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Introduction

We consider the vector of proportions in our model as

(1) ZN(t) = z0 +
1

N

k∑
j=1

hjPj

(∫ t

0

Nβj(Z
N(s))ds

)
.
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Again, the Pj’s are mutually independent standard Poisson processes. The
process ZN(t) lives in the set

A = {z ∈ IRd
+;

d∑
i=1

zi ≤ 1}.

We shall denote by DT,A the set of functions defined on [0, T ] with values
in A which are right continuous with left limits at every t, and ACT,A will
denote the subset of absolutely continuous functions. For φ, ψ ∈ DT,A, we
define ‖φ− ψ‖T = sup0≤t≤T |φt − ψt|. Let IPN denote the law of ZN , i.e.

IPN(B) = IP(ZN ∈ B), ∀B ∈ B,

where B denote the Borel σ–field of DT,A.
We want to show that the collection of probability measures {IPN , N ≥ 1}

satisfies a Large Deviations Principle, in the sense that there exists a rate
function IT (to be defined below) such that

− inf
φ∈G

IT (φ) ≤ lim inf
N→∞

1

N
log IP(ZN ∈ G), if G ⊂ DT,A is open,

− inf
φ∈F

IT (φ) ≥ lim sup
N→∞

1

N
log IP(ZN ∈ F ), if F ⊂ DT,A is closed.

The main difficulty in proving such a large deviations principle comes
from the fact that some of the rates βj may vanish at the boundary of the
set A. To each a > 0 (small enough) we associate the sets

Ba = {z ∈ A, zi ≥ a, 1 ≤ i ≤ d, and 1−
d∑
i=1

zi ≥ a},

Ra = {φ ∈ ACT,A, φt ∈ Ba, 0 ≤ t ≤ T}.

We suppose that there exists a collection of mappings Φa : A → A, defined
for each a > 0, which are such that za = Φa(z) satisfies for each a > 0

|z − za| ≤ λ3a

d(za, ∂A) ≥ ρa := a′,

for some 0 < ρ < λ3. Hence Φa maps A into Ba′ .
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Remark 1. Since A is convex, we define Φa(z) = z + a(z0 − z), for some
fixed z0 ∈ Å. The same definition is even possible for many non necessarily
convex sets, provided A is compact, and there is a point z0 in its interior
which is such that each segment joining z0 and any point z ∈ ∂A does not
touch any other point of the boundary ∂A.

We shall assume everywhere below that Φa(z) = z + a(z0 − z) and

∇Φa = (1− a)I.

Let for any a > 0
Ca = inf

1≤j≤k
inf
z∈Ba

βj(z).

It is plain that Ca > 0 for a > 0, and Ca → 0, as a→ 0. We shall assume

Assumptions A

A1 The rate functions βj are Lipschitz continuous with the Lipschitz con-
stant equal to C, and bounded by a constant θ.

A2 There exist two constants λ1, λ2 > 0 such that whenever z ∈ A is such
that βj(z) < λ1, βj(z

a) > βj(z) for all 0 < a < λ2.

A3 There exists ν ∈ (0, 1/2) such that lima→0 a
ν logCa = 0.

1 Law of Large Numbers and Girsanov theo-

rem

We reformulate the Law of Large Numbers in the above notations

Theorem 2. Let ZN be given the solution of (1). If the assumption 1 is
satisfied, then for all T > 0,

‖ZN − Y ‖T → 0 a.s. as N →∞,

where Yt is the unique solution of the ODE

(1) Y (t) = z0 +

∫ t

0

b(Y (s))ds,

with b(z) =
∑k

j=1 βj(z)hj.

3



We shall need the following Girsanov theorem. Let Q denote the number
of jumps of the of ZN in the interval [0, T ], τp be the time of the p–th jump,
and define

δp(j) =

{
1 , if the p–th jump is in the direction hj,

0 , otherwise.

We shall denote FNt = σ{ZN
s , 0 ≤ s ≤ t}. Consider another set of rates

β̃j(z), 1 ≤ j ≤ k.

Theorem 3. Assume that {x, β̃}j(x) = 0} ⊂ {s, βj(x) = 0}. Let ĨP
N

denote the law of ZN when the rates are β̃j. Then on the σ algebra FNt ,

IPN |FNT << ĨP
N
|FNT , and

∆N
T =

IPN |FNT
ĨP
N
|FNT

=

 Q∏
p=1

k∏
j=1

[
βj(Z

N(τ−p ))

β̃j(ZN(τ−p ))

]δp(j)
 exp

(
N

k∑
j=1

∫ T

0

[β̃j(Z
N(t))− βj(ZN(t))]dt

)
.

2 The rate function

For any φ ∈ ACT,A, let Ad(φ) the set of vector valued Borel measurable
functions µ such that for all 1 ≤ j ≤ k, µjt ≥ 0 and

dφt
dt

=
k∑
j=1

µjjhj, t a.e.

We define the rate function

IT (φ) =

{
infµ∈Ad(φ) IT (φ|µ), if φ ∈ ACT,A,
+∞, otherwise,

where

IT (φ|µ) =

∫ T

0

k∑
j=1

f(µjt , βj(φt))dt,
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with f(ν, ω) = ν log(ν/ω) − ν + ω, where we use the convention log(ν/0) =
+∞ for ν > 0, while 0 log(0/0) = 0 log(0) = 0.

Another possible definition leads to

ĨT (φ) =

{
infµ∈Ad(φ)

∫ T
0
L(φt, φ

′
t)dt, if φ ∈ ACT,A,

+∞, otherwise,

where for all z ∈ A, y ∈ IRd,

L(x, y) = sup
θ∈IRd

`(z, y, θ)

with

`(z, y, θ) = 〈θ, y〉 −
k∑
j=1

βj(z)
(
e〈θ,hj〉 − 1

)
.

Recall the definition

Definition 4. A rate function I is a semi–continuous mapping I : DT,A →
[0,∞] (i.e. its level sets ΨI(α) = {φ, IT (φ) ≤ α} are closed subsets of DT,A).
A good rate function is a rate function whose level sets are compact.

We have (see Kratz, Pardoux [2], Pardoux, Samegni [4])

Proposition 5. IT = ĨT is a good rate function.

3 Preliminary Lemmas

Lemma 6. Suppose that the βj, j = 1, ..., k are bounded by θ. If IT (φ|µ) ≤ s
then for all 0 ≤ t1, t2 ≤ T such that t2 − t1 ≤ 1/θ,∫ t2

t1

µjtdt ≤
s+ 1

− log(θ(t2 − t1))
∀j = 1, ..., k.

Proof We have ∫ T

0

f(µjt , βj(φt))dt ≤ IT (φ|µ) ≤ s.
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moreover, the function h(x) = x log(x/θ) − x is convex in x so that for all
0 ≤ t1, t2 ≤ T

h
( 1

t2 − t1

∫ t2

t1

µjtdt
)
≤ 1

t2 − t1

∫ t2

t1

h(µjt)dt

≤ 1

t2 − t1

∫ t2

t1

(
µjt log

µjt
βj(φt)

− µjt + βj(φt)
)
dt

≤ s

t2 − t1
.

It is easy to show that for all α > 0, h(x) ≥ αx− θ exp{α} and then for all
α > 0 ∫ t2

t1

µjtdt ≤
1

α
(s+ (t2 − t1)θ exp{α}).

Therefore If t2 − t1 < 1/θ taking α = − log(θ(t2 − t1)), the result follows. �
For φ ∈ DT,A let φa be defined by φat = Φa(φt). Clearly φa ∈ Ra′ .

Lemma 7. Let φ be such that IT (φ) < ∞. We have lim supa→0 IT (φa) ≤
IT (φ).

Proof Since IT (φ) <∞, ∀η > 0 there exists µ such that IT (φ|µ) ≤ IT (φ)+η.
Let µa = (1− a)µ so that µa is an allowed choice for φa. We will show that

(1) IT (φa|µa)→ IT (φ|µ) as a→ 0,

which clearly implies the result since

lim sup
a→0

IT (φa) ≤ lim sup
a→0

IT (φa|µa)

= IT (φ|µ) ≤ IT (φ) + η.

By the convexity of f(ν, ω) in ν and because 0 ≤ µj,at ≤ µjt , we have

0 ≤ f(µj,at , βj(φ
a
t )) ≤ f(0, βj(φ

a
t )) + f(µjt , βj(φ

a
t ))

≤ θ + f(µjt , βj(φ
a
t )).
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Moreover we have

f(µjt , βj(φ
a
t )) = µjt log

µjt
βj(φat )

− µjt + βj(φ
a
t )

= µjt log
µjt

βj(φt)
− µjt + βj(φt) + µjt log

βj(φt)

βj(φat )
+ βj(φ

a
t )− βj(φt)

≤ f(µjt , βj(φt)) + 2θ + µjt log
βj(φt)

βj(φat )
.

If βj(φt) < λ1 then βj(φt) ≤ βj(φ
a
t ) and log

βj(φt)

βj(φat )
< 0.

If βj(φt) ≥ λ1 then using the Lipschitz continuity of the rates βj we have

log
βj(φt)

βj(φat )
≤ log

βj(φt)

βj(φt)− Ca
≤ log

λ1

λ1 − Ca

≤ log
1

1− Ca/λ1

<
2Ca

λ1

<
2Cλ2

λ1

.

Since log(1/(1 − x)) < 2x for 0 < x < 1/2; here, we take a small enough to
ensure Ca < λ1/2. Finally for all a < (λ1/2C) ∧ λ2

0 ≤ f(µj,at , βj(φ
a
t )) ≤ f(µjt , βj(φt)) + 3θ +

2Cλ2

λ1

µjt .

By Lemma 6 µjt is integrable, we have bounded f(µj,at , βj(φ
a
t )) for 0 < a <

(λ1/2C)∧λ2 by an integrable function. Since f(µj,at , βj(φ
a
t ))→ f(µjt , βj(φt))

the dominated convergence theorem implies that∫ T

0

f(µj,at , βj(φ
a
t ))dt→

∫ T

0

f(µjt , βj(φt))dt as a→ 0,

from which (1) follows, hence the result. �

Lemma 8. Let a > 0 and φ ∈ Ra such that IT (φ) <∞. For all η > 0 there
exists L > 0 and φL ∈ Ra/2 such that ‖φ − φL‖T < a/2 and IT (φL|µL) ≤
IT (φ) + η where µL ∈ Ad(φL) such that µL,jt < L, j = 1, ..., k.

Proof Let η > 0 and µ ∈ Ad(φ) such that IT (φ|µ) < IT (φ) + η/2. For
L > 0 let µL,jt = µjt ∧ L and let φL be the solution of the ODE

dφLt
dt

=
k∑
j=1

µL,jt hj, φL0 = φ0.
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It is plain that for L sufficiently large φL is close to φ in supnorm. hence
there exiosts La > 0 such that for all L > La ‖φL−φ‖ < a

2
. Since φ ∈ Ra the

above also ensures that φL ∈ Ra/2. To show the convergence of IT (φL|µL) to
IT (φ|µ) we need to remark first using the convexity of f(ν, ω) in ν that we
have

f(µL,jt , βj(φ
L
t )) ≤ f(0, βj(φ

L
t )) + f(µjt , βj(φ

L
t )).

Since φ ∈ Ra, Ca ≤ βj(φt) ≤ θ and Ca/2 ≤ βj(φ
L
t ) ≤ θ for all L > La, notice

that
∂f(ν, ω)

∂ω
= − ν

ω
+ 1

and therefore on the interval [Ka, θ] where Ka = Ca ∧ Ca/2

|f(µjt , βj(φ
L
t ))− f(µjt , βj(φt))| < C̄(µjt + 1)

for some constant C̄ > 0. Since µjt and f(µjt , βj(φt)) are integrable the
dominated convergence theorem implies that∫ T

0

f(µL,jt , βj(φ
L
t ))dt→

∫ T

0

f(µjt , βj(φt))dt as L→∞.

�
Let ε > 0 be such that T/ε ∈ N and let the φε be the polygonal approxi-

mation of φ defined for t ∈ [`ε, (`+ 1)ε) by

(2) φεt = φ`ε
(`+ 1)ε− t

ε
+ φ(`+1)ε

t− `ε
ε

.

Lemma 9. Fix η > 0. Let a ∈ (0, 1) and φ ∈ Ra such that IT (φ) < ∞.
Suppose that µ ∈ Ad(φ) such that µjt < L, j = 1, ..., k for some L > 0
and IT (φ|µ) <∞ then there exists aη such that for all a < aη there exists an
εa > 0 such that for all ε < εa, φ

ε ∈ Ra and ‖φ−φε‖T < a/2. Moreover, there
exists µε ∈ Ad(φε) such that µε,jt < L, j = 1, ..., k and IT (φε|µε) ≤ IT (φ|µ)+η.

Proof Since φ is uniformly continuous on [0, T ] there exists an εa such that
∀ε < εa

sup
|t−t′|<2ε

|φt − φt′| <
ae−a

−ν

2
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and then there exists āη be such that for all a < āη, e
−a−ν < 1. We have then

for all a < āη, ‖φ− φε‖T < a/2 and φε ∈ Ra. For t ∈]`ε, (`+ 1)ε[

dφεt
dt

=
φ(`+1)ε − φ`ε

ε
=

1

ε

k∑
j=1

hj

∫ (`+1)ε

`ε

µjtdt

therefore for all t ∈ [`ε, (`+ 1)ε[, µεt defined by

µε,jt =
1

ε

∫ (`+1)ε

`ε

µjtdt, j = 1, ..., k

is such that µε ∈ Ad(φε) and is constant over [`ε, (`+ 1)ε[. We also note that
µε,jt ≤ L for all j = 1, ..., k. Moreover if 0 < ν ≤ L and ω ≥ Ca then∣∣∣∂f(ν, ω)

∂ω

∣∣∣ = | − ν

ω
+ 1| ≤ L

Ca
+ 1.

By the assumption A3, there exists ãη > 0 such that for all a < ãη

L

Ca
+ 1 ≤ L

e−a−ν
+ 1

Then for t ∈ [`ε, (`+ 1)ε[ and a < āη, ãη

|f(µε,jt , βj(φ
ε
t))− f(µε,jt , βj(φ`ε))| ≤

1

2
C(L+ 1)a = V a

|f(µjt , βj(φt))− f(µjt , βj(φ`ε))| ≤
1

2
C(L+ 1)a = V a.

The above imply that∫ (`+1)ε

`ε

f(µε,jt , βj(φ
ε
t))dt ≤

∫ (`+1)ε

`ε

f(µε,jt , βj(φ`ε))dt+ εV a

= εf(µε,j`ε , βj(φ`ε)) + εV a

≤
∫ (`+1)ε

`ε

f(µjt , βj(φ`ε))dt+ εV a

≤
∫ (`+1)ε

`ε

f(µjt , βj(φt))dt+ 2V aε

where the second inequality come from Jensen’s inequality. Therefore

IT (φε|µε) ≤ IT (φ|µ) + 2V Ta

We can now choose a < min{āη, ãη, η/2V T} to have our result. �
The next lemma exploits a large deviation estimate for Poisson r.v.’s.
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Lemma 10. Let Y1,Y2,...be independent Poisson random variables with mean
θε. For all N ∈ N, let

Ȳ N =
1

N

N∑
n=0

Yn.

For any s > 0 there exist K, ε0 > 0 and N0 ∈ N such that taking g(ε) =

K
√

log−1(ε−1) we have

PN(Ȳ N > g(ε)) < exp{−sN}

for all ε < ε0 and N > N0.

Proof We apply the Gramer’s theorem that we can find in [1] (chapter 2)
to have that there exist N0 ∈ N such that

lim sup
N→∞

1

N
log(PN(Ȳ N > g(ε))) ≤ − inf

x≥g(ε)
Λ∗ε(x)

where Λ∗ε(x) = supλ∈R{λx− Λε(λ)} with

Λε(λ) = log(E(eλY1) = θε(eλ − 1).

We deduce that
Λ∗ε(x) = x log

x

θε
− x+ θε.

This last function is convex then it reaches his infimuim in x = θε and as
limε→0

g(ε)
θε

= +∞ there exists ε1 > 0 such that g(ε) > θε for all ε < ε1 and
then

inf
x≥g(ε)

Λ∗ε(x) = g(ε) log
g(ε)

θε
− g(ε) + θε

= g(ε) log(g(ε))− g(ε) log(θε)− g(ε) + θε

≈ K
√

log(1/ε)→∞ as ε→ 0.

Then there exists ε2 > 0 such that infx≥g(ε) Λ∗ε(x) > s for all ε < ε2.
Taking ε0 = min{ε1, ε2}, we have the lemma. �
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4 The Lower Bound

For a path φ let Fδ(φ) = {ψ : ‖ψ−φ‖T < δ}. We first prove that for all fixed
path φ and any η > 0, δ > 0 there exists Nη,δ, such that for all N > Nη,δ

(1) PN(Fδ(φ)) = Ẽ
(

∆N
T 1{ZN∈Fδ(φ)}

)
≥ exp{−N(IT,x(φ) + η)}.

To this end, it is enough to prove (1) considering φ ∈ ACT,A because the
inequality is true when IT,x(φ) =∞. We apply some lemmas of the preceding
section to show that it is enough to consider some suitable paths φ with the
µ ∈ Ad(φ).

We have the

Lemma 11. For any a > 0, ε > 0 let φ ∈ Ra for a > 0. For ε > 0 let φε be
its polygonal approximation defined by (2). Suppose that for all η > 0,δ > 0
there exists Nη,δ such that for all N ≥ Nη,δ

(2) P(‖ZN − φε‖T < δ) ≥ exp{−N(IT (φε|µε) + η)}

where µε ∈ Ad(φε) such that µε,jt ≤ L for all j = 1, ..., k for some L > 0.
Then for all fixed φ ∈ ACT,A, and any η > 0, δ > 0 there exists Nη,δ such
that for all N > Nη,δ,

PN(Fδ(φ)) = P(‖ZN − φ‖T < δ) ≥ exp{−N(IT (φ) + η)}.

Proof For δ, η > 0 let φ ∈ ACT,A such that IT (φ) <∞ then using Lemma 7
we have that there exists aη > 0 such that for all a < aη there exists φa ∈ Ra

such that ‖φ − φa‖T < a and IT (φa) ≤ IT (φ) + η/4. As IT (φa) < ∞, we
deduce from Lemma 8 that there exists L > 0 and φa,L ∈ Ra/2 such that
‖φa − φa,L‖T < a/2 and IT (φa,L|µa,L) ≤ IT (φa) + η/4 where µa,L ∈ Ad(φa,L)
such that µa,L,jt < L, j = 1, ..., k. Now we can deduce from Lemma 9 that for
all ε > 0 the polygonal approximation φa,L,ε of φa,L satisfies ‖φa,L−φa,L,ε‖T <
a/4 and IT (φa,L,ε|µa,L,ε) ≤ IT (φa,L|µa,L)+η/4 where µa,L,ε ∈ Ad(φa,L,ε) is such
that µa,L,ε,jt < L, j = 1, ..., k. Now we choose a such that 2a < δ/2 and we
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have

P
(
‖ZN − φ‖T < δ

)
≥ P

(
‖ZN − φ‖T <

δ

2
+ 2a

)
≥ P

(
‖ZN − φa‖T <

δ

2
+ a
)

≥ P
(
‖ZN − φa,L‖T <

δ

2
+
a

2

)
≥ P

(
‖ZN − φa,L,ε‖T <

δ

2

)
≥ exp{−N(IT (φa,L,ε|µa,L,ε) + η/4)}
≥ exp{−N(IT (φa,L|µa,L) + η/2)}
≥ exp{−N(IT (φa) + 3η/4)}
≥ exp{−N(IT (φ) + η)}

where we have used (2) at the 5th inequality. �
The goal of the next lemma is to show the inequality (2).

Lemma 12. For a > 0, ε > 0, let φ ∈ Ra be linear on each intervals
[`ε, (`+ 1)ε[, 0 ≤ ` ≤ T

ε
. Consider the µ ∈ Ad(φ) that is constant over these

time intervals and such that all the components of µ are bounded above by
some constant L > 0. Then we have that for any η > 0, and suitable small
δ > 0(thus the inequality stay true for all delta > 0) there exists Nη,δ ∈ N
such that for all N > Nη,δ

P(‖ZN − φ‖T < δ) ≥ exp{−N(IT (φ|µ) + η)}.

Proof Define the events Bj, j = 1, ..., k for controlling the likelihood ratio.
For ξ > 0 let

Bj =
{∣∣∣ Q∑

p=1

δp(j) log
(βj(ZN(τ−p ))

µjbτp/εcε

)
−N

T/ε∑
`=1

µj`ε log
(βj(φ`ε)

µj`ε

)
ε
∣∣∣ ≤ Nξ

}

12



We have on {ZN ∈ Fδ(φ)} ∩ (
⋂k
j=1Bj) = {ZN ∈ Fδ(φ)} ∩B

∆N
T = exp

{ Q∑
p=1

k∑
j=1

δp(j) log
(βj(ZN(τ−p ))

µj
τ−p

)
+N

∫ T

0

k∑
j=1

(µjt − βj(ZN(t)))dt
}

≥ exp
{
−N

T/ε∑
`=1

k∑
j=1

µj`ε log
( µj`ε
βj(φ`ε)

)
ε+N

∫ T

0

k∑
j=1

(µjt − βj(ZN(t)))dt− kNξ
}

≥ exp
{
−N

T/ε∑
`=1

k∑
j=1

µj`ε log
( µj`ε
βj(φ`ε)

)
ε+N

∫ T

0

k∑
j=1

(µjt − βj(φt))dt−N(kTCδ + kξ)
}

≥ exp
{
−N

T/ε∑
`=1

k∑
j=1

µj`ε log
( µj`ε
βj(φ`ε)

)
ε+N

∫ T

0

k∑
j=1

(µjt − βj(φt))dt−N.O(δ + ξ)
}

We note here that the first inequality is true because the µjt is constant
on the intervals [`ε, (` + 1)ε[ and the second one come from the Lipschitz
continuity of the rates βj. Since the integrand is continuous, we deduce from
the convergence of the Riemann sums that when ε is small enough we have

∆N
T ≥ exp

{
−N

∫ T

0

k∑
j=1

[
µjt log

( µjt
βj(φt)

)
− µjt + βj(φt)

]
dt−NO(δ + ξ)

}
≥ exp{−N(IT (φ|µ) +O(δ + ξ))} on the event {ZN ∈ Fδ(φ)} ∩B.

Then for any η > 0, there exists δ > 0 and ξ > 0 such that for N large
enough we have

∆N
T ≥ exp{−N(IT (φ|µ) + η/2)}

Moreover

PN(Fδ(φ)) = Ẽ
(

∆N
T .1{ZN∈Fδ(φ)}

)
≥ Ẽ

(
∆N
T .1{{ZN∈Fδ(φ)}∩B}

)
≥ exp{−N(IT (φ|µ) + η/2)}P̃({ZN ∈ Fδ(φ)} ∩B)

To finish this proof it is enough to show the following lemma:
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Lemma 13. Let φ ∈ Ra linear over the intervals [`ε, (`+ 1)ε[,

lim
N→∞

P̃({ZN ∈ Fδ(φ)} ∩B) = 1

Proof It suffices to prove that limN→∞ P̃N(Fδ(φ)) = 1 and that for all

j = 1, ..., k, limN→∞ P̃({ZN ∈ Fδ(φ)} ∩ Bc
j) = 0. The first limit follows from

Theorem 2 for processes under P̃N .
We now show that P̃N(Fδ(φ)∩Bc

j)→ 0 asN →∞ for 1 ≤ j ≤ k . We have
supp |ZN(τp)− φτp | < δ on {ZN ∈ Fδ(φ)} and we can choose ε small enough
such that supp |φτp − φbτp/εcε| < δ and thus supp |ZN(τp)− φbτp/εcε| < 2δ.

Note that we have on {ZN ∈ Fδ(φ)}∣∣∣ Q∑
p=1

δp(j) log
(βj(ZN(τ−p ))

µjbτp/εcε

)
−

Q∑
p=1

δp(j) log
(βj(φbτp/εcε)

µjbτp/εcε

)∣∣∣ ≤ ∣∣∣ Q∑
p=1

δp(j) log
(βj(ZN(τ−p ))

βj(φbτp/εcε)

)∣∣∣
≤ 2CQδ

Ca
,

since |βj(ZN(τ−p )) − βj(φbτp/εcε)| < 2Cδ. Let m` be the number of jumps in
the interval [(`− 1)ε, `ε[. We have∣∣∣ Q∑

p=1

δp(j) log
(βj(ZN(τ−p ))

µjbτp/εcε

)
−N

T/ε∑
`=1

µj`ε log
(βj(φ`ε)

µj`ε

)
ε
∣∣∣

≤
∣∣∣ Q∑
p=1

δp(j) log
(βj(φbτp/εcε)

µjbτp/εcε

)
−N

T/ε∑
`=1

µj`ε log
(βj(φ`ε)

µj`ε

)
ε
∣∣∣

+
∣∣∣ Q∑
p=1

δp(j) log
(βj(ZN(τ−p ))

µjbτp/εcε

)
−

Q∑
p=1

δp(j) log
(βj(φbτp/εcε)

µjbτp/εcε

)∣∣∣
≤
∣∣∣ T/ε∑
`=1

log
(βj(φ`ε)

µj`ε

)( m∑̀
p=1

δp(j)−Nµj`εε
)∣∣∣+

2CQδ

Ca
.

As the rate of jumps are constant on the interval [(` − 1)ε, `ε[ under P̃N ,∑m`
p=1 δp(j) is the number of jumps of a Poisson process Pj on this interval. So

it is a Poisson random variable with mean Nµj`εε. We deduce of Chebyshev’s
inequality that

P̃
(∣∣∣ log

(βj(φ`ε)
µj`ε

)( m∑̀
p=1

δp(j)−Nµj`εε
)∣∣∣ > Nξε

2T

)
≤

4T 2 sup`≤T/ε

(
log2

(
βj(φ`ε)

µj`ε

)
Nµj`εε

)
N2ξ2ε2

.
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As βj(φt) ≥ Ca and µjt ≤ L we have sup`≤T/ε

(
log2

(
βj(φ`ε)

µj`ε

)
µj`ε

)
≤ C(L, a).

Thus

P̃({ZN ∈ Fδ(φ)} ∩Bc
j) ≤ P̃

(∣∣∣ T/ε∑
`=1

log
(βj(φ`ε)

µj`ε

)( m∑̀
p=1

δp(j)−Nµj`εε
)∣∣∣+

2CQδ

Ca
> Nξ

)
≤ 4T 2C(L, a)

Nξ2ε
+ P̃

(2CQδ

Ca
≥ Nξ

2

)
.

The number of jumps during the period time T under P̃N is the sums
of the Poisson random variables with mean N

∑k
j=1 µ

j
`εε. we take ξ =

8Cδ
Ca

∑T/ε
`=1

∑k
j=1 µ

j
`εε where δ is chosen such that δ/Ca is small. Therefore,

as long as
∑T/ε

`=1

∑k
j=1 µ

j
`ε > 0, the law of large number for Poisson variables

give us

P̃
(2CQδ

Ca
≥ Nξ

2

)
= P̃

(Q
N
≥ 2

T/ε∑
`=1

k∑
j=1

µj`εε
)
→ 0

as N →∞. �
We finish the proof of the lower bound by the following theorem

Theorem 14. For all open set G ∈ DT,A,

lim inf
N→∞

1

N
logPN(G) ≥ − inf

φ∈G
IT (φ).

Proof It is enough to assume that (1) is true and show (14). To this end
let I = infφ∈G IT (φ) < ∞ then, for η > 0 there exists a φη ∈ G such that
IT (φη) ≤ I + η. Moreover we can choose δ = δ(φη) small enough such
that Fδ(φ

η) ⊂ G. And then PN(Fδ(φ
η)) ≤ PN(G). This implies from the

inequality (1) that for all η > 0,

lim inf
N→∞

1

N
logPN(G) ≥ lim inf

N→∞

1

N
logPN(Fδ(φ

η))

≥ −IT (φη)

≥ −I − η

and then

lim inf
N→∞

1

N
logPN(G) ≥ −I.

15



�
Specifying the starting point, we can reformulate the above result as

lim inf
N→∞

1

N
log IP(ZN,x ∈ G) ≥ − inf

φ∈G,φ0=x
IT (φ).

We need in fact the stronger statement

Theorem 15. For all open set G ∈ DT,A such that all trajectories in G remain
in a compact set which does not intersect the boundary ∂A, for any compact
set K ⊂ Å,

lim inf
N→∞

1

N
log inf

x∈K
P(ZN,x ∈ G) ≥ − sup

x∈K
inf

φ∈G,φ0=x
IT (φ).

5 The Upper Bound

For all φ ∈ DT,A and H ⊂ DT,A we define

(1) ρT (φ,H) = inf
ψ∈H
‖φ− ψ‖T

and for all δ, s > 0 we define the set

Hδ(s) = {φ ∈ DT,A : ρT (φ,Φ(s)) ≥ δ}

where Φ(s) = {φ ∈ DT,A : IT (φ) ≤ s}. We start by proving the following
lemma which will be enough to conclude the upper bound.

Lemma 16. for any δ, η, s > 0 there exists N0 ∈ N such that

(2) PN(Hδ(s)) ≤ exp{−N(s− η)}

whenever N ≥ N0.

Proof Let ZN,a(t) = Φa(Z
N(t)) then ‖ZN − ZN,a‖ < a′ and for all a small

enough,

PN(Hδ(s)) = P(ρT

(
ZN ,Φ(s)) ≥ δ

)
≤ P

(
ρT (ZN,a,Φ(s)) ≥ δ

d

)
.
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We now approximate the paths ZN by smoother paths. Let ε > 0 be such
that T/ε ∈ N. We construct a polygonal approximation to ZN,a defined for
all t ∈ [`ε, (`+ 1)ε[ by

Υt = Υa,ε
t = ZN,a(`ε)

(`+ 1)ε− t
ε

+ ZN,a((`+ 1)ε)
t− `ε
ε

.

The event {‖ZN,a − Υ‖T < δ
2d
} ∩ {ρT (ZN,a,Φ(s)) ≥ δ

d
} is contained in

{ρT (Υ,Φ(s)) ≥ δ
2d
} and

P
(
ρT (ZN,a,Φ(s)) ≥ δ

d

)
≤ P

(
ρT (Υ,Φ(s)) ≥ δ

2d

)
+ P

(
{‖ZN,a −Υ‖T ≥

δ

2d
}
)

≤ P(IT (Υ) ≥ s) + P
(
‖ZN,a −Υ‖T ≥

δ

2d

)(3)

We try now to bound P(IT (Υ) ≥ s). For any choice µ ∈ Ad(Υ) we have
IT (Υ) ≤ IT (Υ|µ) and

P(IT (Υ) ≥ s) ≤ P(IT (Υ|µ) ≥ s).

Let µjt , j = 1, ..., k be constant on the intervals [`ε, (`+ 1)ε[ and equal to

(4) µjt =
1− a/d2

Nε

[
Pj

(
N

∫ (`+1)ε

0

βj(Z
N(s)ds

)
− Pj

(
N

∫ `ε

0

βj(Z
N(s)ds

)]
Since Υ is piecewise linear, for t ∈]`ε, (`+ 1)ε[

dΥi
t

dt
=

(1− a/d2)

ε
(ZN

i ((`+ 1)ε)− ZN
i (`ε)) =

k∑
j=1

µjth
i
j.

Then the µjt given by (4) belong to Ad(Υ).
To control the change in Υ over the intervals of length ε define g(ε) =

K
√

log−1(ε−1) where K > 0 is fixed, and define a collection of events B =

{Bε}ε>0

Bε =

T/ε−1⋂
`=0

B`
ε

where

B`
ε =

{
sup

`ε≤t1,t2≤(`+1)ε

|ZN
i (t1)− ZN

i (t2)| ≤ g(ε) for i = 1, ..., d
}
.

17



We have

(5) P(IT (Υ|µ) > s) ≤ P({IT (Υ|µ) > s} ∩Bε) + P(Bc
ε)

and using the Chebyshev inequality we have that for all 0 < α < 1

(6) P({IT (Υ|µ) > s} ∩Bε) ≤
E(exp{αNIT (Υ|µ)}1Bε)

exp{αNs}
.

We need to show that the expectation above is appropriately small for α
arbitrarily close to 1. For this we first prove the following lemma

Lemma 17. For all 0 < α < 1, j = 1, ..., k and ` = 0, ..., T/ε− 1, there exist
Z−j and Z+

j which conditionally upon F` are Poisson random variables with

mean Nεβj−` = Nε(βj(Z
N(`ε)) − Cdg(ε))+ and Nεβj+` = Nε(βj(Z

N(`ε)) +
Cdg(ε)) respectively such that if

Θ`
j = exp

{
αN

∫ (`+1)ε

`ε

f(µjt , βj(Υt))dt
}
1B`ε

and

Ξ`
j = exp{2αNCdg(ε)ε} ×

[
exp

{
αNεf

((1− a/d2)Z−j
εN

, βa,j−`

)}
+ exp

{
αNεf

((1− a/d2)Z+
j

εN
, βa,j−`

)}]
with βa,j−` = βj(Υ`ε − Cdg(ε)), then

(7) Θ`
j ≤ Ξ`

j a.s

Proof On B`
ε , with ε such that g(ε) < 1 and t ∈ [`ε, (` + 1)ε], using the

Lipshitz continuity of the rates βj we have

|βj(ZN(t))− βj(ZN(`ε))| ≤ C|ZN(t)− ZN(`ε)| ≤ Cdg(ε), j = 1, ..., k

Then we have∣∣∣N ∫ (`+1)ε

pε

βj(Z
N(t))dt−Nεβj(ZN(`ε))

∣∣∣ ≤ NεCdg(ε), j = 1, ..., k.

18



As µjt , j = 1, ..., k satisfy (4), we can write

(8)
(1− a/d2)Z−j

εN
≤ µj`ε ≤

(1− a/d2)Z+
j

εN
a.s.

where for example

Z−j = Pj

(
N

∫ `ε

0

βj(Z
N(s))ds+ εN(βj(Z

N(`ε))− Cdg(ε))+

)
− Pj

(
N

∫ `ε

0

βj(Z
N(s))ds

)
Z+
j = Pj

(
N

∫ `ε

0

βj(Z
N(s))ds+ εN(βj(Z

N(`ε)) + Cdg(ε))
)
− Pj

(
N

∫ `ε

0

βj(Z
N(s))ds

)
.

Moreover it is easy to see that on B`
ε we have

max
1≤i≤d

|Υi
t −Υi

`ε| < (1− a/d2)g(ε) < g(ε) for t ∈ [`ε, (`+ 1)ε].

And then
|βj(Υt)− βj(Υ`ε)| ≤ C|Υt −Υ`ε| ≤ Cdg(ε)

we deduce that
βj(Υt) ≥ βj(Υ`ε)− Cdg(ε) = βa,j−`

and
βj(Υt) ≤ βj(Υ`ε) + Cdg(ε) = βa,j−` + 2Cdg(ε).

Thus

f(µjt , βj(Υt)) = µjt log
µjt

βj(Υt)
− µjt + βj(Υt)

≤ µjt log
µjt

βa,j−`

− µjt + βa,j−` + 2Cdg(ε) + µjt log
βa,j−`

βj(Υt)

≤ f(µjt , β
a,j−
` ) + 2Cdg(ε) since log

βa,j−`

βj(Υt)
< 0.

As µjt = µj`ε is constant over the interval [`ε, (`+ 1)ε[, we deduce that on B`
ε

(9)

exp
{
αN

∫ (`+1)ε

`ε

f(µjt , βj(Υt))dt
}
≤ exp{αNεf(µj`ε, β

a,j−
` ) + 2αNCdεg(ε)},

From (8), (9) and the convexity of f(ν, ω) in ν we deduce the inequality of
lemma. �

The next proposition gives us a bound for the conditionnal expectation
the right hand side of the inequality (7).
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Proposition 18. Let a = h(ε) =
[
− log g1/2(ε)

]− 1
ν
. For all 0 < α < 1 there

exist εα, Kα and K̃ such that for all ε ≤ εα we have

max
q=−,+

{
E
(

exp
{
αNεf

((1− a/d2)Zq
j

εN
, βa,j−`

)}∣∣∣F`)}
≤ Kα exp{NεK̃(1− α + 2h(ε) + 2dg(ε))},

where F` is the σ−algebra generated by the process ZN(.) up until time `ε.

Proof Conditionally on F`, Zq
j is a Poisson variable with mean Nεβj,q` .

Moreover we have by the definition

max{|βa,j−` − βj−` |, |β
a,j−
` − βj+` |} ≤ C̃(a+ 2dg(ε))

let ε̃ = ε/(1− a/d2) and α̃ = (1− a/d2)α then we have

E
(

exp
{
αNεf

((1− a/d2)Zq
j

εN
, βa,j−`

)}
|F`
)

= E
(

exp
{
αNεf

(Zq
j

ε̃N
, βa,j−`

)}
|F`
)

=
∑
m≥0

exp
{
αNεf

( m
ε̃N

, βa,j−`

)}(Nεβj,q` )m exp{−Nεβj,q` }
m!

=
∑
m≥0

exp
{
αNε

( m
ε̃N

log
( m

ε̃Nβa,j−`

)
− m

ε̃N
+ βa,j−`

)}(Nεβj,q` )m exp{−Nεβj,q` }
m!

≤ exp{NεC̃(a+ 2dg(ε))}
∑
m≥0

mα̃m exp{−α̃m}
m!

(Nεβa,j−` )m(1−α̃)
( βj,q`
βa,j−`

)m
exp{−Nεβa,j−` (1− α)}

≤ exp{NεC1(a+ 2dg(ε))}
∑
m≥0

mα̃m exp{−α̃m}
m!

(Nεβa,j−` )m(1−α̃)
( βj,q`
βa,j−`

)m
exp{−Nεβa,j−` (1− α̃)}.

(10)

Moreover the function v(x) = xm(1−α̃) exp{−2x(1− α̃)} reaches its maximum
at x = m/2 thus we have

xm(1−α̃) exp{−2x(1− α̃)} ≤
(m

2

)m(1−α̃)

exp{−m(1− α̃)} ∀x

In particular

(Nεβa,j−` )m(1−α̃) exp{−2Nεβa,j−` (1− α̃)} ≤
(m

2

)m(1−α̃)

exp{−m(1− α̃)}.
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Thus∑
m≥0

mα̃m exp{−α̃m}
m!

(Nεβa,j−` )m(1−α̃)
( βj,q`
βa,j−`

)m
exp{−Nεβa,j−` (1− α̃)}

≤ exp{Nεβa,j−` (1− α̃)}
∑
m≥0

mm exp{−m}
m!

(βj,q` /βa,j−`

2(1−α̃)

)m(11)

Moreover for q = − we have

βj,−`
βa,j−`

≤ βj(Z
N(`ε))

βj(ZN,a(`ε))− Cdg(ε)

If βj(Z
N(`ε)) < λ1 we have using the Assumption A2 and A3

βj,−`
βa,j−`

≤ βj(Z
N,a(`ε))

βj(ZN,a(`ε))− Cdg(ε)
≤ Ca
Ca − Cdg(ε)

≤ 1

1− Cdg(ε)

g1/2(ε)

→ 1 as ε→ 0.

If βj(Z
N(`ε)) ≥ λ1, we have

βj,−`
βa,j−`

≤ βj(Z
N(`ε))

βj(ZN(`ε))− CC̄a− Cdg(ε)
≤ λ1

λ1 − CC̄h(ε)− Cdg(ε)

→ 1 as ε→ 0.

And for q = + We have

βj,+`
βa,j−`

≤ βj(Z
N(`ε)) + Cdg(ε)

βj(ZN,a(`ε))− Cdg(ε)

If βj(Z
N(pε)) < λ1 we have using the Assumptions A2 and A3

βj,+`
βa,j−`

≤ βj(Z
N,a(`ε)) + Cdg(ε)

βj(ZN,a(`ε))− Cdg(ε)

≤ Ca + Cdg(ε)

Ca − Cdg(ε)
≤

1 + Cdg(ε)

g1/2(ε)

1− Cdg(ε)

g1/2(ε)

→ 1 as ε→ 0.
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If βj(Z
N(`ε)) ≥ λ1, we have

βj,+`
βa,j−`

≤ βj(Z
N(`ε)) + Cdg(ε)

βj(ZN(`ε))− CC̄h(ε)− Cdg(ε)

≤ λ1 + Cdg(ε)

λ1 − CC̄h(ε)− Cdg(ε)
→ 1 as ε→ 0.

Then there exists εα such that
βj,q`
βa,j,q`

< 2(1−α)/2 < 2(1−α̃)/2 for all ε < εα.

Thus for ε small enough we have

exp{Nεβa,j−` (1− α̃)}
∑
m≥0

mme−m

m!

(βj,q` /βa,j−`

2(1−α̃)

)m
≤ eNεθ(1−α̃)

∑
m≥0

mme−m

m!

( 1

2(1−α)/2

)m
(12)

= eNεθ(1−α̃)Kα.

Since the series above converges. We deduce from (10), (11) and (12) that

EN
(

exp
{
αNεf

((1− a/d2)Zq
j

εN
, βa,j−`

)}
|F`
)
≤ Kα exp{NεC2(1− α + a)} exp{NεC̃(a+ cdg(ε))}

≤ Kα exp{NεK̃(1− α + 2h(ε) + 2dg(ε))}.

�
Thus, we have

EN(Θ`
j|F`) ≤ EN(Ξ`

j|F`) ≤ 2Kα exp{NεK̃1(1− α + 2h(ε) + 4dg(ε))}.

The next lemma gives us a upper bound for the quantity

EN
(

exp{αNIT (Υ|µ)}1Bε
)

.

Lemma 19. We have the following inequality
(13)

EN
(

exp{αNIT (Υ|µ)}1Bε
)
≤ (2Kα)

kT
ε exp{kNTK̃1(1− α + h(ε) + 4dg(ε))}

Proof We know that Ξ`
j, j = 1, ..., k are independent given F`. Taking

iterative conditional expectations with respect to FT/ε−1,FT/ε−2,...,F1, we
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get that for all 0 < α < 1 and ε < εα

EN
(

exp{αNIT (Υ|µ)}1Bε
)

= EN
( T/ε−1∏

`=0

exp
{
αN

∫ (`+1)ε

`ε

∑
j

f(µjt , βj(Υt))dt
}

1B`ε

)

= EN
(
EN
( T/ε−1∏

`=0

k∏
j=1

Θ`
j|FT/ε−1

))
≤ EN

(
EN
( T/ε−1∏

`=0

k∏
j=1

Ξ`
j|FT/ε−1

))

≤ EN
( T/ε−2∏

`=0

k∏
j=1

Ξ`
jEN

( k∏
j=1

Ξ
T/ε−1
j |FT/ε−1

))

≤
T/ε−1∏
p=0

(2Kα)k exp{kNε ˜̃C(1− α + h(ε) + 4dg(ε))}

= (2Kα)
kT
ε exp{kNTK̃1(1− α + h(ε) + 4dg(ε))}

�
In the next Lemma, we give an upper bound of P(Bc

ε).

Lemma 20. There exists ε0 > 0, N0 ∈ N and K > 0 such that

(14) P(Bc
ε) <

dkT

ε
exp{−sN}

for all ε < ε0 and N > N0 where g(ε) = K
√

log−1(ε−1).

Proof For all j = 1, ..., k and ` = 1, ..., T/ε we can write∫ (`+1)ε

0

βj(Z
N
s )ds <

∫ `ε

0

βj(Z
N
s )ds+ θε.

Moreover, we have

Bc
ε =

⋃
i=1,...,d

⋃
`=1,...,T/ε

{
sup

(`−1)ε≤t1,t2≤`ε
|ZN

i (t1)− ZN
i (t2)| > g(ε)

}
.

Thus

P(Bc
ε) ≤

d∑
i=1

T/ε∑
`=1

P
{

sup
(`−1)ε≤t1,t2≤`ε

|ZN
i (t1)− ZN

i (t2)| > g(ε)
}
.
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Using (1) and noting ZN
i (.) the ith coordinate of ZN(.) we have

sup
(`−1)ε≤t1,t2≤`ε

|ZN
i (t1)− ZN

i (t2)|

= sup
(`−1)ε≤t1,t2≤`ε

∣∣∣∑
j

hij
N

[
Pj

(
N

∫ t1

0

βj(Z
N(s))ds

)
− Pj

(
N

∫ t2

0

βj(Z
N(s))ds

)]∣∣∣
≤ 1

N

∑
j

∣∣∣Pj(N ∫ `ε

0

βj(Z
N(s))ds

)
− Pj

(
N

∫ (`−1)ε

0

βj(Z
N(s))ds

)∣∣∣
≤ 1

N

∑
j

∣∣∣Pj(N ∫ (`−1)ε

0

βj(Z
N(s))ds+Nθε

)
− Pj

(
N

∫ (`−1)ε

0

βj(Z
N(s))ds

)∣∣∣
≤ 1

N

∑
j

Zj.

Where Zj j = 1, ..., k be independent Poisson random variables with means
Nθε. Then

P
{

sup
(`−1)ε≤t1,t2≤`ε

|ZN
i (t1)− ZN

i (t2)| > g(ε)
}
≤ kPN(N−1Z1 > g(ε)/k)

And it follows from lemma 10 that there exist a constants K > 0, ε0 > 0 and
N0 ∈ N such that

P
{

sup
(`−1)ε≤t1,t2≤`ε

|ZN
i (t1)− ZN

i (t2)| > g(ε)
}
≤ k exp{−sN}

For all ε < ε0 and N > N0. And then

P(Bc
ε) <

dkT

ε
exp{−sN}.

�
Now, we find a bound for P(‖ZN,a − `‖T ≥ δ/d) in (3).

Lemma 21. For all δ > 0 there exist εα > 0, N0 ∈ N such that

(15) P(‖ZN,a −Υ‖T > δ) <
dkT

ε
exp{−sN},

for all ε < εα and N > N0.
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Proof Using (1) we write for all t ∈ [`ε, (`+ 1)ε[

|ZN,a
i (t)−Υi

t| ≤
∑
j

1

N

∣∣∣Pj(N ∫ (`+1)ε

0

βj(Z
N(s))ds

)
− Pj

(
N

∫ `ε

0

βj(Z
N(s))ds

)∣∣∣
≤ 1

N

∑
j

∣∣∣Pj(N ∫ `ε

0

βj(Z
N(s))ds+Nθε

)
− Pj

(
N

∫ `ε

0

βj(Z
N(s))ds

)∣∣∣
≤ 1

N

∑
j

Zj

where the Zj are as in the proof of the last lemma. Let ε1 be the maximal ε
such that δ/kd > g(ε). Then we have from lemma 10 that for all ε < εα =
min{ε0, ε1} and N > N0

P(‖ZN,a −Υ‖T > δ) ≤ PN
( d⋃
i=1

{|ZN,a
i (t)−Υi

t| >
δ

d
} for some t ∈ [0, T ]

)
≤ T

ε
max

0≤`≤T/ε−1
P
( d⋃
i=1

{|ZN,a
i (t)−Υi

t| >
δ

d
} for some t ∈ [`ε, (`+ 1)ε[

)
≤ dkT

ε
P(Z1/N > δ/kd) ≤ dkT

ε
exp{−sN}.

�
The end of the proof of the lemma 16 can be done by using (13), (14),

(15). We have thus for all δ > 0, 0 < α < 1, ε < min{ε0, ε δ
2d
, ε1} and

a = h(ε) =
[
− log g1/2(ε)

]− 1
ν
,

P(ρT (ZN ,Φ(s)) ≥ δ) ≤ P(IT (Υ|µ) ≥ s) + P(‖ZN,a −Υ‖T ≥ δ/d)

≤ E(exp{αNIT (Υ|µ)}1Bε)
exp{αNs}

+ P(Bc
ε) + P(‖ZN,a −Υ‖T ≥ δ/2d)

≤ (2Kα)
kT
ε exp{kNTK̃1(1− α + h(ε) + 4dg(ε))}

× exp{−αNs}+
2dTk

ε
exp{−sN}.

Here, we take 1− α and ε small enough to ensure that kTK̃1(1− α+ h(ε) +
4dg(ε)) < η/4 and (1 − α)s < η/4.We also take N large enogh so that
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kT log(2Kα)/Nε < η/4 and log(2dkT/ε)/N < η/4 and we have

P(ρT (ZN ,Φ(s)) ≥ δ) ≤ exp{−N(s− 3η/4)}+ 2dT/ε. exp{−sN}
≤ dkT/ε. exp{−N(s− 3η/4)} ≤ exp{−N(s− η)}.

Thus
PN(Hδ(s)) ≤ exp{−N(s− η)}.

�
We finally have

Theorem 22. For all closed set F ∈ DT,A,

lim sup
N→∞

1

N
logPN(F ) ≤ − inf

φ∈F
IT (φ).

Proof All we have to show is that (2) implies the Theorem. To this end let
F ∈ DT,A a closed set, choose η > 0 and put s = inf{IT (φ) : φ ∈ F} − η/2.
The closed set F does not intersect the compact set Φ(s). Therefore δ =
infφ∈F infψ∈Φ(s) ‖φ − ψ‖T > 0. We use the inequality (2) to have for any
δ, η, s > 0 there exists N0 ∈ N such that for all N > N0,

PN(F ) ≤ PN(Hδ(s))

≤ exp{−N(s− η/2)}
≤ exp{−N( inf

φ∈F
IT (φ)− η)}

then

lim sup
N→∞

1

N
PN(F ) ≤ inf

φ∈F
IT (φ).

�
We need a slightly stronger version

Theorem 23. For all closed set F ∈ DT,A such that all trajectories in F
remain in a compact set which does not intersect the boundary ∂A, for any
compact set K ⊂ Å,

lim sup
N→∞

1

N
log sup

x∈K
P(ZN,x ∈ F ) ≤ − inf

x∈K
inf

φ∈F,φ0=x
IT (φ).
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6 Time of exit from a domain

We let O ( A be relatively open in A (with O = Õ ∩ A for Õ ⊂ Rd open)
and x∗ ∈ O be a stable equilibrium of (1). By a slight abuse of notation, we
say that

∂̃O := ∂Õ ∩ A
is the boundary of O. For y, z ∈ A, we define the following functionals.

V (x, z, T ) := inf
φ∈D([0,T ];A),φ(0)=x,φ(T )=z

IT,x(φ)

V (x, z) := inf
T>0

V (x, z)

V̄ := inf
z∈∂̃O

V (x∗, z).

In other words, V̄ is the minimal energy required to leave the domain O when
starting from x∗. We urge the reader to consider the two examples in section
6.4.

Assumptions B

B1 x∗ is the only stable equilibrium point of (1) in O and the solution Y x

of (1) with x = Y x(0) ∈ O satisfies

Y x(t) ∈ O for all t > 0 and lim
t→∞

Y x(t) = x∗.

B2 For a solution Y x of (1) with x = Y x(0) ∈ ∂̃O, we have

lim
t→∞

Y x(t) = x∗.

B3 V̄ <∞.

B4 For all ρ > 0 there exist constants T (ρ), ε(ρ) > 0 with T (ρ), ε(ρ) ↓ 0 as

ρ ↓ 0 such that for all z ∈ ∂̃O ∪ {x∗} and all x, y ∈ B(z, ρ) ∩ A there
exists an

φ = φ(ρ, x, y) : [0, T (ρ)]→ A with φ(0) = x, φ(T (ρ)) = y and IT (ρ)(φ) < ε(ρ).

B5 For all z ∈ ∂̃O there exists an η0 > 0 such that for all η < η0 there exists
a z̃ = z̃(η) ∈ A \ Ō with |z − z̃| > η.
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Let us shortly comment on Assumption B By B1, O is a subset of the
domain of attraction of x∗. B2 is violated by the applications we have in mind:
we are interested in situations where ∂̃O is the characteristic boundary of O,
i.e., the boundary separating two regions of attraction of equilibria of (1).
In order to relax this assumption, we require an approximation argument
later. By B3, it is possible to reach the boundary with finite energy. This
assumption is always satisfied for the epidemiological models we consider. For
z = x∗, B4 is also always satisfied in our models as the rates βj are bounded
from above and away from zero in small neighborhoods of x∗; hence, the
function φ(x, y, ρ) can, e.g., be chosen to be linear with speed one.

We are interested in the following quantity:

τN,x := τN := inf{t > 0|ZN,x(t) 6∈ O},

i.e., the first time that ZN,x exits O.

6.1 Auxiliary results

Assumptions A4 + B4 yield.

Lemma 24. Assume that Assumptions A and B hold. Then for any δ > 0,
there exists an ρ0 > 0 such that for all ρ < ρ0,

sup
z∈∂̃O∪x∗,x,y∈B(z,ρ)

inf
T∈[0,1]

V (x, y, T ) < δ.

We have moreover.

Lemma 25. Assume that Assumptions A and B hold. Then, for any η > 0
there exists a ρ0 such that for all ρ < ρ0 there exists a T0 <∞ such that

lim inf
N→∞

1

N
log inf

x∈B(x∗,ρ)
P[τN,x ≤ T0] > −(V̄ + η).

Proof Let x ∈ B(x∗, ρ). We use Lemma 24 with δ = η/4 (and we let ρ
be small enough for Lemma 24 to hold). We construct a continuous path
ψx with ψx(0) = x, ψx(tx) = x∗ (tx ≤ 1) and Itx,x(ψ

x) ≤ η/4. We then use
Assumption B3. For T1 < ∞, we can construct a path φ ∈ C[0, T1] such

that φ(0) = x∗, φ(T1) = z ∈ ∂̃O and IT1,0(φ) ≤ V̄ + η/4. Subsequently,
we use Lemma 24 and obtain a path ψ̃ with ψ̃(0) = z, ψ̃(sx) 6∈ O (s ≤ 1),
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Is,z(ψ̃) ≤ η/4 and d(z̄, O) =: ∆ > 0.1 We finally let θx be the solution of the
ODE (1) with θx(0) = z̄ on [0, 2− tx − s], consequently I2−tx−s,z̄(θ

x) = 0.
We concatenate the paths ψx, φ, ψ̃ and θx and obtain the path φx ∈

C[0, T0] (T0 = T1 + 2 independent of x) with IT0,x(φ
x) ≤ V̄ + η/2.

Finally, we define

Ψ :=
⋃

x∈B(x∗,ρ)

{
ψ ∈ D([0, T0];A)|‖ψ − φx‖ < ∆/2

}
;

hence Ψ ⊂ D([0, T0];A) is open, (φx)x∈B(x∗,ρ) ⊂ Ψ and {ZN,x ∈ Ψ} ⊂ {τN,x ≤
T0}. We now use Theorem 15.

lim inf
N→∞

1

N
log inf

x∈B(x∗,ρ)
P[ZN,x ∈ Ψ] ≥ − sup

x∈B(x∗,ρ)

inf
φ∈Ψ

IT0,x(φ)

≥ − sup
x∈B(x∗,ρ)

IT0,x(φ
x)

> −(V̄ + η).

�
We also require the following result

Lemma 26. Assume that Assumptions A and B hold. Let ρ > 0 such that
B(x∗, ρ) ⊂ O and

σN,xρ := inf{t > 0|ZN,x
t ∈ B(x∗, ρ) or ZN,x

t 6∈ O}.

Then

lim
t→∞

lim sup
N→∞

1

N
log sup

x∈O
P[σN,xρ > t] = −∞.

Proof Note first that for x ∈ B(x∗, ρ), σN,xρ = 0; we hence assume from now

on that x /∈ B(x∗, ρ). For t > 0, we define the closed set Ψt ⊂ D([0, t];A),

Ψt := {φ ∈ D([0, t];A)|φ(s) ∈ O \B(x∗, ρ) for all s ∈ [0, t]};

hence for all x,N ,
{σN,xρ > t} ⊂ {ZN,x ∈ Ψt}.

1The additional assumption B5 is required here.
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By Theorem 23, this implies for all t > 0,

lim sup
N→∞

1

N
log sup

x∈O\B(x∗,ρ)

P[σN,xρ > t] ≤ lim sup
N→∞

1

N
log sup

x∈O\B(x∗,ρ)

P[Zε,x ∈ Ψt]

≤ − inf
φ∈Ψt

It,φ(0)(φ).

It hence suffices to show that

(1) lim
t→∞

inf
φ∈Ψt

It,φ(0)(φ) =∞.

To this end, consider x ∈ O \B(x∗, ρ) and recall that Y x is the solution
of (1) (on [0, t] for all t > 0). By Assumption B2, there exists a Tx <∞ such
that Y x(Tx) ∈ B(x∗, 3ρ). We have (here B denotes the Lipschitz constant of
b),

|φx(t)−φy(t)| ≤ |x−y|+
∫ t

0

|b(φx(s))−b(φy(s))|ds ≤ +|x−y|+
∫ t

0

B|φx(s)−φy(s)|ds

and therefore by Gronwall’s inequality |Y x(Tx) − Y y(Tx)| ≤ |x − y|eTxB;
consequently, there exists a neighborhood Wx of x such that for all y ∈ Wx,
Y y(Tx) ∈ B(x∗, 3ρ). By the compactness of O \B(x∗, ρ), there exists a
finite open subcover ∪ki=1Wxi ⊃ O \B(x∗, ρ); for T := maxi=1,...,k Txi and

y ∈ O \B(x∗, ρ) this implies that Y y(s) ∈ B(x∗, 2/3ρ) for some s ≤ T .
Assume now that (1) is false. Then there exits an M <∞ such that for

all n ∈ N there exists an φn ∈ ΨnT with InT (φn) ≤ M . The function φn is
concatenated by functions φn,k ∈ ΨT and we obtain

M ≥ InT (φn) =
n∑
k=1

IT (φn,k) ≥ n min
k=1,...,n

IT (φn,k).

Hence there exists a sequence (ψk)k ⊂ ΨT with limk→∞ IT (ψk) = 0. Note
now that the set

φ(t) := {φ ∈ C[0, T ]|IT,φ(0)(φ) ≤ 1, φ(s) ∈ O \B(x∗, ρ) for all s ∈ [0, T ]} ⊂ ΨT

is compact (as a subset of (C[0, T ], ‖ · ‖∞)); hence there exists a subsequence
(ψkl)l of (ψk)k such that liml→∞ ψkl =: ψ∗ ∈ φ(t) in (C[0, T ], ‖ · ‖∞). By the
lower semi-continuity of IT , this implies

0 = lim inf
l→∞

IT (ψnl) ≥ IT (ψ∗),
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which in turn implies that ψ∗ solves (1) for x = ψ∗(0). But then, ψ∗(s) ∈
B(x∗, 2/3ρ) for some s ≤ T , a contradiction to ψ∗ ∈ ΨT . �

Lemma 27. Assume that Assumptions A and B hold. Let C ⊂ A \ O be
closed. Then,

lim
ρ→0

lim sup
N→∞

1

N
log sup

x∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,x
σρ ∈ C] ≤ − inf

z∈C
V (x∗, z).

Proof We can assume without loss of generality that infz∈C V (x∗, z) > 0
(else the assertion is trivial). For infz∈C V (x∗, z) > δ > 0, we define

V δ
C := (inf

z∈C
V (x∗, z)− δ) ∧ 1/δ > 0.

By Lemma 24, there exists a ρ0 = ρ0(δ) > 0 such that for all 0 < ρ < ρ0,

sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

V (x∗, y) < δ;

hence
(2)

inf
y∈B(x∗,3ρ)\B(x∗,2ρ), z∈C

V (y, z) ≥ inf
z∈C

V (x∗, z)− sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

V (x∗, y) > V δ
C .

For T > 0, we define the closed set ΦT ⊂ D([0, T ];A) by

ΦT := Φ := {φ ∈ D([0, T ];A)|φ(t) ∈ C for some t ∈ [0, T ]}.

We then have for y ∈ B(x∗, 3ρ) \B(x∗, 2ρ),

(3) P[ZN,y
σρ ∈ C] ≤ P[σN,yρ > T ] + P[ZN,y ∈ ΦT ].

In the following, we bound the two parts in Inequality (3) from above.
For the second part, we note first that (cf. Inequality (2))

inf
y∈B(x∗,3ρ)\B(x∗,2ρ), φ∈ΦT

IT,y(φ) ≥ inf
y∈B(x∗,3ρ)\B(x∗,2ρ), z∈C

V (y, z) > V δ
C ;

hence, we obtain by Theorem 23

lim sup
N→∞

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,y ∈ ΦT ] ≤ − inf
y∈B(x∗,3ρ)\B(x∗,2ρ), φ∈ΦT

IT,y(φ)

< −V δ
C .

(4)
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For the first part in Inequality (3), we use Lemma 26: There exists a
0 < T0 <∞ such that for all T ≥ T0

(5) lim sup
N→∞

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)

P[σN,y > T ] < −V δ
C .

We let T ≥ T0 and ρ < ρ0 and combine Inequalities (3), (4) and (5).
Hence there exists an N0 > 0 such that for all N > N0,

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,y
σρ ∈ C]

≤ 1

N
log
(

sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

P[σN,yρ > T ] + sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,y ∈ ΦT ]
)

<
1

N
log
(
2e−NV

δ
C
)

=
1

N
log 2− V δ

C ;

and

lim sup
N→∞

1

N
log sup

y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,x
σρ ∈ C] ≤ −V δ

C .

Taking the limit δ → 0 finishes the proof. �
We have moreover

Lemma 28. Assume that Assumptions A and B hold. Then, for all ρ > 0
such that B(x∗, ρ) ⊂ O and for all x ∈ O,

lim
N→∞

P[ZN,x
σρ ∈ B(x∗, ρ)] = 1.

Proof Let x ∈ O\B(x∗, ρ) (the case x ∈ B(x∗, ρ) is clear). Let furthermore
T := inf{t ≥ 0|φ(t) ∈ B(x∗, ρ/2)}. Since Y x is continuous and never reaches

∂̃O (Assumption B1), we have inft≥0 d(Y x(t), ∂̃O) =: ∆ > 0. Hence we have
the following implication:

sup
t∈[0,T ]

|ZN,x
t − Y x(t)| ≤ ∆

2
⇒ ZN,x

σρ ∈ B(x∗, ρ).

In other words,

(6) P[ZN,x
σρ /∈ B(x∗, ρ)] ≤ P

[
sup
t∈[0,T ]

|ZN,x
t − Y x(t)| > ∆

2

]
.

The right hand side of Inequality (6) converges to zero as N →∞ by Theo-
rem 2. �
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Lemma 29. Assume that Assumptions A and B hold. Then, for all ρ, c > 0,
there exists a constant T = T (c, ρ) <∞ such that

lim sup
N→∞

1

N
log sup

x∈O
P[ sup
t∈[0,T ]

|ZN,x
t − x| ≥ ρ] < −c.

Proof Let ρ, c > 0 be fixed. For T,N > 0 and x ∈ O we have

P[ sup
t∈[0,T ]

|ZN,x
t − x| ≥ ρ] = P

[
sup
t∈[0,T ]

1

N
|
∑
j

hjPj

(
N

∫ t

0

βj(Z
N,x
s )ds

)
| ≥ ρ

]
≤ P

[∑
j

Pj(Nβ̄T ) ≥ Nρh̄−1
]

≤ kP
[
P (N β̄T︸︷︷︸

=:c1(T )

) ≥ N ρh̄−1k−1︸ ︷︷ ︸
=:c2

]
(7)

for a standard Poisson process P . We now let

(8) T < T0 :=
e−1c2

2β̄
∧ e

−c/c2−1c2

β̄
and N > N0 := 1/c2 ∧

log 2k

c1(T )
.

We then obtain (note that Nc2 > 1 and e
c2
c1(T ) < 1/2 by (8))

kP
[
P (Nc1(T )) ≥ Nc2

]
= ke−Nc1(T )

∑
m≥Nc2

Nmc1(T )m

m!

< ke−Nc1(T )
∑

m≥Nc2

(
eN
)m
c1(T )m

mm
√

2πm
(9)

≤ 1

2

∑
m≥Nc2

(
eN
)m
c1(T )m(

Nc2

)m
≤ 1

2

(
e
c2
c1(T )

)Nc2
1− e

c2
c1(T )

≤
( e
c2

c1(T )
)Nc2 ;(10)

here we applied Stirling’s formula, m! >
√

2πm(m/e)m, in Inequality (9).
Finally, we have

(11)
( e
c2

c1(T )
)Nc2 =

(( e
c2

c1(T )
)−c2)−N < (ec)−N = e−Nc
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by (8). The assertion now follows by combining the Inequalities (7), (10)
and (11). �

6.2 Main results

We can now establish

Theorem 30. Assume that Assumptions A and B hold. Then, for all x ∈ O
and δ > 0,

lim
N→∞

P
[
e(V̄−δ)N < τN,x < e(V̄+δ)N

]
= 1.

Proof Upper bound of exit time:
We fix δ > 0 and apply Lemma 25 to η := δ/4. Hence, for ρ < ρ0 there

exists a T0 <∞ and an N0 > 0 such that for N > N0,

inf
x∈B(x∗,ρ)

P[τN,x ≤ T0] > e−N(V̄+η).

Furthermore, by Lemma 26 there exists a T1 <∞ and N1 > 0 such that for
all N > N1,

inf
x∈O

P[σN,xρ ≤ T1] > 1− e−2Nη.

For T := T0 + T1 and N > N0 ∨N1 ∨ 1/η, we hence obtain

qN := q := inf
x∈O

P[τN,x ≤ T ]

≥ inf
x∈O

P[σN,xρ ≤ T1] inf
y∈B(x∗,ρ)

P[τN,y ≤ T0]

> (1− e−2Nη)e−N(V̄+η)

≥ e−N(V̄+2η).(12)

This yields for k ∈ N

P[τN,x > (k + 1)T ] =
(
1− P[τN,x ≤ (k + 1)T |τN,x > kT ]

)
P[τN,x > kT ]

≤ (1− q)P[τN,x > kT ]

and hence inductively

sup
x∈O

P[τN,x > kT ] ≤ (1− q)k.
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This implies
(13)

sup
x∈O

E[τN,x] ≤ T
(
1+

∞∑
k=1

sup
x∈O

P[τN,x > kT ]
)
≤ T

∞∑
k=0

(1−q)k =
T

q

(12)

≤ TeN(V̄+2η);

by Chebychev’s Inequality we obtain

P[τN,x ≥ eN(V̄+δ)] ≤ e−N(V̄+δ)E[τN,x] ≤ Te−δN/2

which approaches zero as N →∞ as required.
Lower bound of exit time:
For ρ > 0 such that B(x∗, 3ρ) ⊂ O, we define recursively θ0 := 0 and for

m ∈ N0,

τxm := τm := inf{t ≥ θxm|Z
N,x
t ∈ B(x∗, ρ) or ZN,x

t 6∈ O},
θxm+1 := θm+1 := inf{t ≥ τxm|Z

N,x
t ∈ B(x∗, 3ρ) \B(x∗, 2ρ)},

with the convention θm+1 :=∞ if ZN
τm 6∈ O. Note that we have τN,x = τxm for

some m ∈ N0.
For fixed T0 > 0 and k ∈ N we have the following implication: If for all

m = 0, . . . , k, τm 6= τN and for all m = 1 . . . , k, τm − τm−1 > T0, then

τN > τk =
k∑

m=1

(τm − τm−1) > kT0.

In particular, we have for k := bT−1
0 eN(V̄−δ)c + 1 (note that θm − τm−1 ≤

τm − τm−1),

P[τN,x ≤ eN(V̄−δ)] ≤ P[τN,x ≤ kT0]

≤
k∑

m=0

P[τN,x = τxm] +
k∑

m=1

P[θxm − τxm−1 ≤ T0]

= P[τN,x = τx0 ] +
k∑

m=1

P[τN,x = τxm] +
k∑

m=1

P[θxm − τxm−1 ≤ T0].(14)

In the following, we bound the three parts in (14) from above. To this end,
we assume V̄ > 0 for now. The simpler case V̄ = 0 is treated below.

35



For the first part, we have

(15) P[τN,x = τx0 ] = P[ZN,x
σρ 6∈ O].

For the second part, we use the fact that ZN,x is a strong Markov process
and that the τm’s are stopping times. We obtain for m ≥ 1 and x ∈ O,

(16) P[τN,x = τxm] ≤ sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,y
σρ 6∈ O].

Similarly, we obtain for the third part for m ≥ 1 and x ∈ O,

(17) P[θxm − τxm−1 ≤ T0] ≤ sup
y∈O

P[ sup
t∈[0,T0]

|ZN,y
t − y| ≥ ρ].

The upper bounds in (16) and (17) can now be bounded by using the
Lemma 27 and 29, respectively. We fix δ > 0. By Lemma 27 (for C = A\O),
there exists a ρ = ρ(δ) > 0 and an N1 = N1(ρ, δ) > 0 such that for all
N > N1,

(18) sup
y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,y
σρ 6∈ O] ≤ exp

(
−N(V̄ − δ/2)

)
.

By Lemma 29 (for ρ = ρ(δ) as above and c = V̄ ), there exists a constant
T0 = T (ρ, V̄ ) <∞ and an N2 = N2(ρ, δ) > 0 such that for all N > N2,

(19) sup
y∈O

P[ sup
t∈[0,T0]

|ZN,y
t − y| ≥ ρ] ≤ exp

(
−N(V̄ − δ/2)

)
.

We now let N > N1 ∨N2 (and large enough for T−1
0 exp

(
N(V̄ − δ)

)
> 1

for the specific T0 above). Then by Inequality (14),

P[τN,x ≤ eN(V̄−δ)]
(15),(16),(17)

≤ P[ZN,x
σρ 6∈ O] + k sup

y∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,y
σρ 6∈ O]

+ k sup
y∈O

P[ sup
t∈[0,T0]

|ZN,y
t − y| ≥ ρ]

(18),(19)

≤ P[ZN,x
σρ 6∈ O] + 4T−1

0 exp
(
−Nδ/2

)
.(20)

The right-hand side of Inequality (20) tends to zero as ε→ 0 by Lemma 28,
finishing the proof for V̄ > 0.
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Finally, let us assume that V̄ = 0 and that the assertion is false for a
given x ∈ O. Then there exists a µ0 ∈ (0, 1/2) and a δ0 > 0 such that for all
N̄ > 0 there exists an N > N̄ with

µ0 ≤ P[τN,x ≤ e−Nδ0 ].

We fix ρ > 0 such that B(x∗, 2ρ) ⊂ O. Using the strong Markov property of
Z and the fact that σρ is a stopping time again, we have that for all N̄ > 0
there exists an N > N̄ with

µ0 ≤ P[τN,x ≤ e−Nδ0 ]

≤ P[ZN,x
σρ /∈ B(x∗, ρ)] + sup

y∈O
P[ sup
t∈[0,e−Nδ0 ]

|ZN,y
t − y| ≥ ρ].(21)

By Lemma 28, there exists an N0 such that for all N > N0,

(22) P[ZN,x
σρ 6∈ B(x∗, ρ)] ≤ µ0

2
.

We now set c := −2ε0 log µ0
2

. Then by Lemma 29, there exists a T = T (c, ρ) >
0 and an N1 > N0 such that for all N > N1,

(23) e−Nδ0 < T

and

(24) sup
y∈O

P[ sup
t∈[0,T ]

|ZN,y
t − y| ≥ ρ] ≤ e−Nc/2 <

µ0

2
.

Combining Inequalities (22), (23) and (24) yields a contradiction to Inequal-
ity (21), finishing the proof. �

6.3 The case of a characteristic boundary

Since we are mainly interested in studying the time of exit form the basin
of attraction of one local equilibrium to that of another, we need to consider
situations which do not satisfy the above assumptions. More precisely, we
want to suppress the assumptions B3 and B5, and keep assumptions B1, B2
and B4. In the examples which we have in mind, there exists a collection of
open sets {Oρ, ρ > 0} which is such that

• Oρ ⊂ O for any ρ > 0.
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• d(Oρ, ∂̃O)→ 0, as ρ→ 0.

• Oρ satisfies assumptions B1,..B5 for any ρ > 0.

Let then O be a domain satisfying assumptions (B1, B2 and B4, and we
assume that there exist a sequence {Oρ, ρ > 0} satisfying the three above
conditions.

If we define V̄ρ as V̄ , but with O replaced by Oρ, it follows from Lemma
24 that V̄ρ → V̄ as ρ → 0. By an obvious monotonicity property, the lower
bound

lim
ε→0

P
[
τN,x > e(V̄−δ)N] = 1

follows immediately from Theorem 30.

6.4 Applications

Consider the following two epidemiological models with several equilibria,
both

1. the SIV model studied by Kribs–Zaleta and Velasco–Hernández :

ds

dt
(t) = µ(1− s(t)) + αi(t)− βs(t)i(t)− ηs(t) + θv(t), t > 0,

di

dt
(t) = −µi(t) + βs(t)i(t)− αi(t) + rβv(t)i(t), t > 0,

dv

dt
(t) = −µv(t) + ηs(t)− θv(t)− rβv(t)i(t), t > 0;

2. and the S0IS1 model of Safan, Heesterbeek and Dietz

ds0

dt
(t) = µ(1− s0(t))− βs0(t)i(t), t > 0,

di

dt
(t) = −µi(t) + βs0(t)i(t)− αi(t) + rβs1(t)i(t), t > 0,

ds1

dt
(t) = −µs1(t) + αi(t)− rβs1(t)i(t), t > 0.

In those two above models, one can choose the parameters in such a
way that both the DFE and one of the endemic equilibria are locally stable.
Denote by O the basing of attraction of the endemic equilibrium. Let us
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denote by τN,x the time it takes for the stochastic system, starting from
x ∈ O, to exit O (' the time to reach the DFE). Theorem 30 extended to
the case of a characteristic boundary implies that For any x ∈ O, δ > 0,

lim
N→∞

IP(e(V−δ)N < τN,x < e(V+δ)N) = 1.

Numerical computation of V

1. In the SIV model with β = 3.6, α = 1, θ = 0.02, µ = 0.03, η = 0.3 and
r = 0.1, we get V = 0.39.

This gives rather astronomical values of τN , even for N = 100 !

2. In the S0IS1 model with β = 3, α = 5, µ = 0.015 and r = 2, we get
V = 0.0745.

This means that for N = 100, τN ' 1720, and for larger N , the value
of τN is huge !

3. We have not yet checked how V depends upon the parameters !

It would be interesting to understand how those results would be modified
if we incorporate heterogeneity (nonhomogeneous mixing, spatial dispersion,
...).
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