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Abstract

A stochastic SIR epidemic model taking into account the heterogeneity of the spatial
environment is constructed. The deterministic model is given by a partial differential
equation and the stochastic one by a space-time jump Markov process. The consistency
of the two models is given by a law of large numbers. In this paper, we study the
deviation of the spatial stochastic model from the deterministic model by a functional
central limit theorem. The limit is a distribution-valued Ornstein—Uhlenbeck Gaussian
process, which is the mild solution of a stochastic partial differential equation.

Keywords Spatial model - Deterministic - Stochastic - Stochastic partial differential
equation - Central limit theorem

Mathematics Subject Classification 60F05 - 60G15 - 60G65 - 60H15 - 92D30

1 Introduction

A stochastic spatial model of epidemic has been described by N’zi et al. [10] to
study the oubreak of infectious diseases in a bounded domain. Such a model takes
into account heterogeneity, spatial connectivity and movement of individuals, which
play an important role in the spread of the infectious diseases. It is based on the
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compartmental SIR model of Kermack and Mckendrick [6]. Let us summarize the
results in N’zi et al. [10] in the case of one dimensional space.

Consider a deterministic and a stochastic SIR model on a grid D, of the torus T! =
[0, 1) with migration between neighboring sites (two neighboring sites are at distance &
apart, e~ 1 € N*). Let S (¢, x;) (resp. I, (t, x;), resp. R (t, x;)) be the proportion of the
total population which is both susceptible (resp. infectious, resp. removed) and located
at site x; at time 7. The dynamics of susceptible, infected and removed individuals at
each site can be expressed as

dSe _ N ﬂ(xi)sa(taxi)le(hxi)
T ) = s AeSe i) — e R )
dl B(xi) Se(t, xi) I (2, x;)

£
5t x) = g Aele(t, xp) + —a(x;) (8, x;),
dt( %) = i1 Bele(t, xi) Se(t, xi) + I (¢, x;) + Re(t, xi) o (xi) Lot xi)

d R, (D
T(t,xi) =R A Re(t, x;) +a(x;) I (t, x;), (¢t,x;) € (0,T) x Dg,

Se(0, xi), 10, xi), Re (0, x;) =2 0, 0 < 8¢(0,x;) + I (0, xi) + Re (0, x;) = M,

for some M < oo,

A, is the discrete Laplace operator defined as follows
Acf) = e[ f i+ &) =2f () + f(xi —©)].

Therates 8 : [0, 1] — Ry and @ : [0, 1] — R are continuous periodic functions,
and ug, ny and wg are positive diffusion coefficients for the susceptible, infectious
and removed subpopulations, respectively.

Se(t, x1) Ie(t, x1)
In what follows, we use the notations S, (¢) := : WAGRE : ,
Se(t, xe) Te(t, xe)
Re(t, x1)
R.(t) .= : ,and Z.(t) = (Sg(t) , 1. (1), Rg(t))T. Here £ = ¢~ 1.
R (1, x¢)

Note that (1) is the discrete space approximation of the following system of PDEs

B(x)s(t, x)i(z, x)
s(t, x) +i(t, x) +r(t, x)’
B(x)s(t, x)i(z, x) .
- —a(x)i(z, x),
s(t, x) +i(t, x) +r(t, x) 2)

98 (¢ x) =pus As(t. x)
38 oy = ) —
” s

i
E(I,x) =us Ai(t, x) +

%(I,x) =ug Ar(t,x) +a(x)i(t,x), (,x)e(0,T)x D,
s(0, x),i(0, x), r(0,x) >0, 0 <s(0,x) +i(0,x) +r(0,x) <M,
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2
where A = — . In the sequel, we set X := (s, i, r)T.

LetNbethe total population size. The stochastic version of (1) is given by the following
system

BO)SNe(r, X)) INe(r, X;) d )

t
f
SN.e(t, x;) = SN, (ox)——P”‘ <N/ ¥
oo e 0 SNe(r X))+ Ine(r, i) + RNe(r, xi)

1

t
Hs
— Z ﬁprsmé . (N/(; STSN~5(r’xi)dr>

Vi™~Xi

t
Hs
+Y NP ( fo S—ZSN,m,y,-)dr),

Vi~ Xi

It x) = Ine (0, x) + P’”f (Nf
0

! Bxi)SN,e(r, xi) Ine (7, X;) dr)
SNLe(r, xi) + INe(r, Xi) + RN e (7, X;)

1 ! 1 '
- P (N/O a(x,-)IN,g(r,xi)dr> DI (N/O %IN,S(r,x,«)dr)

Yi~Xi
m iy
1
t2 *szx,( [ g—zlw,m,y,-)dr),

1 t
Rt x) = R0, ) + <P (N/ a(x»lN,g(r,xi)dr)
0

t
pis R
- Z N Rlx, Vi (N/O ?RN.e(r,Xi)dr)

i~ Xi

1 ' "R
+ N Pllg,li',xi <N/(; ?RN,S(K y:’)dr> ,

Vi~ Xi

(t,x;) €10, T] x Dg
(3)

where all the P;’s are standard Poisson processes, which are mutually independent.
For each given site, these processes count the number of new infectious, recoveries
and the migrations between sites. y; ~ x; means that y; € {x; +¢&, x; — &}.

SN, (2, x1) INe(t, x1)
Let SN (1) == ,INe(t) = ,
SN, (t, xp) IN (2, x¢)
RN e (2, x1)
RN (1) = >
RN & (2, x¢)

Zne(t) = (Sne(). Ine(D), RNe(0)” and b (1, Zn () = Y hjBj(ZNe(1))
j=1
(K being the number of Poisson’s processes in the system), where the vectors h; €
{—1,0, 1}3¢ denote the respective jump directions with jump rates 8 ;. The SDE (3)
can be rewritten as follows
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t
ZN,s(t)ZZN,e(0)+/ be(r ZNs(r dr+ Zh P (N/ ,Bj (ZN,s(r))dr>-
0

4)
Also the sytem (1) can be written as follows
dZ.(t)
T = bt Ze(), )

The authors show the consistency of the two models by a law of large numbers.
More precisely, the following two results were proved in N’zi et al. [10].

Theorem 1.1 (Law of Large Numbers: N — oo, ¢ being fixed)
Let ZN ¢ denote the solution (4) and Z. the solution of (5).
Let us fix an arbitrary T > 0 and assume that ZN ¢(0) — Z:(0), as N — 4-o0.

Then sup H ZINe(t) — Zg(t)H —> 0as., as N— +o00.
0<t<T

Moreover, for all x; € D, V; := [x; — ¢/2, xj + €/2) denote the cell centered in the
site x;. We define

g1

Se(t,x) =Y Se(t, x) 1y, (x), Te(t, x)
i=1

871 871

= D L@, x) 1y, (x), Re(t,x) 1=y Re(t, xi) Ly, (x),

i=1 i=1

Bx) =Y B ly,(x), a(x) =) a(x)ly,(x)

i=1 i=1

, and we set
Xe 1= (S, L, RE)T' (6)

We introduce the canonical projection P, : L>(T') — H, defined by
fro s = [ pouy. it e
Vi

Throughout this paper, we assume that the initial condition satisfies

Assumption 1.1 s(0, .), i(0, .), r(0,.) € C/(TY), Vx € T!, S.(0,x) = P.s(0, x),

Z:(0,x) = Pei(0,x), Re(0,x) = Per(0, x), and/ (s(0, x) +1i(0, x) +r(0, x))
T

dx = 1.

@ Springer



150 Stochastics and Partial Differential Equations: Analysis and Computations (2025) 13:146-179

Assumption 1.2 There exists a constant ¢ > 0 such that infI s(0, x) > c.
xeT

We use the notation || f||co := sup |f(x)| to denote the supremun norm of f in
x€[0,1]
(0. 1 and define | (. g.f | = |/ o + I8l + ]

We have the

Theorem 1.2 Forall T > 0, sup HXg(t) — X(I)H —> 0,as ¢ — 0.
0<t<T 00

—1

-1
& &
Next, defining SN & (. x) = Y SNo(t. X)Ly, (x),  Ine(t.x) 1= Y INe(t,x)
i=1

i=1

Ly, (x),

o1

. T

RNt X) = RNe(t. x) 1y, (x), and setting Xn ¢ := (SN INe - RNe) - the

i=1
following theorem is proved in N’zi et al. [10].
Theorem 1.3 Let us assume that (¢, N) — (0, 00), in such way that

N

(i) ———— — oc0asN—> occande — 0;

log(1/¢)
(ii) HXN,S(O) —~X(0) H — 0 in probability.
o0

Then forall T > 0, sup HXN,s(f) — X(1) H — 0 in probability .
0<t<T oo

We devote this paper to study the deviation of the stochastic model from the deter-
ministic one as the mesh size of the grid goes to zero. In this work, we focus our
attention to the periodic boundary conditions on the unit interval [0, 1], which we
denote by T'. Let us mention that Blount [2] and Kotelenez [7] described similar
spatial model for chemical reactions. The resulting process has one component and
is compared with the corresponding deterministic model. They proved a functional
central limit theorem under some restriction on the respective speeds of convergence
of the initial number of particles in each cell and the number of cells.
The rest of this paper is organized as follows. In Sect.2, we give some notations and
preliminaries which will be useful in the sequel of this paper. In Sect 3, we establish
a functional central limit theorem, the main result of this paper, by letting the mesh
size ¢ of the grid go to zero. The fluctuation limit is a distribution valued general-
ized Ornstein—Uhlenbeck Gaussian process and can be represented as the solution
of a linear stochastic partial differential equation, whose driving terms are Gaussian
martingales.

2 Notations and preliminaries

In this section, we give some notations and collect some standard facts on the Sobolev
spaces H” (T!), y e R. First of all, let us describe some of the properties of the
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(discrete)-Laplace operator. Let H, € L?(T!) denote the space of real valued step
functions that are constant on each cell V;. For f € H, let us define

flxi+8)— fx;) fxi) — flxi —e)
&

VT f(x) =
£

and V" f(x;) 1=

For f,g € LA (TH,( f.g) := / f(x)g(x)dx denotes the scalar product in L2(Th.
T!
It is not hard to see that

(VPfog)=—(f, VN g)and A, f =V VT f =YV f.

For m even and x € R we define

) = 1, for m =0
P (X) = V2 cos(mmx), for m # 0 and even,
() = 0, for m =0
T V2sin(mx), for m # 0 and even.
{1, om, ¥m, m =2k, k> 1} is a complete orthonormal system (CONS) of eigen-
vectors of A in L*(T') with eigenvalues —21, = —n’m?. Consequently, the

semigroup T(r) := exp(A ) acting on L>(T') generated by A can be represented
as

TS = (1) +Y_ exp(=raD)|( £ 92 Jgae + ( fo ¥ Wk f € LAT.

k>1

Assume that ¢! is an odd integer. Form € {0,2, -+, ™! — 1}, we define ¢, (x) =
V2cos(rmje),if x € Vjand ¢, (x) = V2sin(rmje),if x € Vi Ak, ¥k, m}form
an orthonormal basis of H as a subspace of L? (']I‘1 ) These vectors are eigenfunctions
of A, with the associated eigenvalues —Afn = —28_2(1 — cos(mne)). Note that
Ail —> Am, as & — 0. Basic computations show that there exists a constant ¢, such
that foreachm and ¢, 8’2(1 —cos(nme)) > cm?. Letussetn, = 8_12_1 . A generates
a contraction semigroup T (¢) := exp(A.t) whose action on each f € H, is given by

TS =D exp(Ann[ (£ 05 005+ (£ 05 )05 )

k=0

Note that both A, and T, (¢) are self-adjoint and that T, (1) Ao = AT ().

For any J € {S, I, R}, the semigroup generated by u, A is T(u,?). In the sequel, we
will use the notation T, (t) := T(u,?) and similarly, in the discrete case, we will use
the notation T j(¢) := T¢(u,t). Also, for any J € {S, I, R}, we set A, j = 4 Am
and Ay ;= p, Ay, Fory € Ry, we define the Hilbert space H” (T") as follows.

HY (T = { £ e L2(TY), IF12, == D [(From )2+ frvm 2]+ 1) < o0}

m even
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We shall use the notations H” := H? (T') and L? := L2(T}).
Note that [|¢ll,, = (X — A)”/z(pHLZ, where I is the identity operator on L* (T').
For any three-dimensional vector-valued function ® = (&1, ®,, ®3)T, we use the

: 2 2 2 172
notation || @[, = (112, + 19212, + @312, )
For y € R, we also define

12
1f Ny :=[ D (Cfel P+ >2)(1+Afn)y} . [ €He.

m even

For f, g € H,, we have

(o) < 1l I lye » ¥ = 0. ®)

Elementary calculation shows that for f € H,,and y > O there exist positive constants
c1(y) and ¢z (y) such that for all ¢ > 0

A ye < IF1 oy < 2Ly ©)

a
f= 8_f will denote the derivative of f.
x

In the sequel of this paper we may use the same notation for different constants (we
use the generic notation C for a positive constant). These constants can depend upon
some parameters of the model, as long as these are independent of ¢ and N, we will not
necessarily mention this dependence explicitly. However, we use C(y, T) to denote
a constant which depends on y and T (and possibly on some unimportant constants).
The exact value may change from line to line.

Let us now consider the deviation of the stochastic model around its determinsitc
law of large numbers limit. To this end we introduce the rescaled difference between
ZN.¢(t) and Z,, namely

UN,s(t)
\I]N,s(t) = Vng(l‘) s
WN,s(t)

where
IN(Swelt,00) = Set,x1)
UNs (1) := : ,
IN(Snet, x0) = St x0)
IN(Inetox) = Lt x)
N (1) := :
IN(Ine 50 = 1t x0))
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and

IN(Rne(t,x1) = Re(t,30))
W (1) == :
IN(Rne(t,x0) = Rt x0))

In the sequel, we denote by " = " weak convergence. By fixing the mesh size ¢
of the grid and letting N go to infinity, we obtain the following theorem.

Theorem 2.1 (Central Limit Theorem : N — 00, ¢ being fixed)

Assume that \/N(ZN,S(O) —Ze (0)) —> 0, as N — oo.

Then, as N — +o00, {\IIN,E(I), t > O} — {\Dg(t), t > O}, for the topology of
Ue (1)

locally uniform convergence, where the limit process Vo (t) := | V:(t) | satisfies
We (1)

t K t
W) = | Nbe(r, Ze(r))We (r)dr + / (r, Ze("))dB;(r), t >0, (10
() /(; (r (r)) (r)dr ; 5 ,BJ(r (r)) i), t (10)

and{B1(t), B>(t), - - - , Bx (t)} are mutually independent standard Brownian motions.
More precisely, by setting Ae = Se + I + Re, for any site x;, the limit (Ug, Ve, We)T
satisfies the following system

t
Ue(t, xi) = I'LS/ AU (r, xi)dr
0

Lo L x)(Te(r, xi) + Re(r, x) Ve (r, xi)
_/(; B(xi) Ag(r,x,-) dr

! Sé‘( ’ i) SE( ’ l)+R8( ’ i) UE( ’ i)
—fﬁ(xi) 7. r’;z(”i)r") D g

Se(r, xi) e (r, x;) inf
/\/ﬂ( D A roxn) dBy;” (r)

— Zf /—Se(r Xi) dBfm(r)—l— Z/ gSs(r,y,') dBixl(r)
)(Ig(r,x;)—I—Rg(r,xi))Vs(r,x,-)
dr
Ag(r,x,-)

. . . . t
+/ ﬁ(xi)SS(r’XI)(SS(hZ;+RS(EXZ))UE(r’XZ)dr—/ a(x;) Ve(r, x;))dr
(r, xi) 0

I (r, x;
Vel(t, xi) —HI/ A Ve(r, x,)dr—l—/ B(xi)
0

X t
[ \/ﬂ( )Sa(r Xz)] (r Xi) dB)lCIrlf(r)_’_/ /a(xi)ls(r,xi) dB;la(l')
i 0
mr "
- Z / = I.(r. x))dB]., (rH},;./o 3 le(r,yi) dBy ()
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t

t t
We(t, xi) = MR/ AgWa(r,Xi)dr+/ a(x;)Vs(r,xl')dr—/ Vo) Ie(r, xi) dBy“(r)
0 0

t
%
) /0 2 Re(rox) dBE, () + E:f JEE R, yi) dBE, (1)
YivXi

Yi™~Xi

where{Bf x; € D¢}, {B’ec'xleD} {BS

Xi Vi

D yi ~ xi € De}, (Bl yi ~
x; € D¢} and {Bx v i Vi ~ xi € D¢} are families of independent Brownian motions.

Theorem 2.1 is a special case of Theorem 3.5 of Kurtz [9] (see also Theorem 2.3.2 in
Britton and Pardoux [3] ). Then, here, we do not give the proof and refer the reader to
those references for a complete proof. []

Let X = (s, i, r)T satisfying the system (2) on [0, 1]. Thanks to Proposition 1.1
of Taylor [11] (chapter 15, section 1) we have the following lemma.

Lemma 2.1 Let y > 0 and assume that the initial data X(0) bebong to (HY)3, then
the parabolic system (2) has a unique solution X € C([O, Tl, (HV)3).

The rest of this section is devoted to the proof of some estimates for the solution of
the system of equations (1). We first note that Sc (¢, x;) > 0, I (¢, x;) > 0, R (¢, x;) >
Oforallr > 0, x; € D, and ¢ > 0. Moreover for any 7 > 0, there exists a contant
Cr such that

sup ([1Se @ lloo V e (@)lloc V IRe () [loc) < Cr, Ve > 0. (11)
0<t<T

Indeed we first note that || S (7)o < M, since S; is upper bounded by the solution of
the ODE

dX,
7(% Xi) = pusAeXe(t, xi), Xe(0,x;) =M. (12)

Next I, (¢, x;) is upper bounded by the solution of the ODE (with 8 := sup, B(x))

dY,
: — (6 xi) = i AcYe(t x) + BY:(t,xi), Ye(0,x;) =M

The result for R, is now easy.
Letus set A, := S, +Z, + R, . We have the

Lemma 2.2 Forany T > O, there exists a positive constant ct such that
Ag(t,x) >cr, foranye>0,0<t<T, x€ T'.

Proof We consider the ODE

B)Se(t, x)Ie(t, x)
Se(t,x) +Tp(t, x) + Re(t, x)°

= usAsSe(t, x) —
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Since S (7, x) + Re(t, x) > 0 and Z, (¢, x) > 0, it is plain that

B(x)Ze(t, x)
TS (t,x) + T (t, x) + Re(t, x

) < B, where B := sup |B(x)|.

xeT!
Define S, (¢, x) = eE’Sg(t, x). We have

dS, _ = = B)Le (1, x) ¥
ar (F) = HsAeSe(t, ) + (’6 S TSATE) +R5(t,x)> Selt, %),

Combining this with the last inequality, we deduce that
Selt, x) = €755 8,(0,)](x) = ¢,

from Assumption 1.2.
Going back to S,, we note that we have proved that

Se(t, x) > ce P,
In other words, for any 7' > 0, there exists a constant ¢y := ce—BT which is such that
Se(t,x) >cr, foranye>0,0<tr<T, x¢€ T!.
And since I, (t, x;) + R:(t, x;) > 0, A (¢, x) satisfies the same lower bound. O
Lemma 2.3 Forany T > 0, there exists a constant C such that for each ¢ > 0
o0 (10l + E0 + Rl

T
+2 /O (Ms |VESe )32+t [VETew) |72 + g v;Rg(nlliz)dr <cC.

(13)
Proof For al}g(r, x) € [0, T] x [0, 1], we have s

dS; _ B(x) Se(t, x)Le (2, x)

dt (t’-x) = us ASSE(t’x)_ Ag(t,x) B
which implies

dSe .\ B() Se()Ze (1)
2<88(t) ) 7(0) = 2#5( ApSe(t), Se(1) > - 2( T(t) ) Se(t))
= 2us( VIS (1), VISe(t)) —2( w, Se(1)).

Ag (1)
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Then,Vt € [0, T],

B() Se(r)Zes(r)

RO . Se(r) )dr.

IS+ 2us [ 980 laar =[S0 -2 [
In the same way, we obtain
t
120|122 + 2us /O VT )| adr
B 2 B S(NT(r)
=|Z.(0] ;. +2/0 (T(r) , L (r) )dr
t
-2 / (aO)T(r), Te(r) dr,
0
and
t t
|Re)|2 +2ur | |VFReW)|2dr = [Re@ |22 +2 | (@O)Te(r), Re(r) )dr.
0 0
Then, we deduce that
2 2 2 !
Is:0: + 1700 + R0 +2 |
(5198 SO + |9 Z O + |9 Re)] 2
=[S @] + |70 + [R- )]

t
+ /0 ((23+6)||Ig(r)||iz +a||7ag<r>||iz)dr,

where o = sup |a(x)|.
xeT!
It then follows from Gronwall’s lemma that

[Se @[3 + 17072 + [ R 72
t
+2 /0 (us |VFS: ) |20 + wt [ VEZ () |32 + g | ViR () ||iz>dr

= (IS @[3 + |Z O]} + R @7 )€ =P
<C@p).

We now add the following assumption.

Assumption 2.1 The functions f, « satisfy @ € C'(T') and g € C*(T!).
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Se(t D[ Se (1.0 +R (1.1 ]
A2(t,x) ’

T, (1.0 Ze (100 + R (0.0 |
A2(2,x)

Let fe (1, x) := B(x)

and g¢ (¢, x) := B(x)

Lemma 2.4 Forany T > 0, there exists a positive constant C such that for all ¢ > 0,
r 2 2
/ (IVF @[3 + | VEge0]72) dr < C. (14)
0
Proof Vx € T!, V¢ > 0 we have
\AFAGEY

_ﬁ(x +)Se(t, x + 5)[S€(t, x+e)+Re(t,x+ 8)][Ag(t, x+e) + A1, x)]VjAg(t, x)
B A2, ) A2 (1, x +€)

Bx +&)Se(t, x +¢)
A?(t,x)
LLCES &)[Se(t, x) + Re(t, x)]
A%, x)
Se (1, 0)[Se(t, %) + Re (1, )]
A, x)

VI (Se(t, x) + Re(t, 1))

VS, x)

ViBx), (15)

from which we obtain

T 2 T
/ / V;'fs(t,x)) dxdr < C/ /
0 T! 0 T!

<|vjﬂ(x)|2+ V;_Sg(t,x)‘z

2 2
+ ViR 0| +| VA )| )dxdt,

where we have used Assumption 2.1, inequality (11) and Lemma 2.2. The result now
follows from Lemma 2.3.

O
Lemma 2.5 Forany T > 0, there exists a positive constant C such that
sup ([IVFSe@lloo V IV Le(Dlloo Vv IV
0<t<T
Re(Dlloo V IV fe@)lloo V IVe g6 (D]l 0) < C, (16)

T

/0 (laes 012 + [AZw % + AR 0|2 ) dr < €. an
T 2 2

[ (180l + sz ) ar < . 18)
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and

sup (|| fe@) | e V [ 8@ | jpe) = C. (19)
0<t<T

Proof We first etablish (16). Applying the operator V' to the first equation in (1), we
get

PACH
dt

(t,x) = usA VIS (t,x) — vV <ﬂigzg) (t, x) (20)

The last term on the above right hand side is easily explicited thanks to a computation
similar to that done in (15). Combining that formula with Assumption 2.1, inequality

(11) and Lemma 2.2, we deduce that

HVJ (%) (t)Hoo <C (HVJSS(t)HOO + HVjIg(t)HOo + HV:RS(I)HOO> .

From the Duhamel formula,

+ tisAe g+ ! (t—s)usAe g+ ,38515
VIS (t) = e'Hs52e V] SS(O)+/O e HsBey? L (s)ds

Since the semigroup e’#s2¢ is contracting in L>°, we deduce that

t
IVFSelloe < IIVSSe(0)]loc + C fo (IIVFSe () lloo + I1IVF Ze () [l oo

+IVIRe($)lloo) ds -
Applying similar arguments to the two other equations in (1), we obtain

IVESe oo + 1V Ze oo + IV Re ()l
< IV SeO)loo + 1V Ze (0)lloo + 1V Re(0) oo

t
+ C/O IV Se®)lloo + IV Ze()lloo + 1V Re($)lloo) ds -

(16) now follows from Gronwall’s Lemma and Assumption 1.1.
We now multiply (20) by Vj Se (¢, x) and integrate on [0, 1] x T!, yielding

BS:Le

£

t t
IV Se()ll 2 + 20 fo 18:Se ()11 2ds =2 fo ( (s>,AgSg(s)>ds

t
< Cit ps / 1AeS:(5)[2ads .
0
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which yields one third of (17). The rest of (17) is proved by similar computations
applied to the equations for VZ, and V}R,.. Next (18) follows from (17), (16),
Assumption 2.1, (11) and Lemma 2.2.

Since

[ < c(|| L+ | £ ||iz),

the estimate (19) follows from (16), Assumption 2.1, inequality (11), Lemma 2.2 and
the fact that the norm in L2(T") is bounded by the norm in L>(T1).

(]
Lemma2.6 ForanyT > 0,ase — 0
fe—f. & -—g& V.fo—> Vf,and
Vi g —> VginC (10,71 LA(TH).
s(t, x) [s(t, x) +r(t, x)] _ iz, x) [i(t, x) +r(z, x)]

where f(t,x) = and g(t, x) ,

a2(t, x) a(z, x)
Vi €[0,T], x T

Moreover f, g € L* (0, T, Hl).
Proof Let d be the function such that,,Vz € [0, T],x € T' and e > 0
fé‘(t’-x) = d(SS(tv-x)aI&‘(tsx)v Rs(tv-x)) and f(tsx) = d(s(l,x),i(t,x), r(tsx))'

Furthermore, we know that S; — s, Z, —> iand R, — r uniformly on [0, T'] x
T!. Since d is continuous on {(s,i,r) € (R+)3 : s +1i+r > 0}, then we deduce that
fe —> f uniformly on [0, T'] x T!, and in particular in C ([0, Tl; LZ(TI)).
From (20) and similar equations for V" Z, (¢, x) and V,*R. (¢, x), we obtain the
convergence of V' f; —> V f by an argument similar to the previous one.
The proofs of g —> g and V' g, —> Vg are obtained in the same way.
O

In the sequel, we will write " fo () —> f(¢) in H!'" to mean that "fe(t) — f(1)
in L2(T") and V* f,(t) — V f(t) in L>(T")".
We have the following compactness result.

Lemma 2.7 (Theorem 1.69 of Bahouri et al. [1], page 47)
For any compact subset E of R? and s\ < s>, the embedding of H2 (E) into H'! (E)
is a compact linear operator.

In the next section, we study the behavior of the process {W,, 0 < ¢ < 1} as € goes
to zero.

@ Springer



160 Stochastics and Partial Differential Equations: Analysis and Computations (2025) 13:146-179

3 Functional central limit theorem

-1 -1
1 &€ 1 &€
Let us define %(1,x) = —5 3 Ue(t, i)y (1), %e(t,%) = —5 > Vet x0)
i=1 i=1

Ly, (x),

-1
| ¢
We(t,x) = Y Z We(t, xi) 1y, (x).
i=1

Moreover, we set

—1
! — . SS(rvxi)IE(rsxi) 1
S _ 1/2 N 2e\s A e\ A inf
MY (1, x) _/0 I3 ;_1 B(xi) A o) 1y, (x) dBy’ (r)

-1
! £ 1y. — 1y
n /—MS/O 871/22 Z /7360’%)( v; (x) : V’(X))dBfixj(r),

i=1 i,j
)C,"\‘)Cj

—1
ETY Se(r, xi)1e(r, x;) '
1 _ 1/2 N 2e\s A e\ A inf
My (L, x) = /0 £ igl B(xi) Ao 1y, (x) dBy’ (r)

-1
t &
+/ e 2Y " Ja(e) Lo (r, xi) Ly, (x) d B (r)
0 i=1

—1
t £ Ty, (x) —1y,
+~/_u1/08*‘/2§ > \/Ig(r,xi)( V’(X)g V’(X))dB)ix]-(r),

i=l i,j
Xi~Xj

t ¢!
//zf(t,x):_/ e 2N Ja(e) L (r, xi) Ly, (x) d B (r)
0 i=1

-1
! < Ty, (x) —1y.
n TR/O 3 /7Rg(r,x,»)( VJ(X)S ‘/'(X))dB;ix,-(”)-
=1

(%, Ve, W) satisfies the following system
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Te ()(Ze (1) + Re(r)) Ve "
AZ(r)

t t
?/g(t)=/ /‘LSAS%(r)dr_/ BO)
/ B0 )Se(r) (Se(r) + R (r) % (r)

AZ(r)
t I I R€ 7/
%(l):/ MIAS%(V)dV—l—/ /3() (r)( (r.)A—zi-(r) (r)) (r)

t
/ ﬁ()sg(r) Sg(r)—:Rg(r))%(r) r_/ eV r)dr + AL D),
Az (r) 0

dr + . #5(1),

VA _/ URrA ”‘//(r)dr+/ a()Ve(r)dr + #R@).
0 0
(21)

For y € Ry, we denote by C ([O, TI; H’V) the complete separable metric space
of continuous functions defined on [0, T'] with values in H™Y. For any ¢ > 0, %,
Ve and #, can be viewed as continuous processes taking values in some Hilbert
space H™7. Hence we will study the weak convergence of the process (%, Yz, #¢)
in C([0, T1; (H77)3).

t
In the sequel we will need to control the stochastic convolution integrals / Te g (t—
0

r)d///sj (r), with J € {S, I, R}. For that sake, we shall need a maximal inequality
which is a special case of Theorem 2.1 of Kotelenez [8], which we first recall.

Lemma 3.1 (Kotelenez [8]) Let (H; ||.||ln) be a separable Hilbert space, M an H-
valued locally square integrable cadlag martingale and T(t) a contraction semigroup
operator of L(H). Then, there is a finite constant ¢ depending only on the Hilbert norm
II.lg such that for all T > 0

]E( sup
0<t<T

where o is a real number such that ”T(t) ”E(H) <e

’/O[ Tt — r)dM(r) H;) < ce4"TE(HM(T) ”;) 22)
ot

We want to take the limit as € — 0 in the system of SDEs (21) satisfied by %;. To
this end we will split our system into two subsystems.
First, we consider the following linear system

due(t) = ps Deue(D)dt +d A3 (1),

dve (1) = g Aevedt +d. AL (1),

dwe (1) = pr Acwe ()dt + d AL (1),
e (0) = v(0) = we(0) = 0.

(23)
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Next, we shall consider the second system

du _ _ _

. = s Aclie(t) — fe(Due(t) — ge()Ve(t) — fe(Due(t) — ge(®)ve(2),
dv, _ _ _

2 = 1 AV (1) + fe(Dues(t) + (8 (1) — )V (1) + fe(Due ()

+ (g6 (1) — @) (1), @4

dw _ AT _

dr MR AeWe + o (Ve + V),

us(0) = v (0) = we(0) =0,

and finally, we note that
Ue =g + e, Ve=1lle +Ve, W= we+ W,.
Then the convergence of %, := (%, Ve, #:) will follow from both the convergence
of (ug, ve, we) and of (g, Ve, We).
Let us first look at the convergence of (ug, ve, we).

Let #, = (M5, M), MF)".

Recall that we denote by " = " the weak convergence.

Proposition 3.1 For any y > 3/2, the Gaussian martingale My —> M =
(///S, AN ///R)T in C([O, TI; (H_V)3) as ¢ — 0, where for all ¢ € H”

AW ) / / o0o) \/ﬁ(X)S(r 00 L
—V2us fo [T @OV, x) Waddr, d),

[ 3
<///’(t>,<p>=/ / (p(x)\/w Wy (dr, dx)
o Jr! a(r, x)

+/0t /T () a()i(r, x) W3(dr, dx)

—V2u1 f t / ¢ ()V/i(r, x) Wa(dr, dx),
(AR(t).9) / / () a()i(r, x)Ws(dr, dx)

—V2ur /0 fT P @V x) Ws(dr. dx),

and Wl, Wz, W3, W4 and W5 are standard space-time white noises which are mutually
independent.
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Proof First, we are going to show that there exists a positive constant C independent
of & such

sup IE( sup ”///g(t)” ) C. (25)

O<e<l 0<t<T

Recall that |40 = |50} +[.2' 0| +|-2f 0l
Applying Doob’s inequality to the martingale .7, we have

S 2 S 2
(Lol ) < (Lol )

=4 3 B((A3 M) 80)2) U+ 20) 7 With £ € (g, Vi)

m even

. . . 2
f Z Z Bxi)Se(r, xi) I (r, x;) </ £, (x) dx) a1+ )\.m)_ydr
A&(r9-xi) Vi

meven j=1

2
s / 3 Zss(r . [( / v;fmoc)dx)
Vi

m even j=1
2
+</ V£, (x) dx) ](l + M) Vdr.
Vi
But since Selr, xi)Le(r, xi) < M (indeed ———~ Le(r, xi) < 1land Se(r,x;) < M, see(11)
Ae(r, xi) Ae (r» X;)
and the line which follows) and ]fom (x)| < 27%m?2, then we obtain

m even m even

o _ 1 1
(L0l ) <@ Tk T )

1
Since Z 2D < o0 iff y > 3/2, we then have

sup IE( sup ||///S(I)H ) <C@B,us,T), forally > 3/2. (26)

O<e<l 0<t<T

Similar inequalities hold for the martingales //4 and //lf . Hence we obtain

O<e<l 0<t<T

sup IE( sup ||///8(t)|| ) C. (27)
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Inequality (27) and standard tightness criteria for martingales (see e.g. the proof of
Theorem 3.1) implies that the martingale ., is tight in C([0, T]; (H™)%), with
y > 3/2.

In what follows <<.Z, ES’ ">>, denotes the operator—valued increasing process asso-
ciated to the L2(T')-valued martingale .Z;" 5.0 (t), whose trace is the increasing
process associated to the real valued submartingale ||.Z; 5.0 (1) || 12(T1)" Let ¢ € H”.

We set %/S = (///S ). //151’(‘) and //ZSR‘D are defined in the same way. V¢ € [0, T,
we have

-1
1 S Se(r, xi) Ie (r, x; :
<055 = ¢ [ 3 py FEERCI [ iy ax ) ar
i=1 o i

el
+Lff0tlgsa(r,x,-)[(/vj ngo(x)dx)2+ (/V Vo) dx)2:|dr.

We have

-1
L[S Se(r, x) e (r, xi) 2
E/O ;ﬁ(xi)w</vi(p(x)dx> dr
-1
L[S Se(r, xi) e (r, xi)
= g/o Zﬁ(Xi)W</‘G¢(x)dx>|:./w ((p(x) —(p(xi)> dx]dr

/ / Zﬁ( )S“?(rAx’()’”l)x’) () Ty, (V)dxdr.

On the one hand we have

Se(r, xi) 1 (r, x;)
‘ Zﬂ( D </Vi<o<x>dx>[fvi(w(x)—w(xi))dx}

Be (X)Se (r, x)ZLe (r, x) @ (x)|
< Celoly | f

dx — 0,

(X)Se(r, x)Ze (r, x) | (x)]
A (r, x)

1PN S LX)
Henceg/o ;,B(xi)w</‘;i (p(x)dx>[fw ((p(x)—(p(x,-)) dxi| N

0,as e — 0.

dx is bounded uniformly in €.

because the quantity / Pe
!
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On the other hand, the fact that sup |X. (1) —X(1)|  —> 0,as& — 0, leads to
0<t<T

S0, 31 (7,
‘/ Zﬁ< o eI XD )y (0

Ag(r, xi)
—/ ﬁ(x)w<p2(x)dx .o
T! a(r, x)

This shows that

re”! , . 2
l/ Zﬁ(Xi)—Sg(r’Xl)Ig(r’xl)(/ w(x)dx) dr
e Jo Ae(r, x;) v,

t .
— / / ﬁ(x)—s(r,x)l(r,x) @ (x)dxdr,
0 T! a(r, )C)

as ¢ — 0. Similar computation shows that

%/01255(”,)&')[(/‘;[ V?w(x)dx)2+ (/ vg—(p(x)dx>2}dr

V;

'
—>2M5f / S(r,x)((p/(x))zdxdr,
0 JT!

from which we deduce that

e—0
<< ///S P>,

t
/ B )s(r , X)i(r, x) 2( Ydxdr
0 a(r, x)

+2u5f / s(r,x)(go'(x))zdxdr.
0 JT!

Hence, if W1 s W2 and W3 are space-time white noises which are mutually independent,
so the limit of the centered Gaussian martingale ///gs’(p (t) can be identified with

/ / o0o) \/ﬁ(x)S(r D)
a(r, x)

—\/Z,MS/O /Tl @' (X)y/s(r, x) Waldr, dx).
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In the same way

t .
A9 — / / o0t) /M Wcdr. dx)
0 JT! a(r, x)

t
+ / f PV )i, x)Ws(dr, dx)
0 JT
t
Vo /0 /T 0V Waddr, dx)

and

t
MR () —> — / / (a0, O Ws(dr, dx)
0 Tl
t
— V2ix fo /T YR ) Wsdr, d),

where W3, Wy and Wy are also space-time white noises which are mutually indepen-
dent, and independent from Wy, W5. O

Let set I, = (ug , Vg, wS)T.

We need to check tightness of the sequence of process {J:(¢), t € [0, T],0 < ¢ < 1}.

Theorem 3.1 For any y > 3/2, the process {3:(t),t € [0,T],0 < ¢ < 1} is tight
in C([0, T1; (H™7)3).

Proof : We denote by QET the collection of F3-stopping times T such that T < T.
Following Aldous’ tightness criterion (see Joffe and Metivier [5]), in oder to show
that the process {I.(t), t € [0,T],0 < ¢ < 1} is tight in C([O, Tl; (H_V)3), it
suffices to establish the two following conditions:

3
[T] for 3 <y < v,and M > 0 there exists C such that P(HSS(I) H " > M) <
.
C,forallt €0, T],
2
) _o.
HV

[A] lim lim sup E( S (T+0) —J:(7)
3 70 —Y0/2
Let 7 <yo<y.Letussetul®(t,x) =T — A,) us(t,x). vt € [0, T], we have

0—0e—0 ?EQZ’G

Hug(t) Hi—VO = <u?€/0 (1), MZO (1) )

If we define ///SS’yO (t):=d- As)_VO/z//lgs (1), since yog > 3/2, it follows from (3.1)
that .>"° () is bounded as & — 0, as an L2(T")valued martingale. Applying the
1t formula to |12’ (¢, x)|?> and integrating over T' leads to
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t t
||u5(t)||i7m = —2/0 (Vrulo(r), v ulo(r) >dr+2/0 (ul0(r), d A7 (r))

+ / << ME(, x)>>dx.
Tl
Letting + = T and taking the expectation, we deduce that
T
2 2
Ew%aw7)+szf|mwxmy,m=E@m@maw§)
H™Y0 0 H™0

Next we want to take the supremum on [0, 7] in the previous identity. For that sake,
we use the Burkholder Davis Gundy inequality, which implies that

t .
/ <u§0(r),d//185”’°(r)>):| < 3]E\/<<f <u£0(r),d///£’y°(r) J>>7
0 0

< 3]E( sup [[ul’(®)ll;2v/ Tr<<//lgs’y°>>f>
T

0<t<

E| sup
0<t<T

=<

9
E ( sup ||uz0(r)||iz> + SELA25 (D7)-

0<t<T

| =

We then obtain, thanks to (26),

E 2 l=nE S ?
(Oi‘:ET ||ug(t)||Hy0> (OiltlET |- (t)||L2>

<44CB,us, T).

We also obtain similar inequalities for v, and w,. Hence there exists a constant C
such that for all € > 0,

2 2 2
£ (P ey + 30 oL, + sup Jwe@ ”M)

T
+2E/0 sl w4 | o+ el € we)|? | Jar<c.
(28)

Then [T] follows by using Markov’s inequality.
Letd > 0and T € G/ ~%. We have

T+6
Ue(@ 4 6) — up (@) = [Te.5(0) — Nue (7) + / T.s(T + 60 — rd.A5(r).

T

@ Springer



168 Stochastics and Partial Differential Equations: Analysis and Computations (2025) 13:146-179

So,

2

ue (T +0) —u:(7)

) < 2E(H [T..5(0) = Vue @)

2 )
HY

T+6
4 ZIE(H / T.s@+6 —ndA5r)
T

“

H

2 )
HY

Let us deal with each term separately. First using the inequality (9), there is a constant
C(y) such that

)

wre)

2

E(H [T..560) — Tuc(D)

) < C(y)lE<H [T..5(6) = Uue P

H™Y

Let3/2 < y’ < y, and let ¢ a positive constant. We have

2 _
750 1w’ = X (150 =g, P (0417
HT e
+ 3 ([Tes® — Lue @) £, (14 25) 7,
AL, <c

and
3 {[Tes®) = ue@), £, (1 +55) 7
e
<A77 Y ([Ts® — ue @), £ P(1+25) 7
el
<1+ |[Tso 1| .
Then

2 , 2
7 ) = C+o *VE(\ [T..50) —I]us(?)Hm)
+Co) Y (e = 1) B((e @), 1)) (14 45) 77

& ‘
AL, <c

[T50) — Tue ()

5|

H

2
On the one hand, since E (H [Te,5(0) — Iue(T) HHV,> < C, we can choose ¢ large

, 2
enough such that C(y)(14+c¢)” “VE | ||| T.s(0) — I|us(T) < ¢/2.On the other
g Y ‘ e

hand, we have
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3 (e - 1)2151(( e (7). £, >2)(1 +2E)7

£
AL, <c

<sup(l—e” Z Z E( (ue(@),£,) )(1+)*fn)7y

m Af, <c
A€ 0\2 — 12
< s (1= PR (luo )
A <c H™Y#

< C(y)sup (1— elfn@)zE(Hug(?) > )
28 <c L
Since
B, ) < &( s o], )
0<t<T
<C,

then for the previous choice of ¢, we can choose 6 small enough such that C (y) sup (1 —

AL, <c
—Ame) ]E(”,lta(f) ||2 > < &/2. Hence
HV
2
lim lim sup IE(H [TE,S(Q) —I]ug(?) ) =
9—)06*)07 QT —0 H-Y
Secondly, using the equivalence of the norms ||. -y and [l.ll,_,. ,andthe fact that

Te,s 1s a contraction semigroup on H, we have

>
HY
H;>
H )

33

T+60
E(H ﬁ Tos(@+6 — S

_ IE(H /0 15O = A+ D)

< cwm(\)%f(ﬂe) —ME@

T+0 £ . .
<2coz(] [© Z LD [PEEE L a0 )
+2C<y>E<H/ Z—”“‘SS&M(IL L0 = 13,0)dBS, | )
-1
ZC()/)ﬂ . Se(r, xi) I (r, x;) & 2 £\—
</ ;;T(/me(x)dx) (I+2;) Vdr)
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-1
2C(y)us THo € » i N
+TE<fT ZZSS(r’Xi)(/V, vV, fm(x)dx> (14212) Vdr)

m j=1

<CB,us)0 — 0, ash — 0.

Hence the condition [A] is proved.
In the way, we prove similar estimates for v, and w,. Then the process {‘Ts‘s (), t e

[0, 71,0 <& < 1} istightin C([0, T1; (H™")3), y > 3/2. O

Lemma3.2 For3/2 <y < 2, theprocess{J:(t), t € [0,T], 0 <& < 1} converges
inlaw in C([0, T1; (H77)*) N L*(0, T; (H™1)3).

Proof On the one hand, from Theorem 3.1, the process {J:(z), t € [0,T], 0 <
e < 1} is tight in C([O, T]; (H_V)3), then along a subsequence, it converges in
C([0, T1; (H77)?). On the other hand the sequence { 3. (1), t € [0,T], 0 <& < 1}
is bounded in L?(0, T ; (H'77)?). Indeed for all & , we have

E ! 2
Jue@)] dr
0 H

T
< C(y)IE( / Jue (1) ||2l dt) (by using the inequality (9))
O H!I—V.E
T
_ C(y)Z]E(/O (e (1), £, 121 ) (1 4 25, )
" T
= c(y)Z]E</0 (I/tg(t),ffn)zdt)(l + 24,9077

T
+C(y) ZE(/O e (1), £, ) 2d ) 15, 1+ 20, )7

T T

—C(y) {]E(/O ”ue(t)”i_yvgdt) —HE(/O ”V€+u€(t)”i_y’£dt)}
T T

scoa( [ fwol o) +e( [ 1wl )l

where the third equality follows from the fact that

[N Fue®} = D (us0), 52, (1425, 97

X (see LemmaA.2(i) in the Appendix below).
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T
The inequality (28) ensures that E / [” ue (1) || fr)/ di+ ||V ue ()| i—v ]dt is bounded
0

by a constant independent of ¢. It then follows that

T
B[] ol o) = o

We have similar estimates for v, and w,. Thus

T
sup IE)(/ |3 dt) <cC.
0<e<l 0 H™Y

This implies that, from the sequence { 3. (¢), t € [0, T], 0 < ¢ < 1}, wecanextracta
subsequence which converges in law in L2 (O, T, (Hl_y)3) endowed with the weak
topology. Furthermore, since the imbedding of H'~7 into H™! is compact and we
have the convergence in C ([O, T1; (H’V)3), then the extracted sequence converges
in factin L2 (0, T ; (H_1)3). Hence, we deduce that there exists a subsequence which
converges in law in C ([0, 71; (H™")*) N L*(0, T ; (H™1)?).
We note that the limit J := (u, v, w)* of any convergent subsequence satisfies the

following system of stochastic PDEs

du(t) = us Au(t)dt +d.#5 1),

dv(t) = g Avdt +d.#" (1), (29)

dw(t) = ur Aw@)dt +d 4R @),

and the solution of that system is unique. Then the whole process {J.(¢), t €
[0,T], 0 <& < 1} convergesin C([0, T1; (H™")3)NL>(0,T; (H™1)3). o

Lemma3.3 Ase¢ — O, fou, — fu, and g.ve. =— gv in L2<O, T; H_1>.
Proof The convergence f.u. — fu follows to the fact that u, — wu in

LZ(O, T ; H_l) and f — f in C([O, T] ; Hl). The proof of the convergence
8sVe = g is similar. O

We are now interested in the convergence of the process I, 1= (g, Ve, We).

Lemma 3.4 Forany T > 0, there exists a positive constant C such that
sup (|7 (0) 32 + [5:0)[72 + [0 2)
0<t<T

T
w0 [ (195wl + [V G+ |97l )as < e,
(30)

T
where n, = [ (Jus et + Joro) | ).
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Proof For all ¢ € [0, T], we have

t dﬁé‘ _ t o _ t o _
/ ( du (s), ug(s))ds = Msf (Agug(s) , us(s)>ds—f (fe($)ue(s) , ug(s))ds
0 K 0 0
t t
- /0 (ge(s)ve(s) , ﬁg(S))ds—/O (fe(®ues(s) , ug(s))ds

t
- /0 (8e($)vs(s) . Te(s))ds.

Then

t
70002 + 205 [ V7000
t t
=2 fo (e ()iTe(s) , Te(s))ds —2 /0 (2 ($)Te(s) , Te(s))ds
t t
—2 /0 (fe(us(s) , We(s)ds —2 /0 (g6 ()06 (s) , Te(s))ds.
Since f.(H)up(r) € H™! and g, (1)ve(r) € H™!, then
t
[0 + 2085 [V
t
<2 sup [I£e()ln f |7 (s) |3 2ds
0<s<T 0
t
+ /O (o?slﬁr lge @I [0 ]72 + [T 52 )ds

t
#2500 @l [ 06 (1702 + [970]2)]ds

t
2 sup fge(5)] 0. /O [ve) s (e ) 2 + [ 7 )] 12)) ds.

Let § be some constant such that 0 < § < % We have

t
[0l +2ms [ 1970 Fds
t t
< [N las+ [ (ol + m];:)as

! 2 2
+C /0 [28 7)1z + 28] % F ) 12+ 5 Jue @ i1 + 5 vs<s>||in] ds.
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Then
2 ! 2
[0l + 2005 - €0 [ 9170 2
! 2 ! 2
< (C+ 2C8)/O e (s) |7 2ds + C/O 7|72
2C [! 2 2
5 [ (e + e i)
In the same way, we prove that
t
[+ 2000 =€) [ 97002
! 2 ! 2
<(C +2C6)/0 iz (s) ||} 2ds + cfo 7|72
2C (! 2 2
5 [ ([l + el s
and

t
[l + 20 [ 970

(3D

(32)

Cc [ t ‘
<5 [ ol [moli+c [ mola 6

By adding the inequalities (31) , (32) and (33), we obtain

t
75 + el + w072 + € fo (Ive @5 + [0

Vw72 )ds
<0 [ (Tl + e i+ [0 )as
4 [ (e s+ e s
Hence applying Gronwall’s Lemma we obtain

sup (7|72 + 507 + [@0];.)
0<t<T

T
+C /0 (IVF a5 + V005 + Vw62 )ds < Cnrec”.

O

@ Springer



174 Stochastics and Partial Differential Equations: Analysis and Computations (2025) 13:146-179

We want to deduce from the fact that the pair (u, v;) converges in law towards
(u,v)in L2(0, T (H’l)z), the convergence in law of (u., Ve, We).

Lemma 3.5 The process { (us(t),v:(t), ws(¢)),0 <t < T, 0 <¢e <1} =
{@(t),v(t), w(t)),0 <t < T}inL2(0,T; (L*3) N C(0, T1; (H™1)3), where the
limit { (u(t),v(t), w(t)),0 <t < T} is the unique solution of the following system
of parabolic PDEs

Ji
d—btt(t) = pus Au(t) — f(Ou(r) — g)v@) — f(Ou(r) — g)v(),

a

;%UZMJAW0+fUﬁU%+ADW0+fUMU)
+ g(v(r) — a () +T@) (34)

.

iﬁnzuRmmn+awm+vmx

u(0) =v(0) =w() =0.

Proof Let
_ ug(t) —fe@ue(t) — g ()ve(2)
Se(@) = [ ve(0) |, Fe@) = | fe@uet) + (8 (1) — )ve (1) |,
we (1) ave (1)
wsAg — fe(t) —ge (1) 0
A (1) = Sfe (@) mrlhe +ge(t) —a 0
0 0 URA: +

Note that both I, and F, belong to L2(0, T; (H,)3). We have the following system of
ODEs

R
dt

(1) = A6 (1) + Fo(t), J:(0)=0. (35)
Lemma 3.3 tells us that whenever, as ¢ — 0,
F, = F inL>0, T; Y%,

where

—f@u(t) — gt)v(t)
F(t)=| f@Ou@)+ g®v() —av() | . (36)
av(t)

We apply the well-known theorem due to Skorohod, which asserts that redefining the
probability space, we can assume that F, — F a.s. strongly in L?((0, T); (H™")3).
Our assumptions and the hypotheses imply that both I, and v 3, are bounded
in (L?((0, T) x T'))>. Hence along a subsequence J; — 3 and V'3, — G in
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(L*((0, T) x T'))* weakly. However, it follows from a duality argument that G = V3,
and taking the weak limit in (35), we deduce that < is the unique solution of the system
of parabolic PDEs

%(r) = AMI() + F(t), 3(0) =0,

with
usA — f(1) —g(1) 0
A@) = f@ miA+g() —a 0 . 37
0 0 URA 4+«

Hence all converging subsequences have the same limit, and the whole sequence
converges.

We now show that the pair (I, V3;) converges strongly in (L?((0, T) x T"))®.
We first note that both 3, and Vj 3, are bounded in (L2((0, T) x T1))3, but also %58
is bounded in L2((O, T); (H™! (TI‘] ))3 ). From these estimates, we deduce with the help
of Theorem 5.4 in Droniou et al. [4] that I, — 3 strongly in (L2((0, T) x T1))3.
Next we deduce from (35) that

1d[5:0)|;

) dt = (As§a(t)v§£(t))+(Fs(t)’§e(t)>,

hence
1~ 2 g T 2 T 2 e 2
SIS+ [ a0+ | G50 + | 920 ar

T
= [ [thomo + 50050
~ T 0) + [Va B0 — [Va T3 + (Feo), Sewp Jar (38)

We have an analogous identity for the limiting quantities, namely:

1, T
SISO+ [ [us|Va0 G + i |95 + e 9500
T
= [ [tromo + w50~
+ [Va T3 = Vo 50| 5 + (F @O, 3w ]ar (39)

It follows from _the strong convergence of F; to F in L2(O, T; (H’])3), the strong
convergence of 3 — Jin (L*((0, T) x T'))? and the weak convergence of V,"3; to
V3 in (L%((0, T) x T'))? that the right hand side of (38) converges to the right hand
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side of (39). Hence the left hand side of (38) converges to the left hand side of (39).
Consequently

1 _ _ T
S 30 =372 + /O 15| VT = Vaw . + w| Vi) - VIO 7,
+ 1wk || V() = VTO |7 [ dr > 0. (40)

This last result follows from the convergence of the left hand side of (38) to that of
(39), and the facts that

Ge(T), (D) — |33,

and

T
/o (s (Ve (), Vi) + wi{V0e(0), VO@©)) + wr (VW (1), V(1)) dr

T
—>f0 s Va3 + wa [ VT 72 + e |VBO 7] dr

The second convergence follows from the fact that Vj I, — V3in (L*((0,T) x
T"))? weakly. Concerning the first one, we deduce from the equations and the above
statements that 3, (T) — J(7') weakly in (H~1)3. But since that sequence is bounded
in (L?(T"))3, it also converges weakly in (L2(T"!))3.

The fact that V3, — V3 strongly in (L2((0, T) x T'))? clearly follows from
(40).

The above arguments imply that a.s.

(Je, VITe) — (3, VI) strongly in (L2((0, T) x T1))°.

Now the convergence 3, — Jin C([0, T]; (H~1)3) follows readily from the equation.
O

Lemma 3.2 says that S, = Jin C([0, T1; (H7)*)NL2(0, T; (H™')?), we have
used in Lemma 3.5 the Skorohod theorem to deduce that I, = 3 in L2(0, T(L2)?) N
C([0, T1; (H~Y)~1). Hence the same Skorohod theorem allows us to take the limit in
the sum 3, + 3, which yields the following result.

Theorem 3.2 (Functional central limit theorem) For 3/2 < y < 2, as ¢ — 0,
{2, 0 <1< Tlwa = (Z®, 0<1t=<T}inC(0,T]; H))N
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L? (O, T; (H’1)3), where the limit % is solution of the following system of SPDEs :
forall ¢ € H!

<%(1)7(P)1{71,H1
, , i) (i) + 1)
:MS[)(%(r) . Ag >H—]YHldr +‘/‘0(7/(")a ﬁ(-)(azi('.))Qﬂ)H—lyHld"
! +
+/0 (%), ﬁ(.)Ww bt dr + (50, 0 b e
(7(t)y¢)|{—|_H1
" ! i(r)(i(r) +r(r)
=M1/0(7/(r), Aw),{fl,ﬁldr—/o (7, ﬁ(.)%w bt udr

! s(r) (s(r) +r(r)) !
_[) <%(7)a 5()327(”(9 )H—I,H]dr+/0 <Ny(”)a(¥(-)(ﬂ )l_[—l_H]dr

+<.//I(l), ¢>H—lyHlv
W), @ g1
( b
' '
:,U-R/O <W(r)7 Ag >H—1,Hldr_/0 (“//(r),a(.)<p >[_[71’H1dr+(///R(f)s ¢)>H—1’Hl~
(41)

Final remarks: e Our functional central limit theorem is established in dimension
1. The difficulty in higher dimension is the following. y > 3/2 has to be replaced
by y > 14 d/2. Then in Lemma 3.2 we have convergence in L(0, T; (H'~7)%) N
C([0,T1; (H™7)%). Note that 1 — y < —d /2. Already in dimension 2, we have
1 — y < —1, and there is a serious difficulty with the analog of Lemma 3.5.

e In this work, we have first let N — oo, while ¢ > 0 is fixed, and then let ¢ — 0.
The case where N — 400 and ¢ — 0 together, with some constraint on the relative
speeds of convergence (which does not allow N to converge too slowly to co while
& — 0) will be the subject of future work.

Appendix A

Lemma A.1 Let (hg)o<s<1 be a sequence of He. If (hg)o<e<1 is bounded in H'¢, then

it is relatively compact in L%, and the limit of any convergent subsequence belongs to
H'.

Proof By using the fact that the sequence (%) is bounded in L? and H V;th ” 2 <
C th || . then the result of the compactness follows from the compactness theorem
H

of Kolmogorov in L2.
The fact the limit of any convergent subsequence belong to H', follows from the
discrete integrating by part

/T 1 VT he (0)p(x)dx = —( /0 he(y)dy . o),
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and letting & go to zero in this equation. O

LemmaA.2
For all ue € Hg

v~ ua”H e _||V+Ms|| - Z((ug,wfn) + (ue, ¥, )))f A+25)77.

m

Proof We have

Vg_‘P; = _bm,s‘PZ - am,sw;i and Vg_lﬂyi = am,s‘ﬂi - bm,s‘ﬂ;,

where a, o = e~ Lsin(wme) and bpe = e~ (cos(rme) — 1).
We have
2 2
e T bm,e = A,

m*

Let u, € H.. We have

= 3 (e Ym0 o (e, 1) (125077
= 3 (Ctes —bmehy = e ) + Ctes oy = b)) (L4 25) ™
m

= 3 ((bme (e, 05 ) = et Vi )P + L (1t 95) = et V)12
x(1428)77

:Z([a2 +b2 ]{<M37¢fn>2+(u67w >})(1+)\8) y

= 3 (e @ 2+ (e v ) 2 (1 25)

m

The proof of || V. ue ”i—w = Z (( e, 95 ) + (ue, ¥, )2) A8 (1+A5) 77 is similar
m

by noting that

Vg+¢fn = bm,s‘ﬂygn - am,s‘ﬁ,}i and Vg+1ﬂ$, = am,s‘/’i + bm,swyi'
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