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Summary.  We study linear stochastic differential equations with affine bound- 
ary conditions. The equation is linear in the sense that  both  the drift and 
the diffusion coefficient are affine functions of the solution. The solution 
is not adapted to the driving Brownian motion, and we use the extended 
stochastic calculus of Nualar t  and Pardoux [16] to analyse them. We give 
analytical necessary and sufficient conditions for existence and uniqueness 
of a solution, we establish sufficient conditions for the existence of probabil i ty 
densities using both the Malliavin calculus and the co-aera formula, and 
give sufficient conditions that  the solution be either a Markov  process or 
a Markov  field. 

w 1. Introduction 

Let { Wt} denote a Brownian motion. Recently, progress has been made in devel- 
t 

oping a useful theory of stochastic integrals Scp (s, w) d W~ in which the integrand 
0 

{cp(s, w)} anticipates {Wt}. In particular, Nualar t  and Pardoux [16] derive an 
extended stochastic calculus both for the Skorohod integral and for a generalized 

t 

Stratonovich integral ~ cp(s, w)odWs. This allows one to formulate stochastic 
o 

differential equations containing parameters  that anticipate the driving noise. 
One natural  way to do this is to impose two-point, or even distributed, boundary  
conditions on the solution of a stochastic d.e., and in this paper  we study the 
following particular case: 

k 

dXt=[AXt+a(t)]dt+ ~, [BiXt+bi(t)]odWt i, O_<t_<l (1.1) 
i = 1  

FoXo+F, X1 =f.  (1.2) 
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Our purpose is to show that a fairly complete analysis of this problem can 
be made. 

The boundary condition (1.2) includes the usual adapted, initial value prob- 
lem (F 1 =0), periodic boundary condition (Xo=X1), and two-point boundary 
value problems. The case of linear-gaussian dynamics, in which Bi = 0, 1 < iN k, 
a(t)=0, and bi(t), l<_i<_k, are deterministic constants, has been studied by 
Krener [13], Adams, Willsky and Levy [-1] and Kwakernaak [14]. Cinlar and 
Wang [5] treat one-dimensional random processes on circles which essentially 
have the form (1.1}-(1.2) with linear-gaussian dynamics and periodic boundary 
condition and they study infinite-dimensional generalizations. For the linear- 
gaussian case, the extended stochastic calculus is not needed because the stochas- 
tic integrals do not contain an anticipating term. 

In Sect. 2 of this paper we define the problem (1.1)(1.2) more precisely and 
discuss the natural definition of its solution. In Sect. 4, we establish analytical 
necessary and sufficient conditions for the existence of solutions and show that 
these are unique in a certain class of processes. We rely here on the results 
of Nualart and Pardoux [16], which are reviewed in Sect. 3. In Sect. 5, we discuss 
the issue of existence of a density for the probability distribution induced by 
Xr First we do this by calculating and analyzing the Malliavin covariance 
matrix of Xt. Then, in more specialized circumstances, we employ the co-area 
formula of geometric measure theory to represent densities and to derive a 
necessary and sufficient condition for existence of densities. 

In Sect. 6, we consider the Markov property of solutions. Two types of 
Markov property are relevant here; the usual Markov property requiring condi- 
tional independence of past and future given the present, and the Markov field 
property requiring conditional independence between {Xtlte[a,b]} and 
{Xt Its[a, b] c} given (X,, Xb) for any interval [a, b]. The Markov field property 
always holds in the linear-gaussian case; indeed, one focus of previous research 
has been the realization of Gaussian Markov fields by linear stochastic differen- 
tial equations (Krener [13]; see also Chay [4] and Jamison [9, 10] for related 
references). We do not know whether the Markov field property holds in general. 
In Sect. 6, we develop sufficient conditions to determine when {Xt} is a Markov 
process or a Markov field. In 6.1 we give probabilistic criteria for either type 
of Markov property and show that {Xt} always has a weak Markov field proper- 
ty with respect to enlarged filtrations (Theorem 6.4 and Proposition 6.8). In 6.2, 
we use the co-area formula and explicit representation of densities to give analyti- 
cal conditions for the Markov or the Markov field property in the two-point 
boundary value problem, and we give examples to illustrate the use of our 
criteria. In particular, it is not necessary for the filtration of {Xt} to be adapted 
to either the forward or backward filtrations of {W t} in order that {Xt} be 
Markov. 

There are two styles of argument in this paper; the probabilistic style using 
stochastic calculus which is not so heavily dependent on the particular structure 
of (1.1}-(1.2); and the analytical style which takes strong advantage of the linear- 
ity in (1.1)(1.2). In the former class fall the uniqueness theory, the calculation 
of the Malliavin calculus and the probabilistic criteria for Markovianity. These 
aspects of the theory may perhaps be generalized; see the discussion in Sect. 2. 
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In the analytical class falls our use of the co-area formula, which we have 
found to be a powerful tool for questions concerning densities and conditional 
densities. 

w 2. Presentation of the Problem 

Let (J= COR+; ~ k) be equipped with the topology generated by the sup norm 
on compact intervals, let ~ denote the Borel o--field of subsets of (J, and let 
P denote Wiener measure on (f2, ~ ) .  We define 

w~(co) = ( w / ( ~ )  . . . .  , W?(co)) 

= ~o ( t ) .  

The aim of this paper is to study the following stochastic differential equation, 
whose solution will be a d-dimensional process defined on the time-interval 
[0, 13: 

d X t = ( A  X t  + a(t)) d t  + (B, X t  + bi(t))od Wt i (2.1) 

where we use the convention of summation from 1 to k of the repeated index 
i, together with the boundary condition: 

FoXo + FI X ~ =  f (2.2) 

where A, BI ,  . . . ,  B, ,  Fo, F1 are d x d matrices, such that 

rank (Fo : F1)=d (2.3) 

{a(t), ba(t) . . . .  , bk(t); te l0 ,  13} are d-dimensional processes satisfying assump- 
tions to be specified later, and f is a d-dimensional (possibly) random vector 
defined on (f2, ~-). From (2.2), we do not expect in general that the solution 
{Xt, te[0,  1]} be adapted to any filtration with respect to which {W,} might 
be a Wiener process. Since we want to keep our problem symmetric with respect 
to time reversal, we will not try to take advantage of the filtration enlargement 
technique (see Jeulin [11], Jeulin-Yor [12]). The stochastic integrals in (2.1) 
will be understood in the sense of generalized Stratonovich integrals (see Nua- 
lart-Pardoux [16]). The reason for choosing this type of integral, rather than 
the It6-Skorohod integral, will be given below. We will present in the next 
section the results we need on the generalized Stratonovich integral and its 
associated calculus. 

Let us now explain what we mean by a solution to (2.1)-(2.2). We can asso- 
ciate to Eq. (2.1) a fundamental solution ~t, which is a d x d matrix valued 
process, solution of: 

d 4~t = A q~ t d t + B~ ~bt o Wt i 
(2.4) 

~o =I .  
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Note that {q~t, te[0,  1]} is adapted to the natural filtration of {Wt}, and the 
stochastic integrals in (2.4) are standard Stratonovich-type stochastic integrals. 
We define further: 

�9 (t, s )= q)t q~- 1; s, te l0 ,  1] 

t t 

Vt= ~ a(s)ds+ [. bi(s)odW~ i, t~[O, 1]. 
0 0 

We then have the following variation of constants formula: 

Xt=~(t, 0 ) X o +  i ~(t, s)odV~. (2.5) 
0 

Let us admit for a moment that (2.1) is equivalent to (2.4)~(2.5). Then from 
(2.2): 

1 

[ F o + F  1 4(1, 0)] Xo=f--F ~ S 4(1, s)odV~. (2.6) 
0 

If the matrix Fo+F 1 q~(1, 0) is invertible a.s., then X o is uniquely determined 
by (2.6) a.s., and {Xt, re[0,  1]}, defined by (2.5)(2.6) will be the solution to 
(2.1)(2.2). We see that (except possibly for the definition of {Vt} ) {Xt} is con- 
structed with the standard tools of stochastic calculus, and the generalized sto- 
chastic integral and calculus with non-adapted integrands will be necessary only 
to give sense to (2.1), and establish the equivalence between (2.1)-(2.2) and (2.4)- 
(2.6). 

Let us remark that, using the flow associated to (2.1) instead of the fundamen- 
tal matrix, and the generalized It6-Ventzell formula (see Ocone-Pardoux [-17]), 
we could replace (2.1) by an arbitrary nonlinear stochastic differential equation, 
and (2.2) by a nonlinear relation between Xo and X1. But the situation which 
we consider here is the only general framework in which we are able to give 
conditions on the data which insure the a.s. existence and uniqueness of a solu- 
tion X o to (2.2). 

Let us now discuss the nature of the boundary condition (2.2). If F1 = 0  
(resp. F o =0), then (2.1)(2.2) becomes an initial value (resp. final value) problem, 
which is of course well understood, except that we allow the initial (or final) 
condition to depend on the driving Wiener process. We now describe two partic- 
ular cases of the boundary condition (2.2): 

Two-point Boundary Value Problem 

Let l~N,  0 < l < d ,  and suppose that Fo =(Fo), F1 = (O,,)where F~ is a / x  d matrix, 

F~' is a (d- l )x  d matrix. Condition (2.3) requires that F~ has rank l and /7~ 
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has rank d - I .  If we write f =  (f0], where f0 is l dimensional and f l  is d - l  
\ f l] 

dimensional, then (2.2) becomes: 

F~ Xo =fo F~ X1 =f l -  (2.2') 

r,~l f l E '  0 
Note that Image]o/C~Image/F~/={0}'L J L J Conversely, if Image Fo 

Image F 1 = {0}, one can always find by row reduction an invertible G such 
that: 

G[Fo.F~]=[F[~i 0 ]  
[ 0 i F ;  " 

Thus, (2.1)-(2.2) can be expressed as a two-point boundary value problem if 
and only if Image Fo c~ Image F1 = {0}. 

Periodic Solution of a S.D.E. 

Suppose F0= - -F  1 =I ,  the d x d identity matrix; and f = 0 .  Then (2.2) becomes: 

Xo = X1. (2.2") 

Clearly, (2.2) fixes exactly d degrees of freedom, exactly like an initial condi- 
tion would do. In other words, (2.2) is exactly the kind of condition required 
in order for (2.1~(2.2) to have a unique solution. Therefore, there is no analogy 
between the solution to our equation and a Brownian bridge, which is a process 
whose values at both endpoints t = 0  and t =  1 are completely prescribed. A 
Brownian bridge is a conditioned Brownian motion, whereas no conditioning 
enters in our construction. 

Let us indicate finally that the boundary condition (2.2) could be replaced 
by a more general condition of the type: 

1 

F(t) X, dy(t)=f (2.2') 
0 

where {F(t), te l0 ,  1]} is a measurable collection of d xd matrices, and ~ is a 
finite measure on [0, 1]. (2.6) would then have to be replaced by: 

0 0 

(2.6') 
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1 

and we would need to ensure that the random matrix ~ F( t )~ tdT( t  ) is a.s. 
0 

invertible. Part of the analysis below can be generalized to this case, but we 
will restrict outself to consider the boundary condition (2.2), which will lead 
to a tractable necessary and sufficient condition for existence and uniqueness. 

w 3. Generalized Stratonovich Stochastic Integral and Calculus 

All processes will be defined on the probability space (s ~ ,  P) introduced in 
the previous section. 

The results below which are not proved are taken from Nualart-Pardoux 
[16].. 

In the next definition, d,= 12-"; k, n~N.  

Definition 3.1. A real valued process {ut, te[0,  1]} is said to be Stratonovich 
integrable with respect to dWt i if for any t~[0, 1], the sequence {~,(t), neN}  
defined by: 

i i tzn+ 1 , -1  W~+, , ,~-  Wt, ,,~ 
~,(t)= ~ - t i ~ -  7 f uses 

/ = 0  - n  - -  - n  t~  

converges in probability as n ~  0o. In that case, the limit will be denoted: 

t 

us~ Ws i. 
o 

A real valued process which is Stratonovich integrable with respect to d W/, 
i=  1, ..., k, will be said to be Stratonovich integrable. [] 

This definition differs slightly from that in Nualart-Pardoux [16], where 
convergence to the same limit along any refining sequence of partitions of [0, 1] 
is required. The present definition will be sufficient for our purpose. 

Let us consider the forward filtration o~t=a{W~ i, O<s<t ;  i=1 ,  ..., k} and 
the backward filtration ~ t = a { W ~ / - W / ;  t<=s<= 1; i =  1, ..., k}. We will say that 
a process {v,; te l0 ,  1]} is a "forward semi-martingale" if it is a ~ semi-mar- 
tingale (see e.g. Meyer 1-15]). We will say that a process {vt; te l0 ,  1]} is a "back- 
ward semi-martingale" if vl-~ is a f f l - t  semi-martingale. The following result 
is well-known (see e.g. Meyer [15]): 

Proposition 3.2. Let ut = g(vt), where g e C 1 (~), and {vt} is a continuous process, 
which is either a forward or a backward semi-martingale. Then ut is Stratonovich 
integrable. [] 

The following is an immediate consequence of the Definition: 

Proposition 3.3. Let {vt} be a Stratonovich integrable process, 0 a random variable, 
and ut=Ov,, te l0 ,  1]. 
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Then {u,} is Stratonovich integrable, and: 

t 1 

~u~odW~i=O~v~odW~ ~, u>_O, i = l , . . . , k .  [] (3.1) 
0 0 

In order to describe other types of nonadapted Stratonovich integrable pro- 
cesses, let us recall the notion of derivation of random variables defined on 
Wiener space (~, ~ ,  P). 

Let H--L2(0, 1). If hel l ,  we denote by 5i(h ) the Wiener integral 

1 

h (s) d W~ i . 
0 

We denote by S the set of random variables of the type: 

F =f(6  h (hO . . . .  ,6,.(h,)) (3.2) 

where j.feC ~a~ ~'- I, hi, . . . . . .  , h, eH, il, , i,e{1, ..., k}. Note  that S is dense in 
L2(Y2). If F E S  is of the form (3.2), we define its "derivative in the i-th direction", 
for 1 <iNk ,  as the process {D~F, te[0 ,  1]} given by" 

~f 
D~F= • ~xl(6h(hl) ,  ..., 6~.(h,)) ht(t ). 

{l; i~ = i} 

i l . . . i p  More generally, we define the p-th order derivative of F, Dtl...tpF, as given 
by: 

Dtl F. 

If F~S,  heH, 1 < i< k, we define the random variable: 

1 

D~F= ~ D~Fh(t) dt. 
0 

We will denote by D t F (resp. Dh F) the k dimensional vector whose i-th coordi- 
nate is D~F (resp. D~F). DF stands for the process {DtF, t~[0, 1]}. 

Proposition 3.4. As an unbounded operator from L 2 (f2) into L ~ (~2 x (0, i); ~k) (resp. 
L2(Q; ~ ) ) ,  D (resp. Dh) is closable. We denote by ID2,1 (resp. ]D2,h) the domain 
of  D (resp. Dh) , identified with its closed extension. 

Moreover, D and D h are local operators, in the sense that: 
(i) I f  F~lD2,a, D~F=O P x )o a.e. on {F=0}  x [0, 1]. 

(ii) I f  FelD2,h, DaF=O a.s. on the set { F - 0 } .  []  

More generally, K)p., (p > 1, f eN)  denotes the completion of S with respect 
to the norm: 

IIFIl,,z = IlVllp+ Jl H D(')FH.slIp 
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where 11" ]Iv denotes  the no rm in LP(f~), and 

k 

tI D(~ F l[ 2s = Z I 
J l  . . . . .  Jz = 1 ( 0 ,  1)~ 

(Dj~ j, z ... D n F) dtl  ... dtt. 

IDp, z,~o ~ will denote  the set of r.v. F which are such that  there exists a sequence 
{(~2,, F,); h e N }  c , ~  x Dpa  with the two following propert ies:  

(i) ~?,Tf2 a.s. 
(ii) F = F, a.s. on f2,. 
We then say that  {~2,, F,} localizes F in IDpa, and D~F is defined wi thout  

ambigui ty  by: DtF=DtF,  on ~2,, n e N .  

L e m m a  3.5. Let d e N ,  G be an open subset of Ne, and qoeCl(G). I f  F is a d- 
dimensional random vector s.t. F e G a.s. and Fi elDpa.lor 1 <=i <=d, then: 

and 
q~(F)eDp, Z, loo 

i = 1  

Proof Let  {~o,} be a sequence in C 1 (G), such that  each q), has a compac t  suppor t  
in G, and 

G.  = {x; = (x)} T G. 

Let  {~2,, F,} localize F in (IDp,1) d. Then  {~,,  (p,(F,)}, where ~ , =  f2, c~ {FeG,},  
localizes q~ (F) in Dp, 1, and:  

i - - 1  

Let  us now in t roduce  some classes of  processes: L p'~ will denote  the set 
of processes {ut, te  [0, 1]} which are such that  u~eDp,~ t a.e., and:  

1 

I Ilu, ll , dt< oo 
0 

IL~ l will denote  the set of processes uelle a which satisfy: 
(i) s ~ D t us is cont inuous  with values in LV(~2), both  on (0, t) and on (t, 1), 

uniformly with respect to t. 
(ii) ess sup E(lDs u t f ) <  oe. 

( s , t ) e ( O ,  1) 2 

p , !  IJlo c and IL~]lo ~ are defined in an obvious  way. If ueL~lo~, we define: 

D~ + ut=limDtus, D7 ut=limDtus, (Vu)t=Dt + u t + D t  ut. 
S--~t $-+t  
S > t  S < t  

The  i-th coord ina te  of (Vu)t will be denoted  (V i U)r 
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Proposition 3.6. I f  uML~,]o~, then u is Stratonovich integrable. 
The process: 

t t 

~(u)= I usodW~'-~ ~ (V'u)sds 
0 0 

is called the Skorohod integral of u with respect to d W  i. If, moreover, u~lL~ 1, 
then: 

t t t 

e[(6~(u))2]=EIu2~ds+E~ I ' ' D s u~ D~ us ds dr 
0 0 0 

e(6~(u))=o. [] 

Let Ls~{ue lL~2;  [ 7 a e ] g 4 ' l } .  

We can now state the extended Stratonovich stochastic calculus rule. 

Theorem 3.7. Let ~p~CZ(~,J), and {Zt, v(t), Ux(t), ..., uk(t); t~[0, 1]} be d-dimen- 
sional processes such that: u~]Ls, loc, ,,j=n4,~ j t/ =.a..,loc, ZoE:ID4,1,1oc, l < i < k ,  l < j < d ;  
and moreover: 

t t 

z ,=Zo + I v(s)ds+ ~ u,(s)od~;. 
0 0 

Then 
t 

~(z,)= ~o(Zo)+ S ~o'(z3 v(s) ds+ I e '(z3 u,(s)odWL 
0 0 

[] 

We will also need the: 

Theorem 3.8. Let 2,2 u~]LC, loc, and be such that there exists a localizing sequence 
{u"} of u in ]L~  2 with the property that for every n~N,  

t - +  D t  un 

belongs to L 2 (0, 1;(L~ X)k). Then, for any te [-0, 1], 

and 

t 

S u r ~  l~ 
o 

D~ u, odW~ i = ~ D~urodW~i+Jij l~s<=~u s 
0 

Proof. It suffices to consider the case where uell,~ z, with t ~ D ~ u  belonging 
to L2(0, 1; (~...~ 1)k). 
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t 

We approximate S ur o d W} by the sequence {r n e N} given in Definition 3.1. 
0 

Clearly, ~, elDz, 1, and: 

n -  1 i tzn+ 1 
t - -  WtznAt 

]- tT+i-T( I O~u, dr 
= - -  t n  t~  

+(~ijl(tl,^t<s<-tl,+'^t} ( t tn+l- t ln)- I  I u~dr . 
t~ 

We claim that: 
t 

4, --+ ~ u~o d W} in L z (0) 
0 

D ~ , , ~  i(D.~u,.)odW}+biil~<=t~u~ in L2(y2 • 1)) 
0 

which proves the theorem, since D is a closed operator. We prove the first 
claim; the proof of the second one is analogous. 

From Nualart-Pardoux [16] Proposition 4.3 and Theorem 7.3, it suffices that 
the following convergence holds in L2(O) (and not just in probability): 

n - 1  t~+l t tn+lAt  t 

(t. --t.) I I DJu~dsdr~�89 f (VJu)~dr" E l + l  I - 1  

/ = 0  tzn t]l A t 0 

For that sake, we need only to show that the sequence is dominated in absolute 
value by a sequence which converges in L 2 (O). But 

2" D~u, dsdr _c  2" (Diur)2dsd , 
t 1 A t t ! \ l t I A t t ! 

and the right hand side is a sequence of positive random variables which con- 
verges in probability towards: 

(i c (V j u)~ 2 d r 

and the LZ(f2) norms converge to the L2((2) norm of the limit. Therefore the 
convergence holds in L 2 (f2). [] 

Remark 3.9. As in the standard theory of stochastic calculus, most of the results 
on Stratonovich integrals are obtained via their translation into It6 language. 
The generalized It6 integral is called the Skorohod integral. The reason why 
the extended Stratonovich integral is the one to be used in our problem is 
the identity (3.1), as we will explain below. The Skorohod integral does not 
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possess the same property. Indeed, let velLZc, and 0eS ,  ut=Ovt. Then uelL~, 
both u and v are Stratonovich integrable, and from Proposition 3.5, 

' i 0 ~ 1 ) s o d W s  i =  i 1 O6t(v)+7 O(Viv)~ds 
0 0 

t t 

[. us~ +1 ~. O(Viv)s ds+ i vsD~Ods" 
0 0 0 

Then, from (3.1), 
t 

8~(u) = 0 8~(v)-- j vs D~ 0 ds. (3.3) 
0 

w 4. Existence and Uniqueness of a Solution 
to the Two-sided Stochastic Differential System 

Let us rewrite our system: 

d X t = (A Xt + a (t)) d t + (Bi Xt + bi (t)) o d Wt' (4.1) 

We define: 
Fo Xo + FI X~ =f. 

t 

Vt= ~ a(s)ds+ i bi(s)od FITs i . 

o o 

(4.2) 

{~t, t s  [-0, 1]} is the d x d matrix valued process, solution of the equation" 

t 

~ t = I +  S A ~sds+ i B, q~sodW~ i 
0 0 

@(t, s)= @eq~- 1; s, te[0,  1]. 

We then consider the system: 

Xt=49( t, O)Xo+ i ~(t, s)odV, (4.3) 
0 

1 

[Fo +F1 4(1, 0)2 Xo=f - -F  1 ~ 4(1, s)odV~. (4.4) 
0 

Our study of existence and uniqueness for (4.1)-(4.2) will be made in two 
steps: first we will show the equivalence of (4.1)-(4.2) with (4.3)-(4.4); second 
we will study existence and uniqueness for (4.3)-(4.4), which is equivalent to 
the a.s. invertibility of the d x d random matrix Fo + F1 4~(1, 0). 
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Before proceeding to the proof, let us state the hypotheses on the random 
data {a(t), bl(t) . . . . .  bk(t); te[0,  1]} and f which we suppose to hold throughout 
this section. 

a J  ~ l i  4 , 2  . =~oc, l < j<d  (H.1) 

bJG]LS, loc; l <_i<_k, l <j<=d (H.2) 

fJeV4,2,1oc; l< j<d .  (H.3) 

Remark 4.1. i) The only reason for not allowing A, B 1 . . . .  , B k to depend on 
t is to obtain a necessary and sufficient condition for existence and uniqueness. 
In case Bt = . . . =  B k = 0, that restriction is clearly irrelevant. 

ii) In case a, bl, ..., bk, f are deterministic, it suffices to assume that 
a~L2(O, 1;]Rd); bl, ..., bkeL2(O, 1; ]Rd); f e R  d. [] 

First remark that ~.  and ~(1, .) belong to lie 'l for any p=>l, I~N. We have 
in particular: 

t 

D~ vbt= ebb+ ~ A D~ ~ d r  + i Bi D~ q~od W}, 
8 S 

te[s, 1]. 

Theorem 4.2. Suppose that the random matrix F o + F  1 ~(1, 0) is a.s. invertible. 
Then the two-sided stochastic differential system (4.1)-(4.2) has a unique solution 
among those continuous processes whose components belong to ]Ls, lo ~- 

Proof Existence. Under our standing hypotheses, (4.3)-(4.4) determine a unique 
process {Xt, te[0,  1]}. From (3.1), we can rewrite (4.3) as: 

x , =  ~(t, O) Xo+~,  i ~2 ~ oars. 
0 

It then follows from (3.1) and Theorem 3.7 that {Xt} satisfies (4.1). (4.2) follows 
from (4.4). Clearly, {X~} is a continuous process. It remains to show that 
XOI,S, lo ~. From (4.3)-(4.4) we infer that: 

( , 1 ) 
Xt=[Fo ~(0, t)+F1 q~(1, 03 -1 f + F  o S q~(O, s)odV~--F~ ~ q~(1, s)odV~ . 

0 t 

It then follows from standard estimates and Lemma 3.5 that Xt~lD4,2,1oc, and 
each Xt can be localized in 1134, 2 by a sequence {X~, neN},  which can be chosen 
such that Vn~N; X"~(]Ls) d. 

Uniqueness. Let Ye(lLs, loc) d be a solution to (4.1)(4.2). Consider the process 
{~t - t ,  te[0,  1]}. We have: 

i t ~ 7 1 = I  - ~71Ads - -  ~ ~ s l  BiodWs i. 
0 0 



Linear Stochastic Differential Equations 501 

A g a i n ,  ~ - I E ] L P ' I ,  Vp~_~ 1, I < N .  It follows from Theorem 3.7 that: 

i.e.' 

t 

0 

Yt= ~(t, O) Yo+ i q~(t, s)odV~. 
0 

Then {Yt} satisfies (4.3). But (4.4) follows from (4.2)+(4.3), and {Yt} satisfies 
(4.3) + (4.4). It follows that Y and X are indistinguishable. [] 

Remark 4.3. Let us see by a simple example that we cannot expect in general  
that the coordinates of Xo (as well as those of X,, te[0,  13) have any moment. 

Choosed=2, k = l , a = b = O , A = O , B = ( ~  lo ) ,F=( ;~ ) ,G=(~) , f=(O1) ; i . e . ,  
we consider the system: 

dXl=XZt odW t 

=0 

=0, x l = l .  

This system has a unique solution: X~=(W1)-IWt, X z = ( w 0  -1. Clearly, 
E[X21=+~,Vt~[O,  1]. [] 

One can easily check the: 

Proposition 4.4. I f  we assume, in addition to (H.1), (H.2), (H.3) and the hypothesis 
of Theorem4.2, that a j, b~O[,]olc and fJ6lDpd, loo; V p > l ,  l~]N, l <j<_<_d, l <=i<=k, 
the solution {Xt} to (4.1), (4.2) satisfies: 

p,~ p__> X~RAlo c V 1, l~N. [] 

Remark 4.5. Let us explain why our approach is not applicable to the It6-Skoro- 
hod version of (4.1). For simplicity, we consider here the case a = bl . . . .  = bk = O. 
Let { ~, t ~ [0, 1] } be the d x d matrix valued process, solution of: 

t t 

~ = I +  ~ A ~ d s +  S Bi ~dl/V~' (4.5) 
0 0 

and, Xo being a somewhat regular d-dimensional random vector, define X, 
= ~ Xo. We then deduce from (3.3) (the stochastic integrals below are Skorohod 
integrals): 

t t t 

X , = X o +  y A X s d s +  S BI ~(D~Xo) ds+ ~ BiXsdW~ i 
0 0 0 
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which can be rewritten as: 

t t t 

X t =  Xo + f (A--�89 Z Bz) X ,  ds + �89 I B,(VI X)s ds + I Bi XsdVV~'" 
0 i 0 0 

It does not seem possible to modify (4.5), such that the last equation coincides 
with the I t6-Skorohod version of(4.1). []  

We want now to give a necessary and sufficient condition, in terms of the 
matrices A, B1 . . . . .  Bk, F0, F1, for Fo+FI ~(1,0)  to be a.s. invertible. Let us 
first, as a preparation, consider two extreme cases. 

Suppose first that the ideal generated by B~, B 2 . . . . .  Bk, in the Lie algebra 
of matrices generated by A1 B~ . . . .  , Bk, has rank d 2. Then the law of 4~(1, 0) 
possesses a density with respect to Legesgue measure on G l(d, IR), which can 
be identified with an open subset o f N  d2. On the other hand, the mapping: 

M --* II(M) = det(F 0 + F 1 M) 

from G l(d, ~ )  into IR is analytic. Therefore, provided / /  is nonzero at some 
point M e G  l(d; N), the set of zeros of H has Lebesgue measure zero, and: 

P(Fo +F1 ~(1, 0) is invertible)= 1. 

It is not hard to see that the condition (2.3) is equivalent to the existence of 
an MeGl(d ;  ~ )  s.t. Fo+F~M is invertible. Therefore, in the hypoelliptic case, 
(2.3) is a necessary and sufficient condition for existence and uniqueness to 
(4.1)-(4.2). 

Let us now consider the case where B~ . . . . .  Bk=O. Then existence and 
uniqueness is equivalent to the fact that Fo + 171 e a be invertible. The condition 
is stronger than (2.3). 

We want now to treat the general case. To this end, it is useful to study 
first the manifold on which ~t=~( t ,  0) evolves. Let ~r denote the Lie algebra 
of matrices generated by A, B~, ..., Bk, 3- the ideal in fr generated by BI . . . .  , Bk. 
Let G (resp. Go) denote the connected component  containing the identity of 
the matrix Lie group generated by fr (resp. ~-'). 

Since for any t > 0, e-tA Bj e ta ~ , ,  the equation 

d tpt  = e - t A B  i e TM I11 t o d W t  i 

0 o = I  

may be considered as a stochastic differential equation on Go. Since e tA Ot solves 
(2.4), # t =  e TM Or, and hence we can assume that: 

~/'tee ta Go, t > 0 ;  a.s. 

For  t > 0, let vt denote the induced (from N d • d) volume measure on e tA Go. 

Proposition 4.6. For every t>0 ,  the law of ~t on e tA G o admits a C ~ density 
with respect to vv 
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Proof Consider: 
Go ---- {( etA M, t); t 6 ~ ,  M ~Go} c G x ]R. 

The following is a composition law in Go: 

Indeed, 
(e tA M, t) [] (e ~A N, s) = (e tA M e sA N, t + s). 

e ta M e sAN = e (t+s)A e - s A M  e sA N, 

and e-~AMeSANeGo,  whenever M, NeGo,  since, ~- being an ideal of fr Go 
is a normal subgroup of G, see Helgason [-7, p. 128 Chap. II, w 5]. 

If we define the vector fields on G x IR: 

ZA(N, t )=(AN,  O) 

ZBi(N, t)=(B~N, O) 1 < i N k  

Zo(N, t)=(O, 1), 

we have that Z A + Z  o, Z , ,  . . . . .  ZB~ can be restricted to vector fields on Go. 
Let us define the operator: 

0 k 
~ + L = � 8 9  

1 

For t>0 ,  let #t denote the law of ~t. {/At} solves the Fokker-Planck equation: 

g t~61 ,  as t$0. 

Let A denote the Lie algebra of vector fields over Go generated by Z A + Z o, 
Zm, ..., Z ~ .  It is easily seen that 

rank A (e tA M, t) = dim Go 

V t > 0, M e  Go. The result then follows from H6rmander's hypo-ellipticity theo- 
rem. [] 

Let us define: 

c~ = { M e  G l(d; N,); II  (M)= 0}. 

We have the following dichotomy: 

Corollary 4.7. Either e A Go ccg, and 

e ( u ( ~ t )  = O) = 1 
or else 

P(ff/(~l) #0)  =0.  
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Proo f  H ( M )  is an analytic function on the analytic manifold e A Go. Therefore, 
either e a G O ~ c~, or else ~ n e A G O is a subvariety of lower dimension in e a G 0. 
Since P ( H ( ~ 0 = 0 ) = # I  (Cgne A Go) , the result follows from Proposit ion 4.6. []  

F rom Corollary 4.7, H ( ~ I ) +  0 a.s. if and only if the following holds: 

there exists M e  Go s.t. H(e  A M)+-O. (4.6) 

Let E~ . . . . .  E,, be a basis of J .  F rom the analyticity o f / / ,  the following is 
equivalent to (4.6): 

There exists a multi-index e = (ca . . . . .  c~,,) s.t.: 

t? e~ ~ t? e~ ~ Fl (e A e ~ '  :#0. (4.7) 
" ' "  g l :  . l = ~ $ 2 0  

It  remains to make  the computa t ion  of the derivatives explicit, and show that 
one needs to check only a finite number  of derivatives. It  is convenient to 
use the wedge product  notation. Define ~ = F I e A. 

Let V denote the space of d x 2 d real matrices. A typical element of V will 
be denoted [M, N],  where M and N denote d x d matrices. We introduce the 
following d-linear form on V: 

v([-N1, M1] . . . . .  [Nd, Md]) =(Fo N1 + f f l  M , )  1 ix . . . /x  (Fo Na+F,  Md) d 

where Qi denotes the i-th column of the d x d matrix Q. In other words, ve  V | 
Let E be a d x d matrix. We define E v e V  | as: 

E ~ ( [ N I ,  M 1 ]  . . . . .  [Nd, M d ] )  

d 

= 2 ( F o N I + f f l M 1 ) I A . . . A ( F o N i _ I + f f l M i _ I ) i - I A ( f f l M i E )  i 
i=1 

^ (FoN+ 1 +F~ Mi+l) ~§ ^ . . .  ^ (Fo N + F1 M J  

/~ can be extended as a linear operator  on V | 
We can now prove the: 

Theorem 4.8. The three following conditions are equivalent: 
(i) /-/(~1):t:0 a.s. 

(ii) 3 M s e  A Go s.t. H ( M ) ~ O  
(iii) 3 a multiindex e = ( e l ,  ..., C~m), with c~i <=2 a d 2 d -  1, 1 <_ i<=m, such that: 

ff.~., ... ~ i  v([I, I] . . . .  , [I, I]):t:0. 

Proo f  From the formula: 

a (~) e.m~m) ae] ~ ~ , ,  H (  e~E~ ... 

^ ~  El '  v([I, I], [I, I]), ~ E  m . . . . . .  
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we see that the theorem is the consequence of the above discussion, except 
that it suffices to check condition (iii) for ~'s with a~<dim(V|  But this 
is a consequence of the Cayley-Hamilton theorem, which tells us that, for ~ 
> dim V | is a linear combination of lower powers of/~i. [] 

Note that checking condition (iii) amounts to computing a finite number 
of determinants which are expressible in terms of A, Bt . . . . .  Bk, Fo and Ft. 
Nevertheless, the condition can be used in practice only with small d's. 

w 5. Existence of Probability Densities 

In this section we consider the question of when solutions Xt to (2.1)-(2.2) 
admit probability densities. We first calculate the Malliavin covariance matrix 
of Xt and use this to give a criterion for existence of densities. Secondly, we 
show that under more restrictive assumptions, it is possible to compute the 
distribution of X t fairly explicitly using the co-area formula. This is then used 
to considerably sharpen the criterion for existence of densities. 

Throughout this section, Xt solves 

dXt=[a+  A X J  dt +[b~+ BiXt] odWt' (5.1) 

F o X o + F  t X t = f  (5.2) 

for constant a, bl . . . . .  bk, and f. We assume always that Fo+F 1 q~(1, 0) is a.s. 
invertible, so that existence and uniqueness of solutions is guaranteed. We shall 
use the following notations: 

i) M(t)=F o ~(0, t ) + F  1 ~(1, t), 
k 

ii) Q(x)= ~ (Sjx +bj)(Sjx +bj) T, xelR a, 
j = l  

and 
iii) J~(x)=a+ Ax, Bi(x)=bi+ Bix; x E ~  a. 

Notice that M(t) is a.s. invertible if Fo+F 1 ~(1, 0) is. We shall think of A(x) 
and Bi(x) as defining vector fields on NJ. Thus, we associate to .4(x) the vector 

field ~(a + A x)i , and, if [.4,/3i] denotes the Lie bracket of the corresponding 
1 

vector fields, [.4, Bi] (x) = [Bi A - A BJ x + B i a-- A b~. Finally, we let ~ = Lie alge- 
bra generated by the vector fields A,/3~ . . . . .  /~k, and we let ~ denote the ideal 
in ~ generated by/31, ---,/3k. 

5.1 The Malliavin Covariance Matrix and Densities 

If F = ( F  1 . . . .  ,/7,) and F/EID2,1,1o c for l<i<_n, we let 

l l ((DF, DF>>= Z D~FiDsF~ds 
/ = 1  J l < i , J  <n 

(5.3) 
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((DF, DF)) is called the Malliavin covariance matrix of F. A result of Bouleau 
and Hirsch [3] implies that if FEDa ,  1,lot and ((DF, DF))> 0 a.s., then F admits 
a probability density w.r.t. Lebesgue measure. That is, if P~ denotes the probabili- 
ty distribution of F, PF~m where m denotes Lebesgue measure on Re. For  
solutions {Xt} to (5.1)-(5.2) we shall compute ((DXt, DX~)) and give a sufficient 
condition that ((DXt, DXt))> 0 a.s. We do not consider the question of whether 
the density of Xt is a C~-function. The standard criterion of the Malliavin 
calculus for C~ requires that X ~ I D ~  = ~ D~,p and 

f e n  k 
p>=2 

det((DF, DF~-I~LP(P)Vp__>l. But we have seen that Xt is not integrable in 
general, i.e., Xt~E)~,lo ~ only, and hence the standard theory will not directly 
apply. 

Proposition 5.1. Given the above assumptions, 

((OXt, DXt>>=M-l( t ){ i  Fo(JD(O,s) Q(Xs) (])T(O,s)FTds 

1 } 
+ ~ F1 ~(1, s) Q(xA ~r(1, s) Frds  (M-l(t)) w. 

t 

Proof Using the properties of the derivation operator D, including Theorem 3.8, 
we obtain: 

FoD~Xo+F, i - D~ X 1 - 0 ,  (5 .4 )  

and, 

DsX~=DsXo+~ ~ IADsX.du+~ Bj(D~X~)odW2+~(X31~s<~. (5.5) 
0 0 

Now (5.4)-(5.5) is a two-sided system precisely of the form of (4.1)-(4.2) but 
with the additional term /~i(X~)lt,<t r It is evident from the form (4.3)-(4.4) 
of the solution Xt, that D~XtslLs,lo c for fixed s. By a repeat of the existence 
and uniqueness argument of Theorem 4.2 separately on the time intervals [0, s] 
and Is, t], we can conclude that: 

Dis Xt= ~(t, O)[D~ X o + ~(0, s) Bi(Xs) l{s<t}]. 
In particular 

D~ X o = (b(O, t) D~ Xt--  ~b(O, s) B,(Xs) l{~<t} 
and similarly 

D / X 1 = ~(1, t) Dis + ~(1, s) Bi(Xs) l{s_>t}. 

Then, substituting these into (5.4) and solving for D~ Xt gives: 

Di~Xt=M-l(t)[Fo q3(O, s) l{0_<s<t}-F 1 ~(1, s) l{t__<~__<l} ]/~i(Xs). 

The proposition follows immediately from this and the definition (5.3) of 
((DX,,Ox,)). [] 
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In the spirit of the Malliavin-Stroock-Bismut approach to existence of densi- 
ties for solutions to stochastic d.c.'s, we shall establish a Lie algebraic sufficient 
condition that ( ( D X ,  DX,) )>0  a.s. Let Go be defined as in Sect. 4 and define 
the subset BC c P, d x lR d 

BC={(Xo, Xl)]Fo N o + E l  x I = f }  

B C contains the set of all possible initial and final values of the X t process. 

Theorem 5.2. I f  

{F o Co(Xo(oo))lCoe~}-t-{Fa C1(X1(r  d a.s., (5.9) 

then ((D Xt, D Xt)) > 0 a.s. for any 0 < t < 1 and (see Bouleau-Hirsch [3]) Xt  admits 
a density for 0 < t < 1. In particular, (5.9) is satisfied if 

{Fo Co(xo)lCe~}+{F~ C~(Xl ) ICe~}=P,  d for every (Xo, x1)cBC. [] (5.10) 

Condition (5.10) is really much too strong. It is obvious from (5.9) that 
we could replace BC in (5.10) by 

BC'= 0 
r 

which, in general, is smaller than BC. However BC' has no simple analytic 
characterization. In the case that a=b~ . . . . .  bk=0 a useful reduction of BC 
is possible, because Xo(cO) and X~(m) are constrained by the conditions that 
Xa = ~(1, 0) X o and that F o + ~(1, 0) Fa be invertible. 

Corollary 5.3. Let a=bl  = . . .  = b k = O .  Let BC" be the subset of (Xo, X l ) ~  d x]Rd 
such that F o xo + F 1 xl  = f  and there exists a T~e a Go such that Fo + F 1T is invert- 
ible and xl  = Txo (see Sect. 4 for the definition of Go.) Then 

{foCo(xo)lCo~}+(f~ Ca(xOIC~.~}=le ~ for every (Xo, XO~BC" (5.11) 

implies that ((D Xt, D Xt)) >0 a.s. 

To illustrate, we specialize to some particular cases, the first of which is 
well-known. 

Corollary 5.4 (Adapted case). I f  F1 = O, then 

A (F o if)..= Span { C (F o l f )  l C ~ ~} = IR d 

implies that ((D Xt, D Xt)) > 0 a.s. 

Proof Use 5.10, noting that F o is invertib!e, and BC = { Fo i f }  x p a. [] 
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As a second example, consider the two point boundary value problem defined 
by the boundary conditions F~ X 0 =fo and /~  X~ =f~, where, as usual, rank F; = l 
and rank F~' = d -  I. In this case 

where 

and 

<<OXt, OXt>>~m-l(t)[01 gO2][M-l(t)] T 

t 

L 1 = ~ Fs +(0, s) Q(Xs) q~T(0, s)(F())Tds 
0 

(5.12) 

t 

L2 =  S F~ q~(1, s) Q(X~) ~T(1, s)(F~)Tds. 
0 

We obtain 

Corollary 5.5. The following is a sufficient condition that ((DX1, DX1}}>0 a.s. 
V te(0, 1)for the two-point boundary value problem: for every (Xo, xl)eBC 

{F;C(xo)ICe~}=IR' and {V~ C(x,)lCe~}=iR ~-z. [] 

Proof of Theorem 5.2. We adapt an argument due to Bismut [2]. From Proposi- 
tion 5.1, it suffices to show that for 0 < t < l  the following random matrix is 
a.s. positive definite: 

t 1 

R(t )=  ~ Fo q~(O, s) Q(X~) q~r(O, s) FoT ds + I F1 (/)(1, s) O(Xs) q~r(1, s) Fr ds. 
0 t 

We define some random vector subspaces of IRa: 

q/(t)= Span{F o q~(0, s)/~i(Xs); O<s<=t, l< i<k}  

~(0+)  = 0 q/(t) 
t > O  

V ( t ) =  Span{F 1 O(1, s)/~i(Xs); t<=s<= 1, 1 <=i<k} 

= 

t < l  

Note that q/(t) [resp. ~//~(t)] is an increasing (resp. decreasing] function of t, 
so that q/(0 +) and ~ ( 1 - )  are well defined. It clearly suffices to show that for 
0 < t < 1, ~ (t)+ ~ (t)= IRe a.s., which is implied by the stronger condition: 

~ # ( 0 + ) + ~ ( 1 - ) = I R  d a.s. 

Let us admit for a moment the: 

Lemma $.6. There exists a measurable random vector q(o)) s.t. a.s.: 
i) q(~o)e(q/(O+)(a~)+ ~(1-)((9))  • 

ii) Iq((o)]=l/fq/(O+)(cg)+~/-(1-)(@4:lR d. []  



Linear Stochastic Differential Equations 509 

It clearly suffices to show that for any such q(co), 

P (q (co) = O) = 1. 

To this end, we define ~ to be the set of Cef f  such that, a.s." 
i) 3 to(O))>0 such that F o 4~(0, s) C(Xs)(~o)lq(a)) for s<to(co) and 

ii) 3 tl(fO)< 1 such that F1 ~(1, s) C(X~)(co)lq(e9) for tl(e))<_s< 1. 
For every co there is a to(CO)>0 such that ~// (0 + ) (o)) = q/ (to (CO)) (co). Similarly, 
for every co there is a tx(e))<l  such that "//-(1-)(o))=#/~(tx(e)))(co). Therefore, 
since q ~ [ q / ( 0 + ) + ~ ( 1 - ) ]  • a.s., /~1, . - - , / 3 k ~ .  To complete the proof, it then 
remains to establish that 3~ is an ideal in f~, and for this it is enough to show 
that if C~3~,, then [.4, C ] e ~  and [/3i, C ] 6 ~  for l < i < k .  To this end the 
following two lemmas are crucial. 

Lemma 5.7. Let C(x) be a vector field represented by C ( x ) = C x  +c. Note that 
all vector fields in c~ are of this type. Then 

q~(0, s) C(Xs) = C(Xo) + f ~(0, r)[A, C] (Xr) dr+ f ~(0, r) [/3i, C] (Xr)o d W} (5.13) 
0 0 

and 
1 1 

�9 (1, s) C(Xs)=C(X 0 -  S q~(1, r)[A, C](X~)dr -~  ~b(1, r)[-/'~, C](Xr)odl~. (5.14) 
s $ 

Proof The second formula follows from the first using the identity q~(1, s) 
= ~(1, 0) ~(0, s). The first formula is a consequence of the chain rule for Strato- 
novich integrals and d �9 (0, s) = - ~b (0, s) A d s - q~ (0, s) B i o d VV~ i. [] 

For  a stochastic process {Zt}, let 

n - 1  

(2 V,(Z)= lim in prob. ~, (ZtT+, -Zt7) 2 
n--* o9 j = O  

[-where {t]} is a sequence of partitions of [-0, t] with max(t~+ 1--t~)-.0~ if this 
j < n  

limit exists and does not depend on the particular sequence of partitions. 

Lemma 5.8. Let q be a random vector in IRa. Then 

QVt (F  o ~b(O, t) C(Xt), q>= i ~ (Fo ~(0, S) ['/"~i, C](Xs)  , q>2ds 
0 i = 1  

and 
1 k 

[QV1-QVt-]( (F 1 ~b(1, t) (~(Xt) , q ) ) =  S ~ (F1 q~(1, s)[Bi, r q)2ds .  
t i = 1  
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Proof Write 

where 

Then 

Z~= (F  o cI)(O, s) 5(X~), q} =qt zl(s) 

z,(s)= [-Fo ~(0, s) 5(X3]~. 

n - 1  d n - 1  

(Ztj+,--Ztj) 2 = ~ qz qm ~, (zl(tj+ O--zz(tj))(zm(tj+ O--z~(tj)). 
j = O  / , m = l  j = O  

However, from Nualart and Pardoux [16], Theorem 5.4, 

n - - 1  

(zl(tj+ 1)--zl(tj))(Zm(t2+ 1)-- zm(tj)) 
j=O 

k t 

~, ~ [Fo ~ (0, s)[/~i, C] (X~)]z [fo q~ (0, s)[/~,, C] (X~)] m d s 
i = l  0 

because q~(0, s) C(Xs) satisfies (5.13). The proof for (F  1 ~(1, t) C(Xt), q) is simi- 
lar. [] 

Now suppose that C ~  and let to(CO)>0, t~ ((o)< 1 be such that 

(F  o q~(0, s) C(X~), q } = 0  for 0__S<to(a~), 

<F1 ~(1, s) C(X~), q } = 0  for t l (o))<s< 1. 

Then from Lemmas 5.7 and 5.8, 

(Fo ~(0, s)[/3 i, C] (Xs), q } = 0  

( F  1 ~(1, s)[/3i, C] (X~), q } = 0  

for 0<S<to(CO) a.s., l<_i-<k 

for tt(cg)<s=<l a.s., l<_i<_k. 

Thus [/~i, C] e J~ for 1_<iN k. But then, by definition of the Skorohod integral 
the stochastic integrals in the expression for (Fo q)(O,t)C(Xt),q) (resp. 
(F1 (1, t) C(X,), q}) is also identically zero a.s. for 0 =< t < to(~O) (resp. t~ (co) < t =< 1). 
It follows that 

(F  0 ~(0, s)[.4, C](X~), q } = 0  for 0___<S<to((9) a.s. 

(F  1 q~(1, s)[A,C](X~),q)=O for tl(~O)<s=<l a.s. 

Hence [A, C] c J~ also. This completes the proof that ~ is an ideal in ~. 

Proof of Lemma 5.6. For notational convenience, we consider the case a=bl  
. . . . .  b k = 0. The general case has a similar proofi We define 

_U(0+)= ~ Span{Fo ~(0, s) S i q~(s, 0)]0=<s=<t, l <=i<=k} 
t > 0  

and 
_V(1-)= A Span{F1 ~(1, s) S, q~(s, 1)lt<=s<= 1, l <=i-<_k}. 

l > t  
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By the 0-1 law for Brownian motion, _U(0+) and V(1 - )  are each a.s. equal 
to some fixed subspace. For  x e R  d, let U_(O+)(x)={CxlCcU(O+)} and 
_V(1-)(x)={CxlCE_V(1-)}.  Then, it is clear that ~r and 
~/ / (1- )=_V(1-) (X0.  We shall show that there is a Borel measurable q: 
BC ~ IRa satisfying 

i) 0(Xo, x l )Z  U(0+)(Xo)+ V(1 - ) (xl ) ,  V(xo, x l )eBC 
ii) [~(Xo, xl)f = 1 if U(0+)(xo) + V(1--)(x~).t=N a. (5.15) 

q(co)=~(Xo(cO), X1 (co)) will then be a measurable random vector satisfying the 
requirements of Lemma 5.6. 

To prove (5.15) we use 

(5.16) Let (d ~ B(do)) be a metric space equipped with its Borel o--field, let S 
be a complete, separable metric space and x~--~F~ a mapping from g to closed 
subsets of S. If for any sequence {x,, z,} cdo x S such that z, eF~. V n, lim x , = x  

implies that {z,} has an accumulation point in F~, then there is a measurable 
f :  do--* S such that f(x)eF~ for every x. (See Ethier and Kurtz [6], Appendix, 
Sect. 10.) 

Let g={(Xo, x l )eBC I U(O+)(Xo)+_V(1-)(xO+lRa}. This is a closed subset of 
BC with respect to the relative topology. We take S = N  d and 

I'~o,~ = {YIY • U(0 +)(Xo)+ V(1--)(x0, ]y] = 1}. 

Let (x~, x])--. (Xo, xa) in do and let y, EF~g,~, for every n. Since {y,} ~ S d- ~, where 
S e-1 denotes the unit sphere, {y,} has an accumulation point yeS  ~-~. But for 
every Ce_U(0 +), 

(y, C x o ) =  l im(y ,  k, Cx~k)=O where l imy,~=y.  
k ~ o o  k~oo  

Similarly (y, C x l ) = O  for every C~V(1 - ) .  Thus y •  _U(0+)+_V(1-), and so 
yEF~o~l. The existence of ~ satisfying (5.15) follows from (5.16) if ~(x) is defined 
to be 0 on B C \ &  [] 

(5.17) Example 

d X, = B, Xto d Wt i, F; X o =fo, F; Xo =f l  

where 

i) ~ = L i e  algebra {B1 . . . . .  Bk} =IR a• 
ii) fo4:O,f~+O. 

As usual F~ e ~  z • a, F; ~N. (d ~) • a and rank F~ = I, rank F~ = d -  I. Then 

{ F ~ C o x o I C o ~ . ~ } + { F ; C l x l I C I ~ } = I R  a for every (Xo, Xl)eBC, 

since F~ xo=fo and F~ xl =f~ imply Xo+0 and xl +0.  [] 
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5.2 The Co-area Formula and Densities 

The analytic properties of the manifolds e tA G O in which 4~(t, 0) takes values 
and of the maps which determine Xt as a function of 4~(0, t) and ~(1, t) suggest 
that better sufficient conditions than (5.10) or (5.11) are available. In particular, 
it should be possible to show whether X~ admits a density by testing 
{Fo Co Xo I C o ~ }  + {F~ C~ x~ [C~ e~} at just one point (Xo, x~) in certain circum- 
stances. We shall obtain a condition of this sort by using the co-area formula 
to represent explicitly the probability distribution of Xt  and, in fact, our condi- 
tion will turn out to be necessary for the existence of densities as well. Our 
theorem shall be developed under the assumption 

a=bl  . . . .  =bk=0,  (A.1) 

and we assume that this holds for the remainder of this subsection. 
The co-area formula is a generalized change of variables formula. We shall 

state it for the special case of analytic maps on analytic manifolds, which is 
the case we need; our statement is a corollary of Theorem 3.2.22, Corollary 3.2.32 
and Remark 3.2.33 in Federer [-7]. Let N ~ N  k be a smooth manifold of dimen- 
sion r, and let q~: N - , N  m be a Cl-function. We need to define a Jacobian 
of (p at points peN.  For peN,  we shall think of TpN, the tangent space to 
N at p, as a subspace of p k with the inner product ( . ,  ") induced from Nk. 
Let # = d i m [ i m a g e  ~(p(p)] where ~(# denotes the differential of q), and let 
el, ..., e, be an orthonormal basis of image t?~o(p) using the Euclidean inner 
product from ~m. We define 

Ju q)(P)= (det [,@ ~o(p)* ei, ~ q~(p)* ej>l =<_i,j~u]) t/2 

where 0 (p* denotes the adjoint of ~ (p. This  definition is independent of the 
choice of basis; it has a basis-free definition in terms of exterior algebra. Let 
o~g" denote Hausdorff measure of dimension n; for the definition, again see 
Federer [7]. Note that if M c ]R m is a manifold of dimension n, ~ "  on M 
coincides with the canonical surface measure on M. 

Proposition 5.9. Let N c lR k be a connected, analytic, r-dimensional manifold and 
let q~: N ~ IR" be an analytic map. Set # = sup {dim [image ~ q~ (p)] [p e N}. Then 

i) S={plrank0q~(p)=#} is an open set of N containing ~ - a l m o s t  all of 
N', and, 

ii) I f  g: N ~ N. is ~- integrable  

S g(p)dgCt~ ~ [ ~ g(u)[Juq~(u)]-a d2ggr-U(u)]d~U(z). [] (5.18) 
N Ill,,, ~o- l (z )caS 

(5.18) is called the co-area formula. It is usually stated 

g(P) Ju (P(P) d~r (P)  = ~ [- ~ g(u) d~f'r-U(u)] d~U(z). (5.19) 
N R"~ ~o-l(z) 



Linear Stochastic Differential Equations 513 

However, J, ~o(p)>0 as long as dim image 3~o(p)=# and so by Proposition 5.9 
i), Ju ~0 (p) > 0 Yf'-almost everywhere. Therefore, for any e > 0, 

g(p) ltj.~o(p)>~] d~t~ (p) 
N 

= f [ I g(u) l{j,~o(,)>~}[-Ju~o(u)] -~ dYf~-U(u)] dJ-fU(z), 
R ~  ~o-  1 (z)  

and we take e$0 to recover (5.18). Note that, for convenience, we integrate 
with respect to Yt ~ over all of ~_m in (5.18), but really the integrand can be 
non-zero only on image q~(z), which is Yfr-o--finite. Finally, when r = p, y f , - u  
=ygo  should be interpreted as the counting measure, and then (5.18) is the 
usual change of variables formula. 

When tt = m, corresponding to the case in which 0 q~ is full rank, the Jacobian 
takes a simple form. Let us abuse notation and let ~ q)(p) denote the matrix 
representation of the differential w.r. to fixed orthonormal bases of TpN and 
R" .  Then, it turns out that 

J~ ~o (p) = / d e t  # q) (p) [0 q) (p)] r. (5.20) 

(5.20) brings out an interesting relationship between the co-area formula 
and the Malliavin calculus. Since x/f m on N "  is Lebesgue measure, it is clear 
from (5.19) that if 

N 

then v is absolutely continuous w.r.t. Lebesgue measure. Thus, if Jmq~(p)>0 
Ygr-a.e. or equivalently, if ~ (p (p) [~ (p (p)] r > 0 Ygr-a.e., then ygr o ~0- 1 is absolutely 
continuous w.r.t. Lebesgue measure also 

Jt~'o(p-l(U)= ~ l {~o(p)~ vi d ~t'~* (P) �9 
N 

The Malliavin covariance matrix ((D 0, D 0)) for 0: f2 --* Ill" is precisely a gener- 
alization of ~ ~o(p)[O q~(p)]r. The fact that the a.s. positivity of ((00,  D0}} is 
related to existence of densities generalizes the fact that J,, (p(p)>0 Yfr-a.e. 
implies jC~r o f -  x ~ Lebesgue measure. There is more than analogy here. Bouleau 
and Hirsch [-3] use the co-area formula to deduce existence of densities from 
a.s. positivity of ((D 0, D 0}}. 

We shall employ the co-area formula to compute the density of Xt  w.r.t. 
an appropriate Hausdorff measure, and also to compute conditional densities 
of ~(0, t) and ~(1, t) given Xt  for use in Sect. 6. Fix re(0, 1) and let Nt=Go e -tA 
x e A G O e-~A. Assume dim g0 = r, so that dim Nt = 2 r. (~(0, t), ~(1, t)) takes values 

in N, and, moreover, by the analysis of Proposition 4.6, ~(0, t) admits a probabil- 
ity density qO w.r.t. ~4 ~r on Go e -tA,  and ~(1, t) admits a probability density 
qx w.r.t. ~ r  on e A G o e - t a ;  q~ is the density w.r.t, jgf2r on Nt for 
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(q~(0, t), ~(1, t)). The function ~o in the co-area formula will be replaced by p: 
Nt --* ~ ,  where 

p(Cr, v)-- [Fo Cr+F~ V]-~f 

Then X~--= p(~(0, t), ~(1, t)). p is defined everywhere on N~ except on the subvari- 
ety S~ V)eN, ldet[FoU+F,V]=O}. S o is a subset of zero WZ~-measure 
because of our standing assumption that Fo �9 (0, t )+ F1 ~(1, t) be a.s. invertible. 

We want to apply the co-area formula to p on N~. However, p is analytic 
not on N~, as would be required in Proposition 5.9 but on N - S  ~ N - S  ~ is 
a union of connected open analytic manifolds, and we apply Proposition 5.9 
on each component and add up. For this it is useful to know that the constant 
# does not change from component to component. 

Lemma 5.10. Let 
# = s u p  {dim [image ~p(U, V)] I(U, V)ENt\S~ 

Then dim [image Op (U, V)] = #, ~f2*-almost everywhere on Nt-S  ~ 

Proof We note that T(v" v)Nt= {(Co U, C, V) lCo, C, s~} where ~ is defined in 
Sect. 4. Also, if {Co U, C, v)er~v,v)N,, 

ep(V, v)(Co v, c, v) 

= - d e t  (F o U+F 1 V)-' IF o U+F, V]-'  IF o C O U+F, C, V] [Fo U+F1 V] f 

where Fo U + F1 V= det (Fo U + F1 V) [Fo U + F~ V] - 1 can be extended as an ev- 
erywhere defined analytic function. Now let E, ,  ..., Er be a basis of 2. Then 
{E, U, 0) . . . .  , (Er U, 0), (0, E, V) . . . .  , (0, Er V)} is a basis of T(v ' v) N, depending 
analytically on (U, V). Combining these facts, we find that for (U, V)eN\S ~ 

image Op(U, V)= span {(F o U + F 1V)- ' FoE i U[Fo U + F, V] f, 

(Fo U + F~ V)-'  F~ E i g[Fo U + F, V] f l  1 <=i,j<=r}. 

Let {A~(U, V)} be the collection o f #  x # minors of the d x 2r matrix 

[FOE, U[Fo U + F1 V] f i... ! F1Er VFo U + F~ V] f] .  

Then dim image Op(U, V)<#  iff ~A2(U, V)=0. But ~A2(U, V) is analytic on 
i i 

Nt. By assumption ~A2(U, V)>0 at some point of Nt. Hence ~A~(U, V)=0 
i i 

only on a subvariety of Nt of lower dimension than 2 r. [] 

By applying Proposition 5.9 we now obtain the following result; statements 
(ii) and (iii) are noted for later use. 

Proposition 5.11. Let # = s u p  {dim [image 9p(U, V)] I(U, V)~Nt\S ~ and let St 
= S ~ u {(U, V) e N I J, P (U, V) = 0}. Then 
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i) Xt admits a probability density with respect to W" on Re given by 

p(z, t)= ~ [J,p(U, V)]-l q~t(U)q2(V)dyf2"-u(U, V) 
p - 1 ( z ) \ S t  

ii) If g is a bounded, measurable function on e -~A Go and 

~g(z, t)=p-l(z, t) ~ g(U)(J~p)-l(U, V)q~(U)q2(V)d~2~-'(U, v) 
p - ~ ( z ) \ S t  

where this is defined, then q)g(Xt, t)= E [g(q~(0, t)) [ Xt]. 
iii) If h is a bounded, measurable function on e A Go e -zA and 

~h(Z, t)=p-i(z, t) ~ h(V)(J,p)-l(U, V) q)(U)q2(V)dW2r-'(U, V) 
p - ~ ( z ) \ S t  

then ~h(Xt, t) = E [h(~(1, t))]Xz]. 

Proof. Let 8, h, k be bounded measurable functions. Then using the co-area 
formula and Lemma 5.10, we deduce: 

E [k(Xt)g(~(0, t))h(~(1, t))] 

= ~ k(p(U, V)) g(U) h(V) ql(U) q2(V) dj,~2r(U, V) 
N 

= ~ k(z){ ~ (J,p)-l(U, V)g(U)h(V)ql(U)q2(V)d~f2r-u(U, V)}d•"(z). 
R d  p - 1 ( z ) k S t  

(5.21) 

For (i) set g - h - 1, for (ii) set h -= 1, and for (iii) set g = 1. [] 

Recall the definition of BC" from Corollary 5.3. Corollary 5.3 can now be 
greatly improved. 

Proposition 5.12. Let (A.1) hold. Then X, admits a probability density with respect 
to Lebesgue measure iff 3(Xo, Xl)eBC" such that 

{Fo Co Xo [ Coea} + {F1 C1 xl 1C1 e~} =~,J. (5.22) 

Proof. Assume that (5.22) holds. We shall check that 

dim image Qp(u, v)[v, Tu = d 

for any U eG o e -tA. Since j fd=Lebesgue  measure in ]R d this will imply that 
Xt admits a density by Proposition 5.11(i). Let (Xo, Txo)eBC" satisfy (5.22) and 
let V= TU. Then U - 1 Xo = U-  1 [-Fo + F1 T] - i f =  IF ~ U + F1 V] - if. Then, using 
the characterization of ~p(U, V) given in the proof of Lemma 5.10, 

image ~ p(U, TU) 

={(Fo U+F1 V) -~ FoCo U(Fo U+Fx V)-~f, 

(Fo U + F~ V) -1F~ C, V(Fo U + FI V)- ~ f l  Co, C~ e~} 

={(F o U+F, V)-aFoCoxol Coe~} + {(F o U+F1V)-IF~ C, Txo[Cle~} 
= R d.  
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Conversely, if X, admits a density then # = d, since otherwise Proposition 5.11 
implies that Xt admits a density with respect to j f u  for # < d and so the Hausdorff 
dimension of image p = # < d .  Thus there is a (U, V)~N with F o U+F,  Vinvert- 
ible and dim image ap(U, V)=d. (Xo, xl)=(U[Fo U+F1 V]-  i f  V[Fo 
+ F  1 V ] - I f ) ~ B C "  then satisfies (5.22). [] 

Finally, we wish to demonstrate how the co-area methodology may also 
be used to derive expressions for the joint densities of {Xt}. We again as- 
sume (A.1) holds and we consider finding the joint density of (X~, X,). On 
M =  Go e - s a  • e A Go e -At • e At • Go e - ns, define R(U, V, T): M ~p ,2a  by 

Then 
- - I J  [OJ" 

(X' )  =R(q~(O's) 'q~( l ' t ) '~( t ' s ) ) 'x t  

By repeating the analysis of Proposition 5.11 on R, we get 

p(zl, z2, t)= ~ (JuR)-I(U, V, T) q~ V, T) 
R -  1((2'1, ZZ))\S 

for the density of (X s, Xt) with respect to 3gf ~ o n  ]R TM, where # = sup {dim (im- 
ageOR(U, V, T))[(U, V, T)~M},  S={(U, V, T)~M[R(U,  V, T) is undefined or 
J,R(U,  V, T)=0} and 2 qs, t(T) is the density of ~(t, s) on eAtKo e -As w.r.t, to 

w 6. The Markov Property 

6.1 The Markov and Markov Field Properties 

In this subsection, we assume that a, bl, . . . ,  bk and f are deterministic, 
a ~ L 1 (0, 1; Rd), b l . . . . .  bk ~ L 2 (0, 1 ; R  d) and f~]R d. We also assume that (4.1)-(4.2) 
has a unique solution. 

For the process {Xt, tE[0, 1]}, two notions of Markov property can be 
considered. Let us recall their definitions. 

Definition 6.1. The process {Xt, t~[0, 1]} is said to be a Markov process if for 
any t~(0, 1), the a-algebras a(Xs; O<s<t)  and a(Xs; t < s <  1) are conditionally 
independent, given Xt; i.e., the past and future are conditionally independent, 
given the present. [] 

Definition 6.2. The process {Xt, t~[0, 1]} is said to be a Markov field if for 
any 0 < s < t < 1, the a-algebras a(Xr ; s < r < t) and a(X,;  0 < r < s) v a(X,  ; t < r 
< 1) are conditionally independent, given (Xs, Xt); i.e., the process outside (s, t) 
and the process inside (s, t) are conditionally independent, given (Xs, XO. [] 
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The Markov  field proper ty  has been discussed in particular by Jamison [10]. 
He shows that  any M a r k o v  process {Xt} is a Markov  field. But the converse 
needs not be true, as we will see below, except when either X o or X 1 is determinis- 
tic. 

Our solution {Xt, tel-0, 1]} is not going to possess the Markov  proper ty  
in general. Indeed, in the particular case of the periodic boundary  condition 
(2.2"), Xo and X1 are not conditionally independent given Xt. One may  think 
that the Markov  field proper ty  is better suited for our system, since in a sense 
the flow is running from the two endpoints t = 0 and t = 1. Unfortunately,  we 
have not been able to decide whether or not the solution to the system is 
always a Marko v  field. 

Let us first consider three cases where the solution is a Markov  process. 
We will use the following notat ion:  for 0 < s < t < 1, 

Ns=o{w~-w~; s<=r<=t}, ~=No. 

Theorem 6.3. Suppose that one of the following conditions is satisfied: 
(i) F I = 0  

(ii) F o = 0  
(iii) B1 . . . . .  Bk=0,  and I m F o r ~ I m F l = { 0 } .  Then {Xt, t~[0,  1]} is a Mar- 

kov process. 

Proof Under  either (i) or (ii), the result is well known. Let us consider the 
condition (iii). 

We have to show that for 0__< t <  r__< 1, X r is conditionally independent of 
a (X S; 0 __< s =< t), given Xt. 

Since B 1 . . . . .  Bk=O , 4(t, s) is deterministic, and {Xr, tel-0, 1]} is a Gaus-  
sian process. The formula: 

Xt=[Fo4(O, t)+F~ 4(1, t)] -~ f +Fo ~ 4(0, s)odV~-F~ ~ 4(1, s)od 
\ 0 t 

(6.1) 

can be rewritten in the form: 

X t = c  + C ( F  0 ~ t+  F1 17 t) 

where c e N f ,  C is a d x d invertible matrix (of course, both  depend on t), it 
is a o~ measurable Gaussian random vector, qt is a J~l t measurable Gaussian 
random vector. The condition Im F o ca Im F1 = {0} implies that a(Xt) = a(~t, qt), 
where ~t = Fo it, fl t= F1 if. 

Xr = 4(r ,  t )Xt+ ~ 4(r,  s)odV~. 
t 
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Since �9 (r, s)o d V~, q is a ~1' measurable Gaussian random vector, 

r 

t f cl)(r, s)odVs=C 1 Flt--I-Vr 
t 

where vtr is o~[ measurable and independent of f/t, hence independent of ~ v a (Xt). 
t Since 6' is a(X,) measurable, we have written Xr as a function of Xt and vr, 

where vtr is independent of a(Xs ; 0 < s < t). The result follows. [] 

Remark 6.4. As was noted in w 2, the condition Im F o c~ Im F 1 = {0} is equivalent 
to the fact that the boundary condition (4.2) can be rewritten in the form of 
the two-point boundary condition (2.2'). Thus our result is consistent with that 
of Russek [18], who studies gaussian solutions of a different class of stochastic 
boundary value problems. 

The following counterexample shows that the condition Im Fo c~ Im F1 ={0} 
does not imply the Markov property in the non-gaussian case: A=0,  k = l ,  

B=(~ 02),a=b=O, Fo=(~ 
is given by: 

~), F1 =(~ ~), f=( l l ) .  In this case, the s~176 

(eW'(l+e-WO] 
X t = \  _e2Wte-W, ]" 

Note that a(Xo)= a(X,)= a(W1). Since a(W1) is not contained in a(Xt) (indeed, 
a(X,)~a(W, W1-Wt)), clearly Xo and X1 are not conditionally independent, 
given Xt. [] 

Let us recall that for 0 < s < t < 1, 

Xt=~(t ,  s)Xs+ i q~(t, r)odV r. 
s 

This formula motivates the following definitions. To any pair s, t with 0 < s < t 
< 1, we associate the a-algebras" 

~,t=a(q~(t, s), i ~(t, r)odV~) 
s 

(~s , t=G(Xs,  X t )  v ~ , t  

{u,v;s<u<v<t} 

{u,v,u<v;u, ve[O, s lu[ t ,  11} 

In these definitions, i stands for "interior", e for "exterior". 
We have the following kind of extended or weak Markov field property: 
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Theorem 6.4. For any 0 N s < t < 1, 2/f~i t and ~ e t  are conditionally independent, 
given ~, t .  

Proof It is sufficient to show that for any event Heffg~, t 

P ( H / ~  ~, ,) = P (H/~,  t). (6.2) 

Clearly, for s < u < v __< t, ~u, v c ~ and a(Xu, Xv) ~ a(Xs, Xt) v ~s.  Consequently, 
oct~itcN, t v ~  ~. It then suffices, using the monotone class theorem, to show 
(6.2) for any H e ~  ~. F rom (6.1), we conclude that Xs and Xt are ~ . t v ~ v Y t  ~ 
measurable, and therefore it is easily checked that: 

Since ~ , t c ~  ~, it follows easily from the independence between ~ and 
J~sV~l  t that for any H ~  ~, 

P (H/C~,t v , ~  v o-~) = p (HICk, t) 

(6.2) follows, using the following lemma which is an easy consequence of the 
definition of conditional expectation: 

Lemma 6.5. Let ~1 c ffg2 ~ 2/g3 ~ ~4  be sub a-algebras of ~.  For any G e ~,, 

P(Gfigfa)= P ( G / Y f O ~  P(G/~3)= P(G/Jf2). [] 

Using again Lemma 6.5, we immediately deduce from Theorem 6.4 the: 

Corollary 6.6. Suppose that for O<__s < t <  1, ~(t, s) and i ~(t, r)odV~ are a(Xs, Xt) 
S 

measurable. Then {Xt, t e [0, 1]} is a Markov field. [] 

It then follows: 

Corollary 6.7. In each of the following two cases, {Xt, t~[0, 1]} is a Markov 
field: 

(i) (Gaussian case): B 1 . . . . .  B k = 0 
(ii) a=b~ = ... =bk=0 ,  and q~(t, s) is a diagonal matrix, for any s, t~[0, 1] 

(the latter holds in particular if d--  1). []  

Each of the cases (i) or (ii), together with the periodic boundary condition 
(2.2"), provides an example for a Markov field which is not a Markov process. 

Here are two examples of systems with Markov field solutions. 

Example 6.1. If A =0,  a --- 0, k = 1, B is diagonal and invertible, and b is constant, 
then the solution {Xt} is a Markov field, because Corollary 6.7 applies to the 
system which Yt = Xt + B -  a b solves. 
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Example 6.2. Let {Xt, ts [0, 1]} be the two dimensional process which solves 

k 

dXt=AXt dt + ~ BiXtodWt i 
1 

X'o=O x l= l. 

More precisely, assume that this problem is well-posed. Then Xt=(Y)) -~ Yt, 
where {Y, ts[0,  1]} is the solution to the same equation, but with initial values 
Yo x = 0, Yo 2 = 1. Note that Y~ is an adapted process. We wish to show that {X,} 
is a Markov field; that is, for any CsCo(R 2) and O<r<s<t<l ,  we want to 
show 

E [(a (X~)/X,, u s (r, t) c] = E [r  (Xs)/Xr, Xt]. 

Let C=~(s, r) and D = ~ ( t ,  r). We need two facts; i) for any bounded, Borel 
on R 4, E[~(C)/Y, Y~] is a(X,, Xt)-measurable up to sets of measure 0; ii) 

a{X,; us(r, t)c}=a{Y,; us(r, t)c}. i i) is  a simple consequence of the definition 
of {Xt}. To prove i), first note that E[~J(C)/Yr, Yt] =E[E[tp(C)/D][ Y~, Y~] be- 
cause of the independent of Y~ from (C, D). Hence it suffices to prove 
E[p(D)/Y, YJ is a(Xr, Xt) measurable up to zero measure sets. Define H(x, y) 
so that H(x, Ox)=E[p(O)/Dx]. We may assume that H(~x, ay)=H(x, y) for 
any ~=0.  

However, H (Y~, Yt) is a version of E [p (D)/Y, Y~] since, from the independence 
of Y~ and D, 

E [lv,(Y, ) 1u2(Yt ) p(D)] =E[iv, (Y~)E[lv=(Dx) p(D)] Ix=r.] 

=E[lvl(Y~) lv2(Yt)H(Y,, Yt)]. 

Since (Xr, Xt)=(Y()-I(Y,, Y~), H(Y~, Y~)= H(X,,  X~) a.e. thereby proving i). Now 
let #~ be given and set G(w)=E[r YJ. We will show that E[r 
us(r, t) c] = G(X,). By i) it follows that G(X,) is a(Xr, X,)-measurable, and so 
{X~, te [0, 1]} is a Markov field. Thus, to finish, observe from ii) and the Markov 
field property of {Y, te l0 ,  1]} that 

E [cb(X~)/Xu, us(r, ty] = E [#)(CYr/Yd)/Y., us(r, ty] 

=E[(o(CY~/y)/Yu, us(r, t) ~] [y=yr 
=EEr Y,] 
= g [ r  Y,] Y;,= = Y, 

=E[C(Cw)/Y,, Y~] Iw=x,. 

With the notations introduced in the proof of Theorem 6.4, Corollary 6.6 
says that a sufficient condition for {Xt} to be a Markov field is that 
f~,t m a (Xs, Xt), for any 0__< s < t__< 1. We want now to establish a weaker sufficient 
condition. For the sake of completeness, we state a similar sufficient condition 
for the Markov property. 
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Proposition 6.8. (i) I f  for any re(O, 1), f~o,t and f~, 1 are conditionally independent 
given Xt, then {Xt, te l0 ,  1]} is a Markov process. 

(ii) I f  for any 0 <= s< t<= 1, ~o,~ v c~, 1 and a~,t are conditionally independent, 
given (Xs, Xt), then {Xt, t~[0, 1]} is a Markov field. 

Proof We prove only (ii). The proof of (i) is analogous. It suffices to show 
that for any 0 < s < t < l ,  and any pair of events Giea{X, ,ue[s , t ]}  and 
G ~ a { X , ,  u~[O, 1]\(s,  t)}, we have, 

P(Gin GdXs, Xt)= P(GJXs, Xt) P(Ge/X,, Xt). (6.3) 

Since 

o { x . ,  u e [s, t] } = o ( x .  x , )  v ~', ~ { x . ,  u e [0, 1] \ ( s ,  t)} = o ( x .  x , )  v 0% v g l .  

It suffices from the monotone class theorem to show (6.3) for GIE~ s, GeffO~ s v Y ~ .  

Since ~,~ c ~ ,  fr v ~, 1 c  ~ v ~ ,  and ~,~ and ~ v Y~ are independent, one 
obtains, with GiE~ s, G e G ~  s v .-~:, 

P(G~ n Ge/Xs, X,) = E [P(G i c~ G~/~,t v ~o,~ v 4,1)/X~, Xt] 

= E [P(Gi/~, t) P(GJ(~o,~ v ~, 1)/Xs, Xt] 

(6.3) then follows, if ~o ,sV~, l  and ~, t  are conditionally independent, given 
( X ,  Z,). [] 

We will see below that the sufficient condition of Proposition 6.8 (ii) is not 
always satisfied. 

6.2 Analytical Conditions for Conditional Independence 

Throughout this subsection, we assume 

a=bl . . . . .  bk=0.  (A.1) 

If (A.1) holds, Proposition 6.8 implies that {X t : t~[0, 1]} is a Markov process if 

4~(0, t) and ~(1, t) 

are conditionally independent given Xt (6.4) 

and {Xt: te l0 ,  1]) is a Markov field if 

(~(0, s), ~(1, t)) and 4~(t, s) 

are conditionally independent given (Xs, X0. 

In this section we apply the co-area formula developed in w 5.2 to give neces- 
sary and sufficient conditions for either (6.4) or (6.5) to hold when we assume 

Image F o n Image F 1 = {0}. (A.2) 
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Thus, we will assume (A.2) also for the rest of this section. By the remark 
in w 2, we may and do assume that Fo and F1 are in the form 

Fo L0] '  F , =  F~' 

where Fd is a I x d matrix of rank I and F~ is a ( d -  I) x d matrix of rank d -  l. 

We shall also write f--- ~ ] .  

Our technique will be to use the co-area formula to compute explicitly the 
conditional densities of 4(0, t) given Xt, of 4(1, t) given X,, etc. We treat in 
detail the necessary and sufficient conditions for (6.4), as the notation is simpler 
in this case, and we shall just state the analogous result for (6.5). For  background 
and notation, the reader should consult w particularly Proposition 5.11. 
In addition, we note that for zENJ p - l ( z ) = L  ~  where L ~ 
= {UeG o e-AtlF; Uz =fo},  L~= {Vee A G O e-AtlF~ VZ=fl }. We let Vo(Z)=dim L ~ 
and v~(z)=dimL~. Finally let Pxt denote the probability distribution of Xt; 
recall that dPx]do~U=p(z, t) for/~ and p(z, t) given in Proposition 5.11. 

Theorem 6.9. Let # = s u p  {dim image ap(U, V)[(U, V)eN\S ~ and set St 
= S ~ w {(U, V)[J u p (U, V)= 0}. Then cb(O, t)and 4(1, t) are conditionally indepen- 
dent given Xt if and only if there exist functions a(u, z) and fl(v, z) such that 
for Px-almost every z 

(Ju P)- '(U, V) ls~(U, V) = a(U, z) fl(V, z) (6.6) 

q~ q~ (V) d~Zr-u(U,  V)-almost everywhere on p-1 (z). 

Remark. While t does not appear explicitly in (6.6), Ju p(u, v) depends very much 
on t because it is defined in terms of 0p on Nt. Thus the condition must be 
checked at each t. 

Proof Assume that (6.6) is true. We want to show 

E [g (4 (0, t)) h (eb (1, t)) [ Xt] = E [g (cb (0, t)) [ X d  E [h (q~ (1, t)) [ X J  

for arbitrary, bounded, measurable g and h. Let 

P~ = t a(U, z) q~ (U ) d~gt~v~ 
LO. 

pl(z)= ~ fl(V,, z) qtt (V ) d,gt~ 
L~ 

From Proposition 5.11, we find p (z, t )= pO (z)pl (z) and 

q%(z, t )= ~ a(U, z) g(U) q~ d~t~~176 
LO 

Oh(Z, t)= ~ fl(V, z) h(V) ql (V) dW*t(~)(V)/p t (z). 
L~ 
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Px~-a.e. However, b from (5.21), p-l(z)=L~ and d J t ~  
-- dW*~ x d~Vl(z)(v), 

E Eg(~(0,  t ) )h (~ (1 ,  t))[Xt] 
~ g(U) h(V)a(U, z) fl(V, z) q~ V) 

- -  L ~  La~ z = X ~  - pO(~) p~ (z) 

= (fi~(x,, t) G ( x .  t) 

=E[g(~(0 ,  t))]Xt] E[h(~(1,  t))l X,]. 

Conversely, assume that ~(0, t) and ~(t, t) are conditionally independent 
given Xt. Let 

0g, n (z, t) = p -  1 (z, t) 

g(U) h(V) lso(U, V)(J, p)- ~(V, V) qO (V) q~t (V) dJ~t '92r-Is(U, V), 
p - l (z) 

Then, since 

E [g(~(0 ,  t)) I X 3  E [ h ( ~ ( 1 ,  t)) I x d  = E [g(~(0 ,  t)) h ( ~  (1, t)) I x 3  = 0,, h(x , ,  t) 
a.s. 

(fig (z, t) Oh (z, t) = 0g, h (z, t) (6.7) 

for Px,-almost all z. In fact, we can choose one set (9, with Px,((9)= 1, such 
that (6.7) holds for all continuous g and h with compact support and z~(9. 
Indeed, the set of compactly supported continuous g and h is separable in 
sup-norm. If {gj, hi} is a separating set, (9 = {z [(5.8) holds for every g j, hi}. Fix 
z~(9. Then 

(fig(z, t) ~9h(z, t)=p-2(z, t) S ~ g(U) h(V)tlz(U) )oz(V) q~ q~t (V) dj/f2"-u(U, V) 
LOG 

where 

t/g(U) = ~ (Ju p)- I(U, V) lso(U , V) q] (V) dW*l(z)(V) 
L o 

2~(V) = I (J. P)-I (U, V) ls~(U , V) q~ ) d~f'~ 
L~ 

For continuous and compactly supported g and h, this must equal Og, h(Z , t) 
and this can happen only if 

1so(U, V)(Jtt p ) -  I (U, V)=rl=(U) 2~(V) p(z, t) 

qO(U ) ql  (V) dJ ,~Zr-#(O,  V) almost everywhere. [] 

A similar analysis may be applied to obtain necessary and sufficient condi- 
tions for the conditional independence of q~(t, s) and (~(0, t), ~(1, t)) given 
(Xs, Xt). We shall only state the result since the proof differs only in requiring 
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more complicated notation. Let M,,t = Go e - s A  • e A Go e - A t  • e A t  Go e - A s  and 
define 

R(U, V, T)=  F~ . 

If dim ~ = r ,  dim M=3r.  Let ql(U)qZ~(V)q~,t(T) denote the density w.r.t, j~(~3r 
on M of (~(0, s), ~(1, t), q~(t, s)). It is not hard to see that if Fo+FI ~(1, 0) is 
invertible a.s., then so is 

F; ~(1, t) . 
[ ~(t, s) - - I  

Hence R is defined 9f'3~-almost everywhere on M. R is chosen precisely so 
that 

s), 
L J Xt 

Theorem 6.10. Let # = sup {dim image OR(U, V, T) I (U, V, T)eM} and let Ss, t 
={(U, V, T)eMs.t[R(U, V, T) is undefined or J~R(U, V, T)=0} Then 
(~(0, s), ~(1, t)) is conditionally independent of ~(t, s) given (X~, Xt) iff there are 
functions 7(U, V, r) and fl(T, r) such that 

l~o(U, v, TI[J.R(U, V, T)-I-~ = . ( U ,  V, r)fl(T, r) 

for q~ s (U) 1 2 qt (V)%t(T)d~ff3~-~'( U, V, T) 
Px~, x,-almost all reP,. 2d. 

Example 6.11. Let 

almost all (U, V, T)eR-l(r)  and 

where 

k 

dXt=~'BiXtodVVt i, F~Xo=fo, 
1 

F[ X1 = f l  (6.8) 

i) ~ = L i e  algebra {B 1, ..., Bk}, 

= {upper triangular matrices [ ; ' ~  : ~ ,  

ii) F~ = [-F~I F~z] where F~ leN t2 and det F~I 4=0, 
iii) F; = [0: F;2] where F; 2 ~]R(d - -  I ) 2  and det F~ 2 4: 0, and 
iv) Ifg:=[Fo+F1]-lf=(gl,  ..., ga) r, ga4=0. 

We shall apply Theorem 6.9 to show that solutions to (6.8) are Markov. In 
general these solutions do not satisfy o-(~b(t, s))c a(Xs, X~), so they give examples 
of Markov processes, hence Markov fields not satisfying the sufficient condition 
of Corollary 6.6. 
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In this case, it can be checked that 

[Jap(U, V)] -1 lso(U, V)=ldet  F~I U~[ [det F/2 V31 ~(z) 

on p -  1 (z) where 7 (z) is a function only of z, and 

Thus the factorization criterion is met, and Xt is a Markov process�9 
As a particular example, consider 
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and 

eW? - w: ~] 

(X, w~' - w~ ~ = e  (1--e +o~~ w~-w~) 

where o~=e w~ i e-W'=eW~-W?dWJ . One can easily see that a(Xs,  Xt) does not 
s 

contain a(,l~(t, s)). 

Example 6.12. We shall use Theorem 6.10 to give an example of a two-point 
boundary value problem such that (+(0, s), +(1, t)) and +(t, s) are not condition- 
ally independent. Let X, solve (6.9), but now with the boundary conditions 

x ~ + x ~ = l  x l + x ~ = l .  

For  this problem we calculate 
Theorem 6.10 

a) Mr, s = Go x Go x Go where 

 o{[o 

the following results; the notation is that of 

g~][ul, u3>O,u~ elR} 
b) R - l ( r ) = { U l u t  rl +(Ul-[-u3) r2=l, Ul, U 3 > 0  } 

�9 {Vl  v ,  r3 + (v2 + v3) r4 = 1, v l ,  v~ > 0}  

�9 {T l ta=r4 / r  2, t 1 r 1 + t  2 r 3=r3 ,  t 1 >0} 

c) IfR(U, V,, T)=r, J2-~ R(U, V, r)lsc(U, V, T) 

= ( . _ t ~ v l ) l ~ . l _ , l o , . o ~ l / ( r ~  + 2 2 2 2 2 2r2) (rl +r2) r2(r3 + 2r2). 

1 1 0 

with X~ + X~ = 1 X 2 = 1. 
Then 
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Clearly, the factorization criterion of Theorem 6.10 is not met because ua, t l ,  Vl 
are independent variables on R- l (r ) ;  in fact, by b) {(ui, tl, vl)lux, ti, v i > 0 }  
parameterizes R -  i (r). 

Notice that we have not shown that {X~} is not a Markov field. Using 
the co-area formula, it is possible to compute explicit representations of joint 
densities of {Xt}. However, these representations involve the probability densities 
of ~(s, t), which are not known explicitly. Therefore we have not been able 
to see whether {Xt} in this example is a Markov field. 
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