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In this paper we study a one-dimensional quasi-linear parabolic stochastic partial differential equation 
driven by a space-time white noise. First the germ Markov field property is proved for the solution of a 
Cauchy problem for this equation. Secondly, we introduce periodic (in time) boundary conditions and we 
study the existence and uniqueness of a solution and its Markov properties. The main result is that for the 
periodic solution the Markov field property only holds in the linear case. 
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0. INTRODUCTION 

Let {u(t,x); (t,x)~[O, 1I2) denote the solution of the quasi-linear stochastic partial 
differential equation (in short SPDE): 

where { W(t, x); (t, X)E [0, 112) is a standard Brownian sheet, and its second order mixed 
derivative is a "white noise". Of course, (0.1) is a completely formal way of writing a 
white noise driven parabolic PDE, and we shall introduce a rigorous formulation 
below. 

The first objective of this paper is to prove that the random field u possesses a germ 
Markov field property to be made precise below. 

* Partially supported by a Grant of the DGICYT n." PB 90-0452. 
** Partially supported by DRET under contract 901636/AOOO/DRET/DS/SR. 
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18 DAVID NUALART AND E. PARDOUX 

Our second objective is to consider the SPDE: 

where the initial condition in (0.1) prescribing the value of {u(O,x), 0 < x d 1) is 
replaced by a periodicity cnndition, which prescribes that the values of ! r ( t ; )  at times 
t = 0 and t = 1 are identical as .  We shall both study existence and uniqueness for (0.2), 
and thegerm Markov field property of the solution. Our main result is that the solution 
of Eq. (0.2) possesses a (certain) germ Markov field property iff f is affine. 

Our main tool for studying the Markov field property is the Girsanov transfor- 
mation, which reduces us to the case of a linear equation. In the case of Eq. (0.1), we use 
the (usual) Girsanov theorem for an adapted translation of the Brownian sheet. In the 
case of Eq. ( 0 4 ,  we must use an extension of the Girsanov theorem to nonadapted 
transformations, due to Kusuoka IS]. The reason for the major difference between the 
results concerning Eq. (O.!! 2nd !0.2! is that in the adapted case the Radon-Xikndym 
derivative given by S i r j a i i ~ ~  theorem is a iiifil:ipiica:ive fi;fic:iofia!, and in the 
nonadapted case it is not. 

Our negative results for the nonlinear equation with boundary conditions both in x 
and t shouid be compared with simiiar resuits obtained by [he same authors in ji i j and 
[12] for certain classes of finite dimensional SDE's with boundary conditions, as well as 
the results of Donati-Martin [5], [4] which concern respectively elliptic SPDEs, and 
versions of the results in [ I l l ,  [I21 and [ 5 ]  for equations where the time (resp. the 
space) parameter varies in a (finite) discrete set. 

Note that on the other hand the extension of our positive result concerning Eq. (0.1) 
tO cq ,Ja! iofis \&h a ii^.- --.--'--' ":ff..":-- ---a^. . CIIICL'!?>W?L QKU\?UII ~ t ~ ~ l ~ l ~ ~ e f i t  l a  an open prohlcn;. 

The paper is organized as follows. !r, secticr, one, we prove a Markov fieid property 
of the solution of a Cauchy problem (initial condition) for a parabolic PDE with 
additive space-time white noise. In section 2 we prove existence and uniqueness of the 
solution of the same equation satisfying a periodic (in time) boundary condition, and 
we study the Markov property in the linear-Gaussian case. In section 3, we compute a 
Radon-Nikodym derivative, and in section 4 we prove that the Markov field property 
of the periodic solution im'plies that the equation is linear. 

1. WHITE-NOISE DRIVEN PARABOLIC PDE WITH INITIAL 
CONDITION: MARKOV FIELD PROPERTY 

We first give a precise formulation of Eq. (0.1) and state an existence and uniqueness result. 
Let {W,,,; (t, x)E[O, 11') be a Brownian sheet defined on the canonical probability 

space (R, 9, P),  i.e. R = C(0, I]'), 9 is the Borel a-field over R completed with respect 
to the Wiener sheet measure P. Under P, the canonical field W,,,(o) A w(t, x) is a zero 
mean continuous Gaussian random field with covariance function given by 
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MARKOV FIELD PROPERTIES 

Let f: [0, 112 x R -, R be a measurable function of the form 

where f, and f, are jointly measurable, and the following properties are satisfied: 

(A.1) J f 1'- ~ r 2 , r n  \ L - 9 A J  t i 2 , d t Y  _AX), f 2 ( t , u ; ~ ) z n ;  

(A.2) 3c  > 0 such that z f2(t,x;r) 4 cz2; for all (t,x)~[O, 112, ZER 

Finally we are given an initial condition u, such that 

where Co([O, 11) denotes set of continuous functions defined on [O,1] which vanish at 
0 and 1. 

We say that a random field u satisfying u€C([O, 11') a.s. is a solution of Eq. (0.1) if 
equivalently either for any t ~ C O . 1 1 .  @JEC([O, I ] )  with @(O) = $ ( I )  = 0, 

where (.;) denotes the usual scalar product in L2(0, l), or else for any (t, x)€[O, 112, 

where G,(x, y)  is the fundamental solution of the heat equation on the space interval 
[0, I ]  with Dirichlet boundary conditions, i.e. 

is the unique solution of the PDE: 

It is shown in Walsh [16] that the weak formulation (1.1) and the integral formulation 
(1.2) are equivalent. The following result can be found in Gyongy-Pardoux [6]. 
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20 DAVID NUALART AND E. PARDOUX 

THEOREM 1 . 1  Under conditions (A.O), (A.I), (A .2)  and (A.3), Eq. (0.1) has a unique 
solution u. 

It is easily seen that the solution is adapted in the following sense. For t€[O, 11, define 

and Y, to be the P-completion of .@<. For each ( t ,  x)e[O, 112, u(t ,  x) is %-measurable. 
Let now {u( t ,  x); ( t ,  x)E[O, I]?; denote the solution of the same equation with f - 0, 

i.e. v is the Gaussian random field given by: 

x 1- vFc wani i iGW io S ~ O W  ihiii i k  random field i: ~ ~ S S ~ S S C S  the gcrm Markov fidd 
property. We first need to state some definitions. 

For any Borel 4et A c [O, I]', and any random field 5 = it([. x): (1. x)t[O. I]' ). wc: 
define 

For any closed set F c [0, 112, we define 

Finally, 9 5  [resp. 951 denotes the a-algebra :?5 [resp. completed with the class 
of P-null sets. 

DEFINITION 1.3 A random field 5 = {t(r, x); ( t ,  x)E[O, 112$ is said to be a germ Markoc 
jield if for any Borel set A c [O, 112, 85, and FiC are conditionally independent, 
given 

The g e m  Markev field property is often stated with conditions on epec sets 4 .  It is 
easy to see that it is equivalent to require the above conditional independence for any 
Borel set A, or for any open set A with a regular boundary. The easiest way to see that 
equivalence is to remark that conditional independence of 9 5  and F5, given 9?$A is 
equivalent to having the same conditional independence given Fi:,,, for all E > 0, where 
(r7A), denote the &-neighborhood of ;?A. 

Let us first prove that the Gaussian process v is a germ Markov field. We shall use a 
criterion which is expressed in terms of the Reproducing Kernel Hilbert Space (RKHS) 
X associated to c. 

Let 



MARKOV FIELD PROPERTIES 21 

and H denote the Gaussian space generated by ( W , ~ , ; ( t , x ) ~ [ @ ,  l]'). H is in bijection 
with ~ ~ ( ( 0 . 1 ) ' )  as follows: 

X E H  iff there exists heL2((0, 1)') 

such that X = 

?.+... I uw &? is a subset of C,, which is ir? bijectim with H (i.e. with ~ ~ ( ( 0 , l ) ' ) )  as follows. 

An element 4 in Z o  belongs to A? iff there exists X E H  such that 

i.e. iff there exists &EL'((O, 1) ' )  such that 

where G,-,(x,  y) = 0 for s > t .  Moreover, glven 4, (i/ in & with associated 6, $ in 
L2((0, I)') ,  then 

In other words, 

X' = Xon H1((O, 1)')n L2(0,1: dt: H2(0, 1 ) )  

and for 4, E X, 

We now have the following (see Theorem 5.1 in Kiinsch [7]), which provides an 
improvement over an earlier result by Pitt ( [14]) :  

PROPOSITION 1.4 The Gaussian randomjeld v given by (1.3) is a germ Marko~~f ie ld  gff 

the RKHS & is local in the sense that it satisjes the two following properties: 

(i) Whenever 4,  $ E X  have disjoint supports, (4, $), = 0. 
(ii) If + E X  is of the j3Vii q5 = &, + 4,  with 4 , :  4 2 ~ X o  with disjoizt s?!ppnrts, ?her! 

41, 

We can now prove the following result. 

THEOREM 1.5 The Gaussian randomjeld v given by (1 .3)  is a germ Markoujeld. 

Proof If suffices to check conditions (i) and (ii) of Proposition 1.4. They follow easily 
from our definition of 2 and its scalar product. Indeed, if 4, II/ belong to & and have 
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22 DAVID NUALART AND E. PARDOUX 

disjoint supports, then 

Finaiiy, if 4 is an eiement of 2 is of the form 4 = 4: + @ 2 .  with 4:. @, having disjoint 
supports, then clearly if ( 1 1 . I I I  denotes the norm in H1((O, 1) ')nL2((0,  1);dt; H2(0, I ) ) ,  

Hence botn 4 ,  and 4, belong to 2. 0 

We now turn to the study of the germ field Markov property for u, the solution of the 
nonlinear Eq. (0.1). We shall deduce it from Theorem 1.5 via a continuous change of 
probability. Consider the random variable 

where the first integrand in the exponential is an It8 integral with respect to the 
Brownian sheet (see e.p. Walsh C161 for a rigorous definition). and L? is the process 
defined in (1.3). 

We need to formulate a new condition on j 

(A.4) 3c > 0 such that ( f , ( t , x ; z ) l  < c( l  + I Z I ) . ( ~ . X ) E C O ,  1j2, Z E R .  

Under all the above assumptions, including (A.4), we have the following Girsanov 
?:heorem 

PROPOSITION 1.6 E ( J )  = 1 ,  and i f  Q denotes the probability measure on (R, 9) defined 
by 

then W,,, - f~ f ",f ,  y;  v(s, y))  dy ds is a standard Brownian sheet under Q. 

Consequently, v solves under Q an equation with the same coefficients (but a different 
driving Brownian sheet) as u solves under P. Hence the law of v under Q coincides with 
the law of u under P. 

THEOREM 1.7 Under the ubove assumptions (A.O), (A.l) ,  (A.Z), (A.4) ,  on f and (A.3) ,  the 
solution u oj'Eq. (A.1) is a germ Markocfield. 

Proof From our discussion preceding this theorem, it suffices to show that v is a 
germ Markov field under Q. Let A be an open subset of [O, 11' with a smooth boundary. 
Set Fl A 9; and 4' FYIC. We need to show that Fl and P2 are conditionally 
independent, given Y:*. Let x be any nonnegative 91-measurable random variable. 
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MARKOV FIELD PROPERTIES 

It holds that 

It is not hard to show that Ji is 9:-measurable, i = 1,2. Now 

from the germ Markov field property of v under P. Hence E&/F2) is 9?;A-measurable, 
and 

2. PERIODlC SOLUTIONS OF STOCHASTlC PDEs 

The aim of this section is to give an existence and uniqueness theorem for Eq. (0.2), 
which we rewrite as follows: 

We are looking for an a.s. continuous random field u which satisfies (2.1). Let us denote 
by A the operator dZ/dx2 acting on CZ(O, 1) n C,([O, 1)). We recall that A is negative 
definite, and generates a strongly continuous semigroup of operators {efA, t > 0) on 
Co([O, 11). The kernel of erA is just G,(x, y). 
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We shall again assume in this section that f satisfies (A.01, (A 1) and (A.2)', where: 
(A.2)' There exists 0 < c < 2 such that 

for all (t, x)E[O, 112,  r, LER. 
Define the Gaussian process 

Let us first see how we can solve Eq. (2.1) in case f 0 .  In that case, making the 
variable x implicit, we have 

Hence the periodicity cvndilion yields 

Now since eA is a compact operator on L2(0, I ) ,  for which 1 is not an eigenvalue, I - eA 
is invertible, from the Fredholm alternative. Finally, in case f - 0,  the Eq.  (2.1) has 
the unique solution 

Note that it is easy to invert this expression, yielding 

v( t )  = u ( t )  - etA u (0).  

Let us now turn to the nonlinear case. With the above notations, (2.1) can be 
rewritten as 

Under the above assumptions on f ,  we have the following: 

THEOREM 2.1 Equation (2.3) has a unique solution u, such that U E C ( [ O ,  11') a s .  

Proof From Theorem 1.1,  the first line of Eq. (2.3) defines a mapping from 
C,([O, I]) into itself 
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MARKOV FIELD PROPERTIES 25 

We need only show that R has a unique fixed point. If we denote by 1 . 1  the norm 
in L2(0, I), we have the following for the difference ii = u, - u2 of two solutions of the 
first line of (2.3) (see e.g. Dautray-Lions [3], Theorems XVIII. 3.1, 3.2 and 1.2): 
%L2(0, l;H;(O, 1))nC ([O,l]; L2(0, I)), t+(ii(t)12 is absolutely continuous and for 
almost ail t q O ,  I), 

since the following holds for any ~ H ~ ( 0 , l )  : 

Hence Ju,( l )  - u2(l)( < e-'2-C)I~1(0)  - u2(0)I. From (A.2)', c < 2, hence the mapping R 
is a strict contraction from L2(0, 1) into itself. Since it maps Li(O, 1) into C,(LO, I]), it has 
a unique fixed point in C,([O, 11). 0 

Recall the definition of C, in section 1, and define: 

We note that Theorem 2.1 asscciates tc e x h  ~ E C ,  a soiuiion UEC of (2.3). This is a 
mapping Sf: C, + C such that 

In case f s 0, we denote by So the corresponding mapping, which is linear and 
invertible. We now show that in general Sf is a bijection from C, into C. Injectivity 
follows readily from the first line of (2.Q as well as surjectivity, since whenever UEX, 

defines an element of C,. 
Now the mapping 

which is a bijection from C, onto itself, will play an important role below. If we consider 
v as the noise input in Eq. (2.3), T is a transformation of the noise which is such that the 
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26 DAVID NUALART AND E. PARDOUX 

solution of the nonlinear equation driven by the transformed noise equals the solution 
of the linear equation driven by the original noise. 

We need to h a k e  explicit the form of T. Note that So is given by (2.2), and SJ ' by 
(2.4). It follows: 

The following result is proved exactly as Theorem 1.5: 

THEOREM 2.2 The Gaussian randomjield {u(t, x) = So(v)(t, x); (t,-x)e[O, I]*) is a germ 
Murkov field. 

Let us now c~nside: the Ma:k=v pmperty ef the C,([O, !],kvalued process (u(t), 
te[O, 11). In case u solves an initial value problem, it is clearly a Co([O, I])-valued 
Markov process. Here, the same property cannot possibiy hoid, since for te(O, i), u(Oi 
and u(1) are not conditionally independent, given u(t). However, we have the follow- 
ing (note that unlike in Theorem 2.2, we are talking here of a "sharp" 
-not "germx-Markov field property): 

THEOREM 2.3 The Gaussian process {u(t) = So(u)(t, .), O ,< t ,< 1) is a C,([O, 11)-valued 
random field, i.e, Vs, t€[O, 11, {u(r); re[s, t]) and ( ~ ( 0 ) ;  Be(s, t)') are conditionally 
independent, given {u(s), u(t)). 

Proof Fix 0 < s < t < 1 and let 

be a bounded and measurable function. For any r ~ [ s ,  r], 

where 
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MARKOV FIELD PROPERTIES 

where 

and p is the centered Gaussian law on Co([O, 11) with covariance equal to that of the 
conditional law of 

Finally E [ i~~(u(r]) /u(H) ,  BE(s .  : )' 1 I:; a measu:ab!e fiinc:ion of 

and the result follows. 0 

Theorems 2.2 and 2.3 remain valid if we replace So by S f ,  with an afine iunction f. 
The aim of the rest of the paper is to show that whenever f is not affine, u = S f  (a) does 
not possess a Markov property which is weaker ihar, ihc !we above (ones. 

3. COMPUTATION O F  A RADON-NIKODYM DERIVATIVE 

Our argument in the next section will be based on the use of the extended Girsanov 
theorem due to Kusuoka [8], which we will recall in the form in which we shall use it. 

Let again H = ~ ~ ( ( 0 ,  We identify H with a subset of the Banach space 1, (in fact 
with the Reproducing Kernel Hilbert Space X), the injection being denoted by: 

Let p denote the law on 1, of G W, where 

(G t ) ( t ,  x) J 1 - G,-s(x, y) ~ ( d s ,  dy). 
0 0 

Then (H, C,,p) is an abstract Wiener space. 
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28 DAVID NUALART AND E. PARDOUX 

DEFINITION 3.1 A measurabi'e mapping F : Zo - H is said to be an H - C1 map if to each 
U E Z ,  we can associate a Hilbert-Schmidt operator D F ( U ) E Y ' ~ ( H )  such that: 

(i) ( /F( t .+  G h ) - F ( t . ) - D F ( ~ ) h ( l ~ = o ( l l h / ~ ) .  
(ii) For each DEE,, h + D F(v + G h) is continuous from H into Y 2 ( H ) .  

The following result is proved in Kusuoka [8] (we denote below by IZo and I ,  
respectively the identity operator on Zo and on H j : 

THEOREM 3.2 Let F :  Z ,  -+ H be an H - C 1  map such that T = IXG - GoF is a bijection 
on Z ,  and I ,  - DF(v)  is invertible (as an element of Y ( H ) )  for any UEZ, .  Then p -  T - '  
and p are mutually absolutely continuous, and 

.,here d,(U k ( c ) )  denotes the Curlemun-Fredhoim d~trrmznanr of the Hilherr-Schmidt 
operator Dl- (t.). and b(L ( v ) )  is the Shorohod integral o f the  rundom field F(t'). 

In the sequel we write S for the mapping S,  defined in section 2. We want to apply 
Theorem 3.2 with F(v):= f (S(v)) ,  in the sense that 

THEOREM 3.3 Suppose that f is of class C' with respect to its third variable, the 
derivative f '  being bounded, and that it satisfies the assumptions of Theorem 2.1 (namely, 
(A.O), (A.1) and (A.2)').  Then F = f O S  is an H - C' map which satisfies the ussumptions of 
Theorem 3.2, and moreover, i fQ = p0 T - I ,  

de (v)  = det [ ( I  - e A )  ' ] det (I  - ), eA)  exp T r  ( f ' (u , ) ( I  - eA)- eA)  dt 
d~ 

where u = S(v), W is determined by v = G f '(u,) stands fur the operator in 9 ( L 2 ( 0 ,  I)) of 
multiplication by the function f (t, x ;  u(t ,  x ) )  and {),, 0 6 t < 1 )  is the 9(H)-valued 
solution of the linear equation 
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MARKOV FIELD PROPERTIES 29 

Proof It is not hard to show that F is an H - C1 map, and D F is computed as follows. 

hence 

or more explicitly 

which is a bijection (see the discussion following Theorem 2.1). Moreover, it is easily 
seen that for any VEX,, DF(u) is a compact operator from H into itself, hence from the 
Fredholm alternative the invertibility of I, - D F(v)  is equivalent to the fact that 0 is not 
an eigenvalue of I ,  - DF(v), i.e. that the Carleman Fredholm determinant d, (DF(v))  is 
non zero. Hence the Theorem is a consequence of the following proposition whose 
proof is given in the Appendix. 
PROPOSITION 3.4 Under the assumptions of Theorem 3.3, the Carleman-Fredholm 
determinant of D F(o)  is given by 

4. THE MARKOV PROPERTY O F  THE PERIODIC SOLUTION O F  
THE NONLINEAR EQUATION 

Let us first introduce some notations and establish auxiliary results. Let us assume 
that 0 = C,([O, 112) (the space of continuous functions of ( t , x )  which vanish on 
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( t  = 0) i/ (x = O)), 9 is its Bore! a-field, 1" the "Broivnian sheet measure", and 

If S denotes the set of "simple random variables" of the form 

wi th   EN, h,, . . . , h n ~ i Z ( < O ,  ij2j, ~EC:(R") and 

" ,2 ( 

n x =  Y g [ w ( h 1 !  . . . . ,  w!h~!!h~?. . \ : !  - : . 2 z - -  $Z cs, 

Lei 1 1 .  I i,i denote the norm on S defined by 

D 1 .2 be the ciosure or's with respect to the norm 1 1 .  / /  ,.,. D exiends io an operator 

(which we shall still denote D) from D'.' into L ~ ( R  x [0, 11,; d P d t  dx). Following 
h T . . n l n r t  Dndr\..u r1nl n - A  Q n 3 ~ l p o , x  U;ronh TI1 x x i n  AeGne nl .2  t h e  cet nf t h n c e  
r u a ~ a ~  L-I UIUVUA L I V J  LLLIU UVUI~UU 1 ILL~C.LB LIJ. v v b  U U A ~ L L U  wloi  CLAW O W L  VA LLAVUW 

random variables X to which we can associate a so-called "localizing sequence" 
{(R,, X,) ) c 9 x D'12 such that 

( i i )  x , J , ~ = X J , ~  as., V n 3 1 .  

Moreover we define D X for X E D:$ by: 

where {(a,,  X,)) is any localizing sequence. 
If K denotes a Hilbert space, one can define similarly D',*(K) and D,'d,2(K) as spaces 

of K-valued random variables (see Ocone-Pardoux [13] for the details). 
We shall need the following 

LEMMA 4.1 Let XE D,!L ( K )  and @: R x K + R be a meusurable mapping satisfying: 
(i) for any UER, @(a, .) is continuously Frichet-diferentiable; 
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MARKOV FIELD PROPERTIES 3 1 

(ii) for any k~ K ,  @(., ~ ) E ! D " ~  and there exisrs a version yf the mapping 

which is a.s. continuousjrom K into L'((0, 1)');  
(5) f i r  any a > 0, 

Then @(X)E D,'d,2 and 

Pr&' The result ioiiows easily from Lemma 2.4 Iri Gem-?ardol;x [I31 by finire 
dimcn~inna! approximiition. ??sing the fact that D is a closed operator from L'(R; K j  
into t2(Q x (0, K ) .  ii 

R e d !  that H - L2(0, 1). W e  consider the Y(H)-valued process Y, ..- ,, 0  < s < t  < 1)  
solution of: 

viheie A Y l . ,  denotes the composition of ihe bolindcd operator Y, , or. f! with the 
unbounded operator A, and f '(u,) I-;,, is the composition of the two bounded operators 
Y,,, and f '(u,). Clearly, 

It is easily shown that Y1, ,~6P2(H),  the space of Hilbert-Schmidt operators on H, for 
s c t ,  and the associated kernel Y,,,(., . )eLZ((0,  satisfies: 

We shall write Y, for Y,,,. 

LEMMA 4.2 For any t€[O, 11, B c Y ( H )  with 1 1  B  1 1  6 1 ,  we dejine 

A,(B) = det ( I  - B Y,). 

We suppose that the assumptions of Theorem 3.3 are in force. 
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32 D A V I D  N U A L A R T  A N D  E. P A R D O U X  

Moreocer for t ,  < t < 1 .  A, 1s i-rechet dlflerentluhle on the unzt hull of Y ( H ) ,  and for 
ally B, F E ~ ( H )  with JIB II < 1, 

Proqf Note that since f" < 2, T I : =  e 2 ' Y ,  satisfies an  equation with f"(u,) replaced 
by ,f l(u,) - 2, which is negative, hence 

Let Z, = sup { l  > 0; sup ,s,,,,, Y,(x, y )  2 I ) ,  with some $ ,( p < I .  It is easily seen that 
0 i io  < i j2. 

Now from Simon [I 5, formula (5.1 2), page 691, 

det (1 - B Y,) = exp 

and for t o  d t < 1, 

T r [ ( B  Y,)"] d sup Y,(x, y)" = pm, 
o s x . y s 1  

hence 

Now for ii Rii < 1 one can interchange the derivation with respect to B and the 
summation in 
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MARKOV FIELD PROPERTIES 

Hence 

We shall use this Lemma with B = Y,,,. Note that, from the same estimates as those 
in the proof of Lemma 4.2, we have ) /  Y,., I),, G 1 as., provided to < 1 - t d 1 .  

Let us now rewrite the expression for the Radon-Nikodym derivative in Theorem 
3.3. It follows from (4.2) that 

Hence 

We can now prove the main result of this section (see also Corollary 4.5 at the end of 
the section). 

THEOREM 4.3 Suppose that f satisjies the assumptions of Theorem 2.1 (namely, (A.O), 
(A.1)and (A.2)'). Suppose moreover that f ( t ,  x, z) does not depend on the variable t, and that 
f is of class C 2  with respect to the variable z, the twojirst derivatives, denoted f '  and f ", 
being bounded functions of their variables. Then, ifthe solution (u( t ) ,  0 < t < 1 )  of Eq. (2.1) 
is a Co([O, 11)-valued Markoujield, f "  = 0. 

Proof Let Q be the probability on X 0  defined by Q = pT- ' ,  where as in section 3 
p denotes the law of v = G W. Clearly, the law of {u(t) ,  0 d t < 1 )  under P equals the law 
of ( (Sv)( t ) ,  0 d t < 1) under Q. We assume now that {u(t) ,  0 d t d 1 )  is a Co([O, 11)- 
valued Markov field under P, hence that {(Svj(t) ,  0 b L d 1 )  is a Co([O, I])-valued 
Markov field under Q. 

For the rest of this proof, we use the notation 
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34 DAVID NUALART AND E. PARDOUX 

Let us fix ?€(to, I], and consider the o-fields 

Let x denotes a nonnegative 310;-measurable random variable. Under our standing 
assumption, 

A=A,(I)=det jI  - Y,) 

+ So'Solf (Z(+ x ) )  W(ds. dx)  - - f 2(Z(s, x ) )  dx ds 
2 0 0  'S'S' I 

It is not hard to show that J, is 2;-measurable and J' is 310:-measurable. Choosing 
successively x = J;' and x = ( J ; ' ,  where [ is an arbitrary nonnegative and 310;- 
measurable random variable, we obtain that 

are 2,-measurable. From Lemma 4.2, A is bounded and bounded away from zero. 
Since moreover J, > 0 as., E(A/Sf) > 0 as .  and E(A J,/.H':) > 0 as .  Consequently 



MARKOV FIELD PROPERTIES 

Now if we define 

we have that 

We assume from now on that r~ Lw(R) n D1'2 and that D < is bounded on R x [O,1I2. 
Hence the function @ and the Y2(H)-valued random variable Y,., satisfy the assump- 
tions of Lemma 4.1. Consequently O(Y1,,)e and 

Let us now state a lemma whose proof will be given at the end of the present proof: 

LEMMA 4.4 Let X E  and G e F  
(i! If G E X ~  and Xil, is .#:-measurable, then 

d - eA"D,. X I  = 0 for almost all UE G, sc[O, r] ds 

(ii) If G e X f  and XI, is &'f-measurable, then 

d -eA"Ds X I  = 0 for almost all weG, sect, 1). ds 

From Theorem 2.3, (Z(t)} is a C,([O, 11)-valued random field. Hence @(B) is 
&',-measurable, and from Lemma 4.4 (ii), 

d 
- [eAsDs,.@(B)] = 0 for almost all sect, 11, o c R .  ds 

The above left hand side being an a.s. continuous function on the unit ball of the Hilbert 
space d p Z ( ~ ) ,  we can replace B by Yl ,, , yielding 

d 
- eAs(Ds,,@)(Y,.,) = 0 for almost all se[t, 11, weR. 
ds 

On the other hand, @(Y,,,) is 2,-measurable, hence by the same argument 

d - (eAsDs,. (@(Yl,,))) = 0 for almost all se[t, I], o d 2 .  
ds 
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From the two last identities and Lemma 4.i, we deduce that 

d  
- ( V @ ( Y , , , ) , ~ ~ % ~ ,  Y,, ,)=O foralmostall s ~ [ t , l ] , w ~ R .  
ds (4.4) 

- .  
~t is easiiy seen that for r < s  < i 

+ Y ( ( ) e A r (  - eA)- Y, dr. 

Using Lemma 4.2 and the definition of @(B) we deduce for any square integrable kernel 
h€L2([0, I]*) the following formula 

Define 

By taking s = t (this is possible by continuity), (4.6) implies that 
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MARKOV FIELD PROPERTIES 

for all te[O, ! I ,  a.e. Applying (4.7) to (4.8) gives 

This equality is clearly true if ( is a bounded .Ye-measurable random vanable. By a 
monotone class argument, (4.9) holds for any bounded random variable (. Consequ- 
ently, we obtain that 

is ,Ye-measurable. Using Lemma 4.4, part (i) we get 

d 
-eAVD,{Tr[(l - Y , ) - ' B ,  Y,] 1 = 0 for s€[O, t ] ,  a.e. (4.10) 
ds 

, = r t  v 1 * , , 1 7  ln  7 y ,i. 

J 0 
' t . r J  ( L r J U s u r  r 

Therefore, (4.10) yields 

Using the expression of D,Zr this gives, using the same arguments as in (4.5) 
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38 DAVID NUALART AND E. PARDOUX 

where if T E L ~ ( [ O ,  1 j 2 ) ,  ( T ) {  means the multiplication operator on LZ(O, I )  by 
{ T ( ( ,  x), .YE[O, 11). Therefore. we get 

for all SECO, t]:  [ E [ O :  1j; W E ! ~ ;  a.e. Consequently we obtain 

namely, using the definition of B, this means, 

for all x, ye[O, 11, SE[O, t ] ,  ~ E R .  
The above expression can be written as 

It holds that 

for all x, yg[O, 11' and 0 < s < t < 1 (with t 3 to ,  t d 1 - to). This is true because the 
kernels Y,, Y, and Yl Y;' are strictly positive on [0, 112, which follows, for instance, 
from the Feynman-Kac's formula. Therefore, the preceding equality implies 

f " ( y ;  Z , ( y ) ) f  "(x: Zs(x) )  = 0, as .  

for all x, ye [0, 112, 0 < s < t  < 1, to d t d 1 - to ,  which implies f "( y; u)  = 0 for all 
~ € 1 0 ,  I ] ,  U E R .  0 

Proof ofLemma 4.4 We only prove part (i). since the proof of part (ii) is similar. By a 
localization argument, we can assume that X E D ' ~ ' .  Suppose first that 

where n , m ~ N ,  f~c,"(R"+"), t < t ,  < t ,  < ...<t,< 1, x ,,..., x,, y ,,..., y,e[O, 11. In 
that case we have for any se[O, t ] ,  and using the notation Z' = (Z(0, x , ) ,  . . . , Z(0, x,)) 
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MARKOV FIELD PROPERTIES 

and (i) holds. If now X E D ' . ~  is arbitrary, we can find a sequence of random variabies 
{ X , )  of the above type such that j j  X,, - X jI ,,, -* 0. Now fer any nE N (eAsD,,, X,,)(z) does 
not depend upon s on the interval [0, t ]  for oeG. Hence the same is true for X. 

We can finally prove the following result. 

COROLLARY 4.5 Suppose that f satisjies the assumptions of Theorem 4.3. If the solution 
{u(t);  0 < t < 1 )  of Eq. (2.1) is a Co([O, I])-valued germ Markovjeld,  f "  E 0. 

Pmof The result will be a consequence of Theorem 4.3 if we show that 

where 

Now it is easily seen that 

while for E > 0 

Let us denote by H, the linear span in L2((0, generated by the functions: 

and 

for all x€[O, 11, and by Hj") the linear span in L2((0, 1)') generated by the functions: 
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for all . x E [ ~ ,  I!, r ~ p ,  E ]  .n [ ( I  - E ) + ,  jt t E )  !].  clear!^, ti, - r )  H!"). Ther, (4.1 1) 
& > O  

follows from Lemma 3.3 in Mandrekar 191. 7 1  L J  

APPENDIX 

Proof qf  Proposition 3.4 We deduce from (3.1)  the following formula for the kernel 
E F ( c )  (i, :<; s, y ) :  

Noic  ihai wc can approximaie this kernei by ihe finite dimensinnai kernei 

where Gr denotes the m x m matrix { G , ( x j ,  x l ) ) l  , < j , l , < m  and Bm the m x m matrix 
{ ( I - e * ) - ' ( ~ ~ , x l ) j l s ~ . ~ - < ~ ,  and 

Using the expression of the Carleman-Fredholm determinant for a finite matrix we 
obtain 

We have 

Letting first m tend to infinity and then n + cc we obtain 

lim lim exp ( T r  r\ ".") = exp ( T r  f '(u,)(I - eA) - ' eA)  dt 
n + i a  m - m  
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MARKOV FIELD PROPERTIES 

On the other hand, we have 

det (I - A ",") 

= det 

x det 
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Using the fact I + BeA = B, because H = (I - e A ) - ' ,  this determinant is equal to 

Now we multiply the ith column (2 < id n)  on the right by e A r 8 - ' ,  and we obtain 

det (exp ( - A Z;;,' ti)) 

i 
- - f ' Ro-4 . . . 

n J  O U L  
i 

1 A(1  + t i )  e A f i - - f ; B e A ( l + f l )  - - f ; B e  . . . 
n .' n 

Substracting each column from the preceding one we get (we use again that B(1- eA) = I )  

det (exp ( - A C;Z: ti)) 

x det 
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MARKOV FIELD PROPERTIES 43 

r I C! ... - - f'k BeA 1 

n J U  
1 

1 
I 

- I - e - A l l  f ,  eAll  I ... - - ' e - A r ~  f ;  e A r i ~ e A  

n 1 n 

I 1 ... 0 - I - - r - A ' ~ , f  ~ e A ' 2  e - A r *  ! - - 
I 

f 2 p A r 2 B p A  1 

! n n 

... ... = det 0 0 
I 

I 
i 
I 

i 
... ... ... ... i 

1 
-- A t . 2  ... f i - 2 e A r n - 2 B e A  

n 

... ... I - - e - ~ : n -  I f : - l e A r n - l B e A  1 

L n 

Consider the solution {$(t),  t 3 0)  of the linear system 

Notice that $ ( t )  is invertible and 

We can approximate each term ( I  + ( l / n ) e - A ' n - j f  ' (u,  "- I  ) e A f n  ') by $&,+ l K!,. 
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44 DAVID NUALART AND E. PARDOUX 

Consequently, the limit 2 s  ?? -. r of the precedizg deteminant is 

det [ I  - 1' @ @ e A y ( u , ) e " l B e A  d r ]  

= det [ I  + @:(II/;' - i )BeA]  

= det [I - II/, eA] det [(I - e A ) - ' 1 .  
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