 0, which are such that z* = ®,(z) satisfies for each a > 0

|z — 2% < Aza
d(z%,0A) > pa :=d,

for some 0 < p < A3. Hence ®, maps A into B*.



Remark 1. Since A is convez, we define ®,(z) = z + a(zo — 2), for some
fized zy € A. The same definition is even possible for many non necessarily
convex sets, provided A is compact, and there is a point zy in its interior
which s such that each segment joining zy and any point z € 0A does not
touch any other point of the boundary 0A.

We shall assume everywhere below that ®,(z) = z 4+ a(z) — z) and
Vo, =(1—-a)l.
Let for any a > 0
C, = inf inf B;(z).

1<j<k zEB@

It is plain that C, > 0 for a > 0, and C;, — 0, as a — 0. We shall assume

Assumptions A

A1 The rate functions 3; are Lipschitz continuous with the Lipschitz con-
stant equal to C, and bounded by a constant 6.

A2 There exist two constants A, A > 0 such that whenever z € A is such
that 8;(2) < A1, B;(2%) > Bi(z) for all 0 < a < A,.

A3 There exists v € (0,1/2) such that lim, o a” log C, = 0.

1 Law of Large Numbers and Girsanov theo-
rem

We reformulate the Law of Large Numbers in the above notations

Theorem 2. Let ZN be given the solution of (1). If the assumption 1 is
satisfied, then for all T > 0,

1ZY = Y| — 0 as. as N — oo,

where Y; is the unique solution of the ODE
t

(1) V() =+ [ (Y,
0

with b(z) = Z?:l Bi(z)h;.



We shall need the following Girsanov theorem. Let () denote the number
of jumps of the of Z¥ in the interval [0, T}, 7, be the time of the p-th jump,
and define

5p(j) =

1 ,if the p-th jump is in the direction h;,
0 ,otherwise.

We shall denote ¥ = o{ZV, 0 < s < t}. Consider another set of rates

Theorem 3. Assume that {z, B}j(x) = 0} C {s, Bj(zr) = 0}. Let P
denote the law of ZN when the rates are B;. Then on the o algebra F},

~N

ay - Tb
F23
S NP )] o )
= \11] g.(ZN(f_))] exp (NZ | Bz o) -5z <t>>}dt>.

2 The rate function

For any ¢ € ACr.a, let Ay(¢) the set of vector valued Borel measurable
functions p such that for all 1 < j <k, u7 > 0 and
k
doy :
% = Z,u?hj, t a.e.

j=1
We define the rate function

Ir(¢) = {infueAd(cb) Ir(¢lp), if ¢ € ACra,

~+00, otherwise,

where

T _k '
B0l = [ 3 Fud Bito0)i

4



with f(r,w) = vlog(v/w) — v + w, where we use the convention log(r/0) =
+oo for v > 0, while 0log(0/0) = 0log(0) = 0.
Another possible definition leads to

—+00, otherwise,

T 6) = {infueAd o Jo Lo @), i 6 € ACra,

where for all z € A4, y € RY,

with

Uz,9,0) = (0,y) = > _ B;(=2) (") —1).

j=1
Recall the definition

Definition 4. A rate function I is a semi—continuous mapping I : Dy 4 —
0, 00] (i.e. its level sets Wi(a) = {¢, Ir(p) < a} are closed subsets of Dr 4).
A good rate function is a rate function whose level sets are compact.

We have (see Kratz, Pardoux [2], Pardoux, Samegni [4])

Proposition 5. I = Iy is a good rate function.

3 Preliminary Lemmas

Lemma 6. Suppose that the B;, j = 1,...,k are bounded by 6. If Ir(p|p) < s
then for all 0 < t1,ty < T such that ty —t; < 1/0,

t2 s+ 1
Idt < Vi=1,..k
/tl “log(0(ts — 1) 7

ProOOF We have

/O P By(0)dt < In(élu) < s



moreover, the function h(z) = xlog(x/0) — x is convex in z so that for all
0<t,t<T

1 i 1 I
h / 1qt) < / h(ud)dt
<t2—t1 5 147 ) e (117)
<1 /tz (// log i —uj+ﬁ'(¢t)>dt
Tty — 1t Jy L0 () e

S
< .
Tt — 1

It is easy to show that for all @ > 0, h(z) > ax — fexp{a} and then for all
a >0

to ) 1
/ pldt < (s + (12 — 1) expla))

t1

Therefore If to — t; < 1/60 taking o = —log(6(ty — 1)), the result follows. [
For ¢ € Dy .4 let ¢° be defined by ¢ = ®,(¢;). Clearly ¢* € R

Lemma 7. Let ¢ be such that I7(¢) < oo. We have limsup,_,, I7(¢%) <
I7(9).

PROOF Since I7(¢) < 0o, Vn > 0 there exists p such that Ir(o|p) < Ip(p)+n.
Let pu* = (1 — a)p so that p is an allowed choice for ¢*. We will show that

(1) Ir(¢®u®) = Ir(¢lp) as a—0,

which clearly implies the result since

limsup I7(¢") < limsup I (¢"|u")

a—0 a—0

= Ir(d|p) < Ir(d) + 1.

By the convexity of f(v,w) in v and because 0 < p* < i, we have

0 < f(ud®, B;(01)) < (0, B;(60) + F(ud, Bi(6))
<O+ f(ud, Bi(0)))-



Moreover we have

J

1y

J o 4a J ([ Aa
f(:utng(gbt))A log BJ(Qb ) Mt+/BJ(¢t>
= i log = i+ 660 + 1l tog 12 4 568 — ()
Bi(¢r) ’ Bilgp) T
i a j BJ(@)
S f(uhﬂj (¢t)) + 29 + :ut lOg BJ<¢;§I> .

If B;(¢1) < M then B;(¢r) < B;(¢7) and log Z15% < 0.
If 5;(¢1) > A1 then using the Lipschitz continuity of the rates ; we have

Bi(dr) B;(¢r) A
log <log — 2" _ <log—""

ﬁ](¢t> o8 Bi(¢r) — Ca < log AN —Ca
=108 1— CCL/)\l < /\1 < )\1 ’

Since log(1/(1 — z)) < 2z for 0 < x < 1/2; here, we take a small enough to
ensure Ca < A1/2. Finally for all a < (A1/2C) A Xy

2C X,
A1

.

0 < F(ud®, Bi(ef)) < f(ul, Bi(dr)) + 30 +

By Lemma 6 1 is integrable, we have bounded f(,ut Bi(¢7)) for 0 < a <

(A1/2C) A Ag by an integrable function. Since f(u)®, 8;(6%)) — f (1, B;(¢1))
the dominated convergence theorem implies that

/fut B5(0) dH/ 0. B,(60))dt as a— 0,

from which (1) follows, hence the result. O

Lemma 8. Let a > 0 and ¢ € R* such that I7(¢p) < co. For alln > 0 there
exists L > 0 and gbL € RY? such that Hgb o |lr < a/2 and Ir(¢*|p*) <
Ir(¢) +n where pb € Ag(¢") such that put? < L, j=1,... k.

PROOF Let n > 0 and p € Ag(¢) such that Ip(¢|p) < Ir(¢) + n/2. For
L>0let ! = 1 A L and let ¢~ be the solution of the ODE

k

dor :
d_tt = ;#f’]hg‘, o5 = do.



It is plain that for L sufficiently large ¢* is close to ¢ in supnorm. hence
there exiosts L, > 0 such that for all L > L, ||¢" —¢|| < %. Since ¢ € R* the
above also ensures that ¢ € R%2. To show the convergence of Ip(¢"|u") to
Ir(¢|p) we need to remark first using the convexity of f(v,w) in v that we
have

Flue?, Bi(or)) < £(0, B;(0F)) + f(ud, Bi(F)).-

Since ¢ € R, C, < Bj(¢) < 0 and Cyjo < Bj(¢F) < 6 for all L > L,, notice

that
of (v,w) v

=Y
ow w +
and therefore on the interval [K,, 0] where K, = C, A Cy )2

\F(d, Bi (o)) — F(d, Bi(e))| < Cul + 1)

for some constant C > 0. Since x and f(,u{,ﬁj(gzﬁt)) are integrable the
dominated convergence theorem implies that

/ f 75] ¢t dt_>/ f,ut,ﬁj ¢t))dt as L — oo.

OJ
Let € > 0 be such that T'/e € N and let the ¢ be the polygonal approxi-
mation of ¢ defined for ¢t € [le, (¢ + 1)e) by

(2) o; = ¢&M + <Z5(e+1)et €€~
Lemma 9. Fizn > 0. Let a € (0,1) and ¢ € R* such that Ir(¢) < oo.
Suppose that i € Aq(¢) such that (i < L, j = 1,...k for some L > 0
and Ir(p|p) < oo then there exists a, such that for all a < a, there exists an
€a > 0 such that for all € < €., ¢ € R* and ||¢p—¢°||r < a/2. Moreover, there
exists ¢ € Ag(¢°) such that u$? < L, j=1,....k and Ip(¢|u¢) < Ip(d|p)+7.

PROOF Since ¢ is uniformly continuous on [0, 7] there exists an ¢, such that
Ve < ¢,

sup |¢r — ¢u| <
lt—t/|<2e 2



and then there exists @, be such that for all a < @,, e~ < 1. We have then
for all @ < ay, ||¢ — ¢|lr < a/2 and ¢° € R*. For t €]le, (€ + 1)¢]

dgp — Gut1)e — Pre (e
p _—:—Zh/ i dt

therefore for all t € [le, (¢ + 1)e[, u$ defined by

) 1 (6+1)e )
i =1 / pidt,j =1,k
€ Je

€

is such that p° € Ay(¢°) and is constant over [le, ({ + 1)e[. We also note that
pi? < Lforall j=1,.... k. Moreover if 0 < v < L and w > C, then

of (v,w L
=|-—4+1<=—+1
e ) —orUsgt
By the assumption A3, there exists a, > 0 such that for all a < a,
L
—4+1< 1
C, +tis e—a” +
Then for ¢ € [le,({ + 1)e] and a < a,, ay,
€,J € €7 1
(e, Bi(04) = Fui” s Bj(dee))l < SC(L+1)a=Va
; 1
70t 85(80)) = F (1t By(ne))| < 5C(L+ Do =V

The above imply that

(E+1)e , (L+1)e ‘
/g FUi? By ()t < / S, B5(6))dt + €V

€ Le

= ef (g, Bi(de)) + €Va

(+e
< / f(l, Bi(dee))dt + €Va
¢

€

(£+1)e )
< / F(ud, Bi(dr))dt + 2V ae
14

€

where the second inequality come from Jensen’s inequality. Therefore

Ir(¢|pS) < Ir(dlp) +2VTa

We can now choose a < min{a,, a,,n/2VT} to have our result. O
The next lemma exploits a large deviation estimate for Poisson r.v.’s.

9



Lemma 10. Let Y1,Y5,...be independent Poisson random variables with mean
fe. For all N € N, let
| N
YV =—-%"Y,.
v

For any s > 0 there exist K,eg > 0 and Ny € N such that taking g(e) =
K1/log™(e71) we have

PY(YN > g(e)) < exp{—sN}
for all e < €y and N > Nj.

PROOF We apply the Gramer’s theorem that we can find in [1] (chapter 2)
to have that there exist Ny € N such that

1 _
lim supﬁlog(IP’N(YN > g(e))) < — inf AX(z)

N—o00 z2>g(€)
where A (z) = supycp{Ar — Ac(N\)} with
Ac(N) = log(E(eM?) = fe(e* — 1).

We deduce that .
Al(x) = a:loge— —z + fe.
€

This last function is convex then it reaches his infimuim in z = fe and as

lim,_,o % = +oo there exists ¢ > 0 such that g(e) > fe for all € < ¢ and
then
inf A’(x) = g(e) log o) g(e) + Oe
v>g(e) Oe

= g(€)log(g(€)) — g(€) log(fe) — g(e) + be

~ K+/log(l/e) - 00 as €— 0.

Then there exists €, > 0 such that inf,>q) AX(z) > s for all € < e,.
Taking €9 = min{ey, €2}, we have the lemma. O

10



4 The Lower Bound

For a path ¢ let Fs(¢) = {¢ : |[vv— ||z < d}. We first prove that for all fixed
path ¢ and any n > 0, § > 0 there exists N, 5, such that for all N > N, 5

(1) PY(E(0) = E(AV1pveny) = exp{-N(Ira(0) + n)}.

To this end, it is enough to prove (1) considering ¢ € ACr 4 because the
inequality is true when I7,(¢) = co. We apply some lemmas of the preceding
section to show that it is enough to consider some suitable paths ¢ with the

€ Ai(9).
We have the

Lemma 11. For anya >0, € > 0 let ¢ € R* for a > 0. For e > 0 let ¢ be

its polygonal approximation defined by (2). Suppose that for alln > 0,0 >0
there exists N, s such that for all N > N, s

(2) P(|2Y = ¢llr < 6) > exp{—N(Ir(¢|1) +n)}

where pf € Ag(¢°) such that i’ < L for all j = 1,....k for some L > 0.
Then for all fired ¢ € ACrpa, and any n > 0, & > 0 there exists N, 5 such
that for all N > N, 5,

PY(F5(¢)) = P(IZ" = ¢llr < 8) = exp{=N(Ir(¢) + n)}.

PRrOOF For §,n > 0 let ¢ € ACr 4 such that Ir(¢) < oo then using Lemma 7
we have that there exists a,, > 0 such that for all a < a,, there exists ¢* € R®
such that ||¢ — ¢||r < a and I7(¢*) < Ip(p) + n/4. As Ir(¢*) < oo, we
deduce from Lemma 8 that there exists L > 0 and ¢** € R*? such that
16° — 6% 1y < /2 and Ip(@*H ") < Ip(6*) +n/4 where pt* € Ag(6™")
such that ,u?’L’] < L,j=1,...,k. Now we can deduce from Lemma 9 that for
all € > 0 the polygonal approximation ¢»%¢ of ¢=F satisfies ||¢p@L —¢¥E€||7 <
a/4 and Ip(¢@Le|p@be) < Ip(¢®L|ust)+n/4 where p®tc € Ayz(¢p®1<) is such

that "™ < L, j = 1,...,k. Now we choose a such that 2a < §/2 and we

11



have

g—i—Za)

(
P(12" ~o#llr < § +a)
(

o a
>P(||Z2Y = g0ty < 2 —)
| o™ llr <5+ 3

> P(]|2Y — ¢ < é)

> exp{—N (Ir(¢™"|u") +n/4)}
> exp{—N(Ir(¢™*|u*") +n/2)}
(L7 (
(I (o

P(112Y - llr < 8) 2 P(I12Y - ollr <

v

> exp{—N(Ir(¢") + 3n/4)}
)+m)}

where we have used (2) at the 5 inequality. O
The goal of the next lemma is to show the inequality (2).

> exp{—N(Ir

Lemma 12. For a > 0, € > 0, let ¢ € R* be linear on each intervals
[le, (€ +1)el, 0 < € < L. Consider the i € Ay(¢) that is constant over these
time intervals and such that all the components of u are bounded above by
some constant L > 0. Then we have that for any n > 0, and suitable small
d > O(thus the inequality stay true for all delta > 0) there exists N, s € N
such that for all N > N, s

P(|ZY = ¢llz < 6) > exp{=N(Ir(¢|p) +m)}.

PROOF Define the events B, j = 1, ...,k for controlling the likelihood ratio.
For £ > 0 let

B—{\D op (25

12



We have on {ZV € F5(¢)} N (N}, B;) = {Z" € F5(¢)} N B

Ag—exp{iiép log<u>+]\f/ Z — B;(ZN(t) ))dt}

N
Jj=1 ,ui
/e k T k '
exp { - N;Zluzelog(@@k))ew 0 Zlmz—ﬂj(ZN(t)))dt—kNg}
J J=
T/e k T k A
> exp { - N;Z;uzelog(ﬁf(‘%)) e+ [ D0 = Byt = NKTCS +K6)}
J J=
T/e k j T ko
>exp - DMILAE (G7)e+v | >0 = B0t = NOG +©)}

We note here that the first inequality is true because the ,u{ is constant
on the intervals [le, (¢ + 1)e[ and the second one come from the Lipschitz
continuity of the rates 3;. Since the integrand is continuous, we deduce from
the convergence of the Riemann sums that when ¢ is small enough we have

AN >exp N/ Z log o gbt)) — il + B(¢n) dt—NO(5+§)}
> exp{—N(Ir(¢|u) + 0(6 +¢&)} ontheevent {ZV € F5(¢)} N B.

Then for any > 0, there exists § > 0 and £ > 0 such that for N large
enough we have

A7 > exp{—N(Ir(¢|u) +n/2)}
Moreover
PY(F(0) = E(AF 1 zveron)
= E(Ag-l{{ZNeFa(@}mB})
> exp{—N(Ir(¢|p) +n/2)}P({Z" € F5(¢)} N B)

To finish this proof it is enough to show the following lemma:

13



Lemma 13. Let ¢ € R® linear over the intervals [le, (£ + 1)e|,
lim P{Z" € Fs(¢)} N B) =1
N—o00

PROOF It suffices to prove that limy . PN(F5(¢)) = 1 and that for all
J=1, ..k limy_e P{ZN € F5(6)} N B$) = 0. The first limit follows from
Theorem 2 for processes under PN,

We now show that PV (F5(¢)NBS) — 0as N — oo for 1 < j < k. We have
sup, | ZN (1) — ¢-,| <8 on {ZV € F5(¢)} and we can choose € small enough
such that sup, |¢-, — @|r,/ejc| < 0 and thus sup, | ZN(1,) — Plry/ele| < 20.

Note that we have on {ZV € Fs(¢)}

‘iép(j)log <w>_i%u)l (ﬁj(é%/ee))’S iﬂj)lo (BAZN(p)))‘

/~L|_7—p/eje p=1 :u\_q—p/gjg p=1 /8](¢L7p/6 e)

since |3;(ZN(7,)) = Bj(d|r,ee)| < 2C8. Let my be the number of jumps in
the interval [(€ 1)e, le[. We have

\fj%(g‘)l (@( ) ) N%u 1og( ))e

p=1 H L7p/ele ,u&
Q T/€ A 4
<| ; 5,(j) log (BJZ)L//JJ )) N;ufée log (%)e’
By . B (D17, /e)e)
+‘p;5p(j>lo ( jum/eje ) ;510 10g< J“LTp/eJe >‘
S’T/el <5J Pre) ><25 ' ) _1_200@5.

/=1

As the rate of jumps are constant on the interval [(¢ — 1)e, fe[ under PV,
me d,(7) is the number of jumps of a Poisson process P; on this interval. So

it is a Poisson random variable with mean N ,u&e. We deduce of Chebyshev’s
inequality that

B([1os (20) (20t

//LEE p_

Née AT? supy< 7. <log2 (67(@5 )Nﬂee )
< .
2T ) - N2£2¢2

14



As B(¢y) > C, and ] < L we have SUDy</e <log2 (&S&))%g) < C(L,a).
Thus

P({z" € Fy(¢)} N BY) < 1?»(‘ Tz/elog (”BJ brc) )(Za )

AT?C(L,a) ~ 20@5 N¢
= NE2e P( C, ZT)'

2006
Cq

+

The number of jumps during the period time T under PV is the sums
of the Poisson random variables with mean N Zf LHE. we take £ =

83 ZT/ 10 =1 (). where ¢ is chosen such that §/C, is small. Therefore,

as long as ZT/ “yon i1 11}, > 0, the law of large number for Poisson variables

give us
T/e k
PP 2 ) ~E(F 22 T o

as N — oc. OJ
We finish the proof of the lower bound by the following theorem

Theorem 14. For all open set G € Dr 4,

1
lim inf N log PY(G) > — inf Ir(¢).

N—oc0 PeG

PROOF [t is enough to assume that (1) is true and show (14). To this end
let I = infyeq I7(¢) < oo then, for n > 0 there exists a ¢” € G such that

Ir(¢") < I +n. Moreover we can choose § = d(¢") small enough such
that Fs(¢") C G. And then PN (F5(¢7)) < PN(G). This implies from the
inequality (1) that for all n > 0,

1 N N N
_ > —_ Ul
lim inf N log P (G) h]\r[n inf N log P (Fg(gb ))

N—oo
—I7 (")
—I—n

AVARLY,

and then .
lim inf N log PN(G) > —1.

N—oo

15
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O
Specifying the starting point, we can reformulate the above result as

1
lim inf - log P(ZV* € G) > — inf Ip(e).

N—oo PG, po=1
We need in fact the stronger statement

Theorem 15. For all open set G € Dy 4 such that all trajectories in G remain

in a compact set which does not intersect the boundary 0A, for any compact
set K C A,

1
liminf — log inf P(Z"" € G) > —sup _inf  Ir(e).

N—o0 zeK e K PG, po=x

5 The Upper Bound

For all ¢ € Dy 4 and H C D 4 we define
0 pr(6.H) = inf 6= 0
and for all 9, s > 0 we define the set

H(;(S) = {¢ € DT,A : pT(¢7q)(S)) = 5}

where ®(s) = {¢ € Dra : Ir(¢) < s}. We start by proving the following
lemma which will be enough to conclude the upper bound.

Lemma 16. for any d, n, s > 0 there exists Ny € N such that
(2) P (Hy(s)) < exp{—N(s —n)}
whenever N > Nj.

PROOF Let ZN4(t) = ®,(ZN(t)) then ||ZV — ZN4|| < o’ and for all a small
enough,

PY(Hy(s)) = Blpr(2Y, @(s)) 2 6

Qo —

< P(pr(27, 9(s)) 2

).

16



We now approximate the paths Z by smoother paths. Let € > 0 be such
that T'/e € N. We construct a polygonal approximation to Z™:® defined for
all t € [le, (€ + 1)¢e[ by

(r et 16)6 —L Ve 4 1)) _fe.

The event {HZN“ Tlr < 2} 0 {pr(ZVe, ®(s)) > %} is contained in
{pr(T,0(s)) > 5;} and

T, = T0C = ZN((e)

B(pr(2Y,0(5)) 2 5) < B(pr(X. 8(s)) > o) + ({12 = Tl = 22))

(3)

gP(IT(T)Zs)HP’(IlZNa Tz = 25(1)

We try now to bound P(I7(Y) > s). For any choice p € Ay(Y) we have
[T(T> < [T(T|,u) and
P(Ir(T) = s) <P(Ir(T[w) = s).

Let 4, j =1, ...,k be constant on the intervals [le, (¢ + 1)e[ and equal to

@ =S [ (v [ o) (v

le

g " )

Since T is piecewise linear, for t €]le, (£ + 1)e[

aYi  (1-a/d i
dtt:< 6/ )(ng((fﬂ) — 7 (te)) Zuih;

Then the ] given by (4) belong to Ag(T).
To control the change in T over the intervals of length e define g(¢) =

Ky/log™!(e=1) where K > 0 is fixed, and define a collection of events B =
{Be}e>0

T/e—1
— ﬂ B’
(=0
where

Bi={ swp |ZN) - ZN (L) <gle) for i=1,...d}.

fegtl,tgg(f+l)€

17



We have
(5) B(I2(Y|) > 5) < P({Ir(T|) > s} 1 B.) + P(B)
and using the Chebyshev inequality we have that for all 0 < a < 1

E(exp{aNIr(T|u)}15,)
exp{aNs} '

(6) P({Iz(Y|p) > s} N B,) <

We need to show that the expectation above is appropriately small for «
arbitrarily close to 1. For this we first prove the following lemma

Lemma 17. Forall0<a<1,j=1,...,k and ¢ =0,....,T/e— 1, there exist

Z; and Z;’ which conditionally upon F; are Poisson random variables with

mean NeB)~ = Ne(B;(ZN(le)) — Cdg(e))y and NeBt = Ne(B;(ZN (le)) +
Cdg(e€)) respectively such that if

(L+1)e

6! = exp{aN £l B5(T))dt b

Le

and

=j = exp{2aNCdg(e)e} x [GXP {O‘Nef<%’ Z7j_>}

(—a/®)Z} s
e {oes (C= ) )

with 357~ = B;(Te — Cdg(e)), then

(7) ef <

[1]

¢
j a.s

PROOF On BY, with € such that g(e) < 1 and t € [le, (¢ + 1)e], using the

Lipshitz continuity of the rates 8; we have
18,2 (1) — B2V (1) < €12V (1) — 2Y(0)] < Cdgle), G =1,k

Then we have

(L4+1)e
)N/ Bi(ZN(t))dt — NeB;(ZN (€e))| < NeCdg(e), j=1,...k.

18



As ,ug, j =1,....k satisfy (4), we can write

P L

where for example

7 =r(v | (27 (s))ds + eN (B,(2Y (1)) - Cdg(0)):) — P, (N 0 (2" (s))ds)
Le Le

7y = (N 0 Bi(Z%())ds + eN (8,27 (¢e)) + Cdg(e)) ) = P (N 0 Bi(2%(s))ds).

Moreover it is easy to see that on B’ we have

max |YT! — Th.| < (1 —a/d*)g(e) < gle) for t € [le, (£ + 1)e].

1<i<d
And then
18;(Te) = Bj(Tee)| < O Ty — Yoe| < Cdyg(e)

we deduce that ‘
Bi(Ti) > Bj(Te) — Cdg(e) = ;7™

and
Bi(Te) < Bi(Yee) + Cdg(e) = 8,7~ + 2Cdg(e).
Thus
| o
7 8:(7)) = 1 1o 4 BT
[, Bi(Te)) = g/Bj(Tt) py + B;(1e)
< uilog F1_ i B7™ +2Cdg(e) + pf log il
By Bi (1)
a,j—
< flud, B277) +2Cdg(e) since log =4 < 0.
< fui, B;77) g(€) 8 5. (T

As 1] = i), is constant over the interval [fe, (£ + 1)e[, we deduce that on B’
(9)

(£+1)e
exp {ozN

[ 10 B0t} < expaNef (4, 5777) + 2N Cdeg()}.

From (8), (9) and the convexity of f(v,w) in v we deduce the inequality of
lemma. U

The next proposition gives us a bound for the conditionnal expectation
the right hand side of the inequality (7).
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1
v

Proposition 18. Let a = h(e) = [— loggl/Q(e)} . For all 0 < oo < 1 there

exist €., K, and K such that for all € < e, we have

s (8o fonves (C2 2 ) ) 7o)}
< Ko exp{NeK (1 — o+ 2h(e) + 2dg(e))},

where Fy is the o—algebra generated by the process ZN(.) up until time Ce.

ProoF Conditionally on F, Z! is a Poisson variable with mean Nepl.
Moreover we have by the definition

max{|3;7" — 87|, 18777 = B]7[} < Cla + 2dg(e))
let é=¢/(1 —a/d?) and & = (1 — a/d*)a then we have

s forves (P ) ) = (o v (500 )
= 3 e {oes (Zg. 5 (Ve ")" exp{-Nehi"}

m!
m (Neﬁj’q)m exp{—Nij’q}
_ Zexp {aNe(—log <€N5“vj) __N+5 )} ¢ = v
< exp{NeC(a + 2dg(e))} Z exp{ am} (Negyi—ym=a) (%ﬁ)m exp{—NeB’~ (1 —a)}
m>0 L
(10) |
< exp{NeCi(a+ 2dg(e))} Z exp{ Gm} (Negy?—ymi= a)< 55:’)”‘ exp{—NeBy’~ (1 - a)}.
m>0 14

Moreover the function v(z) = 2™1~% exp{—2z(1 — &)} reaches its maximum
at x = m/2 thus we have

m

: )m(l_&) exp{—m(1— @)} Va

™= exp{—2z(1 — &)} < <
In particular
(NeBS ™ )m0-8) oxp{ —2NeB* (1 — @)} < (%)m“&) exp{—m(1 — &)}.

20



Thus

J»4q

mdm exp{—éém} aj—\m(l—d m a,j—
S BRI (gm0 (L) exp - Nepd (1 -

m>0 ’ ¢

(11)

< exp{Nef®~( }Zm exp{ m}( ;({B:)J—>

m>0

Moreover for ¢ = — we have

55"‘_ - B (2" (te))
i~ = Bj(ZNa(le)) — Cdg(e)

If 8;(ZN(le)) < A1 we have using the Assumption A2 and A3

B~ B,;(ZN(Le)) Ca
0.7 S Bi(ZNa(le)) — Cdg(e) = Co — Cdyg(e)

—1 as e€—0.

— 1 _ Cdg(e)

L=

If 8;(ZN (€e)) > A1, we have
B - B;(Z7 (Le)) < ol

@)}

@I~ = 3;(ZN(le)) — CCa — Cdg(e) ~ Ay — CCh(e) —
—1 as e€—0.

And for ¢ = + We have

B:(ZN (te)) + Cdg(e)
a]— - BJ(ZN’I(EE)) - C’dg(E)

If 8;(ZN (pe)) < A1 we have using the Assumptions A2 and A3

_ Bi(Z%4(te)) + Cdg(e)
o7~ = 5,7V (le)) - 0dg< )
Cdg(ﬁ)
c, +Cdg(6) 97%(e)
< G C’dg(e) [ can —1 as €e€— 0.

1/2(6)
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If 3;(ZN(le)) > A1, we have

I B2V () + Cdg(d
I T Bi(ZN(Le)) — CCh(e) — Cdy(e)
A1+ Cdyg(e)
~ A\ — CCh(e) — Cdg(e)

—1 as e€—0.

Then there exists €, such that By < 20=a)/2 « 9(1=8)/2 for gl € < ¢,.

‘qu

Thus for € small enough we have

mMe—™ 6] Q/ﬂaJ—
exp{NeB’~ }Z ( =) )
m>0
Neb(1-&) mme_m< 1 )m
(12) se > ml \2(-a)/2
m>0
_ Neb(1-3) f

Since the series above converges. We deduce from (10), (11) and (12) that

EN<exp {aNef(%, Z’ji)}’fg> < Ko exp{NeCy(1 — o+ a)} exp{NeC(a + cdg(e))}

< Ko exp{NeK (1 — o+ 2h(e) + 2dg(e))}.

O

Thus, we have
IEN(@§|}"@) < EN(E§|}"@) < 2K, exp{NeK (1 — a + 2h(e) + 4dg(e))}.

The next lemma gives us a upper bound for the quantity
EV ( exp{aNIp(Y] u)}136) .

Lemma 19. We have the following inequality
(13)
EN<exp{ozN]T(T|,u)}1Be> (2K, ) . exp{kNTK1(1 —a+ h(e) +4dg(e))}

Proor We know that Eﬁ, j = 1,...,k are independent given F,. Taking
iterative conditional expectations with respect to Fr/e_1,Fr/e—2,...,F1, We
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get that for all 0 < o < 1 and € < ¢,

EN(eXp{aN[T(T]u)}IBE> = EN( exp{ Zf 1, B; (T dt}lBe)
- T/e—1 k T/e-1 &k
:EN<EN( H ‘]:T/E 1)) gEN<EN< H H | Fre 1))
=0 j=1 =0 j=1
T/e-2 k
o (T Tz (f125)
=0 j=1 J=1
< Tiif(ZKa)’c eXp{kZNEé(l —a+ h(e) +4dg(e))}

p=0

= (2K,)" exp{kNTK:(1 — o+ h(e) + 4dg(e))}

0J
In the next Lemma, we give an upper bound of P(B¢).

Lemma 20. There exists g > 0, Ny € N and K > 0 such that

(14) P(BY) < dk:TTeXp{—sN}

for all € < ey and N > Ny where g(e) = Ky/log ' (e71).

PrROOF For all j =1,....k and £ =1,...,T/e we can write

(EJFl) le
/ Bi(ZzNyds < | B;(ZN)ds + be.
0 0

Moreover, we have

B= U U { oo 1270)-2"0)1> 90}

(—1)e<tq,ta<le

Thus

HESED I D B I A R AIEY(C)

—1)e<ty,ta<le
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Using (1) and noting Z(.) the i** coordinate of Z¥(.) we have

sup  |Z(t) = Z7 ()]
= sup

(£—1)e<ty,ta<le

hi 2

S / 82" (5)is) - (N [ (2 (s)as) |
(£—1)e<ty,ta<le N 0

( ﬂ] (2% (s))ds) = P (N / o 327 (5))ds) |

IA

Pj(N/O v Bj(ZN(s))ds+N96> —Pj(N/O(“)Eﬁj(ZN(S))dsﬂ
s

Where Z; j = 1,..., k be independent Poisson random variables with means
Nbe. Then

Pl swp (Z8(0) - Z¥()] > g0} < KEY(NUZ) > g(o)/k)

(f*l)egtl,tzgee

And it follows from lemma 10 that there exist a constants K > 0, ¢; > 0 and
Ny € N such that

P{ s |ZN(t) = Z¥(t)] > 9(e)} < kexp{-sN}
(e-1)

—1)e<ty,ta<le
For all ¢ < ¢g and N > Ny. And then

dkT
P(Bf) < — exp{—sN}.
€

Now, we find a bound for P(||Z™* — ¢||7 > §/d) in (3).
Lemma 21. For all 6 > 0 there exist €, > 0, Ng € N such that
dkT
(15) P([2% = Tz > 0) < —— exp{—sN},
for all e < €, and N > Nj.
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PROOF Using (1) we write for all ¢ € [le, (£ + 1)¢[

a 7 1
Iﬁﬁ%mszﬁ

S

fﬁz4
J

where the Z; are as in the proof of the last lemma. Let €; be the maximal e
such that §/kd > g(e). Then we have from lemma 10 that for all € < ¢, =
min{eg, €1} and N > N,

Le

%Cﬁ/wmﬁﬂﬂﬁnw)—ﬂOVoxMZW$M§]

Le

( 5] (ZN (s ))ds+N66> —Pj(N 0 ﬁj(ZN(s))ds>)

d
S
P(| 2V — T|r > 6) < IP’N<U{|ZZ.N’“(t) ~Ti| > 5} forsome te [o,ﬂ)
i=1

T d
N,a ] d
< J— o — 4 —
max IP’<|':1|{]ZI (t) — Y3 > d} for some t € [le, (£ + 1)6[)

T € 0<U<T/e—1

< OU{—T]P(Zl/N > §/kd) < dk—Texp{ sN}.

UJ
The end of the proof of the lemma 16 can be done by using (13), (14),
(15). We have thus for all 6 > 0, 0 < a < 1, € < min{eo,ez%,el} and

a=he)= | —logg"?(e)| ",

NI

B(pr(2Y,®(s)) > 8) < P(Ir(Y|u) = ) + B(| 2V = Y|z > §/d)

E(exp{aNIr(T|u)}15,)
eXp{aNs}

< (2K.)'F exp{kNTE (1 — a + h(e) + 4dg(e))}

<

+P(B) + P(| 2% = Tllr > /2d)

2dTk
x exp{—aNs} + exp{—sN}.

Here, we take 1 — o and € small enough to ensure that k7K, (1 — o + h(e) +
4dg(e)) < n/4 and (1 — a)s < n/4.We also take N large enogh so that
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kT log(2K,)/Ne < n/4 and log(2dkT/e)/N < n/4 and we have

P(or(2Y,B(5)) > 6) < exp{—N(s — 31/4)} + 2T fe. exp{—sN}
< dkT/e.exp{—N(s —3n/4)} < exp{—N(s—n)}.

Thus
PY(Hjs(s)) < exp{—=N(s —n)}.

We finally have

Theorem 22. For all closed set F' € Dy, 4,

1
hﬁfip + log PN(F) < — di)lglfm Ir(9).

PROOF All we have to show is that (2) implies the Theorem. To this end let
F € Dy 4 a closed set, choose 7 > 0 and put s = inf{Ir(¢) : ¢ € F} —n/2.
The closed set F' does not intersect the compact set ®(s). Therefore § =
infoepinfycars) @ — ¥|lr > 0. We use the inequality (2) to have for any
0,m,s > 0 there exists Ny € N such that for all N > N,

PY(F) < PY(Hj(s))
<exp{—N(s—n/2)}
< exp{—N(di)Ielg Ir(¢) —n)}

then |
limsup —P"(F) < inf I7(¢).

N—oo ©¢ER
OJ
We need a slightly stronger version

Theorem 23. For all closed set F' € Dr s such that all trajectories in F
remain in a compact set which does not intersect the boundary A, for any
compact set K C A,

1
limsup — logsupP(ZV* € F) < —inf inf I .
Nﬁoop gmelg ( ) - zeK ¢peF,po=x T(¢)
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6 Time of exit from a domain

We let O € A be relatively open in A (with O = O N A for O € R? open)
and z* € O be a stable equilibrium of (1). By a slight abuse of notation, we
say that

90 := 90N A
is the boundary of O. For y, z € A, we define the following functionals.
Vizr,2,T) := inf Ir,
@51 = enomai s oy T
V(z,z) = %I;%V((E,Z)
V= inf V(2% 2).
z€00

In other words, V is the minimal energy required to leave the domain O when
starting from x*. We urge the reader to consider the two examples in section
6.4.

Assumptions B

B1 z* is the only stable equilibrium point of (1) in O and the solution Y~
of (1) with z = Y*(0) € O satisfies

Y?*(t) € O for all t > 0 and 1tlirn Y*(t) = a*.
—00

B2 For a solution Y7 of (1) with z = Y*(0) € dO, we have

lim Y*(t) = x*.

t—o00

B3V < .

B4 For all p > 0 there exist constants T'(p), €(p) > 0 with T'(p),e(p) 4 0 as

p J 0 such that for all z € 00 U {z*} and all z,y € B(z,p) N A there
exists an

¢ =d(p,r,y) : [0,T(p)] = A with ¢(0) = z,¢(T(p)) = y and Ir(,)(¢) < €(p).

B5 For all z € 90 there exists an 79 > 0 such that for all n < o there exists
az=2(n)e€A\O with |z —Z| >n.
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Let us shortly comment on Assumption B By B1, O is a subset of the
domain of attraction of z*. B2 is violated by the applications we have in mind:
we are interested in situations where 0O is the characteristic boundary of O,
i.e., the boundary separating two regions of attraction of equilibria of (1).
In order to relax this assumption, we require an approximation argument
later. By B3, it is possible to reach the boundary with finite energy. This
assumption is always satisfied for the epidemiological models we consider. For
z = x*, B4 is also always satisfied in our models as the rates 3; are bounded
from above and away from zero in small neighborhoods of z*; hence, the
function ¢(x,y, p) can, e.g., be chosen to be linear with speed one.

We are interested in the following quantity:

Vo= 7N = inf{t > 0|2V (t) ¢ O},

i.e., the first time that ZV? exits O.

6.1 Auxiliary results

Assumptions A4 + B4 yield.

Lemma 24. Assume that Assumptions A and B hold. Then for any d > 0,
there exists an py > 0 such that for all p < po,

sup inf V(z,y,T) <.

ZEGAéUx*,x,yEB(z,p) Tefo.1)
We have moreover.

Lemma 25. Assume that Assumptions A and B hold. Then, for anyn > 0
there exists a py such that for all p < po there exists a Ty < oo such that

1
liminf —log inf P[rV* < Tyl > —(V 417).
N=roo z€B(z* p)

PROOF Let z € B(z*,p). We use Lemma 24 with 6 = n/4 (and we let p
be small enough for Lemma 24 to hold). We construct a continuous path
Y* with ¥*(0) = x, ¥*(t,) = «* (t, < 1) and I, .(¢") < n/4. We then use
Assumption B3. For 77 < oo, we can construct a path ¢ € C[0,T}] such
that ¢(0) = 2*, ¢(T1) = z € 90 and I, o(¢) < V + /4. Subsequently,
we use Lemma 24 and obtain a path ¢ with ¥(0) = z, ¥(s;) € O (s < 1),
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I,.(¢) <n/4 and d(z,0) = A > 0.' We finally let 6% be the solution of the
ODE (1) with 6*(0) = Z on [0,2 — t,, — s], consequently I5_;, s :(6%) = 0.
We concatenate the paths ¢*, ¢, QZ and 6* and obtain the path ¢* €
C[0,Ty] (Ty = Ty + 2 independent of x) with I, .(¢%) <V +n/2.
Finally, we define

vi=|J {veD(o.nAllv-el <A/2};

z€B(z*,p)

hence ¥ C D([0, To]; A) is open, (¢%),,cpirpy C V¥ and {ZN= ¢ U} C {N* <
To}. We now use Theorem 15.

1
liminf —log inf P[Z¥* € U] >~ sup inf Ip, ()
N—oo Blz* ) v

zeB(z*,p) z€B(a*,p)
> — sup I (")

z€B(z*,p)

> —(V +n).

O

We also require the following result

Lemma 26. Assume that Assumptions A and B hold. Let p > 0 such that
B(z*,p) C O and

o) = inf{t > 0|2 € B(a*,p) or Z\'* ¢ O},

Then )
lim lim sup — log sup IP’[J;V’”E > t] = —o0.
=00 Nooo z€0

PROOF Note first that for z € B(z*, p), '* = 0; we hence assume from now

o P

on that = ¢ B(z*, p). For t > 0, we define the closed set U, C D([0,t]; A),
U, = {¢ € D([0,7]; A)|[¢(s) € O\ B(a*,p) for all s € [0,]};

hence for all z, N,
{o)* >t} c {2V € W}

IThe additional assumption B5 is required here.
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By Theorem 23, this implies for all ¢ > 0,

1 1
limsup — log  sup P[O’l])\]’x > t] <limsup —log sup P[Z°" € U]

N—oo zcO\B(z*,p) N—oo z€O\B(z*,p)
< — inf [, :
=7 jew, t,¢(0)(¢>

It hence suffices to show that

(1) lim inf I 4(0)(¢) = oo.

t—o0 ¢E\I/t

To this end, consider z € O\ B(z*, p) and recall that Y* is the solution
of (1) (on [0,t] for all t > 0). By Assumption B2, there exists a T, < oo such
that Y*(T,) € B(z*,3p). We have (here B denotes the Lipschitz constant of

b),
167()—6"(1)] < |a—y|+ / 6(6%(5)) —b(6¥(5))ds < +]z—y|+ / B (s)—¢¥(s)|ds

and therefore by Gronwall’s inequality |Y*(T,) — Y¥(T})| < |z — yle™?;
consequently, there exists a neighborhood W, of x such that for all y € W,
Y¥(T,) € B(x*,3p). By the compactness of O\ B(x*,p), there exists a
finite open subcover U¥_,W,. D O\ B(z*,p); for T := max,_;,
y € O\ B(z*, p) this implies that Y¥(s) € B(z*,2/3p) for some s < T.

Assume now that (1) is false. Then there exits an M < oo such that for
all n € N there exists an ¢, € V,,p with I,7(¢,) < M. The function ¢, is
concatenated by functions ¢, ; € U and we obtain

.....

k=1

Hence there exists a sequence (%) C Wr with limg_,o I7(¢x) = 0. Note
now that the set

o(t) :=={o € Cl0,T]|Ir (@) < 1,0(s) € O\ B(z*,p) for all s € [0,T]} C ¥p

is compact (as a subset of (C[0,77],] - |l«)); hence there exists a subsequence
(¥k )i of (thi)x such that limy o g, =: 9" € ¢(t) in (C[0,T], || - ||oc)- By the

lower semi-continuity of Iz, this implies

0= lilm inf I () > Ir(v"),
—00
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which in turn implies that 1* solves (1) for = ¢*(0). But then, ¥*(s) €
B(xz*,2/3p) for some s < T, a contradiction to ¢* € Wr. O

Lemma 27. Assume that Assumptions A and B hold. Let C C A\ O be
closed. Then,

1
lim lim sup — log sup P[Zé\ff” € (] < —inf V(z", 2).
P=0 N—oo z€B(z*,3p)\B(z*,2p) 2€C

PROOF We can assume without loss of generality that inf,cc V(z*, 2) > 0
(else the assertion is trivial). For inf,cc V' (z*,2) > § > 0, we define

V3= (iggV(x*,z) —J§)N1/5>0.

By Lemma 24, there exists a pg = po(d) > 0 such that for all 0 < p < py,

sup Vi(z*,y) <9
yEB(z*,3p)\B(z* 2p)
hence
(2)
i Vg mfVtd - swp V() > Ve
yeB(z*,3p)\B(z*,2p), z€C zelC yeB(@ 3p)\B(z* 2p)

For T > 0, we define the closed set ® C D([0,T]; A) by
d' .= :={¢ € D([0,T); A)|é(t) € C for some t € [0,7]}.

We then have for y € B(x*,3p) \ B(z*,2p),
(3) P[Z)Y € O] < Plo)™ > T] + P[Z™Y € @],

In the following, we bound the two parts in Inequality (3) from above.
For the second part, we note first that (cf. Inequality (2))

inf Ir,(¢) > inf V(y,2) > VE;
yeB(z*,3p)\B(z*,2p), pc®T yeB(z*,3p)\B(x*,2p), 2€C

hence, we obtain by Theorem 23

(4)

1
lim sup — log sup Pz € 1] < — inf I4(0)
N—o0 yeB(z* 3p)\B(z* 2p) y€B(z*,3p)\B(z*,2p), p€®T

< V5
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For the first part in Inequality (3), we use Lemma 26: There exists a
0 < Ty < 0o such that for all T" > T,

1
(5) lim sup — log sup Plo™¥ > T] < V.
N—=eo yeB(a*,3p)\B(z*,2p)

We let T > Ty and p < pp and combine Inequalities (3), (4) and (5).
Hence there exists an Ny > 0 such that for all N > N,

1
i log sup ]P’[Zf,\i’y e (]
y€B(z*,3p)\B(z*,2p)
1
< N log ( sup Plo) > T + sup P[ZNY € <I>T]>
y€B(z*,3p)\B(z*,2p) yE€B(z*,3p)\B(z*,2p)
1 1
< N log (26’NV05) = log2 — V&
and
: 1 N,z /90
lim sup — log sup Pz, " e Cl < -V¢.
N—yoo yEB(z*,3p)\B(z*,2p)
Taking the limit 6 — 0 finishes the proof. 0

We have moreover

Lemma 28. Assume that Assumptions A and B hold. Then, for all p > 0
such that B(x*,p) C O and for all x € O,

lim IP)[ZN‘” € B(z*, p)| = 1.

N—o00
PROOF Let z € O\ B(x*, p) (the case x € B(z*, p) is clear). Let furthermore
T := inf{t > 0|¢(t) € B(z*,p/2)}. Since Y* is continuous and never reaches
00 (Assumption B1), we have infi>q d(Y?(2), 80) =: A > 0. Hence we have
the following implication:

sup |27 —Y(t)| <
te(0,7)

A .
5= Zé\;’x € B(z*, p).

In other words,

© Bz B ) <P sw |2 v > 5]

t€[0,T]

The right hand side of Inequality (6) converges to zero as N — oo by Theo-
rem 2. U
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Lemma 29. Assume that Assumptions A and B hold. Then, for all p,c > 0,
there exists a constant T = T(c, p) < oo such that

1
lim sup — logsup P[ sup |ZN" — 2| > p] < —
Nesoo 2€0  1€[0,7]

PROOF Let p,c > 0 be fixed. For T\ N > 0 and z € O we have

P[sup |2~ x| = p] = P| sup —!Zh P /Otﬁj(Zév’”)dS)! > g

te[0,77] t€[0,T]

<P|Y P i 2 Npﬁ-l]
J

(7) < kP[P(N BT ) > Npiz-lk-l]
=:c1(T) =ic2

for a standard Poisson process P. We now let

e~ ley e /21, log 2k
8 T<Ty:=——=A = d N>Ny:=1/ca A .
) " 28 o o= Yeh G m)
We then obtain (note that Nc; > 1 and Zc¢i(T) < 1/2 by (8))
_ N™ey (T)™
— Ne(T) 1
KP[P(Ney(T)) > NCQ} — ke Ny S
m>N02
(eN) el (T)
9) < ke Ner (™) Z —
m>Nca mm 2mm
1 (eN)"ci(T)™
a m>Nca (NC2)
e Nco
1(5a()
T 21— £ (T)
e e
(10) < (Za®)™™
2

here we applied Stirling’s formula, m! > +/27m(m/e)™, in Inequality (9).
Finally, we have

1) (Cam) = (Cam) ™) <@ =

Co



by (8). The assertion now follows by combining the Inequalities (7), (10)
and (11). O

6.2 Main results

We can now establish

Theorem 30. Assume that Assumptions A and B hold. Then, for all x € O
and § > 0,

lim ]P’[e(‘_/_‘s)N < Ve < e(VM)N} =1.
N—o0
PROOF Upper bound of exit time:
We fix 6 > 0 and apply Lemma 25 to n := 6/4. Hence, for p < pgy there
exists a Ty < oo and an Ny > 0 such that for N > N,

inf PV < Ty > e NV,
z€B(z*,p)

Furthermore, by Lemma 26 there exists a T} < oo and N; > 0 such that for
all N > Ny,

ig(f)l?’[ai)v’m <T)>1—e 2N,

For T':= Ty +T; and N > Ny V N; V 1/n, we hence obtain

¢" = q:= inf P[rV* < T

z€0
> inf Plo)"* <T1] inf P[rVY < T,
€0 yEB(z*,p)

> (1— 6—2N77)6—N(V+77)

(12) Z e*N(V+2?7)'

This yields for £ € N

Plr¥* > (k+1)T] = (1 = P[r™* < (k+ 1)T|7™* > kT))P[r™* > kT

< (1— q)B[r* > &T]
and hence inductively

sup P[7™* > kT) < (1 — ).
z€0
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This implies

(13)

N,z - N - k T a2 N(V+2n)
sup B[] < T'(1+4 E sup P[r™V* > kT]) < T E (1—q)"=— < Te ",
z€0 'y ©€0 0 q

by Chebychev’s Inequality we obtain

IPJ[TN,JC > 6N(V+6)] < e—N(V—i—&)E[TN,m] < Te—0N/2
which approaches zero as N — oo as required.

Lower bound of exit time:

For p > 0 such that B(z*,3p) C O, we define recursively 6, := 0 and for
m € ]N'[)7

72 =7, = inf{t > 02| 2" € B(x*,p) or Z'" & O},

m

0% 1 = Oy = inf{t > 1212 € B(x*,3p) \ B(z*,2p)},

with the convention 6, := oo if Zf_yn ¢ O. Note that we have 7V* = 72 for
some m € Ny.

For fixed Ty > 0 and k € N we have the following implication: If for all
m=0,....,k, 7 A7V and for all m =1...,k, 7, — T—1 > Ty, then

:
™ > = Z(Tm — Tm—1) > kTj.

m=1

In particular, we have for k := |T;eNV=9| 4 1 (note that 6, — 71 <

Tm — Tm—l)v

PlrVe < NV < PV < KT

k k
(14) =Pl = ]+ 3P =]+ SRl - 7y < Tl

In the following, we bound the three parts in (14) from above. To this end,
we assume V' > 0 for now. The simpler case V = 0 is treated below.
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For the first part, we have
(15) P[r™* = 15] = P[Z;" ¢ O).

For the second part, we use the fact that ZV* is a strong Markov process
and that the 7,,,’s are stopping times. We obtain for m > 1 and z € O,

(16) PV =17 < sup P[Z)Y & O).
yeB(@* 3p)\B(z*,2p)

Similarly, we obtain for the third part for m > 1 and z € O,

(17) P02 — 72, < To] < supP[ sup |ZY —y| > pl.

m m—1
yeO tE[O,To}

The upper bounds in (16) and (17) can now be bounded by using the
Lemma 27 and 29, respectively. We fix 6 > 0. By Lemma 27 (for C' = A\ O),
there exists a p = p(d) > 0 and an Ny = Ny(p,d) > 0 such that for all
N > Ny,

(18) sup [ZNy ¢ O] <exp(— NV —46/2)).

yeB(z* 3p)\B(z* 2p)

By Lemma 29 (for p = p(d) as above and ¢ = V'), there exists a constant
To =T(p,V) < oo and an Ny = No(p,0) > 0 such that for all N > Ny,

(19) supP[ sup |Z"Y —y| > p] <exp (— N(V —§/2)).
yeO  tel0,Ty)

We now let N > N; V N, (and large enough for T ' exp (N(V —9)) > 1
for the specific Ty above). Then by Inequality (14),

_ (15),(16),(17)
]P)[TN,m < eN(VfJ)] < P[ZCJT\;,I ¢ O] +k sup P[Zé\;y g O]

; yE B 30)\B@ 20)

+ksupP[ sup |ZY —y[ > ]
yeO  te€[0,To]

(18),(19)
(20) < P27 & O]+ 4T, P exp (— N6 /2).

The right-hand side of Inequality (20) tends to zero as ¢ — 0 by Lemma 28,
finishing the proof for V' > 0.
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Finally, let us assume that V' = 0 and that the assertion is false for a
given x € O. Then there exists a o € (0,1/2) and a §p > 0 such that for all
N > 0 there exists an N > N with

,U/O S IP)[TN,I S e*Nﬁo]'

We fix p > 0 such that B(z*,2p) C O. Using the strong Markov property of
Z and the fact that o, is a stopping time again, we have that for all N > (
there exists an N > N with

,LLO S ]P)[TN,(E S e—N(so]

(21) <P[Z)" ¢ B(x*, p)] +supP[ sup |2 —y| > g].
y€O0  te[0,e~Ndo)

By Lemma 28, there exists an Ny such that for all N > N,

(22) P[2}" ¢ B(a,p)] < .

We now set ¢ := —2¢,log &*. Then by Lemma 29, there exists a T' = T'(c, p) >
0 and an N7 > Ny such that for all N > Ny,

(23) e N <

and

(24) supP[ sup |2 —y| > p < e N2 < O,
yeO  te[0,T] 2

Combining Inequalities (22), (23) and (24) yields a contradiction to Inequal-
ity (21), finishing the proof. O

6.3 The case of a characteristic boundary

Since we are mainly interested in studying the time of exit form the basin
of attraction of one local equilibrium to that of another, we need to consider
situations which do not satisfy the above assumptions. More precisely, we
want to suppress the assumptions B3 and B5, and keep assumptions B1, B2
and B4. In the examples which we have in mind, there exists a collection of
open sets {O,, p > 0} which is such that

e O, C O for any p > 0.
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¢ d(0,,00) — 0, as p — 0.
e O, satisfies assumptions B1,..B5 for any p > 0.

Let then O be a domain satisfying assumptions (B1, B2 and B4, and we
assume that there exist a sequence {O,, p > 0} satisfying the three above
conditions.

If we define Vp as V, but with O replaced by O,, it follows from Lemma
24 that Vp — V as p — 0. By an obvious monotonicity property, the lower
bound

limIP’[TN”” > e(V*‘S)N] =1
e—0

follows immediately from Theorem 30.

6.4 Applications

Consider the following two epidemiological models with several equilibria,
both

1. the STV model studied by Kribs-Zaleta and Velasco-Hernandez :

%(t) = (1 —s(t)) + ai(t) — Bs(t)i(t) — ns(t) + Ov(t), t >0,
%(t) = —pi(t) + Bs(t)i(t) — ai(t) + rpo(t)i(t), t >0,
Z—z(t) = —pv(t) +ns(t) — Qv(t) — rpu(t)i(t), t > 0;

2. and the SgI.S; model of Safan, Heesterbeek and Dietz

dso

“2(1) = (1 = so(t)) = Bso(t)ilt), t >0,
di

5 (&) = —ui(t) + Bso(t)i(t) — ailt) + rBs1(t)i(t), >0,

dSl

g () = —psi() +ai(t) = rBsi(t)i(t), t > 0.

In those two above models, one can choose the parameters in such a
way that both the DFE and one of the endemic equilibria are locally stable.
Denote by O the basing of attraction of the endemic equilibrium. Let us
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denote by 7% the time it takes for the stochastic system, starting from
x € O, to exit O (~ the time to reach the DFE). Theorem 30 extended to
the case of a characteristic boundary implies that For any x € O, § > 0,

lim ]P(e(v"s)N <N < e(V+5)N) =1.
N—oo

Numerical computation of

1. In the SIV model with § = 3.6, « = 1, 6 = 0.02, = 0.03, n = 0.3 and
r=0.1, we get V = 0.39.
This gives rather astronomical values of 7V, even for N = 100 !

2. In the 5151 model with § =3, a =5, p = 0.015 and r = 2, we get
V = 0.0745.
This means that for N = 100, 7V ~ 1720, and for larger N, the value
of 7V is huge !

3. We have not yet checked how V depends upon the parameters !

It would be interesting to understand how those results would be modified
if we incorporate heterogeneity (nonhomogeneous mixing, spatial dispersion,

).
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