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Introduction

The aim of these Notes is to present the essentials of probabilistic model
of the propagation of epidemics. These are very serious issues concerning
public health. During the 14th century, the black plague killed between 30%
and 50% of Europe’s population. In 1720 a plague epidemic decimated al-
most half of the population of Marseille and one fourth of the population
of Provence. The Spanish flu in 1918–1919 killed between 30 et 100 million
humans. It resulted from a particularly virulent H1N1 strain. It has been
probably the most severe pandemic in human history so far. Even with the
progress of medicine and vaccination, several illnesses have not been eradi-
cated (e.g. malaria), and new ones have appeared (HIV, SARS, Ebola), some
of them propagating faster than in the past, due to more rapid and massive
transportation. In addition, we should not forget the hospital–acquired in-
fections (even in the cleanest hospitals of the rich part of the world), and
the serious problem of antibiotic resistance of bacteria. As a matter of fact,
the fight against epidemics is not a problem of the past for humanity. It is a
problem of the present and the future, in particular in Africa.

A little more than one hundred years ago, Sir Ronald Ross, a british
medical doctor who contributed to the understanding of malaria (together
with among others the Italian Giovanni Battista Grassi and the French Lav-
eran, Ross and Laveran won a Nobel prize) wrote : “As a matter of fact
all epidemiology, concerned as it is with variation of disease from time to
time and from place to place, must be considered mathematically (...) and
the mathematical method of treatment is really nothing but the application of
careful reasoning to the problems at hand”. As a matter of fact, Ross de-
duced from mathematical arguments conclusions concerning malaria, which
his colleagues physicians had difficulties to accept.

The main aim of these Notes is to describe some aspects of mathemat-
ical epidemiology, with an emphasis on probabilistic models. Learning this
topics is also a good way to learn mathematics and mathematical modeling.
Historically, deterministic models have received most attention. But as we
shall see, probabilistic modeling is essential. We shall also discuss some of
the associated statistical procedures.

These notes are very much inspired by the recent monograph by Diek-
mann, Heesterbeek and Britton [2]. Section 14.5 is taken from [7]. We urge
the reader to consult [5] for a complete treatment of the “interludes” below
(except for the second one).
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1 Epidemics in a closed population

We are going to assume here, and in a great part of these Notes, that the
studied epidemic concerns a population of fixed size N . This is justified
whenever, and it is often the case, the epidemic under study has a life time
which rather short, compared with the time scale of the fluctuations of the
population size. Some results will be established for large N (we shall study
the limit of the model as N →∞), others for arbitrary N .

We consider the situation where 1 or a smll number of infected individuals
are introduced in a population of susceptibles. We discuss the following
questions :

• Under which circumstances might a major epidemic start, and what is
the probability that such an event occur ?

• In case a major epidemic develops, at which speed does it progress ?

• Which fraction of the total population will be eventually hit by the epi-
demic ?

• How long will the epidemic last ?

In order to answer those questions, we first need, in order to formulate a
mathematical model of the epidemic,

• to describe the process of contacts which propagates the illness;

• to describe how the population mixes (who meets whom ?), and which
fraction of the contacts of an infected individual will be with “suscep-
tible” individuals;

• to precise the probability that such a contact yields the transmission of
the illness.

Let us first explain that our models will compartmental models, which
means that the population under consideration will be divided into compart-
ments, each individual belonging to one and only one of those compartments.
The number of compartments depends upon the choice of a particular model
and of course upon the type of illness under study. The main compartments
are :
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S like susceptible, it is the subset of those individuals which might contract
the illness at the occasion of an encounter with an infectious individual;

E like exposed, it is the subset of those individuals who are suffering from
the illness, but they are in the incubation phase, they are not conta-
gious;

I like infectious, it is the subset of those individuals who are suffering from
the illness, and are contagious;

R like removed, it is the subset of those individuals who have suffered from
the illness, and have recovered; they have acquired immunity concern-
ing the illness, they are not susceptible to contract it again. One might
include dead individuals in the compartment R.

The propagation of the illness is the result of an encounter between an in-
dividual from compartment I and an individual from compartment S. What
is the meaning of encounter ? It depends upon the illness. In case of HIV,
it means a sexual intercourse (or a contact of bloods, for example through
an exchange of syringe). In the case of malaria, it means a bite of a human
by a mosquito, where one of the two is susceptible (of type S), the other
one being infectious (of type I). In case of the flu, SARS, contact can just
mean shaking hands, or an infectious individual sneezing in the face of a
susceptible (same for the whooping cough).

Let us suppose that each individual of type I meets other individuals at
rate c (meaning that this individual meets in average c individuals per unit
time). In other words, encounters of that individual with other individuals of
the population happen according to a rate c Poisson process (see section 2 be-
low). The next question is : whom does that infectious individual meet ? We
shall assume in almost all of these Notes that the population is fully mixed,
which means that the individual who is met is chosen uniformly among all
individuals of the population except himself. Other more realistic situations
will be discussed in other courses of this school. Our assumption allows to
simplify the model, and obtain first interesting results, as we shall see.
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2 Interlude 1. The Poisson Process

This rather simple process will be central in what follows. Let λ > 0 be
given. A rate λ Poisson (counting) process is defined as

Pt = sup{k ≥ 1, Tk ≤ t},

where 0 = T0 < T1 < T2 < · · · < Tk < · · · <∞, the r.v.’s {Tk−Tk−1, k ≥ 1}
being independent and identically distributed, each following the law Exp(λ).
We have

Proposition 1. For all n ≥ 1, 0 < t1 < t2 < · · · < tn, the r.v.’s Pt1 , Pt2 −
Pt1 , . . . , Ptn − Ptn−1 are independent, and for all 1 ≤ k ≤ n, Ptk − Ptk−1

∼
Poi[λ(tk − tk−1)].

Proof Let us first prove that for all t, s > 0,

IP(Pt+s − Pt = 0|Pt = k, T1, T2, . . . , Tk) = exp(−λs).

Indeed

IP(Pt+s − Pt = 0|Pt = k, T1, T2, . . . , Tk) = IP(Tk+1 > t+ s|Pt = k, Tk)

= IP(Tk+1 − Tk > t+ s− Tk|Tk+1 − Tk > t− Tk > 0)

= IP(Tk+1 − Tk > s)

= exp(−λs).

Let now n ≥ 1. For 1 ≤ i ≤ n, we define Xn,i = 1{Pt+is/n−Pt+(i−1)s/n≥1}, and
finally Sn = Xn,1 +Xn,2 + · · ·+Xn,n. It follows from the first part of the proof
that conditionally upon σ{Pr, 0 ≤ r ≤ t}, the r.v.’s Xn,1, Xn,2, . . . , Xn,n are
i.i.d., each Bernoulli with parameter 1 − e−λs/n. Then conditionally upon
σ{Pr, 0 ≤ r ≤ t}, Sn is binomial with parameters (n, 1− e−λs/n). But Sn →
Pt+s − Pt a.s. as n → ∞, while its conditional law given σ{Pr, 0 ≤ r ≤ t}
converges towards the Poisson distribution with parameter λs, according to
the following Lemma. The Proposition follows. �

We have used the following well–known result. Recall the notation B(n, p)
for the binomial law with parameters n and p, where n ≥ 1 and 0 < p < 1.

Lemma 2. For all n ≥ 1, let Un be a B(n, pn) random variable. If npn → λ
as n→∞, with λ > 0, then Un converges in law towards Poi(λ).
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A Poisson process will be called standard if its rate is 1. If P is a standard
Poisson process, then {P (λt), t ≥ 0} is a rate λ Poisson process.

We will also use the following

Exercise 1. Let {Pt, t ≥ 0} be a rate λ Poisson process, and {Tk, k ≥ 1} the
random points of this Poisson process, such that for all t > 0, Pt = sup{k ≥
1, Tk ≤ t}. Let 0 < p < 1. Suppose that each Tk is selected with probability
p, not selected with probability 1 − p, independently of the others. Let P ′t
denote the number of selected points on the interval [0, t]. Then {P ′t , t ≥ 0}
is a rate λp Poisson process.

3 Start of an epidemic

During the initial phase of an epidemic, there are very few infectious individ-
uals, so that we can pretend that any encountered individual is susceptible.

We now need to precise the probability that an infectious individual in-
fects an encountered susceptible. Consider an individual who has been in-
fected at the initial time t = 0. He is in state E when 0 ≤ t ≤ T1, in state I
when T1 ≤ t < T2, and in state R when t ≥ T2. He will infect a susceptible
encountered at time t with probability

0, if t < T1;

p, si T1 ≤ t < T2;

0, si t ≥ T2.

We state the

Definition 3. Thee “basic reproduction number” is the quantity R0 defined
as the mean number of susceptibles whom an infectious individual infects,
during the initial phase of the epidemic.

Note that “during the initial phase of the epidemic” is an essential preci-
sion. This means “while all encountered individuals are susceptibles”. With
the above notations, if we let ∆T = T2 − T1, then

R0 = cpIE[∆T ].
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4 Interlude 2. Branching processes

We describe here the basic results concerning discrete time branching pro-
cesses, also called Bienaymé–Galton–Watson processes.

Consider an ancestor (at generation 0) who has X0 children, such that

IP(X0 = k) = qk, k ≥ 0 et
∑
k≥0

qk = 1.

Define m = IE[X0] =
∑

k≥1 k qk.
Each child of the ancestor belongs to generation 1. The i–th of those

children has himself X1,i children, where the r.v.’s {Xk,i, k ≥ 0, i ≥ 1} are
i.i.d., all having the same law as X0. If we define Zn as the number of
individuals in generation n, we have

Zn+1 =
Zn∑
i=1

Xn,i.

Let g denote the generating function of the r.v. X0, i.e.

g(s) =
∞∑
k=0

qks
k = IE[sX0 ], 0 ≤ s ≤ 1.

We have g(0) = q0, g(1) = 1, g′(1) = m, g′(s) > 0, g′′(s) > 0, for all
0 ≤ s ≤ 1 (we assume that q0 > 0 and q0 + q1 < 1). Let us compute the
generating function of Zn : gn(s) = IE[sZn ].

gn(s) = IE
[
s
∑Zn−1
i=1 Xn−1,i

]
= IE

[
IE
[
s
∑Zn−1
i=1 Xn−1,i

∣∣∣Zn−1

]]
= IE

[
g(s)Zn−1

]
= gn−1 ◦ g(s).

If we iterate this argument, we obtain

gn(s) = g ◦ · · · ◦ g(s),

and also

IP(Zn = 0) = g◦n(0)

= g
[
g◦(n−1)(0)

]
.
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Figure 1: Graphs of g in case m > 1 (left) and in case m ≤ 1 (right).

Hence if zn = IP(Zn = 0), zn = g(zn−1), and z1 = q0. We have zn ↑ z∞, where
z∞ = IP(Zn = 0 from some n on). The proof of the following Proposition is
essentially clear from Figure 1.

Proposition 4. If m ≤ 1, then IP(Zn = 0)→ 1 as n→∞, and z∞ = 1.
If m > 1, IP(Zn = 0)→ z∞ as n→∞, where z∞ is the smallest solution

of the equation z = g(z).

In the second case, with probability 1 − z∞, the branching process does
not go extinct. Let us show that Wn = m−n Zn is a martingale.

IE(Wn+1|Zn) = m−nIE

(
m−1

Zn∑
1

Xn,i|Zn

)
= m−nZn

= Wn.

One can show that Wn → W a.s. as n→∞, and moreover

{W > 0} = {the branching process does not go extinct}.

5 The start of the epidemic

The start of the epidemic behaves as a BGW process, with m = R0, since
as long as we can pretend that any encountered individual is susceptible,
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the various processes of transmission of the illness are independent. What
is the relation between z∞ and R0 ? Conditionally upon ∆T , the number
of contacts of an infectious individual at the start of the epidemic is k with
probability

e−c∆T
(c∆T )k

k!
,

each of those contacts resulting in an infection with probability p. We then
deduce from Proposition 1 and Exercise 1 that, conditionally upon ∆T , the
number of susceptibles infected by one infectious individual at the start of
the epidemic is k with probability

exp (−cp∆T )
(cp∆T )k

k!
.

We now compute z∞ in two cases.

5.1 ∆T constant

Assume that this constant value is independent of the considered individual.
Then g is the generating function of the Poisson distribution with parameter
R0 = cp∆T .

g(s) =
∞∑
k=0

e−R0
(R0s)

k

k!

= eR0(s−1).

Hence z∞ is the smallest solution of equation z = eR0(z−1).

5.2 ∆T ∼ Exp(α).

In this case, the generating function g is given as

g(s) = α

∫ ∞
0

ecph(s−1)eαhdh

=
α

α− cp(s− 1)
.

It is the generating function of a geometric distribution, in other words

IP(X0 = k) =

(
cp

cp+ α

)k
α

cp+ α
.
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Here R0 = cp/α, z∞ is the smallest solution of the equation

z =
1

1−R0(z − 1)
.

Consequently

z∞ =
1

R0

.

We see in particular that the relation between z∞ and R0 depends very much
upon the details of the model.

5.3 Remark on the speed of propagation of the epi-
demic

That speed does not depend only upon ∆T , but upon the pair (T1, T2). If we
compare the demography of a country where each women has three children
between the age of 20 and the age of 25, with that of another country where
each women has three children between the age of 35 and the age of 40,
it is rather clear that the speed at which those two populations evolve are
different.

The two quantities cp and ∆T being kept constant, we can choose two
pairs (T ∗1 , T

∗
2 ) and (T ∗∗1 , T ∗∗2 ) such that R∗0 > R∗∗0 and V ∗ < V ∗∗. We shall

discuss this issue again later.

6 The final size of the epidemic in case of no

major outbreak

Let X1, X2, . . . be i.i.d. IN–valued r.v.’s, all having the same law as X0. Let
Z denote the final size of the epidemic (i.e. the total number of individu-
als which are infected at some stage of the epidemic, including the initially
infected individual).

Proposition 5. For all k ≥ 1,

IP(Z = k) =
1

k
IP(X1 +X2 + · · ·+Xk = k − 1).
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Proof Consider the process of depth–first search of the genealogical tree of
the infected individuals. The tree is explored from the root. Suppose we have
visited k vertices. The next visit will be to the leftmost still unexplored son of
this individual, if any; otherwise to the leftmost unexplored son of the nearest
ancestor of the last visited individual. X1 is the number of sons of the root.
Xk is the number of sons of the k-th visited individual. This exploration of
the tree ends at step k if and only if X1 ≥ 1, X1 +X2 ≥ 2, X1 +X2 +X3 ≥ 3,
... X1 + X2 + · · ·Xk−1 ≥ k − 1, and X1 + X2 + · · · + Xk = k − 1. Let us
rewrite those conditions. Define

Yi = Xi − 1, i ≥ 1,

Sk = Y1 + Y2 + · · ·+ Yk.

A trajectory {Yi, 1 ≤ i ≤ k} explores a tree of size k iff the following
conditions are satisfied

(Ck) S0 = 0, S1 ≥ 0, S2 ≥ 0, . . . , Sk−1 ≥ 0, Sk = −1.

The statement of the Proposition is equivalent to

IP(Z = k) =
1

k
IP(Y1 + Y2 + · · ·+ Yk = −1).

Denote by Vk the set of sequences of k integers ≥ −1 which satisfy conditions
(Ck), and Uk the set of sequences of k integers ≥ −1 which satisfy the unique
condition Sk = −1. We will use circular permutations operating on the Yi’s.
For 1 ≤ i, ` ≤ k, let

(i+ `)k =

{
i+ `, if i+ ` ≤ k;

i+ `− k, if i+ ` > k.

For each 1 ≤ ` ≤ k, let Z`
i = Y(i+`)k , S

`
j =

∑j
i=1 Z

`
i for 1 ≤ i ≤ k. Clearly

S`k = −1 for all ` as soon as (Ck) is satisfied. On the other hand Sk ≡ S
is the only trajectory which satisfies conditions (Ck). The other S` hit the
value −1 before rank k. The Z`’s are sequences of integers ≥ −1 of length
k, whose sum equals −1. Finally to each element of Vk we have associated k
distinct elements of Uk, all having the same probability.

Reciprocally, to one element of Uk\Vk, choosing ` = argmin
1≤i≤k

Si and using

the above transformation, we deduce that S` ∈ Vk.
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Finally, to each trajectory of Vk, we associate k trajectories of Uk, who all
have the same probability, and which are such that the inverse transformation
gives back the same trajectory of Vk. The result is proved. �

Note that we have clearly

∑
k≥1

IP(Z = k)

{
= 1, if IER0 ≤ 1;

< 1, if IER0 > 1,

which is not so obvious from the Proposition.

Example 6. Suppose that the joint law of the Xi’s is Poi(µ), with 0 < µ < 1.
Then X1 + · · ·+Xk ∼ Poi(kµ), and consequently

IP(Z = k) =
1

k
IP(X1 + · · ·+Xk = k − 1)

= e−µk
(µk)k−1

k!
.

This law of Z is called the Borel distribution with parameter µ. Note that

IEZ = 1 + µ+ µ2 + · · ·

=
1

1− µ
.

Example 7. Consider now the case where Xi ∼ G(p), where we mean here
the geometric distribution where the value 0 is taken with probability p. The
law of Xi + 1 is the geometric distribution with parameter p whose support is
IN, in other words IP(Xi + 1 > k) = (1− p)k. k +X1 + · · ·+Xk follows the
negative binomial distribution with parameters (k, p). Hence

IP(Z = k) =
1

k
IP(k +X1 + · · ·+Xk = 2k − 1)

=
1

k

(
2k − 2
k − 1

)
pk(1− p)k−1

=
(2k − 2)!

k!(k − 1)!
pk(1− p)k−1.

In case p > 1/2, IEZ = (2p− 1)−1p.
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7 The case of a major outbreak

7.1 Approximation of the initial phase of the epidemic
by a branching process

In case of a major outbreak, i.e. the epidemic hits a fraction of the to-
tal population, how long can we approximate the epidemic by a branching
process ?

Suppose that the epidemic starts with a unique initial infected individual.
The probability that the first k contacts are with susceptibles is

1

(
1− 1

N

)(
1− 2

N

)
× · · · ×

(
1− k − 1

N

)
,

which tends to 1 as N → ∞, for any fixed k. Suppose now that k = kN
depends upon N . Then

1

(
1− 1

N

)(
1− 2

N

)
× · · · ×

(
1− kN − 1

N

)
= 1−

kN−1∑
j=1

j

N
+ k2

N O

(
1

N2

)
= 1− kN(kN − 1)

N
+ k2

N O

(
1

N2

)
→ 1,

if kN = ◦(
√
N). Note the number of generations needed by a BGW process

to reach the value
√
N is of the order of log(N). Indeed since m−nZn → W ,

we expect that, in case of non extinction, for n large enough, Zn is of the
order of mnW . But if mnW =

√
N , this implies that

n log(m) + log(W ) =
1

2
log(N),

n =
logN

2 logm
− logW

logm
.

This argument is of course not rigorous, since the fact that m−nZn → W
does not imply that Zn is close to mnW . In fact one can show that
(Zn)−1/2[Zn −mnW ] converges towards a centered Gaussian r.v. with vari-
ance (m2 −m)−1σ2, if σ2 is the variance of the reproduction law (provided
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that variance is finite). One can also prove a law of iterated logarithm, which
goes in the same direction. Those results justify the above (rather vague)
statement.

7.2 Total size of the epidemic

Conditionally upon ∆T , the probability that a given susceptible escapes in-
fection by a given infectious individual is exp(−cp∆T/N). Hence the prob-
ability that a given susceptible escapes infection by a given infectious indi-
vidual is

IE
[
e−cp∆T/N

]
.

The probability that a given susceptible escapes infection by a set of k infec-
tious individuals is

IE
[
e−cp(∆T1+···+∆Tk)/N

]
.

If k is of the order of N , then from the Law of Large Numbers, for N large,

∆T1 + · · ·+ ∆Tk
N

∼ k

N
IE(∆T ).

Hence the probability that a given susceptible escapes infection by a fraction
k
N

of infectious individuals is

e−cp
k
N

IE[∆T ] = e−
k
N
R0 .

Let Y denote the total number of individuals who are infected in the course
of the epidemic. Y

N
is the fraction of the population hit by the illness. As we

shall see below, the law of large numbers tells us that Y/N is approximatively
constant if N is large. The fraction of the population which escapes the illness
is σ = 1− Y/N . Since each individual is hit by the the illness with the same
probability, we have that

σ = IP(escaping infection)

= exp(−R0Y/N),

hence
σ = e−R0(1−σ).

Note that σ = S(∞)/N = s(∞), and we have already encountered this
equation.
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8 The Sellke construction

We number the individuals from 0 to N :

0 1 2 3 . . . N.

0 denotes the initially infected individual, and the individuals numbered from
1 to N are all susceptible at time 0.

Let

Q1, Q2, . . . , QN be i.i.d. r.v.’s, with the law Exp(1);

(T1,0,∆T0), (T1,1,∆T1), . . . , (T1,N ,∆TN) i.i.d. r.v.’s, with the law IPL ⊗ IPI ,
where IPL is the law of the latency period and IPI that of the infectious
period.

Individual 0 has the latency period T1,0 and the infectious period ∆T0. We
denote below

L(t) the number of individuals in state E at time t;

I(t) the number of individuals in state I at time t.

We define the cumulated force of infection experienced by an individual,
between times 0 and t as

ΛC(t) =
cp

N

∫ t

0

I(s)ds.

For i = 1, . . . , N , individual i is infected at the time when ΛC(t) achieves the
value Qi (which might be considered as the “level of resistance to infection
of individual i”). The j–th infected susceptible has the latency period T1,j

and the infectious period ∆Tj. The epidemic stops when there is no more
individual in either latent of infectious state. Then ΛC(t) does not grow
any more, ΛC(t) = ΛC(∞). The individuals such that Qi > ΛC(∞) escape
infection.

We put the Qi’s in increasing order : Q(1) < Q(2) < · · · < Q(N). It is the
order in which individuals are infected in Sellke’s model. Note that Sellke’s
model respects the durations of latency and infection. In order to show that
Sellke’s construction gives a process which has the same law as the process
defined above, it remains to verify that the rates at which infections happen
are the correct ones.
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In the initial model, we assume that each infectious meets other individ-
uals at rate c. Since each individual has the same probability of being the
one who is met, the probability that a given individual is that one is 1/N .
Hence the rate at which a given individual is met by an infectious one is c/N .
Each encounter between a susceptible and an infectious individual achieves
an infection with probability p. Hence the rate at which a given individual is
infected by a given infectious individual is cp/N . The rate at which an infec-
tious individual infects susceptibles is then cpS(t)/N . Finally the epidemic
propagates at rate cpS(t)I(t)/N .

Let us go back to Sellke’s construction. At time t, S(t) susceptibles have
not yet been infected. Each of those corresponds to a Qi > ΛC(t). At time t,
the slope of the curve which represents the function t 7→ ΛC(t) is cpI(t)/N .
If Qi > ΛC(t) = x, then

IP(Qi > x+ y|Qi > x) = e−y, hence

IP(Qi > ΛC(t+ s)|Qi > ΛC(t)) = exp

(
−cp
N

∫ t+s

t

I(r)dr

)
= exp

(
−cp
N
I(t)s

)
,

if I is constant on the interval [t, t+ s].
Consequently, conditionally upon Qi > ΛC(t),

Qi − ΛC(t) ∼ Exp
(cp
N
I(t)

)
.

The same is true for those S(t) Qi which are > ΛC(t). Then the first Qi to
come is the minimum of those, hence the waiting time after ΛC(t) for the
next infection follows the law Exp

(
cp
N
I(t)S(t)

)
, if no removal of an infectious

individual happens in the mean time, which would modify I(t).
Then in Sellke’s construction, at time t the next infection comes at rate

cp

N
I(t)S(t),

as in the above described model.
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9 Interlude 3. Generalization of the Poisson

process

A rate λ Poisson process (λ > 0) is a counting process {Qt, t ≥ 0} such that
Qt − λt is a martingale. Let {P (t), t ≥ 0} be a standard Poisson process
(i.e. with rate 1). Then P (λt)− λt is martingale, and it is not hard to show
that {P (λt), t ≥ 0} is a rate λ Poisson process. Let now {λ(t), t ≥ 0} be
a measurable and locally integrable IR+–valued function. Then the process

{Qt := P
(∫ t

0
λ(s)ds

)
, t ≥ 0} is called a rate λ(t) Poisson process. Clearly

Qt −
∫ t

0
λ(s)ds is a martingale.

Let now {λ(t), t ≥ 0} be an IR+–valued stochastic process, which at each
time t depends only upon the past of Q below. Then the counting process

Qt := P

(∫ t

0

λ(s)ds

)
, t ≥ 0

has again the property that

Qt −
∫ t

0

λ(s)ds is a martingale.

It is sometimes called “a doubly stochastic Poisson process” or a Cox process.
Of course the increments of Qt are not Poisson distributed. In particular,
the process which counts the new infections, which we have described in the
preceding section, takes the form

P

(
cp

N

∫ t

0

I(r)S(r)dr

)
.

10 LLN and CLT for the final size of the epi-

demic

Define, for 0 ≤ w ≤ N + 1, with the notation [w] = integer part of w,

J (w) =
cp

N

[w]−1∑
i=0

∆T(i).

Note that i = 0 is the index of the initially infected individual, ∆T(i) is the
latency period of individual whose resistance level is Q(i).
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J (w) is the infection pressure produced by the first [w] infected individ-
uals (including number 0). For any integer k, J is of course constant on the
interval [k, k + 1). Define for v > 0,

Q(v) =
N∑
i=1

1{Qi≤v}.

The total number of infected individuals in the epidemic is

Y = min

{
k ≥ 0; Q(k+1) >

pc

N

k∑
i=0

∆Ti

}
(1)

= min
{
k ≥ 0; Q(k+1) > J (k + 1)

}
= min {w ≥ 0; Q(J (w + 1)) = w} .

Suppose indeed that Y = i. Then according to (1),

J (j) > Q(j), hence Q(J (j)) ≥ j, ∀j ≤ i,

and J (i+ 1) < Q(i+1) hence Q(J (i+ 1)) < i+ 1.

In other words Y = i iff i is the smallest integer such that

Q(J (i+ 1)) < i+ 1, hence = i.

10.1 Law of Large Numbers

Let us index J and Q by N , the population size, so that they become JN
and QN . We now define

J N(w) = JN(Nw)

QN(v) =
QN(v)

N
.

As N →∞,

J N(w)→ cpIE(∆T )w = R0w, and

QN(v)→ 1− e−v a.s.

Hence
QN ◦ JN(w)→ 1− e−R0w.
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We have

YN
N

= min
{w
N
≥ 0; QN(JN(w + 1)) = w

}
= min

{
s ≥ 0;

1

N
QN

(
JN
(
N

(
s+

1

N

)))
= s

}
= min

{
s ≥ 0; QN

(
J N

(
s+

1

N

))
= s

}
.

Then YN/N converges a.s. towards the smallest positive solution of equation

1− e−R0x = x.

• If R0 ≤ 1, the unique solution of this equation is x = 0.

• If R0 > 1, there is another solution x > 0.

This solution 0 < x < 1 is the size (measured as the proportion of the total
population) of a “significant ” epidemic, if it goes off, which happens with
probability 1− z∞.

10.2 Central Limit Theorem

From the classical CLT, as N →∞,

√
N(J N(w)−R0w) =

pc
√
w√

Nw

[Nw]∑
i=1

[∆Ti − IE(∆Ti)]

⇒ A(w),

where A(w) ∼ N (0, p2c2Var(∆T )w). One can in fact show that, as processes

{
√
N(J N(w)−R0w), 0 ≤ w ≤ 1} ⇒ {A(w), 0 ≤ w ≤ 1},

where {A(w), 0 ≤ w ≤ 1} is a Brownian motion (i.e. a centered Gaussian
process with independent increments and continuous trajectories) such that
Var(A(w)) = r2R2

0w, where r2 = (IE∆T )−2Var(∆T ). It is easy to show
that for all k ≥ 1, all 0 < w1 < · · · < wk ≤ 1, if we define AN(w) :=√
N(J N(w)−R0w),

(AN(w1), . . . , AN(wk))⇒ (A(w1), . . . , A(wk)).
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One can show convergence in a stronger sense, but describing that would
force us to introduce more complicated mathematical notions.

Consider now QN . Again from the usual CLT,

BN(v) =
√
N(QN(v)− [1− e−v])

=
1√
N

N∑
i=1

[
1{Qi≤v} − (1− e−v)

]
⇒ B(v),

where B(v) ∼ N (0, e−v(1 − e−v)). We have again a functional convergence,
according to the Kolmogorov–Smirnov theorem, towards a time changed
Brownian bridge. In simpler words, {B(v), v ≥ 0} is a centered Gaus-
sian process with continuous trajectories whose covariance is specified by the
identity IE[B(u)B(v)] = e−u∨v − e−(u+v).

Recall that the above Law of Large Numbers has been obtained by taking
the limit in the equation

QN
(
J N

(
s+N−1

))
= s.

Making use of the two above CLTs, we get

s = 1− e−JN(s+N−1) +N−1/2BN(J N(s+N−1))

= 1− exp
(
−R0(s+N−1) +N−1/2AN(s+N−1)

)
+N−1/2BN

(
R0(s+N−1) +N−1/2AN(s+N−1)

)
.

Let s = s∗ + sNN
−1/2 + ◦(N−1/2), where s∗ satisfies e−R0s∗ = 1 − s∗. We

obtain

s∗ + sNN
−1/2 + ◦(N−1/2) = 1− exp

(
−R0s

∗ −R0sNN
−1/2 − AN(s∗)N−1/2 + ◦(N−1/2

)
+N−1/2BN(R0s

∗) + ◦(N−1/2)

= 1− e−R0s∗ +N−1/2e−R0s∗ (R0sN + AN(s∗))

+N−1/2BN(R0s
∗) + ◦(N−1/2).

We simplify this relation by making use of the equation which specifies s∗.
Multiplying the remaining terms by N1/2, we deduce

[1− (1− s∗)R0]sN = BN(R0s
∗) + (1− s∗)AN(s∗).
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Hence sN ⇒ Ξ, where

Ξ ∼ N
(

0,
s∗(1− s∗)

(1− (1− s∗)R0)2

(
1 + r2(1− s∗)R2

0

))
.

Finally YN follows asymptotically the distribution

N
(
Ns∗, N

s∗(1− s∗)
(1− (1− s∗)R0)2

(
1 + r2(1− s∗)R2

0

))
.

11 Partially vaccinated population

Suppose that a fraction v of the total population is vaccinated (with a vaccine
with 100% efficiency).

The the initial population of susceptibles is N(1− v), instead of N , since
Nv individuals have been vaccinated and are immune.

The basic reproduction number is modified. The mean number of indi-
viduals whom an infectious individual infects during the initial phase of the
epidemic is no longer R0 = cpIE[∆T ], but rather

Rv = (1− v)R0 = (1− v)cpIE[∆T ].

If Rv ≤ 1, there is no chance of a major outbreak. This inequality is
equivalent to

v ≥ 1− 1

R0

.

The right hand side of this inequality is the critical vaccination coverage.

Exercise 2. Suppose that the vaccine does not produce a 100% immunity,
but that the probability that the encounter of an infectious and a vaccinated
individual results in an infection with probability pv < p, where p is the
probability that a susceptible be infected after an encounter with an infectious.
Compute the corresponding basic reproduction number Rv′.

12 Duration of a major epidemic

Denote by TN the duration of a major epidemic. TN takes the form

TN = c1 logN + c2 + c3 logN +X,
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where the term c1 logN is the duration of the initial phase, c2 is the duration
of the intermediate phase, which is essentially independent of the size N of
the population, c3 logN is the duration of the final phase (similar to the
initial phase), and X is a random term, which takes into account mainly the
random aspects of the initial and final phases.

13 Time needed by an epidemic to go extinct,

and the critical population size

Let us go bak to the general stochastic model, with a demographic effect.
Individuals are born at the constant rate µN , each individual lives a time

Exp(µ). An individual contacts another individual of the population at rate
γ = cp, and this contact results in an infection if one of the two individuals is
infectious, and the other one is susceptible. We assume homogeneous mixing :
any infectious infects any given susceptible at rate γ/N . The durations of
the infection periods are i.i.d., with the common law Exp(α).

Hence S(t) is a birth and death process, with births at rate Nµ and deaths
at rate S(t)µ. The death rate is the same for susceptible and infectious
individuals.

The epidemic starts with a unique infected individual which is introduced
in a population of susceptibles. Its stops when there is no more infected
individual. The time when this happens is called the extinction time of the
epidemic. Note that we have made two simplifying assumptions in our model

1. the rate of births is not exactly proportional to the size of the popula-
tion, but to its equilibrium value N ;

2. the rate of contacts of an infectious with a given individual is γ/N , and
not γ divided by the exact population size.

Those simplifications allow us in particular to reduce our model to a 2–
dimensional model.

Concerning the increase of the death rate due to the epidemic, it can be
included in the rate α (a death caused by the infection is considered as a
removed).

In our model, the pair (S(t), I(t)) is a continuous time Markov process.
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Its rates matrix Q satisfies

Q(n,m),(n′,m′) =



µN, si (n′,m′) = (n+ 1,m);

µn, si (n′,m′) = (n− 1,m);
γ
N
nm, si (n′,m′) = (n− 1,m+ 1);

(α + µ)m, si (n′,m′) = (n,m− 1);

0, si (n′,m′) 6∈ {(n,m),(n+ 1,m),(n− 1,m),(n− 1,m+ 1),(n,m− 1)}.

Let

(S(t), I(t)) =

(
S(t)

N
,
I(t)

N

)
.

The mean infection time of an individual is (α + µ)−1. During that period,
and during the initial phase of the epidemic, an infectious infects at rate γ.
Then

R0 =
γ

α + µ
.

Example 8. Realistic values of the parameters. We may assume that
µ−1 = 75 years (mean life time of an individual). Hence µ = 1/75.

The mean duration of infection depends upon the illness, say it is one
week, hence 1/α = 1/52, α = 52.

For most childhood diseases, a typical value of R0 is 10. In other words

γ = R0(µ+ α) ∼ 500.

Note that in that case, µ+ α ∼ α, hence R0 ∼ γ/α.

Assume that R0 > 1, and we are interested in the duration of a major
epidemic. As N →∞, (S(t), I(t))→ (s(t), i(t)), solution of the ODE{

s′(t) = µ(1− s(t))− γs(t)i(t),
i′(t) = γs(t)i(t)− (µ+ α)i(t).

This ODE has two equilibria : the disease free equilibrium (1, 0) and the
endemic equilibrium (ŝ, ı̂), with ŝ = R−1

0 , ı̂ = (µ + α)−1µ(1 − R−1
0 ) = ε(1 −

R−1
0 ), where ε = (µ+ α)−1µ ∼ µ/α.

If R0 > 1, the disease free equilibrium is unstable, while the endemic
equilibrium is stable.

Example 9. With the above data, we have ŝ = 0, 1, ı̂ = 0, 00024.
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More generally, if R0 >> 1 and ε << 1, ı̂ is small. The ODE gives us a
clue about the time needed to reach a value close to the equilibrium. When
the equilibrium is reached, the small value of ı̂ makes it easy for the random
fluctuations to lead the epidemic to extinction.

1st case : when i is close to ı̂, the random fluctuations lead rather quickly
to extinction;

2d case : there is no quick extinction, and a second epidemic starts (which
hits much less individuals than the first one, since ŝ << s(0)).

etc.

The law of the extinction time is multimodal, with a first peak near the
time taken to reach ı̂, and a series of much smaller peaks.

Once ı̂ has been reached, we are in the situation of a quasi–stationary
distribution. The extinction time follows an exponential distribution, by
the same argument as above. Denote by {qS,I , S ≥ 0, I ≥ 1} this quasi–
stationary distribution. The parameter of this exponential distribution
equals (α + µ)

∑
S qS,1, hence

IE(TQ) =
1

(α + µ)
∑

S qS,1
=

1

µ

ε∑
S qS,1

.

How can one compute
∑

S qS,1 ? For this purpose we will approximate the
quasi–stationary distribution by a Gaussian law which we now specify.

Let us go back to our model. If (S(t), I(t)) =
(
S(t)
N
, I(t)
N

)
,

S(t) = S(0) +
1

N
P1(µNt)− 1

N
P2

(
µN

∫ t

0

S(r)dr

)
− 1

N
P3

(
γN

∫ t

0

S(r)I(r)dr

)

I(t) = I(0) +
1

N
P3

(
γN

∫ t

0

S(tr)I(r)dr

)
− 1

N
P4

(
(α + µ)N

∫ t

0

I(r)dr

)
.
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Hence

S(t) = S(0) + µt− µ
∫ t

0

S(r)dr − γ
∫ t

0

S(r)I(r)dr

+
1

N
M1(µNt)− 1

N
M2

(
µN

∫ t

0

S(r)dr

)
− 1

N
M3

(
γN

∫ t

0

S(r)I(r)dr

)

I(t) = I(0) + γ

∫ t

0

S(r)I(r)dr − (α + µ)

∫ t

0

I(r)dr

+
1

N
M3

(
γN

∫ t

0

S(r)I(r)dr

)
− 1

N
M4

(
(α + µ)N

∫ t

0

I(r)dr

)
.

The law of large numbers tells us that in the limit N →∞
s′(t) = µ(1− s(t))− γs(t)i(t)
i′(t) = γs(t)i(t)− (α + µ)i(t).

Define (
Ut
Vt

)
= lim

N→∞

√
N

(
S(t)− s(t)
I(t)− i(t)

)
.

The process

(
Ut
Vt

)
satisfies

d

(
Ut
Vt

)
=

(
−µ− γi(t) −γs(t)

γi(t) γs(t)− (α + µ)

)(
Ut
Vt

)
dt+ dMt,

where Mt is a Gaussian martingale (in fact a Brownian motion) such that

IE(MtM
′
t) =

(
µ
∫ t

0
(1 + s(r))dr + γ

∫ t
0
s(r)i(r)dr −γ

∫ t
0
s(r)i(r)dr

−γ
∫ t

0
s(r)i(r)dr (α + µ)

∫ t
0
i(r)dr + γ

∫ t
0
s(r)i(r)dr

)
.

Since we consider our processes for large time, we can replace s(r) et i(r) by
ŝ and ı̂. The above system becomes

d

(
Ut
Vt

)
=

(
−µR0 −(α + µ)

µ(R0 − 1) 0

)(
Ut
Vt

)
dt+ dMt,

IE(MtM
′
t) = t

 2µ −µ
(

1− 1
R0

)
−µ
(

1− 1
R0

)
2µ
(

1− 1
R0

)
= tΛ.
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Let

A =

(
−µR0 −(α + µ)

µ(R0 − 1) 0

)
, V =

1

R2
0

(
1
ε

+R0 −R0

−R0 R0 − 1 + εR2
0

)
.

One can show that (
Ut
Vt

)
en loi−→ N

((
0
0

)
,V
)
.

This result follows from the identities :

d

dt
IE

(
Ut
Vt

)
= AIE

(
Ut
Vt

)
= 0,

d

dt
Cov

(
Ut
Vt

)
= ACov

(
Ut
Vt

)
+ Cov

(
Ut
Vt

)
A′ + Λ.

Hence V is such that AV + VA′ = Λ. I is asymptotically Gaussian, with

mean µI = Nı̂, and variance σ2
I = N

R0−1+εR2
0

R2
0

. We want to estimte

q·,1 =
∑
S

qS,1 = lim
t→∞

IP(I(t) = 1|I(t) > 0),

which we approximate by
1
σI
ϕ
(

1−µI
σI

)
Φ
(
µI−0,5
σI

) ,
where ϕ (resp. Φ) denotes the density (resp. the distribution function)
of the law N (0, 1). Note that we have approximated IP(I(t) > 0) by
IP(I(t) > 0, 5) = 1 − Φ(σ−1(0, 5 − µI)) = Φ(σ−1

I (µI − 0, 5)). The above
ratio is approximated by

1
σI
ϕ
(
µI
σI

)
Φ
(
µI
σI

) .

Note that
µI
σI

=

√
Nε(R0 − 1)√
R0 − 1 + εR2

0

'
√
Nε2(R0 − 1).
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Hence

IE(TQ) ' 1

µ

ε

q·,1

' 1

µ

εΦ(
√
Nε2(R0 − 1))

R0√
2πN(R0−1)

exp(−Nε2(R0 − 1)/2)

'
√

2π

µ

√
Nε2(R0 − 1)

R0

eNε
2(R0−1)/2Φ(

√
Nε2(R0 − 1))

∼ exp

(
Nε2(R0 − 1)

2

)
.

The last line gives the order of magnitude of the quantity of interest.
In case of vaccination of the proportion v of the population, we must

replace N by N(1− v) an R0 by R0(1− v).

Critical population size If Nε2 is “small”, there will be no major epi-
demic.

If Nε2 is “large”, a major epidemic might happen.
Note that before vaccination, measles was endemic in Great Britain, while

the epidemic would go extinct after each outbreak in Iceland.
Notice that if Z ∼ N (0, 1), IP(|Z| ≥ 3) ' 0, 23%. But

µI
σI
'
√
Nε2(R0 − 1).

One may decide that the critical value Nc is such that (the factor 3 below is
arbitrary) √

Ncε2(R0 − 1) = 3

Nc =
9

ε2(R0 − 1)
.

If we take into account vaccination, we get

Nc =
9

(1− v)ε2(R0(1− v)− 1)
.

Example 10. In case of measles, R0 = 15, ε = 1/3750, Nc = 9, 04× 106.

Example 11. Measles with a vaccination rate v = 0, 9. Then R0 − 1 = 14
should be replaced by (1− v)(R0(1− v)− 1) = 0, 05. Hence we must multiply
the above value of Nc by the factor 14/0, 05. The result is 2531× 106.
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14 Computation of R0

14.1 The Perron–Frobenius theorem

The proof of the following classical result can be found e.g. in [8], see the
proof of Theorem 2.7 there.

Theorem 12. Let A be a square matrix, which is positive and irreducible. The
spectral radius of A is a simple eigenvalue of A, whose associated eigenvector
has all its coordinates positive.

If moreover A is aperiodic, then any other eigenvalue has a modulus which
is strictly smaller than the spectral radius.

A positive : Ai,j ≥ 0 for all i, j.
A irreducible : for all i 6= j, there exists n ≥ 1 such that (An)i,j > 0.
A aperiodic : there exists n ≥ 1 such that (An)i,j > 0 for all i, j.
The spectral radius of A is defined as the limn→∞ ‖An‖1/n (it is also the

largest modulus of all eigenvalues).

14.2 Computation of R0 in case of malaria

Female mosquitos strive for a fixed number of blood meals per unit time.
Hence the mean number of stings which a human suffers by unit time
(from female mosquitos) is proportional to the ratio of the two densities
Dmosquitos/Dhumans.

Consider an infected mosquito. Suppose that her mean infection period
is Tm, during which she stings humans at rate c. Each of those stings results
in the transmission of malaria with probability pm. The mean number of
individuals which a mosquito infects is then cpmTm.

Consider an infected human. Suppose that his mean infection time is
Th, during which he is stung at rate k, each sting resulting in the infection
of the mosquito (if susceptible) with probability ph. The mean number of
mosquitos infected by such a human is then kphTh.

Consequently

R0 = c2TmThpmph
Dmosquitos

Dhumans

.
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14.3 Computation of R0 in case of a sexually transmit-
ted illness

Suppose that the mean number of women infected by one man is 100, and
the mean number of men infected by a women is 10. Hence the transmission
matrix

K =

(
0 100
10 0

)
.

In two “generations”, the mean number of individuals of the same species
infected by a given individual is 1 000. Hence R0 =

√
1000 = spectral radius

of K = largest eigenvalue.

14.4 Computation of R0 in case of a general compart-
mental model

Consider the ODE of the model, which we linearize in the neighborhood of
I(t) = 0, since R0 is the potential of infection of one infected individual,
introduced in a fully susceptible population.

Let x be the vector which describes the sizes of the infected sub–
populations.

ẋ = (T + Σ)x,

where T is the matrix which describes the transmission of the illness by
contact; Σ is the matrix which describes the transitions from one state to
another, without contact.

Example 13. Suppose there are two latent states E1 and E2, which change
to infected resp. at rates ν1 and ν2, and those infected individuals produce by
contact E1–type individuals at rate pβ, E2–type individuals at rate (1− p)β.
In addition, each individual dies at rate µ, and the infected individuals heal
at rate α. In other words

Ė1 = pβI − (ν1 + µ)E1,

Ė2 = (1− p)βI − (ν2 + µ)E2,

İ = ν1E1 + ν2E2 − (α + µ)I.

Here

T =

0 0 pβ
0 0 (1− p)β
0 0 0

 , Σ =

−(ν1 + µ) 0 0
0 −(ν2 + µ) 0
ν1 ν2 −(α + µ)

 .
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Digression about the matrix Σ Consider a jump Markov process, with
the four 4 states (E1, E2, T, R), where

E1 = latent sate 1

E2 = latent sate 2

I = infectious

R = removed or dead.

The rates matrix of this process is given by

Q =


−(ν1 + µ) 0 ν1 µ

0 −(ν2 + µ) ν2 µ
0 0 −(α + µ) α + µ
0 0 0 0

 .

The state R is absorbing. Let

Σ = Qt =


−(ν1 + µ) 0 0 0

0 −(ν2 + µ) 0 0
ν1 ν2 −(α + µ) 0
µ µ α + µ 0

 .

Note that (etΣ)ij = (etQ)ji is the probability to be in state i at time t, starting
from state j at time 0.

In fact, if we limit ourselves to 1 ≤ i, j ≤ 3, this quantity equals also

(etΣ)ij, with Σ =

−(ν1 + µ) 0 0
0 −(ν2 + µ) 0
ν1 ν2 −(α + µ)

 .

Now for all 1 ≤ i, j ≤ 3, (etΣ)ij → 0 as t→∞. We have∫ ∞
0

(etΣ)ijdt = mean sojourn time in state i, starting from state j at time 0.

But since e∞Σ = 0, ∫ ∞
0

ΣetΣdt = −I,

and ∫ ∞
0

etΣdt = −Σ−1
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which is a matrix with positive coefficients. Note that

Tij = rate at which a j produces an i,

(−Σ−1)jk = mean sojourn time of an initial k in state j since(∫ ∞
0

etΣdt

)
jk

= IE

(∫ ∞
0

1{X(t)=j}dt
∣∣∣X(0) = k

)
,

(T (−Σ−1))ik = mean number of i’s that an initial k induces during his life time.

Hence
R0 is the spectral radius of the matrix K = −TΣ−1.

Back to the above example

−Σ−1 =


1

ν1+µ
0 0

0 1
ν2+µ

0
ν1

(ν1+µ)(α+µ)
ν2

(ν2+µ)(α+µ)
1

α+µ

 ,

K =


pβν1

(ν1+µ)(α+µ)
pβν2

(ν2+µ)(α+µ)
pβ
α+µ

(1−p)βν1
(ν1+µ)(α+µ)

(1−p)βν2
(ν2+µ)(α+µ)

(1−p)β
α+µ

0 0 0

 .

Exercise 3. The two matrices K and K ′ below give the same R0

K ′ =

(
pβν1

(ν1+µ)(α+µ)
pβν2

(ν2+µ)(α+µ)
(1−p)βν1

(ν1+µ)(α+µ)
(1−p)βν2

(ν2+µ)(α+µ)

)
,

namely

R0 =

(
pν1

ν1 + µ
+

(1− p)ν2

ν2 + µ

)
β

α + µ
= TrK ′.

There is a good reason to restrict oneself to the two states E1 and E2, which
are the states of the “start of infection”.

On the other hand, if we consider the unique states I, and compute the
mean number of I’s which a unique I induces, we recover the same R0,
without matrix or eigenvalue !

Exercise 4. Recover the above Kij by the interpretation “mean number of
i’s produced by a j”.
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Exercise 5. Computation of R0 in a model of infection of cells
by viruses

We consider the following model, where C denotes the number of target
cells, C∗ the number of infected cells, V the number of viruses. We assume
that this triplet satisfies the ODE

dC

dt
= λ− kCV − δC

dC∗

dt
= kCV − (µ+ δ)C∗

dV

dt
= pC∗ − kCV − cV.

We consider the ODE reduced to the two last equations, which we want to
put in the form

d

dt

(
C∗

V

)
= [T + Σ]

(
C∗

V

)
,

where T and −Σ−1 are positive matrices, such that R0 is the spectral radius of
the matrix −TΣ−1. We consider the three following choices for the matrices
T and Σ:

T1 =

(
0 0
p 0

)
, Σ1 =

(
−(µ+ δ) kC

0 −(kC + c)

)
;

T2 =

(
0 kC
p 0

)
, Σ2 =

(
−(µ+ δ) 0

0 −(kC + c)

)
;

T3 =

(
0 kC
0 0

)
, Σ3 =

(
−(µ+ δ) 0

p −(kC + c)

)
.

1. Justify the three decompositions, from the point of view of the biological
interpretation (the transition from 1. to 2., a virus enters a target cell,
is it a state transition of the virus, or a reproduction event ?).

2. Compute R0 in the three cases.

3. Compare the three results. What do they have in common ? Can you
explain the differences and the identities ?

Exercise 6. Flowers are cultivated in a field. Slips are withdrawn from these
flowers at rate δ. Those slips are planted in a greenhouse.
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Flowers which mature in the greenhouse are replanted in the field at rate
ρ. We admit that the system is at its equilibrium, with population sizes N1

in the field, and N2 in the greenhouse.
Mushrooms start to proliferate among the flowers, with the following

transmission mechanism. Each infected flower in the field (resp. in the
greenhouse) infects each non infected flower in the field (resp. in the green-
house) at rate α (resp. β). Moreover, each time a slip is removed from the
field, it is infected with probability p.

The infected flowers of the field (resp. of the greenhouse) die at rate µ
(resp. γ). Since we are interested in the beginning of the infection, we neglect
the fact that the sizes of the populations will not remain constant.

1. We denote by C1(t) (resp. C2(t)) the size of the field (resp. greenhouse)
population of flowers hit by the mushroom. Justify the following model
for the evolution of (C1(t), C2(t)) :

dC1

dt
(t) = α(N1 − C1(t))C1(t)− µC1(t) + ρC2(t)

dC2

dt
(t) = pδC1(t) + β(N2 − C2(t))C2(t)− (γ + ρ)C2(t).

2. Linearise the above ODE in the neighborhood of (C1, C2) = (0, 0).
Write the linearized system in the form

d

dt

(
C1

C2

)
= [T + Σ]

(
C1

C2

)
.

3. Compute the matrix K = T (−Σ−1) and its spectral radius (do not try
to simplified the formula).

4. Compute R0 for this model.

Example 14. The virus of bovine diarrhea
Assume “horizontal” transmission at rate β1, “vertical” transmission at

rate β2. Those horizontally infected go through state E before going to state
I.

A cow which was pregnant during less than 150 days before being infected,
and which heals (and then is in state Z) before delivering, gives birth to a
veal in state P . Those transmit infection, reproduce, at rates different from
the others.
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Let γ denote the healing rate, p1 the probability of ending in state Z, 1/α
the mean time during which an infected fetus is weared, p2 the probability
that an infected fetus survives, ν the transition rate from state E to state I,
µ the natural death rate, a and b the reduction of the reproduction rate and
the increase of the death rate of infected individuals. The model reads

Ė = (β1I + β2P )S − (ν + µ)E

İ = νE − (γ + µ)I

Ż = p1γI − (α + µ)Z

Ṗ = p2αZ + (µ− a)P − (µ+ b)P

We have

k12 =
β2

µ+ b
= mean number of E’s produced by a P

k22 =
µ− a
µ+ b

k11 =
ν

µ+ ν
× β1

γ + µ

k21 = mean number of P ’s produced by an E ≤ 1.

K =

(
ν

µ+ν
× β1

µ+γ
β2
µ+b

ν
µ+ν
× γp1

µ+γ
× αp2

α+µ
µ−a
µ+b

)
Exercise 7. 1. Suppose in the above example that β1 = 0. Show that in

this case

R0 =
1

2
B +

1

2

√
B2 + 4A, with

B =
µ− a
µ+ b

, A =
ν

µ+ ν

γp1

µ+ γ

αp2

α + µ

β2

µ+ b
.

2. Show that A+B 6= R0, but R0 > 1⇔ A+B > 1.

Exercise 8. Computation of R0 in Ross’ malaria model We consider
the following ODE which was proposed by Ross as a model of the transmission
of malaria.

(∗)


dx

dt
= mab1y(1− x)− γx

dy

dt
= b2a(1− y)x− µy,
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where x (resp. y) is the proportion of infected individuals among humans
(resp. among female anopheles – those mosquitos which are susceptible
of transmitting malaria – below we shall write mosquito instead of female
anopheles). We assume that the size H of the human population is constant,
as well as that V of mosquitos. The parameter m = V/H is the so–called
“density of mosquitos” (one says also “vectors”, since the mosquitos are the
vectors of malaria). a is the mean number of stings done by a mosquito per
time unit. b1 is the probability that a sting of a susceptible human by an
infected mosquito transmits the parasite, b2 the probability that a susceptible
mosquito gets infected while stinging an infected human. Mosquitos die at
rate µ, infected humans heal at rate γ.

1. Compute the mean number of susceptible humans which a given infected
mosquito (call it z) infects during her life, and the mean number of in-
fections which she generates, assuming that all humans are susceptible.

2. Assuming that almost all mosquitos are susceptible, what is the mean
number of mosquitos which the humans infected by the mosquito z will
infect, before healing ?

3. Write the linearized (in the neighborhood of (x, y) = (0, 0)) version of
equation (∗)

4. Write the linearized equation in the form

d

dt

(
x
y

)
= [T + Σ]

(
x
y

)
.

5. Compute the inverse matrix Σ−1.

6. Compute R0. Compare with the result of question 2. Discuss the notion
of “generation” in the case of malaria.

14.5 Computation of R0 in case of an epidemic on a
graph

We consider an epidemic on a configuration graph. A graph G is a pair (V , E),
where V is the set of vertices, and E the set of edges. An edge e ∈ E is a
pair (v, w) of vertices, i.e. v, w ∈ V . Our graphs will be non oriented, which
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means that (v, w) ∈ E iff (w, v) ∈ E . Given a vertex v ∈ V , we say that
another vertex w is a neighbor of v if (v, w) ∈ E . The individuals in the
population constitute the vertices of the graph, and the edges represent the
social relations between individuals

An epidemic on a graph is characterized by the fact that an infected
individual might infect his neighbors on the graph, and only them.

We consider the case of an epidemic on a configuration graph. Such a
graph is constructed as follows. To each vertex is associated a degree, which is
an integer. The degrees of various individuals are i.i.d., with the common law
(pk, k ≥ 1). The degree of a vertex is the number of edges which connect this
vertex to other vertices of the graph. At each vertex are attached a number
of half edges equal to its degree. We construct the graph by connecting each
half–edge randomly to another half–edge.

We assume that each infected individual remains infectious during a time
which is exponential with parameter ρ. During his infection period, each
half–edge attached to the corresponding vertex transmits infection at rate λ.
This implies that, conditionally upon the fact that the infected individual is
located on a vertex with degree k, and that his infection time is y, the number
of susceptibles which this individual infects follows the B(k − 1, 1 − e−λy)
distribution. Hence the mean number of such infected, conditionally upon k
and y, is (k− 1)(1− e−λy). The infection time is exponential with parameter
ρ. What is the law of the degree k ?

The first infected individual infects an individual with degree k with prob-
ability (

∑
`≥1 `p`)

−1kpk. Hence if ξ is an integer–valued r.v. with the law
(pk, k ≥ 1),

R0 =

∑
k≥1(k − 1)kpk∑

k≥1 kpk
ρ

∫ ∞
0

(1− e−λy)e−ρydy

=
IE[ξ(ξ − 1)]

IE[ξ]

(
1− ρ

λ+ ρ

)
=
g′′(1)

g′(1)

λ

λ+ ρ
,

if g denotes the generating function of the r.v. ξ.
Let us now compute the probability of extinction of the branching process

which approximates the start of the epidemic. This is a fixed point of the
generating function of the number of individuals which a typical infectious
individual infects during the start of the epidemic, in other words the solution
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of the equation

z =
ρ

g′(1)

∑
k≥1

∫ ∞
0

(
z + e−λy(1− z)

)k−1
k pk e

−ρydy

=
ρ

g′(1)

∫ ∞
0

g′
(
z + e−λy(1− z)

)
e−ρydy.

15 Law of Large Numbers

Suppose there is no latency period (T1 = 0 a.s.) and that ∆T ∼ Exp(α).
Consider a SIR model with constant population size equal to N . Let S(t)
denote the number of susceptibles at time t, I(t) the number of infectious,
R(t) the number of “removed” (i.e. “healed and immune”). We could add
a transition from R to S, and possibly suppress the compartment R. This
would produce the models SIRS and SIS.

In our model, two types of events happen :

1. infection of a susceptible (such an event decreases S(t) by one, and
increases I(t) by one); those events happen at rate

β

N
S(t)I(t), where β = cp;

2. recovery of an infectious (such an event decreases I(t) by one, and
increases R(t) by one); those events happen at rate

αI(t).

Hence the following equations, with P1(t) and P2(t) two standard mutually
independent Poisson processes :

S(t) = S(0)− P1

(
β

N

∫ t

0

S(s)I(s)ds

)
,

I(t) = I(0) + P1

(
β

N

∫ t

0

S(s)I(s)ds

)
− P2

(
α

∫ t

0

I(s)ds

)
,

R(t) = R(0) + P2

(
α

∫ t

0

I(s)ds

)
.
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Of course S(t) + I(t) + R(t) = S(0) + I(0) + R(0) = N . We can clearly
forget the third equation. Let us define sN(t) = S(t)/N , iN(t) = I(t)/N .Te
equations for the proportions of susceptibles and infectious are written

sN(t) = sN(0)− 1

N
P1

(
βN

∫ t

0

sN(r)iN(r)dr

)
,

iN(t) = iN(0) +
1

N
P1

(
βN

∫ t

0

sN(r)iN(r)dr

)
− 1

N
P2

(
αN

∫ t

0

iN(r)dr

)
.

Define the two martingales M1(t) = P1(t)− t, M2(t) = P2(t)− t. We have

sN(t) = sN(0)− β
∫ t

0

sN(r)iN(r)dr − 1

N
M1

(
βN

∫ t

0

sN(r)iN(r)dr

)
,

iN(t) = iN(0) + β

∫ t

0

sN(r)iN(r)dr − α
∫ t

0

iN(r)dr +
1

N
M1

(
βN

∫ t

0

sN(r)iN(r)dr

)
− 1

N
M2

(
αN

∫ t

0

iN(r)dr

)
.

Consider the process

MN(t) :=
1

N
M1

(
βN

∫ t

0

sN(r)iN(r)dr

)
.

Let Ft = σ{sN(r), iN(r), 0 ≤ r ≤ t}.

Lemma 15. {MN(t), t ≥ 0} is a Ft–martingale which satisfies

IE [MN(t)] = 0, IE
[
|MN(t)|2

]
=

β

N
IE

∫ t

0

sN(r)iN(r)dr.

Proof The martingale property follows from the fact that for all 0 < r < t

IE

[
P1

(
βN

∫ t

0

sN(u)iN(u)du

)
− P1

(
βN

∫ r

0

sN(u)iN(u)du

)∣∣∣∣Fr]
= βNIE

[∫ t

r

sN(u)iN(u)du

∣∣∣∣Fr] .(1)

We now establish that identity.
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For n ≥ 1, 0 ≤ u ≤ t, let

[u]n =

{
u , si u ≤ r;

r + k
n
(t− r), si r + k

n
(t− r) ≤ u < r + k+1

n
(t− r).

Let Ft′ = σ{sN(u), iN(u), 0 ≤ u ≤ t′}, and

An(t′) = βN

∫ t′

0

sN([u]n)iN([u]n)du,

Bn(t′) = αN

∫ t′

0

iN([u]n)du.

For a < b, we denote Pi((a, b]) = Pi(b)− Pi(a), and uk = r + k
n
(t− r). Note

that

IE
[
P1(An(t))− P1(An(r))

∣∣Fr] = IE

[
n∑
k=1

P1((An(uk−1), An(uk)])
∣∣Fr]

= IE

[
n∑
k=1

IE

(
P1((An(uk−1), An(uk−1) + sN(uk−1)

t− r
n

])
∣∣Fnuk−1

) ∣∣Fr]

= IE

[
n∑
k=1

{sN(uk−1)
t− r
n
}
∣∣Fr]

= IE
[
An(t)− An(r)

∣∣Fr] .
It remains to let n→∞ in order to deduce (1).

The martingale property implies that IEMN(t) = 0. Let us compute the
expectation of the square. For n ≥ 1 fixed, 0 ≤ i ≤ n, let ti = it/n. We have

IE
[
MN(t)2

]
= IE

n−1∑
i=0

|MN(ti+1)−MN(ti)|2 .

As n→∞,

n−1∑
i=0

|MN(ti+1)−MN(ti)|2 →
∑

0<r≤t

|∆MN(r)|2 a.s.,

where the above sum is taken over all jump times of MN(r), and ∆MN(r)
denotes the jump of the processMN at time r. It is not too hard to deduce
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from a uniform integrability argument that

IE
[
MN(t)2

]
= IE

∑
0<r≤t

|∆MN(r)|2 .

Indeed, as soon as ti+1 − ti ≤ 1, since 0 ≤ sN(r), iN(r) ≤ 1,

|MN(ti+1)−MN(ti)|2 ≤
2

N2
|PN(ti+1)− PN(ti)|2 + β2

(∫ ti+1

ti

sN(r)iN(r)dr

)2

≤ 2

N2
|PN(ti+1)− PN(ti)|2 + β2(ti+1 − ti)

n−1∑
i=0

|MN(ti+1)−MN(ti)|2 ≤
2

N2
|PN(t)|2 + β2T.

But ∑
0<r≤t

|∆MN(r)|2 =
1

N2
P1

(
βN

∫ t

0

sN(r)iN(r)dr

)
.

The last formula of the statement follows from the martingale property of
MN(r). �

Let

NN(t) =
1

N
M2

(
αN

∫ t

0

iN(r)dr

)
.

We show as in the above Lemma that NN(t) is a zero mean martingale, and
such that

IE
[
NN(t)2

]
=
α

N
IE

∫ t

0

iN(r)dr.

We deduce in particular from the above results that

Corollary 16. As N →∞, for all T > 0,

sup
0≤t≤T

{|MN(t)|+ |NN(t)|} → 0

in probability.

We have in fact the a.s. convergence to 0 of the same quantities !

Proposition 17. As N →∞, for all T > 0,

sup
0≤t≤T

{|MN(t)|+ |NN(t)|} → 0 a.s.
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Proof We consider the termMN . Since the proportions sN(t) et iN(t) take
values in the interval [0, 1],

sup
0≤t≤T

|MN(t)| ≤ 1

N
sup

0≤r≤βNT
|M1(r)|.

The Law of Large Numbers for Poisson processes (see below) tells us that
for all t > 0,

P1(Nt)

N
→ t a.s. as N →∞.

Note that we have pointwise convergence of a sequence of increasing func-
tions towards a continuous (and of course increasing) function. Consequently
from the second Dini Theorem, this convergence is uniform on any compact
interval, hence for all T > 0,

1

N
sup

0≤r≤βNT
|M1(r)| → 0 a.s.

�
We now prove the Law of Large Numbers for Poisson processes

Proposition 18. Let {P (t), t ≥ 0} be a rate λ Poisson process. Then

t−1P (t)→ λ a.s. as t→∞.

Proof Consider first for n ≥ 1

n−1P (n) = n−1

n∑
i=1

[P (i)− P (i− 1)]

→ λ a.s. as n→∞

from the standard Law of Large Numbers, since the r.v.’s P (i) − P (i − 1),
1 ≤ i ≤ n are i.i.d., Poisson with parameter λ. Now

t−1P (t) =
[t]

t
[t]−1P ([t]) + t−1{P (t)− P ([t])}∣∣t−1P (t)− λ

∣∣ ≤ ∣∣∣∣ [t]t [t]−1P ([t])− λ
∣∣∣∣+ t−1{P ([t] + 1)− P ([t])}.

But

t−1{P ([t] + 1)− P ([t])} = t−1P ([t] + 1)− t−1P ([t])
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is the difference of two sequences which converge towards the same limit,
hence it converges to 0 a.s. �

We can now prove

Theorem 19. Law of Large Numbers If (sN(0), iN(0))→ (s0, i0) as N →
∞, then

sup
0≤t≤T

{|sn(t)− s(t)|+ |iN(t)− i(t)]} → 0

a.s., where (s(t), i(t)), t ≥ 0} is the unique solution of the ODE
ds

dt
(t) = −βs(t)i(t), t > 0,

di

dt
(t) = βs(t)i(t)− αi(t), t > 0,

s(0) = s0, i(0) = i0.

Proof Define X(t) =

(
s(t)
i(t)

)
, XN(t) =

(
sN(t)
iN(t)

)
, XN(t) = X(t) − XN(t),

YN(t) =

(
MN(t)

NN(t)−MN(t)

)
, and finally F

(
x
y

)
=

(
−βxy

βxy − αy

)
. For 0 ≤

x, y, x′, y′ ≤ 1,∥∥∥∥F (xy
)
− F

(
x′

y′

)∥∥∥∥ ≤ C(α, β)

∥∥∥∥(xy
)
−
(
x′

y′

)∥∥∥∥ .
We have

XN(t) = XN(0) +

∫ t

0

[F (X(r))− F (XN(r))]dr + YN(t).

From Proposition 17, for all T > 0, sup0≤t≤T ‖YN(t)‖ → 0 a.s. as N → ∞.
Let εN(t) = sup0≤r≤t ‖YN(r)‖. We have

‖XN(t)‖ ≤ ‖XN(0)‖+ C(α, β)

∫ t

0

‖XN(r)‖dr + εN(t).

It then follows from Gronwall’s Lemma (see below) that

sup
0≤r≤t

‖XN(r)‖ ≤
(
‖XN(0)‖+ εN(t)

)
exp (C(α, β)t) .
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The result then follows from the assumption ‖XN(0)‖ → 0, plus the fact
that que εN(t)→ 0 a.s. as N →∞. �

Of course we can write ODEs for other epidemiological models : SEIR,
SEIRS, SIRS, SIS, SIV, Malaria, etc...

Caution ! This “Law of Large Numbers” approximation is only valid when
s, i > 0, i.e. when significant fractions of the population are infectious and
are susceptible. The ODE is of course of no help to compute the probability
that the introduction of a unique infectious results in a major epidemic.
However, as we shall see now, we can recover from the ODE the same Basic
Reproduction Number R0 and the dichotomy R0 ≤ 1, R0 > 1.

Note that at the beginning of the epidemic s(t) ∼ 1, and in this case the
equation for i(t) becomes

di

dt
(t) ' (β − α)i(t).

If β ≤ α, the solution of the ODE does not increase, when starting from a
small value. This means that there won’t be any major epidemic, if we start
from a small number of initial infected individuals. On the contrary, if β > α,
as soon as i(t) achieves a positive value, it increases. The equilibrium i = 0
is unstable. Of course the ODE gives us no indication whatsoever as to what
is the probability that, starting from a small number of infected individuals,
the epidemic reaches a stage where a significant proportion of the population
is hit.

Note that β ≤ α is equivalent to β/α ≤ 1. In the model considered in this
section, α−1 = IE∆T , and β = cp. Hence β

α
= R0 ! The essential parameter

can be read of from the ODE.
The vast majority of the literature on mathematical models in epidemi-

ology considers ODEs of the type of equations which we have just obtained.
The probabilistic point of view is more recent.

Lemma 20. Gronwall Let a, b ≥ 0 and ϕ : [0, T ]→ IR be such that for all
0 ≤ t ≤ T ,

ϕ(t) ≤ a+ b

∫ t

0

ϕ(r)dr.

Then ϕ(t) ≤ aebt.

Proof We deduce from the asumption that

e−btϕ(t)− be−bt
∫ t

0

ϕ(r)dr ≤ ae−bt,
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or in other words
d

dt

(
e−bt

∫ t

0

ϕ(r)dr

)
≤ ae−bt.

Integrating this inequality, we deduce

e−bt
∫ t

0

ϕ(r)dr ≤ a
1− e−bt

b
.

Multiplying by bebt and exploiting again the assumption yields the result. �

Exercise 9. Let us consider Ross’ model of malaria (see also exercise 8
below), which we rewrite in a stochastic form. Denote by H(t) the number of
humans who are infected by malaria, and by V (t) the number of mosquitos
who are infected by malaria at time t. Let NH denote the total number of
humans, and by NV the total number of mosquitos, which are supposed to be
constant in time. The humans (resp. the mosquitos) which are not infected
are all supposed to be susceptibles. Let m = NV /NH , a the mean number of
stings of humans by one mosquito par time unit, p1 the probability that the
sting of a susceptible human by an infected mosquito infects the human, and
by p2 the probability that a susceptible mosquito gets infected while stinging
an infected human. We assume that the infected humans (resp. mosquitos)
heal at rate γ (resp. at rate µ).

1. What is the mean number of stings that a human suffers per time unit ?

2. Given 4 mutually independent standard Poisson processes P1(t), P2(t),
P3(t) et P4(t), justify the following as a stochastic model of the propa-
gation of malaria.

H(t) = H(0) + P1

(
ap1

∫ t

0

V (s)
NH −H(s)

NH

ds

)
− P2

(
γ

∫ t

0

H(s)ds

)
V (t) = V (0) + P3

(
amp2

∫ t

0

H(s)
NV − V (s)

NV

ds

)
− P4

(
µ

∫ t

0

V (s)ds

)
.

3. Define now (with NH = N , NV = mN)

hN(t) =
H(t)

NH

, vN(t) =
V (t)

NV

.
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Write the equation for the pair (hN(t), vN(t)). Show that as N → ∞,
with m constant, (hN(t), vN(t))→ (h(t), v(t)), solution of Ross’ ODE :

dh

dt
(t) = ap1mv(t)(1− h(t))− γh(t)

dv

dt
(t) = ap2h(t)(1− v(t))− µv(t).

16 Interlude 4 : Martingales

16.1 Martingales in discrete time

(Ω,F , IP) being our standing probability space, let be given an increasing
sequence {Fn, n ≥ 1} of sub–σ–algebras of F .

Definition 21. A sequence {Xn, n ≥ 0} of r.v.’s is a called a martingale if

1. For all n ≥ 0, Xn is Fn–measurable and integrable,

2. For all n ≥ 0, IE(Xn+1|Fn) = Xn a. s.

A sub–martingale is a sequence which satisfies the first condition and
IE(Xn+1|Fn) ≥ Xn. A super–martingale is a sequence which satisfies the
first condition and IE(Xn+1|Fn) ≤ Xn.

It follows readily from Jensen’s inequality for conditional expectations
the

Proposition 22. If {Xn, n ≥ 0} is a martingale, ϕ : IR → IR a convex
function such that ϕ(Xn) is integrable for all n ≥ 0, then {ϕ(Xn), n ≥ 0} is
a sub–martingale.

We shall need the notion of stopping time

Definition 23. A stopping time τ is an IN∪{+∞}–valued r.v. which satisfies
{τ = n} ∈ Fn, for all n ≥ 0.

We have Doob’s optional sampling theorem :

Theorem 24. If {Xn, n ≥ 0} is a martingale (resp. a sub–martingale), and
τ1, τ2 two stopping times s.t. τ1 ≤ τ2 ≤ N a. s., then Xτi is Fτi measurable
and integrable, i = 1, 2 and moreover

IE(Xτ2|Fτ1) = Xτ1

(resp. IE(Xτ2|Fτ1) ≥ Xτ1).
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Proof For all A ∈ B, n ≥ 0,

{Xτi ∈ A} ∩ {τi = n} = {Xn ∈ A} ∩ {τi = n} ∈ Fn,

and moreover

|Xτi | ≤
N∑
k=1

|Xk|,

which establishes the first part of the statement.
Let A ∈ Fτ1 . Then

A ∩ {τ1 < k ≤ τ2} = A ∩ {τ1 ≤ k − 1} ∩ {τ2 ≤ k − 1}c ∈ Fk−1.

Indeed, we have

A ∩ {τ1 ≤ k − 1} = ∪k−1
j=1A ∩ {τ1 = j} ∈ Fk−1

and also {τ2 ≤ k − 1}c ∈ Fk−1.

Let ∆k = Xk −Xk−1. We have∫
A

(Xτ2 −Xτ1)dIP =

∫
A

n∑
k=1

1{τ1<k≤τ2}∆kdIP

=
n∑
k=1

∫
A∩{τ1<k≤τ2}

∆kdIP

= 0

or else ≥ 0, depending upon whether {Xn, n ≥ 0} is a martingale or a
sub–martingale. �

We have a first Doob’s inequality

Proposition 25. If X1, . . . , Xn is a sub–martingale, then for all α > 0,

IP( max
1≤i≤n

Xi ≥ α) ≤ 1

α
IE(X+

n ).

Proof Define the stopping time τ = inf{0 ≤ k ≤ n, Xk ≥ α} and let
Mk = max1≤i≤kXi. We have

{Mn ≥ α} ∩ {τ ≤ k} = {Mk ≥ α} ∈ Fk.
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Hence {Mn ≥ α} ∈ Fτ . From the optional sampling Theorem,

αIP(Mn ≥ α) ≤
∫
{Mn≥α}

XτdIP

≤
∫
{Mn≥α}

XndIP

≤
∫
{Mn≥α}

X+
n dIP

≤ IE(X+
n ).

�
We have finally a second Doob’s inequality

Proposition 26. If M1, . . . ,Mn is a martingale, then

IE

[
sup

0≤k≤n
|Mk|2

]
≤ 4IE

[
|Mn|2

]
.

Proof Let Xk = |Mk|. From Proposition 22, X1, . . . , Xn is a sub–
martingale. It follows from the proof of Proposition 25 that, with the notation
X∗k = sup0≤k≤nXk,

IP(X∗n > λ) ≤ 1

λ
IE
(
Xn1X∗n>λ

)
.

Consequently ∫ ∞
0

λIP(X∗n > λ)dλ ≤
∫ ∞

0

IE
(
Xn1X∗n>λ

)
dλ

IE

(∫ X∗n

0

λdλ

)
≤ IE

(
Xn

∫ X∗n

0

dλ

)
1

2
IE
[
|X∗n|2

]
≤ IE(XnX

∗
n)

≤
√
E(|Xn|2)

√
E(|X∗n|2),

from which the result follows. �
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16.2 Martingales in continuous time

We are now given an increasing collection {Ft, t ≥ 0} of sub–σ–algebras.

Definition 27. A process {Xt, t ≥ 0} of r.v.’s is a called a martingale if

1. for all t ≥ 0, Xt is Ft–measurable and integrable;

2. for all 0 ≤ s < t, IE(Xt|Fs) = Xs a. s.

A sub–martingale is a sequence which satisfies the first condition and
IE(Xt|Fs) ≥ Xs. A super–martingale is a sequence which satisfies the first
condition and IE(Xt|Fs) ≤ Xs.

Suppose {Mt, t ≥ 0} is a right–continuous martingale. For any n ≥ 1,
0 = t0 < t1 < · · · < tn, (Mt0 ,Mt1 , . . . ,Mtn) is a discrete time martingale, to
which Proposition 26 applies. Since

sup
0≤s≤t

|Ms| = sup
Partitions of [0,t]

sup
1≤k≤n

|Mtk |,

Consequently Proposition 26 implies readily

Proposition 28. If {Mt, t ≥ 0} is a right–continuous martingale,

IE

[
sup

0≤s≤t
|Ms|2

]
≤ 4IE

[
|Mt|2

]
.

17 Central Limit Theorem

We write (sN , iN) in the form

sN(t) = s(t) +
1√
N
UN(t),

iN(t) = i(t) +
1√
N
VN(t),
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and we look for the limiting law of the process (UN(t), VN(t)) as N →∞. It
is plain that

s(t) +
UN(t)√
N

= s(0)− β
∫ t

0

s(r)i(r)dr − β√
N

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr

− 1

N
M1

(
βN

∫ t

0

(
s(r)i(r) +

s(r)VN(r) + i(r)UN(r)√
N

+
UN(r)VN(r)

N

)
dr

)
,

i(t) +
VN(t)√
N

= i(0) + β

∫ t

0

s(r)i(r)dr +
β√
N

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr

− α
∫ t

0

i(r)dr − α√
N

∫ t

0

VN(r)dr

+
1

N
M1

(
βN

∫ t

0

(
s(r)i(r) +

s(r)VN(r) + i(r)UN(r)√
N

+
UN(r)VN(r)

N

))
− 1

N
M2

(
αN

∫ t

0

(
i(r) +

VN(r)√
N

)
dr

)
.

We use the ODE satisfied by (s(t), i(t)) in order to suppress the terms of
order 1 in the above, and multiply the remaining terms by

√
N , from which

we deduce

UN(t) = −β
∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr

− 1√
N
M1

(
βN

∫ t

0

(
s(r)i(r) +

s(r)VN(r) + i(r)UN(r)√
N

+
UN(r)VN(r)

N

)
dr

)
,

VN(t) = β

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr − α

∫ t

0

VN(r)dr

+
1√
N
M1

(
βN

∫ t

0

(
s(r)i(r) +

s(r)VN(r) + i(r)UN(r)√
N

+
UN(r)VN(r)

N

))
− 1√

N
M2

(
αN

∫ t

0

(
i(r) +

VN(r)√
N

)
dr

)
.

Let

MN
1 (t) =

1√
N
M1

(
βN

∫ t

0

(
s(r)i(r) +

s(r)VN(r) + i(r)UN(r)√
N

+
UN(r)VN(r)

N

))
,

MN
2 (t) =

1√
N
M2

(
αN

∫ t

0

(
i(r) +

VN(r)√
N

)
dr

)
.
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Let [M1]t =
∑

0≤s≤t |∆M1(s)|2, and efine analoguously [M2]t. We have

[MN
1 ]t =

1

N
P1

(
βN

∫ t

0

(
s(r)i(r) +

s(r)VN(r) + i(r)UN(r)√
N

+
UN(r)VN(r)

N

)
dr

)
,

[MN
2 ]t =

1

N
P2

(
αN

∫ t

0

(
i(r) +

VN(r)√
N

)
dr

)
.

If we define

〈MN
1 〉t = β

∫ t

0

(
s(r)i(r) +

s(r)VN(r) + i(r)UN(r)√
N

+
UN(r)VN(r)

N

)
dr,

〈MN
2 〉t = α

∫ t

0

(
i(r) +

VN(r)√
N

)
dr,

then with the notation

FNs = σ{sN(r), iN(r), 0 ≤ r ≤ t},

then we deduce by an analogous computation to that done in Lemma 15, for
0 ≤ r < t,

IE
[
|MN

1 (t)−MN
1 (r)|2

∣∣∣FNr ]
= βIE

[∫ t

r

(
s(u)i(u) +

s(u)VN(u) + i(u)UN(u)√
N

+
UN(u)VN(u)

N

)
du
∣∣∣FNr ] ,

IE
[
|MN

1 (t)−MN
1 (r)|2

∣∣∣FNr ]
= αIE

[∫ t

r

(
i(u) +

VN(u)√
N

)
du
∣∣∣FNr ] .

A priori estimate It follows from Lemma 15 that

MN
1 (t) = −UN(t)− β

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr,

MN
2 (t) =MN

1 (t)− VN(t) + β

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +

UN(r)VN(r)√
N

)
dr

− α
∫ t

0

VN(r)dr.
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Moreover from the definitions of UN(t) and VN(t),

|UN(t)| ≤ 2
√
N, |VN(t)| ≤ 2

√
N.

Hence we deduce from the formulas for 〈MN
1 〉t and 〈MN

2 〉t
IE[(MN

1 (t))2] ≤ 9βt,

IE[(MN
2 (t))2] ≤ 3αt,

IE(|MN
1 (t)|) ≤ 3

√
βt,

IE(|MN
2 (t)|) ≤

√
3αt

But

|UN(t)| ≤ β

∫ t

0

(|VN(r)|+ 3|UN(r)|) dr + |MN
1 (t)|,

|VN(t)| ≤ α

∫ t

0

|VN(r)|dr + β

∫ t

0

(|VN(r)|+ 3|UN(r)|) dr + |MN
1 (t)|+ |MN

2 (t)|.

Summing up those two inequalities, and taking advantage of Gronwall’s
Lemma and of the above estimates of the two martingales, we deduce that
for all T > 0, there exist two constants C1(α, β, T ) and C2(α, β, T ) (for the
second estimate we take the square before taking the expectation) such that

sup
N≥1, 0≤t≤T

IE (|UN(t)|+ |VN(t)|) ≤ C1(α, β, T ),

sup
N≥1, 0≤t≤T

IE
(
|UN(t)|2 + |VN(t)|2

)
≤ C2(α, β, T ).(1)

Lemma 29. For all T > 0,

sup
N≥1

IE

(
sup

0≤t≤T

[
|UN(t)|2 + |VN(t)|2

])
<∞.

Proof

sup
0≤r≤t

|UN(r)|2 ≤ 18β2t

∫ t

0

(
|VN(r)|2 + 5|UN(r)|2

)
dr + 2 sup

0≤r≤t
|M1(r)|2.

It follows from Doob’s inequality that

IE

(
sup

0≤r≤t
|M1(r)|2

)
≤ 4IE〈M1〉t

≤ 4× 9βt.

Hence the first part of the result follows from the last two inequalities com-
bined with (1). The second part of the result follows analogously. �
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Convergence in law The proof of convergence follows from the Lemma

Lemma 30. Let {P (t), t ≥ 0} be a standard Poisson process. Let M(t) =
P (t) − t. Then for any sequence {tN , N ≥ 1} of real numbers such that
N−1/2tN → 0 as N →∞,{

M(Nt+
√
NtN)√

N
, t ≥ 0

}
⇒ {B(t), t ≥ 0},

where B(t) is a standard Brownian motion.

Proof We shall only prove convergence of the finite dimensional distribu-
tions. It is in fact sufficient to prove that for any t > 0 fixed,

M(Nt+
√
NtN)√

N
⇒ B(t),

since on the left we have a process with asymptotically stationary and inde-
pendent increments, and the limit has those properties.

For each t ≥ 0, the convergence N−1/2M(Nt) ⇒ B(t) follow from the
usual Central Limit Theorem. Indeed

M(Nt)√
[Nt]

=
1√
[Nt]

[Nt]∑
i=1

[M(i)−M(i− 1)] +
M(Nt)−M([Nt])√

[Nt]
,

the r.v.’s M(i) −M(i − 1) are i.i.d. centered with variance 1, and the last
term above converges in probability to 0 as N →∞, hence

M(Nt)√
[Nt]

→ N (0, 1),

M(Nt)√
N

=

√
[Nt]√
N
× M(Nt)√

[Nt]

⇒ B(t),

where B(t) follows the law N (0, t). Now

M(Nt+
√
NtN)√

N
=
M(Nt)√

N
+
M(Nt+

√
NtN)−M(Nt)√
N

,
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and it remains to prove that

M(Nt+
√
NtN)−M(Nt)√
N

→ 0

in probability, as n→∞. But

IP

(∣∣∣∣∣M(Nt+
√
NtN)−M(Nt)√
N

∣∣∣∣∣ > ε

)
≤ 1

Nε2
Var

(
M(Nt+

√
NtN)−M(Nt)

)
=

√
N tN
Nε2

→ 0,

provided N−1/2tN → 0 as N →∞. �
It remains to show :

Proposition 31. Lemma 30 remains true with tN random, provided
N−1/2IE[|tN |]→ 0 as N →∞.

Proof We need to show that

M(Nt+
√
NtN)−M(Nt)√
N

→ 0

in probability, as N →∞.

IP

(
|tN |√
N
> η

)
≤ 1

η

IE|tN |√
N

→ 0,

as N →∞. Let ε > 0 be fixed. We have{
|M(Nt+

√
NtN)−M(Nt)|√
N

> ε

}

⊂

{
|M(Nt+

√
NtN)−M(Nt)|√
N

> ε

}
∩
{

0 ≤ tN ≤ η
√
N
}

⋃{
|M(Nt+

√
NtN)−M(Nt)|√
N

> ε

}
∩
{
−η
√
N ≤ tN ≤ 0

}⋃{
|tN |√
N
> η

}
.
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The probability of the first event on the right can be estimated as follows,
using Doob’s inequality

IP

(
sup

0≤s≤Nη

|M(Nt+ s)−M(Nt)|√
N

> ε

)
≤ 4

Nε2
IE
(
|M(N(t+ η))−M(Nt)|2

)
≤ 4η

ε2
.

Estimating analogously the probability of the second event, and that of the
third one by Chebychef’s inequality, we get

IP

(
|M(Nt+

√
NtN)−M(Nt)|√
N

> ε

)
≤ 8η

ε2
+

IE|tN |
η
√
N
.

Let η = ε3/16, from which we deduce

IP

(
|M(Nt+

√
NtN)−M(Nt)|√
N

> ε

)
≤ ε

2
+

16IE|tN |
ε3
√
N

.

Then if N is large enough such that IE|tN |√
N
≤ ε4/32,

IP

(
|M(Nt+

√
NtN)−M(Nt)|√
N

> ε

)
≤ ε.

The Proposition follows since this result holds for any ε > 0. �
We use this Proposition first with M = M1, t being replaced by

β
∫ t

0
s(r)i(r)dr and

tN = β

∫ t

0

(
s(r)VN(r) + i(r)UN(r) +N−1/2UN(r)VN(r)

)
dr

which satisfies IE|tN | ≤ C, then with M = M2, t being replaced by α
∫ t

0
i(r)dr

and tN = α
∫ t

0
VN(r)dr, which again satisfies IE|tN | ≤ C. In order to get the

joint law of both limits, we exploit the fact that the product M1(t)M2(t) is
a martingale.

Moreover one can rather easily show that the sequence
{(UN(t), VN(t)), t ≥ 0} is tight as a process whose trajectories belong
to C([0,+∞); IR2). Hence along a subsequence

{(UN(t), VN(t)), t ≥ 0} ⇒ {(U(t), V (t)), t ≥ 0},
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where the limit satisfies

U(t) = −β
∫ t

0

[s(r)V (r) + i(r)U(r)] dr +
√
β

∫ t

0

√
s(r)i(r)dB1(r),

V (t) = β

∫ t

0

[s(r)V (r) + i(r)U(r)] dr − α
∫ t

0

V (r)dr −
√
β

∫ t

0

√
s(r)i(r)dB1(r)

+
√
α

∫ t

0

√
i(r)dB2(r).

The process {(U(t), V (t)), t ≥ 0} is a Gaussian process of the Ornstein–
Uhlenbeck type.

The law of the limit is uniquely determined. Hence the whole sequence
converges.

Exercise 10. Let us go back to Exercise 9. We now define XN(t) and

YN(t) by letting hN(t) = h(t) + XN (t)√
N

, vN(t) = v(t) + YN (t)√
N

. Write

the equation satisfied by the Ornstein–Uhlenbeck process (X(t), Y (t)) =
limN→∞(XN(t), YN(t)).

18 Large Deviations

We consider the vector of proportions in our model as

(1) ZN(t) = z0 +
1

N

k∑
j=1

hjPj

(∫ t

0

Nβj(Z
N(s))ds

)
.

Again, the Pj’s are mutually independent standard Poisson processes. The
process ZN(t) lives in the set

A = {z ∈ IRd
+;

d∑
i=1

zi ≤ 1}.

We shall denote by DT,A the set of functions defined on [0, T ] with values
in A which are right continuous with left limits at every t, and ACT,A will
denote the subset of absolutely continuous functions. For φ, ψ ∈ DT,A, we
define ‖φ− ψ‖T = sup0≤t≤T |φt − ψt|. Let IPN denote the law of ZN , i.e.

IPN(B) = IP(ZN ∈ B), ∀B ∈ B,
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where B denote the Borel σ–field of DT,A.
We want to show that the collection of probability measures {IPN , N ≥ 1}

satisfies a Large Deviations Principle, in the sense that there exists a rate
function IT (to be defined below) such that

− inf
φ∈G

IT (φ) ≤ lim inf
N→∞

1

N
log IP(ZN ∈ G), if G ⊂ DT,A is open,

− inf
φ∈F

IT (φ) ≥ lim sup
N→∞

1

N
log IP(ZN ∈ F ), if F ⊂ DT,A is closed.

The main difficulty in proving such a large deviations principle comes
from the fact that some of the rates βj may vanish at the boundary of the
set A.

The proof of this result, and of its consequences which are interesting for
studying epidemiological models is very technical. For that reason, we shall
skip most of the proofs. The refer the reader to the companion document
“Large Deviations for Epidemiological Models”, which contains most proofs.

To each a > 0 (small enough) we associate the sets

Ba = {z ∈ A, zi ≥ a, 1 ≤ i ≤ d, and 1−
d∑
i=1

zi ≥ a},

Ra = {φ ∈ ACT,A, φt ∈ Ba, 0 ≤ t ≤ T}.

We suppose that there exists a collection of mappings Φa : A → A, defined
for each a > 0, which are such that za = Φa(z) satisfies for each a > 0

|z − za| ≤ λ3a

d(za, ∂A) ≥ ρa := a′,

for some 0 < ρ < λ3. Hence Φa maps A into Ba′ .

Remark 32. Since A is convex, we define Φa(z) = z + a(z0 − z), for some
fixed z0 ∈ Å. The same definition is even possible for many non necessarily
convex sets, provided A is compact, and there is a point z0 in its interior
which is such that each segment joining z0 and any point z ∈ ∂A does not
touch any other point of the boundary ∂A.

We shall assume everywhere below that Φa(z) = z + a(z0 − z) and

∇Φa = (1− a)I.
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Let for any a > 0
Ca = inf

1≤j≤k
inf
z∈Ba

βj(z).

It is plain that Ca > 0 for a > 0, and Ca → 0, as a→ 0. We shall assume

Assumptions A

A1 The rate functions βj are Lipschitz continuous with the Lipschitz con-
stant equal to C, and bounded by a constant θ.

A2 There exist two constants λ1, λ2 > 0 such that whenever z ∈ A is such
that βj(z) < λ1, βj(z

a) > βj(z) for all 0 < a < λ2.

A3 There exists ν ∈ (0, 1/2) such that lima→0 a
ν logCa = 0.

18.1 Law of Large Numbers and Girsanov theorem

We reformulate the Law of Large Numbers in the above notations

Theorem 33. Let ZN be given the solution of (1). If the assumption 1 is
satisfied, then for all T > 0,

‖ZN − Y ‖T → 0 a.s. as N →∞,

where Yt is the unique solution of the ODE

(2) Y (t) = z0 +

∫ t

0

b(Y (s))ds,

with b(z) =
∑k

j=1 βj(z)hj.

We shall need the following Girsanov theorem. Let Q denote the number
of jumps of the of ZN in the interval [0, T ], τp be the time of the p–th jump,
and define

δp(j) =

{
1 , if the p–th jump is in the direction hj,

0 , otherwise.

We shall denote FNt = σ{ZN
s , 0 ≤ s ≤ t}. Consider another set of rates

β̃j(z), 1 ≤ j ≤ k.
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Theorem 34. Assume that {x, β̃}j(x) = 0} ⊂ {s, βj(x) = 0}. Let ĨP
N

denote the law of ZN when the rates are β̃j. Then on the σ algebra FNt ,

IPN |FNT << ĨP
N
|FNT , and

∆N
T =

IPN |FNT
ĨP
N
|FNT

=

 Q∏
p=1

k∏
j=1

[
βj(Z

N(τ−p ))

β̃j(ZN(τ−p ))

]δp(j)
 exp

(
N

k∑
j=1

∫ T

0

[β̃j(Z
N(t))− βj(ZN(t))]dt

)
.

18.2 The rate function

For any φ ∈ ACT,A, let Ad(φ) the set of vector valued Borel measurable
functions µ such that for all 1 ≤ j ≤ k, µjt ≥ 0 and

dφt
dt

=
k∑
j=1

µjjhj, t a.e.

We define the rate function

IT (φ) =

{
infµ∈Ad(φ) IT (φ|µ), if φ ∈ ACT,A,
+∞, otherwise,

where

IT (φ|µ) =

∫ T

0

k∑
j=1

f(µjt , βj(φt))dt,

with f(ν, ω) = ν log(ν/ω) − ν + ω, where we use the convention log(ν/0) =
+∞ for ν > 0, while 0 log(0/0) = 0 log(0) = 0.

Another possible definition leads to

ĨT (φ) =

{
infµ∈Ad(φ)

∫ T
0
L(φt, φ

′
t)dt, if φ ∈ ACT,A,

+∞, otherwise,

where for all z ∈ A, y ∈ IRd,

L(x, y) = sup
θ∈IRd

`(z, y, θ)
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with

`(z, y, θ) = 〈θ, y〉 −
k∑
j=1

βj(z)
(
e〈θ,hj〉 − 1

)
.

Recall the definition

Definition 35. A rate function I is a semi–continuous mapping I : DT,A →
[0,∞] (i.e. its level sets ΨI(α) = {φ, IT (φ) ≤ α} are closed subsets of DT,A).
A good rate function is a rate function whose level sets are compact.

We have (see Kratz, Pardoux [3], Pardoux, Samegni [6])

Proposition 36. IT = ĨT is a good rate function.

18.3 Preliminary Lemmas

We list here, without proofs, several Lemmas which are essential for the
proofs of the results.

Lemma 37. Suppose that the βj, j = 1, ..., k are bounded by θ. If IT (φ|µ) ≤ s
then for all 0 ≤ t1, t2 ≤ T such that t2 − t1 ≤ 1/θ,∫ t2

t1

µjtdt ≤
s+ 1

− log(θ(t2 − t1))
∀j = 1, ..., k.

For φ ∈ DT,A let φa be defined by φat = Φa(φt). Clearly φa ∈ Ra′ .

Lemma 38. Let φ be such that IT (φ) < ∞. We have lim supa→0 IT (φa) ≤
IT (φ).

Lemma 39. Let a > 0 and φ ∈ Ra such that IT (φ) <∞. For all η > 0 there
exists L > 0 and φL ∈ Ra/2 such that ‖φ − φL‖T < a/2 and IT (φL|µL) ≤
IT (φ) + η where µL ∈ Ad(φL) such that µL,jt < L, j = 1, ..., k.

Let ε > 0 be such that T/ε ∈ N and let the φε be the polygonal approxi-
mation of φ defined for t ∈ [`ε, (`+ 1)ε) by

(3) φεt = φ`ε
(`+ 1)ε− t

ε
+ φ(`+1)ε

t− `ε
ε

.
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Lemma 40. Fix η > 0. Let a ∈ (0, 1) and φ ∈ Ra such that IT (φ) < ∞.
Suppose that µ ∈ Ad(φ) such that µjt < L, j = 1, ..., k for some L > 0
and IT (φ|µ) <∞ then there exists aη such that for all a < aη there exists an
εa > 0 such that for all ε < εa, φ

ε ∈ Ra and ‖φ−φε‖T < a/2. Moreover, there
exists µε ∈ Ad(φε) such that µε,jt < L, j = 1, ..., k and IT (φε|µε) ≤ IT (φ|µ)+η.

The next lemma exploits a large deviation estimate for Poisson r.v.’s.

Lemma 41. Let Y1,Y2,...be independent Poisson random variables with mean
θε. For all N ∈ N, let

Ȳ N =
1

N

N∑
n=0

Yn.

For any s > 0 there exist K, ε0 > 0 and N0 ∈ N such that taking g(ε) =

K
√

log−1(ε−1) we have

PN(Ȳ N > g(ε)) < exp{−sN}

for all ε < ε0 and N > N0.

Proof We apply the Gramer’s theorem that we can find in [1] (chapter 2)
to have that there exist N0 ∈ N such that

lim sup
N→∞

1

N
log(PN(Ȳ N > g(ε))) ≤ − inf

x≥g(ε)
Λ∗ε(x)

where Λ∗ε(x) = supλ∈R{λx− Λε(λ)} with

Λε(λ) = log(E(eλY1) = θε(eλ − 1).

We deduce that
Λ∗ε(x) = x log

x

θε
− x+ θε.

This last function is convex then it reaches his infimuim in x = θε and as
limε→0

g(ε)
θε

= +∞ there exists ε1 > 0 such that g(ε) > θε for all ε < ε1 and
then

inf
x≥g(ε)

Λ∗ε(x) = g(ε) log
g(ε)

θε
− g(ε) + θε

= g(ε) log(g(ε))− g(ε) log(θε)− g(ε) + θε

≈ K
√

log(1/ε)→∞ as ε→ 0.

Then there exists ε2 > 0 such that infx≥g(ε) Λ∗ε(x) > s for all ε < ε2.
Taking ε0 = min{ε1, ε2}, we have the lemma. �
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18.4 The Lower Bound

For a path φ let Fδ(φ) = {ψ : ‖ψ−φ‖T < δ}. We first prove that for all fixed
path φ and any η > 0, δ > 0 there exists Nη,δ, such that for all N > Nη,δ

(4) PN(Fδ(φ)) = Ẽ
(

∆N
T 1{ZN∈Fδ(φ)}

)
≥ exp{−N(IT,x(φ) + η)}.

To this end, it is enough to prove (4) considering φ ∈ ACT,A because the
inequality is true when IT,x(φ) =∞. We apply some lemmas of the preceding
section to show that it is enough to consider some suitable paths φ with the
µ ∈ Ad(φ).

We have the

Lemma 42. For any a > 0, ε > 0 let φ ∈ Ra for a > 0. For ε > 0 let φε be
its polygonal approximation defined by (3). Suppose that for all η > 0,δ > 0
there exists Nη,δ such that for all N ≥ Nη,δ

(5) P(‖ZN − φε‖T < δ) ≥ exp{−N(IT (φε|µε) + η)}

where µε ∈ Ad(φε) such that µε,jt ≤ L for all j = 1, ..., k for some L > 0.
Then for all fixed φ ∈ ACT,A, and any η > 0, δ > 0 there exists Nη,δ such
that for all N > Nη,δ,

PN(Fδ(φ)) = P(‖ZN − φ‖T < δ) ≥ exp{−N(IT (φ) + η)}.

The goal of the next lemma is to show the inequality (5).

Lemma 43. For a > 0, ε > 0, let φ ∈ Ra be linear on each intervals
[`ε, (`+ 1)ε[, 0 ≤ ` ≤ T

ε
. Consider the µ ∈ Ad(φ) that is constant over these

time intervals and such that all the components of µ are bounded above by
some constant L > 0. Then we have that for any η > 0, and suitable small
δ > 0(thus the inequality stay true for all delta > 0) there exists Nη,δ ∈ N
such that for all N > Nη,δ

P(‖ZN − φ‖T < δ) ≥ exp{−N(IT (φ|µ) + η)}.

Proof Define the events Bj, j = 1, ..., k for controlling the likelihood ratio.
For ξ > 0 let

Bj =
{∣∣∣ Q∑

p=1

δp(j) log
(βj(ZN(τ−p ))

µjbτp/εcε

)
−N

T/ε∑
`=1

µj`ε log
(βj(φ`ε)

µj`ε

)
ε
∣∣∣ ≤ Nξ

}
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We have on {ZN ∈ Fδ(φ)} ∩ (
⋂k
j=1Bj) = {ZN ∈ Fδ(φ)} ∩B

∆N
T ≥ exp

{
−N

∫ T

0

k∑
j=1

[
µjt log

( µjt
βj(φt)

)
− µjt + βj(φt)

]
dt−NO(δ + ξ)

}
≥ exp{−N(IT (φ|µ) +O(δ + ξ))} on the event {ZN ∈ Fδ(φ)} ∩B.

Then for any η > 0, there exists δ > 0 and ξ > 0 such that for N large
enough we have

∆N
T ≥ exp{−N(IT (φ|µ) + η/2)}

Moreover

PN(Fδ(φ)) = Ẽ
(

∆N
T .1{ZN∈Fδ(φ)}

)
≥ Ẽ

(
∆N
T .1{{ZN∈Fδ(φ)}∩B}

)
≥ exp{−N(IT (φ|µ) + η/2)}P̃({ZN ∈ Fδ(φ)} ∩B)

To finish this proof it is enough to show the following lemma:

Lemma 44. Let φ ∈ Ra be linear over the intervals [`ε, (`+ 1)ε[,

lim
N→∞

P̃({ZN ∈ Fδ(φ)} ∩B) = 1

We finish the proof of the lower bound by the following theorem

Theorem 45. For all open set G ∈ DT,A,

lim inf
N→∞

1

N
logPN(G) ≥ − inf

φ∈G
IT (φ).

Proof It is enough to assume that (4) is true and show (45). To this end
let I = infφ∈G IT (φ) < ∞ then, for η > 0 there exists a φη ∈ G such that
IT (φη) ≤ I + η. Moreover we can choose δ = δ(φη) small enough such
that Fδ(φ

η) ⊂ G. And then PN(Fδ(φ
η)) ≤ PN(G). This implies from the

inequality (4) that for all η > 0,

lim inf
N→∞

1

N
logPN(G) ≥ lim inf

N→∞

1

N
logPN(Fδ(φ

η))

≥ −IT (φη)

≥ −I − η
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and then

lim inf
N→∞

1

N
logPN(G) ≥ −I.

�
Specifying the starting point, we can reformulate the above result as

lim inf
N→∞

1

N
log IP(ZN,x ∈ G) ≥ − inf

φ∈G,φ0=x
IT (φ).

We need in fact the stronger statement

Theorem 46. For all open set G ∈ DT,A such that all trajectories in G remain
in a compact set which does not intersect the boundary ∂A, for any compact
set K ⊂ Å,

lim inf
N→∞

1

N
log inf

x∈K
P(ZN,x ∈ G) ≥ − sup

x∈K
inf

φ∈G,φ0=x
IT (φ).

18.5 The Upper Bound

For all φ ∈ DT,A and H ⊂ DT,A we define

(6) ρT (φ,H) = inf
ψ∈H
‖φ− ψ‖T

and for all δ, s > 0 we define the set

Hδ(s) = {φ ∈ DT,A : ρT (φ,Φ(s)) ≥ δ}

where Φ(s) = {φ ∈ DT,A : IT (φ) ≤ s}. The main step of the proof of the
upper bound consists in establishing the following Lemma.

Lemma 47. for any δ, η, s > 0 there exists N0 ∈ N such that

(7) PN(Hδ(s)) ≤ exp{−N(s− η)}

whenever N ≥ N0.

We then deduce

Theorem 48. For all closed set F ∈ DT,A,

lim sup
N→∞

1

N
logPN(F ) ≤ − inf

φ∈F
IT (φ).
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Proof All we have to show is that (7) implies the Theorem. To this end let
F ∈ DT,A a closed set, choose η > 0 and put s = inf{IT (φ) : φ ∈ F} − η/2.
The closed set F does not intersect the compact set Φ(s). Therefore δ =
infφ∈F infψ∈Φ(s) ‖φ − ψ‖T > 0. We use the inequality (7) to have for any
δ, η, s > 0 there exists N0 ∈ N such that for all N > N0,

PN(F ) ≤ PN(Hδ(s))

≤ exp{−N(s− η/2)}
≤ exp{−N( inf

φ∈F
IT (φ)− η)}

then

lim sup
N→∞

1

N
PN(F ) ≤ inf

φ∈F
IT (φ).

�
We need a slightly stronger version

Theorem 49. For all closed set F ∈ DT,A such that all trajectories in F
remain in a compact set which does not intersect the boundary ∂A, for any
compact set K ⊂ Å,

lim sup
N→∞

1

N
log sup

x∈K
P(ZN,x ∈ F ) ≤ − inf

x∈K
inf

φ∈F,φ0=x
IT (φ).

18.6 Time of exit from a domain

We let O ( A be relatively open in A (with O = Õ ∩ A for Õ ⊂ Rd open)
and x∗ ∈ O be a stable equilibrium of (2). By a slight abuse of notation, we
say that

∂̃O := ∂Õ ∩ A
is the boundary of O. For y, z ∈ A, we define the following functionals.

V (x, z, T ) := inf
φ∈D([0,T ];A),φ(0)=x,φ(T )=z

IT,x(φ)

V (x, z) := inf
T>0

V (x, z)

V̄ := inf
z∈∂̃O

V (x∗, z).

In other words, V̄ is the minimal energy required to leave the domain O when
starting from x∗. We urge the reader to consider the two examples in section
18.6.4.
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Assumptions B

B1 x∗ is the only stable equilibrium point of (2) in O and the solution Y x

of (2) with x = Y x(0) ∈ O satisfies

Y x(t) ∈ O for all t > 0 and lim
t→∞

Y x(t) = x∗.

B2 For a solution Y x of (2) with x = Y x(0) ∈ ∂̃O, we have

lim
t→∞

Y x(t) = x∗.

B3 V̄ <∞.

B4 For all ρ > 0 there exist constants T (ρ), ε(ρ) > 0 with T (ρ), ε(ρ) ↓ 0 as

ρ ↓ 0 such that for all z ∈ ∂̃O ∪ {x∗} and all x, y ∈ B(z, ρ) ∩ A there
exists an

φ = φ(ρ, x, y) : [0, T (ρ)]→ A with φ(0) = x, φ(T (ρ)) = y and IT (ρ)(φ) < ε(ρ).

B5 For all z ∈ ∂̃O there exists an η0 > 0 such that for all η < η0 there exists
a z̃ = z̃(η) ∈ A \ Ō with |z − z̃| > η.

Let us shortly comment on Assumption B By B1, O is a subset of the
domain of attraction of x∗. B2 is violated by the applications we have in mind:
we are interested in situations where ∂̃O is the characteristic boundary of O,
i.e., the boundary separating two regions of attraction of equilibria of (2).
In order to relax this assumption, we require an approximation argument
later. By B3, it is possible to reach the boundary with finite energy. This
assumption is always satisfied for the epidemiological models we consider. For
z = x∗, B4 is also always satisfied in our models as the rates βj are bounded
from above and away from zero in small neighborhoods of x∗; hence, the
function φ(x, y, ρ) can, e.g., be chosen to be linear with speed one.

We are interested in the following quantity:

τN,x := τN := inf{t > 0|ZN,x(t) 6∈ O},

i.e., the first time that ZN,x exits O.
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18.6.1 Auxiliary results

Assumptions A4 + B4 yield.

Lemma 50. Assume that Assumptions A and B hold. Then for any δ > 0,
there exists an ρ0 > 0 such that for all ρ < ρ0,

sup
z∈∂̃O∪x∗,x,y∈B(z,ρ)

inf
T∈[0,1]

V (x, y, T ) < δ.

We have moreover.

Lemma 51. Assume that Assumptions A and B hold. Then, for any η > 0
there exists a ρ0 such that for all ρ < ρ0 there exists a T0 <∞ such that

lim inf
N→∞

1

N
log inf

x∈B(x∗,ρ)
P[τN,x ≤ T0] > −(V̄ + η).

We also require the following result

Lemma 52. Assume that Assumptions A and B hold. Let ρ > 0 such that
B(x∗, ρ) ⊂ O and

σN,xρ := inf{t > 0|ZN,x
t ∈ B(x∗, ρ) or ZN,x

t 6∈ O}.

Then

lim
t→∞

lim sup
N→∞

1

N
log sup

x∈O
P[σN,xρ > t] = −∞.

Lemma 53. Assume that Assumptions A and B hold. Let C ⊂ A \ O be
closed. Then,

lim
ρ→0

lim sup
N→∞

1

N
log sup

x∈B(x∗,3ρ)\B(x∗,2ρ)

P[ZN,x
σρ ∈ C] ≤ − inf

z∈C
V (x∗, z).

We have moreover

Lemma 54. Assume that Assumptions A and B hold. Then, for all ρ > 0
such that B(x∗, ρ) ⊂ O and for all x ∈ O,

lim
N→∞

P[ZN,x
σρ ∈ B(x∗, ρ)] = 1.

Lemma 55. Assume that Assumptions A and B hold. Then, for all ρ, c > 0,
there exists a constant T = T (c, ρ) <∞ such that

lim sup
N→∞

1

N
log sup

x∈O
P[ sup
t∈[0,T ]

|ZN,x
t − x| ≥ ρ] < −c.
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18.6.2 Main results

We can now establish

Theorem 56. Assume that Assumptions A and B hold. Then, for all x ∈ O
and δ > 0,

lim
N→∞

P
[
e(V̄−δ)N < τN,x < e(V̄+δ)N

]
= 1.

18.6.3 The case of a characteristic boundary

Since we are mainly interested in studying the time of exit form the basin
of attraction of one local equilibrium to that of another, we need to consider
situations which do not satisfy the above assumptions. More precisely, we
want to suppress the assumptions B3 and B5, and keep assumptions B1, B2
and B4. In the examples which we have in mind, there exists a collection of
open sets {Oρ, ρ > 0} which is such that

• Oρ ⊂ O for any ρ > 0.

• d(Oρ, ∂̃O)→ 0, as ρ→ 0.

• Oρ satisfies assumptions B1,..B5 for any ρ > 0.

Let then O be a domain satisfying assumptions (B1, B2 and B4, and we
assume that there exist a sequence {Oρ, ρ > 0} satisfying the three above
conditions.

If we define V̄ρ as V̄ , but with O replaced by Oρ, it follows from Lemma
50 that V̄ρ → V̄ as ρ → 0. By an obvious monotonicity property, the lower
bound

lim
ε→0

P
[
τN,x > e(V̄−δ)N] = 1

follows immediately from Theorem 56.

18.6.4 Applications

Consider the following two epidemiological models with several equilibria,
both
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1. the SIV model studied by Kribs–Zaleta and Velasco–Hernández :

ds

dt
(t) = µ(1− s(t)) + αi(t)− βs(t)i(t)− ηs(t) + θv(t), t > 0,

di

dt
(t) = −µi(t) + βs(t)i(t)− αi(t) + rβv(t)i(t), t > 0,

dv

dt
(t) = −µv(t) + ηs(t)− θv(t)− rβv(t)i(t), t > 0;

2. and the S0IS1 model of Safan, Heesterbeek and Dietz

ds0

dt
(t) = µ(1− s0(t))− βs0(t)i(t), t > 0,

di

dt
(t) = −µi(t) + βs0(t)i(t)− αi(t) + rβs1(t)i(t), t > 0,

ds1

dt
(t) = −µs1(t) + αi(t)− rβs1(t)i(t), t > 0.

In those two above models, one can choose the parameters in such a
way that both the DFE and one of the endemic equilibria are locally stable.
Denote by O the basing of attraction of the endemic equilibrium. Let us
denote by τN,x the time it takes for the stochastic system, starting from
x ∈ O, to exit O (' the time to reach the DFE). Theorem 56 extended to
the case of a characteristic boundary implies that For any x ∈ O, δ > 0,

lim
N→∞

IP(e(V−δ)N < τN,x < e(V+δ)N) = 1.

Numerical computation of V

1. In the SIV model with β = 3.6, α = 1, θ = 0.02, µ = 0.03, η = 0.3 and
r = 0.1, we get V = 0.39.

This gives rather astronomical values of τN , even for N = 100 !

2. In the S0IS1 model with β = 3, α = 5, µ = 0.015 and r = 2, we get
V = 0.0745.

This means that for N = 100, τN ' 1720, and for larger N , the value
of τN is huge !

3. We have not yet checked how V depends upon the parameters !
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It would be interesting to understand how those results would be modified
if we incorporate heterogeneity (nonhomogeneous mixing, spatial dispersion,
...).
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