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APPROXIMATION OF THE HEIGHT PROCESS OF A CONTINUOUS STATE
BRANCHING PROCESS WITH INTERACTION

IBRAHIMA DRAMÉ AND ETIENNE PARDOUX

ABSTRACT. We first show that the properly rescaled height process of the genealogical tree of a
continuous time branching process converges to the height process of the genealogy of a (possibly
discontinuous) continuous state branching process. We then prove the same type of result for
generalized branching processes with interaction.

1. INTRODUCTION

Continuous state branching processes (or CSBP in short) are the analogues of Galton-Watson
(G-W) processes in continuous time and continuous state space. Such classes of processes have
been introduced by Jirina [16] and studied by many authors, including Grey [14] and Lamperti
[19]. These processes are the only possible weak limits that can be obtained from sequences of
rescaled G-W processes, see Lamperti [20] and Li [26], [27].

While rescaled discrete-time G-W processes converge to a CSBP, it has been shown in Duquesne
and Le Gall [12] that the genealogical structure of the G-W processes converges too. More
precisely, the corresponding rescaled sequence of discrete height processes, converges to the
height process in continuous time that has been introduced by Le Gall and Le Jan in [22].

A lot of work has been devoted recently to generalized branching processes, which model com-
petition within the population. This includes generalized CSBPs, see among many others Li
[24], Li, Yang and Zhou [25] and the references therein. For the approximation of such gen-
eralized CSBPs by discrete time generalized GW processes, we refer to the general results in
Bansaye, Caballero and Méléard [2], and for the approximation by continuous time generalized
GW processes to our recent paper [11].

Some work has been also devoted recently to the description of the genealogy of such general-
ized CSBPs, see Le, Pardoux and Wakolbinger [23] and Pardoux [29] for the case of continuous
such processes and both Berestycki, Fittipaldi and Fontbona [3] and Li, Pardoux and Wakol-
binger [28] for the general case. [3] allows processes without a Brownian component unlike
[28], but the latter allows more general interactions. The present paper studies the convergence
of the genealogy of a generalized continuous time GW process to that of a generalized possibly
discontinuous CSBP, under the same assumptions as [28].

We first give a construction of the CSBP as a scaling limit of continuous time G-W branching
processes. To then give a precise meaning to the convergence of trees, we will code G-W trees
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by a continuous exploration process as already defined by Dramé et al. in [10], and we will
establish the convergence of this (rescaled) continuous process to the continuous height process
defined in [28], see also [12]. Each jump of our generalized CSBP corresponds to the birth of
a significant proportion of the total population, whose genealogical tree needs to be explored by
our height process. This gives rise to a special term in the equation for the height process, which
has possibly unbounded variations and has no martingale property. It also destroys any possible
Markov property of the height process. The tightness of such a term cannot be established by
standard techniques. We use for that purpose a special method which has been developed in [28],
see the proof of Proposition 3.4 below. The main result of this paper is Theorem 4.4 in Section
4.

The organization of the paper is as follows : in Section 2 we recall some basic definitions and
notions concerning branching processes. Section 3, which is by far the longest one, considers
the height process in the case without interaction. It is devoted to the description of the discrete
approximation of both the population process and the height process of its genealogical tree.
We prove the convergence of the height process, and of its local time. Section 4 introduces
the interaction, via a Girsanov change of probability measure, and establishes the main result.
We consider first the case where the interaction function has a bounded derivative, and then
the general situation, which allows in particular the popular so–called logistic (i.e. quadratic)
interaction.

We shall assume that all random variables in the paper are defined on the same probability space
(Ω,F ,P). We shall use the following notations Z+ = {0,1,2, ...}, N= {1,2, ...}, R= (−∞,∞)
and R+ = [0,∞). For x ∈ R+, [x] denotes the integer part of x.

2. THE HEIGHT PROCESS OF A CONTINUOUS STATE BRANCHING PROCESS

2.1. Continuous state branching process. A continuous state branching process (CSBP) is an
R+-valued strong Markov process having the property Px+y = Px ∗Py, with Px denoting the law
of the process when starting from x at time t = 0. More precisely, a CSBP Xx = (Xx

t , t > 0)
(with initial condition Xx

0 = x) is a Markov process taking values in [0,∞], where 0 and ∞ are
two absorbing states, and satisfying the branching property; that is to say, its Laplace transform
satisfies

E [exp(−λXx
t )] = exp{−xut(λ )} , for λ > 0,

for some non negative function ut(λ ). According to Silverstein [33], the function ut is the unique
nonnegative solution of the integral equation

(2.1) ut(λ ) = λ −
∫ t

0
ψ(ur(λ ))dr,

where ψ is called the branching mechanism associated with Xx and is defined by

ψ(λ ) = bλ + cλ
2 +

∫
∞

0
(e−λ z−1+λ z1{z≤1})µ(dz),

where b ∈ R, c > 0 and µ is a σ -finite measure which satisfies that (1∧ z2)µ(dz) is a finite
measure on (0,∞). We shall in fact assume in this paper that

(H) :
∫

∞

0
(z∧ z2)µ(dz)< ∞ and c > 0.

The finiteness of the measure (z∧ z2)µ(dz) implies that the process Xx does not explode and
allows to write the last integral in the above equation in the following form

(2.2) ψ(λ ) = bλ + cλ
2 +

∫
∞

0
(e−λ z−1+λ z)µ(dz).
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Let us recall that b represents a drift term, c is a diffusion coefficient and µ describes the jumps
of the CSBP. The CSBP is then characterized by the triplet (b,c,µ) and can also be defined as the
unique non–negative strong solution of a stochastic differential equation. More precisely, from
Fu and Li [13] (see also the results in Dawson-Li [8]) we have that

(2.3) Xx
t = x−b

∫ t

0
Xx

s ds+
√

2c
∫ t

0

∫ Xx
s

0
W (ds,du)+

∫ t

0

∫
∞

0

∫ Xx
s−

0
zM(ds,dz,du),

where W (ds,du) is a space-time white nose on (0,∞)2, M(ds,dz,du) is a Poisson random mea-
sure on (0,∞)3, with intensity dsµ(dz)du, and M is the compensated measure of M.

2.2. The height process in the case without interaction. We shall interpret below the function
ψ defined by (2.2) as the Laplace exponent of a spectrally positive Lévy process Y . Lamperti
[19] observed that CSBPs are connected to Lévy processes with no negative jumps by a simple
time-change. More precisely, define

Ax
s =

∫ s

0
Xx

t dt, τs = inf{t > 0, Ax
t > s} and Y (s) = Xx

τs .

Then, until its first hitting time of 0, Y (s) is a Lévy process of the form

(2.4) Y (s) =−bs+
√

2cB(s)+
∫ s

0

∫
∞

0
zΠ(dr,dz),

where B is a standard Brownian motion and Π(ds,dz) = Π(ds,dz)−dsµ(dz), Π being a Poisson
random measure on R2

+ independent of B with mean measure dsµ(dz). We refer the reader to
[19] for a proof of that result. In order to code the genealogy of the CSBP, Le Gall and Le
Jan [22] introduced the so-called height process, which is a functional of a Lévy process with
Laplace exponent ψ; see also Duquesne and Le Gall [12]. In this paper, we will use the new
definition of the height process H given by Li et al. in [28]. Indeed, if the Lévy process Y has
the form (2.4), then the associated height process is given by

(2.5) cH(s) = Y (s)− inf
06r6s

Y (r)−
∫ s

0

∫
∞

0

(
z+ inf

r6u6s
Y (u)−Y (r)

)+

Π(dr,dz),

and it has a continuous modification. Note that the height process H is the one defined in Chapter
1 of [12]. i.e cH(s) = |{Y s

(r); 0 ≤ r ≤ s}|, where Y s
(r) := infr≤u≤s Y (u) and |A| denotes the

Lebesgue measure of the set A. A graphical interpretation of (2.5) is as shown on Figure 1.
Suppose that Y has a unique jump of size z at time s, and let s′ := inf{r > s, Yr = Ys−}. On the
interval [s,s′], Hr equals Yr− z, reflected above Ys− = Ys− z, while for r 6∈ [s,s′], Hr = Yr.
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FIGURE 1. Trajectories of Y and H.

Note that we can rewrite (2.5) as

cH(s) = Y (s)− inf
0≤r≤s

Y (r)−R(s), where

R(s) =
∫ s

0

∫
∞

0

(
z+ inf

r6u6s
Y (u)−Y (r)

)+

Π(dr,dz).
(2.6)

Let Ls(t) denote the local time accumulated by the process H at level t up to time s. The existence
of Ls(t) has been established in [12]. We have the following Proposition, see Li et al. [28].

Proposition 2.1. (Itô-Tanaka formula for the local time of H) We have
(2.7)

Ls(t)= c(H(s)−t)+−
∫ s

0
1{H(r)>t}dY (r)+

∫ s

0

∫
∞

0
1{H(r)>t}

(
z+ inf

r6u6s
Y (u)−Y (r)

)+

Π(dr,dz).

2.3. The height process in the case with interaction. Now the stochastic differential equation
(2.3) is replaced by

(2.8) Xx
t = Xx

0 +
∫ t

0
f (Xx

s )ds+
√

2c
∫ t

0

∫ Xx
s

0
W (ds,du)+

∫ t

0

∫
∞

0

∫ Xx
s−

0
zM(ds,dz,du),

where f is a function f : R+→ R, which satisfies

(2.9) f ∈ C 1(R+), f (0) = 0, f ′(z)≤ θ

for all z ∈ R, for some θ ∈ R. In this case, the process Y will be defined as

(2.10) Y (s) =
√

2cB(s)+
∫ s

0

∫
∞

0
zΠ(dr,dz),

where B is again standard Brownian motion and again Π denotes the compensated measure
Π(ds,dz) = Π(ds,dz)−dsµ(dz). This means that in this subsection b = 0.
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The SDE for H reads, see [28]

cH(s) = Y (s)+Ls(0)+
∫ s

0
f ′(Lr(H(r)))dr

−
∫ s

0

∫
∞

0
[z− (Ls(H(r))−Lr(H(r)))]+ Π(dr,dz).(2.11)

3. APPROXIMATION OF THE HEIGHT PROCESS WITHOUT INTERACTION

Consider a population evolving in continuous time with m ancestors at time t = 0, in which to
each individual is attached a random vector describing her lifetime and her number of offsprings.
We assume that those random vectors are independent and identically distributed (i.i.d). The rate
of reproduction is governed by a finite measure ν on Z+ = {0,1,2, ...}, satisfying ν(1) = 0. More
precisely, each individual lives for an exponential time with parameter ν(Z+), and is replaced by
a random number of children according to the probability ν(Z+)

−1
ν .

We will first renormalize this model, then we will present the results of convergence of the popu-
lation process, and finally we will prove the convergence of the height process of its genealogical
tree, and of the local time of the height process.

Let N > 1 be an integer which will eventually go to infinity. In the next two sections, we choose
a sequence δN ↓ 0 such that, as N→ ∞,

(3.1)
1
N

∫ +∞

δN

µ(dz)→ 0.

Because of assumption (H) this implies in particular that

1
N

∫ +∞

δN

zµ(dz)→ 0.

Moreover, we will need to consider the truncated branching mechanism

(3.2) ψδN (λ ) = cλ
2 +

∫
∞

δN

(e−λ z−1+λ z)µ(dz).

3.1. A discrete mass approximation. In this subsection, we obtain a CSBP as a scaling limit of
continuous time Galton–Watson branching processes. In other words, the aim of this subsection
is to set up a “discrete mass – continuous time” approximation of the process Xx solution of (2.3)
. To this end, we set

(3.3) hN(s) = s+
ψδN ((1− s)N)

Nψ ′
δN
(N)

, |s|6 1.

It is easy to see that s→ hN(s) is an analytic function in (−1,1) satisfying hN(1) = 1 and

dn

dsn hN(0)≥ 0, n≥ 0.

Therefore hN is a probability generating function. and we have

hN(s) = ∑
`≥0

νN(`)s`, |s|6 1,

where νN is probability measure on Z+. The approximation of (2.3) will be given by the total
mass XN,x of a population of individuals, each of which has mass 1/N. Given an arbitrary x > 0,
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the initial mass is XN,x
0 = [Nx]/N, and XN,x follows a Markovian jump dynamics : from its current

state k/N,

XN,x jumps to


k+`−1

N at rate ψ ′
δN
(N)νN(`)k, for all `≥ 2;

k−1
N at rate ψ ′

δN
(N)νN(0)k.

In this process, each individual dies without descendant at rate

ψδN (N)

N
= cN +

∫
∞

δN

zµ(dz)− 1
N

∫
∞

δN

(1− e−Nz)µ(dz);

it dies and leaves two descendants at rate

cN +
1
N

∫
∞

δN

(Nz)2

2
e−Nz

µ(dz);

and it dies and leaves k descendants (k ≥ 3) at rate

1
N

∫
∞

δN

(Nz)k

k!
e−Nz

µ(dz).

We note that NXN,x
t is a continuous time branching process with m = [Nx] ancestors, and a rate

of reproduction governed by the finite measure ν given by ν(0) = ψ ′
δN
(N)νN(0) and ν(`) =

ψ ′
δN
(N)νN(`) for all `≥ 2.

Let D([0,∞),R+) denote the space of functions from [0,∞) into R+ which are right continuous
and have left limits at any t > 0 (as usual such a function is called càdlàg). We shall always equip
the space D([0,∞),R+) with the Skorohod topology. The next proposition is a consequence of
Theorem 4.1 in [11].

Proposition 3.1. Suppose that Assumption (H) is satisfied. Then, as N → +∞, {XN,x
t , t > 0}

converges to {Xx
t , t > 0} in distribution on D([0,∞),R+), where Xx is the unique solution of the

SDE (2.3).

3.2. The approximate height process HN . In this subsection, we shall define {HN(s), s ≥
0}, the height process associated to the population process {XN,x

t , t ≥ 0}. We will use the
same approximation of the height process made and detailed in [10]. We have reproduced in
Figure 2 a picture from [10], which shows a typical trajectory of the approximate height process.
Note that Theorem 3.3 in [10] establishes a correspondence between the law of the exploration
process and the law of the associated branching process, which will be implictly exploited below.
The approximating height process is constructed with the help of several mutually independent
Poisson process, and a sequence of i.i.d. random variables, which after rescaling is the number
of newborns for each birth event.
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FIGURE 2. (A) The non-binary tree and its associated exploration process.
(B) The exploration process. The t-axis is real time as well as exploration
height, the s-axis is exploration time. The difference with the case of binary
branching is that after each upward reflection, the process remembers how
many additional reflections above the same level the process must experience,
before being free to go below that level. In this picture, those numbers are
successively 0, 2, 1 and 0. 0 additional reflections means a single reflection,
i.e. a binary branching: the ancestor is replaced by two children. 2 additional
reflections means 1+2= 3 reflections at the corresponding level, which means
that the ancestor is replaced by four children, etc...

Before making precise the evolution of HN , we need to define its local time LN
s (t), accumulated

by HN at level t up to time s by

(3.4) LN
s (t) = lim

ε 7→0

1
ε

∫ s

0
1{t≤HN(r)<t+ε}dr.

LN
s (t) equals 1/N times the number of pairs of t-crossings of HN between times 0 and s. In other

words, LN
s (t) equals (1/2)∗ (1/N) times the number of visits at level t. Note that this process is

neither right- nor left–continuous as a function of s.

We now introduce several Poisson processes. They will be mutually independent, even if we
do not repeat it. Let first {QN

s , s ≥ 0} be a Poisson process with intensity 2
∫

∞

δN
(1− e−Nz −

Nze−Nz)µ(dz). This process will describe the “arrival” of multiple births. Let {PN
s , s ≥ 0} and

{P∗,Ns , s ≥ 0}, be two mutually independent Poisson processes with respective intensities 2cN2

and
2
∫

∞

δN
(e−Nz−1+Nz)µ(dz). Note that the above intensities are the rates of birth and death of the

population process NXN,x, multiplied by 2N. The slope of HN is ±2N, which explains the factor
2N. Let us define PN,−

s = PN
s +P∗,Ns , ∀ s≥ 0. Let {ZN

i , i> 1} be a sequence of i.i.d r.v.’s taking
their values in the set {k/N, k≥ 2}, which are independent of the Poisson processes, and whose
law is precised as follows.

P(ZN
i = k/N) =

(∫
∞

δN

(1− e−Nz−Nze−Nz)µ(dz)
)−1 ∫ ∞

δN

(Nz)k

k!
e−Nz

µ(dz), k ≥ 2.
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Let {V N
s , s≥ 0} be the càdlàg {−1,1}–valued process which is such that, s−almost everywhere,

dHN(s)/ds = 2NV N
s . The R+×{−1,1}–valued process {(HN(s),V N

s ), s≥ 0} solves the SDE

HN(s) =2N
∫ s

0
V N

r dr,

V N
s =1+2

∫ s

0
1{V N

r−=−1}dPN
r +2

∫ s

0
1{V N

r−=−1}dQN
r

−2
∫ s

0
1{V N

r−=+1}dPN,−
r +2N

(
LN

s (0)−LN
0+(0)

)
+2N ∑

i>0,SN
i ≤s

{
LN

s
(
HN(SN

i )
)
−LN

SN
i

(
HN(SN

i )
)}
∧
(

ZN
i −

1
N

)
,

(3.5)

where the SN
i ’s are the successive jump times of the process

Q̃N
s =

∫ s

0
1{V N

r−=−1}dQN
r .

For any i > 0, NZN
i −1 denotes the number of reflections of HN above the level HN(SN

i ) before
the process HN may go below that level HN(SN

i ).

We write the first line of (3.5) as

cHN(s) = 2cN
∫ s

0
1{V N

r =+1}dr−2cN
∫ s

0
1{V N

r =−1}dr .

Adding this to the second identity in (3.5) divided by 2N, using the notations

M 1,N
s =

1
N

∫ s

0
1{V N

r−=−1}
(
dPN

r −2cN2dr
)
,

M 2,N
s =

1
N

∫ s

0
1{V N

r−=+1}
(
dPN

r −2cN2dr
)
,(3.6)

M ∗,N
s =

1
N

∫ s

0
1{V N

r−=+1}
(
dP∗,Nr −2

∫
∞

δN

(e−Nz−1+Nz)µ(dz)dr
)
,

and the identity a∧b = b− (b−a)+ for a,b > 0, we obtain

cHN(s) =Y N(s)+LN
s (0)−RN(s),(3.7)

where

Y N(s) = M 1,N
s −M 2,N

s +Z N
s + ε

N(s),(3.8)

ε
N(s) =

1
2N
− V N

s

2N
−M ∗,N

s −LN
0 (0)+

∫
∞

δN

zµ(dz)
(

s−2
∫ s

0
1{V N

r =+1}dr
)

(3.9)

+
2
N

∫
∞

δN

(1− e−Nz)µ(dz)
∫ s

0
1{V N

r =+1}dr,

Z N
s =

∫ s

0
ZN

Q̃N
r

dQ̃N
r − s

∫
∞

δN

zµ(dz).

and

RN(s) = ∑
i>0,SN

i ≤s

(
ZN

i −
1
N
−
{

LN
s
(
HN(SN

i )
)
−LN

SN
i

(
HN(SN

i )
)})+

.

Note that M 1,N
s M 2,N

s and M ∗,N
s are martingales, while Z N

s is not a martingale, but the sum of
a martingale and a process with bounded variations which tends to 0 as N→∞, see below (3.12)
and Corallary 3.12.
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We shall need the following result in the proof of Proposition 3.7, which is a semi–discrete (con-
tinuous time – discrete space) analogue of the Lévy representation of the local time of Brownian
motion at 0.

Lemma 3.2. For any N ≥ 1,s > 0,

LN
s (0) =− inf

0≤r≤s
Y N(r).

Proof. Recall (3.7). We first note that, since LN
· (0) increases only when HN(s) = 0, LN

s (0) =
LN

rs(0), where rs = sup{r ≤ s;HN(r) = 0}. We also have RN(rs) = 0. Consequently

LN
s (0) = LN

rs(0) =−Y N(rs)≤− inf
0≤r≤s

Y N(r).

To establish the converse inequality, let 0 ≤ us ≤ s be such that Y N(us) = inf0≤r≤s Y N(r). Since
Y N(us)+LN

us(0) = cHN(us)+RN(us)≥ 0,

LN
s (0)≥ LN

us(0)≥−Y N(us) =− inf
0≤r≤s

Y N(r) .

We have similarly

Lemma 3.3. For any N ≥ 1, i≥ 1 such that SN
i ≤ s,

LN
s
(
HN(SN

i )
)
−LN

SN
i

(
HN(SN

i )
)
=− inf

SN
i ≤r≤s

(
Y N(r)−Y N(SN

i )
)
,

for s≥ SN
i such that LN

s
(
HN(SN

i )
)
−LN

SN
i

(
HN(SN

i )
)
≤ ZN

i −1/N.

Proof. The argument is the same as in the previous lemma. On the considered time interval,
HN(s) is reflected above the level HN(Si), instead of being reflected above 0.

From the previous Lemmas, we can rewrite (3.7) in the form

cHN(s) = Y N(s)− inf
0≤r≤s

Y N(r)−RN(s), where(3.10)

RN(s) = ∑
i>0,SN

i ≤s

(
ZN

i −
1
N
+ inf

SN
i ≤r≤s

(
Y N(r)−Y N(SN

i )
))+

.(3.11)

3.3. Taking the limit in the SDE for HN . Let us first state one of the main results of this
subsection.

Proposition 3.4. As N→ ∞, HN ⇒ H in C (R+), where H is given by (2.5), or equivalently by
(2.6).

The main step in the proof of this Proposition is the proof of weak convergence of Y N to Y for
the topology of locally uniform convergence. For this purpose, we shall first establish an a priori
estimate concerning HN in Proposition 3.7, and then study the convergence of each term on the
right hand side of (3.8). We will then need to use the same technical argument as in the proof
of Proposition 3.13 in [28], and finally we conclude by using Lemma 3.16 below, which can be
viewed as an extension of the second Dini theorem, and is a version of a result from [28].

Let ΛN = ∑i≥1 δ(T N
i ,ZN

i ), where the T N
i ’s are the jump times of the Poisson process QN . We can

couple the two point processes ΛN and ΠN = ∑i≥1 δ(SN
i ,Z

N
i ) in such a way that

Π
N(ds,dz) = 1V N

s−=−1Λ
N(ds,dz).
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It is not hard to see (exploiting e.g. Corollary VI.3.5 in Cinlar [7]) that ΛN is a Poisson Point
Process with mean measure 2dsµN(dz), where µN is a measure on (0,+∞) which is supported
on the set {k/N, k ≥ 2}, and is specified by

µN({k/N}) =
∫

∞

δN

(Nz)k

k!
e−Nz

µ(dz) .

Let us establish

Lemma 3.5. The sequence µN converges to µ as N → ∞, in the sense of weak convergence of
measures on (0,+∞).

Proof. It suffices to show that for any f ∈C(0,+∞) with compact support, µN( f )→ µ( f ). But

µN( f ) =
∫

∞

δN
∑
k≥2

f
(

k
N

)
(Nz)k

k!
e−Nz

µ(dz)→
∫

∞

0
f (z)µ(dz),

as N→ ∞. The pointwise convergence of the integrand follows from the fact that, for fixed z, if
ξN denotes a Poi(Nz) r.v., since f (0) = f (1/N) = 0, at least for N large enough,

fN(z) := ∑
k≥2

f
(

k
N

)
(Nz)k

k!
e−Nz = E f

(
ξN

N

)
→ f (z),

as N → ∞ from the law of large numbers. Suppose that supp( f ) ⊂ [a,+∞). Lebesgue’s domi-
nated convergence theorem implies that∫

∞

a/2
fN(z)µ(dz)→

∫
∞

a/2
f (z)µ(dz).

It remains to show that
∫ a/2

0 fN(z)µ(dz)→ 0 =
∫ a/2

0 f (z)µ(dz). But for z≤ a/2,

fN(z) = ∑
k≥aN

f
(

k
N

)
(Nz)k

k!
e−Nz,

| fN(z)| ≤ ‖ f‖∞P(ξN > aN)≤ 4‖ f‖∞

a2
z
N
,

where we have used the fact that Var(ξN/N) = z/N. The result follows, since N−1 ∫ ∞

δN
zµ(dz)→

0, again from assumption (3.1).

Remark 3.6. From the definition of µN , we have∫
∞

0
µN(dz) =

∫
∞

δN

µ(dz), and
∫

∞

0
zµN(dz) =

∫
∞

δN

zµ(dz).

Hence, we can rewrite Z N , which appeared in (3.8), in the following form

Z N
s =

∫ s

0
ZN

Q̃N
r

dQ̃N
r − s

∫
∞

δN

zµ(dz)

= M N
s −

∫
∞

δN

zµ(dz)
(

s−2
∫ s

0
1{V N

r =−1}dr
)
, where(3.12)

M N
s =

∫ s

0

∫
∞

0
zΠ

N
(dr,dz) .(3.13)

We need an apriori estimate on the sequence of processes HN .

Proposition 3.7. For any s > 0,

sup
N≥1

E
(

sup
0≤r≤s

HN(r)
)
< ∞ .
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Proof. We first recall that by construction, HN(s)≥ 0, for all s≥ 0, a.s. We note that∫ s

0
1{V N

r =1}dr+
∫ s

0
1{V N

r =−1}dr = s,

and from the identity V N
r = 1{V N

r =1}−1{V N
r =−1} and the first line of (3.5), we deduce that∫ s

0
1{V N

r =1}dr−
∫ s

0
1{V N

r =−1}dr = (2N)−1HN(s) .

It follows from those two identities that

(3.14) (2N)−1HN(s) = 2
∫ s

0
1{V N

r =1}dr− s≥ 0 .

Moreover from Lemma 3.2 that LN
s (0) =− inf0≤r≤s Y N

r . From (3.7), (3.8), (3.9) and the last two
identities, we deduce that

cHN(s)≤ sup
0≤r≤s

{
M 1,N

r + |M 2,N
r |+Z N

r + |M ∗,N
r |

}
+N−1

+
2s
N

∫
∞

δN

µ(dz)+(2N)−1
∫

∞

δN

zµ(dz) sup
0≤r≤s

HN(r) .
(3.15)

Since from assumption (3.1), (2N)−1 ∫ ∞

δN
zµ(dz)→ 0 as N→ ∞, the proposition’s assertion fol-

lows from the next four facts. Concerning M 1,N , we deduce from the first line of (3.6) and
Doob’s L2 inequalities for martingales that

E
(

sup
0≤r≤s

|M 1,N
r |

)
≤ 2

(
E
{
|M 1,N

s |2
})1/2 ≤ 2

√
2cs .

The same holds concerning M 2,N . We next note that the expectation of the sup in s of the
absolute value of the sum of the last two terms of the right hand side of (3.15) is bounded by

s
N

∫
∞

δN

µ(dz)+(2N)−1
∫

∞

δN

zµ(dz) E
(

sup
0≤r≤s

HN(r)
)
,

which we can plug in (3.15) after we have replaced on the left HN(s) by sup0≤r≤s HN(r) and
taken the expectation. We now consider Z N

s . An argument similar to the one leading to (3.14)
yields from (3.12)

Z N
s = M N

s − (2N)−1
∫

∞

δN

zµ(dz)HN
s ≤M N

s .

Now we deduce from the Burkholder–David–Gundy inequality for possibly discontinuous mar-
tingales (see e.g. Theorem IV.48 in [31]) that there exists a constant C > 0 such that

E
(

sup
0≤r≤s

|M N
r |
)
≤CE

{(∫ s

0

∫
∞

0
z2

Π
N(dr,dz)

)1/2
}

≤CE

{(∫ s

0

∫ 1

0
z2

Π
N(dr,dz)

)1/2
}
+CE

∫ s

0

∫
∞

1
zΠ

N(dr,dz)

≤C
(

s
∫ 1

0
z2

µN(dz)
)1/2

+C s
∫

∞

1
zµN(dz),

whose limsupN→∞ is finite. It will be shown below in Lemma 3.9 that Esup0≤r≤s |M
∗,N
r | → 0,

as N→ ∞. This concludes the proof.

The first two identities in the previous proof, combined with the just obtained result, clearly yield
the following essential result.
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Lemma 3.8. As N −→ ∞,∫ s

0
1{V N

r =1}dr −→ s
2

;
∫ s

0
1{V N

r =−1}dr −→ s
2

a.s., locally uniformly in s.

We need to establish the following result (recall (3.6)).

Lemma 3.9. As N −→ ∞,(
M ∗,N

s , s≥ 0
)
−→ 0 in probability, locally uniformly in s.

Proof. Since M ∗,N
s is a purely discontinuous local martingale, we deduce from (3.6) that[

M ∗,N]
s =

1
N2

∫ s

0
1{V N

r =+1}dP∗,Nr and 〈M ∗,N〉s =
2

N2

∫
∞

δN

(e−Nz−1+Nz)µ(dz)
∫ s

0
1{V N

r =+1}dr.

From the Cauchy–Schwartz and Doob’s L2-inequality for martingales, we deduce that

E
(

sup
0≤r≤s

∣∣M ∗,N
r
∣∣)≤√2s

N

∫
∞

δN

zµ(dz),

which tends to 0 as N→ ∞ from assumption (3.1).

Recalling (3.9), we have the

Proposition 3.10. As N −→ ∞, εN(s)−→ 0 in probability, locally uniformly in s.

Proof. By using the definition of LN in (3.4), it is easily checked that LN
0 (0) = 1/2N. As N→∞,

N−1V N
s −→ 0 a.s uniformly with respect to s. However, from (3.14), we have that∣∣∣∣ s2 −

∫ s

0
1{V N

r =+1}dr
∣∣∣∣= 1

4N
HN(s).

Combining this with assumption (3.1) and Proposition 3.7, we deduce that(
s
2
−
∫ s

0
1{V N

r =+1}dr
)∫

∞

δN

zµ(dz)−→ 0 in probability, locally uniformly in s.

The result follows by combining these arguments with (3.9) and Lemma 3.9.

We now deduce from Lemma 3.5 and Lemma 3.8

Proposition 3.11. As N → ∞, ΠN ⇒ Π, in the sense of weak convergence in distribution of
random probability measures, where Π is a Poisson Point Process with mean measure dsµ(dz).

Proof. In view of Lemma 3.5, all we need to show is that for any z > 0 such that µ({z}) =
0, ΠN(·,(z,+∞))⇒ Π(·,(z,+∞)). We first note that ΛN converges to a PPP Λ, whose mean
measure is twice that of Π. Next, since ΠN is dominated by ΛN , it is tight (see the criterion
in Lemma 16.15 of [18]), hence it converges along a subsequence to some limiting measure Π̃,
which must be a simple point measure, by comparison with Λ. We shall not distinguish the
subsequence from the original one, by an abuse of notation. Let H N (resp. H ) denote the
filtration generated by the process HN (resp. by the process H). We have that

Π
N((0,s],(z,∞))−2µN(z,∞)

∫ s

0
1{V N

r =−1}dr is an (H N
s ) martingale.
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This implies that for any n≥ 1, 0 < s1 < · · ·< sn = s < s′, any bounded Φ ∈C(Rn;R)

E
[
Φ(HN

s1
, . . . ,HN

sn)Π
N((s,s′],(z,+∞))

]
= 2µN(z,∞)E

[
Φ(HN

s1
, . . . ,HN

sn)
∫ s′

s
1{V N

r =−1}dr
]
.

Taking the limit as N→ ∞ in this last identity yields that

E
[
Φ(Hs1 , . . . ,Hsn)Π̃((s,s′],(z,+∞))

]
= µ(z,∞)E

[
Φ(Hs1 , . . . ,Hsn)(s

′− s)
]
.

This being true for all n ≥ 1, all 0 < s1 < · · · < sn = s < s′ and all bounded Φ ∈ C(Rn;R), we
have that the simple point process Π̃((0,s],(z,∞)) is such that Π̃((0,s],(z,∞))− sµ(z,∞) is a
martingale. This shows that it is a Poisson process with intensity µ(z,∞). Hence Π̃ is a PPP with
mean measure dsµ(dz), so it has the same law as Π.

Recall (3.12). We now deduce from the above.

Corollary 3.12. As N −→ ∞, Z N ⇒M in D([0,∞)), where

Ms =
∫ s

0

∫
∞

0
zΠ(dr,dz).

Proof. We already know that the second term on the right-hand side of (3.12) equals

−(2N)−1
∫

∞

δN

zµ(dz)HN
s ,

which tends to 0 as N → ∞, locally uniformly in s. We now split M N
s into two terms. For any

δ > 0 such that µ(δ ) = 0, one can deduce from Proposition 3.11 that as N→ ∞,∫ ·
0

∫
∞

δ

zΠ
N
(dr,dz)⇒

∫ ·
0

∫
∞

δ

zΠ(dr,dz) in D([0,∞)).

On the other hand,

E

[
sup

0≤s≤s̄

(∫ s

0

∫
δ

0
zΠ

N
(dr,dz)

)2
]
≤ 8 E

∫ s̄

0
1V N

r =−1dr
∫

δ

0
z2

µN(dz)

→ 4s̄
∫

δ

0
z2

µ(dz),

while

E

[
sup

0≤s≤s̄

(∫ s

0

∫
δ

0
zΠ(dr,dz)

)2
]
≤ 4s̄

∫
δ

0
z2

µ(dz) .

Since
∫

δ

0 z2µ(dz) can be made arbitrarily small by choosing δ > 0 small enough, the result
follows from the above statements by standard arguments.

The following result, with the identification of the constants, is Proposition 5.3 in [23], see also
Proposition 4.23 in [10].

Lemma 3.13. As N −→ ∞,(
M 1,N

s ,M 2,N
s , s≥ 0

)
=⇒

(√
cB1

s ,
√

cB2
s , s≥ 0

)
in (D([0,∞)))2,

where B1
s and B2

s are two mutually independent standard Brownian motions.

Let us define

(3.16) BN(s) = M 1,N
s −M 2,N

s .

We deduce readily
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Corollary 3.14. As N −→ ∞,(
BN(s), s≥ 0

)
=⇒

(√
2cB(s), s≥ 0

)
in (D([0,∞))),

where B is a standard Brownian motion.

Let us rewrite (3.9) in the form

(3.17) Y N(s) = ε
N(s)+BN(s)+Z N

s ,

We have proved so far that BN ⇒
√

2cB and εN +Z N ⇒M , as N→ ∞. Then taking the weak
limit in (3.17), we have in fact the

Corollary 3.15. As N −→ ∞, Y N =⇒ Y for the topology of locally uniform convergence, where

Y (s) =
√

2cB(s)+
∫ s

0

∫
∞

0
zΠ(dr,dz).

Proof. As we have taken separately the limit in BN and in Z N , it is clear that, at least along a
subsequence, the pair converges, and the limits are independent, since one is Brownian motion,
and the other is a Poisson integral, both being martingales w.r.t. the same filtration. Note that
since the jump times do not move as N increases, in fact Y N ⇒ Y for the topology of locally
uniform convergence.

We can now turn to the

Proof of Proposition 3.4 : Thanks to Corollary 3.15 and to a famous theorem of Skorohod,
we can assume that Y N(s)→ Y (s) a.s., locally uniformly in s. From this we will deduce that
HN(s)→ H(s) in probability, locally uniformly in s. We will first show that from any subse-
quence, we can extract a further subsequence which converges a.s., locally uniformly in s. We
will follow closely the proofs of Proposition 3.13 and Corollary 3.15 in [28]. First of all, the
same argument as that of Proposition 3.13 in [28] yields that HN(s)→ H(s) in probability, for
any s ≥ 0. We fix s̄ > 0 arbitrary, and let Ds̄ be a countable dense subset of [0, s̄]. Along a sub-
sequence, still denoted as HN by an abuse of notation, HN(s)→ H(s), for any s ∈ Ds̄. We first
note that, as in [28], we can rewrite (2.5) as follows. Let, for any 0≤ r < s, Y s

r := infr≤u≤s Y (u).
We have

cH(s) = Y (s)−Y s
0− ∑

0≤r≤s
∆Y s

r,

where ∆Y s
r denotes the jump at r of the increasing function r 7→ Y s

r.

Since the process Y is càdlàg, with only positive jumps,

ΦY (h) := sup
0≤r<s≤r+h≤s̄

(Y (s)−Y (r))−

is a.s. a continuous function of h on [0,1], such that ΦY (0) = 0. Now

c(H(s+h)−H(s)) = Y (s+h)−Y (s)−Y s+h
0 +Y s

0− ∑
0≤r≤s

(Y s+h
r −Y s

r)− ∑
s<r≤s+h

Y s+h
r

≥ Y (s+h)−Y (s)− ∑
s<r≤s+h

Y s
r

But since Y (s+h)−∑s<r≤s+h Y s+h
r ≥ infs<r≤s+h Y (r), we have

c(H(s+h)−H(s))≥ inf
s<r≤s+h

Y (r)−Y (s), hence

(H(s+h)−H(s))− ≤ΦY (h) .
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It follows from (2.6) that the same formula relates HN with Y N , and we also have

(HN(s+h)−HN(s))− ≤ΦY N (h).

However, it is not true that ΦY N (h)→ 0, as h→ 0, since Y N has negative jumps of size −1/N.
So limsuph→0 ΦY N (h)≤ 1/N. Moreover, since Y N(s)→ Y (s) uniformy on [0, s̄], we have that
limsuph→0 supN≥N0

ΦY N (h)≤ 1/N0, for all N0 ≥ 1. Now the fact that HN(s)→ H(s) uniformly
on Ds̄ (hence also on [0, s̄]) follows from the next Lemma. The result follows. �

It remains to establish

Lemma 3.16. Consider a sequence {gN , N ≥ 1} of càlàg functions from R+ into R, g a con-
tinuous function from R+ into R, and s̄ > 0, which are such that gN(s)→ g(s), for all s ∈ Ds̄.
Assume moreover that for all N0 ≥ 1

limsup
h→0

sup
N≥N0

(gN(s+h)−gN(s))− ≤ 1/N0 .

Then, as N→ ∞,
sup
s∈Ds̄

|gN(s)−g(s)| → 0.

The proof of this Lemma, which can be viewed as an extension of the second Dini theorem, is
essentially the same as that of Lemma 3.16 in [28], even if its statement is slightly different, so
we do not reproduce it.

We now have

Proposition 3.17. As N −→ ∞, (HN ,Y N ,RN)⇒ (H,Y,R) in C ([0,+∞))× (D([0,+∞))2.

Proof. We can rewrite (3.10), in the form

RN(s) = Y N(s)− inf
0≤r≤s

Y N(r)− cHN(s).

It follows from Proposition 3.4 that the sequence {HN , N ≥ 1} is tight in C (R+). However, from
Corollary 3.15, we deduce that the sequences {Y N(s), s≥ 0}N≥1 and {inf0≤r≤s Y N(r), s≥ 0}N≥1
are tight in D([0,+∞)). Moreover, the limit of the sequence
{inf0≤r≤s Y N(r), s ≥ 0}N≥1 is a.s. continuous. Hence the tightness of the sequence {RN , N ≥
1} follows from Proposition 5.4 in the Appendix. Now since (HN ,Y N ,RN) is tight, along an
appropriate subsequence (which we do not distinguish notationally from the original sequence),

(HN ,Y N ,RN)⇒ (H,Y,R).

Moreover, from (2.6) and the fact that the law of Y is uniquely specified, we deduce that the limit
is unique, which implies that the whole sequence converges.

We shall need the following result in the proof of Proposition 3.22 below.

Lemma 3.18. For any δ > 0, as N→ ∞,∫ ·
0

∫
δ

0

(
z− 1

N
+ inf

r≤u≤·
Y N(u)−Y N(r)

)+

Π
N(dr,dz)⇒

∫ ·
0

∫
δ

0

(
z+ inf

r6u6·
Y (u)−Y (r)

)+

Π(dr,dz)

in D([0,∞)).

Proof. Let us decompose cHN(s) and cH(s) in the form

cHN(s) = BN
s +PN

s −RN
s , cH(s) = Bs +Ps−Rs,
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where RN
s (resp. Rs) is defined by the second line of (3.10) (resp. of (2.6)),

PN
s =

∫ s

0

∫
∞

0
zΠ

N
(dr,dz), Ps =

∫ s

0

∫
∞

0
zΠ(dr,dz),

and BN
s (resp. Bs) is the remainder of cHN(s) (resp. of cH(s)). First we not that BN

· ⇒
B· for the topology of uniform convergence (the limit is continuous). Next we introduce the
decompositions

PN
δ ,−(s) =

∫ s

0

∫
δ

0
zΠ

N
(dr,dz), PN

δ ,+(s) =
∫ s

0

∫
∞

δ

zΠ
N
(dr,dz),

Pδ ,−(s) =
∫ s

0

∫
δ

0
zΠ(dr,dz), Pδ ,+(s) =

∫ s

0

∫
∞

δ

zΠ(dr,dz),

RN
δ ,−(s) =

∫ s

0

∫
δ

0

(
z− 1

N
+ inf

r≤u≤s
Y N(u)−Y N(r)

)+

Π
N(dr,dz),

RN
δ ,+(s) =

∫ s

0

∫
∞

δ

(
z− 1

N
+ inf

r≤u≤s
Y N(u)−Y N(r)

)+

Π
N(dr,dz),

Rδ ,−(s) =
∫ s

0

∫
δ

0

(
z+ inf

r≤u≤s
Y (u)−Y (r)

)
Π(dr,dz),

Rδ ,+(s) =
∫ s

0

∫
∞

δ

(
z+ inf

r≤u≤s
Y (u)−Y (r)

)
Π(dr,dz) .

Let C N(s) :=PN
δ ,+(s)−RN

δ ,+(s), C (s) =Pδ ,+(s)−Rδ ,+(s). We will show in Lemma 3.19 that
C N(s) is tight. Moreover its limit C (s) is continuous since Pδ ,+(s) and Rδ ,+(s) have the same
jumps and there are finitely many of those on each compact interval. Hence the convergence is
(locally) uniform in s. Finally

RN
δ ,−(s) =−cHN(s)+BN

s +C N(s)+PN
δ ,−(s) .

The sum of the first three terms on the right is tight and converges locally uniformly in s towards
its continuous limit −cH(s)+Bs +C (s), while the last term can be shown (so to speak “by
hand”) to be tight in D(R+). Hence the right hand side is tight in D(R+), and so is the left hand
side. Taking the weak limit in the last identity, we obtain that the limit of RN

δ ,−(s) is Rδ ,−(s),
which is our Lemma.

We want to check the tightness of the sequence {C N ,N ≥ 1} using the Aldous criterion (see
section 16, page 176 in [5]). Let τ be a stopping time with value in [0,s] and let ε > 0 be a real
number which will eventually go to zero.

Lemma 3.19. The sequence {C N ,N ≥ 1} is tight in D(R+).

Proof. Recall the notations used in the previous proof. We have

C N(s) = C N
1 (s)−C N

2 (s), where

C N
1 (s) =

∫ s

0

∫
∞

δ

ϒN(s,r,z)ΠN(dr,dz), C N
2 (s) = 2

∫ s

0
1V N

r =−1dr
∫

∞

δ

z µN(dz), with

ϒN(s,r,z) =
1
N
+

(
Y N(r)− inf

r≤u≤s
Y N(u)

)
∧
(

z− 1
N

)
.
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The tightness in C (R+) of the sequence C N
2 is rather clear. We have the following a priori

estimates

0≤ ϒN(s,r,z)≤ z, and if r ≤ s < s′,

0≤ ϒN(s′,r,z)−ϒN(s,r,z)≤ Y N(s)− inf
s≤u≤s′

Y N(u).

We now verify Aldous’s criterion. The first condition (see (16.22) in [5]) follows easily from the
inequality

C N
1 (s)≤

∫ s

0

∫
∞

δ

zΠ
N(dr,dz).

We next want to establish the second condition (see (16.23) in [5]), which will follow from the
fact that for all η > 0,

lim
ε→0

limsup
N→+∞

P
(∣∣C N

1 (τ + ε)−C N
1 (τ)

∣∣> η
)
= 0.

In order to verify this condition, we first note that

0≤ C N
1 (τ + ε)−C N

1 (τ) =
∫

τ+ε

τ

∫
∞

δ

ϒN(τ + ε,r,z)ΠN(dr,dz)

+
∫

τ

0

∫
∞

δ

[ϒN(τ + ε,r,z)−ϒN(τ,r,z)]ΠN(dr,dz)

≤
∫

τ+ε

τ

∫
∞

δ

zΠ
N(dr,dz)+

(
Y N(τ)− inf

τ≤u≤τ+ε
Y N(u)

)
Π

N([0,τ]× [δ ,+∞)).

Now using the Portmanteau theorem, Corollary 3.15 and Markov’s inequality, we deduce that

limsup
N→+∞

P
(∣∣C N

1 (τ + ε)−C N
1 (τ)

∣∣> η
)
≤ 4

η
ε

∫
∞

δ

zµ(dz)

+P
((

Y (τ)− inf
τ≤u≤τ+ε

Y (u)
)

Π([0,τ]× [δ ,+∞))>
η

2

)
.

However, using the strong Markov property of Y , we obtain

E
{(

Y (τ)− inf
τ≤u≤τ+ε

Y (u)
)

Π([0,τ]× [δ ,+∞))

}
=E

(
− inf

0≤u≤ε
Y (u)

)
E{Π([0,τ]× [δ ,+∞))} .

Combining this with the previous inequality and Markov’s inequality, it follows that

limsup
N→+∞

P
(∣∣C N

1 (τ + ε)−C N
1 (τ)

∣∣> η
)
≤ 4

η
ε

∫
∞

δ

zµ(dz)

+
2
η
E
(
− inf

0≤u≤ε
Y (u)

)
E{Π([0,τ]× [δ ,+∞))}

−−→
ε→0

0 .

thanks to the monotone convergence theorem.

3.4. Convergence of the local time of the approximate height process. The aim of this sub-
section is to pass to the limit as N → ∞ in the process {LN

s (H
N(s)),s ≥ 0}. This is done in

Proposition 3.29. For that sake, we shall first establish Theorem 3.26, which gives the weak
convergence of LN towards L, for a topology of functions of s and t. The proof of Theorem 3.26
will rely on Proposition 3.22 which provides the tightness of the sequence

{
LN

s (t), t ≥ 0
}

N≥1, for
each s≥ 0 fixed, and on Lemma 3.27 which establishes that the mapping s 7→ Ls(t) is continuous,
uniformly in t.

We will need the following identity in the proof of Proposition 3.22. Writing V N
r as

1{V N
r−=+1}−1{V N

r−=−1}
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and using (3.6), we deduce from (3.5):

V N
s =1+2N

(
M 1,N

s −M 2,N
s −M ∗,N

s +Z N
s
)
−4cN2

∫ s

0
V N

r dr

+4
∫

∞

δN

(1− e−Nz)µ(dz)
∫ s

0
1{V N

r =+1}dr

+2N
∫

∞

δN

zµ(dz)
(

s−2
∫ s

0
1{V N

r =+1}dr
)
+2N

(
LN

s (0)−LN
0+(0)

)
−2N ∑

i>0,SN
i ≤s

(
ZN

i −
1
N
−
{

LN
s
(
HN(SN

i )
)
−LN

SN
i

(
HN(SN

i )
)})+

.

(3.18)

We shall need the two next lemmas in the proof of Proposition 3.22.

Lemma 3.20. For any s≥ 0, as N −→+∞,∫ s

0
1{HN(r)>t}1{V N

r =−1}dr⇒ 1
2

∫ s

0
1{H(r)>t}dr.

Proof. Imitating the proof of Lemma 3.8, we have

2
∫ s

0
1{HN(r)>t}1{V N

r =−1}dr−
∫ s

0
1{HN(r)>t}dr =

1
2N

∫ s

0
1{HN(r)>t}

dHN(r)
dr

dr

=
1

2N
(HN(s)− t)+ ,

which clearly tends to 0 in probability, as N→∞. It thus remains to take the limit in the sequence
{
∫ s

0 1{HN(r)>t}dr}N≥1. For any δ > 0, we set

Γδ = {r ∈ (0,s); |H(r)− t| ≤ δ}.
It follows from the properties of the process H that Leb(Γδ )→ 0 a.s. as δ → 0, where Leb(A)
denotes the Lebesgue measure of the set A. We have∫ s

0
1{HN(r)>t}dr =

∫
Γδ

1{HN(r)>t}dr+
∫
(0,s)\Γδ

1{HN(r)>t}dr,∫ s

0
1{H(r)>t}dr =

∫
Γδ

1{H(r)>t}dr+
∫
(0,s)\Γδ

1{H(r)>t}dr.

The two first terms on the right hand sides are dominated by Leb(Γδ ). But for r ∈ (0,s)\Γδ ,
1{H(r)>t} = gδ (H(r)− t), where gδ is the continuous function from R into [0,1] given as

gδ (x) = 1∧ [δ−1(x+δ/2)+].

We clearly have ∫
(0,s)\Γδ

1{H(r)>t}dr =
∫
(0,s)\Γδ

gδ (H(r)− t)dr, and∫
(0,s)\Γδ

gδ (H
N(r)− t)dr⇒

∫
(0,s)\Γδ

gδ (H(r)− t)dr.

Note that 1{HN(r)>t} and gδ (HN(r)− t) differ only when |HN(r)− t| ≤ δ/2. Let hδ be a continu-
ous function from R into [0,1] which equals 1 on [−δ/2,δ/2], and 0 outside [−2δ/3,2δ/3]. Let
now kδ be a function from R into [0,1] which equals 0 on [−2δ/3,2δ/3] and 1 outside [−δ ,δ ].
We have∣∣∣∣∫

(0,s)\Γδ

1{HN(r)>t}dr−
∫
(0,s)\Γδ

gδ (H
N(r)− t)dr

∣∣∣∣≤ ∫ s

0
hδ (H

N(r)− t)kδ (H(r)− t)dr,

which tends to 0 in probability.
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The proof of the next Lemma is essentially the same as that of Lemma 5.4 in [23], and is omitted.

Lemma 3.21. For any s > 0, t > 0, the following identities hold a.s.

(HN(s)− t)+ = 2N
∫ s

0
V N

r 1{HN(r)>t}dr

V N
s 1{HN(s)>t} = 2NLN

s (t)+
∫ s

0
1{HN(r)>t}dV N

r .

The next proposition constitutes a first step towards the proof of Theorem 3.26.

Proposition 3.22. For each s≥ 0 fixed,
{

LN
s (t), t ≥ 0

}
N≥1 is tight in D([0,+∞)).

Proof. Writing the second line of Lemma 3.21 as

LN
s (t) =

1
2N

V N
s 1{HN(s)>t}−

1
2N

∫ s

0
1{HN(r)>t}dV N

r ,

and using (3.18), (3.16), (3.12), Lemma 3.3 and the first line of Lemma 3.21, we deduce that for
any t ≥ 0, a. s.

LN
s (t) =AN

s (t)−
∫ s

0
1{HN(r)>t}dBN(r)+

∫ s

0
1{HN(r)>t}dM ∗,N

r +DN
s (t),(3.19)

where

AN
s (t) = c(HN(s)− t)++

V N
s

2N
1{HN(s)>t}−

2
N

∫
∞

δN

(1− e−Nz)µ(dz)
∫ s

0
1{HN(r)>t}1{V N

r =+1}dr ,

(3.20)

and

DN
s (t) = ∑

i>0,SN
i ≤s

1{HN(SN
i )>t}

(
ZN

i −
1
N
+ inf

SN
i ≤r≤s

(
Y N(r)−Y N(SN

i )
))+

−
∫ s

0
1{HN(r)>t}

∫
∞

0
zΠ

N
(dr,dz).

(3.21)

The proof is organized as follows. Step 1 establishes that the sequence {AN
s (t), t ≥ 0}N≥1 is tight,

and any limit of a converging subsequence is a. s. continuous. Step 2 shows that as N→+∞,

(3.22) sup
t≥0

∣∣∣∫ s

0
1{HN(r)>t}dM ∗,N

r

∣∣∣−→ 0.

Step 3 establishes that the sequence
{∫ s

0 1{HN(r)>t}dBN(r), t ≥ 0
}

N≥1
is tight, and any limit of a

converging subsequence is a.s. continuous. Finally step 4 shows that the sequence {DN
s (t), t ≥

0}N≥1 is tight as random elements of D([0,+∞)). The desired result follows by combining the
above arguments with Proposition 5.4 below.

STEP 1. The tightness of two first terms of the right–hand side of (3.20) is established in the
same way as in the proof of Proposition 5.7 in [23]. The sup over all t > 0 of the absolute value
of the last term is easily shown to go to 0, as N→ ∞, again thanks to (A).

STEP 2. We first note that

sup
t≥0

∣∣∣∣∫ s

0
1{HN(r)>t}dM ∗,N

r

∣∣∣∣≤ ∣∣M ∗,N
s
∣∣+ sup

t≥0

∣∣∣∣∫ s

0
1{HN(r)≤t}dM ∗,N

r

∣∣∣∣ .
Thanks Lemma 3.9, it remains to prove

sup
t≥0

∣∣∣∫ s

0
1{HN(r)>t}dM ∗,N

r

∣∣∣−→ 0 as N→+∞.
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To this end, we fix s > 0, and consider the process

GN(t) =
∫ s

0
1{HN(r)≤t}dM ∗,N

r .

Let G N
t denote the σ -algebra generated by the random variables

ΘgN =
∫ s

0
gN(r)dM ∗,N

r ,

where gN is bounded and P measurable (P stands for the σ -algebra of predictable subsets of
Ω×R+) and satisfies {gN(r) = 0} ⊃ {HN(r)> t}. We first establish the fact that {GN(t), t ≥ 0}
is a G N

t -martingale. To this end, it suffices to verify that E[(GN(t ′)−GN(t))ΘgN ] = 0 for t < t ′

and any gN as above. Indeed, it is a product of two stochastic integrals with respect to M ∗,N ,
with two integrands whose product is zero. Let T > 0. In order to finally establish (3.22), we
note that

E
(

sup
0≤t≤T

GN(t)
)
≤
(
E sup

0≤t≤T

(
GN(t)

)2
) 1

2

≤

(
4E
(∫ s

0
1{HN(r)≤T}dM ∗,N

r

)2
) 1

2

≤
(

8
N
E
∫ s

0
1{HN(r)≤T}dr

∫
∞

δN

zµ(dz)
) 1

2

≤2
√

2s
(

1
N

∫
∞

δN

zµ(dz)
) 1

2
,

whose tends to 0 as N → ∞, thanks to (A), where we have used Cauchy Schwarz’s and Doob’s
inequalities. The desired result follows.

STEP 3. The tightness of
{∫ s

0 1{HN(r)>t}dBN(r), t ≥ 0
}

N≥1
is established in the same way as in

the proof of Proposition 5.7 in [23] which we do not reproduce here. On the other hand, we will
adapt the idea of this proof to treat the tightness of the sequence {DN

s (t), t ≥ 0}N≥1.

STEP 4. Let δ > 0 be a real number which will eventually go to zero. Using the identity
(b−a)+−b =−(a∧b) for a,b > 0, we can rewrite (3.21) in the following

DN
s (t) = XN

s (t)+FN
s (t),

where

XN
s (t) =

∫ s

0
1{HN(r)>t}

∫
δ

0

(
z− 1

N
+ inf

r≤u≤s
Y N(u)−Y N(r)

)+

Π
N(dr,dz)

−
∫ s

0
1{HN(r)>t}

∫
δ

0
zΠ

N
(dr,dz)

−
∫ s

0
1{HN(r)>t}

∫
∞

δ

z∧
(

1
N
−
[

inf
r≤u≤s

Y N(u)−Y N(r)
])

Π
N(dr,dz), and

FN
s (t) =2

∫ s

0
1{HN(r)>t}1{V N

r =−1}dr
∫

∞

δ

zµN(dz).

From Lemmas 3.5 and 3.20, it is easy to see that

FN
s (t) =⇒

∫ s

0
1{H(r)>t}dr

∫
∞

δ

z µ(dz) as N→+∞.

Moreover, we have ∫ s

0
1{H(r)>t}dr =

∫
∞

t
Ls(u)du,
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which is a.s. continuous. So according to Proposition 5.4 below, it remains only to show the
sequence {XN

s (t), t ≥ 0}N≥1 is tight as random elements of D([0,+∞)). To this end, we set

XN
s (t) =−XN,δ ,1

s (t)+XN,δ ,2
s (t),

where

XN,δ ,1
s (t) =

∫ s

0
1{HN(r)>t}

∫ 1/δ

δ

z∧
(

1
N
−
[

inf
r≤u≤s

Y N(u)−Y N(r)
])

Π
N(dr,dz),

XN,δ ,2
s (t) = CN,δ

s (t)−
∫ s

0
1{HN(r)>t}

∫
δ

0
zΠ

N
(dr,dz) and

CN,δ
s (t) =

∫ s

0
1{HN(r)>t}

∫
δ

0

(
z− 1

N
+ inf

r≤u≤s
Y N(u)−Y N(r)

)+

Π
N(dr,dz)

+
∫ s

0
1{HN(r)>t}

∫
∞

1/δ

z∧
(

1
N
−
[

inf
r≤u≤s

Y N(u)−Y N(r)
])

Π
N(dr,dz).

(3.23)

To show the tightness of the sequence {XN
s (t), t ≥ 0}N≥1, we first show that for all η > 0,

(3.24) limsup
N→∞

P
(

sup
t≥0
|XN,δ ,2

s (t)|> η

)
−−−→
δ→0

0.

Afterwards we will prove that the sequence {XN,δ ,1
s (t), t ≥ 0}N≥1 is tight as random elements

of D([0,+∞)). Finally the desired result follows by combining this with Lemma 5.6 below. In
order to prove (3.24), we first note that

E
(

sup
t≥0

∣∣∣∣∫ s

0
1{HN(r)>t}

∫
δ

0
zΠ

N
(dr,dz)

∣∣∣∣)
≤ E

∣∣∣∣∫ s

0

∫
δ

0
zΠ

N
(dr,dz)

∣∣∣∣+E
(

sup
t≥0

∣∣∣∣∫ s

0
1{HN(r)≤t}

∫
δ

0
zΠ

N
(dr,dz)

∣∣∣∣)

≤

(
E
(∫ s

0

∫
δ

0
zΠ

N
(dr,dz)

)2
) 1

2

+

(
Esup

t≥0

∣∣∣∣∫ s

0
1{HN(r)≤t}

∫
δ

0
zΠ

N
(dr,dz)

∣∣∣∣2
) 1

2

≤
(

2E
∫ s

0
1V N

r =−1dr
∫

∞

δ

z2
µN(dz)

) 1
2
+

(
8sup

t≥0
E
∫ s

0
1{HN(r)≤t}1V N

r =−1dr
∫

δ

0
z2

µN(dz)
) 1

2

≤
(

2s
∫

δ

0
z2

µN(dz)
) 1

2

+

(
8s
∫

δ

0
z2

µN(dz)
) 1

2

= 3
√

2s

√∫
δ

0
z2 µN(dz),

where we have used Cauchy Schwarz’s and Doob’s inequalities in the second and the third in-
equalities. From Markov’s inequality, we deduce that

(3.25) limsup
N→+∞

P
(

sup
t≥0

∣∣∣∣∫ s

0
1{HN(r)>t}

∫
δ

0
zΠ

N
(dr,dz)

∣∣∣∣≥ η

2

)
≤ 6

η

√
2s

√∫
δ

0
z2 µ(dz)−−−→

δ→0
0,

since as N → ∞,
∫

δ

0 z2µN(dz)→
∫

δ

0 z2µ(dz), which follows from assumption (3.1) and the fol-
lowing formula, which is easily established by the same computation as done in the proof of
Lemma 3.5, ∫

δ

0
z2

µN(dz) =
1
N

∫
δ

δN

zµ(dz)+
∫

δ

δN

z2
µ(dz) .

However, recalling (3.23), we have

sup
t≥0
|CN,δ

s (t)| ≤
∫ s

0

∫
δ

0

(
z− 1

N
+ inf

r≤u≤s
Y N(u)−Y N(r)

)+

Π
N(dr,dz)+

∫ s

0

∫
∞

1/δ

zΠ
N(dr,dz).
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Now using the Portmanteau theorem, Lemma 3.18 and Markov’s inequality, we deduce that

limsup
N→+∞

P
(

sup
t≥0
|CN,δ

s (t)|> η

2

)
≤P

(∫ s

0

∫
δ

0

(
z+ inf

r≤u≤s
Y (u)−Y (r)

)+

Π(dr,dz)>
η

4

)

+
8
η

s
∫

∞

1/δ

zµ(dz).

We deduce from Corollary 3.5 in [28] and Markov’s inequality that

limsup
N→+∞

P
(

sup
t≥0
|CN,δ

s (t)|> η

2

)
≤ 4

η
C(s)

∫
δ

0
z2

µ(dz)+
8
η

s
∫

∞

1/δ

zµ(dz).

with C(s) = (α
√

s/c)∨ s and α = e/(e−1), which implies that

limsup
N→+∞

P
(

sup
t≥0
|CN,δ

s (t)|> η

2

)
≤ 4

η
C(s)

∫
δ

0
z2

µ(dz)+
8
η

s
∫

∞

1/δ

zµ(dz)−−−→
δ→0

0.

Consequently, we obtain (3.24) by combining this with (3.25) and (3.23). It remains to prove that
the sequence {XN,δ ,1

s (t), t ≥ 0}N≥1 is tight as random elements of D([0,+∞)). To this end, we
show that the sequence {XN,δ ,1

s (t), t ≥ 0}N≥1 satisfies the conditions of Proposition 5.3 below.
The first condition follows easily from the fact that

limsup
N→+∞

E
(

XN,δ ,1
s (t)

)
≤ 2s

∫ 1/δ

δ

z µ(dz).

In order to verify the second condition, we will show that for any T > 0, there exists C > 0,θ > 1
such that for any 0 < t < T,h > 0,

E
(∣∣∣XN,δ ,1

s (t +h)−XN,δ ,1
s (t)

∣∣∣ ∣∣∣XN,δ ,1
s (t)−XN,δ ,1

s (t−h)
∣∣∣)≤Chθ .

In order to simplify the notations below we let

a+,N
s (t) := 1{t<HN(s)≤t+h}, and a−,Ns (t) := 1{t−h<HN(s)≤t}.

An essential property, which will be crucial below, is that a+,N
s (t)×a−,Ns (t)= 0. Also (a+,N

s (t))2 =

a+,N
s (t), and similarly for a−,N . Thus, we have

0≤ XN,δ ,1
t −XN,δ ,1

t+h ≤
∫ s

0
a+,N

r (t)
∫

∞

δ

zΠ
N(dr,dz)

=
∫ s

0
a+,N

r (t)
∫ 1/δ

δ

zΠ
N
(dr,dz)+2

∫ s

0
a+,N

r (t)1V N
r =−1dr

∫ 1/δ

δ

z µN(dz),

and

0≤ XN,δ ,1
t−h −XN,δ ,1

t ≤
∫ s

0
a−,Nr (t)

∫ 1/δ

δ

zΠ
N(dr,dz)

=
∫ s

0
a−,Nr (t)

∫ 1/δ

δ

zΠ
N
(dr,dz)+2

∫ s

0
a−,Nr (t)1V N

r =−1dr
∫ 1/δ

δ

z µN(dz).

Because a+,N
s (t)×a−,Ns (t) = 0, the expectation of the product of∫ s

0
a−,Nr (t)

∫ 1/δ

δ

zΠ
N
(dr,dz) with

∫ s

0
a−,Nr (t)

∫ 1/δ

δ

zΠ
N
(dr,dz)

vanishes. We only need to estimate the expectations

(3.26) E
(∫ s

0
a+,N

r (t)
∫ 1/δ

δ

zΠ
N
(dr,dz)×

∫ s

0
a−,Nr (t)1V N

r =−1dr
)
,

E
(∫ s

0
a−,Nr (t)

∫ 1/δ

δ

zΠ
N
(dr,dz)×

∫ s

0
a+,N

r (t)1V N
r =−1dr

)
,
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and

(3.27) E
(∫ s

0
a+,N

r (t)1V N
r =−1dr×

∫ s

0
a−,Nr (t)1V N

r =−1dr
)
.

Since the two first equations are symmetrical, we will only estimate (3.26). To this end, we use
the Cauchy–Schwarz inequality and Lemma 3.25 below,

E
(∫ s

0
a+,N

r (t)
∫ 1/δ

δ

zΠ
N
(dr,dz)×

∫ s

0
a−,Nr (t)1V N

r =−1dr
)

≤
(

2E
∫ s

0
a+,N

r (t)dr
∫ 1/δ

δ

z2
µN(dz)

) 1
2
(
E
(∫ s

0
a−,Nr (t)dr

)2
) 1

2

≤Ch3/2.

Finally, concerning (3.27) : Again from Lemma 3.25 with t ′ = t +h,

E
(∫ s

0
a+,N

r (t)dr×
∫ s

0
a−,Nr (t)dr

)
≤Ch2.

We now conclude that the sequence {XN,δ ,1
s (t), t ≥ 0}N≥1 is tight as random elements of D([0,+∞)).

The desired result follows.

Recall (3.17). For K > 0, let τN
K be the time of the first jump of Y N of size greater than or equal

to K.

Lemma 3.23. Let s,K > 0. Then there exists a constant C such that for all N ≥ 1

E

(
sup

0≤r<s∧τN
K

∣∣Y N(r)
∣∣2)≤C.

Proof. By combining (3.9), (3.12) and (3.17), it is easy to obtain that

(3.28) Y N(s) =−V N
s

2N
+BN(s)−M ∗,N

s +
∫ s

0

∫
∞

δN

zΠ
N
(dr,dz).

It follows that

sup
0≤r<s∧τN

K

∣∣Y N(r)
∣∣2 ≤ 4

2N2 +4 sup
0≤r<s

∣∣M ∗,N
r
∣∣2 +4 sup

0≤r<s

∣∣BN(r)
∣∣2 +4

∣∣∣∣∣
∫ s∧τN

K

0

∫
∞

0
zΠ

N
(dr,dz)

∣∣∣∣∣
2

.

From an easy adaptation of the argument used in STEP 1 in the proof of Proposition 3.22, the
expectation of the last term on the right hand–side tends to 0 as N→+∞. We now use Doob’s L2

inequality for martingales, which yields that there exists constant C2 such that for any martingale
M,

E
(

sup
0≤r≤s

|Mr|2
)
≤C2E

(
|Ms|2

)
.

Recall (3.6) and (3.16). Hence, it suffices to notice that

E
(∣∣BN(s)

∣∣2)≤ 2cs, E
(∣∣M ∗,N

s
∣∣2)≤ 2s

N

∫
∞

δN

zµ(dz),∣∣∣∣∣
∫ (s∧τN

K )−

0

∫
∞

0
zΠ

N
(dr,dz)

∣∣∣∣∣≤ sup
r≤s

∣∣∣∣∫ r

0

∫ K

0
zΠ

N
(du,dz)

∣∣∣∣ ,
and E

(∣∣∣∣∫ s

0

∫ K

0
zΠ

N
(du,dz)

∣∣∣∣2
)
≤ 2s

∫ K

0
z2

µN(dz).

The desired result follows by combining the above results.
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Lemma 3.24. Let s,K > 0. Then there exists a constant C such that for all N ≥ 1

sup
t≥0

E[(LN
s∧τN

K
(t))2]≤C,

where τN
K is defined above.

Proof. From Lemmas 3.2 and 3.3, we can rewrite (3.7) and (3.19) in the following form

cHN(s) =Y N(s)− inf
0≤r≤s

Y N(r)−
∫ s

0

∫
∞

0

(
z− 1

N
+ inf

r6u6s
Y N(u)−Y N(r)

)+

Π
N(dr,dz),(3.29)

LN
s (t) =Γ

N(s, t)+ c(HN(s)− t)+

+
∫ s

0

∫
∞

0
1{HN(r)>t}

(
z− 1

N
+ inf

r6u6s
Y N(u)−Y N(r)

)+

Π
N(dr,dz),

(3.30)

where

Γ
N(s, t) =

V N
s

2N
1{HN(s)>t}−

∫ s

0
1{HN(r)>t}dBN(r)+

∫ s

0
1{HN(r)>t}dM ∗,N

r

−
∫ s

0
1{HN(r)>t}

∫
∞

0
zΠ

N
(dr,dz).

From an adaption of the argument of proof of Lemma 3.23, we have that there exists a constant
C such that for all N ≥ 1

(3.31) sup
t≥0

E

(
sup

0≤r≤s∧τN
K

∣∣ΓN(r, t)
∣∣2)≤C.

We now estimate the last term on the right of (3.30). It is clear that∫ s

0

∫
∞

0
1{HN(r)>t}

(
z− 1

N
+ inf

r6u6s
Y N(u)−Y N(r)

)+

Π
N(dr,dz)

≤
∫ s

0

∫
∞

0

(
z− 1

N
+ inf

r6u6s
Y N(u)−Y N(r)

)+

Π
N(dr,dz)

≤ Y N(s)− inf
0≤r≤s

Y N(r)≤ 2 sup
0≤r≤s

|Y N(r)|.

Next we observe that

c(HN(s)− t)+ ≤ cHN(s)≤ Y N(s)− inf
0≤r≤s

Y N(r)≤ 2 sup
0≤r<s

|Y N(r)|.

From the last two inequalities,∫ s∧τN
K

0

∫
∞

δN

1{HN(r)>t}

(
z− 1

N
+ inf

r6u6s
Y N(u)−Y N(r)

)+

Π
N(dr,dz)

+ c(HN(s∧ τ
N
K )− t)+ ≤ 4 sup

0≤r<s∧τN
K

|Y N(r)|.

The desired result follows by combining this with (3.31), (3.30) and Lemma 3.23.

Lemma 3.25. Let s,h,T > 0. Then there exists a constant C such that for all N ≥ 1 and 0 <
t, t ′ < T ,

E
(∫ s

0
a−,Nr (t)dr

)
≤Ch,

E
(∫ s

0
a−,Nr (t)dr

∫ s

0
a−,Nr (t ′)dr

)
≤Ch2.
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Proof. We will prove the second inequality, the first one follows from the second one with t = t ′

and the Cauchy-Schwarz inequality. We have

E
(∫ s

0
a−,Nr (t)dr

∫ s

0
a−,Nr (t ′)dr

)
=
∫ t

t−h

∫ t ′

t ′−h
E[LN

s (r)L
N
s (u)]drdu

≤h2 sup
0≤r≤T

E[(LN
s (r))

2],

where we can replace s by s∧ τN
K . Hence the desired result follows by combining this with

Lemma 3.24.

We are now ready to state the main result of this subsection. Recall (3.4) and Proposition 2.1.

Theorem 3.26. For any s > 0, as N→ ∞,

{LN
s (t), t > 0}=⇒{Ls(t), t > 0} in D([0,+∞)), locally uniformly in s,

where Ls(t) is for any s > 0, t ≥ 0 the local time accumaled by H, solution of (2.7).

We shall need

Lemma 3.27. For any T > 0, the mapping s 7→ Ls(t) is continuous, uniformly for t ∈ [0,T ].

Proof. We need to show that for any decreasing sequence sn ↓ s, Lsn(t)−Ls(t) ↓ 0 uniformly for
t ∈ [0,T ], and that for any increasing sequence sn ↑ s, Ls(t)−Lsn(t) ↓ 0 uniformly for t ∈ [0,T ].
Both statements can be proved by exactly the same argument, so we establish the first statement.

For each n≥ 1, t 7→ Lsn(t)−Ls(t) is cadlag, with only positive jumps. Consequently it is upper
semi–continuous. Moreover, since s 7→ Ls(t) is continuous and increasing for any t ∈ [0,T ],
Lsn(t)−Ls(t) ↓ 0 for all t ∈ [0,T ]. For any ε > 0, let

Vn(ε) := {t ∈ [0,T ]; Lsn(t)−Ls(t)< ε} .

Since t 7→ Lsn(t)−Ls(t) is u.s.c., Vn(ε) is an open subset of [0,T ]. However, ∪n≥1Vn(ε) = [0,T ],
hence there exists Nε ≥ 1 such that ∪n≤Nε

Vn(ε) = [0,T ], and since n 7→ Vn(ε) is increasing,
VNε

(ε) = [0,T ], and for any n≥ Nε , t ∈ [0,T ], Lsn(t)−Ls(t)< ε , which establishes the result.

We are now prepared to complete the

Proof of Theorem 3.26 : For k≥ 1, 0≤ i≤ [2ks], we let sk
i := i2−k. Thanks to Proposition 3.22,

for each pair (i,k), {LN
sk
i
(·), N ≥ 1} is tight in D([0,T ]). Hence along a appropriate subsequence,

jointly for all k ≥ 1,(
LN

sk
0
(·),LN

sk
1
(·), . . . ,LN

sk
[2ks]

(·))
)
⇒
(

Lsk
0
(·),Lsk

1
(·), . . . ,Lsk

[2ks]
(·))
)

in D([0,T ])[2
ks]+1. From a theorem due to Skorohod, we can and do assume that those conver-

gences hold a.s. This means that for any (i,k),

sup
0≤t≤T

|LN
sk
i
(λN(t))−Lsk

i
(t)| → 0,

as N→∞, where for each N ≥ 1, λN : [0,T ] 7→ [0,T ] is continuous increasing, satisfies λN(0)= 0,
λN(T ) = T , and sup0≤t≤T |λN(t)− t| → 0 and N→∞. The time change λN is precised in Lemma
3.28 below. It displaces the jumps of LN

s (t) to those of Ls(t). The t’s where those jumps happen
do not depend upon s, this is why we can choose λN independent of (i,k).
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Now choose s ∈ [0,s] arbitrary. For any k ≥ 1 arbitrarily large, there exists 0 ≤ i ≤ 2k− 1 such
that sk

i ≤ s≤ sk
i+1. We have

LN
sk
i
(λN(t))−Lsk

i+1
(t)≤ LN

s (λN(t))−Ls(t)≤ LN
sk
i+1

(λN(t))−Lsk
i
(t)

LN
sk
i
(λN(t))−Lsk

i
(t)+Lsk

i
(t)−Lsk

i+1
(t)≤ LN

s (λN(t))−Ls(t)

≤ LN
sk
i+1

(λN(t))−Lsk
i+1

(t)+Lsk
i+1

(t)−Lsk
i
(t) .

We now choose an arbitrary ε > 0. Thanks to Lemma 3.27, we can choose k large enough so that
Lsk

i+1
(t)−Lsk

i
(t)≤ ε/2, for all t ∈ [0,T ]. Hence we have

LN
sk
i
(λN(t))−Lsk

i
(t)− ε

2
≤ LN

s (λN(t))−Ls(t)≤ LN
sk
i+1

(λN(t))−Lsk
i+1

(t)+
ε

2

We can now choose N large enough so that sup0≤i≤2k sup0≤t≤T

∣∣∣LN
sk
i
(λN(t))−Lsk

i
(t)
∣∣∣ ≤ ε/2. We

then deduce that for such a N, for all 0≤ s≤ s, 0≤ t ≤ T , −ε ≤ LN
s (λN(t))−Ls(t)≤ ε , hence

sup
0≤s≤s

sup
0≤t≤T

∣∣LN
s (λN(t))−Ls(t)

∣∣≤ ε .

The result follows. �

Lemma 3.28. Fix T and s > 0, k ≥ 1 and the sequence sk
i = i2−k for 0≤ i≤ [2ks]. There exists

a random time change λN(t) which is continuous and strictly increasing, such that, along an
appropriate subsequence,

(λN(t),LN
sk
0
(λN(t)), . . . ,LN

sk
[2ks]

(λN(t)))⇒ (t,Lsk
0
(t), . . . ,Lsk

[2ks]
(t))

for the topology of uniform convergence on [0,T ].

Proof. The proof will be divided in three steps. We will first define the sequence λN , then
establish the convergence of λN , and finally that of LN

sk
i
(λN(t)) for i arbitrary. The fact that the

above joint convergence holds along an appropriate subsequence then follows from the previous
results.

STEP 1. We order the points of the measure Π on the set [0,s]×R+ in decreasing order of
their second coordinate. This produces the sequence {(S1,Z1),(S2,Z2), . . .}, where Z1 > Z2 >
.. . . We associate to each (Si,Zi) Ti = H(Si). We consider those (Ti,Zi) for which Ti ≤ T
(and delete the others). The corresponding sequence is still denoted by an abuse of notation
{(T1,Z1),(T2,Z2), . . .}. Ti is the values of t at which the map t 7→ Ls(t) has a jump of size ≤ Zi.
Note that for 0 < s < s, t 7→ Ls(t) has a jump at time Ti iff Si < s, and t 7→ Ls(t) has jumps only at
times where t 7→ Ls(t) jumps. Moreover, for each i≥ 1, there exists s lare enough (possibly > s)
such that the jump of t 7→ Ls′(t) at Ti is Zi for all s′ ≥ s.

Consider now the point measure ΠN , the associated (SN
i ,Z

N
i ), and (T N

i ,ZN
i ), where T N

i =HN(SN
i ).

Again those points are ordered in decreasing order of the ZN
i ’s, and only those (T N

i ,ZN
i ) for which

T N
i < T are taken into account. Since ΠN ⇒ Π, for each k ≥ 1, there exists Nk such that for all

N ≥ Nk, the order of (T N
1 , . . . ,T N

k ) is the same as that of (T1, . . . ,Tk).

For each k ≥ 1,N ≥ 1 we choose as λN,k the piecewise linear function of t whose graph joins
(0,0), (Ti,T N

i )1≤i≤k,(T,T ), where the Ti’s are listed in increasing order. If N ≥Nk, then λN,k(t) is
continuous, strictly increasing and verifies λN,k(0)= 0, λN,k(Ti)= T N

i for 1≤ i≤ k and λN,k(T )=
T . For each N ≥ 1, we let λN(t) = λN,k̂N

(t), where

k̂N = sup{k, the orders of (T N
i )1≤i≤k and (Ti)1≤i≤k coincide} .
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STEP 2. Since the limit t of λN(t) is deterministic, what we want to show is in fact that
sup0≤t≤T |λN(t)− t| tends to 0 in probability. If µ(R+) < ∞, then there are finitely many
jumps, and the convergence (Ti,T N

i ) ⇒ (Ti,Ti) is uniform w.r.t. i. The result follows. If
however µ(R+) = +∞, then the Si’s are dense in [0,s], and consequently the Ti’s are dense
in [0,sup0≤s≤s H(s)∧T ]. For k large enough, the distance between two consecutive Ti’s in the
sequence T1, . . . ,Tk is less than ε . Then for N ≥Nk, sup1≤i≤k |T N

i −Ti| ≤ ε , and the result follows.

STEP 3 We write s for sk
i . We assume here that all processes have been redefined in such a

way that (HN ,Y N)→ (H,Y ) in C (R+)×D(R+), and (T N
i ,ZN

i )i≥1 → (Ti,Zi)i≥1, in probabil-
ity. According to (3.19), LN

s (t) = FN
s (t)+DN

s (t), and combining the fact that FN
s (t)→ Fs(t) in

probability uniformly in t with STEP 2, we deduce that FN
s (ΛN(t))→ Fs(t) uniformly in t in

probability. It remains to treat the term DN
s (λN(t)). We now use a similar decomposition as in

the proof of Lemma 3.18.

Proposition 3.29. As N→ ∞, LN
s (H

N(s))⇒ Ls(H(s)) ds a.e.

Proof. In order to simplify the following argument, making use of a famous theorem due to
Skorohod, we may and do assume that HN→H and LN→ L a.s. From Proposition 3.4 HN(s)→
H(s) a.s., locally uniformly in s, and according to Theorem 3.26, for all s > 0 and T > 0,

sup
0≤s≤s, 0≤t≤T

|LN
s (λN(t))−Ls(t)| → 0 a.s., as N→ ∞,

then ds a.e., LN
s (H

N(s))→ Ls(H(s)) in probability. For this purpose, for any 0≤ r ≤ s, we have

{t, t 7→ Lr(t) is discontinuous } ⊂ {t, t 7→ Ls(t) is discontinuous }

and the latter set is at most countable. Since H admits a local time, it spends zero time in such a
countable set. Hence a.s., dr a.e., t 7→ Lr(t) is continuous at H(r). For such an r, we have

|LN
r (H

N(r))−Lr(H(r))| ≤ |LN
r (λN ◦λ

−1
N (HN(r)))−Lr(λ

−1
N (HN(r)))|

+ |Lr(λ
−1
N (HN(r)))−Lr(H(r))|,

where the random function λN : [0,T ] 7→ [0,T ] satisfying λN(0)= 0, λN(T )= T , λN is continuous
and strictly increasing and sup0≤t≤T |λN(t)− t| → 0 is such that sup0≤t≤T |LN

r (λN(t))−Lr(t)| →
0. Define the event Ωs,T = {sup0≤s≤s H(s)≤ T −1},

P
(
Ωs,T ∩

{
|LN

r (H
N(r))−Lr(H(r))|> η

})
≤ P

(
sup

0≤t≤T
|LN

r (λN(t)t)−Lr(t)|> η/2
)

+P
(

sup
0≤t≤T

|λ−1
N (HN(r))−H(r)|> 1

)
+P

(
|Lr(λ

−1
N (HN(r)))−Lr(H(r))|> η/2

)
.

As N → ∞, the first term on the right tends to 0 thanks to Lemma 3.26, the second term tends
to 0 since both HN → H uniformly on [0,s] and λ

−1
N (t)→ t uniformly on [0,T ], and finally the

third term tend to 0 since H(r) is a continuity point of Lr(·) and again λ
−1
N (t)→ t uniformly on

[0,T ]. Finally, for each s > 0, P(∪T>0Ωs,T ) = 1. The result follows.

4. CONVERGENCE OF THE HEIGHT PROCESS WITH INTERACTION

In the nonlinear case where the linear drift−bz is replaced by a nonlinear drift f (z), the approxi-
mation of (2.8) will be given by the total mass XN,x of a population of individuals, each of which
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has mass 1/N. The initial mass is XN,x
0 = [Nx]/N, and XN,x follows a Markovian jump dynamics

: from its current state k/N,

XN,x jumps to


k+`−1

N at rate ψ ′
δN
(N)νN(`)k + N1{`=2}∑

k
i=1( f ( i

N )− f ( i−1
N ))+, for all `≥ 2;

k−1
N at rate ψ ′

δN
(N)νN(0)k + N ∑

k
i=1( f ( i

N )− f ( i−1
N ))−.

The following result is a consequence of Theorem 4.1 in [11].

Proposition 4.1. Suppose that Assumptions (H) and (2.9) are satisfied. Then, as N → +∞,
{XN,x

t , t > 0} converges to {Xx
t , t > 0} in distribution on D([0,∞),R+), where Xx is the unique

solution of the SDE (2.8).

The process HN is piecewise linear, continuous with derivative ±2N : at any time s≥ 0, the rate
of appearance of minima (giving rise to births, i.e. to the creation of new branches) is equal to

2cN2 +2
∫

∞

δN

(1− e−Nz−Nze−Nz)µ(dz)+2N2
[

f
(

LN
s (H

N(s))+
1
N

)
− f

(
LN

s (H
N(s))

)]+
,

and the rate of of appearance of maxima (describing deaths of branches) is equal to

2cN2 +2
∫

∞

δN

(e−Nz−1+Nz)µ(dz)+2N2
[

f
(

LN
s (H

N(s))+
1
N

)
− f

(
LN

s (H
N(s))

)]−
.

We now want to use Girsanov’s theorem, in order to reduce the present model to the one studied
in Section 3. To this end, for s > 0, define

(4.1) P1,N
s =

∫ s

0
1{V N

r−=−1}dPN
r and P2,N

s =
∫ s

0
1{V N

r−=+1}dPN
r ,

recall that PN is a Poisson point process with intensity 2cN2 under the probability measure P, so
that P1,N

s ,(resp.,P2,N
s ) has the intensity

λ
1,N
s = 2cN21{V N

s−=−1}, resp. λ
2,N
s = 2cN21{V N

s−=+1}.

Recall (3.6). We now define the collection of σ–algebras F N
s := σ{HN(r), 0 ≤ r ≤ s} and we

introduce a Girsanov–Radon–Nikodym derivative

(4.2) UN
s = 1+

∫ s

0
UN

r−
[
( f ′N)

+
(
LN

r−(H
N(r))

)
dM 1,N

r +( f ′N)
− (LN

r−(H
N(r))

)
dM 2,N

r
]
,

with f ′N(x) = N[ f (x+ 1/N)− f (x)]. Under the additional assumption that f ′ is bounded, it is
clear that UN is a martingale, hence E[UN

s ] = 1 for all s ≥ 0. In this case, we define P̃N as the
probability such that for each s > 0,

dP̃N

dP

∣∣∣
F N

s
=UN

s .

It follows from Proposition 5.2 below with

µ
1,N
r = 1+

1
cN2

∫
∞

δN

(1− e−Nz−Nze−Nz)µ(dz)+
1

cN
( f ′N)

+
(
LN

r−(H
N(r))

)
and

µ
2,N
r = 1+

1
cN2

∫
∞

δN

(e−Nz−1+Nz)µ(dz)+
1

cN
( f ′N)

− (LN
r−(H

N(r))
)

that under P̃N , P1,N
s ( resp., P2,N

s ) has the intensity[
2cN2 +2

∫
∞

δN

(1− e−Nz−Nze−Nz)µ(dz)+2N( f ′N)
+
(
LN

r−(H
N(r))

)]
1{V N

r−=−1},

resp.
[

2cN2 +2
∫

∞

δN

(e−Nz−1+Nz)µ(dz)+2N( f ′N)
− (LN

r−(H
N(r))

)]
1{V N

r−=+1}.

(4.3)
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4.1. The Case where | f ′| is bouned. We assume in this subsection that | f ′(x)| ≤ β for all x≥ 0
and some β > 0. This constitutes the first step of the proof of convergence of HN . As explained
at above, in this case we can use Girsanov’s theorem to bring us back to the situation studied in
section 3.

Recalling equations (3.16) and (3.17), we can rewrite (3.10) in the form

cHN(s) = M 1,N
s −M 2,N

s +M N
s + ε

N(s)− inf
0≤r≤s

Y N(r)−RN(s).

Moreover, from (3.6), (4.1) and (4.2), we have

[
M 1,N]

s =
1

N2 P1,N
s ,

[
M 2,N]

s =
1

N2 P2,N
s

〈M 1,N〉s = 2c
∫ s

0
1{V N

r =−1}dr, 〈M 2,N〉s = 2c
∫ s

0
1{V N

r =+1}dr,

[
UN]

s =
1

N2

∫ s

0

∣∣∣UN
r−

∣∣∣2[∣∣∣∣( f ′N)
+
(
LN

r−(H
N(r))

)∣∣∣∣2dP1,N
r

+

∣∣∣∣( f ′N)
− (LN

r−(H
N(r))

)∣∣∣∣2dP2,N
r

]
,

〈UN〉s = 2c
∫ s

0

∣∣∣UN
r

∣∣∣2[∣∣∣∣( f ′N)
+
(
LN

r (H
N(r))

)∣∣∣∣21{V N
r =−1}

+

∣∣∣∣( f ′N)
− (LN

r (H
N(r))

)∣∣∣∣21{V N
r =+1}

]
dr,

[
UN ,M 1,N]

s =
1

N2

∫ s

0
UN

r−( f ′N)
+
(
LN

r−(H
N(r))

)
dP1,N

r ,[
UN ,M 2,N]

s =
1

N2

∫ s

0
UN

r−( f ′N)
− (LN

r−(H
N(r))

)
dP2,N

r ,

〈UN ,M 1,N〉s = 2c
∫ s

0
UN

r ( f ′N)
+
(
LN

r (H
N(r))

)
1{V N

r =−1}dr,

〈UN ,M 2,N〉s = 2c
∫ s

0
UN

r ( f ′N)
− (LN

r (H
N(r))

)
1{V N

r =+1}dr,

while [
M 1,N ,M 2,N]

s = 〈M
1,N ,M 2,N〉s = 0.

From Corollary 3.12, Lemma 3.13 and Proposition 3.17, we deduce that {(HN ,M 1,N ,M 2,N ,

M N ,RN), N ≥ 1} is a tight sequence in C ([0,∞))× (D([0,∞)))4. Since f ′ is bounded, the
same is true for f ′N(x) = N[ f (x+ 1/N)− f (x)], uniformly with respect to N. It easy to deduce
from (4.2) and Proposition 5.5 that the sequence {UN , N ≥ 1} is tight and as a consequence
{(HN ,M 1,N ,M 2,N ,M N ,RN ,UN), N ≥ 1} is a tight sequence in C ([0,∞))× (D([0,∞)))5.
Therefore at least along a subsequence (but we do not distinguish between the notation for the
subsequence and for the sequence),

(HN ,M 1,N ,M 2,N ,M N ,RN ,UN)⇒ (H,M 1,M 2,M ,R,U)

as N→ ∞ in C ([0,∞))× (D([0,∞)))5.
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Moreover, from Lemma 3.8 and Proposition 3.29, we deduce that

〈M 1,N〉s⇒ cs,

〈M 2,N〉s⇒ cs,

〈UN〉s⇒ c
∫ s

0

∣∣∣Ur

∣∣∣2× ∣∣∣∣ f ′ (LΓ
r (H(r))

)∣∣∣∣2dr,

〈UN ,M 1,N〉s⇒ c
∫ s

0
Ur f ′+ (Lr(H(r)))dr

〈UN ,M 2,N〉s⇒ c
∫ s

0
Ur f ′− (Lr(H(r)))dr.

Recall Corollary 3.12, Lemma 3.13 and (2.6). It follows from the above that Proposition 3.17
can be enriched as follows

Proposition 4.2. As N→ ∞,(
HN ,M 1,N ,M 2,N ,M N ,RN ,UN)=⇒ (H,

√
cB1

s ,
√

cB2
s ,M ,R,U

)
,

in (C ([0,∞)))×(D([0,∞)))6, where B1 and B2 are two mutually independent standard Brownian
motions. Moreover

cH(s) =
√

c
(
B1

s −B2
s
)
+
∫ s

0

∫
∞

0
zΠ(dr,dz)− inf

0≤r≤s
Y (r)

−
∫ s

0

∫
∞

0

(
z+ inf

r6u6s
Y (u)−Y (r)

)+

Π(dr,dz),

and Us = 1+
1√
c

∫ s

0
Ur

[
f ′+ (Lr(H(r)))dB1

r + f ′− (Lr(H(r)))dB2
r

]
.

We clearly have

Us = exp
(

1√
c

∫ s

0

{
f ′+ (Lr(H(r)))dB1

r + f ′− (Lr(H(r)))dB2
r

}
− c

2

∫ s

0

∣∣∣∣ f ′ (Lr(H(r)))
∣∣∣∣2dr

)
.

Since f ′ is bounded E[Us] = 1 for all s≥ 0. Let now P̃ denote the probability measure such that

dP̃
dP

∣∣∣
Fs

=Us,

where Fs := σ{H(r), 0 ≤ r ≤ s}. It follows from Girsanov’s theorem (see Proposition 5.1
below) that there exist two mutually independent standard P̃-Brownian motions B̃1 and B̃2 such
that

B1
s =

1√
c

∫ s

0
f ′+ (Lr(H(r)))dr+ B̃1

s

B2
s =

1√
c

∫ s

0
f ′− (Lr(H(r)))dr+ B̃2

s .

Consequently

√
c
(
B1

s −B2
s
)
=
√

2cBs +
∫ s

0
f ′ (Lr(H(r)))dr,

where

Bs =
1√
2

(
B̃1

s − B̃2
s

)
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is a standard Brownian motion under P̃. Consequently H is a weak solution of the SDE

cH(s) = Y (s)+
∫ s

0
f ′ (Lr(H(r)))dr− inf

0≤r≤s
Y (r)−

∫ s

0

∫
∞

0

(
z+ inf

r6u6s
Y (u)−Y (r)

)+

Π(dr,dz).

(4.4)

Proposition 4.2 tells us that (HN ,UN)⇒ (H,U) under P. Fix an arbitrary s > 0, and recall that
dP̃N

dP |F N
s
= UN

s , dP̃
dP |Fs = Us. Lemma 24 page 92 of [29] deduces from Proposition 4.2 that the

law of {HN
r , 0 ≤ r ≤ s} under P̃N converges as N → ∞ to the law of {Hr, 0 ≤ r ≤ s} under P̃.

This being true for any s > 0, we conclude the main result of this subsection.

Theorem 4.3. Assume that f ∈ C 1(R+), f (0) = 0 and f ′ is bounded. Then the law of the
approximate height process HN , defined under P̃N (i.e. with the Poisson processes having the
intensities specified by (4.3)) converges towards the law of the height process H under P̃ (i.e.
specified by (4.4)).

Note that the weak uniqueness of (4.4) will be established in the proof of Theorem 4.4 below.

4.2. The general case ( f ∈ C 1 and f ′ ≤ θ). We first note that condition (2.9) guarantees only
local boundedness of f ′. Thus, in order to make sure that Girsanov’s Theorem is applicable,
we use a localization procedure and associate to each n ∈ (0,∞) a function fn ∈ C 1(R+), f ′n is
uniformly continuous on R+, and

fn(x) =

 f (x), if 0 < x≤ n,

f (n)+ f ′(x)(x−n), if x > n.

From this definition, it is easy to see that f ′n(x) = f ′(x∧ n), which implies supx∈(0,∞) | f ′n(x)| =
sup0≤x≤n | f ′(x)|.

Now we define the processes {UN
n (s),Un(s), s ≥ 0} exactly as the process UN ,U , except that f

is replaced by fn. Let us now state our final result.

Theorem 4.4. Assume that f ∈ C 1(R+), f (0) = 0 and f ′(z)≤ θ , for some given θ > 0. Then,
as N→∞, the law of HN , specified by (3.5) with the intensities of the Poisson processes specified
by (4.3) converges to the law of H, the unique (in law) solution of equation (4.4).

Proof. Let us first note that the uniqueness in law of the solution of (4.4) follows readily fro
Girsanov’s theorem. We work on the probability space (Ω,F ,P). We consider the processes
HN(r) and H(r) restricted to an arbitrary time interval [0,s]. Suppose we have two interaction
functions f 1 and f 2 which both satisfy the above assumption 2.9, and which coincide on the
interval [0,K]. It is then plain that the corresponding processes HN,1 and HN,2 (resp. H1 and H2)
have the same law on the time interval [0,SN

K ] (resp. [0,SK ]), where

SN
k = inf{s > 0, HN,1

s ∨HN,2
s > K}, resp. SK = inf{s > 0, H1

s ∨H2
s > K .

For each m,n≥ 1, consider the event

Am,n = { sup
0≤r≤s

H(r)≤ m; sup
0≤r≤s; 0≤t≤m

Lr(t)≤ n}.

On the event Am,n, sup0≤r≤s Lr(Hr)≤ n. On the event Am−1,n−1, from Proposition 3.4 and Propo-
sition 3.29, for N large enough, sup0≤r≤s HN(r) ≤ m and sup0≤r≤s, 0≤t≤m LN

r (t) ≤ n. Conse-
quently on the event Am,n, for such an N, sup0≤r≤s LN

r (H
N
r ) ≤ n, and from Theorem 4.3 with f

replaced by fn tells us that HN with the intensities specified by (4.3) (but with f replaced by fn)
converges towards H, the weak solution of (4.4), but with f replaced by fn. But on the event
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Am−1,n−1, and uniformly for N large enough, the intensities in (4.3) with fn and with f coincide,
and similarly for the equation (4.4). Since ∪m,n≥2Am,n = Ω, the result follows.

5. APPENDIX

In this section we recall few important notions and give some results used in this work. We do
not give proofs of most of the following statements.

5.1. Two Girsanov Theorems. We state two versions of the Girsanov theorem, one for the
Brownian and one for the point process case. The first one can be found, e.g., in [30] and the
second one combines Theorems T2 and T3 from [6], pages 165-166. We assume here that our
probability space (Ω,P,F ) is such that F = σ(∪t>0Ft).

Proposition 5.1. Let {Bs, s ≥ 0} be a standard d−dimensional Brownian motion (i.e., its co-
ordinates are mutually independent standard scalar Brownian motions) defined on the filtered
probability space (Ω,P,F ). Let moreover φ be an F -progressively measurable d−dimensional
process satisfying

∫ s
0 |φ(r)|2dr < ∞ for all s≥ 0. Let

Us = exp
{∫ s

0
〈φ(r),dBr〉−

1
2

∫ s

0
|φ(r)|2dr

}
.

If E(Us) = 1, s≥ 0, then B̃s := Bs−
∫ s

0 φ(r)dr, s≥ 0, is a standard Brownian motion under the
unique probability measure P̃ on (Ω,F ) which is such that dP̃|Fs/dP|Fs =Us, for all s≥ 0.

Proposition 5.2. Let {(Q(1)
s , ...,Q(d)

s ), s≥ 0} be a d-variate point process adapted to some filtra-
tion F , and let {λ (i)

s , s≥ 0} be the predictable (P,F )-intensity of Q(i), 1≤ i≤ d. Assume that
none of the Q(i),Q( j), i 6= j, jump simultaneously. Let {α(i)

r , r ≥ 0}, 1 ≤ i ≤ d, be nonnegative
F -predictable processes such that for all s≥ 0 and all 1≤ i≤ d∫ s

0
α
(i)
r λ

(i)
r dr < ∞ P−a.s.

For i = 1, ...,d and s≥ 0 define, {T i
k , k = 1,2...} denoting the jump times of Q(i),

U (i)
s =

 ∏
k≥1:T i

k≤s

α
(i)
T i

k

exp
{∫ s

0
(1−α

(i)
r )λ

(i)
r dr

}
and Us =

d

∏
i=1

U (i)
s , s≥ 0.

If E(Us) = 1, s ≥ 0, then, for each 1 ≤ i ≤ d, the process Q(i) has the (P̃,F )-intensity λ̃
(i)
s =

α
(i)
s λ

(i)
s , s≥ 0, where the probability measure P̃ is defined by dP̃|Fs/dP|Fs =Us, for all s≥ 0.

5.2. Tightness criteria in D([0,+∞)). We denote by D([0,∞)), the space of functions from
[0,∞) into R which are right continuous and have left limits at any t > 0 (as usual such a function
is called càdlàg).We briefly write D for the space of adapted, càdlàg stochastic processes. We
shall always equip the space D([0,∞)) with the Skorohod topology, for the definition of which
we refer the reader to Billingsley [5] or Joffe, Métivier [17].

We first state a tightness criterion, which is Theorem 13.5 from [5] :

Proposition 5.3. Let (Xn
t , t ≥ 0)n≥0 be a sequence of random elements of D([0,+∞);Rd). A

sufficient condition of (Xn
t , t ≥ 0)n≥0 to be tight is that the two conditions 1 and 2 be satisfied :

1. For each t, the sequence of random variables (Xn
t , n≥ 0) is tight in Rd .

2. For each T > 0, there exists β ,C > 0 and θ > 1 such that

E(|Xn
t+h−Xn

t |β |Xn
t −Xn

t−h|β )≤Chθ ,
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for all 0 < t < T, 0 < h < t, n≥ 0.

The convergence in D([0,+∞);Rd) is not additive in general. The next proposition gives a
sufficient condition to have this additivity, which is Lemma 7.1 of [23].

Proposition 5.4. Let {Xn
t , t ≥ 0}n≥0 and {Y n

t , t ≥ 0}n≥0 be two tight sequences of random ele-
ments of D([0,∞);Rd) such that any limit of a weakly converging sub–sequence of the sequence
{Xn

t , t ≥ 0}n≥0 is a.s. continuous. Then {Xn
t +Y n

t , t ≥ 0}n≥0 is tight in D([0,∞);Rd).

Consider a sequence {Xn
t , t ≥ 0}n≥1 of one-dimensional semi-martingales, which is such that

for each n≥ 1,

Xn
t = Xn

0 +
∫ t

0
ϕ

n
s ds+Mn

t , t ≥ 0;

where for each n≥ 1, Mn is a locally square–integrable martingale such that

〈Mn〉t =
∫ t

0
ψ

n
s ds, t ≥ 0;

ϕn and ψn are Borel measurable functions with values into R and R+ respectively. We define
V n

t = Xn
0 +

∫ t
0 ϕn(Xn

s )ds.

The following statement can be deduced from Theorem 13.4 and 16.10 of [5].

Proposition 5.5. A sufficient condition for the above sequence {Xn
t , t ≥ 0}n≥1 of semi–martingales

to be tight in D([0,∞)) is that both

the sequence o f r.v.′s {Xn
0 ,n≥ 1} is tight;

and for some p > 1,

∀T > 0, the sequence o f r.v.′s

{∫ T

0
[|ϕn(Xn

s )|+ψn(Xn
t )]

pdt,n≥ 1

}
is tight.

Those conditions imply that both the bounded variation parts {V n,n ≥ 1} and the martingale
parts {Mn,n ≥ 1} are tight, and that the limit of any converging subsequence of {V n} is a.s.
continuous.

If moreover, for any T > 0, as n−→ ∞,

sup
0≤t≤T

|Mn
t −Mn

t− | −→ 0 in probability,

then any limit X of a converging subsequence of the original sequence {Xn}n≥1 is a.s. continuous.

Lemma 5.6. Let {XN
t , t ≥ 0}N≥1 be a sequence of processes whose trajectories belong to

D([0,+∞)) and satisfy

(5.1) sup
N≥1

E
(

sup
t≥0
|XN

t |
)
< ∞ .

We assume that for each δ > 0, there exists a decomposition XN
t = XN,δ ,1

t +XN,δ ,2
t such that

{XN,δ ,1}N≥1 is tight as random elements of D([0,+∞)), and moreover, for all η > 0

(5.2) limsup
N→∞

P
(

sup
t≥0
|XN,δ ,2

t |> η

)
→ 0, as δ → 0 .

Then the sequence {XN
t , t ≥ 0}N≥1 is tight as random elements of D([0,+∞)).
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Proof. We shall exploit Theorem 13.2 from [5]. We will establish tightness in D([0,T ]), for
T > 0 arbitrary. The moduli of continuity below are understood to be defined on the time interval
[0,T ]. Condition (i) follows from our assumption (5.1). Hence it suffices to verify (ii), namely
that for each ε,ρ > 0, there exists η > 0 such that

(5.3) P
(
w′XN (η)≥ ε

)
≤ ρ .

We first note that from the definitions of w (resp. w′) (see (7.1) (resp. (12.6)) in [5]), for each
η > 0,

(5.4) w′XN (η)≤ w′XN,δ ,1(η)+wXN,δ ,2(η) .

But since wXN,δ ,2(η)≤ 2supt≥0 |X
N,δ ,2
t |, for all η > 0,

limsup
N→∞

P
(
wXN,δ ,2(η)≥ ε/2

)
≤ limsup

N→∞

P
(

sup
t≥0
|XN,δ ,2

t | ≥ ε/4
)
.

Hence from (5.2), we can choose δε,ρ > 0 such that

(5.5) limsup
N→∞

P
(

wXN,δε,ρ ,2(η)≥ ε/2
)
≤ ρ

2
,∀η > 0 .

Since {XN,δε,ρ ,1}N≥1 is tight, again from Theorem 13.2 from [5], we can choose η > 0 small
enough such that

(5.6) limsup
N→∞

P
(

w′
XN,δε,ρ ,1(η)≥ ε/2

)
≤ ρ

2
.

A combination of (5.4), (5.5) and (5.6) yields (5.3).
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with competition by pruning of Lévy trees, Probab. Theory and Rel. Fields, 172, no. 3–4, 725–788, 2018.
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