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In this paper we study a one-dimensional quasi-linear parabolic stochastic partial differential equation
driven by a space-time white noise. First the germ Markov field property is proved for the solution of a
Cauchy problem for this equation. Secondly, we introduce periodic (in time) boundary conditions and we
study the existence and uniqueness of a solution and its Markov properties. The main result is that for the
periodic solution the Markov field property only holds in the linear case.
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0. INTRODUCTION

Let {u(t,x); (t,x)e[0,1]*} denote the solution of the quasi-linear stochastic partial
differential equation (in short SPDE):

0 o* >*w
56 = 556,30 +£ (06, %) + = (6,9, ([0, 1% o

u(0,x)=uy(x), 0<x<1; u(t,0=u(t1)=0 0<t<],

where {W(t, x); (¢, x)e [0, 1]%} is a standard Brownian sheet, and its second order mixed
derivative is a “white noise”. Of course, (0.1) is a completely formal way of writing a
white noise driven parabolic PDE, and we shall introduce a rigorous formulation
below.

The first objective of this paper is to prove that the random field u possesses a germ
Markov field property to be made precise below.

* Partially supported by a Grant of the DGICYT n.° PB 90-0452.
** Partially supported by DRET under contract 901636/A000/DRET/DS/SR.
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Our second objective is to consider the SPDE:

Ju %u 3w ,
5?([, X) = ﬁ([’ X)+ fu(t,x))+ 5_6;([’ x),(t,x)e[0,1]%

(0.2)
u(0,x)=u(l,x), 0<x<1l; ut,O)=u(r,)=0, 0<r<l,

where the initial condition in (0.1) prescribing ihe value of {u(0,x), 0<x<1} is
replaced by a periodicity condition, which prescribes that the values of u(r,-) at times
t=0and tr = 1 are identical a.s. We shall both study existence and uniqueness for (0.2),
and the germ Markov field property of the solution. Our main result is that the solution
of Eq. (0.2) possesses a (certain) germ Markov field property iff fis affine.

Our main tool for studying the Markov field property is the Girsanov transfor-
mation, which reduces us to the case of a linear equation. In the case of Eq. (0.1), we use
the (usual) Girsanov theorem for an adapted transiation of the Brownian sheet. In the
case of Eq. (0.2), we must use an extension of the Girsanov theorem to nonadapted
transformations, due to Kusuoka [8]. The reason for the major difference between the
results concerning Eqg. {0.1) and (0.2) is that in the adapted case the Radon—Nikodym

+ f, 3
I unchior

derivative given by the Girsanov theo
nonadapted case it is not.

Our negative results for the nonlinear equation with boundary conditions both in x
and r should be compared with simiiar resuits obtained by the same authorsin [11] and
[12] for certain classes of finite dimensional SDE’s with boundary conditions, as well as
the results of Donati-Martin [5], [4] which concern respectively elliptic SPDEs, and
versions of the results in [11], [12] and [5] for equations where the time (resp. the
space) parameter varies in a (finite) discrete set.

Note that on the other hand the extension of our positive result concerning Eq. (0.1)

to equations with a nonconstant diffusion coeflicient is an open problem.

orem is a multip

i

The paper is organized as follows. In section one, we prove a Markov field property
of the solution of a Cauchy problem (initial condition) for a parabolic PDE with
additive space-time white noise. In section 2 we prove existence and uniqueness of the
solution of the same equation satisfying a periodic (in time) boundary condition, and
we study the Markov property in the linear-Gaussian case. In section 3, we compute a
Radon—Nikodym derivative, and in section 4 we prove that the Markov field property
of the periodic solution implies that the equation is linear.

1. WHITE-NOISE DRIVEN PARABOLIC PDE WITH INITIAL
CONDITION: MARKOYV FIELD PROPERTY

We first give a precise formulation of Eq. (0.1) and state an existence and uniqueness result.

Let {W, ;(z,x)e[0,1]?} be a Brownian sheet defined on the canonical probability
space (, #, P), i.e. @ = C(0,172), & is the Borel o-field over Q completed with respect
to the Wiener sheet measure P. Under P, the canonical field W, ,(w) A w(t, x) is a zero
mean continuous Gaussian random field with covariance function given by

E[W, W, 1=(t A8 Ay
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Let f:[0,1]? x R— R be a measurable function of the form
(A.0) Sl xiz)=fi(tx)+ f5(t, x; 2),
where f, and f, are jointly measurable, and the following properties are satisfied:
(A1) F1eLH[0,10%,dt x dx), f,(t,x;0)=0
(A.2) 3c¢>0 suchthat zf,(t,x;r)<cz?; forall(t, x)e[0,1]% zeR.

Finally we are given an initial condition u, such that

(A.3) ug€Cyo([0, 1]),

where C,([0, 1]) denotes set of continuous functions defined on [0, 1] which vanish at
0 and 1.

We say that a random field u satisfying ue C([0, 1]?) a.s. is a solution of Eq. (0.1) if
equivalently either for any re{0,1]. ¢eC([0, 1]) with ¢(0) = ¢(1) =0,

s ) = K : »h D" d
(u(t,"), @) = (ug ¢>)+LW(5 ). @")ds (1.1)

ft t 1
+J (f(s,-;u(s,~)),¢)d3+j f d(x) W (ds, dx),
0 0 JoO

where (,-) denotes the usual scalar product in L*(0, 1), or else for any (¢, x)e[0, 112,

u(t,x) = f G (x, y)uo(y)dy+f r G, (x,y)f (s, y;u(s, y))dyds

JoJo
(1.2)
f j (%, yyWi(ds, dy),

where G,(x, y) is the fundamental solution of the heat equation on the space interval
[0, 1] with Dirichlet boundary conditions, i.e.

1
ot x) £ f G.(x. V)uo(»)dy
0

is the unique solution of the PDE:

é(p Fomd)

7 (BX) =77 (6), (t,x)e(0, 1)%

PO, x)=uy(x), 0<x<1; @t0)=0¢@1)=0, 0<t<!

It is shown in Walsh [16] that the weak formulation (1.1) and the integral formulation
(1.2) are equivalent. The following result can be found in Gydngy~Pardoux [6].
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and H denote the Gaussian space generated by {W, _;(t, x)e[0, 1]%}. H is in bijection

with L¥((0, 1)) as follows: -

XeH iff there exists heL*((0,1)?)
('
such that X = J hdw.
[0.1)2

Now J is a subset of T, which is in bijection with H (i.e. with L*((0, 1)%)) as follows.
An element ¢ in Z, belongs to J# iff there exists X e H such that

ot x)= E(Xv(t,x)), (£ x)e[0,1]?

i.e. iff there exists ¢ L%((0, 1)) such that

Al —i{; 3 /b
¢, x}={(G,_Ix,), Plz0.1)%

where G,_ (x,y)=0 for s>t Moreover, given ¢, y in # with associaied &, ¥ in
L*((0, 1)?), then
(9, lﬁ).,»f = (‘5’ ‘DLZ((O,UZ)-

In other words,
#H =3, HY(0,1*)n L0, 1;dt; H¥0, 1))

and for ¢, YeHf,
_(0¢ ¢ oy o
(D W)y = (73? Tt ox? L2((0,1)3)

We now have the following (see Theorem 5.1 in Kiinsch [7]), which provides an
improvement over an earlier result by Pitt ([14]):

ProOPOSITION 1.4 The Gaussian random field v given by (1.3) is a germ Markov field iff
the RKHS A is local in the sense that it satisfies the two following properties:

(i) Whenever ¢, Y€ # have disjoint supports, (¢, ), =0.
(i) If pesf is of the form ¢ = ¢, + ¢, with ¢,,p,eX, with disjoint supports, then
¢1’ ¢26‘#'
We can now prove the following result.
THEOREM 1.5 The Gaussian random field v given by (1.3) is a germ Markov field.

Proof Ifsuffices to check conditions (i) and (ii) of Proposition 1.4. They follow easily
from our definition of »# and its scalar product. Indeed, if ¢, ¥ belong to # and have
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disjoint supports, then

d¢p 3¢ oy %y
n=(TEH P
Yo\ axP ot ox? ) ey

Finally, if ¢ is an element of J# is of the form ¢ = ¢, + ¢,. with ¢,. ¢, having disjoint
supports, then clearly if ||-|| denotes the norm in H*((0, 1)*)~ L*((0, 1); dt; H?(0, 1)),

NN =N ll” + o I” < oo.

Hence both ¢, and ¢, belong to 5. O

We now turn to the study of the germ field Markov property for u, the solution of the
nonlinear Eq. (0.1). We shall deduce it from Theorem 1.5 via a continuous change of
probability. Consider the random variable

r r !
~ X N, i Y PR |
JSxo(t ) Wdt,dx)— = | Fex:o(,x))de dx |
(0,172 <Jioar J

|H>

r
3 1
J=exp]
|

| —

where the first integrand in the exponential is an [t6 integral with respect to the
Brownian sheet (see e.g. Walsh [16] for a rigorous definition), and v is the process
defined in (1.3).

We need to formulate a new condition on f:

(A4) d¢>0 suchthat [f,(t,x:z)| <c(l +|z]).(tx)e[0,1]%, zeR.

Under all the above assumptions, including (A.4), we have the following Girsanov
theorem.

PROPOSITION 1.6  E(J) =1, and if Q denotes the probability measure on (Q, F) defined
by

g

then W, . — [ [ f(s, y; v(s, y))dy ds is a standard Brownian sheet under Q.

Consequently, v solves under Q an equation with the same coefficients (but a different
driving Brownian sheet) as u solves under P. Hence the law of v under Q coincides with
the law of u under P.

THEOREM 1.7 Under the above assumptions (A.0), (A.1), (A.2), (A.4), on f and (A.3), the
solution u of Eq. (A.1) is a germ Markov field.

Proof From our discussion preceding this theorem, it suffices to show that v is a
germ Markov field under Q. Let A be an open subset of [0, 1]2 with a smooth boundary.
Set F A Y and #2142 #°.. We need to show that #, and %, are conditionally
independent, given %,. Let y be any nonnegative #,-measurable random variable.
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We shall again assume in this section that f satisfies (A.0), (A.1) and (A.2)", where:
(A.2y There exists 0 < ¢ < 2 such that

(r=2)(f>(t,x;0) = f5(t,x52) < c(r = 2)%,
for all (¢, x)e[0,13%,r, zeR.

Define the Gaussian process

t 1
v(x,x)éf f G,_,(x, y)W(ds,dy).
0J0

Let us first see how we can solve Eq. (2.1} in case f =0. In that case, making the
variable x implicit, we have

u(t) = eu(0) + v(o).
Hence the periodicity condition yields
(I — eMHu(0) = v(1).
Now since e# is a compact operator on L*(0, 1), for which 1 is not an eigenvalue,  — e4

is invertible, from the Fredholm alternative. Finally, in case f =0, the Eq. (2.1) has
the unique solution

u(t) = (I — e?)~'v(1) + v(2). 22)
Note that it is easy to invert this expression, yielding
v(t) = u(t) — e u(0).

Let us now turn to the nonlinear case. With the above notations, (2.1) can be
rewritten as

u(t) = e"u(0) + Jﬂf G,_(, ) f(uls, y))dyds + v(r)
0Jo (2.3)

u(1) = u(0).
Under the above assumptions on f, we have the following:
THEOREM 2.1 Equation (2.3) has a unique solution u, such that ue C([0, 1]?) a.s.
Proof From Theorem 1.1, the first line of Eq.{2.3) defines a mapping from
Co([0,1]) into itself

R:u(0)— u(l) = R(u(0)).
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We need only show that R has a unique fixed point. If we denote by || the norm
in L%(0,1), we have the following for the difference i = u, — u, of two solutions of the
first line of (2.3) (see e.g. Dautray-Lions [3], Theorems XVIII. 3.1, 3.2 and 1.2):
aeL¥0,1; HL(0, 1)) C ([0, 1]; L*0,1)), t —{ii(t)|?> is absolutely continuous and for
almost all 1€(0, 1),

(1)1 = 2(Aa(e), a(t)) + 2(f (u, (1)) — f (u, (), 1 (1))

Bl

< —zf@(t) + 2cla()}?
O0x

< —2Q2—o)law)?,

since the following holds for any ve HL(0, 1):

Hence |u, (1) — u,(1)] < e ?9|u,(0) — u,(0)|. From (A.2), ¢ < 2, hence the mapping R
is a strict contraction from L*(0, 1) into itself. Since it maps L*(0, 1)into C, ([0, 1]), it has
a unique fixed point in Cy([0, 1]). O

Recall the definition of Z,, in section 1, and define:
T ={weC([0,11%);w(0,x)=w(l,x), 0<x<Lw(,0)=aw(t,1)=0, 0<r<1}).

We note that Theorem 2.1 associates to each veX, a solution ueZX of (2.3). This is a

mapping S,: £, — X such that 7
u=_5,(v)
In case f =0, we denote by S, the corresponding mapping, which is linear and

invertible. We now show that in general S, is a bijection from X, into Z. Injectivity
follows readily from the first line of (2.3), as well as surjectivity, since whenever ueX,

v(t)éu(t)—e“u(o)—f f G-, Y f(uls, y)dyds (2.4)
0J0

defines an element of X,
Now the mapping

T2S;18,,

which is a bijection from X, onto itself, will play an important role below. If we consider
v as the noise input in Eq. (2.3), T is a transformation of the noise which is such that the
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solution of the nonlinear equation driven by the transformed noise equals the solution
of the linear equation driven by the original noise.

We need to make explicit the form of T. Note that S, is given by (2.2), and S ' by
(2.4). It follows:

t 1
T(v)(t,x) = v(t, x) — Jf Jf G, (x, V) f(ols, V) + eI — ey u(1)](y)) dy ds
0J0
2.5)

frrl

=0(t,x)— J J G, f(So(v)(s, y)) dy ds.
0JO

The following result is proved exactly as Theorem 1.5:

THEOREM 2.2 The Gaussian random field {u(t,x) = S, (v)(t, x); (t, x)e[0, 112} is a germ
Maurkov field.

Let us now consider the Markov property of the C,([0, 1])-valued process {u(t),
te[0,1]}. In case u solves an initial value problem, it is clearly a Cy([0, 1])-valued
Markov process. Here, the same property cannot possibly hold, since for r€(0, 1), u(0)
and u(l) are not conditionally independent, given u(t). However, we have the follow-
ing (note that unlike in Theorem 2.2, we are talking here of a “sharp”
—not “germ”—Markov field property):

THEOREM 2.3 The Gaussian process {u(t) = So(v)(t,"), 0 <t < 1} is a Co([0, 1])-valued
random field, ie. Vs, te[0,1], {u(r); re[s t]} and {u(6); 6e(s, 1)} are conditionally
independent, given {u(s), u(t)}.

Proof Fix 0<s<r<1andlet

¥:Co({0 1) >R
be a bounded and measurable function. For any re[s, t],

E[Yu()u(®), 0e(s,1f]
= E[Y (eI — ) o(D) + v(r)|v(6), Oe(s,0)]

= CD(eA'(I —e")"v(l),f e”“’"”dW,,),
0

®(y,z)= [ <y+z+f A"_"’dW9> v(H), OG(s,t)‘]
—E[ < - A"“’)dWo> f e’*“"”de]

t
=f¢<y+z+ A e“""’dW,,+a>u(doc),

where
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14 r r
/\J‘ eA"'G)dW9:E<f e dw, J eA"_e’dW(,),
N s S

A = (I _ eZA(t-s))— l(eA(t—r) _ eA(z+r—2s))

where

and p is the centered Gaussian law on Cy([0, 1]) with covariance equal to that of the
conditional law of

r i
f e dW,. given J e gw,.
5 s

Finally E [y(u(r))/u(8), Bels, 1) ] is a measurable function of
o [ AN A Ay -

r ~

(3

e (1 — ) Lo(1) + (I — ezA(tvs>)—1(eAu—n__eA(z+r—2s))J "A(ha)dWa"“J eA(r—B)dw'e

s (3]

— eA(rvs)u(S) +(1 _eZA(t—s))*l(eA(tfr) _ eA(t+rv2s))(u(t)_ eA(t—s)u(s))’

and the result follows. |

Theorems 2.2 and 2.3 remain valid if we replace S, by S, with an affine function f.
The aim of the rest of the paper is to show that whenever f is not affine, u = S (v) does
not possess a Markov property which is weaker than ihe two above ones.

3. COMPUTATION OF A RADON-NIKODYM DERIVATIVE

Our argument in the next section will be based on the use of the extended Girsanov
theorem due to Kusuoka [ 8], which we will recall in the form in which we shall use it.

Let again H = L%((0, 1)). We identify H with a subset of the Banach space X, (in fact
with the Reproducing Kernel Hilbert Space .#'), the injection being denoted by:

r 1
(Gh)(t,x)éJ‘f G,_,(x, y)h(s, y)dyds, heH.
0J0

Let y denote the law on £, of G W, where
I.t fad ‘1‘

(GW)(t,x) 2 j J G,_.(x, y) W(ds, dy).
(4]

0

Then (H, Z,, 1) is an abstract Wiener space.
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DEFINITION 3.1 A measurable mapping F : £, — H is said to be an H — C' map if to each
veX, we can associate a Hilbert-Schmidt operator D F(v)e ¥*(H) such that:

(i) |F(t+ Gh)— F(t) = DF(v)h|y=0(lhlig).

(ii) For each veX,, h— DF(v+ Gh)is continuous from H into ¥*(H).

The following result is proved in Kusuoka [8] (we denote below by I; and I
respectively the identity operator on £, and on H):

THEOREM 3.2 Let F: Xy~ H be an H — C' map such that T =1, — G°F is a bijection
on L, and I; — DF(v) is invertible (as an element of #(H)) for any veZ,. Then p=T ~*
and u are mutually absolutely continuous, and

d{u-T™)

1
P (v) =|d(DF(v))|exp (5(F(U)) —5I1F@ l|§>,

/

where d (D F(v)) denotes the Carlemun—Fredholm determinant of the Hilbert—Schmidt
operator DF(v). and (¥ (v)} is the Skorohod integral of the random field F (v).

In the sequel we write S for the mapping S, defined in section 2. We want to apply
Theorem 3.2 with F(v):= f(S(v)), in the sense that

F(@)(t,x) = f(t,x; S(v)(t, x)).

THEOREM 3.3  Suppose that f is of class C' with respect to its third variable, the
derivative f' being bounded, and that it satisfies the assumptions of Theorem 2.1 (namely,
(A.0),(A.1)and (4.2)). Then F = f=Sisan H — C* map which satisfies the assumptions of
Theorem 3.2, and moreover, if Q = u°T ™,

Z—S(v) =det[(I —e?)~]det(I — wleA)exp[f] Tr{f(u,)(I—e*) et} dt
0

+f1flf(u(t, x))W(dt,dx)—lJAlflf(u(t,x))2 dxdt:',
0 Jo 2Jo0 Jo

where u = S(v), W is determined by v = G W, f(u,) stands for the operator in L(L}(0, 1)) of
multiplication by the function f(t,x;u(t,x)) and {y,, 0<t <1} is the £ (H)-valued
solution of the linear equation

o, _
ot

Yo=1

e f'(u)e™y,
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=0} u{x =0}), # is its Borel o-field, P’ the “Brownian sheet measure”, and

F’\'\

W, (w)=w(t,x), (x)e[0,1]%
If S denotes the set of “simple random variables” of the form

X=f(Wh,),..., Wh,))

with neN, h,..., h,e L*((0,1)?), feC¥(R") and

e
o

we define the Wiener space derivative {D

[

I X112, =EX*+ DX }20.12)

and D2 be the closure of S with respect to the norm |||/, ,. D extends to an operator
(which we shall still denote D) from D*? into L*(Q x [0, 1]%; dPdtdx). Following

Niialart DardAny nnd Ranlanny Hirech r1-| we define ﬂl 2 a¢ the sat of thoge

Iyuarairt 1 aluuu/\ Ll\IJ aitu puuivau ILAADUAI Il , YYv uwviiliv < €O Lilw DWWl WL WAV OW
random variables X to which we can associate a so-called * localizmg sequence”
{(Q,,X,)} = F x D"? such that

(i) UQ,=Q as.

(i1) X,lg, =Xlg, as, Vnz=l
Moreover we define D X for XeD};2 by:
DXy =DX,lq. n21,
where {(Q,, X,)} is any localizing sequence.
If K denotes a Hilbert space, one can define similarly D**(K)and D;?

of K-valued random variables (see Ocone-Pardoux [13] for the details).
We shall need the following

(K) as spaces

LemMa 4.1 Let XeD}:2(K) and @:Q x K = R be a measurable mapping satisfying:

loc

(i) for any we€), ®(w,") is continuously Fréchet-differentiable;
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(ii) for any ke K, ®(-,k)e D*? and there exists a version of the mapping
k—D®(-, k)

which is a.s. continuous from K into L*((0, 1)?);

£l sup
v

{iil} for any a >0,

_wf+uD®wn@J)<m

R—ll)

sup | VO() ¢ < oo.

weQ, |k} <a

Then ®(X)eDL2 and

loc
DIO(X)] =(DOHX) +(VD(X), D X)x.

Proof The result follows easily from Lemma 2.4 in Ocone—Pardoux [13] by fi
dimensional approximation. using the fact that D is a closed operator from L*(Q; K)
2

into L3(Q x (0,1)%; K). L

Recall that H = L*(0, ). We consider the #(H)-valued process {Y, ,0<s<t <1}
solution of:

==

ite
e

—

Jay =AY, + ['(u)Y,

ot
(4.1)
{ ),s,s = IH’
where AY, denotes the r'ornpocition of the bounded operator Y, H with the

unbounded operator 4, and f'(u,) Y, , is the composition of the two bounded operators
Y, ,and f'(u,). Clearly,

7
fu=w”“+fé“Mfwn;w-
s

It is easily shown that Y, e #2(H), the space of Hilbert-Schmidt operators on H, for
s < t, and the associated kernel ¥, (-, )€ L¥(0, 1)?) satisfies:

t 1
Y, (x, ) =G,_(x, y) +j [‘ G,_(x,2)f'(r,z;u(r,2))Y, (z, y)dzdr.
s (4]

S o

We shall write Y, for Y, .
LeMMa 4.2 For any te[0, 1], Be £(H) with | Bl| < 1, we define

A,(B)=det(I — BY)).

We suppose that the assumptions of Theorem 3.3 are in force.
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o)

Then there exists 0 <ty <1 and C > 0 such that

Moreover for t, <t <1, A, is Frechet differentiable on the unit ball of £ (H), and for
any B, Fe #(H) with | Bl < 1,

/€1 A £ I\ l“\v A/n\
(VAB), F )= - ADB)1

Proof  Note that since f' <2, Y,:= e 'Y, satisfies an equation with f”(u,) replaced
by f'(u,) — 2, which is ncgative, hence

Yix W<edG(x v)
PRSI B [ANAE IS

€O
=¢* ) e "Misinknxsinkny

—(n?2-2n
< e L e At .

Let 1, =sup {t > 0; sup, <, , <, Yi(x, y) > 1}, with some ; < p < I. It is easily seen that
O0<i,<1/2.

Now from Simon [15, formula (5.12), page 69],

‘l

r(BY)" J (4.2)

S\-—-

u[\/]p-z

det(/ — BY,) = ex [

and fort, <t < 1,

Tr[(BY)"]< sup Y/(x,y)"=p"

o<x,y<1

hence

exp( i m\g det(f — (

/

H [\’J*

Now for || B|| <1 one can interchange the derivation with respect to B and the
summation in

i
3 TruBY
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Hence

(VA(B),F)=A/(B exp( i Tr[(BY,)"~ 1FY])

=—AB)Tr{{I-BY,)"'FY,].

L

We shall use this Lemma with B =Y, ,. Note that, from the same estimates as those
in the proof of Lemma 4.2, we have || Y, |l,s <1 as., provided r, <1 —t< 1.

Let us now rewrite the expression for the Radon-Nikodym derivative in Theorem
3.3. It follows from (4.2) that

det(] —y ey =det(l —e'y,)

Hence

r
ag {1 g,

—(v)—dct[(l e det(I —e Y)expLJ TrifUSv) — ety ret]di

(4.3)
r1 M

+J J J((Sv)(t, x)) W(dt, dx) -—f f S((Sv)(e, x))‘dxdzJ

We can now prove the main result of this section (see also Corollary 4.5 at the end of
the section).

THEOREM 4.3 Suppose that f satisfies the assumptions of Theorem 2.1 (namely, (A.0),
(A.1)and (A.2)). Suppose moreover that f (t, x, z) does not depend on the variable t, and that
[is of class C? with respect to the variable z, the two first derivatives, denoted f' and ",
being bounded functions of their variables. Then, if the solution {u(t),0 <t < 1} of Eq.(2.1)
is a Cy([0, 1])—valued Markov field, " =0.

Proof Let Q be the probability on X, defined by Q = uT ~*, where as in section 3
u denotes the law of v = G W. Clearly, the law of {u(t),0 < t < 1} under P equals the law
of {(Sv)(r), 0 <t <1} under Q. We assume now that {u(t), 0 <t <1} is a Co([0, 1])-
valued Markov field under P, hence that {(Sv)(r), 0 <t <1} is a Cy([0, 1])-valued
Markov field under Q.

For the rest of this proof, we use the notation

Z()=(So))

= eI — %)~ o(1) + (1),
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From the two last identities and Lemma 4.1, we deduce that
d As
a(V(D(Y“),e D, Y, >=0 foralmostall se[t 1], weQ 4.4)

it 1s easily seen that fort <s< i

1
DY :{‘ V. (fMZENDZNY. ds
LW J ILEWIWARCAL I I Z At J R SR
1
s
eAst" Y. =j Yl,,f"(Z(r))e’“l O —e)y Y. dr 4.5)
t

1
+ J Yl.rf”(Z(r))eAr(I — ey 1Y dr.

111 1
f f (Vx,z(D)(Yl,t)f Y, (6 V) f(ZGs et (y, y) Yy, 2)dydxdz =0
0 Jo 0

for almost all se[t, 1], y'e[0, 1], weQ.

1 1
f f (V.. DY, )Y, (%, p) Yy, 2) f(Z(s, y)dxdz =0
0 JO

(4.6)
for almost all se[t, 1], ye[0, 1], wel.

Using Lemma 4.2 and the definition of ®(B) we deduce for any square integrable kernel
he L3([0, 17?) the following formula

(VO(B),h) = (E(A(B)|#7))"*{ — E(CAB)Tr[(I - BY,) 'hY]|#7)
@.7)
x E(A(B)| #¢)+ E(EAB)AEAB)Tr[(I —BY,) 'hY]I1#7)}.

Define
B,(x,2) = E[Y, ,(x, Y) Y (y. 2) f(ZAyD| #7{ .

By taking s = ¢ (this is possible by continuity), (4.6) implies that

{(VO)Y,,),B,>=0 as. 4.8)
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for all te[0, 1], a.e. Applying (4.7) to (4.8) gives

E[EATF[(I— Y,) "B, Y] #71E[A#7]
4.9)
= E[¢A|#°JE[ATr[(I- Y,) "B, Y,]1#7]

This equality is clearly true if ¢ is a bounded #*-measurable random varable. By a
monotone class argument, (4.9) holds for any bounded random variable £. Consequ-
ently, we obtain that

Tr[(I—Y,)"'BY]

is #’¢-measurable. Using Lemma 4.4, part (i) we get

d
d—eASDS{Tr[(I—Y1)‘IB,Y,]}=O for se[0,1], ae. (4.10)

IS TR Ir W TN

Notice that {d/dsye* D B, = 0 for 5[0, ], because B, is #7-measurable. On the other
hand, differentiating the hnear Eq. (4.1

‘ r 4 1’7‘\1 7V dr
g J tr \bopJWgbay &y i1
0

N
wc UULauA

]

Therefore, (4.10) yields
d ! )
—Se’“Tr {(I - Yl)'lB,(f Y,,/"(Z,)D,Z,Y, dr)
4]

i \ b
e Yw( J VoS IDZ,Ydr )= Y) BT, =0
0

Using the expression of D,Z, this gives, using the same arguments as in (4.5)
dT 1 -1 SY HZ A{l +r) Ay—1 Yd
% r ( _Yl) Bt o t,rf( r)<e (I-e) >§ r r
I
+f LSZ)<et eA)_1>§Y,dr]
+(-Y)! [j Y, L) eI — ") ), Y, dr
0

1
+J Y S1Z) e T — e, Y, dr:l
0

x (I — Yl)"B,Y,}=O,
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where if TeL*[0,1]%), (T), means the multiplication operator on L*0, 1) by
{T(&, x), xe[0,1]}. Therefore, we get

Tri(l—Y,) 'BY, f"(Z){e*) Y,

toLs

U =Y ) B Y=Y )Y, (f(Z)(e), Y} =0,
Trid=Y,) 'BY,(I+(I=Y) 'Y f(Z)(e®>. Y} =0

namely, using the definition of B, this means,

Tril = Y)Y YL 0 (ZELY,(y, )| #7]

for all x, ye[0, 17, se[0,t], weQ.
The above expression can be written as

[Y,U=Y) ' Y 10 W(ELYIATTY,( = Y)Y S0 ) (Z(0) f(Z,(x)) = 0.
It holds that
(Y (I-Y) 'Y, Y D(x, >0
(E(Y|H) Y, = Y)Y (300> 0
for all x, ye[0,1]> and O <s<t <1 (witht>t,, t <1—t,). This is true because the

kernels Y, Y, and Y, Y, ! are strictly positive on [0, 1]%, which follows, for instance,
from the Feynman-Kac’s formula. Therefore, the preceding equality implies

S WZ I Sf"(x;Z(x)=0, as.

for all x,ye[0,1]% O<s<t<l, t,<t<1—t,, which implies f"(y;u)=0 for all
ye[0,1], ueR. 0

Proof of Lemma 4.4 We only prove part (i), since the proof of part (i) is similar. By a
localization argument, we can assume that X e D2 Suppose first that

X=f(Z(O’X1)a---’Z(O!xn);z(tl’yl)’--~’Z(tm’ ym))

where n,meN, feCP(R"™™), 1<, <t, <+ <1, <L, X;,..., % Vis--» Ym€[0,1]. In
that case we have for any s€[0, (], and using the notation Z' =(Z(0,x,),..., Z(0,x,))
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and Z2=(Z{t, yi)- s Z(t s V),

"0
D, X=Y -——f(Zl;ZZ)eA“"’(I — et Yx;,2)
' i=10x;
o Of i o2 ks PR .
+ ¥ (71, Z%)e U — eV iy 2,
j:laCn-Fj

and (i) holds. If now X eD™? is arbitrary, we can find a sequence of random variables
{X,} of the above type such that || X, — X ||, , » 0. Now for any neN (D, X,)(z) does
not depend upon s on the interval [0, (] for weG. Hence the same is true for X. [

We can finally prove the following result.

COROLLARY 4.5  Suppose that f satisfies the assumptions of Theorem 4.3. If the solution
{u(t); 0 <t <1} of Eq. (2.1) is a Co([0, 1])-valued germ Markov field, " =0.

Proof The result will be a consequence of Theorem 4.3 if we show that

N o=, (4.11)
>0

where

HO=a{Z(s);se[0,e]ul(t —&)",(t + &) A 1]}

Now it is easily seen that

Jf,=o{ r (IG,_s(x, y)W(dy,ds), xe[0, 1]}

LvGuo /

1 1 b}
va{ f J G, _,(x, y)W(ds,dy), xe[o,ll},
0 (4]

while for ¢ >0
s 1
Jf}”:a{j f G,_,(x, yyW(dr,dy), xe[0, 1],s€[0,e]uf(t—&) ", (t+ &) A 1]}.
0Jo

Let us denote by H, the linear span in L*((0, 1)?) generated by the functions:

(r’ y) - Gt—r(x7 y)ﬂ(r$l}
and

(r’ ,V)—’G1—,(x’ y)

for all xe[0, 1], and by H® the linear span in L*(0, 1)?) generated by the functions:

(r: Y)—’ Gs—r(x7 y)ﬂ{rSS}
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for all xef0 17, ref0, 1At —2)*, (r+e) Al

>_|7'

L
Q

early, H,— [} H”. Then (4.11)
>0

follows from Lemma 3.3 in Mandrekar [9]. o

APPENDIX

Proof of Proposition 3.4 We deduce from (3.1) the following formula for the kernel
DF@)(t,x; s, y):
DF ()¢, x;s, y)

1 1
:f’(t,x;u(t,x))[G,_s(x, v) +J f G, x I — ey Yx,,x,)G, _ (x,, y)dx, dxz].
. 0 0

Note that we can approximaie ihis kernei by the finite dimensionai kernei

ek

1

£ . s, AR At - o
Ja U XL WG Xy
0

n

nm,;

nom

al =

I [\"] i

i

=0,

“HGEBTGT )x;,x)]e®e,Q@u,®0,

where GJ* denotes the m x m matrix {G,(x;, %)}, <, <, and B™ the m x m matrix

{a- eA)'](xj’ X)) <ir<m> and

<m

v,{x)= \//r;ﬂ(xj,x,+1]()c)’ 0<j<n—1.

Using the expression of the Carleman-Fredholm determinant for a finite matrix we
obtain

d.(A"m) =det(I — A" exp(Tr A™m.

We have
/n—1m-~1 N\
exp(Tr A™™) = exp( S Y sl )GEBGY ), ,))
=0 j—l
Letting first m tend to infinity and then n — oc we obtain

lim lim exp(Tr A™™) = exp<f (Trf'(u)I —e?)™ 'e?) dt).
[}

R0 m—©
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On the other hand, we have

det(I— A™")
F 1 i mpmsm 1 m metm
Im—r_“ﬁJOGOB Gl “_—3—f0G B Gl ~ty
1 ’ m 1 m m m m m m
_Efl \Gn*’EEGnB GX' I, ———f GIH™GT_
1 [ . 1 e ° 1 o 3
= det _Efzku'z+mzu'23 ) ——~f2\ H 'TG'ZB Gx—z.)
1
___f (Gm GmBme) __f ( m_ ” GmBmGrln tl)

Conseguently, with B:= (I — )" 1,

fim det(i — A™™)

m— o0

1 1
(1_—f6BeA ___f;)BeA(l—n)
n n
l A Aty +1 1 ! A
— (e + BeA® V) [ ——f" Be
n n
= det _ lf',.(eAtz + BeA(l +tz)) _lf{,(eA(tz—n) + BeA(l +!z-h))
PEE } nt 2

1
Y T, (5} A(1 +13) _l r LA — 1) A{l+13—1;1)
S5 + Be ) G + Be )
n n

— ( _ l)n det [eA(n R P R ot 1)]
-

1 1 1 .

—JI4+>~f B A g BeA(l—t,) _ BeA(l—tzy
+nf0 € nfo nfo

1 ’ A — Ar l ’ A(1 —1y1) l ’ A(l—1t2)
-f(I+Be!) —e ¥ +-fBe YV —f'Be ?
n n n

1 ' A 1 s — At A(1 —t — At 1 o A(l—132)
x det r_tfz(I+Be ) Efz(e '+ Be { 1)) —e 2+;f,2Be { 2

1 1 1
;f’a(I+Be") ;fg(e_""-i-Be"“"") ;fg(e"”+Be"“_”’)
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Using the fact I + Be = B, because H = (I — ¢4}~ 1, this determinant is equal to

M1
[ ——fBe?
n

1
——f1 Bet
n

1
det — ;f/ZBeAlZ

1
_ _f;BeAlg
n

1
- A(1—1y)
——f,Be !
n

1
I——f" Bet
n

1 1
—=f45Bet7) [ _ f" Bet
n n

1
4 A(t3—t
——f3BettTm
n

1
’ Atz —1t2)
__f3Be 312
n

1

*y A(1 —12)

— = foBettie
n

_1f’1 BeA(1+I1 —12)
n

]

Now we multiply the ith column (2 < i < n) on the right by ¢4*-*, and we obtain

det(exp(—AX"21t))

x det

i=1 "
—

I -~ Be*
o

SR

1
—= [ Bt

n

1 A
— - [, Bet

n

1
—~ [} Be
n

eA!x _ 1 f’lBeA(1+!1)
n
1
L fyBet
n

1
_ _f/sBeAt;
n

f Bet
Jo

S = 3|

’ A(l +11)
f1Be !
eAtz_lfr BeA(l+tz)

n 2

1
_ - 'B Atz
nfs €

Substracting each column from the preceding one we get (we use again that B(I — e?) = I)

det(exp(— A4

x det

i)
I 0
At 1 ’ LAt At
— el _fle 1 el
0 _ eAtz __f/ZeAtz
0 0

1
_ /BA
nfo e
_lf/ BeA(1+l1)
n 1

1
’ A(l +1t
— fyBeAtt+)
n

1
: AL +tn -2
__fn_zBe )
n

1
eAtn—l ___;f;l_lefﬂn—x

-
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B 1 o] A
1 0 —;jOBe
1 — Aty £ ALy I 1 — Aty £ A“B A
—I——e Yife ——e ' f" et Be
n n
r_, T _
0 — ] ——eARf o2 . — —e Af A2 Bed
n c e n v
= det 0 0

e—At,. Zf,,f At"’zBeA

:}.-

_(1+ g~ An- lfn~1eAl" 1)

—/,—l—l At,.AlJ{‘/ ,gAt" \ 1 —Aty.fzf‘/iﬁ.eAlnfz\le'At,,73{‘ri‘eAtnAgBeA
n n—1 / 4 on—2Z / n s n—3

:

/1 +1 AA‘rn'lj" Ain*l\\ /lI_'_le_Al‘nfzf' e/il‘nfz\\.,.
(e e (e et

1
--<I+;e’“‘ A“) fOBe]

Consider the solution {y(¢), t = 0} of the linear system

Wi ey,
o =1
Notice that y(z) is invertible and
W' _

e e

We can approximate each term (I + (1/n)e™*"if"(u, _)e*™" J)by , _ er 1//,:_1).

- j

—~67At"72f;42€m"’zB€A
n

—Atn- 1 {7 Atn -1 A
I—Ee f._.e Be

43
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=det[] + Be* —y, Be*]
=det[B—y,Be?]
=det[I — e Tdet[(I — et~ 1] O
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