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This paper establishes an anticipating stochastic differential equation of parabolic type for the expectation 
of the solution of a stochastic differential equation conditioned on complete knowledge of the path of one 
of its components. Conversely, it is shown that any appropriately regular solution of this stochastic p.d.e. 
must be given by the conditional expectation. These results generalize the connection, known as the 
Feynman-Kac formula, between parabolic equations and expectations of functions of a diffusion. As an 
application, we derive an equation for the unnormalized smoothing law of a filtering problem with 
observation feedback. 
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1 INTRODUCTION 

The point of departure for this paper is the Feynman-Kac formula, which connects 
solutions of linear, parabolic partial differential equations to solutions of correspond- 
ing stochastic differential equations. We first review this briefly. Let 

solve the family of stochastic differential equations 
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80 D. OCONE AND E. PARDOUX 

where w = (w,, . . . , w,) denotes an R1-valued Brownian motion and w,(t) = t .  Let 
v(x, s) be a classical solution to the backward parabolic equation 

In (1.2), VZv  denotes the matrix of second partial derivatives of v with respect to x. 
If v and f,, f l ,  . , . , f, also satisfy suitable growth conditions, then v admits the 
Feynman-Kac stochastic representation, 

The proof of (1.3) involves only an application of It6's rule. 
It is also possible to reverse the direction of the argument. That is, suppose we 

instead dejine v by Eq. (1.3). We can then show that v is a function in the class 
c ~ , O ( R ~  x [0, TI ) ,  and that v solves (1.2), provided that the coefficients, fo, f,, . . . , f,, 
of (1.1) are suitably regular; for a treatment, see Friedman [3], Chapter 5, Section 6. 

The connection between (1.2) and (1.3) can be generalized to stochastic partial 
differential equations. Let the Brownian motion w be split into two components, 
w = (W, Y) ,  W taking values in R'', and Y in R". In Pardoux [12], later generalized 
by Krylov and Rozovsky [ 5 ] ,  it is shown how to represent solutions of certain 
backward stochastic partial differential equations by expressions of the form 

where {X,,,(t)) solves an equation like (1.1), {Z,, , ( t))  is a process of the form 

and Y", o{Y(r);  s I r I T }  is the a-algebra generated by the future of Y at time s. 
Expressions of the form (1.4) occur in nonlinear filtering and smoothing theory and 
satisfy backward stochastic p.d.e.'s adjoint to Zakai's equation; see Pardoux [13], 
Section 3, and [14] for an application in this context. 

In this paper we consider a further generalization. We replace (1.1) by the equation 

xX, , ( t )  = x + l,t,,l r' fj(Xx,,(r), r, Y )  dwj(r), ( x ,  S ,  t )  f Rd x [0, T I Z ,  (1.6) 

in which each coefficient f j(x,  r, Y )  may now depend on Y in a progressively 
measurable fashion. Likewise, we assume that the terms h,{X,,,(r), r)  in the definition 
of Z,,,(t) are replaced by hhX,,(r),  r, Y). Let t,b be given and set 
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FEYNMAN-KAC FORMULA 81 

where GYT = o{Y(r); 0 I r I T )  is the o-algebra generated by the entire Y-path. The 
goal of this paper is to find a backward stochastic partial differential equation for 
v(x, s, Y). The special case in which the coefficients depend on Y only through its 
current value (i.e. fi(x, r, Y) = f jx ,  r,  Y(r))) has already been treated in [14] by an 
enlargement of filtration technique. Here we shall treat geeneral dependence of the 
coefficients on the past of Y. Since v(x, s, Y) depends on the entire Y-path for each 
s, this backward equation will necessarily involve stochastic integrals with anticipa- 
ting integrands, and in this paper we shall use the Skorohod integral to handle such 
integrands. Our main result is Theorem 4.2, which establishes conditions on the 
coefficients f,, fl, . . . , f, and h,, . . . , h12 such that v(x, s, Y) satisfies the Eq. (4.8) in 
Section 4, namely: 

Equation (4.8) is a backward stochastic p.d.e. which contains the terms expected from 
the theory of Eq. (1.4) plus an additional term involving the Wiener space gradients 
D:u(x, r +, Y) and ~>Vv(x ,  r +, Y) of the solution o; for a precise definition of these 
new terms, see Definition 3.4. Conversely, we show that if v is a sufficiently regular 
solution of (4.8), then v admits the representation (1.7). 

In this paper we first define v by (1.7) and prove (4.8) and then later prove the 
converse result. It is best to work in this order because there is no independent theory 
that provides solutions to (4.8). Moreover, in the proof of (4.8), we discover the 
regularity properties of v that are necessary for the analysis. Also, in Section 4, we 
state the Stratonovich integral version of (4.8). 

This paper contains an auxiliary result that is related to the generalized It6-Ventzell 
formula proved in [ l l ]  The fundamental calculation in the proof of the main result, 
Eq. (4.Q requires calculating the stochastic differential of v(X,,,(t), (t), r, Y) for fixed 
r. Thus we need an It6 rule for finding the stochastic differential of a random 
transformation of an It6 process. We state and prove such an It8 rule in Theorem 
2.3 of Section 2. 

Notice that the definition of v in (1.6) contains the Girsanov transformation-type 
term Z,,,(T). We include this here because it appears in the representation of 
nonlinear smoothers, and this paper was motivated by the problem of constructing 
an equation that would be adjoint to a Zakai equation, when the Zakai equation 
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82 D. OCONE AND E. PARDOUX 

contains coefficients which depend on the past of the observation process Y. We 
could try to suppress the explicit dependence on Z,,,(T) in (1.6) by including it in an 
augmentation of the process X,,,(t). But, we avoid doing this because we shall assume 
that the coefficients f,, . . . , f, have uniformly bounded first derivatives in the x- 
variable, and this property does not extend to the augmented system. 

The broad outline of the paper is as follows. In Section 2 we state and prove Itb's 
rule for random transformations (Theorem 2.3). To apply this to v(X,,,(t), r, Y), it is 
necessary to establish conditions on the coefficients of (1.5) and (1.6) such that v 
satisfies the hypotheses of the modified It8 rule in Theorem 2.3. We treat this problem 
in Section 3, which also includes additional technical results for the proof of our 
non-adapted stochastic p.d.e. for v.  Section 4 states and proves the main result. We 
should point out that Section 3 contains a lot of complex, and sometimes tedious, 
technical details. However, these detailed arguments are not necessary to under- 
standing the essential ideas of the proof of Theorem 4.2, which follows a standard 
argument. Thus, for the reader interested in getting to the main point, we recommend 
going straight from Section 2 to Section 4, except for a small detour at Definitions 
3.3 and 3.4, which are necessary to understand the hypotheses of Theorem 4.2. 

This paper assumes familiarity with the Wiener space gradient, D, the construction 
of Sobolev spaces on the Wiener space, and elementary properties of the Skorohod 
integral. A suitable background reference is the paper Nualart & Pardoux [8], 
Sections 1-5. We need to specialize some of the concepts and notations of [8] for 
the present work, and we carry this out in the remainder of this section. 

The underlying probability space, (R, 9, P), will be the canonical space for an 
R1-valued Brownian motion o = (w,, . . . , o,) on the time interval [O, T I .  As above, 
we let w,(t) & t ,  and we split w into the R1'-valued component W and the R"-valued 
component Y, so that w = (W, Y). In writing stochastic integrals we shall use 
summation notation: thus, 

and 

In this paper we only need to use Wiener space gradients associated to the 
Y-components of o ;  likewise, we only need to form stochastic integrals with 
anticipating integrands when the integrator is dY. Therefore, we make the following 
definitions, in analogy to those found, for example in [8]. Let 9 denote the space 
of smooth Wiener functionals on 0: that is, a functional F is in Y if for some 
non-negative integers n and k, and some non-negative times t,, . . ., t,, s,, . . . , s,, 

F(w) = 4(Y(t,), . . . , Y(t,), W(s,), . . . , W(s,)), for some 4 E C?(R~'' ' "12) ,  
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FEYNMAN-KAC FORMULA 83 

The Y-gradient of such an F E Y is DYF = ( D y l F ,  . . . , DY'JF), where 

In this formula xij refers to the variable in C$ corresponding to x( t j ) .  The "." in the 
notation D. has the purpose of reminding us that DY'F(w) is almost-surely a function 
in L2(0,  T). If F takes values in Rm, D i F  is the matrix whose ijth component is D 2 F i .  

On Y we introduce the norm 

for p 2 1. We denote by D $ ~ ~  the closure of Y with respect to I ) . ) )  T , ,  , and by II4i.p 
the set of F E  D:s2 such that IIFIl:,, < oo, if p > 2. D y  extends to a closed operator 
on by Lemma 2.2 in Nualart & Zakai [9 ] .  Moreover, we define 

[L:.p I LP((O, T),  d t ;  D:gP). 

We shall use the concept of Skorohod integrability defined in [8]. If u E I L : g 2 ,  one can 
argue, using Proposition 3.1 in [ 8 ] ,  that u is Skorohod integrable with respect to 
for each 1 5 i I 1 , .  Briefly, this means that for u E [Li*' and 1 I i s l,, there exists a 
unique r.v. in L2(Q), denoted 1; U ,  dT(s ) ,  having the property 

We recall here a fundamental formula for Skorohod integrals; see Theorem 3.2 of 
Nualart & Pardoux [ 8 ] :  

SoT FuS d Y i ( s )  = F us d Y i ( s )  - u,D:F ds, SoT SoT (1.9) 

for F E D:v2 such that u and Fu are both Skorohod integrable. 
The notation will denote the space defined analogously to D:.P,  but using all 

the components of o, as in [ 8 ] .  In the proof of Theorem 4.1 we shall use the dual, 
D - 1 , 2 ,  of D1". The Skorohod integral is a continuous linear operator from 
L2((0, T) x Q) to D-'.';  see Watanabe [ 1 7 ] .  Thus 1; U ( S )  d q ( s )  may be defined for 
any square integrable u, but the result may be distribution-valued. When we say that 
u is Skorohod integrable in this convext, we mean that 1: U(S) dk;.(s) is a square- 
integrable random variable. 

We shall need the following lemma. It is proved by verifying it first on smooth 
functionals and then taking completions. 
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84 D. OCONE AND E. PARDOUX 

LEMMA 1.1 Let p 2 1. If F E D i , P ,  then E{F I %,} E D:*P also, and 

Finally, the symbols V, and S", where ol = (a,, . . . , ad) is a multi-index, are reserved 
for differentiation in the variable x. If g takes values in R, Vg(x) denotes the 
usual gradient, and V2g(x) the matrix of second partials. If g takes values in Rn, 
Vg(x) denotes the differential [dx,gi(x)]l,i,j,,. The notation II.// is reserved for the 
L2((0, T ) ;  R") norm. Thus, for example, 

2 AN  IT^ LEMMA FOR RANDOM TRANSFORMATIONS 

In this section we shall develop an It8 lemma for random transformations of an It8 
process. That is, given a random field {@(x, w); x E Rd, 0.1 E R) and an It8 process 
{U(t); t 2 O), we shall show how to express @(U(t, m), w) using stochastic integrals. 
Because @(x, o) depends in general on the entire history of the Brownian path o ,  
this generalized It13 rule necessarily requires the anticipating calculus. The result is 
stated in Theorem 2.3. We remark here that we have not attempted to state the most 
general result. In particular, we assume that the It8 process satisfies 

for all p > 1. This assumption holds for our applications and helps to simplify the 
statements. Generalizations in which the conditions on U are relaxed are possible. 
In fact, Theorem 2.3 may be viewed as a special case of the generalized It&-Ventzell 
formula developed in [ I l l .  However, the hypotheses here are weaker due to the more 
restrictive nature of the problem. 

The proof of our It6 rule requires a chain rule to compute the Wiener space 
gradient of the composition, @Z, o), of a Brownian functional, Z, with a random 
map 4(x, w). To establish such a chain rule, we need to know that D4(x, a )  exists, 
and we need to be able to control the moments of 4 ( Z ,  o )  and D+(x, o)lx,,. We 
shall achieve control of moments by the imposition of polynomial growth conditions 
in the following definition. Recall that we decompose o E R as w = (W, Y), where 
WE C([O, T I ;  RL1) and Y E  C([O, T I ;  RL2). 

DEFINITION 2.1 We say that the random field 4 = {@, w); x E R ~ ,  o E R} satisfies 
hypothesis (A) with moments p ,  and p,,  if 4 is a measurable function such that: 

A.l) &., w) E C1(Rd) almost surely, and 

I  VX4(x, w)l 5 c,(w)(l + I x l P ' )  for all x, almost surely, 

for some p, > 0 and some cl E LP1. 
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FEYNMAN-KAC FORMULA 85 

A.2) $(x,  .) E D;9P2 for every x,  and the map ( x ,  s, o) + D;$(X, o) E R12 admits a 
measurable version which is continuous in x for almost every (s, o). Furthermore 

ID;$(X, o)I I c2(s, o ) ( 1  + 1 x 1 ~ ~ )  for all x,  for almost every (s, Y), 

for some / I2  > 0 and some c, E LP2((0, T )  x 0 ) .  

We shall show in the next section that stochastic flows associated to stochastic 
differential equations satisfy hypothesis (A) ,  provided the coefficients are sufficiently 
regular. Hence, the choice of conditions in hypothesis ( A )  suits our needs. 

In what follows, we shall distinguish Dy($(Z, o)) from DY$(x, o)lx=, by use of the 
notation 

The following result on differentiation is a refinement of Lemmas 11.2.3 and 11.2.4 of 
Ocone & Pardoux [ll] to the situation of this paper. 

LEMMA 2.2 Let $ satisfy hypothesis (A)  with p, > 4 and p2 > 2. Suppose also that 
Z E ( D ; , P ) ~  for some p > 4 and E { ( Z I r )  < oo for all r > 1.  Then for any q such that 
2 1 9  < P2 A ( P , P / ( P  +PI ) ) ,  

$(Z( . ) ,  .) E D:sq and DY($(z ,  o)) = V x $ ( Z ,  o ) D y Z  + [DY$](z, w). (2.1) 

If; in addition, 

then $(Z( , ) ,  .) E D:qq for 2 I q  < p A p2. 

Proof From A.2), $(0, .) E D;,P2, and hence $(O, .) E LP2. Also, by A.l) and the mean 
value theorem 

where K is a deterministic constant. Since Z has moments of all orders, it follows 
that $(Z ,  o) E Lq for q < p, A pl. Also, if we let F denote the right hand side of (2.1), 

Recall that, here, F takes values in L2((0, T); R") and 1 1  F 1 1  represents the  norm of 
F. An application of Holder's inequality shows that this last expression is finite if 
4  < P2 A (PIPAP + P I ) ) .  
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86 D. OCONE AND E, PARDOUX 

Let us first prove Lemma 2.2 under the additional assumption 

sup{I+(x, w)l;  x € R d ,  W E Q }  < a. 

In this case let 

where {p , }  is a sequence of positive, smooth mollifiers converging to the Dirac delta 
function at 0. By approximating 4,  by a converging sequence of Riemann sum 
approximations to (2.5), one can show that &(Z, w )  E D i s q  for 2 5 q < p A p , ,  

and 

for 2 5 q < p A p,, where F denotes the right hand side of (2.1). This completes the 
proof when (2.4) holds, because DY is closed on D:.q. To remove the assumption (2.4), 
we consider the sequence of random fields I),(&, w)) ,  n 2 1, where { I ) , )  is a sequence 
of bounded, infinitely differentiable functions on R with bounded derivatives of all 
orders such that $,(v) = v if 1 u 1 < n, $,,(v) 5 I v I for all v, and 

Then $,(4(x,  o)) satisfies (2.4) for every n and so 

It follows by dominated covergence that 

and 

for q < PI A (p ,p l (p  + P J ,  or (q  < P A p,  in case of (2.21.) 

Next we state and prove an It8 rule for random transformations. 
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FEYNMAN-KAC FORMULA 

THEOREM 2.3 Let 

be an Rd-valued It8 process such that u, E Rd,  and 

The processes a, P j ,  1 I j I 11, and y i ,  1 I i I 12 ,  are progressively 
measurable, and they belong to Lr((O, T )  x 0; R ~ ) ,  for every r > 1. (2.7) 

U E  [Livm for some m > 8. (2.9) 

Let (O(x,  Y ) )  be a measurable functional, defined on R~ x C([O, T I ;  Rl2), such that 
a(., Y )  E C2(Rd) almost surely, and 

For every 1 I i I d, a , @ ( . ,  .) satisfies hypothesis (A) with moments 
p, = 8 and p2 = 4. (2.10) 

Then, for each t > 0 ,  V@(U(.), Y)y( , )  E [L:.2, and 

where, in (2.1 I ) ,  P(s) = [Pl(s)l.. . IPl,(s)] and y(s) = [y l ( s ) ( .  . yl,(s)]. Note that the term 
[D,YV@](U(s), Y )  makes sense by virtue of the continuity of U(s) in s and the continuity 
of D;VQ(x, Y )  in x. 

Proof a,@(., .) satisfies (A) with moments p ,  = 8 and p, = 4, U ( ~ ) E  El:."' for 
almost every t ,  for some m > 8, by (2.9) and U ( ~ ) E  L4(R) for all q > 1 by (2.7). 
Therefore, Lemma 2.1 applies to V@(U(t), Y )  for almost every t ;  

for almost every t ,  and 
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88 D. OCONE AND E. PARDOUX 

Notice that D,Y'V@(U(t), Y )  = [D:V@](U(t), Y )  for s > t because D:U(t) = 0 for s > t 
by the progressive measurability of U. The conditions A.l) and A.2), applied to (2.12), 
easily yield that VO(U(.) ,  .) E ( ~ $ 3 ~ ) ~ .  By adapting an argument of Liptser & Shiryayev 
[7],  pp. 94-95, one can choose a sequence of partitions l?") = { t l )  of [0, t ]  such that 
supi(t;+ - ty) + 0 as n + a, and 

(For a detailed argument, see the Appendix of [lo].)  For convenience of notation, 
set y ( t )  1 xi VO(U(tl) ,  .)lrT,t;+l)(t). By Taylor's formula, we may write 

where, for each i, Oi is a point on the line segment connecting U(tY+ ,) and U(tl). 
Consider the first term of (2.14). We can write it as 

Notice that in the last equality we have interchanged multiplication by V@(U(ti), Y )  
with integration with respect to dW. This is legal because Y and Ware independent 
and @(U(t), Y )  does not anticipate W. As a consequence of (2.13), 

Consequently, the first two terms of the right hand side of (2.15) converge in 
mean-square to 
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FEYNMAN-KAC FORMULA 89 

To handle the remaining term, we use Theorem 3.2 of Nualart & Pardoux [8],  which 
is recalled above in Eq. (1.9), to observe that 

From (2.13) and (2.8) one derives that 

and hence, using Proposition 3.5 of [8] ,  that So Sn(s)y(s) dY(s) converges in mean- 
square to 6 V@(U(s), Y)y(s) dY(s). Furthermore, the continuity in t of U(t)  and the 
continuity of DyV4(x, Y )  in x guarantee that 

for almost every s E [O, t ] ,  almost surely. Since, in addition, A.2) implies 

where c, E L4([0, TI x a), dominated convergence leads to 

almost surely. From the above argument, we find that 

C V@W(ti) ,  Y ) [ W i +  1) - U(ti)I 
i 

in probability, as n -+ co. 
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90 D. OCONE AND E. PARDOUX 

Finally, we must deal with the term in (2.14) involving second order derivatives of 
0. First notice that x, 0, 11,,,,+,,(,, converges uniformly in t  to U(t) ,  almost surely, 
because U ( t )  is continuous in t .  Also, from (2.7), it is a standard fact about 
semi-martingales that 

in probability, for each 0 I t < T. Therefore, we can use Lemma C.2 of [8] to 
conclude that 

converges in probability to 

This completes the proof. 

In working with fields of the form {q5(x7 w ) ;  (x ,  w )  E Rd x a), it will be useful to 
know under what circumstances we may interchange the Wiener space gradient D 
and differentiation with respect to x .  The next lemma states a simple sufficient 
condition. 

LEMMA 2.4 Let p 2 2. Assume that {$(x ,  ccr)} is a measurable randomfield such that 

4 ( x ,  .) E D;+* for all x, and 4 ( . ,  w )  E Cr(Rd) almost surely; (2.18) 

For each 1 2 i I 1 2 ,  the map (8,  x, t ,  w )  H D?q5(x, t ,  w )  admits a measurable 
version such that D,Yiq5(., t ,  w )  E Cr(Rd; R") for d8 x dt x dP-almost every (2.19) 
(8,  t ,  4; 

For each compact G c Rd, there exist an NG E LP(R), 
and an MG E LP((0, T )  x R) such that 

sup l aa+(x, w )  1 2 N G ( o )  a.s., 
x e G  

and 

for all la1 < r .  
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FEYNMAN-KAC FORMULA 

Then for each x, and each Ial 5 r, da4(x, .) E D:.P, and 

DBY~"~(x, W) = da~;4(x, o). (2.21) $ ,  

Proof Suppose la1 = 1. Let &;4(x, o) & 4(x + 6e i ,  o) - 4(x, o) ,  where ei is the 
unit vector along the xi-axis. Fix x. Noting that D~A~C$(X, w )  = A;DYq5(x, w), one can 
use condition (2.20) and dominated convergence to show that 

Because D:,P is closed, it follows that dx,4(x, .) E D:.P and that (2.21)) is true for each 
x. By applying the same argument with d,~$ in place of 4, we find that 8 4  E D:+P 
for la (  = 2, and so on up to ( a (  = r,  R 

3 DIFFERENTIABILITY PROPERTIES OF v(x, s, Y). 

Suppose that the process {X,,,(t)(o); (x, s, t ,  o )  E Rd x [O, T I ,  x Rj solves the equa- 
tion 

for each (x, s) E Rd x [O, TI, and let 

For each ( x ,  s) E R~ x [0, TI, define v(x, s, Y) t E{$(Xx,,(T))Zx, ,(T) 1 gY}. In this sec- 
tion we shall establish conditions on the coefficients {fj; 0 I j 5 I )  and {h,; 1 5 j 5 1 , )  
and on II/ to ensure that, for fixed s, v(x, s, Y) satisfies condition (2.10) of Theorem 
2.3. This is crucial for the proof of the main result, Theorem 4.2, in which we apply 
the extended It6 formula using v(x, s, Y) as a random transformation. Thus, we seek 
conditions implying that the derivatives, dx,v(x, s, Y), 1 5 i I d, all satisfy hypothesis 
(A),  which requires differentiability in x and Y of d,v(x, s, Y) and polynomial growth 
in x of d,v(x, s, Y) and its derivatives. We shall obtain such regularity by imposing 
the natural conditions on (4; 0 5 j s 1) and {hj; 1 1 j 5 1,) needed for differenti- 
ability and polynomial growth of Xx,,(t) and Z,,,(t), and we then show that u inherits 
these properties. Notice that, in this section, the coefficients fix, s, o) or hJ(x, s, O) 
depend on both components, W and Y, of w. Later on, to obtain a stochastic partial 
differential equation for v(x, s, Y), it will be necessary to restrict the dependence to 
Y alone. But, for now, it is useful to allow the more general situation, and this causes 
no extra complication. 
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92 D. OCONE AND E. PARDOUX 

The section is fairly technical. In order to go on to Section 4, before negotiating 
all the details here, the reader needs to understand Definitions 3.1, 3.3, 3.4 and the 
definitions in Corollary 3.12, and the statements of Theorems 3.7, 3.10, Corollary 
3.11 and Propositions 3.6 and 3.13. The other results play supporting roles. The main 
results are Theorems 3.7 and 3.10, and they are consequences of Propositions 3.6 
and 3.9, respectively. Most of the technical work is in the proofs of the Propositions 
and is deferred to the end of the section. Although technical, the methods of this 
section are fairly standard; our treatment is inspired by the methods found in Krylov 
[4], Kunita 163, and Stroock 1161, for example, and our results are closely related. 

Notational Convention Throughout this section, K and b shall denote generic, finite, 
positive constants that appear in various bounds. The actual values of K and b may 
change from expression to expression, even within the same argument. 

For our analysis it is convenient to identify several different classes of processes. 
In what follows, T denotes a fixed, positive time. 

DEFINITION 3.1 Lip,(p) shall denote the class of processes of the form 

such that y(y, s, t, o) = y(y, s, t v s, o), and such that there exist constants 0 < K < co 
and 0 < /? < co for which 

< K(1 + ( ylP) Vs E [0, TI 

and 

S K ( 1  + lyIP + Iy'lP)(ly- y'IP+ J S - S ' ~ ~ ~ ~ )  

V(s, s') E [0, T ] ~  V(y, y') such that 1 y - y'( 5 1. (3.3) 

We shall use Lip,(co) to denote n,, , Lipn(p). In addition, we shall say that y is in 
Lip,(p, q), if y satisfies (3.2) and, instead of (3.3), 

Iy(yf, s', t ,  *) - y(y, s, t ,  .)IP 

I K(l + 1 ylP + 1 y'lP)(J y - y'lP + Is - ~ ' 1 ~ ' ~ )  

V(s, s') E [0, TI2 V( y, y') such that 1 y - y'( I 1. (3.3') 
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FEYNMAN-KAC FORMULA 93 

In practice, we deal only with the cases in which either y = x E R ~ ,  (n  = d), or 
y = ( x ,  6 ) ~  Rd+' ,  (n = d + 1). Since the appropriate case will always be apparent 
from context, we shall usually write just Lip(q) instead of Lipd(q) or Lip,, '(9). 

Suppose that y = {y(y,  s, t ,  o)) is almost surely continuous in t for every ( y ,  s). 
Then, if y E Lip,(q, p) and p A (912) > d + 1, y admits a version which is almost surely 
continuous in ( y ,  s, t). This follows easily from Kolmogorov's continuity theorem; 
see, for example, Stroock [16]. We shall use this observation often. Also, we shall 
use the following fact. 

L E M M A  3.2 Let {y(x,  w ) )  be a measurable random field such that y(., o ) ~  C'(Rd), 
almost surely, and 

for some K < co, /3 > 0, and p > d. Then for any b > (d + ,L?)/p, there is a c E LP(R) 
such that 

Jy(x ,  o)J 5 c(o) ( l  + Jx lb )  almost surely. (3.6) 

Proof This is a consequence of the Sobolev inequality 

for p > d, where c, is a constant independent of v :  see Adams [ I ] .  Define the random 
constant c ( o )  = cpllF(., w)ll where F(x, o) r (1 + ( X ( ~ ) - ~ ' ~ ~ ( X ,  0). (3.4) and (3.5) 
imply that c E LP(SZ). (3.6) follows from applying Sobolev's inequality to 7. 

The next definition summarizes the type of regularity in x to be required of the 
coefficients ( f j ( x ,  t ,  w ) )  and (hi(x,  t ,  w)).  

DEFINITION 3.3 A measurable k :  Rd x [0, TI x SZ I-+ R is said to be in the class Cr if 

k ( . ,  t ,  o) E Cr(Rd)  for dt x dP-almost every ( t ,  o), and k and its 
derivatives are progressively measurable; (3.7) 

There is a constant K < co such that (k(0,  t, w)l 5 K for dt x dP-almost 
every (t ,  w);  (3.8) 

There is a random variable c E nq, , Lq(Q) and a constant b > 0 such that 

ess sup (aak(x,  t ,  w)l I c(o)( l  + (xIb), V J a (  I r. 
t 5 T  

(3.9) 
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94 D. OCONE AND E. PARDOUX 

Finally, we need to impose regularity of the coefficients f j  and hi as functionals of 
w. The conditions we use are very much like those required in hypothesis (A). 

DEFINITION 3.4 A measurable process k: R~ x [0, TI x SZ -+ R is said to be in the 
class 9,(r, p) if 

k(x, t ,  .) E D t + P  for a11 x and almost every t ;  (3.10) 

For each 1 I i 5 12 ,  the map (8, x, t ,  w ) ~  D,Y'k(x, t, w )  admits a 
measurable version such that D:k(., t ,  w)  E Cr(Rd) for (3.11) 
dB x d t  x dP-almost every (8, t, w); 

There exist a r.v. M E  LP([O, TJ2 x R) and a constant b > 0 such that 

for all x, for almost every (6, t ,  w )  and for all la1 < r. 

The following lemma follows directly from Lemma 2.4 and allows us to freely 
interchange D and differentiation in x when dealing with sufficiently regular processes. 

LEMMA 3.5 Suppose that for some p 2 2 and some integer r 2 1, 

Then for any la1 S r, {aUk(x, t, w) )  E g y ( r  - ( a ( ,  p), and 

Dia"k(x, t ,  w)  = a"Dik(x, t, w). (3.14) 

Now we are prepared to state the main theorems on the regularity of the process 
v(x, s, Y).  We shall first treat regularity in x only, without regard to regularity in co. 

PROPOSITION 3.6 Fix r 2 2. Assume that 

All components of f j ,  0 I j I I ,  are processes in Vr.  (3.15) 

All components of hi, 1 5 j I l,, are processes in Wr. (3.16) 

The processes Vfj, 0 I j I 1 and hi, 1 _< i I I,, are uni$ormly 
essentially bounded. (3.17) 

Then {X,,,(t)) and {Z,,,(t)} admit versions such that 

{X,,,(t)} and {Z,,,(t)) are in Cr-' ,o*o(Rd x [O, TI2) almost surely, and, (3.18) 
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FEYNMAN-KAC FORMULA 95 

The result (3.18) on differentiability of {X,,,(t)) is standard, and its proof entails 
proving (3.19) also, although (3.19) is usually not so explicitly stated. See for example, 
Kunita [6] or Stroock [16] in the case in which the coefficient functions are not 
random. The statement (3.19) for {X,,,(t)) and a = 0 goes back to Blagovescenskii 
& Freidlin [2].  We sketch the proof of Proposition 3.6 later. 

Proposition 3.6 leads to the regularity in x of v. 

THEOREM 3.7 Assume that {A; 0 I j I I ,  + 1,) and {hi;  1 I i I 1,) satisfy conditions 
(3.15H3.17). Assume in addition that $ E Cr(Rd) and that $ and its derivatives up to 
order r grow at most polynomially. Then {v(x, s, Y ) }  admits a version such that 

v(., ', Y )  E Cr-  ',O(Rd x [O, T I )  almost surely, (3.20) 

and for all s I T and any q > 1, there exists a random variable c,,,(Y) and an a > 0 
depending only on q but not on s, such that 

and, 

sup E{c%,,) < co. 
ssT 

Finally, for la1 I r - 1, 

Before proving Theorem 3.7, we state a well-known technical lemma, which, in 
fact, also contains the basic idea behind the proof of Proposition 3.6. For this, we 
introduce some important notation. Let g be a function of x E Rd, and let 1 I i 5 d. 
Then, define 

We think of K I A b g ( x )  as a function of the two variables (6, x). Notice that 6-'A;g(x) 
can be defined for 6 # 0 even if g is not differentiable. 

LEMMA 3.8 Let {y(x, s, t, o)) be a measurable process such that for some p, q with 
P A (412) > d + 2, 
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96 D. OCONE AND E. PARDOUX 

(To emphasize, 6- 'Aiy E Lip,, ,(p, q) is a random field indexed by (6, x, s, t).) Then, it 
follows that 

y(', ., ', w) E c"'(R* x [O, TI), for almost every ( t ,  w), and 
(3.25) 

Conversely, (3.25) implies 

Proof (3.24) implies (3.25) by an application of Kolmogorov's continuity criterion. 
If we write 

we obtain (3.26) from (3.25) by a simple calculation. I 

Proof of Theorem 3.7 Recall that K and b are generic positive constants. In all 
expressions the actual values of K and b will depend only on q, and on the processes 
{ A ;  0 I j I I) and {hi; 1 5 i 5 I,}. They will not depend on x, s, t, or w. 

First, we show that u(x, s, Y) admits a version, which is almost surely continuous 
in (x, s). Indeed, a simple estimate using Jensen's inequality and (3.19) shows that for 
any q > 1, 

Kolmogorov's continuity theorem implies the existence of an almost surely conditious 
version of v(x, s, Y) if we choose q > 2(d + 1). 

Next, define 

for every (6, x, s). Note that 

Result (3.19) and Lemma 3.8 imply that 

{S - 'AbXx,,(t)] E Lip(co) and (6 - 'A~Z,,,(t)) G Lip(m). 
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FEYNMAN-KAC FORMULA 97 

It follows, using the polynomial growth of $ and its derivatives, and using (3.18), 
that the expression 

also defines a process in Lip(co). Hence, for any q > 1 there exist constants K and 
b such that 

E(lpi(6, x, s) - pi(6', x', s')lq) _< K ( l  + lxlb + Ix'lb)(lx - x'lq + 16 - 6'Iq + Is - ~ ' 1 ~ ' ~ )  

for all x, x', 6, and 6' such that Ix - x'l I 1, 16 - 6'1 I 1, and s, S'E [0, TI. However, 
( ~ ( 6 ,  x, s, Y); 6 Z 0) and {6-'Adv(x, s, Y); 6 # 0) are indistinguishable. Therefore the 
latter process satisfies (3.24), and hence Lemma 3.8 implies that 

v(., ., Y) E C1, O(Rd x [0, TI) 

almost surely. Moreover, from (3.27) 

thereby proving (3.23) for lcx = 1. 
If r  > 2 in the hypotheses of Theorem 3.7, we can apply the above reasoning to 

(3.28) to prove that d,u(. ,  ., Y) E CiqO(Rd x [O, TI), and hence that u( . ,  ., o) is almost 
surely in CZqO(Rd x [0, TI). Continuing by induction in this way, we can prove 
differentiability up to order r - 1. 

To prove (3.21), we note from (3.23) and (3.18) and (3.19) that, for every q > 1, 
there is an Mq < cc and a 0 < B < co such that 

E{laav(x,s;)lq} I Mq(l +Ix(P) forall S I  T and Icll ~ r -  1. 

For each fixed s, (3.21) follows by Lemma 3.2. Indeed, by the proof of Lemma 3.2, 
there is a sufficiently large deterministic K such that (3.21) is satisfied with 

Hence 

independently of s I T, if a is sufficiently large, thus proving (3.21) and (3.22). . 
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98 D. OCONE AND E. PARDOUX 

Let us next consider the existence and regularity of {D,Yb(x, s, Y)}. We expect that 

Proving (3.29) and using it to obtain regularity of {D,Y'v(x, S, Y)) requires proving 
existence and regularity of {~,Y'x,,,(t)) and {D,Y'Z,,,(~)). We shall study these processes 
through the differential equations they satisfy 

These equations may be interpreted in two ways; either as stochastic differential 
equations for the Hilbert space-valued random processes, 

and (x, s, t, a ) -  DY'Z,,,(t) E L2([0, TI), or as families of stochastic differential equa- 
tions parametrized by 6. Here we want to work with the interpretation of (3.30) and 
(3.31) as a parametrized family, but we must take care to ensure that D>X,,,(t) 
is jointly measurable in (x, s, t, 6, a), and that D?X,,,(t)€ L2([0, TI) for almost 
every (x, s, t, o). The most convenient way to do this is to augment the probability 
space by defining R = [0, TI x f2, # a[O, TI x 9,e = g[O, TI x z, and d p  = 
(1/T) d6 x dP. In other words, we think of 0 as an additional, independent, uniformly 
distributed random variable independent of W. The use of tilde indicates when we 
are working on a ;  thus, I?[.] will denote the expectation with respect to p, 
will denote the process satisfying Definition 3.1 on (a, $, p), etc. Then, for example, 
the rigorous interpretation of (3.29) is 

which automatically gives a process measurable in (0, o). 
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FEYNMAN-KAC FORMULA 99 

We shall now interpret Eqs. (3.30) and (3.31) as stochastic differential equations 
on a. The measurability of {D,Y'X,,,(t)) will therefore be an automatic consequence 
of an existence theorem for (3.30). Moreover, the hypotheses we shall place on the 
coefficients f j  will imply that sup,,,{D,Y'X,,,(t)) E L P ( ~ ,  @) for some p 2 2 and fixed 
( x ,  s). It follows that for fixed t 

and hence we can conclude that X,,,(t) is an element of D$*P. Thus, in discussing 
Wiener space gradients, we shall work on ( a ,  @, @). 

PROPOSITION 3.9 Assume that: 

All components o f f j ,  0 I j I 1, and of hi, 1 I i I l,, belong to W4, 
and the processes Vfj, 0 5 j I 1 and hi, 1 I i I I,, are uniformly (3.32) 
essentially bounded. 

All components of fj, 0 I j I I ,  and of hi, 1 r i I. I, ,  belong to 
9143, p), for some p > 2(d + 3). (3.33) 

Then for any q < p, 

X,,,(t) E D>q and Z,,,(t) E D$qq for all ( x ,  s, t ) ;  (3.34) 

{D,YIX,,,(t)) is the unique strong solution of (3.30); (3.35) 

{D,Y'Z,,,(t)) is the unique strong solution of (3.31). (3.36) 

Moreover, for each 1 5 i I d, there exist processes {U;,,(t, 0, w ) )  and {V;,,(t, 8, o)} 
such that 

U;,dt, 0, w), v;,,(t, 8, o) E C2,0,0(Rd x [0, TI2), in (x ,  s, t), @-almost surely, (3.37) 

{aUU;,,, dUV;,,l 1 cll r 2) c ~ ( p  - 2)), for any E < 1, (3.38) 

Each {D,Y'Z,,,(t)), 1 5 i I d, also admits a representation of the form (3.37H3.39). 

THEOREM 3.10 Assume that the coeficients f j ,  0 I j I 1, and hi, 1 I i I l,, satisfy 
conditions (3.32) and (3.33) of Proposition 3.9. Assume also that I) E C 3 ( ~ d )  and that I) 
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100 D. OCONE AND E. PARDOUX 

and itsjirst three derivatives grow at most at a polynomial rate as 1x1 + oo. Then: 

For any q < p, v(x, s, .) E for all ( x ,  s) E Rd x [0, TI,  
and D,Y'v(x, s, .) is given by  (3.29). 

(3.40) 

For each 1 I i I l,, {D,Y,v(x, S ,  Y)) admits a version of the form (3.41) 

where Ri(., ,, 8, Y )  and Si(* ,  ., 8, Y )  are in Cz'O(Rd x [0, T I )  for p-almost a11 (8,  Y ) ,  and 

(8°K daSl la1 I 2 )  c Zip(~p, ~ ( p  - 2)) for any E < 1, 

for all 1 I i I I,. As a consequence, D,Y'u(., s, Y )  E CZ(Rd) ,  almost surely for every s. 

For each q < p and each s s T, there is a b < oo and an L,,, E Eq(fi, p) 
such that (3.42) 

Remark Statement (3.41) contains a slight abuse of notation. What we mean is 
that the analogues of (3.2) and (3.3') hold for R and S and their derivatives, with the 
modification that, since R and S have no t-dependence, there is no ess sup in the 
expectation; thus, for example, (3.2) becomes E{I R(y ,  s, ., . ) I )  S K ( l  + 1 y Is) for all 
s 5 T. 

There are two important and immediate consequences of Theorem 3.7. The first 
will allow us to apply the extended It8 rule of Section 2 to the random transformation 
v(x, s, Y) .  

COROLLARY 3.11 Let the hypotheses of Theorem 3.7 be given. For each fixed s, each 
1 I i I d ,  each pl > 1 and each p ,  < p, {d,,v(x, s, Y ) )  satisjies hypothesis (A )  with 
moments p ,  and p,. 

The second consequence is the existence of upper and lower limits of Di2v(x, s, Y )  
on the diagonal ( 8  = r) .  These are required in the statement of the stochastic p.d.e. 
for v(x, s, Y). 

COROLLARY 3.12 Let the hypotheses of Theorem 3.10 be given. Then the following 
limits are all dejined: 

D,Y'v(x, r +, Y) = lim D,Y'u(x, S ,  Y )  = R(x, r, r, Y) ,  
s l r  

D,Yfvv(x, r +, Y )  lim D,YIVv(x, s, Y )  = V R ( x ,  r, r, Y ) .  
s i r  

D;V(X, r -, Y) = lim D,Y'v(x, S ,  Y )  = Six, r,  r, P), 
s t r  

D,Y'Vu(x, r -, Y )  = lirn D,YVv(x, s, Y) = VS(x ,  r, r, Y). 
s t r  
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FEYNMAN-KAC FORMULA 101 

The proof of Theorem 4.2 requires refined information about the random variables 
L,,, appearing in the polynomial growth bound (3.42). Define 

From the proof of Lemma 3.2, there is a constant K ,  independent of s, such that 

PROPOSITION 3.13 Assume that the hypotheses of Theorem 3.10 hold. By Definition 
3.4, this implies that there exist a b > 0 and M E  LP([O, T I  x a) such that 

for all IBI 5 3, 0 5 j 5 1, and 1 5 i 5 1,. Then, for every q < p, there exists a constant 
KO,,, independent of s and 0, such that KO,, < co for suflciently large a and 

for (Lebesgue)-almost every 0 I s, and for all la1 5 1. 

The remainder of this section provides the proofs of the results stated so far. None 
of the auxiliary lemmas stated after this point play a direct role in the proof of 
Theorem 4.2. 

Proof of Theorem 3.10from Proposition 3.9 Consider a fixed ( x ,  s). If 1 < q < p, 
then (3.34), Proposition 3.6, implies that X,,,(T) E D i s q  and Z,,,(T) E Di.4. Also, we 
know that E[IX , , , (T )~~ ' ]  < co and EIJZ,,s(T)lq']  < co, for all q' > 1. It is not difficult 
to conclude from this that +(X,,,(T))Z,,,(T) E Di.q for any q < p, and 

In fact, (3.46) is a consequence of Lemma 2.2 applied to the non-random function 
4 ( x ,  z) = +(x)z. Since D' commutes with conditional expectation with respect to O y ,  

(see Lemma 1.  I ) ,  it follows that E{+(X,,,(T))Z,,,(T) I OyT}(x, s, .) E Di.q, and 

This is precisely Eq. (3.29). 
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102 D. OCONE AND E. PARDOUX 

We turn next to the proof of statement (3.41). Recall the representation of the term 
D,Y'X,,,(t) given in (3.39) of Proposition 3.9. D,Y'Z,Jt)  admits a similar representation 

Substitution of these representations into (3.48) leads to 

where 

and S is defined by a similar formula in which the U's are replaced by V's. The 
expression V$(Xx, , (T))  . u~,,(T, O)Z,,,(T) + I+~(X,,,(T))O;,,(T, 8)  inside the conditional 
expectation defining R satisfies conditions (3.38) and (3.39), because U:,, and pi,, 
satisfy (3.38) and (3.39) and {X,+, ( t ) } ,  {Z,,,(t)} and their derivatives are in Lip(co). 
Thus R  inherits the property (3.38) and the polynomial growth of the moments, just 
as v inherited the same properties of X,,,(t) and Z,,,(t) in the proof of Theorem 3.7. 
This involves applying Lemma 3.8, for which we need to know that for some E < 1, 
E(P - 2)/2 > d + 2;  here the assumption that p > 2(d + 3) is used for the application 
of Kolmogorov's continuity criterion. A similar claim holds for S, and this proves 
(3.41). 

(3.42) is a consequence of Lemma 3.2 and the growth estimates of (3.41). 

Proof of Corollary 3.11 Let p ,  < p. Theorem 3.7, (3.21), implies that a , v ( x ,  s, *) 
satisfies condition (A.l) of hypothesis (A). Theorem 3.7, (3.21) and Theorem 3.10, 
(3.42) allow us to apply Lemma 2.4 to conclude that ax,& s, a )  E D;'P* for every x 
and s and that D,Y'J,,V(X, S ,  Y )  = a,D,Y'v(x, s, Y ) .  Condition (A.2) of hypothesis (A)  for 
d,,v(x, s, .) is then an immediate consequence of (3.41) and (3.42) of Theorem 3.10. 
We see that p ,  < p because q < p in statements (3.41) and (3.42). 

The remainder of this section is devoted to the proofs of Propositions 3.6, 3.9, and 
3.13. In general, we shall only sketch the main outlines of the proofs, since a full 
presentation of all the technical details would be too lengthy. We begin with a key 
technical result which we use repeatedly. The idea of this lemma is well-known; see, 
for example, Stroock [16],  Lemmas 3.1 and 3.2, or Krylov [4] ,  Chapter 2, Section 
3, Lemma 3. We adapt it here to our particular definitions. 

Let y = {y(x, s, t ,  o)} and q j  = {?Ax, s, t ,  w) ) ,  0 I j r 1, denote, respectively, R ~ -  and 
R"-valued processes, and assume that l[, y and 1[, ,,qj are progressively measur- 
able in t .  We are interested in the parametrized family of equations 
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104 D. OCONE AND E. PARDOUX 

The general case k > 1 is proved by induction. Indeed, suppose we have proved 
Lemma 3.14 for k' and hypotheses (3.50H3.53) are true for k' + 1. Then, one shows 
that if la1 = k', a"( satisfies an equation like (3.49) with the same qj's and with a new 
y' such that {d8y'; Ipl I 1) c Lip(~p, ~ q ) ,  for any E < 1. By applying Lemma 3.14 with 
k = 1, we conclude that d"( is once continuously differentiable, which concludes the 
induction step. U 

Proof of Proposition 3.6 The differentiability and moment properties of {X,,,(t)} 
are proved from Lemma 3.14, in a manner similar to the proof of differentiability of 
{X,,,(t)} in [14]. Our result differs only in including continuity in s and in concluding 
{daX,,(t); lcl l  r - 1) c Lip(co). The differentiability and moment properties of 
{Z,,,(t)) are proved by applying Lemma 3.14 to the equation 

We need only to verify that the processes hAX,,,(r), r, w) satisfy (3.53), and this is 
easily done using the differentiability properties of {X,,,(t)) and the assumption that 
h j € v .  

We turn next to the proof of Proposition 3.9 for {X , , , ( t ) ) .  We shall first show that 
Eq. (3.30) has a unique solution with the desired regularity properties. Then we shall 
identify this solution with {D,Y'X,.,(t)}. So as not to cause any logical confusion, we 
shall use J,,,(t, 8, o) to denote the solution of (3.30) until we show that it equals 
@Xx. dt). 

LEMMA 3.15 Assume that the hypotheses (3.32) and (3.33) of Proposition 3.9 are in 
force. Then, for every 1 s i 5 d, the equation 

admits a unique strong solution on (a, $, @). Moreover, we may represent this solution 
in the form given in Eqs. (3.37H3.39) of Proposition 3.9. 

Proof Since Eq. (3.56) is a linear equation, it is possible to represent the solution 
explicitly using a variation of constants formula. However, it is easier for us just to 
make use of Lemma 3.14 directly. Let UL.,(t, 8, w) denote the solution to 
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FEYNMAN-KAC FORMULA 105 

where y(x, s, t ,  8) = 1[,,,1 Sf [D,Y'jj](X,,,(r), r) doJ@). The assumption that the j j  coeffi- 
cients belong to V4 and the fact that {d"X,Jt);  ( a (  5 3 )  c Lip(m), which is a 
consequence of (3.19) in Proposition 3.6, imply that Vfi(X,,,(r), r) satisfies condition 
(3.53) of Lemma 3.14 for k = 2. V f i x ,  s, o) is uniformly bounded by assumption (3.31). 
As for y,  the assumption that the f j  coefficients belong to the class 9,(3, p) and the 
differentiability and moment properties of {X,,,(t)) imply that y satisfies conditions 
(3.50) and (3.52) of Lemma 3.14 with k = 2, and Lip(~p, ~ ( p  - 2)) in place of Zip(p, q). 
Lemma 3.14, applied now on the probability space (a, p), then implies that {U:,,} 
satisfies the properties (3.37) and (3.38) of Proposition 3.9. 

Now consider the equation 

for any E < 1. Despite the fact that the term f;l+i(Xx,,(8), 0) in 7 is not progressively 
measurable, f;,+i(X,,,(0), 8)l(s,!1(8) is, and so Lemma 3.14 can be extended to (3.57). 
We therefore obtain that V:,, also satisfies the conditions (3.37) and (3.38) of 
Proposition 3.9. Finally, a simple calculation shows that 

solves (3.56). Uniqueness is proved in the usual way. rn 
LEMMA 3.16 Assume that all the components off , ,  . . . , f ,  belong both to V2 and to 
g y ( l ,  p,) for some p1 > 2. Assume that V f , ,  . . . , Vf, are uniformly bounded. Then for 
every (x ,  s, t )  E Rd x [0, TI2 and for any 2 I p < p,, X,,,(t) E In fact, for every 
(x ,  s), X,,,(.) E (Li3P. Furthermore, {D,Y'X,,,(t)) is a solution of(3.30). 

Proof (Sketch.) The usual proof by Picard iteration works here. We set X',9!(t) = x,  
and, for n > 0, 

We use Proposition A.6 in Ocone & Karatzas [ l o ]  and Lemma 2.2 to verify that 
Xz) , (+)  E ( L i s p  for p < pl and every n, and 
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106 D. OCONE AND E. PARDOUX 

Finally, one shows that E"[supIts ,,I J,,,(t, 0, w) - D2Xt!(t)(w)(2] + 0 as n + oo where 
J , , ,  is the solution to (3.30) found in Lemma 3.15. 

Proof of Proposition 3.9 (Sketch.) All the statements in Proposition 3.9 concerning 
{D,Y'x,,,(~)) are immediate consequences of Lemmas 3.15 and 3.16. We need to prove 
the analogous properties of {D,Y'Z,,,(t)). To do this, let us rewrite Eq. (3.55) in the form 

where hjz, r, w) i hJ(X,,,(r), r, w ) ~ .  Then h,(z, r,-w), . . . , fi,,(z, r, w) can be shown to 
belong to 5f4 and to 9,(1, q)  if q < p. Thus the hj coefficients satisfy the hypotheses 
of Lemma 3.16. This allows us to conclude that {D,Y'Z,,,(t)} solves (3.31). An analysis 
of (3.31) similar to that undertaken on (3.30) in Lemma 3.15, allows one to prove 
Proposition 3.9 for {Z,,,(t)). 

Proof of Proposition 3.13 (Sketch.) For almost every 0, {D,Y'X,,,(t); 0 I t I T) 
satisfies (3.30) interpreted as an equation for fixed 0; a similar statement is true for 
{~,Y'z,,,(t); I t  I T), and (3.31). By applying standard moment bounding arguments 
using the Burkholder-Gundy inequalities and the Gronwall-Bellman inequality, one 
finds that for any given q' < p, there exists constants K and b, independent of 0 and 
s, such that for almost every 0 I s, 

1 aa~,Y'Xx,Jt)lq' v sup I daD~'Zx,,(t)Jq' 
r I)"" 

for all ( a (  1 2 .  By using the representation (3.29) and its generalization to higher 
derivatives, we obtain, using (3.19) and Holder's inequality, that 

for ] a (  I 2 and almost every 0 I s, where K and b are gain independent of s snd 0. 
By substituting this inequality into the definition of ~5,,,,~,. given before the statement 
of Proposition 3.13, we find that 

The proof is completed by taking a large enough to make the integral in the last 
expression finite. rn 
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FEYNMAN-KAC FORMULA 107 

Finally, it is worthwhile to note the variation of constants formula for D,Y'X,,,(t) 
that is obtained by solving (3.30). This leads to expressions which will help us to 
reexpress the basic stochastic partial differential equation for v(x, s, Y )  using antici- 
pating Stratonovich integrals instead of Skorohod integrals. Let @(x, s, t )  denote the 
n x n-matrix valued solution to the equation of first variation for X,. ,( . );  

It may be shown that @(x, s, t )  is invertible; moreover, it follows immediately from 
Proposition 3.6 and its proof that VX,, ,( t)  = @(x, s, t). An application of ItG's rule 
proves that 

From this formula we obtain the identity 

lim D,Y'x,,,(T) = lim D,YiXx,,(T) + V X , , , ( T ) .  f;, +i (x ,  8, Y ) .  (3.62) 
s t e  s l e  

A similar analysis applied to (3.31) yields 

If these identities are used in (3.41) and (3.48), we obtain 

D?V(X, r - ,  Y )  = D?V(X, r +, Y )  + V ( X ,  r ,  Y)hi(x, r,  Y )  + [Vv(x, r,  Y ) ]  . f ; , + i ( ~ ,  r, Y ) .  

(3.64) 

Formal differentiation of (3.64) in x yields 

which may be verified by a rigorous analysis. 
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108 D. OCONE AND E. PARDOUX 

4 A NON-ADAPTED STOCHASTIC PARTIAL DIFFERENTIAL 
EQUATION FOR v(x, s, Y) 

In this section we derive a stochastic partial differential equation for the conditional 
expectation v(x, s, Y) = E{$(X,,s(T))Z,,s(T))Y,), where 

and 

We shall assume throughout this section that the hypotheses of Theorem 3.10 are in 
force. For the sake of clarity we repeat them here: 

H.i) {&b, r, Y ) ) ,  0 < j S I ,  and {h j x ,  r, Y ) } ,  1 I j I 1 ,  are processes in the class 
s4. 

H.ii) {V,fj(x, t, Y ) ) ,  0 < j 2 1, and {h,{x, r, Y)), 1 < j 5 1, are essentially uni- 
formly bounded. 

H.iii) { o x ,  r, Y ) ) ,  0 < j I 1, and {h,(x, r ,  Y ) ) ,  1 < j I 1, are processes in the class 
9,(3, p) for some p > 2(d + 3)  v 8. 

H.iv) $ E C 3 ( ~ d )  and $ and its first three derivatives admit at most polynomial 
growth. 

Notice that in (4.1) and (4.2) the argument of fj and of hj is (x ,  r, Y) rather than 
(x ,  s, o) as in Section 3. This restriction is made to obtain a Markov property with 
respect to the filtration (3, v (9,) = a{X, ,  Y,ls I t, u < Y ) .  

LEMMA 4.1 Let s < t < T and assume Hi)-H.iv). Then 

almost surely, for every ( x ,  s). 

Proof Fix s < t < T. First we establish a type of stochastic flow representation 
of X,,,(T) in terms of X,,,(t). Consider the space of continuous functions 
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FEYNMAN-KAC FORMULA 109 

endowed with the probability measure Q = Pi,,, x PI,, where P,, is Wiener measure 
and [ F P i q 1 ,  is the measure on Co([t, T I ;  R") such that, if q, denotes the canonical process 
q,(. - t) is a Wiener process. If W E  CO([O, TI x R12), we let W(.)  - W(t) denote the 
path 

in Co([t, T I ;  R"). Proposition 3.6 and its proof imply that there exists a measurable 
function F,(x, r, ql ,  q2) on Rd x [0, T - t )  x Co([t, T I ;  R") x Co([O, TI x R12) such 
that t,(r) = F,(x, r, W ( . )  - W(t), Y )  solves 

Uniqueness of solutions to (4.1) and almost sure continuity of its solutions in x 
imply that 

5,(r) = F,(x, r, W(.)  - W(t), Y )  = X,,,(r) for all (x,  r), almost surely. 

Again, using continuity in x of t,(r), it follows that 

is a solution of 

Uniqueness of solutions to (4.5) implies that {5xx,,(l,(r); t I r I T )  is indistinguishable 
from {X,,,(r); t I r I T ) .  Thus formula (4.4) helps sort out the dependence of X,,,(r) 
on W and Y. We can write a similar formula for Z,,,(r). Indeed, let 

Gtb,  W, Y )  = exp hXF,(x, r, W,  Y )  d v r )  - (h(F,(x, r, W, Y) ,  r, Y)I2 dr 

Then we find from (4.4) and (4.5) that 

for all x, almost surely, and 

Z,,,(T) = Z,~s(t)Gi(X,,s(t), W(. )  - W(t), Y )  for all x, almost surely. (4.7) 
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110 D. OCONE AND E. PARDOUX 

Since {W(.)  - W(t))  and %, v CYT are independent and ZX+,(t) and XX,,(t) are 
3, v CYT-measurable, we find from (4.4H4.7) that 

Remark This proof follows the usual method for proving the Markov property 
of solutions to stochastic differential equations. In fact we could have formulated 
and proved a Markov-type property with respect to the filtration 3, v ?g,. Further- 
more, we do not really use all the conditions H.i)-H.iv) in our proof. For example, 
H.iii) is irrelevant and from H.i) we only used the fact that the coefficients are in 9'. 

We are now prepared to state and prove the main theorem. Recall the definition 
of D:v(x, r +, Y) and D:Vv(x, r +, Y) given in Corollary 3.12. 

THEOREM 4.2 Assume Hi)-H.iv). Then for every x, 

for all s I T, almost surely. 

Proof The fundamental calculation of the proof involves applying the extended 
It6 formula of Theorem 2.3 to Zx,s(t)v(Xx,s(t), t, Y). Therefore, we first check that the 
hypotheses of Theorem 2.3 are satisfied for U(t) = (X,,,(t), ZX,,(t)) and @(z, x, Y) = 
zv(x, t, Y). Indeed, Corollary 3.1 1 says that a,@(., .), ax,@(., .). . ax,@(., .) all satisfy 
hypothesis (A) with moments p1  and p ,  for any p1 > 1 and p,  < p. Furthermore, 
(3.19), H.i) and H.ii) imply that for any (x, s) 
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FEYNMAN-KAC FORMULA 11 1 

thus proving (2.7) for U. Equation (3.32) and (3.39) of Proposition 3.9 imply that 
X,,,(') E ILisEP and Z,,,(.) E I l k E P  for any E < 1; since p > 8, we thereby obtain the 
validity of condition (2.9). Finally, H.ii) and H.iii) in conjunction with Lemma 2.1 
imply that {J(X,,,(r), r, o)} E [Li*'p and (h,{X,,,(r), r, w)} E U.:.Ep for 8 < 1, which im- 
plies that condition (2.8) on U is true. Therefore, we may apply Theorem 2.3 in the 
present circumstances. From formula (2.11) we get 

Our strategy shall be to partition [s, TI,  apply (4.9) over each of the increments of 
the partition, and then pass to the limit as the mesh size of the partition tends to 
0. Thus, let ITn' = (s = so < s; < . * .  < s: = T }  be a sequence of partitions of [s, TI 
such that sup,(s;+, - s;) + 0 as n -+ 0. (For notational simplicity we will henceforth 
abbreviate s; by si, when this poses no problem.) Now we apply Lemma 4.1 and then 
Eq. (4.9) in order to write 
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112 D. OCONE AND E. PARDOUX 

where 

For the purposes of the limit argument, it is convenient to label the integrands of 
Eq. (4.8) in a manner corresponding to these last definitions. Thus, we set, 

go,](r) = Vu(x, r, Y)&{x, r, Y) for 0 _<js  11, 

We shall use go(r) to denote (g,,,(r), . . . , g,,,,(r)), and, likewise, yl(r) to denote 
(gl, ,(r), . . . , gl ,  ,,(r)). Formula (4.8) now reads 
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FEYNMAN-KAC FORMULA 113 

We shall show that 

lim gl(r, Y )  = gi(r, Y )  for dr x P-almost every (r, Y ) ,  for all 0 I i I 3. (4.11) 
n+m 

sup loT lg:(r)lq dr for every q I p and 0 2 i 6 3. (4.12) 
n 

Let us show that this will suffice to complete the proof. Indeed, (4.12) implies that 
{1glIq; n 2 1 )  is uniformly integrable on ( [ 0 ,  TI x a, dr x P) for any q < p. Thus, 
because of ( 4 . l l ) ,  J: [g",r) + g;(r)] dr converges in mean square to J: [ g l ( r )  + g2(r)] dr. 
Likewise 

E{foT lg:(r)-gi(r)12 d r ) - 0  as n + m  for i = 0 ,  1 .  (4.13) 

For i = 1, (4.13) implies that 

as n + m.  Without going further we only know that gl (r )  d v r )  is an element of 
D - l S 2 .  However, we know that 

and hence from (4.10) it follows that 

We have already proved that the right-hand side converges in mean square to the 
corresponding expression with gn replaced throughout by g. Since convergence in 
mean square implies convergence in D-'v2,  we can conclude that g l ( . )  is strictly 
Skorohod integrable with respect to Y, in the sense defined in the introduction, and 
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114 D. OCONE AND E. PARDOUX 

This is precisely (4.8). We should note here that it is possible to show directly that 
9, is strictly Skorohod integrable. Indeed, the results of Theorems 3.7 and 3.10 can 
be used to establish that g,  E [L:v2. 

To complete the proof, it remains to prove (4.1 1) and (4.12). (4.1 1) is relatively easy. 
It follows from the fact that all the processes v(x, s, Y), Vv(x, s, Y), V20(x, S, Y), 
D:u(x, S, Y), and D,Y'Vv(x, s, Y) are almost surely continuous in (x, s), that X,,,(t) and 
Z,,,(t) are almost surely continuous in (x, s, t), and that the coefficients &(x, r ,  Y) and 
hi(x, r,  Y) are continuous in x for almost every (r, Y). These continuity properties are 
all true either by assumption, or because of Propositions 3.6, 3.9, and Theorem 3.7 
and 3.10. Thus, for example, 

The other terms work similarly. 
The proof of (4.12) makes use of the polynomial growth bounds derived on the X 

and Z processes in Proposition 3.6 and on aav and daDY1u in Theorems 3.7 and 3.10 
and Proposition 3.13. We shall only do the case g",n detail, as that is the most 
difficult. Observe first that by H.i) and Proposition 3.6, 

admit moments of all orders which are uniformly bounded in s. Now, fix any q and 
q' such that 2 I q < q' < p, and recall the definition of f;,,,,,,,(B, Y) in Proposition 
3.13. From the inequality (3.45) applied to the terms [D~u][X,,~,,  si-,, Y) and 
[D~VV](X ,,,, si- ,, Y), we obtain 

if a is large enough. The last term in this string of inequalities is bounded and is 
independent of n;  the constant K depends only on q, q', and the coefficients & and 
hi. The second and fourth inequalities in this string are a consequence of Holder's 
inequality, the third uses Proposition 3.13. 
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FEYNMAN-KAC FORMULA 115 

Equation (4.8) may be recast in a simpler form if one employs anticipating 
Stratonovich rather than Skorohod integrals. We shall give a brief development of 
this without attempting to state all the technical regularity assumptions needed. We 
shall always assume that at least the hypothesis of Theorem 4.2 hold. 

It is first necessary to define the anticipating Stratonovich integral. We take a 
formal approach, restricted to integrands u in lL:s2, inspired by the results of Nualart 
& Pardoux [ a ] .  For a process u E [1:.' consider the following additional property: 
there exists a neighborhood A of the diagonal of [0, T I 2  such that, 

the process {D,Y'u(t)lO I s, t I T )  admits a version such 
that the map t + Dyu(t) is continuous on A n { s  I t ) ,  either 
in an almost sure sense or as a map into L2(Q). (4.16a) 

the process {Df'u(t)lO I s, t I T )  admits a version such 
that the map t + Dyu(t) is continuous on A n { s  2 t ) ,  
either in an almost sure sense or as a map into L2(Q). (4.16b) 

If u satisfies (4.16), we may define 

D?u(s + ) : = lim D,Y,u(t), 
( t - r s , t > s ]  

in a notation consistent with that of Definition 3.4. 
If u = ( u l ,  . . . , u,J, we define 

We then define the Stratonovich integral as 

The motivation for this definition comes from Nualart and Pardoux [8], in which it 
is shown that, if { u )  satisfies regularity conditions similar to (4.16), 
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116 D. OCONE AND E. PARDOUX 

where 

and {{tk,,)~!,; n r 1) is a sequence of partitions of [0, t ]  whose norms converge to 
zero as n w  m. 

We shall use (4.18) to rewrite the stochastic p.d.e. for v(s, x, y) using the Stratonovich 
integral. For this, it is necessary that the integrands of the stochastic integrals in 
Eq. (4.8) admit traces. Therefore we shall impose an additional regularity condition; 
we assume that the coefficients f,, +j, and hj, j = 1, . . . , 1,; all satisfy property (4.16a) 
for each x. (4.16b) holds automatically because of the progressive measurability of 
the coefficients, so that, for example, D?Sj(x, t ,  y )  = 0 for s > t. Now, we may use Eqs. 
(3.64) and (3.65) to derive 

To state the Stratonovich equation, it is convenient to define the coefficients 

f d x ,  r,  Y) := fo(x, r ,  Y) - [D?h, + j(x, r + , Y) + Vh, + j .  fi, +Ax, r ,  Y)] 2 
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FEYNMAN-KAC FORMULA 117 

Then, applying (4.19) and (4.20) in Eq. (4.8), we derive 

- V(X, r, y)ho(x, r, Y) dr. I 
Notice in particular that in (4.21), the coefficients in the second order term 

involve only the vector fields f,, . . . , J l  which multiply the d@, 1 5 i I I , ,  inputs in 
Eq. (4.1). The reason for this, and the reason for the simple form for (4.21), becomes 
intuitively clear if we rewrite the equations for X and Y using the Stratonovich 
integral for any integral with respect to dY. Formally, 

Heuristically speaking, (4.22) says that for each fixed Y, X,,,(t) is a diffusion driven 
by W with diffusion coefficient a(x, r, Y) = C:' /, f T(x, r, Y) and singular drift 

For each Y, (4.22) is the backward parabolic p.d.e. associated to the diffusion X with 
coefficients o and m. 

Remark To prove the validity of (4.22) and (4.23), in accordance with the definition 
(4.18) of the Stratonovich integral, one should strengthen slightly the hypotheses 
placed on f,, + and hj ,  1 _< j I 1,. That is, one should require that for every R, there 
exists a neighborhood A, of the diagonal of [O, TI2 such that the map, 
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118 D. OCONE AND E. PARDOUX 

admits a version which is continuous as .  on [- R, R] x [AR n {s I t ) ] ,  1 I j I 1 2 .  A 
similar assumption is placed on h j ,  1 I j I 1 2 .  If these conditions are assumed, 

and, hence, taking limits, 

We have used the fact that D?X,,,(r+) = &(X,,,(r), r, Y), which follows from Eq. 
(3.57). I 

Finally, we shall state a converse to Theorem 4.2. The derivation is simply an 
extension of the proof of the Feynman-Kac formula using ItG's rule. 

Let u be a solution to (4.8) and fix (x, s). Given appropriate regularity assumptions 
on u, we will obtain the stochastic integral representation 

by developing an It6 formula for the process (Z,, ,(t)u(X,, ,(t), t ) ) ,  , , , , and by using 
(4.8). When the conditional expectation operation E{. /Y , )  is applied to both sides of 
(4.26), we find 

The process Z,,,(.)u(X,,,(.), .) is the composition of an anticipating random field 
and an It6 process. Itb-Ventzell formulas for the stochastic differentiation of such 
compositions are developed in [ll]. It is important for these formulas to impose 
conditions on the continuity in s of D,u(x, s, Y). 

In the context of the present paper, the correct conditions to use are those proved 
for v in Theorem 3.10 and Proposition 3.13. These differ in a minor way from the 
conditions used in the theorems of [ll]. Therefore we prefer to give a direct proof 
of (4.26). This will not require much work any way because the hard details have 
already been done in the proof of Theorem 4.2. 

To state the result it is convenient to collect all the regularity properties which 
have been proved for u in Section 3, assuming hypotheses Hi)-H.iv). Henceforth we 
shall drop explicit dependence on Y of u(x, s, Y), fix, S, Y), etc., for notational 
simplicity. 

Assume H.i)-H.iv) are in force. We shall say u satisfies C.i) if (see Theorem 3.7) 

C.i) u admits a version such that u(., .) E x [0, TI) almost surely and for 
all s I T and any q > 1, there exists a random variable C, , ,  and an a > 0, depending 
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FEYNMAN-KAC FORMULA 

on q but not on s, such that I Pu(x, s)l I CS,,(1 + I x I"), V 1 cr 1 1 2 and 

sup E{C,4,,) < co. 
s s  T 

We shall say u satisfies C.ii) if (see Theorem 3.10 and Proposition 3.13): 

C.ii) u satisfies conditions (3.40H3.42) of Theorem 3.10; and, for p as in H.iii), 
there exists an M E  LP([O, 71' x R) such that for every q < p, there exist a constant 
a and L,(0, Y) with 

where 

for almost every s, and almost every 0 I s. 
We note the following consequences of C.ii), which are often used. For q < p and 

F E nq,> 1 L4, 

THEOREM 4.3 Assume H.i)-H.iv). Let {u(x, s, Y); x E Rd, 0 I s I T) be a solution to 
(4.8) and assume u satisjes conditions C.i) and C.ii). Then 

for every (x, s), s I T. 

Proof As we have shown above, it suffies to prove the stochastic integral 
representation (4.26). 

Let go,,(x, r), gl,j(x, r), g2(x, r), and g,(x, r) be defined as in the proof of Theorem 
4.2, but with v replaced by u. Thus, for example 
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120 D. OCONE AND E. PARDOUX 

With this notation, (4.8) is written 

Fix (x, s) and let ITn) = {S',"), 0 < i I n) be a sequence of partitions of [s, TI as in 
the proof of Theorem 4.2. 

Then 

I';) is analyzed by the same method applied to 

of (4.10) in the proof of Theorem 4.2. Indeed, by following this proof step by step, 
we obtain 

for every F E  ID:'^. We have expressed the limit (4.33) in weak form because the 
method of Theorem 4.2 is to derive convergence in D - l s 2  of the stochastic integral 
term. To establish convergence of the sequence 

i = O  Js, Lj= 1 
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FEYNMAN-KAC FORMULA 121 

one uses C-ii), (4.28), and (4.29), as in Theorem 4.2. 
Turning now to the analysis of IF) ,  we first note that 

Normally, a correction term appears when replacing a parameter in a Skorohod 
integral (see [8], Section 4) with a random variable, as we have done in the last 
equality of (4.34). In this case the correction term is 0 because XX,,(si) and Z,,,(si) are 
adapted to the past at si and the integral is over the interval [si, si+ J. 

(4.34) is easy to prove by standard methods of anticipating calculus. First, one 
proves that 

whenever F is {s):~~-measurable, F E L4, alIs, is Skorohod integrable, 

~r a4 dr < m, and E ( I T a  dY)* < m. 

Then one approximates Z,,,(s,) and Xx,,(si) by step functions, applies (4.35) and passes 
to the limit. 

Given (4.34) 
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122 D. OCONE AND E. PARDOUX 

Arguing as in Theorem 4.2 and making use of C.i), C.ii) and (4.28), (4.29), we find 

for all F E Dig2. Combining (4.33) and (4.36) gives 

for all F E Dis2. This implies (4.26) immediately and completes the proof. 

5 APPLICATION TO NONLINEAR SMOOTHING 

We finally want to show in this section that in the particular case II/ = 1, the quantity 
v(x, t, Y), for which an SPDE was derived in Section 4, is the Randon-Nikodym 
derivative of a "smoothing conditional law" with respect to a "filtering conditional 
law" for a certain partially observed diffusion model, thus extending the results in 
Pardoux [14] and [I51 (Section 2.5). 

Consider the following system of SDEs: 

where now w = (W, V) is a standard 1, + I ,  dimensional Wiener process in (Q, F, Q), 
and we assume w.1.o.g. that R = Rd x C([O, TI; R1l+I2), R = Go x Ql x R2, with 
Qo = Rd, SZ1 = C([O, TI, RI1), R2 = C([O, TI, R12). 

We define moreover 

1 ' 
z(t) = eXP[S: (h(X(r), r, Y), - - 2 lo l h(X(r), r,  Y)12 dr], 0 5 t 5 T 

Our assumptions are as follows. We suppose that the coefficients fo, f,, . . . , J;, +,,, 
h,, . . . , h,, are g, Q 9, measurable, where gd is the Bore1 a-field over Rd, and 
8, is the a-field of V,-progressively measurable subsets of [0, TI x R,, and locally 
bounded on Rd x [0, TI x R,. We moreover assume that (5.1) is satisfied, with Xo a 
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FEYNMAN-KAC FORMULA 123 

&dimensional random vector independent of (W, V), and further more that the SDE 
appearing on the first line of (5.1) has a unique strong solution {X,%,(t), s I t I T )  
for any starting point (x, s) E Rd x [0, 7'J We finally suppose that: 

It follows from (5.2) and Girsanov's theorem that there exists a probability measure 
P on (R, F) which is equivalent to Q, such that 

and the law of (X,, W, Y) under P equals the law of (X,, W, V) under Q. Under P, 
we are back in the situation of the previous sections (but with much weaker 
assumptions). 

We are interested in the so-called "fixed observation interval smoothing" problem, 
i.e. we want to derive equations for the evolution of the conditional law under Q of 
X, given gT, where t varies and T is fixed. 

It follows from a well-known formula about conditional expectations that for any 
cp E Cb(Rd), 

Hence, if we define the random measure p, on Rd by 

the smoothing conditional law at time t is [p,(l)]-'p,, in other words p, is an 
"unnormalized version" of the smoothing conditional law. 

Consider now the "filtering conditional law" at time t, i.e. the conditional law 
under Q of X,, given CV,. Again, for cp E Cb(Rd), 

Now the "unnormalized filtering conditional law" a, defined as 

is known to satisfy the Zakai equation under the present assumptions (see Pardoux 
[l5], Th. 2.3.3) 
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124 D. OCONE AND E. PARDOUX 

where o ,  is the law of X,, 

where 

We can now state the main result of this section. 

THEOREM 5.1 For any 0 < t 5 T, the "unnormalized smoothing law" p, is absolutely 
continuous with respect to the "unnormalized filtering law" a t ,  and 

dpt 
- ( x )  = v(x,  t ,  Y) a,-a.e., a.s. 
dot 

In other words, 

since a(X(u),  u 2 t )  v CYT and a(X(s),  s I t )  v YT are conditionally independent given 
a(X(t ) )  v Y,. Indeed 

and 
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FEYNMAN-KAC FORMULA 125 

It now remains to show that for any B, @ C?i, measurable mapping 

From the monotone class theorem, it sufficies to prove the result when G(x, Y) = 
A(x)+(Y), where A E CdRd), I) is measurable and non negative, in which case the 
required identity follows easily from the definition of a. 

If we now return to the assumptions of Section 4, then the Radon-Nikodym 
derivative u satisfies the backward SPDE (4.8). Under certain assumptions, we can 
show that {a,) is the unique solution of the Zakai equation (see Pardoux [IS] Th. 
3.4.33 and also that v is the unique solution of the backward SPDE (4.8), hence the 
unnormalized (and also the normalized) smoothing law is characterized through the 
solutions of a forward and a backward SPDE. 

COROLLARY 5.2 Let the assumptions H.i)-H.iv) of Section 4 hold. Then the smoothing 
density u satisfies Eq. (4.8) withfinal condition v(x, T, Y) = 1. It is the unique solution 
in the class of these solutions satisfying conditions C.i) and C.ii) in Section 4. 
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