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Abstract

We consider the incompressible, two-dimensional Navier-Stokes equation with

periodic boundary conditions under the effect of an additive, white-in-time, sto-

chastic forcing. Under mild restrictions on the geometry of the scales forced, we

show that any finite-dimensional projection of the solution possesses a smooth,

strictly positive density with respect to Lebesgue measure. In particular, our

conditions are viscosity independent. We are mainly interested in forcing that

excites a very small number of modes. All of the results rely on proving the

nondegeneracy of the infinite-dimensional Malliavin matrix. c© 2006 Wiley

Periodicals, Inc.

1 Introduction

We consider the movement of a two-dimensional, incompressible fluid with

mean flow zero under periodic boundary conditions. We analyze the problem using

the vorticity formulation of the form

(1.1)

{
∂w
∂t (t, x) + B(w,w)(t, x) = ν�w(t, x) + ∂W

∂t (t, x)

w(0, x) = w0(x),

where x = (x1, x2) ∈ T
2, the two-dimensional torus [0, 2π]×[0, 2π], ν > 0 is the

viscosity constant, ∂W
∂t is a white-in-time stochastic forcing to be specified below,

and

B(w, w̃) =
2∑

i=1

ui (x)
∂w̃

∂xi
(x)

where u = K(w). Here K is the Biot-Savart integral operator, which will be

defined below.

First we define a convenient basis in which we will perform all explicit calcu-

lations. Setting Z
2
+ = {( j1, j2) ∈ Z

2 : j2 > 0} ∪ {( j1, j2) ∈ Z
2 : j1 > 0, j2 = 0},
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Z
2
− = −Z

2
+, and Z

2
0 = Z

2
+ ∪ Z

2
−, we define a real Fourier basis for functions on T

2

with zero spatial mean by

ek(x) =
{

sin(k · x), k ∈ Z
2
+,

cos(k · x), k ∈ Z
2
−.

We write w(t, x) = ∑
k∈Z

2
0
αk(t)ek(x) for the expansion of the solution in this

basis. With this notation in the two-dimensional periodic setting we have the ex-

pression

(1.2) K(w) =
∑
k∈Z

2
0

k⊥

‖k‖2
αke−k,

where k⊥ = (−k2, k1) and ‖k‖2 = k2
1 + k2

2. See, for example, [17] for more

details on the deterministic vorticity formulation in a periodic domain. We use

the vorticity formulation for simplicity. All of our results can be translated into

statements about the velocity formulation of the problem.

We take the forcing to be of the form

(1.3) W (t, x) =
∑
k∈Z∗

Wk(t)ek(x)

where Z∗ is a finite subset of Z
2
0 and {Wk : k ∈ Z∗} is a collection of mutually

independent, standard scalar Brownian motions on a probability space (�,F, P).

The fact that we force a finite collection of Fourier modes becomes important start-

ing in Section 3. Up until then the analysis applies to a force acting on any linearly

independent collection of functions from T
2 into R that have spatial mean zero.

The collection could even be infinite with a mild summability assumption.

We assume that w0 ∈ L
2 = {w ∈ L2(T2, R) : ∫ w dx = 0}. We will use ‖ · ‖

to denote the norm on L
2 and 〈 · , · 〉 to denote the inner product. We also define

H
s = {w ∈ H s(T2, R) : ∫ w dx = 0}. Under these assumptions, it is standard that

w ∈ C([0,+∞); L
2)∩ L2

loc((0,+∞); H
1) [7, 12, 23]. We will denote by ‖ · ‖s the

natural norm on H
s given by ‖ f ‖s = ‖�s f ‖ where �2 = (−�).

Our first goal is to prove the following theorem, which will be the consequence

of the more general results given later in the text. In particular, it follows from

Theorem 3.1, Theorem 6.1, and Corollary 8.2 when combined with Proposition

3.2.

THEOREM 1.1 Consider the forcing

W (t, x) = W1(t) sin(x1) + W2(t) cos(x1) + W3(t) sin(x1 + x2)

+ W4(t) cos(x1 + x2).

Then for any t > 0 and any finite-dimensional subspace S of L
2, the law of the

orthogonal projection �w(t, · ) of w(t, · ) onto S is absolutely continuous with
respect to the Lebesgue measure on S. Furthermore, the density is C∞ and every-
where strictly positive.
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A version of Theorem 1.1 for Galerkin approximations of (1.1) was one of the

main ingredients of the ergodic and exponential mixing results proven in [9]. There

the algebraic structure of the nonlinearity was exploited to show that the associated

diffusion was hypoelliptic. Here we use similar observations on the algebraic struc-

ture generated by the vector fields. However, new tools are required because there

exists little theory applying Malliavin calculus in an infinite-dimensional setting.

Relevant exceptions are [11, 15, 28].

In [11], Malliavin calculus is used to establish the existence of a density when

all but a finite number of degrees of freedom were forced. In contrast to the present

paper, the technique developed there fundamentally requires that only a finite num-

ber of directions are unforced. The ideas developed in the present paper could also

likely be applied to the setting of [11].

An essential tool in our approach is a representation of the Malliavin covariance

matrix through the solution of a backward (stochastic) partial differential equation,

which was first invented by Ocone (see [28]) and which is particularly useful when

dealing with certain classes of SPDEs, since in this case (as opposed to that of

finite-dimensional SDEs), the fundamental solution of the linearized equation can-

not be easily inverted. Ocone used that representation in the case where the original

equation is a so-called bilinear SPDE (that is, both the coefficients of dt and dW (t)
are linear in the solution). In contrast, we use it in the case of a nonlinear PDE with

additive noise. It seems that these are the only two cases where Ocone’s represen-

tation of the Malliavin matrix through a backward (S)PDE can be used, without

being exposed to the trouble of handling a stochastic PDE involving anticipative

stochastic integrals. In Ocone’s case, the backward PDE is a stochastic one, while

in our case it is a PDE with random coefficients.

There has been a lot of activity in recent years exploring the ergodic properties

of the stochastic Navier-Stokes equations and other dissipative stochastic partial

differential equations. The central new idea was to make use of the pathwise con-

tractive properties of the dynamics on the small scales and the mixing/smoothing

due to the stochastic forcing on the larger scales. In [18] a determining-modes-type

theorem (see [13]) was developed in the stochastic setting. This showed how con-

trolling the behavior of a finite number of low modes on a time interval of infinite

length was sufficient to control the entire system.

An important advance was made concurrently in [5, 10, 16], where it was shown

that if all of the low modes are directly forced, the system is ergodic. The first

two covered the case of white-in-time forcing while the last considered impulsive

forcing. The assumptions of these papers can be restated as: the diffusion is elliptic

on the unstable subspace of the pathwise dynamics (see [21] on this point of view).

The present paper establishes the needed control on the low modes when a “par-

tial hypoelliptic” assumption is satisfied. We show that the forcing need not excite

directly all the unstable modes because the nonlinearity transmits the randomness

to the nondirectly excited unstable directions. Already the results of this paper
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have been used in an essential way in [14] to prove the ergodicity of the stochas-

tic Navier-Stokes equations under mild, viscosity-independent assumptions on the

geometry of the forcing.

This article is organized as follows: In Section 2 we discuss the elements of

Malliavin calculus needed in the paper. In particular, we give an alternative rep-

resentation of the quadratic form associated to the Malliavin matrix. This repre-

sentation is critical to the rest of the article. In Section 3 we explore the structure

of the nonlinearity as it relates to nondegeneracy of the Malliavin matrix, which in

turn implies the existence of a density. In Section 4 we prove an abstract lemma

on the quadratic variation of nonadapted processes of a particular form that is the

key to the results of the preceding section. In Section 5 we discuss the relationship

to brackets of vector fields and the usual proof of nondegeneracy of the Malliavin

matrix. In doing so we sketch an alternative proof of the existence of a density. In

Section 6 we prove that the density, whose existence is given in Section 3, is in fact

C∞. This requires the abstract results of Section 7, which amount to quantitative

versions of the results in Section 4. Finally, in Section 8 we prove that the den-

sity of the finite-dimensional projections of w(t) are everywhere positive under the

same conditions that guarantee smoothness. We then give a number of concluding

remarks and finish with five appendices containing technical estimates on the sto-

chastic Navier-Stokes equation. In particular, Appendix C proves that the solution

is smooth in the Malliavin sense, and Appendix E gives control of the Lipschitz

constants in terms of various quantities associated to the solution.

2 Representation of the Malliavin Covariance Matrix

One way to solve the vorticity equation is by letting w′(t, x) = w(t, x) −
W (t, x) and solving the resulting PDE with random coefficients for w′. It easily

follows from that approach that for each t > 0, there exists a continuous map

	t : C([0, t]; R
Z∗) → L

2

such that

w(t) = 	t(W[0,t]).

In other words, the solution of equation (1.1) can be constructed pathwise. We

shall exploit this in Section 8.

For k ∈ Z∗, h ∈ L2
loc(R+), t > 0, we define, if it exists, the Malliavin derivative

of w(t) in the direction (k, h) as

Dk,hw(t) = L2(�, L
2)-lim

ε−→0

	t(W + εHek) − 	t(W )

ε
,

where H(t) = ∫ t
0

h(s)ds. In fact, this convergence holds pathwise, and it is a

Fréchet derivative.
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We will show that the above derivative exists for each h ∈ L2
loc(R+), and more-

over, that for each s ∈ [0, t] and k ∈ Z∗ there exists a random element Vk,s(t) in

L
2 such that

Dk,hw(t) =
∫ t

0

Vk,s(t)h(s)ds.

Vk,s(t) is then identified with Dk
s w(t)

def= Dk,δs w(t) and solves equation (2.1) be-

low.

PROPOSITION 2.1 For each s > 0 and k ∈ Z∗, the linear parabolic PDE

(2.1)

{
∂
∂t Vk,s(t) = ν�Vk,s(t) − B(w(t), Vk,s(t)) − B(Vk,s(t), w(t)), t ≥ s,

Vk,s(s) = ek

has a unique solution

Vk,s ∈ C([s,+∞); L
2) ∩ L2

loc([s,+∞); H
1).

PROOF: See, for example, Constantin and Foias [6]. �

At times we will consider the linearized equation (2.1) with arbitrary initial

conditions. We write Js,tφ for the solution to (2.1) at time t with initial condition

φ at time s less than t . In this notation Vk,s(t) = Js,t ek .

Furthermore, Lemma B.1 from the appendix implies that for all deterministic

initial conditions w(0), p ≥ 1, η > 0, and T < ∞,

E sup
0≤s≤t≤T

‖Vk,s(t)‖2p < c exp(η‖w(0)‖2)

for some c = c(ν, p, T, η).

Clearly, if h ∈ L2
loc(R+),

Vk,h(t)
def=
∫ t

0

Vk,s(t)h(s)ds

is the unique solution in C([0, +∞); L
2)∩L2

loc([0,+∞); H
1) of the parabolic PDE

(2.2)




∂Vk,h(t)
∂t = ν�Vk,h(t) − B(w(t), Vk,h(t))

− B(Vk,h(t), w(t)) + h(t)ek, t ≥ 0,

Vk,h(0) = 0.

It is not hard to see that, in the sense of convergence in L2(�; L
2),

Vk,h(t) = lim
ε→0

	t(W + εHek) − 	t(W )

ε
.

It then follows that

w(t) ∈ H 1(�, L
2)

def=
{

X : � → L
2 : E‖X‖2, E

∫ t

0

‖Dk
s X‖2 ds < ∞,

for all k ∈ Z∗ and finite t > 0

}
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(see Nualart [25, pp. 27, 62] for more details). Furthermore, its associated infinite-

dimensional Malliavin covariance matrix is given by

(2.3) M(t) =
∑
k∈Z∗

∫ t

0

Vk,s(t) ⊗ Vk,s(t)ds,

that is to say, it is the operator mapping φ ∈ L
2 to M(t)(φ) ∈ L

2 given by

(2.4) M(t)(φ) =
∑
k∈Z∗

∫ t

0

〈Vk,s(t), φ〉Vk,s(t)ds.

It follows from theorem 2.1.2 in Nualart [25] that Theorem 1.1 is a consequence of

the fact that for each φ ∈ L
2 with φ �= 0,

〈M(t)φ, φ〉 =
∑
k∈Z∗

∫ t

0

〈Vk,s(t), φ〉2 ds > 0 a.s.

We now want to give an alternative representation of this quantity, using a back-

ward PDE that is the adjoint of equation (2.2).

PROPOSITION 2.2 For each t > 0, φ ∈ L
2, the linear backward parabolic PDE

(2.5)




∂
∂s U t,φ(s) + ν�U t,φ(s)

+ B(w(s), U t,φ(s)) − C(U t,φ(s), w(s)) = 0, 0 ≤ s ≤ t,

U t,φ(t) = φ

has a unique solution

U t,φ ∈ C([0, t]; L
2) ∩ L2([0, t); H

1).

Here C( · , w(s)) is the L
2 adjoint of the time-dependent, linear operator B( · ,

w(s)) and thus is defined by the relation 〈B(u, w(s)), v〉 = 〈C(v,w(s)), u〉.

PROOF: We use the same argument as in Proposition 2.1. �

As before, Lemma B.1 from the appendix implies that there exist a positive

constant η so that for all deterministic initial conditions w(0), φ ∈ L
2, p ≥ 1, and

T < ∞
E sup

0≤s≤t≤T
‖U t,φ(s)‖2p < c‖φ‖2p exp(η‖w(0)‖2)

for some c = c(ν, p, T, η).

PROPOSITION 2.3 For each k ∈ Z∗ and φ ∈ L
2, the function

r → 〈Vk,s(r), U t,φ(r)〉
from [s, t] into R is constant.
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PROOF: We first show that this mapping belongs to W 1,1(s, t; R). It is clearly

a continuous function and moreover

V, U ∈ C([s, t]; L
2) ∩ L2((s, t); H

1);
hence by interpolation

V, U ∈ L4((s, t), H
1/2) ∩ L2((s, t); H

1).

Since we also know that

w ∈ L4((s, t); H
1/2) ∩ L2((s, t); H

1),

we know that the products

‖U‖1/2‖w‖1, ‖V ‖1/2‖w‖1, ‖w‖1/2‖U‖1, and ‖w‖1/2‖V ‖1

all belong to L4/3((s, t); R). On the other hand, it follows from the fact that

‖KU‖1 = ‖U‖ and estimate (6.10) in Constantin and Foias [6] that

|〈C(U, w), ψ〉| ≤ c‖U‖1/2 ‖w‖1 ‖ψ‖1/2,

|〈B(V, w), ψ〉| ≤ c‖V ‖1/2 ‖w‖1 ‖ψ‖1/2,

|〈B(w, U ), ψ〉| ≤ c‖w‖1/2 ‖U‖1 ‖ψ‖1/2,

|〈B(w, V ), ψ〉| ≤ c‖w‖1/2 ‖V ‖1 ‖ψ‖1/2.

Hence we conclude that C(U, w), B(V, w), B(w, U ), and B(w, V ) all belong

to L4/3((s, t); H
−1/2). From (2.1) and (2.5), we see that both d

dt V and d
dt U con-

sist of three terms. The first belongs to L2((s, t); H
−1), and the last two belong

to L4/3((s, t); H
−1/2). Hence 〈Vk,s(r), d

dr U t,φ(r)〉 and 〈 d
dr Vk,s(r), U t,φ(r)〉 are in

L1(s, t; R), and the statement that

r → 〈Vk,s(r), U t,φ(r)〉
is a.e. differentiable then follows a variant of theorem 2 in Dautray and Lions [8,

chap. 18, sec. 1]. Moreover, for almost every r

d

dr
〈V (r), U (r)〉 = 〈A(w(r))V (r), U (r)〉 − 〈V (r), A∗(w(r))U (r)〉

= 0

where A(w(t)) is the linear operator on the right-hand side of (2.1), and A∗(w(t))
is its L

2 adjoint. The result follows. �

We can now rewrite the Malliavin covariance matrix using U in place of V . For

a fixed φ, this is an improvement as U t,φ(r) is a single solution to a PDE while

Vk,t(r) is a continuum of solutions indexed by the parameter s.

COROLLARY 2.4 For any φ ∈ L
2,

〈M(t)φ, φ〉 =
∑
k∈Z∗

∫ t

0

〈ek, U t,φ(s)〉2 ds.
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PROOF: This follows from the fact that for any 0 ≤ s ≤ t and k ∈ Z∗,

〈Vk,s(s), U t,φ(s)〉 = 〈Vk,s(t), U t,φ(t)〉,
i.e.,

〈ek, U t,φ(s)〉 = 〈Vk,s(t), φ〉.
�

From this corollary, one immediately deduces the following result:

COROLLARY 2.5 Assume that for some fixed φ ∈ L
2,

〈M(t)φ, φ〉 = 0

on a subset �1 of �. Then for all k ∈ Z∗ and s ≤ t , 〈ek, U t,φ(s)〉 = 0 on �1. In
particular, 〈ek, φ〉 = 0.

3 Hypoellipticity

3.1 Final Assumptions and the Main Existence Result

We define Z0 to be the symmetric part of the forcing set Z∗ given by Z0 =
Z∗ ∩ (−Z∗) and then the collection

Zn = {� + j ∈ Z
2
0 : j ∈ Z0, � ∈ Zn−1 with �⊥ · j �= 0, ‖ j‖ �= ‖�‖},

and lastly

Z∞ =
∞⋃

n=1

Zn.

Notice that the above union starts at 1 and that the Zn are symmetric in that

Zn = −Zn . This follows by recurrence, starting with Z0 = −Z0. We are mainly

concerned with the case where Z0 = Z∗, since this corresponds to noise that is

stationary in x .

We can now state the main theorem. Defining

(3.1) S0 = Span(ek : k ∈ Z∗), Sn = Span

(
ek : k ∈

n⋃
j=1

Zj ∪ Z∗

)
,

n ∈ {1, . . . ,∞},
we have the following result, which implies the first part of Theorem 1.1 in the

case when S∞ = L
2.

THEOREM 3.1 For any t > 0 and any finite-dimensional subspace S of S∞, the law
of the orthogonal projection �w(t, · ) of w(t, · ) onto S is absolutely continuous
with respect to the Lebesgue measure on S.
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The above result guarantees an absolutely continuous density on finite-dimen-

sional subsets of S∞. However, it does not imply the lack of density for other

subsets because in constructing S∞ we have used only part of the available infor-

mation. In the proof below, it will become clear that we make use only of the

directions generated by frequencies where both the sin and cos are stochastically

forced. We do this in the name of simplicity and utility. Verifying any more com-

plicated condition is difficult. However, as translation invariance implies that both

the sin and cos mode of a given frequency are forced, it seems a reasonable com-

promise. In the end, we are primarily interested in producing conditions that give

insight into how the nonlinearity spreads the randomness. In particular, we now

give an easy proposition that, in conjunction with Theorem 3.1, proves the first

part of Theorem 1.1 given in the introduction. After that we will quote a more

general result from [14] that is proven using similar ideas to those below.

PROPOSITION 3.2 If {(0, 1), (1, 1)} ⊂ Z0, then S∞ = L
2.

PROOF: Clearly by adding and subtracting the vectors (0, 1) and (1, 1), one

can generate all of Z
2
0. The only question is whether the conditions �⊥ · j �= 0 and

‖ j‖ �= ‖�‖ from the definition of Zn ever create a situation that blocks continuing

generating the lattice.

First, notice that (1, 0) = (1, 1) − (0, 1), (−1, 0) = (0, 1) − (1, 1), and

(−1, 1) = (−1, 0)− (1, 1)+ (0, 1)+ (1, 1), and if these moves are made from left

to right, none of the restrictions are violated. Hence all of the vectors of the same

length as the vectors in Z0 can be reached and henceforth the restriction ‖ j‖ �= ‖�‖
will not be binding. The requirement that �⊥ · j �= 0 does not cause a problem. The

line �⊥ · (0, 1) = 0 can be approached from above and does not obstruct generating

the rest of the lattice. The line �⊥ · (1, 1) = 0 does separate the lattice. However,

we know we can reach (1, 0) and have the point (0, 1) to start with. Hence we can

reach all of the points on either side of the line. Those on the line can be reached

from points on either side. �

It is clear from the preceding lemma that many other choices of forcing will

also lead to S∞ = L
2. For instance, if {(1, 0), (1, 1)} ⊂ Z0, then S∞ = L

2. It is

also interesting to force a collection of modes distant from the origin and allow the

noise to propagate both up to the large scales and down to still smaller scales. We

now give a simple proposition giving sufficient conditions in such a setting.

PROPOSITION 3.3 Let M, K ∈ N with M, K > 2 and ‖M − K‖ > 2. Then if
{(M + 1, 0), (M, 0), (0, K + 1), (0, K )} ⊂ Z0, S∞ = L

2.

PROOF: The idea is to use (M +1, 0)−(M, 0) = (1, 0), (M, 0)−(M +1, 0) =
(−1, 0), (0, K + 1) − (0, K ) = (0, 1), and (0, K ) − (0, K + 1) = (0,−1) in order

to generate the whole lattice. The only difficulty could be the above restrictions.

The restrictions of the form �⊥ · j �= 0 only prevent applying (M + 1, 0) − (M, 0)

or (M, 0)− (M +1, 0) to points on the x-axis and (0, K )− (0, K +1) and (0, K +
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1) − (0, K ) to points on the y-axis. However, this is not a serious restriction as all

of the points on the x-axis can be reached by moving down from above, and all of

the points on the y-axis can be reached by moving horizontally. Furthermore, the

y-axis can be crossed by using strictly horizontal moves.

The only remaining restriction consists of the points k ∈ Z
2
0 with ‖k‖ ∈ {K , K+

1, M, M + 1}. For example, assume that ‖k‖ = K and one wanted to move to the

left by applying (0, K ) − (0, K + 1). While this direct move is illegal, one can

accomplish the same effect by moving up, then left, and finally down. The require-

ment that ‖M − K‖ > 2 ensures that we will not be blocked from moving up using

(M + 1, 0)− (M, 0) given that k = ‖K‖. Once we have moved up, we will be free

to move to the left and then back down. The other cases are analogous. �

Guided by these results, in [14] the following is proven:

PROPOSITION 3.4 One has S∞ = L
2 if and only if the following hold:

(1) Integer linear combinations of elements of Z0 generate Z
2
0.

(2) There exist at least two elements in Z0 with unequal Euclidean norm.

This gives a very satisfactory characterization of the setting when S∞ = L
2,

which is the case of primary interest.

3.2 Proof of Theorem 3.1

Since we already know that w(t) ∈ H 1(�, L
2), Theorem 3.1 follows from

theorem 2.1.2 in Nualart [25] and the fact that for any φ ∈ S∞, φ �= 0,

〈M(t)φ, φ〉 > 0 a.s.

Hence to prove Theorem 3.1, it suffices to show the following:

PROPOSITION 3.5 There exists a subset �1 ⊂ � of full measure so that on �1 if
〈M(t)φ, φ〉 = 0 for some φ ∈ L

2, then �∞φ = 0 where �∞ is the L
2 orthogonal

projection onto S∞.

Notice that Proposition 3.5 is equivalent to

(3.2) P

( ⋂
φ∈L

2

�∞φ �=0

{〈M(t)φ, φ〉 > 0}
)

= 1.

To prove the proposition, we need to better understand the structure of the equa-

tions. To this end, we now write the equations for the spatial Fourier coefficients of

U and w to better expose the interactions between the systems’ various degrees of

freedom. In this and the general structures of the nonlinearity exploited, we follow

E and Mattingly [9]; however, the tack of the analysis is different. (We also take the

chance to correct a small error in [9]. There the summation was restricted to modes
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in the first quadrant, when it should have ranged over the entire upper half-plane.)

Again setting w(t, x) =∑k∈Z
2
0
αk(t)ek , we have for � ∈ Z

2
0

(3.3)

d

dt
α�(t) + ν‖�‖2α�(t) + 1

2

∑
( j,k,�)∈I+

c( j, k)αj (t)αk(t)

− 1

2

∑
( j,k,�)∈I−

c( j, k)αj (t)αk(t) = 111Z∗(�)
d

dt
W�(t)

where 111Z∗ is the indicator function of Z∗, c( j, k) = 1
2
( j⊥ · k)(‖ j‖−2 − ‖k‖−2) and

I+ = {( j, k, �) ∈ (Z2
+, Z

2
−, Z

2
+) ∪ (Z2

−, Z
2
+, Z

2
+) ∪ (Z2

+, Z
2
+, Z

2
−) | k + j + � = 0

}
∪ {( j, k, �) ∈ (Z2

+, Z
2
−, Z

2
+) ∪ (Z2

−, Z
2
−, Z

2
−) ∪ (Z2

+, Z
2
+, Z

2
−) | � = j − k

}
∪ {( j, k, �) ∈ (Z2

−, Z
2
+, Z

2
+) ∪ (Z2

−, Z
2
−, Z

2
−) ∪ (Z2

+, Z
2
+, Z

2
−) | � = k − j

}
,

I− = {( j, k, �) ∈ (Z2
−, Z

2
+, Z

2
+) ∪ (Z2

+, Z
2
−, Z

2
+) ∪ (Z2

−, Z
2
−, Z

2
−) | � = j + k

}
.

Setting

U t,φ(s, x) =
∑
k∈Z

2
0

β
φ

k (s)ek(x) and φ(x) =
∑
k∈Z

2
0

φkek(x),

we also have the backward equations

d

ds
β

φ

� (s) = ν‖�‖2β
φ

� (s) +
∑

( j,k,�)∈I∗+

c( j, �)αj (t)β
φ

k (t)

−
∑

( j,k,�)∈I∗−

c( j, �)αj (t)β
φ

k (t), s < t,

β
φ

� (t) = φ�,

(3.4)

where

I∗
+ = {( j, k, �) ∈ (Z2

+, Z
2
+, Z

2
−) ∪ (Z2

−, Z
2
+, Z

2
+) ∪ (Z2

+, Z
2
−, Z

2
+) | j + k + � = 0

}
∪ {( j, k, �) ∈ (Z2

+, Z
2
+, Z

2
−) ∪ (Z2

−, Z
2
−, Z

2
−) ∪ (Z2

+, Z
2
−, Z

2
+) | � = j − k

}
∪ {( j, k, �) ∈ (Z2

−, Z
2
+, Z

2
+) ∪ (Z2

−, Z
2
−, Z

2
−) ∪ (Z2

+, Z
2
−, Z

2
+) | � = j + k

}
,

I∗
− = {( j, k, �) ∈ (Z2

−, Z
2
+, Z

2
+) ∪ (Z2

+, Z
2
+, Z

2
−) ∪ (Z2

−, Z
2
−, Z

2
−) | � = k − j

}
.

We now continue the proof of Proposition 3.5. Notice that the β
φ

� are continuous

in time for every � ∈ Z0, every φ ∈ L
2, and every realization of the stochastic

forcing. Hence if β
φ

� ≡ 0 for some realization of noise, then φ� = 0. (The notation

x ≡ 0 means x(s) = 0, s ∈ [0, t).) Thus to prove the lemma, it would be sufficient

to show that there exists a fixed set �1 with positive probability so that for any

φ ∈ S∞, if 〈M(t)φ, φ〉 = 0 on �1, then β
φ

� ≡ 0 for all � ∈ Z∗ ∪ Z∞. This will be

proven inductively.

The base case of the induction is given by Corollary 2.5. In the present notation,

it simply says that for any ω ∈ � if 〈M(t)φ, φ〉 = 0 for some φ ∈ L
2, then β

φ

� ≡ 0
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for all � ∈ Z∗. In particular, for any ω ∈ � if 〈M(t)φ, φ〉 = 0, then β
φ

� ≡ β
φ

−� ≡ 0

for all � ∈ Z0. The proof of Theorem 3.1 would then be complete if we show that

there exists a single subset �1 ⊂ � of full measure so that if β
φ

� ≡ β
φ

−� ≡ 0 on �1

for all � ∈ Zn , then β
φ

� ≡ β
φ

−� ≡ 0 on �1 for all � ∈ Zn+1. This inductive step is

given by the next lemma, which once proved completes the proof of Theorem 3.1.

LEMMA 3.6 There exists a fixed subset �1 of full measure so that for any φ ∈ L
2

and � ∈ Z
2
0, if β

φ

� ≡ 0 and β
φ

−� ≡ 0 on �1, then for all j ∈ Z0 such that j⊥ · � �= 0

and ‖ j‖ �= ‖�‖
β

φ

�+ j ≡ β
φ

−(�+ j) ≡ β
φ

�− j ≡ β
φ

j−� ≡ 0

on �1.

PROOF: We begin with some simple observations that will be critical shortly.

Notice that from (3.3)–(3.4), one sees that for � ∈ Z∗, α�(s) has the form

(3.5) α�(s) = α�(0) +
∫ s

0

γ�(r)dr + W�(s)

where the γ� are some stochastic processes depending on the initial conditions and

noise realizations. Hence these coordinates are the sum of a Brownian motion and

a part that has finite first variation and is continuous in time for all ω ∈ �.

Similarly, for � �∈ Z∗,

(3.6) α�(s) = α�(0) +
∫ s

0

γ�(r)dr,

and hence these coordinates are continuous and have finite first variation in time for

every ω ∈ � since they are not directly forced. Similarly, notice that β
φ

� is contin-

uous and of finite first variation. In particular, we emphasize that these properties

of α� and β
φ

� hold on all of � for all � ∈ Z
2
0 and φ ∈ L

2.

Now, if β
φ

� ≡ 0 or β
φ

−� ≡ 0, then d
ds β

φ

� (s) ≡ 0 or d
ds β

φ

−�(s) ≡ 0, respectively,

as the coordinates are constant. Notice that from (3.4)–(3.6) these derivatives have

the form

X (s) +
∑
k∈Z∗

Yk(s)Wk(s)

where the X and Yk are continuous and bounded-variation processes. Also, notice

that they are not adapted to the past of the Wk’s! Nonetheless, it follows from

Lemma 4.1 in the next section that if {X (·), Yk(·) : k ∈ Z∗} are continuous and of

bounded variation, then

(3.7) X (s) +
∑
k∈Z∗

Yk(s)Wk(s) = 0, 0 ≤ s ≤ t,

implies that

(3.8) Yk(s) = 0 for all 0 ≤ s ≤ t and k ∈ Z∗
on a set �1 ⊂ � of full measure, which does not depend on �, k, or φ, and hence we

can use a single exceptional set for all of the steps in the induction. To summarize,
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we have shown that there is a single fixed set �1 ⊂ �, of full measure, so that for

any φ ∈ L
2, if β

φ

� ≡ β
φ

−� ≡ 0 on �1, then Yk ≡ 0 for all k ∈ Z∗. We now identify

the Yk to discover what (3.8) implies.

Define |�| = ±� depending on whether � ∈ Z
2
± and sgn(�) = ±1 depending on

whether � ∈ Z
2
±. (Care should be taken not to confuse ‖�‖, which is in R+, with

|�|, which is in Z
2
+.) Then from (3.3)–(3.4), we see that for each � ∈ Z

2
0,

d

ds
β

φ

� (s) = X�(s) +
∑
j∈Z∗

( j,�)∈IS

c( j, �)
[
β

φ

−|�− j |(s) + sgn(�)β
φ

−|�+ j |(s)
]
Wj (s)

+
∑
j∈Z∗

( j,�)∈IA

c( j, �)
[
β

φ

|�− j |(s) − sgn(� + j)βφ

|�+ j |(s)
]
Wj (s),

where IA = (Z2
+, Z

2
−) ∪ (Z2

−, Z
2
+), IS = (Z2

+, Z
2
+) ∪ (Z2

−, Z
2
−), and X�(s) is a

continuous stochastic process with bounded variation. Hence by Lemma 4.1 we

obtain that terms in brackets in the above equation are identically zero.

Recall that by assumption d
ds β

φ

� (s) = 0, d
ds β

φ

−�(s) = 0, and { j,− j} ⊂ Z∗.

Without loss of generality, we assume that �, j ∈ Z+ since this can always be

achieved be renaming � and j . The preceding reasoning using Lemma 4.1 applied

to ( j, �), (− j,−�), (− j, �), and ( j,−�) implies that

c( j, �)
[
β

φ

−|�− j |(s) + β
φ

−|�+ j |(s)
] = 0,

c( j, �)
[
β

φ

−|�− j |(s) − β
φ

−|�+ j |(s)
] = 0,

c( j, �)
[

sgn(� − j)βφ

|�− j |(s) − β
φ

|�+ j |(s)
] = 0,

c( j, �)
[

sgn(� − j)βφ

|�− j |(s) + β
φ

|�+ j |(s)
] = 0,

for all s < t on a subset of �1 of full measure. Provided that j⊥ · � �= 0 and ‖ j‖ �=
‖�‖, one has that c(�, j) �= 0. Hence the left-hand sides are linearly independent,

and one concludes that β
φ

�− j ≡ β
φ

�+ j ≡ β
φ

j−� ≡ β
φ

−(�+ j) ≡ 0 on a subset of �1 of

full measure. �

We now collect some of the information from the preceding proof for later use.

PROPOSITION 3.7 Let Uφ,t be the solution of (2.5) for any choice of terminal
condition φ and terminal time t. Recall the definition of Sn from (3.1). Let �0 be
the projection onto S0 and �⊥

0 its orthogonal complement. Then for s < t

∂

∂s
Uφ,t(s) = Xφ(s) +

∑
j∈Z∗

Y φ

j (s)Wj (s)

where

Xφ(s) = −ν�Uφ,t(s) − B(�⊥
0 w(s), Uφ,t(s)) + C(Uφ,t(s),�⊥

0 w(s))

− B(R(s), Uφ,t(s)) + C(Uφ,t(s), R(s)),
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R(s) = �0w(0) +
∫ s

0

ν��0w(r) + �0 B(w(r), w(r))dr,

Y φ

j (s) = −B(ej , Uφ,t(s)) + C(Uφ,t(s), ej ).

For all �, j ∈ Z
2
+, we have

〈Y φ

j (s), e�〉 = π2c( j, �)[βφ

−|�− j |(s) + β
φ

−(�+ j)(s)],
〈Y φ

− j (s), e−�〉 = π2c( j, �)[βφ

−|�− j |(s) − β
φ

−(�+ j)(s)],
〈Y φ

− j (s), e�〉 = π2c( j, �)[sgn(� − j)βφ

|�− j |(s) − β
φ

�+ j (s)],
〈Y φ

j (s), e−�〉 = −π2c( j, �)[sgn(� − j)βφ

|�− j |(s) + β
φ

�+ j (s)].

4 A Quadratic Variation Lemma

The following lemma is the main technical result used to prove the existence of

a density.

LEMMA 4.1 Let A be a collection of real-valued stochastic processes such that
there exists a fixed subset �A ⊂ � of full measure such that on �A any element of
A is continuous and has finite first variation.

Fix a finite collection {W1, . . . , WN } of independent Wiener processes and a
sequence of partitions {sn

j }m(n)

j=0 with sn
j+1 − sn

j → 0 as n → ∞ and

0 = sn
1 ≤ · · · ≤ sn

m(n) = t.

Then there exists a fix subset �′ ⊂ �A of full measure and a fixed subsequence of
partitions {tn

j }k(n)

j=0 of {sn
j }m(n)

j=0 so that if

Z(s) = X (s) +
N∑

i=1

Yi (s)Wi (s)

with X, Y1, . . . , YN ∈ A, then on the set �′

k(n)∑
j=1

|Z(tn
j ) − Z(tn

j−1)|2 −→
N∑

i=1

∫ t

0

Y 2
i (s)ds as n → ∞.

To prove this lemma we will invoke the following auxiliary results, whose

proofs will be given after the proof of Lemma 4.1.

LEMMA 4.2 Let {W (s) : 0 ≤ s ≤ t} be a standard Brownian motion and {sn
j }m(n)

j=0

a sequence of partitions as in Lemma 4.1. The sequence of measures{ m(n)∑
j=1

(W (sn
j ) − W (sn

j−1))
2δsn

j−1
, n = 1, 2, . . .

}

converges weakly as n → ∞ to the Lebesgue measure on [0, t] in probability.
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LEMMA 4.3 Let {W (s) : 0 ≤ s ≤ t} and {W̄ (s) : 0 ≤ s ≤ t} be two mutually
independent Brownian motions and {sn

j }m(n)

j=0 a sequence of partitions as in Lemma
4.1. The sequence of signed measures{ m(n)∑

j=1

(W (sn
j ) − W (sn

j−1))(W̄ (sn
j ) − W̄ (sn

j−1))δsn
j−1

, n = 1, 2, . . .

}

converges weakly to zero in probability as n → ∞.

PROOF OF LEMMA 4.1: In light of Lemmas 4.2 and 4.3, since the collection of

Brownian motions is finite, we can select a single set of full measure �′ ⊂ �A and

a single subsequence of partitions {tn
j }k(n)

j=0 such that the weak convergences given in

Lemmas 4.2 and 4.3 hold on �′. Furthermore, we can assume that on �′ the Wi (s)
are continuous and have quadratic variation s. For notational brevity, we will write

tj instead of tn
j .

Consider the quantity
∑

j |Z(tj ) − Z(tj−1)|2. If we express it in terms of the X ,

Y , and W ’s, we note that it contains four types of terms,∑
j

|X (tj ) − X (tj−1)|2,
∑

j

|Y (tj )W (tj ) − Y (tj−1)W (tj−1)|2,
∑

j

(
X (tj ) − X (tj−1)

)(
Y (tj )W (tj ) − Y (tj−1)W (tj−1)

)
,

∑
j

(
Y (tj )W (tj ) − Y (tj−1)W (tj−1)

)(
Ȳ (tj )W̄ (tj ) − Ȳ (tj−1)W̄ (tj−1)

)
,

where W and W̄ are mutually independent scalar Brownian motions. The first and

third terms are easily shown to tend to zero on �′ as n → ∞, since X is of bounded

variation, and X , Y , and W are continuous.

Consider the second term∑
j

|Y (tj )W (tj ) − Y (tj−1)W (tj−1)|2

=
∑

j

Y (tj−1)
2(W (tj ) − W (tj−1))

2 +
∑

j

W 2(tj )(Y (tj ) − Y (tj−1))
2

+ 2
∑

j

W (tj )Y (tj−1)(W (tj ) − W (tj−1)) × (Y (tj ) − Y (tj−1)).

Again on �′, the second and last terms above tend to 0, and∑
j

Y (tj−1)
2(W (tj ) − W (tj−1))

2 →
∫ t

0

Y (s)2 ds

on �′ by the convergence given in Lemma 4.2.
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Finally,∑
j

(
Y (tj )W (tj ) − Y (tj−1)W (tj−1)

)(
Ȳ (tj )W̄ (tj ) − Ȳ (tj−1)W̄ (tj−1)

)
=
∑

j

[
Y (tj−1)(W (tj ) − W (tj−1)) + (Y (tj ) − Y (tj−1))W (tj )

]
× [Ȳ (tj−1)(W̄ (tj ) − W̄ (tj−1)) + (Ȳ (tj ) − Ȳ (tj−1))W̄ (tj )

]
=
∑

j

Y (tj−1)Ȳ (tj−1)(W (tj ) − W (tj−1))(W̄ (tj ) − W̄ (tj−1)) + εn,

where εn → 0 a.s. as n → ∞. Again by Lemma 4.3, the sum tends to 0 on �′. �

PROOF OF LEMMA 4.2: For any measure, the fact that µn ⇒ µ follows from

µn([0, s]) → µ([0, s]) for all s ∈ [0, t], s rational. From any subsequence of

the given sequence, one can extract a further subsequence such that µn([0, s]) →
µ([0, s]) for all s rational, 0 ≤ s ≤ t a.s. Hence along that subsequence µn ⇒ µ

a.s.; hence the whole sequence converges weakly in probability. �

PROOF OF LEMMA 4.3: Write �j W for W (sn
j ) − W (sn

j−1), and write �j W̄ for

W̄ (sn
j ) − W̄ (sn

j−1). Note that for all 0 ≤ r < s ≤ t as n → ∞,∑
r<sn

j ≤s

�j W�j W̄ → 0 in probability as n → ∞.

Consequently, if f is a step function,

n∑
j=1

�j W�j W̄ f (sn
j−1) → 0 in probability as n → ∞.

Moreover, for any two functions f and g∣∣∣∣
n∑

j=1

�j W�j W̄ ( f (sn
j−1) − g(sn

j−1))

∣∣∣∣
≤ sup

0≤s≤t
| f (s) − g(s)|

( n∑
j=1

(�j W )2

)1/2( n∑
j−=1

(�j W̄ )2

)1/2

,

and the right-hand side tends to

t × sup
0≤s≤t

| f (s) − g(s)|

in probability as n → ∞.

Let now f be a continuous function, and g be a step function. Choose

δ = 2t sup
0≤s≤t

| f (s) − g(s)|
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We have

P

{∣∣∣∑ f (sn
j−1)�j W�j W̄

∣∣∣ > δ

}

≤ P

{∣∣∣ n∑
j=1

g(sn
j−1)�j W�j W̄

∣∣∣ > δ

3

}

+ P

{∣∣∣ n∑
j=1

(
f (sn

j−1) − g(sn
j−1)
)
�j W�j W̄

∣∣∣ > 2δ

3

}
,

and it follows from the above arguments that the latter tends to zero as n → ∞.

Since δ can be made arbitrarily small by an appropriate choice of the step function

g, the lemma is proved. �

5 Relation to Brackets of Vector Fields

We now sketch another possible proof of our Theorem 3.1, which brings in

explicitly the brackets of certain vector fields. A vector field over the space L
2 is a

mapping from a dense subset of L
2 into itself. We begin by rewriting (1.1) as

∂w

∂t
(t) = F0(w(t)) +

N∑
i=1

Fi
∂Wi

∂t
(t).

The diffusion vector fields in our case are constant vector fields defined by

Fi = eki , 1 ≤ i ≤ N ,

where N is the cardinality of Z∗ and {k1, . . . , kN } is any ordering of the set Z∗.

Similarly, the drift vector field is denoted by F0(w) = ν�w − B(w,w). In this

notation, (2.2) becomes{
∂U t,φ

∂s (s) + (∇w F0)
∗(w(s))U t,φ(s) = 0, 0 ≤ s ≤ t,

U t,φ(t) = φ,

where ∇w F0 is the Fréchet derivative of F0 in the L
2 topology and (∇x F0)

∗ is its

L
2 adjoint. If it is well-defined, we define the bracket [F, G] between two L

2 vector

fields F and G as [F, G] = (∇w F)G−(∇wG)F . (Part of being well-defined is that

the range of G and F are contained in the domain of ∇w F and ∇wG, respectively.)

The argument in this alternate proof is based on the two next results.

LEMMA 5.1 Let G be a vector field on L
2 that is twice Fréchet differentiable in the

L
2 topology and such that [Fi , G], i = 0, . . . , N, are vector fields on L

2. Then we
have

〈U t,φ(s), G(w(s))〉 − 〈U t,φ(0), G(w(0))〉

=
∫ s

0

〈U t,φ(r), [F0, G](w(r))〉dr +
N∑

i=1

∫ s

0

〈U t,φ(r), [Fi , G](w(r))〉 ◦ dW i
r
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where ◦ means that it is a Stratonovich (anticipating) integral; in Itô-Skorohod
language, it takes the form∫ s

0

〈U t,φ(r), [F0, G](w(r))〉dr +
N∑

i=1

∫ s

0

〈U t,φ(r), [Fi , G](w(r))〉dW i
r

+
N∑

i=1

∫ s

0

[
1

2

〈∇2
wG(w(r))(Fi , Fi )U

t,φ(r)
〉+ 〈[Fi , G](w(r))Di

rU t,φ(r)
〉]

dr

PROOF: The formula in Skorohod language follows from theorem 6.1 in [27]

via an easy finite-dimensional approximation. Its translation in the Stratonovich

form follows from theorem 7.3 in the same paper (see also theorem 3.1.1 in [25]).

�

We can now prove the following:

PROPOSITION 5.2 Let �0 ⊂ �. Under the same assumptions on G as in the above
lemma,

〈U t,φ(s), G(w(s))〉 ≡ 0 on the set �0

implies that

〈U t,φ(s), [Fi , G](w(s))〉 ≡ 0 a.s. on the set �0, i = 0, . . . , N .

PROOF: The assumption implies that the quadratic variation on [0, t] of the

process {〈U t,φ(s), G(w(s))〉} vanishes almost surely on �0. Then from [25, theo-

rem 3.2.1], for i = 1, . . . , N ,∫ t

0

〈U t,φ(s), [Fi , G](w(s))〉2 ds = 0

a.s. on the set �0, i.e.,

〈U t,φ(s), [Fi , G](w(s))〉 ≡ 0 a.s. on the set �0, i = 1, . . . , N .

This implies that for 1 ≤ i ≤ N ,∫ s

0

〈U t,φ(r), [Fi , G](w(r))〉 ◦ dW i
r ≡ 0 a.s. on the set �0

(see definition 3.1.1 in [25]), from which it follows (see the previous lemma) that

〈U t,φ(s), [F0, G](w(s))〉 ≡ 0 a.s. on the set �0.

�

Now call L all well-defined L
2 vector fields in the ideal generated by the vector

fields F1, . . . , FN in the Lie algebra generated by F0, . . . , FN . In other words, at

each u ∈ L
2, L(u) consists of F1, . . . , FN , and all brackets

(5.1) [Fin , [Fin−1
, . . . [Fi2

, Fi1
] . . .]](u),
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which are well-defined vector fields on L
2 where 1 ≤ i1 ≤ N , and for j > 1,

0 ≤ i j ≤ N . Iterating the argument in the proposition, we deduce the following

result:

COROLLARY 5.3 Given φ ∈ L
2, let

�0 := {〈M(t)φ, φ〉 = 0}.
If P(�0) > 0, then

〈φ, G(w(s))〉 ≡ 0 ∀G ∈ L a.s. on �0.

In particular, φ is orthogonal to all constant vector fields in L.

In the case of the stochastic Navier-Stokes equations given in (1.1), all of the

brackets given in (5.1) are well-defined if the ek used to define the forcing have

exponentially decaying Fourier components. This follows from the fact that all

of the brackets of the form (5.1) contain differential operators with polynomial

symbols and the fact that, with this type of forcing, on any finite time interval

[0, T ] there exists a positive random variable γ so that sup[0,T ] ‖eγ |∇|w(s)‖2 < ∞
almost surely. Here ‖eγ |∇|w‖2 = ∑k e2γ |k||wk |2 where w(t, x) = ∑k wk(t)eik·x .

See, for example, [19] for a stronger version of this result or [18, 22] for simpler

versions.

Furthermore, in [9] it is implicitly shown by the construction used that the span

of the constant vector fields contains S∞. Thus, under the same conditions as

before we see that the law of arbitrary finite-dimensional projections of w(t) have

a density with respect to Lebesgue measure.

6 Smoothness

In the preceding sections, we proved the existence of a density. We now address

the smoothness of the density. While the former simply required that the projected

Malliavin matrix be invertible, the proof of smoothness requires control on the

norm of the inverse of the projected Malliavin matrix together with “smoothness

in the Malliavin sense.” The following is the main result of this section; however,

it rests heavily on the general results proven in Section 7 as well as some technical

results from the appendices.

THEOREM 6.1 Let S be any finite-dimensional subspace of S∞ and � the orthog-
onal projection in L

2 onto S. For any t > 0, the law of �wt has a C∞ density with
respect to the Lebesgue measure on S.

PROOF: We use corollary 2.1.2 of [25]. Lemma C.1 from the appendix estab-

lishes condition (i) from that corollary, while condition (ii) of the same corollary

follows from the next theorem. �

The following is a quantitative version of Proposition 3.5. It gives a quanti-

tative control of the smallest eigenvalue of a finite-dimensional projection of the

Malliavin matrix.
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THEOREM 6.2 Let � be the orthogonal projection of L
2 onto a finite-dimensional

subspace of S∞. For any T > 0, η > 0, p ≥ 1, and K > 0, there exists a
constant c = c(ν, η, p, |Z∗|, T, K ,�) and ε0 = ε0(ν, K , |Z∗|, T,�) so that for
all ε ∈ (0, ε0],

P
(

inf
φ∈S(K ,�)

〈M(T )φ, φ〉 < ε
) ≤ c exp(η‖w(0)‖2)ε p

where S(K ,�) = {φ ∈ S∞ : ‖φ‖1 ≤ 1, ‖�φ‖ ≥ K }.
Remark 6.3. Notice that this lemma implies that the eigenvectors with “small”

eigenvalues have small projections in the “lower” modes. The definition of lower

modes depends on the definition of small eigenvalues. This separation between the

eigenvectors with small eigenvalues and the low modes is one of the keys to the

ergodic results proved in [14].

Remark 6.4. Also notice that there is a mismatch in the topology in Theorem 6.2

in that the test functions are bounded in H
1 but the inner product is in L

2. This can

likely be rectified; since the backward adjoint linearized flow J̄ ∗
s,T maps L

2 into H
1

for any s ≤ T , it is possible to obtain estimates on P(〈φ,M(T )φ〉 < ε) for φ ∈ L
2.

Just as in the proof of Theorem 6.2, where we exclude a small neighborhood of time

0 to allow wt to regularize, we could exclude the s in a small neighborhood of the

terminal T to allow U T,φ(s) = J ∗
s,T φ to regularize.

PROOF: Recall the definition of Sn and Zn from (3.1), and let �n be the or-

thonormal projection onto Sn . Since S(K ,�) ⊂ S∞ and � projects onto a finite-

dimensional subspace of S∞, for n sufficiently large, ‖�nφ‖ > 1
2

K for all φ ∈
S(K ,�). Fix such an n.

We now construct a basis of Sn compatible with the structure of Zk , k ≤ n.

Fixing any ordering of Z∗, set { fi : i = 1, . . . , N = |Z∗|} = Z∗. Clearly { fi }N
i=1

is a basis for S0. Set J0 = N . By the construction of Sn it is clear that Sn \ Sn−1

is equal to the Span(ek : k ∈ Z ′
n) where Z ′

n
def= Zn

⋂n−1
j=0 Z

c
j ∩ Zc

∗ . For n ≥ 1, set

Jn = Jn−1 + |Z ′
n| and { fi : i = Jn−1 + 1, . . . , Jn} = {ek : k ∈ Z ′

n}, again fixing an

arbitrary ordering of the right-hand side. Clearly { fi }Jn
i=1 chosen in this way is an

orthogonal basis for Sn .

Fix some t0 ∈ (0, T ). Recall that by Corollary 2.4

P
(

inf
φ∈S(K ,�)

〈M(T )φ, φ〉 < ε
) = P

(
inf

φ∈S(K ,�)

∑
k∈Z∗

∫ T

0

〈U T,φ(s), ek〉2 ds < ε

)
.

Let Xφ and Y φ

j be as in Proposition 3.7. For j = 1, . . . , Jn , define

χ
φ

j (t) = −
〈

Xφ(T − t) +
∑
k∈Z∗

Y φ

k (T − t)Wk(T ) f j

〉
,
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ϒ
φ

j,k(t) = 〈Y φ

k (T − t), f j 〉, Gφ

j (t) = 〈U T,φ(T − t), f j 〉, and W̄k(t) = Wk(T ) −
Wk(T − t). Notice that for t ∈ [0, T ] and j = 1, . . . , Jn ,

Gφ

j (t) = 〈φ, f j 〉 +
∫ t

0

[
χ

φ

j (s) +
∑
k∈Z∗

ϒ
φ

j,k(s)W̄k(s)

]
ds.

Furthermore, in light of the observations in the proof of Lemma 3.6, we see that

this sequence of equations satisfies the assumptions of the next subsection with J0

as defined above and J = Jn . Next recall that U t,φ(s, x) = ∑k∈Z
2
0
β

φ

k (s)ek(x).

Combining this, the last equalities in Proposition 3.7, and the argument already

used at the end of the proof of Lemma 3.6, we see that each Gφ

j is a linear combi-

nation of the {ϒφ

i,k : i < j, k ∈ Z∗} with coefficients that are constant in time.

Below ||| · |||1,[a,b] and ‖·‖∞,[a,b], respectively, denote the Lipschitz and L∞ norm

on [a, b]; see the beginning of Section 7 for the precise definitions.

Fix a t ∈ (0, T ) and set T1 = T − t . Bounds, uniform for φ ∈ S(K ,�),

on the pth moments of the L∞ norm and Lipschitz constants of χ
φ

j and ϒ
φ

j,k over

the interval [0, T1] are given by Lemma E.2. (Recall that these processes have

been time reversed.) Hence given any p ≥ 1, q > 0, and η > 0, there exists a

c = c(η, q, p, t, ν, E1, T ) > 0 so that for any ε > 0 if one defines

(6.1) ��(ε, q) =
⋂

φ∈S(K ,�)

{
sup
k, j

(|||χφ

j |||1,[0,T1], |||ϒφ

j,k |||1,[0,T1]
) ≤ ε−q

}
,

then the estimate P(��(ε, q)c) ≤ c exp(η‖w(0)‖2)ε p holds.

Next Corollary 7.3 and Proposition 7.1 state that there exist q = q(|S|, N )

and ε0 = ε0(T,Z∗|, |S|) so that for all ε ∈ (0, ε0] there is a ��(ε) so that for all

φ ∈ S(K ,�) one has

(6.2)

{
sup

i=1,...,N

∫ T1

0

|Gφ

i (s)|2 ds < ε; sup
i=1,...,Jn

sup
s∈[0,T1]

|Gφ

i (s)| > εq

}
∩ ��(ε, q) ⊂ ��(ε)

and P(��(ε)) ≤ cε p for all p ≥ 1 and η > 0 with a c = c(T, |Z∗|, |S|, p, η, ν).

Notice that because of the uniformity in (6.1), ��(ε) does not depend on the se-

quence of G’s. Since supk∈Z∗

∫ T
t 〈U T,φ(s), ek〉2 ds = supi=1,...,N

∫ T1

0
|Gφ

i (s)|2 ds

and sups∈[0,T1] |G
φ

i (s)| = ‖〈U T,φ, fi 〉‖∞,[t,T ], the inclusion given in (6.2) becomes

(6.3)

{
sup
k∈Z∗

∫ T

t
〈U T,φ(s), ek〉2 ds < ε; sup

i=1,...,Jn

‖〈U T,φ, fi 〉‖∞,[t,T ] > εq

}
⊂ ��(ε) ∪ ��(ε, q)c

for all ε ∈ (0, ε0]. Since 〈U T,φ(T ), fi 〉 = 〈φ, fi 〉, by the choice of the sub-

space Sn one has supi ‖〈U T,φ, fi 〉‖∞,[t,T ] ≥ K/(2
√

Jn). Thus for ε ∈ (0, ε0 ∧
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(K/[2√
Jn])1/q] one has εq ≤ K/(2

√
Jn), which transforms (6.3) into{∑

k∈Z∗

∫ T

t
〈U T,φ(s), ek〉2 ds < ε

}
⊂ ��(ε) ∪ ��(ε, q)c.

Since φ is an arbitrary direction in S(K ,�), and ��(ε) and ��(ε, q) are indepen-

dent of φ, we have{
inf

φ∈S(K ,�)

∑
k∈Z∗

∫ T

t
〈U T,φ(s), ek〉2 ds < ε

}
=

⋃
φ∈S(K ,�)

{∑
k∈Z∗

∫ T

t
〈U T,φ(s), ek〉2 ds < ε

}
⊂ ��(ε) ∪ ��(ε, q)c .

In summary we have shown that for any p ≥ 1 and η > 0, there exists q > 0

so that the above inclusion holds and a c > 0 so that P(��(ε)) + P(��(ε, q)c) ≤
c exp(η‖w(0)‖2)ε p. �

7 Controlling the Chance of Being Small

This section contains the main estimate used to control the chance of certain

processes being small when their quadratic variation is large. The estimates of this

section are simply quantitative versions of the results of Section 4. There are also

the analogues of results used in the standard Malliavin calculus as applied to finite-

dimensional SDEs. There the estimates were developed by Stroock [31] and Norris

[24]. Here we do not have adapted processes. Instead, we exploit the smoothness

in time to obtain estimates.

For the entirety of this section, we fix a time T and consider only the interval of

time [0, T ]. For any real-valued function of time f , define the α-Hölder constant

over the time interval [0, T ] by

(7.1) Hα( f ) = sup
s,r∈[0,T ]

0<|s−r |≤1

| f (s) − f (r)|
|s − r |α

and the L∞ norm by

(7.2) ‖ f ‖∞ = sup
s∈[0,T ]

| f (s)|.

We also define ||| f |||α = max(‖ f ‖∞,Hα( f )). At times we will also need versions

of the above norms over shorter intervals of time. For [a, b] ⊂ [0, T ] we will write

Hα,[a,b]( f ), ‖ f ‖∞,[a,b], and ||| f |||α,[a,b] for the norms with the same definitions as

above except that the supremum over [0, T ] is replaced with a supremum over

[a, b]. We also extend the definitions of the Lipschitz constant in time Hα( f )

to functions of time taking values in L
2 by replacing the absolute value in the

definitions given in (7.1) and (7.2) by the norm on L
2. Similarly, we extend the
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definitions Hα,[a,b]( f ), ‖ f ‖∞, and ‖ f ‖∞,[a,b] to functions of time taking values in

L
2.

7.1 A Ladder of Estimates

For each 1 ≤ j ≤ J , let {W ( j)
i : i = 1, . . . , N } be a collection of mutually

independent standard Wiener processes with Wi (0) = 0 defined on a probability

space (�,F, P).

We say that the collection of processes G = {G( j)(t, ω) : 1 ≤ j ≤ J } forms a

ladder of order J with base size J0 if first 1 ≤ J0 < J and

G( j)(t, ω) = G( j)
0 +

∫ t

0

H ( j)(s, ω)ds

H ( j)(s, ω) = X ( j)(s, ω) +
N∑

i=1

Y ( j)
i (s)W ( j)

i (s, ω)

where j = 1, . . . , J < ∞ and ω ∈ �.

Second, we require that for j greater than J0, the G( j) are determined by the

functions at the previous levels. More precisely, for each j with j > J0 there

exists an integer K = K ( j), a collection {gk(t) : k = 1, . . . , K } of bounded,

deterministic functions of time, and a collection { fk(t, ω) : k = 1, . . . , K } of

stochastic processes with

(7.3) fk ∈ {Y (l)
i , X (l), G(n) : 1 ≤ i ≤ N , 1 ≤ l ≤ j − 1, 1 ≤ n ≤ j − 1}

so that

G( j)(t, ω) =
K∑

k=1

gk(t) fk(t, ω) a.s.

This assumption can be restated by saying that, for j > J0, G( j) must be at each

moment of time in the span of the preceding X , Y , and G. And furthermore, the

coefficients in the linear combination producing G( j) must be uniformly bounded

on [0, T ].
It is important to remark that we do not assume that the Y ( j)

i or X ( j) are adapted

to the Wiener processes. Typical assumptions regarding adaptedness will be re-

placed with assumptions on the regularity of the processes in time.

The goal of this section is to prove that under certain assumptions, if the first

J0 of the G( j) are small in some sense, then all of the X , Y , and remaining G are

also small with high probability. The ladder structure connects the j th level with

the other levels.

Fix a time T > 0. For any choice of the positive parameter � define δ = �5/3.

For k = 0, 1, . . . , define tk = k� ∧ T . For each fixed k, define s�(k) = (tk + �δ) ∧
tk+1 for � = 0, 1, . . . . Set δk

� = s�(k) − s�−1(k) and δk
� f = f (s�(k)) − f (s�−1(k)).

Lastly, define m = inf{k : tk = T } and M(k) = inf{� : s�(k) = tk+1}. Notice that

�−2/3 = �/δ ≤ M(k) ≤ �/δ + 1 = �−2/3 + 1 for all k and m ≤ T �−1 + 1.
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Define the following subsets of the probability space �:

�a(�) =
{

inf
0≤k≤m

inf
1≤i≤N

1

M(k)

M(k)∑
�=1

(δk
� Wi )

2

δk
�

≤ 1

2

}
,

�b(�) =
{

sup
0≤k≤m

sup
(i, j)∈{1,...,N }2

i �= j

1

M(k)

∣∣∣∣
M(k)∑
�=1

(δk
� Wi )(δ

k
� Wj )

δk
�

∣∣∣∣ ≥ �3/14

3N 2

}
,

�c(�) =
{

sup
1≤i≤N

|||Wi |||1/4 > �− 1
28

}
,

�′
�(ε) = �a(ε

14/75) ∪ �b(ε
14/75) ∪ �c(ε

14/75), and finally

��(ε) =
J⋃

j=1

�′
�(ε

( 1
152 ) j

).

The following bound follows readily from Corollary 7.11 and Lemma 7.12 in Sec-

tion 7.4.

PROPOSITION 7.1 For any p ≥ 1, there exists a constant c = c(T, J, N , p), in
particular independent of ε, such that

P(��(ε)) ≤ cε p.

The next key result in this section is the following proposition, which shows

why the previous estimate is important:

PROPOSITION 7.2 Fix a positive integer J and for q > 0 define

�q∗(G, ε) =
{

sup
1≤ j≤J
1≤i≤N

(|||X ( j)|||1, |||Y ( j)
i |||1) ≤ ε−q

}
,

�q(G, ε) =
{

sup
1≤ j≤J0

‖G( j)‖∞ < ε ; sup
1≤ j≤J
1≤i≤N

(‖X ( j)‖∞, ‖Y ( j)
i ‖∞, ‖G( j)‖∞) > εq

}
.

Then there exists positive constants q0 = q0(J ) and ε0 = ε0(T, J, N ) so that for
any ε ∈ (0, ε0], q ∈ (0, q0], and ladder G = {G( j) : 1 ≤ j ≤ J } of order J with
base size J0 less than J ,

�q∗(G, ε) ∩ �q(G, ε) ⊂ ��(ε).

In words, this proposition states that if the first J0 of the G( j) are small and all

of the quantities |||X ( j)|||1 and |||Y ( j)
i |||1 are not too big, then it is unlikely that the

remaining G( j) are big.

PROOF OF PROPOSITION 7.2: The idea of the proof is to iterate Lemma 7.5

below. Begin by setting g∗ = supj

∑K ( j)
k=1 |gk |∞. Now define ε0 = ε̃0 = ε and for

j > 1 define εj = ε̃
1/151
j−1 , ε̃j = ε

151/152
j . With these choices, εj < ε̃j < εj+1 <
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ε̃j+1. We also choose q0 sufficiently small so that ε̃J+1 < εq for ε ∈ [0, 1) and

q ∈ (0, q0]. Define the following subsets of �:

A( j) = �q∗(G, ε) ∩ �q(G, ε) ∩ { sup
1≤i≤N

(‖X (l)‖∞, ‖Y (l)
i ‖∞) ≤ εl+1 for l ≤ j

}
,

A+( j) = A( j) ∩ {‖G(l)‖∞ ≤ ε̃l ≤ εl+1 for l ≤ j + 1},

B( j) = { sup
1≤i≤N

(‖X ( j)‖∞, ‖Y ( j)
i ‖∞) > ε̃

1/151
j = εj+1

}
,

C( j) = �q∗(G, ε) ∩ {‖G( j)‖∞ ≤ ε̃j ;
sup

1≤i≤N
(‖X ( j)‖∞, ‖Y ( j)

i ‖∞) > ε̃
1/151
j = εj+1

}
.

First notice that since ε < εq for ε ∈ (0, 1] and q ∈ (0, q0], the event{
sup

1≤ j≤J0

‖G( j)‖∞ < ε ; sup
1≤ j≤J0

‖G( j)‖∞ > εq
}

is empty. Hence

�q(G, ε) =
{

sup
1≤ j≤J0

‖G( j)‖∞ < ε; sup
1≤ j≤J
1≤i≤N
J0<�≤J

(‖X ( j)‖∞, ‖Y ( j)
i ‖∞, ‖G(�)‖∞) > εq

}
.

Next note that for any j > J0, because G( j)(t) = ∑K
k=1 gk(t) fk(t), we have

‖G( j)‖∞ ≤ g∗ supk ‖ fk‖∞. Here the fk are from earlier in the ladder in the sense

of (7.3). Hence for any j , we have that if

sup
1≤i≤N

(‖X (l)‖∞, ‖Y (l)
i ‖∞, ‖G(l)‖∞) ≤ εl+1 for l ≤ j − 1,

then ‖G( j)‖∞ ≤ g∗εj < ε
151/152
j = ε̃j for ε sufficiently small. Restricting to ε

small enough so that g∗εj < ε
151/152
j for all 1 ≤ j ≤ J implies that A+( j) = A( j)

for all 1 ≤ j ≤ J .

Next observe that A( j)∩ B( j +1)c = A( j +1) and hence A+( j)∩ B( j +1)c =
A+( j + 1) for ε sufficiently small. Iterating this observation, with the convention

A+(0) = �q∗(G, ε) ∩ �q(G, ε), we obtain

A+(0) = [A+(0) ∩ B(1)c] ∪ [A+(0) ∩ B(1)]

= A+(1) ∪ [A+(0) ∩ B(1)]

= [A+(1) ∩ B(2)c] ∪ [A+(1) ∩ B(2)] ∪ [A+(0) ∩ B(1)]



MALLIAVIN CALCULUS AND THE NAVIER-STOKES EQUATION 1767

= A+(2) ∪ [A+(1) ∩ B(2)] ∪ [A+(0) ∩ B(1)]

= A+(J ) ∪
J−1⋃
j=0

[A+( j) ∩ B( j + 1)].

Since q was picked sufficiently small so that εJ+1 < εq , we observe that A+(J ) is

empty since on A+(J )

sup
1≤ j≤J
1≤i≤N
J0<l≤J

(‖X ( j)‖∞, ‖Y ( j)
i ‖∞, ‖G(l)‖∞) ≤ εJ+1

< εq < sup
1≤ j≤J
1≤i≤N
J0<l≤J

(‖X ( j)‖∞, ‖Y ( j)
i ‖∞, ‖G(l)‖∞),

which cannot be satisfied.

Recall that ��(ε) = ⋃J
j=1 �′

�(ε̃j ). Let �′
∗(H ( j), ε̃j ) be the set defined below

in Lemma 7.5. For all q sufficiently small, �q∗(G, ε) ⊂ �′
∗(H ( j), ε̃j ) for j =

1, . . . , J + 1. Decrease q0 so this holds. With this choice Lemma 7.5 implies that

C( j) ⊂ �′
�(ε̃j ). Since clearly A+( j) ∩ B( j + 1) ⊂ C( j + 1), combining all of

these observations produces

�q∗(G, ε) ∩ �q(G, ε) = A+(0) ⊂
J⋃

j=1

C( j) ⊂
J⋃

j=1

�′
�(ε̃j ) = ��(ε).

�

Lastly, we give a version of the preceding proposition that begins with L p esti-

mates in time on the {G( j) : 1 ≤ j ≤ J0} rather than L∞ estimates.

COROLLARY 7.3 Fix T > 0. For any � > 0, define

�q,�(G, ε)

=
{

sup
1≤ j≤J0

∫ T

0

|G( j)(s)|� ds < ε; sup
1≤ j≤J
1≤i≤N

(‖X ( j)‖∞, ‖Y ( j)
i ‖∞, ‖G( j)‖∞) > εq

}
.

There exist positive constants q = q(J, �) and ε0 = ε0(J, T, N , �) so that for all
ε ∈ (0, ε0]

�q∗(G, ε) ∩ �q,�(G, ε) ⊂ ��(ε).

PROOF: We begin by translating the bound

sup
1≤ j≤J0

∫ T

0

|G( j)(s)|� ds < ε

into a bound of the form sup1≤ j≤J0
‖G( j)‖∞ ≤ εβ for some β ∈ (0, 1).

Notice that

|G( j)(s) − G( j)(r)| =
∣∣∣∣
∫ s

r
H ( j)(t)dt

∣∣∣∣ ≤ |s − r | ‖H ( j)‖∞.
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Without loss of generality we assume q < 1
150

. Hence on

�q∗(G, ε) ∩ {sup
i

‖Wi‖∞ > ε−1/150}c

we have

‖H ( j)‖∞ ≤ ‖X ( j)‖∞ +
N∑

i=1

‖Y ( j)
i ‖∞‖W ( j)

i ‖∞ ≤ ε−1/150 + Nε−1/75

≤ (N + 1)ε−1/75.

In other words, H1(G) ≤ (N + 1)ε−1/75 on �q∗(G, ε) ∩ {supi ‖Wi‖∞ > ε−1/150}c.

Then Lemma 7.6 below implies supj≤J0
‖G( j)‖∞ ≤ (2 + N )εβ0 < εβ1 for ε suffi-

ciently small where

β0 = 74

75

1

1 + �
and β1 = 1

2

1

1 + �
.

Now notice that �∗(G, εβ1) ⊂ �∗(G, ε) because β1 < 1. Hence the result follows

from Proposition 7.2 and the fact that {supi ‖Wi‖∞ > ε−1/150} ⊂ ��(ε). �

7.2 The Basic Estimates

Let

G(t) = G0 +
∫ t

0

H(s)ds.

Now let H(s) be any stochastic process of the form

(7.4) H(s) = X (s) +
N∑

i=1

Yi (s)Wi (s)
def= X (s) − Z(s)

where X (s) and Y1(s), . . . , YN (s) are Lipschitz-continuous stochastic processes

and {W1(s), . . . , WN (s)} are mutually independent, standard Wiener processes

with Wi (0) = 0, 1 ≤ i ≤ N .

Next, given ε > 0, define the following subsets of the probability space:

(7.5)

�̂∗(H, ε) = { sup
1≤i≤N

(‖Yi‖∞) ≤ ε−1/28; sup
1≤i≤N

(H1(Yi ),H1(X)) ≤ ε−1/28
}
,

�′
∗(H, ε) = { sup

1≤i≤N

(|||X |||1, |||Yi |||1
) ≤ ε−1/150

}
.

LEMMA 7.4 Let ε > 0. Assume Hα(H) ≤ cε−γ for some fixed α > γ > 0. Then
‖G‖∞ ≤ ε implies ‖H‖∞ ≤ (2 + c)ε(α−γ )/(1+α).

PROOF: For any s ∈ [0, t], let r1 ≤ s ≤ r2 such that r2 − r1 = ε(1+γ )/(1+α).

Notice that, by the assumption, H(r) ≥ H(s)− cε−γ |r2 − r1|α for any r ∈ [r1, r2].
Hence we have

2ε ≥ G(r2) − G(r1) =
∫ r2

r1

H(r)dr ≥ |r2 − r1|(H(s) − cε−γ |r2 − r1|α).
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Rearranging this gives

H(s) ≤ 2ε

|r2 − r1|
+ cε−γ |r2 − r1|α = (2 + c)ε

α−γ
1+α .

The same argument from above gives a complementary lower bound and completes

the result. �

Next, we have the following result:

LEMMA 7.5 There exists a ε0 = ε0(N ) so that for every ε ∈ (0, ε0] and stochastic
process G(t) of the form given above, one has

�′
∗(H, ε) ∩ {‖G‖∞ < ε; sup

1≤i≤N
(‖X‖∞, ‖Yi‖∞) > ε1/151

} ⊂ �′
�(ε).

PROOF: The result will follow from Lemma 7.9 of the next subsection after

some groundwork is laid. As before, set � = ε14/75 and recall that by definition

�′
�(ε) = �a(�)∪�b(�)∪�c(�). Then notice that H1/4( f ) ≤ H1( f ), H1/4( f +

g) ≤ H1/4( f ) + H1/4(g), and H1/4( f g) ≤ H1/4(g)‖ f ‖∞ + H1/4( f )‖g‖∞ for all

functions f and g. Hence on �c(�)c ∩ �′
∗(H, ε)

H1/4(H) ≤ H1(X) +
∑

i

H1(Yi )‖Wi‖∞ + H1/4(Wi )‖Yi‖∞

≤ ε−1/150 + 2Nε−1/75 ≤ (1 + 2N )ε−1/75.

Hence by Lemma 7.4 one has that on �c(�)c ∩ �′
∗(H, ε), ‖G‖∞ < ε implies

‖H‖∞ ≤ (1 + 2N )ε71/375 < � = ε14/75 for all ε sufficiently small. Next observe

that because � = ε14/75, �′
∗(H, ε) ⊂ �̂∗(H,�) where �̂∗(H,�) is the set that

was defined in equation (7.5). In light of this, Lemma 7.9 implies that

(7.6) �′
∗(H, ε) ∩ {‖G‖∞ < ε; sup

i
‖Yi‖∞ > ε1/75} ⊂ �′

�(ε).

Now on

�c(�)c ∩ �′
∗(H, ε) ∩ {‖G‖∞ < ε; sup

i
‖Yi‖∞ ≤ ε1/75

}
,

one has that ‖X‖∞ ≤ ‖H‖∞ +∑ ‖Yi‖∞‖Wi‖∞ ≤ ε14/75 + Nε1/75ε−1/150, which

is less than ε1/151 for ε sufficiently small. Hence

�c(�)c ∩ �′
∗(H, ε) ∩ {‖G‖∞ < ε; sup

i
‖Yi‖∞ ≤ ε1/75

} ∩ {‖X‖∞ > ε1/151
}

is empty. Combining this observation with (7.6) implies

�′
∗(H, ε) ∩ {‖G‖∞ < ε} ∩ [{ sup

i
‖Yi‖∞ > ε1/75

} ∪ {‖X‖∞ > ε1/151
}] ⊂ �′

�(ε).

Since {supi ‖Yi‖∞ > ε1/151} ⊂ {supi ‖Yi‖∞ > ε1/75}, the proof is complete. �

LEMMA 7.6 For any ε > 0 and � > 0,
∫ T

0
|G(s)|� ds < ε and Hα(G) < cε−γ

imply ‖G‖∞ < (1 + c)ε(α−γ )/(1+�α).
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PROOF: By Chebyshev’s inequality for any β > 0, we have λ{x : |G(x)| >

εβ} ≤ ε1−�β where λ is Lebesgue measure. Hence ‖G‖∞ ≤ εβ + cε(1−�β)αε−γ .

Setting β = α−γ

1+�α
proves the result. �

7.3 The Main Technical Estimate

Let H(s) be as in (7.4) from the preceding section. Define the following piece-

wise constant approximation of the Z from the definition of H :

(7.7) Z∗(s) = −
N∑

i=1

Y ∗
i (s)Wi (s)

where Y ∗
i (s) =∑m

k=1 111Ik (s) sups∈Ik
Yi (s) and 111Ik is the indicator function of the set

Ik = [tk−1, tk).
For any k and process ζ(s) defined on [tk−1, tk], we define the δ-scale quadratic

variation on [tk−1, tk] by

Qk(ζ ) =
M(k)∑
�=1

[δk
�ζ ]2.

LEMMA 7.7 On �̂∗(H,�) ∩ �c(�)c for any k = 1, . . . , m, we have the following
estimates: Qk(X) ≤ 2�109/42 and Qk(Z∗) ≤ 2Qk(Z) + 4N 2�25/21. Moreover, on
�̂∗(H,�) ∩ �c(�)c ∩ {sups∈Ik

|H(s)| < �}, Qk(Z) ≤ 2Qk(X) + 8�4/3 + 8�2

and Qk(Z∗) ≤ (40 + 4N 2)�25/21.

PROOF: For brevity, we suppress the k-dependence of M(k) and s�(k). The

first inequality follows from

Qk(X) =
M∑

�=1

[X (s�) − X (s�−1)]2

≤
M∑

�=1

[δ�−1/28]2 ≤ Mδ2�−1/14 = (�−23 + 1)�10/3�−1/14

[δ�−1/28]2 ≤ Mδ2�−1/14 = �109/42 + �139/42 < 2�109/42.

To see the second implication, first notice that

Qk(Z∗) ≤
M∑

�=1

(
2[|Z∗(s�−1) − Z(s�−1)| + |Z∗(s�) − Z(s�)|]2

+ 2[Z(s�−1) − Z(s�)]2
)

≤2Qk(Z) + 4

M−1∑
�=0

[Z∗(s�) − Z(s�)]2 + 4

M∑
�=1

[Z∗(s�) − Z(s�)]2.
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Next note that

M∑
�=1

[Z∗(s�) − Z(s�)]2 ≤
M∑

�=1

[ N∑
i=1

[Yi (s�) − Y ∗
i ]Wi (s�)

]2

≤ �−1/7 N 2

δ

M∑
�=1

(�δ)2δ ≤ N 2

3δ
�20/7 = N 2

3
�25/21

and similarly
M−1∑
�=0

[Z∗(s�) − Z(s�)]2 ≤ N 2

3
�25/21.

Combining this estimate with the previous gives the second result.

The third result follows from H(s) = X (s) − Z(s) and

Qk(Z) =
M∑

�=1

[Z(s�) − Z(s�−1)]2

≤
M∑

�=1

2[|Z(s�) − X (s�)| + |Z(s�−1) − X (s�−1)|]2 + 2[X (s�) − X (s�−1)]2

≤ 8�2 M + 2Qk(X) ≤ 8�2

(
�

δ
+ 1

)
+ 2Qk(X).

Lastly, combining the three previous estimates produces the final estimate. �

To aid in the analysis of Y ∗, consider a general process of the form

ζ(s) =
N∑

i=1

ai (s)Wi (s)

where the Wi are independent standard Wiener processes and the ai (s) are constant

on the intervals Ik = [(k − 1)�, k�) for each k = 1, . . . , m. As before, for

k = 1, . . . m, we define

Qk(ζ ) =
M(k)∑
�=1

( N∑
i=1

ai (s�(k))δk
� Wi

)2

,

where s�(k) and δk
� are as defined at the start of Section 7.1. Notice that if we define

U =
N∑

i=1

a2
i

M(k)∑
�=1

(
δ̂k
� Wi

)2
, V =

∑
(i, j)∈{1,...,N }2

i �= j

ai aj

M(k)∑
�=1

(
δ̂k
� Wi

)(
δ̂k
� Wj

)
,

where ai = ai ((k + 1)�) and δ̂k
� f = (δk

� f )/

√
δk
� , then Qk(ζ ) = �

M(k)
(U + V ).
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LEMMA 7.8 For σ > 8
7
, � ∈ (0, 6−7/(7σ−8)), and k = 1, . . . , m,{

Qk(ζ ) < �σ ; �1/14 < sup
i

|ai | ≤ �−1/28
} ⊂ �a(�) ∪ �b(�)

PROOF: First notice that because 8
7

< σ and � < 6−7/(7σ−8), �σ − 1
2
�8/7 <

− 1
3
�8/7, so {

Qk(ζ ) < �σ ; �1/14 < sup
i

|ai | ≤ �−1/28
}

⊂
{

�

M(k)
U <

1

2
�8/7; sup

i
|ai | > �1/14

}

∪
{

�

M(k)
V < �σ − 1

2
�8/7; sup

i
|ai | < �−1/28

}

⊂
{

�

M(k)
U <

1

2
�8/7; sup

i
|ai | > �1/14

}

∪
{

�

M(k)
|V | >

1

3
�8/7; sup

i
|ai | < �−1/28

}

Now{
U ≤ 1

2
�1/7 M(k); sup

i
|ai | > �1/14

}
⊂
{

inf
i

M(k)∑
�=1

(
δ̂k
� Wi

)2 ≤ 1

2
M(k)

}
⊂ �a(�)

and {
|V | >

1

3
�1/7 M(k); sup

i
|ai | < �1/28

}

⊂
{

sup
(i, j)
i �= j

|ai | |aj |
∣∣∣∣

M(k)∑
�=1

(
δ̂k
� Wi

)(
δ̂k
� Wj

)∣∣∣∣ > �1/7

3N 2
M(k); sup

i
|ai | < �−1/28

}

⊂
{

sup
(i, j)
i �= j

∣∣∣∣
M(k)∑
�=1

(
δ̂k
� Wi

)(
δ̂k
� Wj

)∣∣∣∣ > �3/14

3N 2
M(k)

}
⊂ �b(�).

�

The following result is the main result of this section:

LEMMA 7.9 For all � ∈ (0, (40 + 4N 2)−42] and all stochastic processes H(s) of
the form (7.4)

�̂∗(H,�) ∩ {‖H‖∞ < �; sup
i

‖Yi‖∞ > �1/14
} ⊂ �a(�) ∪ �b(�) ∪ �c(�).
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We will prove this result by showing that on �̂∗(H,�) as � → 0, if

sup
s∈[0,T ]

|H(s)| < � and sup
i

sup
s∈[0,T ]

|Yi (s)| > �1/14,

then the approximate quadratic variation of the Wiener processes at the scale δ is

abnormally small or supi ‖Wi‖∞ > �−1/28.

PROOF OF LEMMA 7.9: From the last estimate in Lemma 7.7, we have that on

�̂∗(H,�)∩�c(�)c∩{sups∈Ik
|H(s)| < �}, Qk(Z∗) ≤ (40+4N 2)�25/21 < �49/42

for � ∈ (0, (40 + 4N 2)−42]. Here Z∗ is the approximation defined in (7.7). Now

Lemma 7.8 with σ = 49
42

(> 8
7
) implies that

(7.8) �c(�)c ∩ �̂∗(H,�) ∩ { sup
s∈Ik

|H(s)| < �; sup
i

sup
s∈Ik

|Yi (s)| > �1/14
}

⊂ �a(�) ∪ �b(�)

for all k = 1, 2, . . . , and � ∈ (0, (40 + 4N 2)−42].
Continuing, we have that

�c(�)c ∩ �̂∗(H,�) ∩ {‖H‖∞ < �; sup
i

‖Yi‖∞ > �1/14
}

⊂
m⋃

k=1

{
sup
s∈Ik

|H(s)| < �; sup
i

sup
s∈Ik

|Yi (s)| > �1/14
} ∩ �̂∗(H,�) ∩ �c(�)c

⊂ �a(�) ∪ �b(�)

�

7.4 Estimates on the Size of �a, �b, and �c

Since the events described by �a and �b are simply statements about collec-

tions of independent standard normal random variables, the following two esti-

mates will give us the needed control:

LEMMA 7.10 For c ∈ (0, 1) and M > 2
1−c , setting γ = c − 1 − ln(c) > 0

P

( M∑
�=1

η2
� ≤ cM

)
≤ 1√

π M
exp

(
−1

2
γ M

)

P

(∣∣∣∣
M∑

�=1

η�η̃�

∣∣∣∣ ≥ cM

)
≤ 2P

( M∑
�=1

η�η̃� ≥ cM

)
≤ 2 exp

(
−c2

4
M

)

where {η�, η̃�} are a collection of 2M mutually independent standard N (0, 1) ran-
dom variables.

PROOF: Notice that
∑M

�=1 η2
� is distributed as a χ2 random variable with M

degrees of freedom. Hence we have

P

( M∑
�=1

η2
� ≤ cM

)
= 2−M/2

�(M/2)

∫ cM

0

x M/2−1e−x/2 dx
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Since c < 1 and M > 2
1−c , the integrand is bounded by (cM)M/2−1 exp(−c M

2
).

Combining this with �( M
2
) ≥ √

π M( M
2e )

M/2 implies that

P

( M∑
�=1

η2
� ≤ cM

)
≤ M−M/2eM/2

√
π M

(cM)M/2 exp

(
−c

M

2

)

≤ 1√
π M

exp

(
M

2
[−c + 1 + ln(c)]

)
.

Noticing that −c + 1 + ln(c) < 0 for c ∈ (0, 1) finishes the proof of the first

statement.

For the second, note that for λ ∈ (−1, 1), E exp(λη�η̃�) = (1 − λ2)−1/2. Hence

for λ ∈ [0, 1
2
],

P

( M∑
�=1

η�η̃� ≥ cM

)
≤ exp

(
−λcM + 1

2
|ln(1 − λ2)|M

)

≤ exp(−λcM + λ2 M).

Taking λ = c
2

gives the result. �

COROLLARY 7.11 For � ≤ 1
2

∧ T ,

P(�a(�)) ≤ 2T N√
π

�−2/3 exp

(
− 1

20
�−2/3

)

P(�b(�)) ≤ 6N 2T �−1 exp

(
− 1

3N 2
�−19/42

)
.

In particular, if γ = min( 1
3N 2 ,

1
20

) then

P(�a(�) ∪ �b(�)) ≤ 8T N 2 exp(−γ�−2/5)

�

PROOF: First observe that the {δ̂k
� Wi } are independent N (0, 1) random vari-

ables. Since

�a ⊂
m⋃

k=0

N⋃
i=1

{ M(k)∑
�=1

(
δ̂k
� Wi

)2 ≤ M(k)

2

}
,

m ≤ T
�

+ 1, and �−2/3 − 1 ≤ M ≤ �−2/3, the first result follows from Lemma

7.10 and bounding the previous expression by the sum of the probability of the sets

on the right-hand side.

Proceeding in a fashion similar to the first estimate, the second bound follows

from

�b ⊂
m⋃

k=0

⋃
(i, j)∈{1,...,N }2

i �= j

{∣∣∣∣
M(k)∑
�=1

(
δ̂k
� Wi

)(
δ̂k
� Wj

)∣∣∣∣ ≥ �3/14 M(k)

3N 2

}
.



MALLIAVIN CALCULUS AND THE NAVIER-STOKES EQUATION 1775

Combining the first two estimates gives the last quoted result. �

LEMMA 7.12 For any p ≥ 1 there exists a c = c(p, N , T ) so that P(�c(ε)) ≤ cε p.

PROOF: It is enough to show that E‖Wi‖γ
∞ < c(T, γ ) and E[H1/4(Wi )

γ ] <

c(T, γ ) for any γ ≥ 1. The first follows from Doob’s inequalities for the con-

tinuous martingale Wi (s). The finiteness of the moments of the modules of con-

tinuity of the Wiener processes is given by theorem 2.1 [29, p. 26] and the ob-

servation at the top of page 28 in the same reference. Together these imply that

E[Hα(Wi )
γ ] < ∞ for all γ > 0 as long as α ∈ (0, 1

2
). Since α = 1

4
in our setting,

the proof is complete. �

8 Strict Positivity of the Density

We will now give conditions under which for any t > 0 and some orthogonal

projection � of L
2 onto a finite-dimensional subspace S, the density p(t, x) of the

law of �w(t) with respect to Lebesgue measure on S satisfies

(8.1) p(t, x) > 0 for all x ∈ S.

Our proof will make use of a criterion for strict positivity of the density of a ran-

dom variable, which was first established in the case of finite-dimensional diffu-

sions by Ben Arous and Léandre [4]. It was then extended to general random

variables defined on Wiener space by Aida, Kusuoka, and Stroock [2]. We fol-

low the presentation in Nualart [26]. However, there is one major difference be-

tween our case and the classical situation treated in those references. As noted

at the start of Section 2, our SPDE can be solved pathwise. This means that

the Wiener process W (t) = (Wk(t))k∈Z∗ can be replaced by a fixed trajectory

in �[0,t]
def= C([0, t]; R

Z∗). Hence, we do not really need the notion of a skeleton.

Because of this we can prove a result that is slightly more general than usual in that

our controls need not belong to the Cameron-Martin space.

Let Q ∈ L(RZ∗; L
2) be such that if {qk, k ∈ Z∗} is a standard basis for R

Z∗ ,

then Qqk = ek .

The main result of this section is the following:

THEOREM 8.1 Assume that S∞ = L
2. Let t > 0, and let � be an orthogonal

projection of L
2 onto a finite-dimensional subspace S ⊂ S∞ = L

2. Let x ∈ S be
such that for some 0 < s < t and all w ∈ L

2 there exists H ∈ C([s, t]; R
Z∗) such

that the solution of

(8.2)

{
∂wH

∂r (r) + B(wH (r), wH (r)) = ν�wH (r) + Q ∂ H
∂r (r), r > s,

wH (s) = w,

satisfies �wH (t) = x. Then the density p(t, · ) of the law of the random variable
�w(t) satisfies p(t, x) > 0.
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Note that equation (8.2) makes perfect sense even when H is not differentiable

in time. To see this, define w̄H (s)
def= wH (s)−Q H(s) and note that the equation for

w̄H (s) is a well-known type of equation to which existence and uniqueness results

apply (cf. [6, 13]).

COROLLARY 8.2 Let � be any orthogonal projection of L
2 onto a finite-dimen-

sional space. If S∞ = L
2, then the density p(t, · ) of the random variable �w(t)

satisfies p(t, x) > 0 for all x ∈ �L
2.

PROOF OF COROLLARY 8.2: The results almost follow from the published ver-

sion of theorem 9 in Agrachev and Sarychev [1], which states that under some

assumptions for any s ∈ (0, t), the controllability assumption of Theorem 8.1 is

satisfied with a control H ∈ W 1,∞(s, t; R
Z∗). The increasing family of sets that

describes the way the randomness spreads is slightly different from the Sn . Further-

more, they do not state the result for arbitrary projections but only for the span of a

finite number of Fourier modes. However, in private communications, the authors

have verified that the sets Sn may be used and that an arbitrary finite-dimensional

projection may be taken. As an aside, Romito [30] has proven this formulation of

controllability of the Galerkin approximations under our assumptions. �

Remark 8.3. It is worth pointing out that the exact controllability of the projections

is far from the exact controllability in all of L
2. In fact, the latter does not hold

with smooth-in-space and L2-in-time controls. This would imply that the density

was supported on L
2, which is not true as its support is contained in functions that

are analytic in space [18, 19].

The rest of the section is devoted to the proof of Theorem 8.1. Our proof is

based on the following result, which is a variant of proposition 4.2.2 in Nualart

[26].

PROPOSITION 8.4 Let F ∈ C(�[0,t]; S) where S = �L
2 is a finite-dimensional

vector space such that H �→ F(H) is twice differentiable in the directions of
H 1(0, t; R

Z∗), and there exist DF(·) ∈ C(�[0,t]; [L2(0, t; S)]Z∗) and D2 F(·) ∈
C(�[0,t]; [L2((0, t)2; S)]Z∗×Z∗) such that for all j, � ∈ Z∗ and h, g ∈ L2(0, t; R),

d

dε
F

(
H + ε

∫ ·

0

qj h(s)ds

)∣∣∣∣
ε=0

=
∫ t

0

Dj,s F(H)h(s)ds,

d2

dε dδ
F

(
H + ε

∫ ·

0

qj h(s)ds + δ

∫ ·

0

q�g(s)ds

)∣∣∣∣
ε=0
δ=0

=
∫ t

0

∫ t

0

D2
j,s;�,r F(H)h(s)g(r)ds dr.

We assume, moreover, that

(8.3) H �→ (
F(H), DF(H), D2 F(H)

)
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is continuous and locally bounded from �[0,t] into

S × [L2(0, t; S)]Z∗ × [L2([0, t]2; S)]Z∗×Z∗,

and that there exists H ∈ �[0,t] such that F(H) = x and

(8.4) det

(∑
k∈Z∗

∫ t

0

Dk,s Fi (H)Dk,s F j (H)ds

)
> 0.

Then, if the law of F(W ) has a density p(t, · ), p(t, x) > 0.

PROOF: Since the proof is almost identical to that of proposition 4.2.2 in [26],

we only indicate the differences with the latter proof.

In this proof, H is one specific element of �[0,t] satisfying F(H) = x and (8.4).

Let hj (s) = D·,s F j (H), j ∈ Z∗. Clearly, hj ∈ L2(0, t; R
Z∗). For each z ∈ R

Z∗ ,

let

(TzW )(t)
def= W (t) +

∑
j∈Z∗

zj

∫ t

0

hj (s)ds

and

g(z, W ) = F(TzW ) − F(W ).

From our assumptions, for any W ∈ �[0,t], g( · , W ) ∈ C2(B1(0); R
Z∗), and for

any β > 1, there exists C(β) such that

‖W‖∞,t ≤ C(β) ⇒ ‖g( · , W )‖C2(B1(0)) ≤ β,

where ‖W‖∞,t
def= sup0≤s≤t |W (s)|, and the notation Bα(0) stands for the open ball

in R
Z∗ centered at 0 with radius α.

Assume for a moment that in addition

|det g′(0)| ≥ 1

β
.

It then follows from lemma 4.2.1 in [26] that there exist cβ ∈ (0, 1
β
) and δβ > 0

such that g( · , W ) is diffeomorphic from Bcβ
(0) onto a neighborhood of Bδβ

(0).

We now define the random variable Hβ , which plays exactly the same role in

the rest of our proof as Hβ in [26] but is defined slightly differently. We let

Hβ = kβ(‖W‖∞,t)αβ(|det〈DFi (W ), DF j (H)〉|),
where 〈 · , · 〉 denotes the scalar product in L2(0, t; R

Z∗); kβ, αβ ∈ C(R; [0, 1]),
kβ(x) = 0 whenever |x | ≥ β, and kβ(x) = 1 whenever |x | ≤ β − 1; αβ(x) = 0

whenever |x | ≤ 1
β

, αβ(x) > 0 whenever |x | > 1
β

, and αβ(x) = 1 if |x | ≥ 2
β

.

The rest of the proof follows exactly the argument in [26, pp. 181–182]. We

only have to make explicit the sequence T H
N , N = 1, 2, . . . , of absolutely continu-

ous transformations of �[0,t] equipped with Wiener measure, which is used at the
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end of the proof. For N = 1, 2, . . . , let t N
i = i t

N , 0 ≤ i ≤ N . We define

(T H
N W )(t) = W (t) +

∫ t

0

(ḢN (s) − ẆN (s))ds,

where

ḢN (s) =
N−1∑
i=1

H(t N
i ) − H(t N

i−1)

t N
i − t N

i−1

1[t N
i ,t N

i+1)
(s),

ẆN (s) =
N−1∑
i=1

W (t N
i ) − W (t N

i−1)

t N
i − t N

i−1

1[t N
i ,t N

i+1)
(s).

For any W ∈ �[0,t], as N → ∞,

sup
0≤s≤t

|(T H
N W )(s) − H(s)| → 0.

Hence, by the continuity of F and DF , we also have

F(T H
N W ) → F(H),

DF(T H
N W ) → DF(H),

and moreover

lim
M→∞

sup
N

P(‖T H
N W‖∞,t > M) = 0.

This provides exactly the version of (H2) from Nualart, which is needed here to

complete the proof. �

All that remains is to prove the following lemma:

PROPOSITION 8.5 Under the assumptions of Theorem 8.1, if F = �w(t), there

exists H ∈ �[0,t] such that F(H)
def= �wH (t) = x, and (8.4) holds.

PROOF: Let s ∈ (0, t) be the time that appears in the assumption of Theorem

8.1. Since S∞ = L
2, it follows from (3.2) that

P

(⋂
φ∈H

1

φ �=0

{〈M(s)φ, φ〉 > 0}
)

= 1.

We choose an arbitrary Brownian trajectory W in this set of measure 1. We then

choose, according to the assumption of Theorem 8.1, an Hx ∈ �[0,t] satisfying

Hx(s) = 0 such that the solution {wHx (r) : s ≤ r ≤ t} of (8.2) with initial

condition wHx (s) = w(s; w0, W ), the value at time s of the solution of (1.1) cor-

responding to the trajectory W that we chose above, satisfies �wHx (t) = x .

It remains to show that condition (8.4) is satisfied, with H ∈ �[0,t] defined by

H(r) =
{

W (r), if 0 ≤ r ≤ s,

W (s) + Hx(r), if s < r ≤ t.
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We shall write

wH (r) =
{

w(r, W ), if 0 ≤ r ≤ s,

wHx (r), if s < r ≤ t.

All we need to show is that for any fixed φ ∈ S, φ �= 0,

∑
k∈Z∗

∫ t

0

〈Dk,rw
H (t), φ〉2 dr > 0.

Note that∑
k∈Z∗

∫ t

0

〈Dk,rw
H (t), φ〉2 dr ≥

∑
k∈Z∗

∫ s

0

〈Dk,rw
H (t), φ〉2 dr

=
∑
k∈Z∗

∫ s

0

〈Dk,rw
H (s), U t,φ(s)〉2 ds,

where {U t,φ(s), 0 ≤ s ≤ t} solves the backward equation (2.5) associated to the

corresponding w trajectory, and the last identity follows from Proposition 2.3. In

view of our specific choice of W , since from Lemma B.1 U t,φ(s) ∈ H
1, it suffices

to check that U t,φ(s) �= 0. This follows from “backward uniqueness” (maybe we

should say “forward uniqueness” since the U t,φ equation is a backward equation!);

see theorem I.1 in Bardos and Tartar [3], whose assumptions are clearly verified

by the U t,φ(·) equation (2.5). Specifically, since if φ = 0, then U t,φ(s) = 0

for all s ≤ t , one knows that no other terminal condition φ at time t can lead to

U t,φ(s) = 0 for s ≤ t . �

9 Conclusion

We have proven under reasonable nondegeneracy conditions that the law of any

finite-dimensional projection of the solution of the stochastic Navier-Stokes equa-

tion with additive noise possesses a smooth, strictly positive density with respect

to Lebesgue measure. In particular, it was shown that four degrees of freedom are

sufficient to guarantee nondegeneracy.

It is reasonable to ask if four is the minimal size set that produces finite-dimen-

sional projections with a smooth density. The nondegeneracy condition concen-

trates on the wave numbers where both the sin and cos are forced. Since this

represents the translation-invariant scales in the forcing, it is a mild restriction to

require that whenever either of the sin or cos of a given wave number is forced,

then both are forced. Under this assumption, forcing only two degrees of freedom

corresponds to forcing both degrees of freedom associated to a single wave num-

ber k. It is easy to see that the subspace {u ∈ L
2 : 〈u, sin( j · x)〉 = 〈u, cos( j · x)〉 =

0 for j �= k} is invariant under the dynamics with such a forcing. Hence if the ini-

tial condition lies in this two-dimensional subspace, the conclusions of Theorem

1.1 fail to hold. See [14] for a more complete discussion of this and other cases

where the nondegeneracy condition fails.
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We have concentrated on the two-dimensional Navier-Stokes equations forced

by a finite number of Wiener processes. However, there are a number of ways

one could extend these results. The choice of a forcing with finitely many modes

was made for simplicity in a number of technical lemmas, in particular in Section

7.1. There appears to be no fundamental obstruction to extending the method to

the cases with infinitely many forcing terms if the covariances satisfy an appro-

priate summability condition. In addition, the methods of this paper should apply

equally to other polynomial nonlinearities, such as stochastic reaction diffusion

equations with additive noise. In contrast, handling nonadditive forcing in a non-

linear equation would require nontrivial extensions of the present work. Since in

the linearization, stochastic integrals of nonadapted processes would appear, it is

not certain that the line of argument in this paper would succeed.

Appendix A: Estimates on the Enstrophy

Define E0 = ∑k∈Z∗ ‖ek‖2 where the ek were the functions used to define the

forcing in (1.3). In general, we define the αth spatial moment of the forcing to be

Eα =∑k∈Z∗ |k|2α‖ek‖2. With this notation, we have the following estimate:

LEMMA A.1 Given any ε ∈ (0, 1), there exists a γ = γ (ε) such that

P

{
sup

s∈[0,t]
‖w(s)‖2 + 2εν

∫ s

0

‖w(r)‖2
1 dr − E0s > ‖w(0)‖2 + K

}
< e−γ K

for all K ≥ 0.

PROOF: The lemma follows from the exponential martingale estimate after one

notices that the quadratic variation of the martingale in the equation for the enstro-

phy is controlled by
∫ t

0
‖w(r)‖2

1 dr . See lemma A.2 or lemma A.1 in [20] for the

details and related lemmas in exactly this setting or Lemma A.3 below for a similar

argument. �

From the previous result, we obtain the following:

COROLLARY A.2 There exists a constant η0 = η0(T, ν) > 0 so that for any
η ∈ (0, η0] there exists a constant c = c(T, η, ν) so that

E exp
(
η sup

0≤s≤T
‖w(s)‖2

) ≤ cE exp(η‖w(0)‖2)

and

E exp

(
νη

∫ T

0

‖w(s)‖2
1 ds

)
≤ cE exp(η‖w(0)‖2).

We will also need the following result, which gives quantitative estimates on

the regularization of the H
1 norm:
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LEMMA A.3 Given a time T > 0 and p ≥ 0, there exists a positive constant
c = c(ν, T, p, E1) so that

E sup
0≤s≤T

[‖w(s)‖2 + sν‖w(s)‖2
1

]p ≤ c[1 + ‖w(0)‖4p].

PROOF: Defining ζ(s) = ‖w(s)‖2 + sν‖w(s)‖2
1, we have for all s ∈ [0, T ]

ζs − E0s − 1

2
E1s2

= ‖w(0)‖2 +
∫ s

0

2rν
[−ν‖w(r)‖2

2 + 〈B(w(r), w(r)),�w(r)〉]dr

− ν

∫ s

0

‖w(r)‖2
1 dr +

∑
k∈Z∗

∫ s

0

2(1 + rν|k|2)〈w(r), ek〉dWk(r).

Since

|〈B(w,w),�w〉| ≤ c‖w‖1/2 ‖w‖1 ‖w‖2 ≤ ν‖w‖2
2 + c(ν)‖w‖4,

one has

(A.1) sup
0≤s≤T

ζs ≤ c(1 + T 2) + cT 2 sup
0≤s≤T

‖w(s)‖4 + sup
0≤s≤T

Ns

where

Ns = −ν

∫ s

0

[‖w(r)‖2 + r‖w(r)‖2
2]dr + Ms

and

Ms =
∑
k∈Z∗

∫ s

0

2(1 + rν|k|2)〈w(r), ek〉dWk(r).

Notice that for all s ∈ [0, T ] and α > 0 sufficiently small, Ns ≤ Ms − α
2
[M, M]s ,

where [M, M]s is the quadratic variation of the martingale Ms . Hence the exponen-

tial martingale estimate implies P(sups≤T Ns > β) ≤ P(sups≤T Ms − α
2
[M, M]s >

β) ≤ exp(−αβ). This implies that the last term in (A.1) can be bounded by a

constant depending only on α, T , ν, and the power p. By Corollary A.2, the third

term in (A.1) can be bounded by a constant that depends on the initial condition as

stated as well as α, T , ν, and the power p. �

Appendix B: Estimates on the Linearization and Its Adjoint

Define the action of linearized operator Js,t on a φ ∈ L
2 by

(B.1)

{
∂
∂t Js,tφ = ν�Js,tφ + B(w(t), Js,tφ) + B(Js,tφ, w(t)), 0 ≤ s ≤ t,

Js,sφ = φ,
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and its time-reversed, L
2-adjoint J̄ ∗

s,t acting on φ ∈ L
2 by

(B.2)




∂
∂s J̄ ∗

s,tφ + ν� J̄ ∗
s,tφ + B(w(s), J̄ ∗

s,tφ)

− C( J̄ ∗
s,tφ, w(s)) = 0, 0 ≤ s ≤ t,

J̄ ∗
t,tφ = φ.

If we define the operator Q : R
Z∗ → L

2 by (xk)k∈Z∗ �→∑
xkek , then Vk,s(t) =

Js,t Qqk where {qk : k ∈ Z∗} is the standard basis for R
Z∗ and U t,φ(s) = J̄ ∗

s,tφ.

Similarly, for h ∈ L2
loc(R

Z∗
+ ), Dhw(t) = ∫ t

0
Js,t Qh(s)ds.

LEMMA B.1 For any T0 > 0, η > 0, and α ∈ {0, 1}, there exist constants γ =
γ (ν, η, T α

0 ) and c = c(ν, T α
0 , η) so that for all φ ∈ L

2 and T ≤ T0

sup
0≤s≤t≤T

‖Js,tφ‖2 + γ (t − s)α‖Js,tφ‖2
1

≤ exp

(
η

∫ T

0

‖w(r)‖2
1 dr + cT

)
(‖φ‖2 + (1 − α)‖φ‖2

1),

sup
0≤s≤t≤T

‖ J̄ ∗
s,tφ‖2 + γ (t − s)α‖ J̄ ∗

s,tφ‖2
1

≤ exp

(
η

∫ T

0

‖w(r)‖2
1 dr + cT

)
(‖φ‖2 + (1 − α)‖φ‖2

1),

where on the right-hand side (1 − α)‖φ‖2
1 = 0 when α = 1 by convention for all φ

even if ‖φ‖1 = ∞.

PROOF: We start by deriving a number of bounds on the nonlinear terms. Using

Lemma D.1 and standard interpolation inequalities produces for any δ > 0 and

η > 0 and some c,

2|〈B(φ,w), φ〉| ≤ c‖φ‖3/2 ‖φ‖1/2
1 ‖w‖1 ≤ δ‖φ‖2

1 + ‖φ‖2

(
η‖w‖2

1 + c

δη2

)
,

2|〈B(φ,w),�φ〉| ≤ c‖w‖1 ‖φ‖1/2
1 ‖φ‖1/2 ‖φ‖2

≤ δ‖φ‖2
2 + η‖w‖2

1 ‖φ‖2
1 + c

ηδ2
‖w‖2

1 ‖φ‖2,

2|〈B(w, φ),�φ〉| ≤ c‖w‖1 ‖φ‖1 ‖φ‖1/4 ‖φ‖3/4
2

≤ c

(ηδ)3/2
‖w‖1 ‖φ‖1 ‖φ‖ + (ηδ)1/2 ‖w‖1 ‖φ‖1 ‖φ‖2

≤ δ‖φ‖2
1 + c

η3δ4
‖w‖2

1 ‖φ‖2 + δ

2
‖φ‖2

2 + η‖w‖2
1 ‖φ‖2

1,

2|〈B(�φ,w), φ〉| ≤ c‖φ‖1+ε ‖φ‖1−ε ‖w‖1

≤ c‖w‖1 ‖φ‖ ‖φ‖2 ≤ δ‖φ‖2
2 + c

δ
‖w‖2

1 ‖φ‖2.
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We begin by bounding the J expression with α = 0. Setting ζr = ‖Js,s+rφ‖2 +
γ ‖Js,s+rφ‖2

1, wr = w(s + r), and Jr = Js,s+rφ and using the above estimates with

appropriately chosen constants produces

∂ζr

∂r
= ∂

∂r
‖Jr‖2 + γ

∂

∂r
‖Jr‖2

1

= −2ν‖Jrφ‖2
1 + 2〈B(Jr , w), Jr 〉

+ 2γ
[−ν‖Jr‖2

2 + 〈B(Jr , w),�Jr 〉 + 〈B(w, Jr ),�Jr 〉
]

≤
(

c

η2ν
+ η

2
‖wr‖2

1 + γ c

(
1

ην2
+ 1

η3ν4

)
‖wr‖2

1

)
‖Jr‖2 + γ η‖wr‖2

1 ‖Jr‖2
1

Hence for γ sufficiently small there exists a constant c so for all r > 0

∂ζr

∂r
≤
[

c

η2ν
+ η‖wr‖2

1

]
ζr ,

which proves the first result for Js,t . The result for α = 1 is identical except that

we take ζr = ‖Js,s+rφ‖2 + γ r‖Js,s+rφ‖2
1 and hence there is an extra term from

differentiating the coefficient of ‖Js,s+rφ‖2
1 and the fact that the resulting constants

depend on the time interval [0, T ] over which r ranges. See the proof of Lem-

ma A.3.

Turning to J̄ ∗
s,t , we set ζ̄r = ‖ J̄ ∗

t−r,tφ‖2 + γ ‖ J̄ ∗
t−r,tφ‖2, w̄r = w(t − r), and

J̄ ∗
r = J̄ ∗

t−r,tφ for all r ∈ [0, t]. The bar is to remind us that the process is time

reversed. The argument proceeds as in the previous case. Again using the estimates

above, we obtain

∂ζ̄r

∂r
≤
(

c

ν(1 + η2)
+
(

η

2
+ γ c

ν

)
‖wr‖2

1

)
‖ J̄ ∗

r ‖2 + γ η‖wr‖2
1 ‖ J̄ ∗

r ‖2
1.

Hence for γ small enough and r ∈ [0, t],
∂ζ̄r

∂r
≤
[

c

ν(1 + η2)
+ η‖wr‖2

1

]
ζ̄r ,

which proves the result. �

Appendix C: Higher Malliavin Derivatives of w(t)

For notational brevity define B̃( f, g) = B( f, g) + B(g, f ) for f, g ∈ L
2.

For k ∈ Z∗, we define J (1)
s,t ek = Js,t ek . For n > 1 define J (n)

s,t acting on φ =
(ek1

, . . . , ekn ) with k1, . . . , kn ∈ Z∗ and with time parameters s = (s1, . . . , sn) ∈
R

n
+ by the equations

∂

∂t
J (n)

s;t φ = ν�J (n)

s;t φ + B̃(w(t), J (n)

s;t φ) + F (n)

s;t φ, t >
∨

s

J (n)

s;t = 0, t ≤
∨

s,
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where
∨

s = s1 ∨ · · · ∨ sn . The operator F (n)
s,t applied to φ is defined by

F (n)

s;t φ =
∑

(α,β)∈part(n)

B̃
(
J (|α|)

sα;t φα, J (|β|)
sβ ;t φβ

)
.

Here part(n) is the set of partitions of {1, . . . , n} into two sets, neither of them

empty. |α| is the number of elements in α, φα = (φα1
, . . . , φα|α|), and sα =

(sα1
, . . . , sα|α|). The partition (α, β) and (β, α) are viewed as the same partition.

First observe that when n = 1, Lemma B.1 says that for any η > 0 there is a

c = c(T, η) so for all φ ∈ R
Z∗

sup
0≤s≤t≤T

‖J (1)

s;t ek‖1 ≤ c exp

(
η

∫ T

0

‖w(r)‖2
1 dr

)
≤ c exp

(
η

∫ T

0

‖w(r)‖2
1 dr

)
.

For n > 1 with again φ = (ek1
, . . . , ekn ) and s ∈ R

n
+, we have the following

estimate on F (n):

‖F (n)

s;t φ‖ ≤
∑

(α,β)∈part(n)

∥∥B̃
(
J (|α|)

sα;t φα, J (|β|)
sβ ;t φβ

)∥∥
≤ c

∑
(α,β)∈part(n)

∥∥J (|α|)
sα;t φα

∥∥
1

∥∥J (|β|)
sβ ;t φβ

∥∥
1
.

Then the variation-of-constants formula implies that J (n)

s;t φ = ∫ t∨
s Jr,t F (n)

s;r φ dr and

hence

‖J (n)

s;t φ‖1 ≤
∫ t

∨
s

∥∥Jr,t F (n)

s;r φ
∥∥

1
dr

≤ c exp

(
η

∫ T

0

‖w(r)‖2
1 dr

)(∫ t

∨
s

1

(r −∨ s)1/2
dr

)
sup

τ=(τ1,...,τn)
0≤τi ≤t∨

τ≤r≤t

∥∥F (n)

τ ;r φ
∥∥

≤ c exp

(
η

∫ T

0

‖w(r)‖2
1 dr

) ∑
(α,β)∈part(n)

sup
τ,r

∥∥J (|α|)
τα;r φα

∥∥
1

sup
τ,r

∥∥J (|β|)
τβ ;r φβ

∥∥
1
.

Proceeding inductively, one obtains for any η > 0 the existence for a c = c(T, η, n)

and γ = γ (n) so that∥∥J (n)

s;t φ
∥∥

1
≤
∫ t

s
‖Jr,t Fs,rφ‖1 dr ≤ c exp

(
γ η

∫ T

0

‖w(r)‖2
1 dr

)
.

Now with φ and s as above,

Dn
s1,k1;...;sn ,kn

w(t) = J (n)
s,t φ,

and since η is an arbitrary positive constant, by redefining it, one obtains that for

any η > 0, there exists a c = c(T, η, n) so that

sup
t∈(0,T ]

‖Dn
s1,k1;...;sn ,kn

w(t)‖1 ≤ c exp

(
η

∫ T

0

‖w(r)‖2
1 dr

)
.
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Combining this estimate with Lemma A.2, we obtain the following result: Letting

D
∞(H1) be the space of random variables taking values in H1 that are infinitely dif-

ferentiable in the Malliavin sense and such that those derivatives have all moments

finite, we have the following (see [25, p. 62] for the definition of D
∞):

LEMMA C.1 For any η > 0, t > 0, p ≥ 1, and n ≥ 1 there exists a constant
c = c(t, ν, η, p, n) so that

E

[( ∑
k1,...,kn∈Z∗

∫ t

0

· · ·
∫ t

0

∥∥Dn
s1,k1;...;sn ,kn

w(t)
∥∥2

1
ds1 · · · dsn

)p/2]

≤ c exp(η‖w(0)‖2).

Hence w(t) ∈ D
∞(H1) for all t > 0.

Appendix D: Estimates on the Nonlinearity

In the following lemma, we collect a few standard estimates on the nonlinearity

and derive a few consequences from them.

LEMMA D.1 Let αi ≥ 0 and either α1 + α2 + α3 > 1 or both α1 + α2 + α3 = 1

and αi �= 1 for any i . Then the following estimates hold for all f, g, h ∈ L
2 if the

right-hand side is well-defined:

|〈B( f, g), h〉| ≤ c‖ f ‖α1−1 ‖g‖α2+1 ‖h‖α3
.

In addition, we have the following estimate: For any ε > 0 there exists a c = c(ε)
with

|〈∇ B( f, g),∇g〉| ≤ c‖ f ‖1 ‖g‖1 ‖g‖1+ε.

PROOF: For the first result, see proposition 6.1 of [6] and recall that our B is

slightly different than theirs and that ‖K f ‖1 = ‖ f ‖0. After translation, the result

follows. For the second result we need to rearrange things. Setting u = (u1, u2) =
K f , we have

|〈∇ B( f, g),∇g〉| =
∣∣∣∣
∫
T2

∇[(u · ∇)g] · ∇g dx

∣∣∣∣.
Observe that ∇[(u ·∇)g]·∇g = [(u ·∇)∇g]·∇g+(∇u∇g)·∇g. Because ∇·u = 0,

[(u · ∇)∇g] · ∇g = 1
2

∑
i ∇ · (u(

∂g
∂xi

)2). Hence, the integral of the first term is zero

by Stokes’ theorem and the fact that we are on the torus.

The integral of the second term over the domain is made of a finite number of

terms of the form ∫
∂uj

∂xi

∂g

∂xj

∂g

∂xi
dx .

This term is dominated by ∣∣∣∣∂uj

∂xi

∣∣∣∣
Lr

∣∣∣∣ ∂g

∂xj

∣∣∣∣
L p

∣∣∣∣ ∂g

∂xi

∣∣∣∣
Lq
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for any r, p, q > 1 with 1
r + 1

q + 1
p = 1. Recall that in two dimensions, the Sobolev

space W 1,2 is embedded in Lr for any r < ∞. Hence by taking p = 1
2
, q > 2

sufficiently close to 2, and r correspondingly large, we obtain the bound

c

∥∥∥∥ ∂u

∂xi

∥∥∥∥
1

∥∥∥∥ ∂g

∂xj

∥∥∥∥
∥∥∥∥ ∂g

∂xi

∥∥∥∥
ε

for any ε > 0 and some c = c(ε), and thus c‖ f ‖1 ‖g‖1 ‖g‖1+ε bounds the estimate.

�

Appendix E: Lipschitz and Supremum Estimates

Let S be a subspace of L
2 spanned by a finite number of cos(x · k) and sin(x ·

k). Let � be the orthogonal projection onto S. Also, let �0 be the orthogonal

projection onto the directions directly forced by Wiener processes as defined in

Proposition 3.7.

Recall from Section 7 the definitions of Hα,[a,b]( f ), ‖ f ‖∞, and ‖ f ‖∞,[a,b] ap-

plied to functions of time taking values in L
2.

For 0 ≤ s < t ≤ T one has

�⊥
0 w(t) = �⊥

0 eν�(t−s)w(s) − �⊥
0

∫ t

s
eν�(t−r) B(w(r), w(r))dr.

Since
∫

f (x)dx = ∫ g(x)dx = 0, ‖B( f, g)‖ ≤ c‖∇ f ‖‖∇g‖, and

‖(eν�(t−s) − 1) f ‖ ≤ (1 − e−νλ(t−s))‖ f ‖
for some fixed λ > 0, one has

‖�⊥
0 [w(t) − w(s)]‖ ≤ 2[1 − e−λν(t−s)] ‖w(s)‖ + 2 sup

0≤r≤T
‖∇w(r)‖2 |t − s|

≤ c|t − s| [1 + ‖∇w‖2
∞].

Similarly,

‖U T,φ(t) − U T,φ(s)‖ ≤ c|t − s| ‖U T,φ(t)‖ + c‖∇w‖∞ ‖∇U T,φ‖∞ |t − s|
≤ c[1 + ‖∇w‖2

∞ + ‖∇U T,φ‖2
∞] |t − s|.

Also, if

R(t) = �0w(0) +
∫ t

0

ν��0w(r) − �0 B(w(r), w(r))dr,

then

‖R(t) − R(s)‖ ≤ c

∫ t

s
‖w(r)‖dr + c

∫ t

s
‖w(r)‖2 dr ≤ c[1 + ‖w‖2

∞] |t − s|
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Next observe that ‖�B( f, g)‖ ≤ c‖ f ‖‖g‖ and ‖�C( f, g)‖ ≤ c[‖ f ‖ ‖∇g‖ ∧
‖g‖ ‖∇ f ‖]. Thus

‖�C( f (t), g(t)) − �C( f (s), g(s))‖
≤ ‖�C( f (t) − f (s), g(t))‖ + ‖�C( f (s), g(t) − g(s))‖
≤ c[‖∇g‖∞ ‖ f (t) − f (s)‖ + ‖∇ f ‖∞ ‖g(t) − g(s)‖]

and

‖�B( f (t), g(t)) − �B( f (s), g(s))‖
≤ c[|||g|||∞‖ f (t) − f (s)‖ + ‖ f ‖∞‖g(t) − g(s)‖].

We combine these observations in the following lemma:

LEMMA E.1 Let � and �0 be as above. In the notation of (7.1) and (7.2),

H1(�
⊥
0 w) ≤ c[1 + ‖∇w‖2

∞]
H1(U

T,φ) ≤ c[1 + ‖∇w‖2
∞ + ‖∇U T,φ‖2

∞]
H1(R) ≤ c[1 + ‖w‖2

∞]
H1(�B( f, g)) ≤ c[‖ f ‖∞H1(g) + ‖g‖∞H1( f )]
H1(�C( f, g)) ≤ c[‖∇ f ‖∞H1(g) + ‖∇g‖∞H1( f )]

for all f, g ∈ L
2 smooth enough so that each term on the right-hand side is finite.

Lastly we specialize these estimates to the setting of Proposition 3.7. Let Xφ ,

R, and Y φ

k be as defined in Proposition 3.7 for w(t) and U T,φ on the interval [0, T ].
Define χφ = �Xφ and ϒ

φ

k = �Y φ

k . We wish to obtain control of the Lipschitz

constants over an interval [t, T ] with t ∈ (0, T ).

Using the estimates from Lemma E.1 and the fact that

‖∇ R‖∞,[t,T ] ≤ c‖R‖∞,[t,T ] ≤ c(1 + ‖w‖2
∞,[t,T ]),

we obtain

H1,[t,T ](χφ) ≤ c
[
H1,[t,T ](U T,φ) + ‖∇w‖∞,[t,T ]H1,[t,T ](U T,φ)

+ ‖∇U T,φ‖∞,[t,T ]H1,[t,T ](�⊥
0 w) + ‖∇ R‖∞,[t,T ]H1,[t,T ](U T,φ)

+ ‖∇U T,φ‖∞,[t,T ]H1,[t,T ](R)
]

≤ c
[
1 + ‖∇w‖4

∞,[t,T ] + ‖∇U T,φ‖4
∞,[t,T ]

]
and

H1,[t,T ](ϒ
φ

k ) ≤ c
[
H1,[t,T ](U T,φ) + ‖U T,φ‖2

∞,[t,T ]
]

≤ c
[
1 + ‖∇w‖2

∞,[t,T ] + ‖∇U T,φ‖2
∞,[t,T ]

]
.
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Similarly, we have

‖χφ‖∞,[t,T ] ≤ c
[‖U T,φ‖∞,[t,T ] + ‖∇U T,φ‖∞,[t,T ]‖∇w‖∞,[t,T ]

+ ‖∇U T,φ‖∞,[t,T ]‖R‖∞,[t,T ]
]

≤ c
[
1 + ‖∇U T,φ‖2

∞,[t,T ] + ‖∇w‖2
∞,[t,T ]

]
and ‖ϒφ

k ‖∞,[t,T ] ≤ c‖U T,φ‖∞,[t,T ].
Recall that ||| f |||α,[t,T ] = max(‖ f ‖∞,[t,T ],Hα,[t,T ]( f )). Combining the above

estimates with Lemma B.1 produces

|||χφ|||1,[t,T ], |||ϒφ

k |||1,[t,T ] ≤ c
[
1 + ‖∇U T,φ‖4

∞,[t,T ] + ‖∇w‖4
∞,[t,T ]

]
≤ c

[
1 + ‖∇w‖4

∞,[t,T ] + exp

(
η

∫ T

0

‖w(r)‖2
1 dr

)]
for all indices i , and φ with ‖∇φ‖ ≤ M . Here η > 0 is arbitrary but c depends on

the choice of η and M . In light of Corollary A.2 and Lemma A.3, which control

the right-hand side, we obtain the following result:

LEMMA E.2 Given an M > 0, define S(M) = {φ : ‖∇φ‖ ≤ M}. Then for
any T > 0, t ∈ (0, T ), p ≥ 1, and η > 0 there exists a positive constant c =
c(η, p, t, ν, E1, M, T ) such that

E
(

sup
φ∈S(M)

[|||χφ|||p
1,[t,T ] + sup

k∈Z∗
|||ϒφ

k |||p
1,[t,T ]

]) ≤ c exp(η‖w(0)‖2).
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