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Genetic Diversity in the Interference Selection Limit
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How does pervasive natural selection alter patterns of genetic diversity?



Standard methods describe neutral evolution
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Neutral Coalescent Theory:
1. Compute the probability of a genealogy

2. Compute the probability of observed diversity
given the genealogy

Key Predictions:
1. Diversity m <« N

2. Frequency spectrum f(i) oc%
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Selection and the Shape of Genealogies
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Trace individual lineages through the fitness distribution:
-Present individuals are descended from the fittest ancestors.
-Looks like a reduction in population size in the past

3 -Multiple mergers become more common

. " " -Lineages are no longer exchangeable
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[Good, Walczak, Neher, Desai PLoS Genetics 2014]
[Nicolaisen and Desai, MBE 2012]
[Walczak, Nicolaisen, Plotkin, Desai, Genetics 2012]

[Influenza, Neher 2013] Our experiments



How does purifying selection shape diversity?

A simple model:

Population size: N
Mutation rate: U

Fitness effects: o(s)
Recombination rate: R

An even simpler model:

Population size: N
Neutral mutation rate: U,
Deleterious mutation rate: U,
Fitness effect: S

Fraction of population

Fitness

Structured Coalescent:

Steady state distribution of fithess within the population.
“Migrate” between fitness classes by mutations.
Exchangeability within each fitness class.




Strong purifying selection: “Background Selection”

l Poisson(U/s)

Fraction of individuals
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Deleterious load I, L T.= N,

Strong purifying selection reduces effective population size.
Exact in the limit Ns _, o while holding NU/Ns constant.

Corrections for large but finite Ns from the Structured Coalescent



What about weak or pervasive selection?

Fraction of individuals

—0 0 o X,
Relative fithess

When NselUs ~ 1 or less, the distribution fluctuates too much
underneath, so the structured coalescent does not make sense.

[Good, Walczak, Neher, Desai PLoS Genetics 2014]
[Good and Desai TPB 2013]



BGS/Structured Coalescent Break Down for Weak Selection
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Collapse with U/s (BGS) or with No (IS)

Scaled diversity, =/,
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Interference Selection collapse holds generally
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Two limits: background selection and interference selection

Interference ®Background

selection WM selection
regime | regime
10 10° 10" 10° 10°
Ns

Background selection: Ns _, « while holding NU/Ns constant
Inteference selection: Ns _, 0 while holding No constant



Intuition:

‘coarse-graining” the fithess distribution

Fraction of individuals
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This allows us to predict diversity
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There is a fundamental problem of identifiability:
Many different parameter values lead to identical patterns of diversity.



Coarse-Grained Predictions
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Coarse-Grained Predictions
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A Linkage-Block Approximation for Recombining Genomes

(Effectively asexual)
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DFE, Up(s)

Distributions of Fithess Effects
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Relative SFS, Q,, (i)

Interference Selection Still Applies
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