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Abstract
A stochastic SIR epidemic model taking into account the heterogeneity of the spatial
environment is constructed. The deterministic model is given by a partial differential
equation and the stochastic one by a space-time jumpMarkov process. The consistency
of the two models is given by a law of large numbers. In this paper, we study the
deviation of the spatial stochastic model from the deterministic model by a functional
central limit theorem. The limit is a distribution-valued Ornstein–Uhlenbeck Gaussian
process, which is the mild solution of a stochastic partial differential equation.

Keywords Spatial model · Deterministic · Stochastic · Stochastic partial differential
equation · Central limit theorem

Mathematics Subject Classification 60F05 · 60G15 · 60G65 · 60H15 · 92D30

1 Introduction

A stochastic spatial model of epidemic has been described by N’zi et al. [10] to
study the oubreak of infectious diseases in a bounded domain. Such a model takes
into account heterogeneity, spatial connectivity and movement of individuals, which
play an important role in the spread of the infectious diseases. It is based on the
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compartmental SIR model of Kermack and Mckendrick [6]. Let us summarize the
results in N’zi et al. [10] in the case of one dimensional space.
Consider a deterministic and a stochastic SIR model on a grid Dε of the torus T1 =
[0, 1)withmigration between neighboring sites (two neighboring sites are at distance ε

apart, ε−1 ∈ N
∗). Let Sε(t, xi ) (resp. Iε(t, xi ), resp. Rε(t, xi )) be the proportion of the

total population which is both susceptible (resp. infectious, resp. removed) and located
at site xi at time t . The dynamics of susceptible, infected and removed individuals at
each site can be expressed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d Sε

dt
(t, xi ) = μS �εSε(t, xi ) − β(xi ) Sε(t, xi )Iε(t, xi )

Sε(t, xi ) + Iε(t, xi ) + Rε(t, xi )
,

d Iε
dt

(t, xi ) = μI �ε Iε(t, xi ) + β(xi ) Sε(t, xi )Iε(t, xi )

Sε(t, xi ) + Iε(t, xi ) + Rε(t, xi )
− α(xi ) Iε(t, xi ),

d Rε

dt
(t, xi ) = μR �εRε(t, xi ) + α(xi ) Iε(t, xi ), (t, xi ) ∈ (0, T ) × Dε,

Sε(0, xi ), Iε(0, xi ), Rε(0, xi ) ≥ 0, 0 < Sε(0, xi ) + Iε(0, xi ) + Rε(0, xi ) ≤ M,

for some M < ∞,

(1)

�ε is the discrete Laplace operator defined as follows

�ε f (xi ) := ε−2[ f (xi + ε) − 2 f (xi ) + f (xi − ε)
]
.

The rates β : [0, 1] −→ R+ and α : [0, 1] −→ R+ are continuous periodic functions,
and μS , μI and μR are positive diffusion coefficients for the susceptible, infectious
and removed subpopulations, respectively.

In what follows, we use the notations Sε(t) :=
⎛

⎜
⎝

Sε(t, x1)
...

Sε(t, x�)

⎞

⎟
⎠, Iε(t) :=

⎛

⎜
⎝

Iε(t, x1)
...

Iε(t, x�)

⎞

⎟
⎠,

Rε(t) :=
⎛

⎜
⎝

Rε(t, x1)
...

Rε(t, x�)

⎞

⎟
⎠, and Zε(t) = (Sε(t) , Iε(t) , Rε(t)

)T. Here � = ε−1.

Note that (1) is the discrete space approximation of the following system of PDEs

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ s
∂t

(t, x) =μS �s(t, x) − β(x) s(t, x)i(t, x)
s(t, x) + i(t, x) + r(t, x)

,

∂ i
∂t

(t, x) =μI �i(t, x) + β(x) s(t, x)i(t, x)
s(t, x) + i(t, x) + r(t, x)

− α(x) i(t, x),

∂ r
∂t

(t, x) =μR �r(t, x) + α(x) i(t, x), (t, x) ∈ (0, T ) × D,

s(0, x), i(0, x), r(0, x) ≥ 0, 0 < s(0, x) + i(0, x) + r(0, x) ≤ M,

(2)
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where � = ∂2

∂x2
. In the sequel, we set X := (s , i , r)T.

LetN be the total population size. The stochastic version of (1) is given by the following
system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SN,ε(t, xi ) = SN,ε(0, xi ) − 1

N
Pin fxi

(

N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)

−
∑

yi∼xi

1

N
Pmig
S,xi ,yi

(

N
∫ t

0

μS

ε2
SN,ε(r , xi )dr

)

+
∑

yi∼xi

1

N
Pmig
S,yi ,xi

(

N
∫ t

0

μS

ε2
SN,ε(r , yi )dr

)

,

IN,ε(t, xi ) = IN,ε(0, xi ) + 1

N
Pin fxi

(

N
∫ t

0

β(xi )SN,ε(r , xi )IN,ε(r , xi )

SN,ε(r , xi ) + IN,ε(r , xi ) + RN,ε(r , xi )
dr

)

− 1

N
Precxi

(

N
∫ t

0
α(xi )IN,ε(r , xi )dr

)

−
∑

yi∼xi

1

N
Pmig
I ,xi ,yi

(

N
∫ t

0

μI

ε2
IN,ε(r , xi )dr

)

+
∑

yi∼xi

1

N
Pmig
I ,yi ,xi

(

N
∫ t

0

μI

ε2
IN,ε(r , yi )dr

)

,

RN,ε(t, xi ) = RN,ε(0, xi ) + 1

N
Precxi

(

N
∫ t

0
α(xi )IN,ε(r , xi )dr

)

−
∑

yi∼xi

1

N
Pmig
R,xi ,yi

(

N
∫ t

0

μR

ε2
RN,ε(r , xi )dr

)

+ 1

N

∑

yi∼xi

Pmig
R,yi ,xi

(

N
∫ t

0

μR

ε2
RN,ε(r , yi )dr

)

,

(t, xi ) ∈ [0, T ] × Dε

(3)

where all the P j ’s are standard Poisson processes, which are mutually independent.
For each given site, these processes count the number of new infectious, recoveries
and the migrations between sites. yi ∼ xi means that yi ∈ {xi + ε , xi − ε}.

Let SN,ε(t) :=
⎛

⎜
⎝

SN,ε(t, x1)
...

SN,ε(t, x�)

⎞

⎟
⎠ , IN,ε(t) :=

⎛

⎜
⎝

IN,ε(t, x1)
...

IN,ε(t, x�)

⎞

⎟
⎠,

RN,ε(t) :=
⎛

⎜
⎝

RN,ε(t, x1)
...

RN,ε(t, x�)

⎞

⎟
⎠,

ZN,ε(t) := (
SN,ε(t), IN,ε(t), RN,ε(t)

)T and bε

(
t, ZN,ε(t)

) :=
K∑

j=1

h jβ j (ZN,ε(t))

(K being the number of Poisson’s processes in the system), where the vectors h j ∈
{−1, 0, 1}3� denote the respective jump directions with jump rates β j . The SDE (3)
can be rewritten as follows
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ZN,ε(t) = ZN,ε(0) +
∫ t

0
bε

(
r , ZN,ε(r

)
dr + 1

N

K∑

j=1

h jP j

(

N
∫ t

0
β j
(
ZN,ε(r)

)
dr

)

.

(4)

Also the sytem (1) can be written as follows

dZε(t)

dt
= bε(t, Zε(t)). (5)

The authors show the consistency of the two models by a law of large numbers.
More precisely, the following two results were proved in N’zi et al. [10].

Theorem 1.1 (Law of Large Numbers: N → ∞, ε being fixed)
Let ZN,ε denote the solution (4) and Zε the solution of (5).
Let us fix an arbitrary T > 0 and assume that ZN,ε(0) −→ Zε(0), as N → +∞.

Then sup
0≤t≤T

∥
∥
∥ZN,ε(t) − Zε(t)

∥
∥
∥ −→ 0 a.s. , as N → +∞ .

Moreover, for all xi ∈ Dε, Vi := [xi − ε/2, xi + ε/2) denote the cell centered in the
site xi . We define

Sε(t, x) :=
ε−1
∑

i=1

Sε(t, xi )1Vi (x), Iε(t, x)

=
ε−1
∑

i=1

Iε(t, xi )1Vi (x), Rε(t, x) :=
ε−1
∑

i=1

Rε(t, xi )1Vi (x),

β(x) :=
ε−1
∑

i=1

β(xi )1Vi (x), α(x) :=
ε−1
∑

i=1

α(xi )1Vi (x)

, and we set

Xε := (Sε , Iε , Rε)
T. (6)

We introduce the canonical projection Pε : L2(T1) −→ Hε defined by

f 	−→ Pε f (x) = ε−1
∫

Vi
f (y)dy, if x ∈ Vi .

Throughout this paper, we assume that the initial condition satisfies

Assumption 1.1 s(0, .), i(0, .), r(0, .) ∈ C1(T1), ∀x ∈ T
1, Sε(0, x) = Pεs(0, x),

Iε(0, x) = Pεi(0, x), Rε(0, x) = Pεr(0, x), and
∫

T1
(s(0, x) + i(0, x) + r(0, x))

dx = 1.
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Assumption 1.2 There exists a constant c > 0 such that inf
x∈T1

s(0, x) ≥ c.

We use the notation ‖ f ‖∞ := sup
x∈[0,1]

| f (x)| to denote the supremun norm of f in

[0, 1] and define
∥
∥
∥
(
f , g, h

)T
∥
∥
∥∞ := ∥∥ f ∥∥∞ + ∥∥g∥∥∞ + ∥∥h∥∥∞.

We have the

Theorem 1.2 For all T > 0, sup
0≤t≤T

∥
∥
∥Xε(t) − X(t)

∥
∥
∥∞ −→ 0, as ε → 0.

Next, defining SN,ε(t, x) :=
ε−1
∑

i=1

SN,ε(t, xi )1Vi (x), IN,ε(t, x) :=
ε−1
∑

i=1

IN,ε(t, xi )

1Vi (x),

RN,ε(t, x) :=
ε−1
∑

i=1

RN,ε(t, xi )1Vi (x), and setting XN,ε := (SN,ε , IN,ε , RN,ε

)T, the

following theorem is proved in N’zi et al. [10].

Theorem 1.3 Let us assume that (ε,N) → (0,∞), in such way that

(i)
N

log(1/ε)
−→ ∞ as N → ∞ and ε → 0;

(ii)
∥
∥
∥XN,ε(0) − X(0)

∥
∥
∥∞ −→ 0 in probability.

Then for all T > 0, sup
0≤t≤T

∥
∥
∥XN,ε(t) − X(t)

∥
∥
∥∞ −→ 0 in probability .

We devote this paper to study the deviation of the stochastic model from the deter-
ministic one as the mesh size of the grid goes to zero. In this work, we focus our
attention to the periodic boundary conditions on the unit interval [0, 1], which we
denote by T

1. Let us mention that Blount [2] and Kotelenez [7] described similar
spatial model for chemical reactions. The resulting process has one component and
is compared with the corresponding deterministic model. They proved a functional
central limit theorem under some restriction on the respective speeds of convergence
of the initial number of particles in each cell and the number of cells.
The rest of this paper is organized as follows. In Sect. 2, we give some notations and
preliminaries which will be useful in the sequel of this paper. In Sect 3, we establish
a functional central limit theorem, the main result of this paper, by letting the mesh
size ε of the grid go to zero. The fluctuation limit is a distribution valued general-
ized Ornstein–Uhlenbeck Gaussian process and can be represented as the solution
of a linear stochastic partial differential equation, whose driving terms are Gaussian
martingales.

2 Notations and preliminaries

In this section, we give some notations and collect some standard facts on the Sobolev
spaces Hγ (T1), γ ∈ R. First of all, let us describe some of the properties of the
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(discrete)-Laplace operator. Let Hε ⊂ L2(T1) denote the space of real valued step
functions that are constant on each cell Vi . For f ∈ Hε, let us define

∇+
ε f (xi ) := f (xi + ε) − f (xi )

ε
and ∇−

ε f (xi ) := f (xi ) − f (xi − ε)

ε
.

For f , g ∈ L2(T1), 〈 f , g 〉 :=
∫

T1
f (x)g(x)dx denotes the scalar product in L2(T1).

It is not hard to see that

〈 ∇+
ε f , g 〉 = −〈 f ,∇−

ε g 〉 and �ε f = ∇−
ε ∇+

ε f = ∇+
ε ∇−

ε f .

For m even and x ∈ R we define

ϕm(x) :=
{

1, for m = 0√
2 cos(mπx), for m �= 0 and even,

ψm(x) :=
{

0, for m = 0√
2sin(mπx), for m �= 0 and even.

{1 , ϕm , ψm , m = 2k , k ≥ 1} is a complete orthonormal system (CONS) of eigen-
vectors of � in L2(T1) with eigenvalues −λm = −π2m2. Consequently, the
semigroup T(t) := exp(� t) acting on L2(T1) generated by � can be represented
as

T(t) f = 〈 f , 1 〉 +
∑

k≥1

exp(−λ2k t)
[
〈 f , ϕ2k 〉ϕ2k + 〈 f , ψ2k 〉ψ2k

]
, f ∈ L2(T1).

Assume that ε−1 is an odd integer. For m ∈ {0, 2, · · · , ε−1 − 1
}
, we define ϕε

m(x) =√
2 cos(πmjε), if x ∈ Vj andψε

m(x) = √
2 sin(πmjε), if x ∈ Vj . { ϕε

m, ψε
m,m } form

an orthonormal basis of Hε as a subspace of L2
(
T
1
)
. These vectors are eigenfunctions

of �ε with the associated eigenvalues −λε
m = −2ε−2(1 − cos(mπε)

)
. Note that

λε
m −→ λm , as ε → 0. Basic computations show that there exists a constant c, such

that for eachm and ε, ε−2
(
1−cos(πmε)

)
> c m2.Let us set nε = ε−1−1

2 .�ε generates
a contraction semigroup Tε(t) := exp(�εt) whose action on each f ∈ Hε is given by

Tε(t) f =
nε∑

k=0

exp(−λε
2k t)
[
〈 f , ϕε

2k 〉ϕε
2k + 〈 f , ψε

2k 〉ψε
2k

]
. (7)

Note that both �ε and Tε(t) are self-adjoint and that Tε(t)�εϕ = �εTε(t)ϕ.

For any J ∈ {S, I , R}, the semigroup generated by μJ � is T(μJ t). In the sequel, we
will use the notation TJ (t) := T(μJ t) and similarly, in the discrete case, we will use
the notation Tε,J (t) := Tε(μJ t). Also, for any J ∈ {S, I , R}, we set λm,J := μJ λm
and λε

m,J := μJ λ
ε
m . For γ ∈ R+, we define the Hilbert space Hγ (T1) as follows.

Hγ (T1) := { f ∈ L2 (
T
1) , ‖ f ‖2

Hγ :=
∑

m even

[〈 f , ϕm 〉2 + 〈 f , ψm 〉2](1 + λm)γ < ∞ }
.
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We shall use the notations Hγ := Hγ (T1) and L2 := L2(T1).
Note that ‖ϕ‖Hγ = ‖(I − �)γ/2ϕ‖

L2
, where I is the identity operator on L2

(
T
1
)
.

For any three-dimensional vector-valued function 
 = (
1,
2,
3)
T, we use the

notation ‖
‖Hγ :=
(
‖
1‖2Hγ + ‖
2‖2Hγ + ‖
3‖2Hγ

)1/2
.

For γ ∈ R, we also define

‖ f ‖Hγ,ε :=
[ ∑

m even

(〈 f , ϕε
m 〉2 + 〈 f , ψε

m 〉2)(1 + λε
m)γ
]1/2

, f ∈ Hε.

For f , g ∈ Hε, we have

∣
∣〈 f , g〉∣∣ ≤ ‖ f ‖

H−γ,ε ‖g‖Hγ,ε , γ ≥ 0. (8)

Elementary calculation shows that for f ∈ Hε, and γ > 0 there exist positive constants
c1(γ ) and c2(γ ) such that for all ε > 0

c1(γ )‖ f ‖
H−γ,ε ≤ ‖ f ‖

H−γ ≤ c2(γ )‖ f ‖
H−γ,ε . (9)

f ′ := ∂ f

∂x
will denote the derivative of f .

In the sequel of this paper we may use the same notation for different constants (we
use the generic notation C for a positive constant). These constants can depend upon
some parameters of the model, as long as these are independent of ε andN, we will not
necessarily mention this dependence explicitly. However, we use C(γ, T ) to denote
a constant which depends on γ and T (and possibly on some unimportant constants).
The exact value may change from line to line.

Let us now consider the deviation of the stochastic model around its determinsitc
law of large numbers limit. To this end we introduce the rescaled difference between
ZN,ε(t) and Zε, namely

�N,ε(t) :=
⎛

⎝
UN,ε(t)
VN,ε(t)
WN,ε(t)

⎞

⎠ ,

where

UN,ε(t) :=

⎛

⎜
⎜
⎜
⎝

√
N
(
SN,ε(t, x1) − Sε(t, x1)

)

...√
N
(
SN,ε(t, x�) − Sε(t, x�)

)

⎞

⎟
⎟
⎟
⎠

,

VN,ε(t) :=

⎛

⎜
⎜
⎜
⎝

√
N
(
IN,ε(t, x1) − Iε(t, x1)

)

...√
N
(
IN,ε(t, x�) − Iε(t, x�)

)

⎞

⎟
⎟
⎟
⎠

123
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and

WN,ε(t) :=

⎛

⎜
⎜
⎜
⎝

√
N
(
RN,ε(t, x1) − Rε(t, x1)

)

...√
N
(
RN,ε(t, x�) − Rε(t, x�)

)

⎞

⎟
⎟
⎟
⎠

.

In the sequel, we denote by " �⇒ " weak convergence. By fixing the mesh size ε

of the grid and letting N go to infinity, we obtain the following theorem.

Theorem 2.1 (Central Limit Theorem : N → ∞, ε being fixed)
Assume that

√
N
(
ZN,ε(0) − Zε(0)

) −→ 0, as N → ∞.
Then, as N → +∞ ,

{
�N,ε(t), t ≥ 0

} �⇒ {
�ε(t), t ≥ 0

}
, for the topology of

locally uniform convergence, where the limit process �ε(t) :=
⎛

⎝
Uε(t)
Vε(t)
Wε(t)

⎞

⎠ satisfies

�ε(t) =
∫ t

0
∇zbε

(
r , Zε(r)

)
�ε(r)dr +

K∑

j=1

∫ t

0

√

β j
(
r , Zε(r)

)
dB j (r), t ≥ 0, (10)

and {B1(t), B2(t), · · · , BK (t)} aremutually independent standard Brownianmotions.
More precisely, by setting Aε = Sε + Iε + Rε, for any site xi , the limit (Uε, Vε,Wε)

T

satisfies the following system

Uε(t, xi ) = μS

∫ t

0
�εUε(r , xi )dr

−
∫ t

0
β(xi )

Iε(r , xi )
(
Iε(r , xi ) + Rε(r , xi )

)
Vε(r , xi )

A2
ε(r , xi )

dr

−
∫ t

0
β(xi )

Sε(r , xi )
(
Sε(r , xi ) + Rε(r , xi )

)
Uε(r , xi )

A2
ε(r , xi )

dr

+
∫ t

0

√

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )
dBin f

xi (r)

−
∑

yi∼xi

∫ t

0

√
μS

ε2
Sε(r , xi ) dBS

xi yi (r) +
∑

yi∼xi

∫ t

0

√
μS

ε2
Sε(r , yi ) dBS

yi xi (r),

Vε(t, xi ) = μI

∫ t

0
�εVε(r , xi )dr +

∫ t

0
β(xi )

Iε(r , xi )
(
Iε(r , xi ) + Rε(r , xi )

)
Vε(r , xi )

A2
ε(r , xi )

dr

+
∫ t

0
β(xi )

Sε(r , xi )
(
Sε(r , xi ) + Rε(r , xi )

)
Uε(r , xi )

A2
ε(r , xi )

dr −
∫ t

0
α(xi )Vε(r , xi )dr

−
∫ t

0

√

β(xi )
Sε(r , xi )Iε(r , xi )

A2
ε(r , xi )

dBin f
xi (r) +

∫ t

0

√
α(xi )Iε(r , xi ) dBrec

xi (r)

−
∑

yi∼xi

∫ t

0

√
μI

ε2
Iε(r , xi )dB

I
xi yi (r) +

∑

yi∼xi

∫ t

0

√
μI

ε2
Iε(r , yi ) dBI

yi xi (r),
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Wε(t, xi ) = μR

∫ t

0
�εWε(r , xi )dr +

∫ t

0
α(xi )Vε(r , xi )dr −

∫ t

0

√
α(xi )Iε(r , xi ) dBrec

xi (r)

−
∑

yi∼xi

∫ t

0

√
μR

ε2
Rε(r , xi ) dBR

xi yi (r) +
∑

yi∼xi

∫ t

0

√
μR

ε2
Rε(r , yi ) dBR

yi xi (r),

where {Bin f
xi : xi ∈ Dε} , {Brec

xi : xi ∈ Dε} , {BS
xi yi : yi ∼ xi ∈ Dε} , {BI

xi yi : yi ∼
xi ∈ Dε} and {BR

xi yi : yi ∼ xi ∈ Dε} are families of independent Brownian motions.

Theorem 2.1 is a special case of Theorem 3.5 of Kurtz [9] (see also Theorem 2.3.2 in
Britton and Pardoux [3] ). Then, here, we do not give the proof and refer the reader to
those references for a complete proof. �

Let X = (s , i , r)T satisfying the system (2) on [0, 1]. Thanks to Proposition 1.1
of Taylor [11] (chapter 15, section 1) we have the following lemma.

Lemma 2.1 Let γ ≥ 0 and assume that the initial data X(0) bebong to (Hγ )3, then
the parabolic system (2) has a unique solution X ∈ C

([0, T ]; (Hγ )3
)
.

The rest of this section is devoted to the proof of some estimates for the solution of
the system of equations (1). We first note that Sε(t, xi ) ≥ 0, Iε(t, xi ) ≥ 0, Rε(t, xi ) ≥
0 for all t ≥ 0, xi ∈ Dε and ε > 0. Moreover for any T > 0, there exists a contant
CT such that

sup
0≤t≤T

(‖Sε(t)‖∞ ∨ ‖Iε(t)‖∞ ∨ ‖Rε(t)‖∞) ≤ CT , ∀ε > 0 . (11)

Indeed we first note that ‖Sε(t)‖∞ ≤ M , since Sε is upper bounded by the solution of
the ODE

dXε

dt
(t, xi ) = μS�εXε(t, xi ), Xε(0, xi ) = M . (12)

Next Iε(t, xi ) is upper bounded by the solution of the ODE (with β̄ := supx β(x))

dYε

dt
(t, xi ) = μI�εYε(t, xi ) + β̄Yε(t, xi ), Yε(0, xi ) = M .

The result for Rε is now easy.
Let us set Aε := Sε + Iε + Rε . We have the

Lemma 2.2 For any T > 0, there exists a positive constant cT such that

Aε(t, x) ≥ cT , for any ε > 0, 0 ≤ t ≤ T , x ∈ T
1 .

Proof We consider the ODE

dSε

dt
(t, x) = μS�εSε(t, x) − β(x)Sε(t, x)Iε(t, x)

Sε(t, x) + Iε(t, x) + Rε(t, x)
.
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Since Sε(t, x) + Rε(t, x) ≥ 0 and Iε(t, x) ≥ 0, it is plain that

0 ≤ β(x)Iε(t, x)

Sε(t, x) + Iε(t, x) + Rε(t, x)
≤ β, where β := sup

x∈T1
|β(x)|.

Define Sε(t, x) = eβtSε(t, x). We have

dSε

dt
(t, x) = μS�εSε(t, x) +

(

β − β(x)Iε(t, x)

Sε(t, x) + Iε(t, x) + Rε(t, x)

)

Sε(t, x).

Combining this with the last inequality, we deduce that

Sε(t, x) ≥ [etμS�εSε(0, ·)](x) ≥ c,

from Assumption 1.2.
Going back to Sε, we note that we have proved that

Sε(t, x) ≥ ce−βt .

In other words, for any T > 0, there exists a constant cT := ce−βT which is such that

Sε(t, x) ≥ cT , for any ε > 0, 0 ≤ t ≤ T , x ∈ T
1 .

And since Iε(t, xi ) + Rε(t, xi ) ≥ 0, Aε(t, x) satisfies the same lower bound. ��

Lemma 2.3 For any T > 0, there exists a constant C such that for each ε > 0

sup
0≤t≤T

(
∥
∥Sε(t)

∥
∥2
L2 + ∥∥Iε(t)

∥
∥2
L2 + ∥∥Rε(t)

∥
∥2
L2

)

+2
∫ T

0

(

μS
∥
∥∇+

ε Sε(r)
∥
∥2
L2 + μI

∥
∥∇+

ε Iε(r)
∥
∥2
L2 + μR

∥
∥∇+

ε Rε(r)
∥
∥2
L2

)

dr ≤ C .

(13)

Proof For all (t, x) ∈ [0, T ] × [0, 1], we have
d Sε

dt
(t, x) = μS �εSε(t, x) − β(x)Sε(t, x)Iε(t, x)

Aε(t, x)
,

which implies

2
〈Sε(t) ,

d Sε

dt
(t)
〉 = 2μS

〈
�εSε(t) , Sε(t)

〉− 2
〈 β(.)Sε(t)Iε(t)

Aε(t)
, Sε(t)

〉

= −2μS
〈∇+

ε Sε(t) , ∇+
ε Sε(t)

〉− 2
〈 β(.)Sε(t)Iε(t)

Aε(t)
, Sε(t)

〉
.
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Then, ∀ t ∈ [0, T ],
∥
∥Sε(t)

∥
∥2
L2 + 2μS

∫ t

0

∥
∥∇+

ε Sε(r)
∥
∥2
L2dr = ∥∥Sε(0)

∥
∥2
L2 − 2

∫ t

0

〈 β(.)Sε(r)Iε(r)

Aε(r)
, Sε(r)

〉
dr .

In the same way, we obtain

∥
∥Iε(t)

∥
∥2
L2 + 2μI

∫ t

0

∥
∥∇+

ε Iε(r)
∥
∥2
L2dr

= ∥∥Iε(0)
∥
∥2
L2 + 2

∫ t

0

〈 β(.)Sε(r)Iε(r)

Aε(r)
, Iε(r)

〉
dr

−2
∫ t

0

〈
α(.)Iε(r) , Iε(r)

〉
dr ,

and

∥
∥Rε(t)

∥
∥2
L2 + 2μR

∫ t

0

∥
∥∇+

ε Rε(r)
∥
∥2
L2dr = ∥∥Rε(0)

∥
∥2
L2 + 2

∫ t

0

〈
α(.)Iε(r) , Rε(r)

〉
dr .

Then, we deduce that

∥
∥Sε(t)

∥
∥2
L2 + ∥∥Iε(t)

∥
∥2
L2 + ∥∥Rε(t)

∥
∥2
L2 + 2

∫ t

0
(

μS
∥
∥∇+

ε Sε(r)
∥
∥2
L2 + μI

∥
∥∇+

ε Iε(r)
∥
∥2
L2 + μR

∥
∥∇+

ε Rε(r)
∥
∥2
L2

)

dr

≤ ∥∥Sε(0)
∥
∥2
L2 + ∥∥Iε(0)

∥
∥2
L2 + ∥∥Rε(0)

∥
∥2
L2

+
∫ t

0

(

(2β + α)
∥
∥Iε(r)

∥
∥2
L2 + α

∥
∥Rε(r)

∥
∥2
L2

)

dr ,

where α = sup
x∈T1

|α(x)|.
It then follows from Gronwall’s lemma that

∥
∥Sε(t)

∥
∥2
L2 + ∥∥Iε(t)

∥
∥2
L2 + ∥∥Rε(t)

∥
∥2
L2

+2
∫ t

0

(

μS
∥
∥∇+

ε Sε(r)
∥
∥2
L2 + μI

∥
∥∇+

ε Iε(r)
∥
∥2
L2 + μR

∥
∥∇+

ε Rε(r)
∥
∥2
L2

)

dr

≤
(∥
∥Sε(0)

∥
∥2
L2 + ∥∥Iε(0)

∥
∥2
L2 + ∥∥Rε(0)

∥
∥2
L2

)
eC(α,β)

≤ C(α, β) .

��
We now add the following assumption.

Assumption 2.1 The functions β, α satisfy α ∈ C1(T1) and β ∈ C2(T1).
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Let fε(t, x) := β(x)
Sε(t,x)

[
Sε(t,x)+Rε(t,x)

]

A2
ε(t,x)

,

and gε(t, x) := β(x)
Iε(t,x)

[
Iε(t,x)+Rε(t,x)

]

A2
ε(t,x)

.

Lemma 2.4 For any T > 0, there exists a positive constant C such that for all ε > 0,

∫ T

0

(∥
∥∇+

ε fε(t)
∥
∥2
L2 + ∥∥∇+

ε gε(t)
∥
∥2
L2

)
dt ≤ C . (14)

Proof ∀x ∈ T
1, ∀t ≥ 0 we have

∇+
ε fε(t, x)

= −β(x + ε)Sε(t, x + ε)
[Sε(t, x + ε) + Rε(t, x + ε)

][Aε(t, x + ε) + Aε(t, x)
]∇+

ε Aε(t, x)

A2
ε(t, x)A2

ε(t, x + ε)

+β(x + ε)Sε(t, x + ε)

A2
ε(t, x)

∇+
ε

(Sε(t, x) + Rε(t, x)
)

+β(x + ε)
[Sε(t, x) + Rε(t, x)

]

A2
ε(t, x)

∇+
ε Sε(t, x)

+Sε(t, x)
[Sε(t, x) + Rε(t, x)

]

A2
ε(t, x)

∇+
ε β(x), (15)

from which we obtain

∫ T

0

∫

T1

∣
∣
∣∇+

ε fε(t, x)
∣
∣
∣
2
dxdt ≤ C

∫ T

0

∫

T1
(
∣
∣∇+

ε β(x)
∣
∣2 +

∣
∣
∣∇+

ε Sε(t, x)
∣
∣
∣
2

+
∣
∣
∣∇+

ε Rε(t, x)
∣
∣
∣
2 +

∣
∣
∣∇+

ε Aε(t, x)
∣
∣
∣
2
)

dxdt,

where we have used Assumption 2.1, inequality (11) and Lemma 2.2. The result now
follows from Lemma 2.3.

��
Lemma 2.5 For any T > 0, there exists a positive constant C such that

sup
0≤t≤T

(‖∇+
ε Sε(t)‖∞ ∨ ‖∇+

ε Iε(t)‖∞ ∨ ‖∇+
ε

Rε(t)‖∞ ∨ ‖∇+
ε fε(t)‖∞ ∨ ‖∇+

ε gε(t)‖∞
) ≤ C, (16)

∫ T

0

(∥
∥�εSε(t)

∥
∥2
L2 + ∥∥�εIε(t)

∥
∥2
L2 + ∥∥�εRε(t)

∥
∥2
L2

)
dt ≤ C, (17)

∫ T

0

(∥
∥�ε fε(t)

∥
∥2
L2 + ∥∥�εgε(t)

∥
∥2
L2

)
dt ≤ C, (18)

123



158 Stochastics and Partial Differential Equations: Analysis and Computations (2025) 13:146–179

and

sup
0≤t≤T

(∥
∥ fε(t)

∥
∥
H1,ε ∨ ∥∥gε(t)

∥
∥
H1,ε

) ≤ C . (19)

Proof We first etablish (16). Applying the operator ∇+
ε to the first equation in (1), we

get

d∇+
ε Sε

dt
(t, x) = μS�ε∇+

ε Sε(t, x) − ∇+
ε

(
βSεIε

Aε

)

(t, x) (20)

The last term on the above right hand side is easily explicited thanks to a computation
similar to that done in (15). Combining that formula with Assumption 2.1, inequality
(11) and Lemma 2.2, we deduce that

∥
∥
∥∇+

ε

(
βSεIε

Aε

)

(t)
∥
∥
∥∞ ≤ C

(∥
∥
∥∇+

ε Sε(t)
∥
∥
∥∞ +

∥
∥
∥∇+

ε Iε(t)
∥
∥
∥∞ +

∥
∥
∥∇+

ε Rε(t)
∥
∥
∥∞

)
.

From the Duhamel formula,

∇+
ε Sε(t) = etμS�ε∇+

ε Sε(0) +
∫ t

0
e(t−s)μS�ε∇+

ε

(
βSεIε

Aε

)

(s)ds

Since the semigroup etμS�ε is contracting in L∞, we deduce that

‖∇+
ε Sε(t)‖∞ ≤ ‖∇+

ε Sε(0)‖∞ + C
∫ t

0

(‖∇+
ε Sε(s)‖∞ + ‖∇+

ε Iε(s)‖∞

+‖∇+
ε Rε(s)‖∞

)
ds .

Applying similar arguments to the two other equations in (1), we obtain

‖∇+
ε Sε(t)‖∞ + ‖∇+

ε Iε(t)‖∞ + ‖∇+
ε Rε(t)‖∞

≤ ‖∇+
ε Sε(0)‖∞ + ‖∇+

ε Iε(0)‖∞ + ‖∇+
ε Rε(0)‖∞

+ C
∫ t

0

(‖∇+
ε Sε(s)‖∞ + ‖∇+

ε Iε(s)‖∞ + ‖∇+
ε Rε(s)‖∞

)
ds .

(16) now follows from Gronwall’s Lemma and Assumption 1.1.
We now multiply (20) by ∇+

ε Sε(t, x) and integrate on [0, t] × T
1, yielding

‖∇+
ε Sε(t)‖L2 + 2μS

∫ t

0
‖�εSε(s)‖2L2ds = 2

∫ t

0

(
βSεIε

Aε

(s),�εSε(s)

)

ds

≤ Ct + μS

∫ t

0
‖�εSε(s)‖2L2ds ,
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which yields one third of (17). The rest of (17) is proved by similar computations
applied to the equations for ∇+

ε Iε and ∇+
ε Rε. Next (18) follows from (17), (16),

Assumption 2.1, (11) and Lemma 2.2.
Since

∥
∥ fε(t)

∥
∥2
H1,ε ≤ C

(
∥
∥ fε(t)

∥
∥2
L2 + ∥∥∇+

ε fε(t)
∥
∥2
L2

)

,

the estimate (19) follows from (16), Assumption 2.1, inequality (11), Lemma 2.2 and
the fact that the norm in L2(T1) is bounded by the norm in L∞(T1).

��

Lemma 2.6 For any T > 0, as ε → 0

fε −→ f , gε −→ g, ∇+
ε fε −→ ∇ f , and

∇+
ε gε −→ ∇ginC

(
[0, T ]; L2(T1)

)
,

where f (t, x) = s(t, x) [s(t, x) + r(t, x)]
a2(t, x)

and g(t, x) = i(t, x) [i(t, x) + r(t, x)]
a2(t, x)

,

∀t ∈ [0, T ], x ∈ T
1.

Moreover f , g ∈ L2
(
0, T ;H1

)
.

Proof Let d be the function such that , ∀ t ∈ [0, T ] , x ∈ T
1 and ε > 0

fε(t, x) = d
(Sε(t, x), Iε(t, x),Rε(t, x)

)
and f (t, x) = d

(
s(t, x), i(t, x), r(t, x)

)
.

Furthermore, we know that Sε −→ s, Iε −→ i andRε −→ r uniformly on [0, T ] ×
T
1. Since d is continuous on {(s, i, r) ∈ (R+)3 : s + i + r > 0}, then we deduce that
fε −→ f uniformly on [0, T ] × T

1, and in particular in C
([0, T ]; L2(T1)

)
.

From (20) and similar equations for ∇+
ε Iε(t, x) and ∇+

ε Rε(t, x), we obtain the
convergence of ∇+

ε fε −→ ∇ f by an argument similar to the previous one.
The proofs of gε −→ g and ∇+

ε gε −→ ∇g are obtained in the same way.
��

In the sequel, we will write " fε(t) −→ f (t) in H1" to mean that " fε(t) −→ f (t)
in L2(T1) and ∇+

ε fε(t) −→ ∇ f (t) in L2(T1)".
We have the following compactness result.

Lemma 2.7 (Theorem 1.69 of Bahouri et al. [1], page 47)
For any compact subset E ofRd and s1 < s2, the embedding ofHs2 (E) intoHs1 (E)

is a compact linear operator.

In the next section, we study the behavior of the process {�ε, 0 < ε < 1} as ε goes
to zero.
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3 Functional central limit theorem

Let us define Uε(t, x) = 1

ε1/2

ε−1
∑

i=1

Uε(t, xi )1Vi (x), Vε(t, x) = 1

ε1/2

ε−1
∑

i=1

Vε(t, xi )

1Vi (x),

Wε(t, x) = 1

ε1/2

ε−1
∑

i=1

Wε(t, xi )1Vi (x).

Moreover, we set

M S
ε (t, x) =

∫ t

0
ε−1/2

ε−1
∑

i=1

√

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )
1Vi (x) dBin f

xi (r)

+√
μS

∫ t

0
ε−1/2

ε−1
∑

i=1

∑

i , j
xi∼x j

√
Sε(r , xi )

(
1Vj (x) − 1Vi (x)

)

ε
dBS

xi x j (r),

M I
ε (t, x) = −

∫ t

0
ε−1/2

ε−1
∑

i=1

√

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )
1Vi (x) dBin f

xi (r)

+
∫ t

0
ε−1/2

ε−1
∑

i=1

√
α(xi )Iε(r , xi )1Vi (x) dB

rec
xi (r)

+√
μI

∫ t

0
ε−1/2

ε−1
∑

i=1

∑

i , j
xi∼x j

√
Iε(r , xi )

(
1Vj (x) − 1Vi (x)

)

ε
dBS

xi x j (r),

M R
ε (t, x) = −

∫ t

0
ε−1/2

ε−1
∑

i=1

√
α(xi )Iε(r , xi )1Vi (x) dB

rec
xi (r)

+√
μR

∫ t

0
ε−1/2

ε−1
∑

i=1

∑

i , j
xi∼x j

√
Rε(r , xi )

(
1Vj (x) − 1Vi (x)

)

ε
dBS

xi x j (r).

(Uε,Vε,Wε) satisfies the following system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uε(t) =
∫ t

0
μS�εUε(r)dr −

∫ t

0
β(.)

Iε(r)
(Iε(r) + Rε(r)

)
Vε(r)

A2
ε(r)

dr

−
∫ t

0
β(.)

Sε(r)
(Sε(r) + Rε(r)

)
Uε(r)

A2
ε(r)

dr + M S
ε (t),

Vε(t) =
∫ t

0
μI�εVε(r)dr +

∫ t

0
β(.)

Iε(r)
(Iε(r) + Rε(r)

)
Vε(r)

A2
ε(r)

dr

+
∫ t

0
β(.)

Sε(r)
(Sε(r) + Rε(r)

)
Uε(r)

A2
ε(r)

dr −
∫ t

0
α(.)Vε(r)dr + M I

ε (t),

Wε(t) =
∫ t

0
μR�εWε(r)dr +

∫ t

0
α(.)Vε(r)dr + M R

ε (t).

(21)

For γ ∈ R+, we denote by C
([0, T ];H−γ

)
the complete separable metric space

of continuous functions defined on [0, T ] with values in H−γ . For any ε > 0, Uε,
Vε and Wε can be viewed as continuous processes taking values in some Hilbert
space H−γ . Hence we will study the weak convergence of the process (Uε,Vε,Wε)

in C
([0, T ]; (H−γ )3

)
.

In the sequel wewill need to control the stochastic convolution integrals
∫ t

0
Tε,J (t−

r)dM J
ε (r), with J ∈ {S, I , R}. For that sake, we shall need a maximal inequality

which is a special case of Theorem 2.1 of Kotelenez [8], which we first recall.

Lemma 3.1 (Kotelenez [8]) Let (H ; ‖.‖H) be a separable Hilbert space, M an H-
valued locally square integrable càdlàg martingale and T(t) a contraction semigroup
operator ofL(H). Then, there is a finite constant c depending only on the Hilbert norm
‖.‖H such that for all T ≥ 0

E

(

sup
0≤t≤T

∥
∥
∥

∫ t

0
T(t − r)dM(r)

∥
∥
∥
2

H

)

≤ c e4σTE

(∥
∥
∥M(T )

∥
∥
∥
2

H

)

, (22)

where σ is a real number such that
∥
∥T(t)

∥
∥L(H)

≤ eσ t .

We want to take the limit as ε → 0 in the system of SDEs (21) satisfied by Yε. To
this end we will split our system into two subsystems.

First, we consider the following linear system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

duε(t) = μS �εuε(t)dt + dM S
ε (t),

dvε(t) = μI �εvεdt + dM I
ε (t),

dwε(t) = μR �εwε(t)dt + dM R
ε (t),

uε(0) = vε(0) = wε(0) = 0.

(23)
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Next, we shall consider the second system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

duε

dt
(t) = μS �εuε(t) − fε(t)uε(t) − gε(t)vε(t) − fε(t)uε(t) − gε(t)vε(t),

dvε

dt
(t) = μI �εvε(t) + fε(t)uε(t) + (gε(t) − α)vε(t) + fε(t)uε(t)

+ (gε(t) − α)vε(t),

dwε

dt
(t) = μR �εwε + α (vε + vε) ,

uε(0) = vε(0) = wε(0) = 0,

(24)

and finally, we note that

Uε = uε + uε, Vε = uε + vε, Wε = wε + wε.

Then the convergence of Yε := (Uε,Vε,Wε) will follow from both the convergence
of (uε, vε, wε) and of (uε, vε, wε).

Let us first look at the convergence of (uε, vε, wε).
Let Mε = (M S

ε ,M I
ε ,M R

ε

)T.
Recall that we denote by " �⇒ " the weak convergence.

Proposition 3.1 For any γ > 3/2, the Gaussian martingale Mε �⇒ M :=(
M S,M I ,M R

)T
in C

([0, T ]; (H−γ )3
)
as ε → 0, where for all ϕ ∈ Hγ

〈M S(t), ϕ 〉 = −
∫ t

0

∫

T1
ϕ(x)

√
β(x)s(r , x)i(r , x)

a(r , x)
Ẇ1(dr , dx)

−√2μS

∫ t

0

∫

T1
ϕ′(x)

√
s(r , x) Ẇ2(dr , dx),

〈M I (t), ϕ 〉 =
∫ t

0

∫

T1
ϕ(x)

√
β(x)s(r , x)i(r , x)

a(r , x)
Ẇ1(dr , dx)

+
∫ t

0

∫

T1
ϕ(x)

√
α(x)i(r , x)Ẇ3(dr , dx)

−√2μI

∫ t

0

∫

T1
ϕ′(x)

√
i(r , x) Ẇ4(dr , dx),

〈M R(t), ϕ 〉 = −
∫ t

0

∫

T1
ϕ(x)

√
α(x)i(r , x)Ẇ3(dr , dx)

−√2μR

∫ t

0

∫

T1
ϕ′(x)

√
r(r , x) Ẇ5(dr , dx),

and Ẇ1, Ẇ2, Ẇ3, Ẇ4 and Ẇ5 are standard space-time white noises which are mutually
independent.
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Proof First, we are going to show that there exists a positive constant C independent
of ε such

sup
0<ε<1

E

(

sup
0≤t≤T

∥
∥Mε(t)

∥
∥2

H−γ

)

≤ C . (25)

Recall that
∥
∥Mε(t)

∥
∥2

H−γ
:= ∥∥M S

ε (t)
∥
∥2

H−γ
+ ∥∥M I

ε (t)
∥
∥2

H−γ
+ ∥∥M R

ε (t)
∥
∥2

H−γ
.

Applying Doob’s inequality to the martingale M S
ε , we have

E

(

sup
0≤t≤T

∥
∥M S

ε (t)
∥
∥2

H−γ

)

≤ 4E

(
∥
∥M S

ε (T )
∥
∥2

H−γ

)

= 4
∑

m even

E

(
〈M S

ε (T ), fm 〉2
)
(1 + λm)−γ , with fm ∈ {ϕm, ψm}

= 4

ε

∫ T

0

∑

m even

ε−1
∑

i=1

β(xi )Sε(r , xi )Iε(r , xi )

Aε(r , xi )

(∫

Vi
fm(x) dx

)2

(1 + λm)−γ dr

+4μS

ε

∫ T

0

∑

m even

ε−1
∑

i=1

Sε(r , xi )

[(∫

Vi
∇+

ε fm(x) dx

)2

+
(∫

Vi
∇−

ε fm(x) dx

)2]

(1 + λm)−γ dr .

But since
Sε(r , xi )Iε(r , xi )

Aε(r , xi )
≤ M (indeed

Iε(r , xi )

Aε(r , xi )
≤ 1 and Sε(r , xi ) ≤ M , see (11)

and the line which follows) and
∣
∣∇±

ε fm(x)
∣
∣2 ≤ 2π2m2, then we obtain

E

(

sup
0≤t≤T

∥
∥M S

ε (t)
∥
∥2

H−γ

)

≤ C(β, μS, T )

( ∑

m even

1

m2γ +
∑

m even

1

m2(γ−1)

)

.

Since
∑

m even

1

m2(γ−1)
< ∞ iff γ > 3/2, we then have

sup
0<ε<1

E

(

sup
0≤t≤T

∥
∥M S

ε (t)
∥
∥2

H−γ

)

≤ C(β, μS, T ), for all γ > 3/2. (26)

Similar inequalities hold for the martingales M I
ε and M R

ε . Hence we obtain

sup
0<ε<1

E

(

sup
0≤t≤T

∥
∥Mε(t)

∥
∥2

H−γ

)

≤ C . (27)
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Inequality (27) and standard tightness criteria for martingales (see e.g. the proof of
Theorem 3.1) implies that the martingale Mε is tight in C

([0, T ]; (H−γ )3
)
, with

γ > 3/2.
In what follows <<M S,γ0

ε >>t denotes the operator–valued increasing process asso-
ciated to the L2(T1)–valued martingale M

S,γ0
ε (t), whose trace is the increasing

process associated to the real valued submartingale ‖M S,γ0
ε (t)‖2

L2(T1)
. Let ϕ ∈ Hγ .

We setM S,ϕ
ε = 〈M S

ε , ϕ〉.M I ,ϕ
ε andM R,ϕ

ε are defined in the same way. ∀ t ∈ [0, T ],
we have

<<M S,ϕ
ε >>t = 1

ε

∫ t

0

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )

(∫

Vi
ϕ(x) dx

)2

dr

+μS

ε

∫ t

0

ε−1
∑

i=1

Sε(r , xi )

[( ∫

Vi
∇+

ε ϕ(x) dx
)2 +

( ∫

Vi
∇−

ε ϕ(x) dx
)2
]

dr .

We have

1

ε

∫ t

0

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )

(∫

Vi
ϕ(x) dx

)2

dr

= 1

ε

∫ t

0

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )

(∫

Vi
ϕ(x) dx

)[∫

Vi

(
ϕ(x) − ϕ(xi )

)
dx

]

dr

+
∫ t

0

∫

T1

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )
ϕ(x)ϕ(xi )1V xi (x)dxdr .

On the one hand we have

∣
∣
∣
∣
1

ε

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )

(∫

Vi
ϕ(x) dx

)[∫

Vi

(
ϕ(x) − ϕ(xi )

)
dx

]∣
∣
∣
∣

≤ Cε
∥
∥ϕ
∥
∥
Hγ

∫

T1

βε(x)Sε(r , x)Iε(r , x)|ϕ(x)|
Aε(r , x)

dx −→ 0,

because the quantity
∫

T1

βε(x)Sε(r , x)Iε(r , x)|ϕ(x)|
Aε(r , x)

dx is bounded uniformly in ε.

Hence
1

ε

∫ t

0

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )

(∫

Vi
ϕ(x) dx

)[∫

Vi

(
ϕ(x)−ϕ(xi )

)
dx

]

−→
0, as ε → 0.
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On the other hand, the fact that sup
0≤t≤T

∥
∥Xε(t) −X(t)

∥
∥∞ −→ 0, as ε → 0, leads to

∣
∣
∣
∣

∫

T1

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )
ϕ(x)ϕ(xi )1V xi (x)dx

−
∫

T1
β(x)

s(r , x)i(r , x)
a(r , x)

ϕ2(x)dx

∣
∣
∣
∣ −→ 0.

This shows that

1

ε

∫ t

0

ε−1
∑

i=1

β(xi )
Sε(r , xi )Iε(r , xi )

Aε(r , xi )

(∫

Vi
ϕ(x) dx

)2

dr

−→
∫ t

0

∫

T1
β(x)

s(r , x)i(r , x)
a(r , x)

ϕ2(x)dxdr ,

as ε → 0. Similar computation shows that

μS

ε

∫ t

0

ε−1
∑

i=1

Sε(r , xi )

[( ∫

Vi
∇+

ε ϕ(x) dx
)2 +

( ∫

Vi
∇−

ε ϕ(x) dx
)2
]

dr

−→ 2μS

∫ t

0

∫

T1
s(r , x)

(
ϕ′(x)

)2
dxdr ,

from which we deduce that

<<M S,ϕ
ε >>t

ε→0−→
∫ t

0

∫

T1
β(x)

s(r , x)i(r , x)
a(r , x)

ϕ2(x)dxdr

+2μS

∫ t

0

∫

T1
s(r , x)

(
ϕ′(x)

)2
dxdr .

Hence, if Ẇ1 , Ẇ2 and Ẇ3 are space-timewhite noiseswhich aremutually independent,
so the limit of the centered Gaussian martingale M S,ϕ

ε (t) can be identified with

−
∫ t

0

∫

T1
ϕ(x)

√
β(x)s(r , x)i(r , x)

a(r , x)
Ẇ1(dr , dx)

−√2μS

∫ t

0

∫

T1
ϕ′(x)

√
s(r , x) Ẇ2(dr , dx).
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In the same way

M I ,ϕ
ε (t) �⇒

∫ t

0

∫

T1
ϕ(x)

√
β(x)s(r , x)i(r , x)

a(r , x)
Ẇ1(dr , dx)

+
∫ t

0

∫

T1
ϕ(x)

√
α(x)i(r , x)Ẇ3(dr , dx)

−√2μI

∫ t

0

∫

T1
ϕ′(x)

√
i(r , x) Ẇ4(dr , dx)

and

M R,ϕ
ε (t) �⇒ −

∫ t

0

∫

T1
ϕ(x)

√
α(x)i(r , x)Ẇ3(dr , dx)

−√2μR

∫ t

0

∫

T1
ϕ′(x)

√
r(r , x) Ẇ5(dr , dx),

where Ẇ3, Ẇ4 and Ẇ5 are also space-time white noises which are mutually indepen-
dent, and independent from Ẇ1, Ẇ2. ��

Let set �ε = (uε , vε , wε

)T
.

Weneed to check tightness of the sequence of process {�ε(t) , t ∈ [0, T ] , 0 < ε < 1}.

Theorem 3.1 For any γ > 3/2, the process {�ε(t) , t ∈ [0, T ] , 0 < ε < 1} is tight
in C

([0, T ]; (H−γ )3
)
.

Proof : We denote by GT
ε the collection of Fε

t -stopping times τ such that τ ≤ T .

Following Aldous’ tightness criterion (see Joffe and Metivier [5]), in oder to show
that the process {�ε(t) , t ∈ [0, T ] , 0 < ε < 1} is tight in C

([0, T ]; (H−γ )3
)
, it

suffices to establish the two following conditions:

[T] for
3

2
< γ0 < γ , and M > 0 there exists C such that P

(∥
∥�ε(t)

∥
∥
H−γ0

≥ M
)

≤
C, for all t ∈ [0, T ] ,

[A] lim
θ→0

lim
ε→0

sup
τ∈GT−θ

ε

E

(∥
∥
∥�ε(τ + θ) − �ε(τ )

∥
∥
∥
2

H−γ

)

= 0.

Let
3

2
<γ0<γ . Let us set uγ0

ε (t, x) = (I − �ε)
−γ0/2uε(t, x). ∀ t ∈ [0, T ], we have

∥
∥uε(t)

∥
∥2

H−γ0
= 〈 uγ0

ε (t), uγ0
ε (t)

〉
.

If we defineM S,γ0
ε (t) := (I−�ε)

−γ0/2M S
ε (t), since γ0 > 3/2, it follows from (3.1)

that M S,γ0
ε (t) is bounded as ε → 0, as an L2(T1)–valued martingale. Applying the

Itô formula to |uγ0
ε (t, x)|2 and integrating over T1 leads to
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∥
∥uε(t)

∥
∥2

H−γ0
= −2

∫ t

0

〈∇+
ε uγ0

ε (r),∇+
ε uγ0

ε (r)
〉
dr + 2

∫ t

0

〈
uγ0

ε (r), dM S,γ0
ε (r)

〉

+
∫

T1
<<M S,γ0

ε (., x)>>t dx .

Letting t = T and taking the expectation, we deduce that

E(
∥
∥uε(T )

∥
∥2

H−γ0
) + 2μSE

∫ T

0

∥
∥∇+

ε uε(t)
∥
∥2

H−γ0
dt = E

(
‖M S,γ0

ε (T )‖2L2

)
.

Next we want to take the supremum on [0, T ] in the previous identity. For that sake,
we use the Burkholder Davis Gundy inequality, which implies that

E

[

sup
0≤t≤T

∣
∣
∣
∣

∫ t

0

〈
uγ0

ε (r), dM S,γ0
ε (r)

〉
∣
∣
∣
∣

]

≤ 3E

√

<<
∫ ·

0

〈
uγ0

ε (r), dM S,γ0
ε (r)

〉
>>T

≤ 3E

(

sup
0≤t≤T

‖uγ0
ε (t)‖L2

√

Tr<<M S,γ0
ε >>T

)

≤ 1

2
E

(

sup
0≤t≤T

‖uγ0
ε (t)‖2L2

)

+ 9

2
E(‖M S,γ0

ε (T )‖2L2).

We then obtain, thanks to (26),

E

(

sup
0≤t≤T

∥
∥uε(t)

∥
∥2

H−γ0

)

= 11 E

(

sup
0≤t≤T

∥
∥M S,γ0

ε (t)
∥
∥2
L2

)

≤ 44 C(β, μS, T ) .

We also obtain similar inequalities for vε and wε. Hence there exists a constant C
such that for all ε > 0,

E

(

sup
0≤t≤T

∥
∥uε(t)

∥
∥2

H−γ0
+ sup

0≤t≤T

∥
∥vε(t)

∥
∥2

H−γ0
+ sup

0≤t≤T

∥
∥wε(t)

∥
∥2

H−γ0

)

+ 2E
∫ T

0

[
μS
∥
∥∇+

ε uε(r)
∥
∥2

H−γ0
+ μI

∥
∥∇+

ε vε(r)
∥
∥2

H−γ0
+ μR

∥
∥∇+

ε wε(r)
∥
∥2

H−γ0

]
dr ≤ C .

(28)

Then [T] follows by using Markov’s inequality.
Let θ > 0 and τ ∈ GT−θ

ε . We have

uε(τ + θ) − uε(τ ) = [Tε,S(θ) − I
]
uε(τ ) +

∫ τ+θ

τ

Tε,S(τ + θ − r)dM S
ε (r).
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So,

E

(∥
∥
∥uε(τ + θ) − uε(τ )

∥
∥
∥
2

H−γ

)

≤ 2E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ

)

+ 2E

(∥
∥
∥

∫ τ+θ

τ

Tε,S(τ + θ − r)dM S
ε (r)

∥
∥
∥
2

H−γ

)

.

Let us deal with each term separately. First using the inequality (9), there is a constant
C(γ ) such that

E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ

)

≤ C(γ )E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ,ε

)

.

Let 3/2 < γ ′ < γ , and let c a positive constant. We have

∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ

=
∑

λε
m≥c

〈 [
Tε,S(θ) − I

]
uε(τ ), fεm

〉2(1 + λε
m

)−γ

+
∑

λε
m<c

〈 [
Tε,S(θ) − I

]
uε(τ ), fεm

〉2(1 + λε
m

)−γ
,

and

∑

λε
m≥c

〈 [
Tε,S(θ) − I

]
uε(τ ), fεm

〉2(1 + λε
m

)−γ

≤ (1 + c)γ
′−γ

∑

λε
m≥c

〈 [
Tε,S(θ) − I

]
uε(τ ), fεm

〉2(1 + λε
m

)−γ ′

≤ (1 + c)γ
′−γ
∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ ′ .

Then

E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ

)

≤ C(γ )(1 + c)γ
′−γ

E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ ′

)

+C(γ )
∑

λε
m<c

(
e−λε

mθ − 1
)2
E

(
〈 uε(τ ), fεm 〉2

)(
1 + λε

m

)−γ

On the one hand, since E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ ′

)

≤ C , we can choose c large

enough such thatC(γ )(1+c)γ
′−γ

E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ ′

)

≤ ε/2.On the other

hand, we have
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∑

λε
m<c

(
e−λε

mθ − 1
)2
E

(
〈 uε(τ ), fεm 〉2

)(
1 + λε

m

)−γ

≤ sup
λε
m<c

(
1 − e−λε

nθ
)2 ∑

λε
m<c

E

(
〈 uε(τ ), fεm 〉2

)(
1 + λε

m

)−γ

≤ sup
λε
m<c

(
1 − e−λε

mθ
)2
E

(
∥
∥uε(τ )

∥
∥2

H−γ,ε

)

≤ C(γ ) sup
λε
m<c

(
1 − e−λε

mθ
)2
E

(
∥
∥uε(τ )

∥
∥2

H−γ

)

.

Since

E

(
∥
∥uε(τ )

∥
∥2−γ

)

≤ E

(

sup
0≤t≤T

∥
∥uε(t)

∥
∥2−γ

)

≤ C,

then for the previous choice of c,we can choose θ small enough such thatC(γ ) sup
λε
m<c

(
1−

e−λε
mθ
)2
E

(
∥
∥uε(τ )

∥
∥2

H−γ

)

≤ ε/2. Hence

lim
θ→0

lim
ε→0

sup
τ∈GT−θ

ε

E

(∥
∥
∥
[
Tε,S(θ) − I

]
uε(τ )

∥
∥
∥
2

H−γ

)

= 0 .

Secondly, using the equivalence of the norms ‖.‖
H−γ and ‖.‖

H−γ,ε , and the fact that
Tε,S is a contraction semigroup on Hε we have

E

(∥
∥
∥

∫ τ+θ

τ

Tε,S(τ + θ − r)M S
ε (r)

∥
∥
∥
2

H−γ

)

= E

(∥
∥
∥

∫ θ

0
Tε,S(θ − r)dM S

ε (r + τ)

∥
∥
∥
2

H−γ

)

≤ C(γ )E

(∥
∥
∥M S

ε (τ + θ) − M S
ε (τ )

∥
∥
∥
2

H−γ,ε

)

≤ 2C(γ )E

(∥
∥
∥

∫ τ+θ

τ

ε−1
∑

i=1

√
β(xi )

ε

√
Sε(r , xi )Iε(r , xi )

Aε(r , xi )
1Vi (.)dBxi (r)

∥
∥
∥
2

H−γ,ε

)

+2C(γ )E

(∥
∥
∥

∫ τ+θ

τ

∑

i , j
xi∼x j

√
μS Sε(r , xi )

ε

(
1Vj (.) − 1Vi (.)

)
dBS

xi x j (r)
∥
∥
∥
2

H−γ,ε

)

≤ 2C(γ )β

ε
E

(∫ τ+θ

τ

∑

m

ε−1
∑

i=1

Sε(r , xi )Iε(r , xi )

Aε(r , xi )

( ∫

Vi
fεm(x) dx

)2
(1 + λε

m)−γ dr

)
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+2C(γ )μS

ε
E

(∫ τ+θ

τ

∑

m

ε−1
∑

i=1

Sε(r , xi )
( ∫

Vi
∇±

ε fεm(x) dx
)2

(1 + λε
m)−γ dr

)

≤ C(β, μS) θ −→ 0, as θ → 0.

Hence the condition [A] is proved.
In the way, we prove similar estimates for vε and wε. Then the process

{�ε(t), t ∈
[0, T ], 0 < ε < 1

}
is tight in C

([0, T ]; (H−γ )3
)
, γ > 3/2. ��

Lemma 3.2 For 3/2 < γ < 2, the process { �ε(t), t ∈ [0, T ], 0 < ε < 1 } converges
in law in C

([0, T ] ; (H−γ )3
) ∩ L2

(
0, T ; (H−1)3

)
.

Proof On the one hand, from Theorem 3.1, the process { �ε(t), t ∈ [0, T ], 0 <

ε < 1 } is tight in C
([0, T ] ; (H−γ )3

)
, then along a subsequence, it converges in

C
([0, T ] ; (H−γ )3

)
. On the other hand the sequence { �ε(t), t ∈ [0, T ], 0 < ε < 1 }

is bounded in L2
(
0, T ; (H1−γ )3

)
. Indeed for all ε , we have

E

(∫ T

0

∥
∥uε(t)

∥
∥2

H1−γ
dt

)

≤ C(γ )E

(∫ T

0

∥
∥uε(t)

∥
∥2

H1−γ,ε
dt

)

(by using the inequality (9))

= C(γ )
∑

m

E

( ∫ T

0
〈 uε(t), fεm 〉2dt

)
(1 + λε

m,S)
1−γ

= C(γ )
∑

m

E

( ∫ T

0
〈 uε(t), fεm 〉2dt

)
(1 + λε

m,S)
−γ

+C(γ )
∑

m

E

( ∫ T

0
〈 uε(t), fεm 〉2dt

)
λε
m,S(1 + λε

m,S)
−γ

= C(γ )

{

E

( ∫ T

0

∥
∥uε(t)

∥
∥2

H−γ,ε
dt
)

+ E

( ∫ T

0

∥
∥∇+

ε uε(t)
∥
∥2

H−γ,ε
dt
)}

≤ C(γ )

{

E

( ∫ T

0

∥
∥uε(t)

∥
∥2

H−γ
dt
)

+ E

( ∫ T

0

∥
∥∇+

ε uε(t)
∥
∥2

H−γ
dt
)}

,

where the third equality follows from the fact that

∥
∥∇+

ε uε(t)
∥
∥2

H−γ,ε
=
∑

m

〈 uε(t), fεm 〉2λε
m,S(1 + λε

m,S)
−γ

×(see LemmaA.2(i) in the Appendix below).

123



Stochastics and Partial Differential Equations: Analysis and Computations (2025) 13:146–179 171

The inequality (28) ensures thatE
∫ T

0

[∥
∥uε(t)

∥
∥2

H−γ
dt+∥∥∇+

ε uε(t)
∥
∥2

H−γ

]
dt is bounded

by a constant independent of ε. It then follows that

sup
0<ε<1

E

( ∫ T

0

∥
∥uε(t)

∥
∥2

H1−γ
dt
)

≤ C(γ ).

We have similar estimates for vε and wε. Thus

sup
0<ε<1

E

(∫ T

0

∥
∥�ε(t)

∥
∥2

H1−γ
dt

)

≤ C .

This implies that, from the sequence { �ε(t), t ∈ [0, T ], 0 < ε < 1 }, we can extract a
subsequence which converges in law in L2

(
0, T ; (H1−γ )3

)
endowed with the weak

topology. Furthermore, since the imbedding of H1−γ into H−1 is compact and we
have the convergence in C

([0, T ] ; (H−γ )3
)
, then the extracted sequence converges

in fact in L2
(
0, T ; (H−1)3

)
. Hence, we deduce that there exists a subsequence which

converges in law in C
([0, T ] ; (H−γ )3

) ∩ L2
(
0, T ; (H−1)3

)
.

We note that the limit � := (u, v, w)T of any convergent subsequence satisfies the
following system of stochastic PDEs

⎧
⎪⎨

⎪⎩

du(t) = μS �u(t)dt + dM S(t),

dv(t) = μI �vdt + dM I (t),

dw(t) = μR �w(t)dt + dM R(t),

(29)

and the solution of that system is unique. Then the whole process { �ε(t), t ∈
[0, T ], 0 < ε < 1 } converges in C([0, T ] ; (H−γ )3

) ∩ L2
(
0, T ; (H−1)3

)
. ��

Lemma 3.3 As ε → 0, fεuε �⇒ f u, and gεvε �⇒ gv in L2
(
0, T ;H−1

)
.

Proof The convergence fεuε �⇒ f u follows to the fact that uε �⇒ u in
L2
(
0, T ; H−1

)
and fε −→ f in C

([0, T ] ; H1
)
. The proof of the convergence

gεvε �⇒ gv is similar. ��
We are now interested in the convergence of the process �ε := (uε, vε, wε).

Lemma 3.4 For any T > 0, there exists a positive constant C such that

sup
0≤t≤T

(∥
∥uε(t)

∥
∥2
L2 + ∥∥vε(t)

∥
∥2
L2 + ∥∥wε(t)

∥
∥2
L2

)

+C
∫ T

0

(∥
∥∇+

ε uε(s)
∥
∥2
L2 + ∥∥∇+

ε vε(s)
∥
∥2
L2 + ∥∥∇+

ε wε(s)
∥
∥2
L2

)
ds ≤ CηT e

CT ,

(30)

where ηT :=
∫ T

0

(∥
∥uε(s)

∥
∥2
H−1 + ∥∥vε(s)

∥
∥2
H−1

)
ds.
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Proof For all t ∈ [0, T ], we have
∫ t

0
〈duε

ds
(s) , uε(s)〉ds = μS

∫ t

0
〈�εuε(s) , uε(s)〉ds −

∫ t

0
〈 fε(s)uε(s) , uε(s)〉ds

−
∫ t

0
〈gε(s)vε(s) , uε(s)〉ds −

∫ t

0
〈 fε(s)uε(s) , uε(s)〉ds

−
∫ t

0
〈gε(s)vε(s) , uε(s)〉ds.

Then

∥
∥uε(t)

∥
∥2
L2 + 2μS

∫ t

0

∥
∥∇+

ε uε(s)
∥
∥2
L2ds

= −2
∫ t

0
〈 fε(s)uε(s) , uε(s)〉ds − 2

∫ t

0
〈gε(s)vε(s) , uε(s)〉ds

− 2
∫ t

0
〈 fε(s)uε(s) , uε(s)〉ds − 2

∫ t

0
〈gε(s)vε(s) , uε(s)〉ds.

Since fε(t)uε(t) ∈ H−1 and gε(t)vε(t) ∈ H−1, then

∥
∥uε(t)

∥
∥2
L2 + 2μS

∫ t

0

∥
∥∇+

ε uε(s)
∥
∥2
L2ds

≤ 2 sup
0≤s≤T

‖ fε(s)‖∞
∫ t

0

∥
∥uε(s)

∥
∥2
L2ds

+
∫ t

0

(
sup

0≤s≤T
‖gε(s)‖2∞

∥
∥vε(s)

∥
∥2
L2 + ∥∥uε(s)

∥
∥2
L2

)
ds

+2 sup
0≤s≤T

∥
∥ fε(s)

∥
∥
H1,ε

∫ t

0

[∥
∥uε(s)

∥
∥
H−1

(∥
∥uε(s)

∥
∥
L2 + ∥∥∇+

ε uε(s)
∥
∥
L2

)]
ds

+2 sup
0≤s≤T

∥
∥gε(s)

∥
∥
H1,ε

∫ t

0

[∥
∥vε(s)

∥
∥
H−1

(∥
∥uε(s)

∥
∥
L2 + ∥∥∇+

ε uε(s)
∥
∥
L2

)]
ds.

Let δ be some constant such that 0 < δ <
μS

C
. We have

∥
∥uε(t)

∥
∥2
L2 + 2μS

∫ t

0

∥
∥∇+

ε uε(s)
∥
∥2
L2ds

≤ C
∫ t

0

∥
∥uε(s)

∥
∥2
L2ds +

∫ t

0

(
C
∥
∥vε(s)

∥
∥2
L2 + ∥∥uε(s)

∥
∥2
L2

)
ds

+C
∫ t

0

[

2δ
∥
∥uε(s)

∥
∥2
L2 + 2δ

∥
∥∇+

ε uε(s)
∥
∥2
L2 + 2

δ

∥
∥uε(s)

∥
∥2
H−1 + 2

δ

∥
∥vε(s)

∥
∥2
H−1

]

ds.
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Then

∥
∥uε(t)

∥
∥2
L2 + 2(μS − Cδ)

∫ t

0

∥
∥∇+

ε uε(s)
∥
∥2
L2ds

≤ (C + 2Cδ)

∫ t

0

∥
∥uε(s)

∥
∥2
L2ds + C

∫ t

0

∥
∥vε(s)

∥
∥2
L2

+2C

δ

∫ t

0

(∥
∥uε(s)

∥
∥2
H−1 + ∥∥vε(s)

∥
∥2
H−1

)
ds. (31)

In the same way, we prove that

∥
∥vε(t)

∥
∥2
L2 + 2(μI − Cδ)

∫ t

0

∥
∥∇+

ε vε(s)
∥
∥2
L2ds

≤ (C + 2Cδ)

∫ t

0

∥
∥uε(s)

∥
∥2
L2ds + C

∫ t

0

∥
∥vε(s)

∥
∥2
L2

+2C

δ

∫ t

0

(∥
∥uε(s)

∥
∥2
H−1 + ∥∥vε(s)

∥
∥2
H−1

)
ds, (32)

and

∥
∥wε(t)

∥
∥2
L2 + 2μR

∫ t

0

∥
∥∇+

ε wε(s)
∥
∥2
L2ds

≤ C

δ

∫ t

0

∥
∥vε(s)

∥
∥2
H−1ds + C

∫ t

0

∥
∥wε(s)

∥
∥2
L2 + C

∫ t

0

∥
∥vε(s)

∥
∥2
L2ds. (33)

By adding the inequalities (31) , (32) and (33), we obtain

∥
∥uε(t)

∥
∥2
L2 + ∥∥vε(t)

∥
∥2
L2 + ∥∥wε(t)

∥
∥2
L2 + C

∫ t

0

(∥
∥∇+

ε uε(s)
∥
∥2
L2 + ∥∥∇+

ε vε(s)
∥
∥2
L2

+∥∥∇+
ε wε(s)

∥
∥2
L2

)
ds

≤ C
∫ t

0

(∥
∥uε(s)

∥
∥2
L2 + ∥∥vε(s)

∥
∥2
L2 + ∥∥wε(s)

∥
∥2
L2

)
ds

+C
∫ t

0

(∥
∥uε(s)

∥
∥2
H−1 + ∥∥vε(s)

∥
∥2
H−1

)
ds.

Hence applying Gronwall’s Lemma we obtain

sup
0≤t≤T

(∥
∥uε(t)

∥
∥2
L2 + ∥∥vε(t)

∥
∥2
L2 + ∥∥wε(t)

∥
∥2
L2

)

+C
∫ T

0

(∥
∥∇+

ε uε(s)
∥
∥2
L2 + ∥∥∇+

ε vε(s)
∥
∥2
L2 + ∥∥∇+

ε wε(s)
∥
∥2
L2

)
ds ≤ CηT e

CT .

�
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We want to deduce from the fact that the pair (uε, vε) converges in law towards
(u, v) in L2(0, T ; (H−1)2), the convergence in law of (uε, vε, wε).

Lemma 3.5 The process { (uε(t), vε(t), wε(t)) , 0 ≤ t ≤ T , 0 < ε < 1 } ⇒
{ (u(t), v(t), w(t)), 0 ≤ t ≤ T } in L2

(
0, T ; (L2)3

) ∩ C([0, T ]; (H−1)3), where the
limit { (u(t), v(t), w(t)) , 0 ≤ t ≤ T } is the unique solution of the following system
of parabolic PDEs

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du

dt
(t) = μS �u(t) − f (t)u(t) − g(t)v(t) − f (t)u(t) − g(t)v(t),

dv

dt
(t) = μI �v(t) + f (t)u(t) + g(t)v(t) + f (t)u(t)

+ g(t)v(t) − α (v(t) + v(t) ,

dw

dt
(t) = μR �w(t) + α (v(t) + v(t)) ,

u(0) = v(0) = w(0) = 0.

(34)

Proof Let

�ε(t) =
⎛

⎝
uε(t)
vε(t)
wε(t)

⎞

⎠ , Fε(t) =
⎛

⎝
− fε(t)uε(t) − gε(t)vε(t)

fε(t)uε(t) + (gε(t) − α)vε(t)
αvε(t)

⎞

⎠ ,

�ε(t) =
⎛

⎝
μS�ε − fε(t) −gε(t) 0

fε(t) μI�ε + gε(t) − α 0
0 0 μR�ε + α

⎞

⎠ .

Note that both �ε and Fε belong to L2(0, T ; (Hε)
3). We have the following system of

ODEs

d�ε

dt
(t) = �ε(t)�ε(t) + Fε(t), �ε(0) = 0 . (35)

Lemma 3.3 tells us that whenever, as ε → 0,

Fε �⇒ F in L2(0, T ; (H−1)3),

where

F(t) =
⎛

⎝
− f (t)u(t) − g(t)v(t)

f (t)u(t) + g(t)v(t) − αv(t)
αv(t)

⎞

⎠ . (36)

We apply the well–known theorem due to Skorohod, which asserts that redefining the
probability space, we can assume that Fε → F a.s. strongly in L2((0, T ); (H−1)3).
Our assumptions and the hypotheses imply that both �ε and ∇+

ε �ε are bounded
in (L2((0, T ) × T

1))3. Hence along a subsequence �ε → � and ∇+
ε �ε → G in
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(L2((0, T )×T
1))3 weakly. However, it follows from a duality argument thatG = ∇�,

and taking the weak limit in (35), we deduce that� is the unique solution of the system
of parabolic PDEs

d�
dt

(t) = �(t)�(t) + F(t), �(0) = 0 ,

with

�(t) =
⎛

⎝
μS� − f (t) −g(t) 0

f (t) μI� + g(t) − α 0
0 0 μR� + α

⎞

⎠ . (37)

Hence all converging subsequences have the same limit, and the whole sequence
converges.

We now show that the pair 〈�ε,∇+
ε �ε〉 converges strongly in (L2((0, T ) × T

1))6.
We first note that both �ε and∇+

ε �ε are bounded in (L2((0, T )×T
1))3, but also d

dt �ε

is bounded in L2((0, T ); (H−1(T1))3). From these estimates, we deduce with the help
of Theorem 5.4 in Droniou et al. [4] that �ε → � strongly in (L2((0, T ) × T

1))3.
Next we deduce from (35) that

1

2

d
∥
∥�ε(t)

∥
∥2
L2

dt
= 〈�ε�ε(t),�ε(t)〉 + 〈Fε(t),�ε(t)〉,

hence

1

2

∥
∥�ε(T )

∥
∥2
L2 +

∫ T

0

[
μS
∥
∥∇+

ε uε(t)
∥
∥2
L2 + μI

∥
∥∇+

ε vε(t)
∥
∥2
L2 + μR

∥
∥∇+

ε wε(t)
∥
∥2
L2

]
dt

=
∫ T

0

[
〈 fε(t)uε(t) + gε(t)vε(t), vε(t)

− uε(t)〉 + ∥∥√α wε(t)
∥
∥2
L2 − ∥∥√α vε(t)

∥
∥2
L2 + 〈Fε(t),�ε(t)〉

]
dt . (38)

We have an analogous identity for the limiting quantities, namely:

1

2

∥
∥�(T )

∥
∥2
L2 +

∫ T

0

[
μS
∥
∥∇u(t)

∥
∥2
L2 + μI

∥
∥∇v(t)

∥
∥2
L2 + μR

∥
∥∇w(t)

∥
∥2
L2

]
dt

=
∫ T

0

[
〈 f (t)u(t) + g(t)v(t), v(t) − u(t)〉

+ ∥∥√α w(t)
∥
∥2
L2 − ∥∥√α v(t)

∥
∥2
L2 + 〈F(t),�(t)〉

]
dt . (39)

It follows from the strong convergence of Fε to F in L2(0, T ; (H−1)3), the strong
convergence of �ε → � in (L2((0, T )×T

1))3 and the weak convergence of ∇+
ε �ε to

∇� in (L2((0, T ) × T
1))3 that the right hand side of (38) converges to the right hand
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side of (39). Hence the left hand side of (38) converges to the left hand side of (39).
Consequently

1

2

∥
∥�ε(T ) − �(T )

∥
∥2
L2 +

∫ T

0

[
μS
∥
∥∇+

ε uε(t) − ∇u(t)
∥
∥2
L2 + μI

∥
∥∇+

ε vε(t) − ∇v(t)
∥
∥2
L2

+ μR
∥
∥∇+

ε wε(t) − ∇w(t)
∥
∥2
L2

]
dt → 0 . (40)

This last result follows from the convergence of the left hand side of (38) to that of
(39), and the facts that

〈�ε(T ),�(T )〉 → ∥
∥�(T )

∥
∥2
L2 ,

and

∫ T

0

[
μS〈∇+

ε uε(t),∇u(t)〉 + μI 〈∇+
ε vε(t),∇v(t)〉 + μR〈∇+

ε wε(t),∇w(t)〉] dt

→
∫ T

0

[
μS
∥
∥∇u(t)

∥
∥2
L2 + μI

∥
∥∇v(t)

∥
∥2
L2 + μR

∥
∥∇w(t)

∥
∥2
L2

]
dt .

The second convergence follows from the fact that ∇+
ε �ε → ∇� in (L2((0, T ) ×

T
1))3 weakly. Concerning the first one, we deduce from the equations and the above

statements that �ε(T ) → �(T )weakly in (H−1)3. But since that sequence is bounded
in (L2(T1))3, it also converges weakly in (L2(T1))3.

The fact that ∇+
ε �ε → ∇� strongly in (L2((0, T ) × T

1))3 clearly follows from
(40).

The above arguments imply that a.s.

〈�ε,∇+
ε �ε〉 → 〈�,∇�〉 strongly in (L2((0, T ) × T

1))6 .

Now the convergence�ε → � inC([0, T ]; (H−1)3) follows readily from the equation.
��

Lemma 3.2 says that �ε ⇒ � in C
([0, T ] ; (H−γ )3

)∩ L2
(
0, T ; (H−1)3

)
, we have

used in Lemma 3.5 the Skorohod theorem to deduce that �ε ⇒ � in L2(0, T (L2)3)∩
C([0, T ]; (H−γ )−1). Hence the same Skorohod theorem allows us to take the limit in
the sum �ε + �ε, which yields the following result.

Theorem 3.2 (Functional central limit theorem) For 3/2 < γ < 2, as ε → 0,
{Yε(t) , 0 ≤ t ≤ T }0<ε<1 �⇒ {Y (t) , 0 ≤ t ≤ T } in C

([0, T ] ; (H−γ )3
) ∩
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L2
(
0, T ; (H−1)3

)
, where the limit Y is solution of the following system of SPDEs :

for all ϕ ∈ H1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
U (t), ϕ

〉

H−1,H1

= μS

∫ t

0

〈
U (r) , �ϕ

〉

H−1,H1dr +
∫ t

0

〈
V (r), β(.)

i(r)
(
i(r) + r(r)

)

a2(r)
ϕ
〉

H−1,H1dr

+
∫ t

0

〈
U (r), β(.)

s(r)
(
s(r) + r(r)

)

a2(r)
ϕ
〉

H−1,H1dr + 〈M S(t) , ϕ
〉

H−1,H1 ,

〈
V (t), ϕ

〉

H−1,H1

= μI

∫ t

0

〈
V (r) , �ϕ

〉

H−1,H1dr −
∫ t

0

〈
V (r), β(.)

i(r)
(
i(r) + r(r)

)

a2(r)
ϕ
〉

H−1,H1dr

−
∫ t

0

〈
U (r), β(.)

s(r)
(
s(r) + r(r)

)

a2(r)
ϕ
〉

H−1,H1dr +
∫ t

0

〈
V (r), α(.)ϕ

〉

H−1,H1dr

+ 〈M I (t) , ϕ
〉

H−1,H1 ,
〈
W (t), ϕ

〉

H−1,H1

= μR

∫ t

0

〈
W (r) , �ϕ

〉

H−1,H1dr −
∫ t

0

〈
V (r), α(.)ϕ

〉

H−1,H1dr + 〈M R(t) , ϕ
〉

H−1,H1 .

(41)

Final remarks: • Our functional central limit theorem is established in dimension
1. The difficulty in higher dimension is the following. γ > 3/2 has to be replaced
by γ > 1 + d/2. Then in Lemma 3.2 we have convergence in L2(0, T ; (H1−γ )3) ∩
C([0, T ]; (H−γ )3). Note that 1 − γ < −d/2. Already in dimension 2, we have
1 − γ < −1, and there is a serious difficulty with the analog of Lemma 3.5.

• In this work, we have first let N → ∞, while ε > 0 is fixed, and then let ε → 0.
The case where N → +∞ and ε → 0 together, with some constraint on the relative
speeds of convergence (which does not allow N to converge too slowly to ∞ while
ε → 0) will be the subject of future work.

Appendix A

Lemma A.1 Let (hε)0<ε<1 be a sequence of Hε. If (hε)0<ε<1 is bounded in H1,ε, then
it is relatively compact in L2, and the limit of any convergent subsequence belongs to
H1.

Proof By using the fact that the sequence (hε) is bounded in L2 and
∥
∥∇+

ε hε

∥
∥
L2 ≤

C
∥
∥hε

∥
∥
H1
, then the result of the compactness follows from the compactness theorem

of Kolmogorov in L2.
The fact the limit of any convergent subsequence belong to H1, follows from the

discrete integrating by part

∫

T1
∇+
ε hε(x)ϕ(x)dx = −〈

∫ .

0
hε(y)dy , ∇+

ε ϕ 〉,
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and letting ε go to zero in this equation. ��
Lemma A.2

For all uε ∈ Hε∥
∥∇−

ε uε

∥
∥2

H−γ,ε
= ∥∥∇+

ε uε

∥
∥2

H−γ,ε
=
∑

m

(
〈 uε, ϕ

ε
m 〉2 + 〈 uε, ψ

ε
m 〉2
)

λε
m(1 + λε

m)−γ .

Proof We have

∇−
ε ϕε

m = −bm,εϕ
ε
m − am,εψ

ε
m and ∇−

ε ψε
m = am,εϕ

ε
m − bm,εψ

ε
m,

where am,ε = ε−1 sin(πmε) and bm,ε = ε−1(cos(πmε) − 1).
We have

a2m,ε + b2m,ε = λε
m .

Let uε ∈ Hε. We have

∥
∥∇+

ε uε

∥
∥2

H−γ,ε

=
∑

m

(
〈 uε,∇−

ε ϕm 〉2 + 〈 uε,∇−
ε ψm 〉2

)
(1 + λε

m)−γ

=
∑

m

(
〈 uε,−bm,εϕ

ε
m − am,εψ

ε
m 〉2 + 〈 uε, am,εϕ

ε
m − bm,εψ

ε
m 〉2
)

(1 + λε
m)−γ

=
∑

m

(
[−bm,ε〈 uε, ϕ

ε
m 〉 − am,ε〈 uε, ψ

ε
m 〉]2 + [am,ε〈 uε, ϕ

ε
m 〉 − bm,ε〈 uε, ψ

ε
m 〉]2

)

×(1 + λε
m)−γ

=
∑

m

(
[a2m,ε + b2m,ε]{〈 uε, ϕ

ε
m 〉2 + 〈 uε, ψ

ε
m 〉2}

)
(1 + λε

m)−γ

=
∑

m

(
〈 uε, ϕ

ε
m 〉2 + 〈 uε, ψ

ε
m 〉2
)

λε
m(1 + λε

m)−γ .

The proof of
∥
∥∇−

ε uε

∥
∥2

H−γ,ε
=
∑

m

(
〈 uε, ϕ

ε
m 〉2 + 〈 uε, ψ

ε
m 〉2
)

λε
m(1+λε

m)−γ is similar

by noting that

∇+
ε ϕε

m = bm,εϕ
ε
m − am,εψ

ε
m and ∇+

ε ψε
m = am,εϕ

ε
m + bm,εψ

ε
m .

��
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