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Abstract

Consider an endemic disease, which corresponds to an epidemic model with
a constant flux of susceptibles, in a situation where the corresponding de-
terministic epidemic model has a unique stable endemic equilibrium. If we
consider the associated stochastic model, whose law of large numbers limit
is the deterministic model, the disease free equilibrium is an absorbing state,
which is reached soon or later by the process. However, for a large popula-
tion size, i.e. when the stochastic model is close to its deterministic limit,
the time needed for the stochastic perturbations to stop the epidemic may be
enormous. In this presentation, we discuss how the Central Limit Theorem,
Moderate and Large Deviations allow us to try to estimate the extinction
time of the epidemic.

1 Introduction

We consider epidemic models where there is a constant flux of susceptibles,
either because the infected individuals become susceptible immediately after
healing, or after some time during which the individual is immune to the
illness, or because there is a constant flux of newborn or immigrant suscep-
tibles.

In the above three cases, for certain values of the parameters, there is
an endemic equilibrium, which is a stable equilibrium of the associated de-
terministic epidemic model. The deterministic model can be considered as
the Law of Large Numbers limit (as the size of the population tends to ∞)
of a stochastic model, where infections, healings, births and deaths happen
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according to Poisson processes whose rates depend upon the numbers of in-
dividuals in each compartment.

Since the disease free states are absorbing, it follows from an irreducibil-
ity property which is clearly valid in our models, that the epidemic will stop
soon or later in the more realistic stochastic model. However, the time which
the stochastic perturbances will need to stop the epidemic may be enormous
when the size N of the population is large. The aim of this paper is to
describe, based upon the Central Limit Theorem, Large and Moderate De-
viations, the time it takes for the epidemic to stop in the stochastic model.

The paper is organized as follows. In section 2, we describe the three
deterministic and stochastic models which we have in mind, namely the SIS,
SIRS and SIR model with demography. In section 3, we give the general
formulation of the stochastic models, and recall the Law of Large Numbers,
the Central Limit Theorem and the Large Deviations, and their application
to the time of extinction of an epidemic. Finally in section 4, we present the
moderate deviations result for the SIS model (which is the simplest of our
three models), and explain how it can be used to predict the time taken for
an epidemic to cease. Those results will be proved in more generality, with
full details of the proofs in [13].

The results concerning the Law of Large Numbers and the Large De-
viations can be found in Kratz and Pardoux [12], Pardoux and Samegni–
Kepgnou [14], and Britton and Pardoux [5], where the Central Limit Theo-
rem is also established. Note that the three above references present different
approaches to the Large Deviations results. The moderate deviations results
will appear in [13].

We conclude this introduction with a short history and a few references
to books and lecture notes which describe models of infectious diseases and
epidemics. Mathematical modelling of infectious diseases has a long history
of being useful. The first such mathematical model was probably the one
proposed by Bernoulli in [4] with a model of smallpox. A little more than
one hundred years ago, Sir Ronald Ross, a british medical doctor and No-
bel laureate who contributed to the understanding of malaria wrote : “As a
matter of fact all epidemiology, concerned as it is with variation of disease
from time to time and from place to place, must be considered mathemati-
cally (...) and the mathematical method of treatment is really nothing but
the application of careful reasoning to the problems at hand”. As a matter
of fact, Ross deduced from mathematical arguments conclusions concern-
ing malaria, which his physician colleagues found hard to accept. One of
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the first books devoted to mathematical modelling of infectious diseases is
[3]. A book which has had huge impact is [1], which exclusively deals with
deterministic models. Since then, there has been steady production of new
research monographs, e.g. [2] also looking at inference methodology, [7] focus-
ing mainly on stochastic models, [11] dealing also with animal populations,
and [9] covering both deterministic and stochastic modelling. Finally [6] will
soon present the broadest treatment of stochastic epidemic models ever pub-
lished in one volume, covering both classical and new results and methods,
from mathematical models to statistical procedures.

2 The three models

2.1 The SIS model

The deterministic SIS model is the following. Let s(t) (resp. i(t)) denote
the proportion of susceptible (resp. infectious) individuals in the population.
Given an infection parameter λ, and a recovery parameter γ, the determin-
istic SIS model reads {

s′(t) = −λs(t)i(t) + γi(t),

i′(t) = λs(t)i(t)− γi(t).

Since clearly s(t) + i(t) ≡ 1, the system can be reduced to a one dimensional
ordinary differential equation. If we let z(t) = i(t), we have s(t) = 1−z(t),and
we obtain the ordinary differential equation

z′(t) = λz(t)(1− z(t))− γz(t) .

It is easy to verify that this ordinary differential equation has a so–called
“disease free equilibrium”, which is z(t) = 0. If λ > γ, this equilibrium is
unstable, and there is an endemic stable equilibrium z(t) = 1− γ/λ.

The corresponding stochastic model is as follows. Let SNt (resp. INt )
denote the proportion of susceptible (resp of infectious) individuals in a pop-
ulation of total size N .

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Prec

(
γN

∫ t

0

INr dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
.
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Here Pinf (t) and Prec(t) are two mutually independent standard (i.e. rate
1) Poisson processes. Let us give some explanations, first concerning the
modeling, then concerning the mathematical formulation.

Let SNt (resp. INt ) denote the number of susceptible (resp. infectious)
individuals in the population. The equations for those quantities are the
above equations, multiplied by N . The argument of Pinf (t) reads

λ

∫ t

0

SNr
N
INr dr .

The argument for such a rate of infections in the total population can be
explained as follows. Each infectious individual meets other individuals in
the population at some rate β. The encounter results in a new infection with
probability p if the partner of the encounter is susceptible, which happens
with probability SNt /N , since we assume that each individual in the popu-
lation has the same probability of being that partner, and with probability
0 if the partner is an infectious individual. Letting λ = βp and summing
over the infectious at time t gives the above rate. Concerning recovery, it is
assumed that each infectious recovers at rate γ, independently of the others.

Remark 1. Let us comment about the fact that we write our stochastic mod-
els in terms of Poisson processes. The fact that the infection events happen
according to a Poisson process is a rather natural assumption. However, con-
cerning the recovery from infection, our model assumes that the duration of
the infectious period follows an exponential distribution. This is not realistic.
We are forced to make such an assumption if we want to have a Markov
model. We must confess that this assumption is done for mathematical con-
venience.

Note that there is an equivalent, but slightly more complicated way of
writing the Poisson terms, which we now present. LetMinf andMrec denote
two mutually independent Poisson random measures on (0,+∞)2, with mean
measure the Lebesgue measure.

Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
can be rewritten as

∫ t

0

∫ ∞
0

1u≤λNSNr INr drMinf (dr, du)

and

Prec

(
γN

∫ t

0

INr dr

)
can be rewritten as

∫ t

0

∫ ∞
0

1u≤γNINr drMrec(dr, du) .
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Again we have SNt + INt = 1, and ZN
t = INt satisfies

ZN
t = ZN

0 +
1

N
Pinf

(
λN

∫ t

0

(1− ZN
r )ZN

r dr

)
− 1

N
Prec

(
γN

∫ t

0

ZN
r dr

)
.

2.2 The SIRS model

In the SIRS model, contrary to the SIS model, an infectious who heals is first
immune to the illness, he is “recovered”, and only after some time does he
loose his immunity and turn to susceptible. The deterministic SIRS model
reads 

s′(t) = −λs(t)i(t) + ρr(t),

i′(t) = λs(t)i(t)− γi(t),
r′(t) = γi(t)− ρr(t),

while the stochastic SIRS model reads

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Ploim

(
ρN

∫ t

0

RN
r dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
RN
t = RN

0 +
1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Ploim

(
ρN

∫ t

0

RN
r dr

)
.

These two models could be reduced to two–dimensional models for z(t) =
(i(t), s(t)) (resp. for ZN

t = (INt , S
N
t )).

2.3 The SIR model with demography

In this model, recovered individuals remain immune for ever, but there is a
flux of susceptibles by births at rate µN , while individuals from each of the
three compartments die at rate µ. Thus the deterministic model

s′(t) = µ− λs(t)i(t)− µs(t)
i′(t) = λs(t)i(t)− γi(t)− µi(t)
r′(t) = γi(t)− µr(t),
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whose stochastic variant reads

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Pbirth(ρNt)−

1

N
Pds

(
µN

∫ t

0

SNr dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Pdi

(
µN

∫ t

0

INr dr

)
,

RN
t = RN

0 +
1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Pdr

(
µN

∫ t

0

RN
r dr

)
.

Remark 2. One may think that it would be more natural to decide that
births happen at rate µ times the total population. Then the total population
process would be a critical branching process, which would go extinct in finite
time a.s., which we do not want. Next it might seem more natural to replace
in the infection rate the ratio SNt /N by SNt /(S

N
t + INt + RN

t ), which is the
actual ratio of susceptibles in the population at time t. It is easy to show that
SNt + INt +RN

t is close to 1, so we choose the simplest formulation.

Again, we can reduce these models to two–dimensional models for z(t) =
(i(t), s(t)) (resp. for ZN

t = (INt , S
N
t )), by deleting the r (resp. RN) compo-

nent.

3 The stochastic model, LLN, CLT and LD

3.1 The stochastic model

The three above stochastic models are of the following form.

ZN
t = zN +

1

N

k∑
j=1

hjPj

(
N

∫ t

0

βj(Z
N
s )ds

)

= zN +

∫ t

0

b(ZN
s )ds+

1

N

k∑
j=1

hjMj

(
N

∫ t

0

βj(Z
N
s )ds

)
,

(1)

where {Pj(t), t ≥ 0}0≤j≤k are mutually independent standard Poisson pro-

cesses, Mj(t) = Pj(t) − t, and b(z) =
∑k

j=1 βj(z)hj. Z
N
t takes its values in

IRd.
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In the case of the SIS model, d = 1, k = 2, h1 = 1, β1(z) = λz(1 − z),
h2 = −1 and β2(z) = γz.

In the case of the SIRS model, d = 2, k = 3, h1 =

(
1
−1

)
, β1(z) = λz1z2,

h2 =

(
−1
0

)
, β2(z) = γz1 and h3 =

(
0
1

)
, β3(z) = ρ(1− z1 − z2).

In the case of the SIR model with demography, we can restrict ourselves

to d = 2, while k = 4, h1 =

(
1
−1

)
, β1(z) = λz1z2, h2 =

(
−1
0

)
, β2(z) =

(γ + µ)z1, h3 =

(
0
1

)
, β3(z) = µ, h4 =

(
0
−1

)
, β4(z) = µz2.

While the above formulation has the advantage of being concise, it is for
certain purposes more convenient to rewrite (1) using the equivalent formu-
lation already described in case of the SIS model. Let {Mj, 1 ≤ j ≤ k} be
mutually independent Poisson random measures on IR2

+ with mean measure
the Lebesgue measure, and letMj(ds, du) =Mj(ds, du)− ds du, 1 ≤ j ≤ k.
We can rewrite (1) in the form

ZN
t = zN +

1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du)

= zN +

∫ t

0

b(ZN
s )ds+

1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du),

(2)

in the sense that the joint law of {ZN , N ≥ 1} is the same law of a sequence
of random elements of the Skorohod space D([0, T ]; IRd), whether we use (1)
or (2) for its definition.

We will now state a few results, without specifying particular assump-
tions. Those results are valid at least in the case of the three above examples.
See [5] for details of the proofs, and precise assumptions under which those
results hold true.

Concerning the initial condition, we assume that for some z ∈ [0, 1]d,
zN = [Nz]/N , where [Nz] ∈ Zd+ is the vector whose i–th component is the
integer part of the real number Nzi.

3.2 Law of Large Numbers

We have a Law of Large Numbers
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Theorem 3. Let ZN
t denote the solution of the stochastic differential equa-

tion (1). Assume that the βj are locally bounded, b is locally Lipschitz, and
the unique solution of equation (3) does not explode in finite time. Then
ZN
t → zt a.s. locally uniformly in t, where {zt, t ≥ 0} is the unique solution

of the ordinary differential equation

(3)
dzt
dt

= b(zt), z0 = x.

The main argument in the proof of the above theorem is the fact that,
locally uniformly in t,

P (Nt)

N
→ t a.s. as N →∞.

3.3 Central Limit Theorem

We also have a Central Limit Theorem. Let UN
t :=

√
N(ZN

t − z(t)).

Theorem 4. Assume in addition to the hypotheses of Theorem 3 that b is of
class C1. Then, as N → ∞, {UN

t , t ≥ 0} ⇒ {Ut, t ≥ 0} for the topology of
locally uniform convergence, where {Ut, t ≥ 0} is a Gaussian process of the
form

(4) Ut =

∫ t

0

∇xb(zs)Usds+
k∑
j=1

hj

∫ t

0

√
βj(zs)dBj(s), t ≥ 0 ,

where {(B1(t), B2(t), . . . , Bk(t)), t ≥ 0} are mutually independent standard
Brownian motions.

3.4 Large Deviations, and extinction of an epidemic

We denote by ACT,d the set of absolutely continuous functions from [0, T ]
into IRd. For any φ ∈ ACT,d, let Ak(φ) denote the (possibly empty) set of
functions c ∈ L1(0, T ; IRk

+) such that cj(t) = 0 a.e. on the set {t, βj(φt) = 0}
and

dφt
dt

=
k∑
j=1

cj(t)hj, t a.e.
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We define the rate function

IT (φ) :=

{
infc∈Ak(φ) IT (φ|c), if φ ∈ ACT,A;

∞, otherwise,

where as usual the infimum over an empty set is +∞, and

IT (φ|c) =

∫ T

0

k∑
j=1

g(cj(t), βj(φt))dt

with g(ν, ω) = ν log(ν/ω)−ν+ω. We assume in the definition of g(ν, ω) that
for all ν > 0, log(ν/0) = ∞ and 0 log(0/0) = 0 log(0) = 0. It is not hard to
verify that IT (φ) = 0 if and only if φ solves the ordinary differential equation
(3). IT (φ) can be interpreted as an energy needed for letting φ deviate from
being a solution of (3).

The collection ZN obeys a Large Deviations Principle, in the sense that

Theorem 5. For any open subset O ⊂ D([0, T ]; IRd),

lim inf
N→∞

1

N
log IP

(
ZN,zN ∈ O

)
≥ −IT,z(O).

For any closed subset F ⊂ D([0, T ]; IRd),

lim sup
N→∞

1

N
log IP(ZN,zN ∈ F ) ≤ −IT,z(F ) ,

where for any z ∈ IRd, A ⊂ D([0, T ]; IRd),

IT,z(AZ) := inf
φ∈A,φ(0)=z

IT (φ) .

A slight reinforcement of this theorem allows us to conclude a Wentzell–
Freidlin type of result. Wentzell and Freidlin have studied small random
perturbations of an ordinary differential equation like (3), see [10]. One of
their main results is to compute asymptotically the time needed for a small
random perturbation of such an equation to drive the solution outside of the
basin of attraction of a stable equilibrium. The theory has been originally
developed for Brownian perturbations. Here we give a statement of the same
type, for a Poissonian perturbation. In what follows, we assume that the
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first component of ZN
t (resp. of z(t)) is INt (resp. i(t)). Assume that the de-

terministic ordinary differential equation (3) has a unique stable equilibrium
z∗ whose first component satisfies z∗1 > 0. We define

V := inf
T>0

inf
φ∈ACT,d,φ(0)=z∗,φ1(T )=0

IT (φ).

Let now
TN,zExt = inf{t > 0, ZN

1 (t) = 0, if ZN(0) = zN}.

We have the

Theorem 6. Given any η > 0, for any z with z1 > 0,

lim
N→∞

P
(

exp{N(V − η)} < TN,zExt < exp{N(V + η)}
)

= 1.

Moreover, for all η > 0 and N large enough,

exp{N(V − η)} ≤ E(TN,zExt ) ≤ exp{N(V + η)}.

It is important to evaluate the quantity V . Note that it is the value
function of an optimal control problem. In case of the SIS model, which is
one dimensional, one can solve this control problem explicitly with the help
of Pontryagin’s maximum principle1, see [15] or for a concise introduction
adapted to this application section A.6 in [5], and deduce in that case that
V = log λ

γ
− 1 + γ

λ
. For other models, one can compute numerically the value

of V for each given value of the parameters.

4 Moderate deviations

4.1 CLT and extinction of an endemic disease

Consider the SIR with demography.

i′(t) = λi(t)s(t)− γi(t)− µi(t),
s′(t) = −λi(t)s(t) + µ− µs(t).

1Pontryagin’s maximum principle states sufficient conditions for a control to be optimal.
In the case of the SIS model, the corresponding control problem is one dimensional, and
Pontryagin’s conditions allow to compute explicitly the optimal trajectory.
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We assume that λ > γ + µ, in which case there is a unique stable endemic
equilibrium, namely z∗ = (i∗, s∗) = ( µ

γ+µ
− µ

λ
, γ+µ

λ
). Following Section 4.1 in

[5], we can study the extinction of an epidemic in the above model using the
CLT. We note that the basic reproduction number R0 (the expected number
of infectious contacts by one infectious at the start of the epidemic, i.e. when
s(t) ' 1) and the expected relative time of a life an individual is infected, ε,
are given by

(1) R0 =
λ

γ + µ
ε =

1/(γ + µ)

1/µ
=

µ

γ + µ
.

The rate of recovery γ is much larger than the death rate µ (52 compared
to 1/75 for a one week infectious period and 75 year life length) so for all
practical purposes the two expressions can be approximated by R0 ≈ λ/γ
and ε ≈ µ/γ. Denote again by INt the fraction of the population which is
infectious in a population of size N . The law of large numbers tells us that
for N and t large, INt is close to i∗. The CLT tell us that

√
N(INt − i∗)

converges to a Gaussian process, whose asymptotic variance can be shown
to well approximated by R−1

0 − R−2
0 ∼ R−1

0 . This suggests that for large t,
the number of infectious in the population is approximately Gaussian, with
mean Ni∗ and standard deviation

√
N/R0. Since we expect a Gaussian

process with marginal N(0, 1) to hit −2 fairly quickly, we expect that if
Ni∗ − 2

√
N/R0 ≤ 0, then the epidemic will stop rather quickly, while if

Ni∗ − 4
√
N/R0 ≥ 0, it is not clear that the time of extinction will be of

order 1 (as a function of N). This gives a critical population size roughly of
the order of

Nc =
9

(i∗)2R0

=
9

ε2(1−R−1
0 )2R0

.

Note that the factor 9 is rather arbitrary. This Nc is rather large since i∗ is
relatively small. Clearly, even if everybody in the population gets ill at some
point, being ill one week in a life of average length 75 years gives a small
fraction of infectious in the population.

Consider measles prior to vaccination. If we assume that R0 ≈ 15 and the
infectious period is 1 week (1/52 years) and life duration 75 years, implying

that ε ≈ 1/75
1/(1/52)+1/75

≈ 1/3750 we arrive at Nc ≈ 9(3750)2/15 ≈ 8 ·106. So, if
the population is at most a couple of million, we expect that the disease will
go extinct quickly, whereas the disease will become endemic (for a rather
long time) in a population being larger than e.g. 20 million people. This
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confirms the empirical observation that measles was continously endemic in
UK whereas it died out quickly in Iceland (and was later reintroduced by
infectious people visiting the country), see [1].

4.2 Moderate Deviations

If the CLT allows to predict extinction of an endemic disease for popula-
tion sizes under a given threshold Nc, and Large Deviations gives predictions
for arbitrarily large population sizes, it is fair to look at Moderate Devia-
tions, which describes ranges of fluctuations between those of the CLT and
those of the LD. We shall present the Moderate Deviations approach in the
specific case of the SIS model. In other words, our model from now on is
1–dimensional, and it reads

ZN
t = ZN

0 +

∫ t

0

b(ZN
s )ds+ Y N

t , where

b(z) = [λ(1− z)− γ]z, and

Y N
t =

1

N

∫ t

0

∫ λNZNs (1−ZNs )

0

M1(ds, du)− 1

N

∫ t

0

∫ γNZNs

0

M2(ds, du).

We consider the case λ > γ and recall that the unique stable equilibrium of
the deterministic model then is z∗ = 1 − γ

λ
. We assume that ZN

0 = z∗N :=
[Nz∗]/N . We have

ZN
t − z∗ = z∗N − z∗ − λ

∫ t

0

ZN
s (ZN

s − z∗)ds+ Y N
t .

It follows that

ZN
t − z∗ = (z∗N − z∗)e−λ

∫ t
0 Z

N
s ds + Y N

t − λ
∫ t

0

ZN
s e
−λ

∫ t
s Z

N
r drY N

s ds.

Consequently

|ZN
t − z∗| ≤ |z∗N − z∗|+ 2 sup

0≤s≤t
|Y N
s |.(2)

We can also rewrite the above stochastic differential equation in the form

ZN
t − z∗ = z∗N − z∗ − (λ− γ)

∫ t

0

(ZN
s − z∗)ds+ Ỹ N

t , where

Ỹ N
t = Y N

t − λ
∫ t

0

(ZN
s − z∗)2ds.

(3)
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A combination of (2) and (3) yields the existence of a constant C such that∫ T

0

(ZN
t − z∗)2dt ≤ |z∗N − z∗|+ C

(
sup

0≤t≤T
|Y N
t |
)
∧
(

sup
0≤t≤T

|Y N
t |2
)
.(4)

For the bound by sup0≤t≤T |Y N
t |2, we first take the suare in (2).

We now define, for 0 < α < 1/2,

Ỹ N,α
t = Nα[Y N

t − λ
∫ t

0

(ZN
s − z∗)2ds].

and deduce from (3)

Nα(ZN
t − z∗) = Nα(z∗N − z∗)− (λ− γ)

∫ t

0

Nα(ZN
s − z∗)ds+ Ỹ N,α

t .(5)

It follows from (5) that the map Ỹ N,α 7→ Nα(ZN − z∗) is continuous from
D([0, T ]) into itself. Here we equip D([0, T ]) with the sup norm topology,
which makes it a Hausdorff topologic vector space (equipped with the Sko-
rohod topology, D([0, T ]) is not a topologic vector space).

We are interested in the Large Deviations of Nα(ZN − z∗), which means
Moderate Deviations of ZN − z∗. Note that the deviations of Nα(ZN − z∗)
in case α = 1/2 are analyzed by the Central Limit Theorem, and in case
α = 0 by the Large Deviations. So with 0 < α < 1/2, we are clearly here in
a regime which is intermediate between the CLT and LD, which is called the
regime of Moderate Deviations.

We first note that the LD of Nα(ZN − z∗) will be deduced from those of

Ỹ N,α thanks to the contraction principle, see e.g. Theorem 4.2.1 in [8]. So

we essentially have to analyze the LD of Ỹ N,α. In fact, we will proceed in
three steps. In the first step, we shall analyse the Large Deviations of

Y
N,α

t := Nα−1

∫ t

0

∫ λNz∗(1−z∗)

0

M1(ds, du)−Nα−1

∫ t

0

∫ γNz∗

0

M2(ds, du),

at the speed N2α−1, or in other words the Moderate Deviations of

Y
N

t :=
1

N

∫ t

0

∫ λNz∗(1−z∗)

0

M1(ds, du)− 1

N

∫ t

0

∫ γNz∗

0

M2(ds, du).

The second step will consist in showing that Ỹ N,α and Y
N,α

have the same
behavior as regards Large Deviations. Finally the third step will consist in
applying the contraction principle, in order to deduce the LD of Nα(ZN−z∗).

13



4.2.1 Step1 : Moderate Deviations of Y
N

We shall use the notations aN = N2α−1 and Y
N,α

:= NαY
N

. Given a signed
measure ν on [0, T ], we write

ΛN(ν) = log IE
[
eν(Y

N,α
)
]
, where ν(Y

N,α
) =

∫
[0,T ]

Y
N,α

t ν(dt)

for the logarithmic moment generating function of Y
N,α

at ν.
The crucial step of our derivation is the

Proposition 7. For any signed measure ν on [0, T ], as N →∞,

aNΛN(a−1
N ν)→ Λ(ν) :=

1

2
IE
[
ν(Y )2

]
,

where

Yt :=

∫ t

0

∫ λz∗(1−z∗)

0

M1(ds, du)−
∫ t

0

∫ γz∗

0

M2(ds, du).

Proof We first rewrite a−1
N Y

N,α
in the form

a−1
N Y

N,α

t = N−α
1∑
j=0

N∑
`=1

(−1)jMj,` (βj(z
∗)t) ,

here β0(z) = λz(1− z) and β1(z) = γz and the processes {Mj,`, j = 0, 1; 1 ≤
` ≤ N} are i.i.d. compensated standard Poisson processes. We now have

aNΛN(a−1
N ν) = aN log IE exp

[
ν(a−1

N Y
N,α

)
]

= NaN log IE exp

[
N−αν

(
1∑
j=0

(−1)jMj,1 (βj(z
∗)·)

)]

= N2α log IE

[
1 +N−αν

(
1∑
j=0

(−1)jMj,1 (βj(z
∗)·)

)

+
N−2α

2
ν

(
1∑
j=0

(−1)jMj,1 (βj(z
∗)·)

)2

+O
(
N−3α

) ]

→ 1

2
IE

ν( 1∑
j=0

(−1)jMj,1 (βj(z
∗)·)

)2
 =

σ2

2

∫
[0,T ]2

t ∧ s ν(dt)ν(ds)

14



as N →∞, where we have used the notation σ2 := 2γ
λ
(λ− γ). �

The next step consists in establishing exponential tightness of the laws of

Y
N,α

, in the sense that

Proposition 8. For any R > 0, there exists a compact set KR ⊂⊂
D([0, T ]; IRd) such that

lim sup
N

aN log IP(Y N,α ∈ (KR)c) ≤ −R .

The proof of this Proposition follows essentially the lines of the proof of
exponential tightness in section 4.2.4 of [5].

We now define the Fenchel–Legendre transform of Λ. Recall that we equip
D([0, T ]) with the supnorm topology. For each φ ∈ D([0, T ]; IRd),

Λ∗(φ) = sup
ν∈(D([0,T ]))∗

{ν(φ)− Λ(ν)} .

From Proposition 7 and Proposition 8 combined with an approximation

of Y
N,α

by a piecewise linear continuous process (see [13] for the details), we
deduce from Corollary 4.6.14 from [8] the following.

Theorem 9. The sequence {Y N,α
, N ≥ 1} satisfies the Large Deviation

Principle in D([0, T ]; IRd) with the convex, good rate function Λ∗ and with
speed aN , in the sense that for any Borel subset Γ ⊂ D([0, T ]; IRd),

− inf
φ∈Γ̊

Λ∗(φ) ≤ lim inf
N

aN log IP(Y
N,α ∈ Γ)

≤ lim sup
N

aN log IP(Y
N,α ∈ Γ) ≤ − inf

φ∈Γ
Λ∗(φ) .

Let us compute Λ∗. With the notation s ∧ t := inf(s, t),

Λ(ν) =
σ2

2

∫
[0,T ]2

s ∧ t ν(ds)ν(dt) .

It is easily seen that Λ∗(φ) = +∞ if φ(0) 6= 0. Let now φ ∈ C2([0, T ]) such
that φ(0) = 0. The gradient of the map ν 7→ ν(φ)− Λ(ν) reads

φ(t)− σ2

∫
[0,T ]

s ∧ t ν(ds).

15



We look for ν∗ such that this gradient equals 0. This implies that

φ′(t) = σ2ν∗((t, T ]), hence

φ′(T ) = σ2ν∗({T}), φ′(T )−
∫ T

t

φ′′(s)ds = σ2ν∗((t, T ]) ,

ν∗(dt) = − 1

σ2
φ′′(t)dt+

1

σ2
φ′(T )δT (dt) .

From those identities, combined with φ(0) = 0, we deduce that

Λ∗(φ) =
1

2σ2

∫ T

0

|φ′(t)|2dt .

4.2.2 Step2 : Moderate Deviations of Ỹ N

What we want to show in this step is that Ỹ N,α satisfies exactly the same

Large Deviations result as Y
N,α

. This will follow if we prove that Ỹ N,α

satisfies Proposition 7 (with the same expression in the limit) and Proposition

8. Let us state a property which allows us to conclude that Ỹ N,α satisfies
Proposition 7 with the correct limit.

Proposition 10. For any C > 0, as N →∞,

aN log IE exp
[
Ca−1

N λ(Ỹ N,α − Y N,α
)
]
→ 0,

aN log IE exp
[
Ca−1

N λ(Y
N,α − Ỹ N,α)

]
→ 0 .

(6)

We first prove

Corollary 11. Given Proposition 7, if Proposition 10 holds true, then for
any signed measure ν on [0, T ],

aN log IE
[
ea

−1
N ν(Ỹ N,α)

]
→ σ2

2

∫
[0,T ]2

t ∧ s ν(dt)ν(ds) ,

as N →∞.

Proof For any δ > 0, we deduce from Hölder’s inequality

aN log IE exp{ν(a−1
N Ỹ N,α)} = aN log IE

[
exp{ν(a−1

N Y
N,α

)} exp{{ν(a−1
N (Ỹ N,α − Y N,α

))}
]

≤ aN
1 + δ

log IE exp{(1 + δ)a−1
N ν(Y

N,α
)}+

aNδ

1 + δ
log IE exp

{
1 + δ

δaN
ν(Ỹ N,α − Y N,α

)

}
,

16



so that, if we combine Proposition 7 and Proposition 10, we deduce that

lim sup
N

aN log IE exp{ν(a−1
N Ỹ N,α)} ≤ (1 + δ)σ2

2

∫
[0,T ]2

t ∧ s ν(dt)ν(ds),

and letting δ → 0, we conclude that

lim sup
N

aN log IE exp{ν(a−1
N Ỹ N,α)} ≤ σ2

2

∫
[0,T ]2

t ∧ s ν(dt)ν(ds).

For the inequality in the other direction, we note that, by similar arguments,

aN log IE exp

{
1

aN(1 + δ)
ν(Y

N,α
)

}
≤ aN

1 + δ
log IE exp{a−1

N ν(Ỹ N,α)}

+
aNδ

1 + δ
log IE exp{(δaN)−1ν(Y

N,α − Ỹ N,α)},

so that

lim inf
N

aN log IE exp{a−1
N ν(Ỹ N,α)} ≥ σ2

2(1 + δ)

∫
[0,T ]2

t ∧ s ν(dt)ν(ds),

hence, letting δ → 0 we conclude that

lim inf
N

aN log IE exp{a−1
N ν(Y N,α)} ≥ σ2

2

∫
[0,T ]2

t ∧ s ν(dt)ν(ds).

�
Before we prove Proposition 10, we first need to establish a technical

Lemma.

Lemma 12. Let M be a standard Poisson random mesure on IR2
+, and

M(dt, du) =M(dt, du)− dt du the associated compensated measure. If ϕ is

an IR+–valued predictable process such that
∫ T

0
ϕtdt has exponential moments

of any order, and a ∈ IR, then there exists a constant C such that for any
0 ≤ t ≤ T ,

IE

[
sup

0≤s≤t
exp

{
a

∫ s

0

∫ ϕr

0

M(dr, du)

}]
≤ C

(
IE exp

{
(e2a − 1− 2a)

∫ t

0

ϕsds

})1/2

.
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Proof Consider with b ≥ 0 the process

(7) Xt = a

∫ t

0

∫ ϕs

0

M(ds, du)− b
∫ t

0

ϕsds .

It follows from Itô’s formula that

eXt = 1− b
∫ t

0

eXsϕsds+ a

∫ t

0

∫ ϕs

0

eXs−M(ds, du)

+ (ea − 1− a)

∫ t

0

∫ ϕs

0

eXs−M(ds, du) .

It follows from Lemma 13 below that Mt =
∫ t

0

∫ ϕs
0
eXs−M(ds, du) is a mar-

tingale. Hence eX is a martingale if b = (ea − 1 − a), a submartingale if
we replace = by <, and a supermartingale if we replace = by >. Hence
if b ≥ (ea − 1 − a), IEeXt ≤ 1. Now, using first Doob’s L2 inequality for
submartingales, and later Cauchy’s inequality, we have

IE

[
sup

0≤s≤t
exp

{
a

∫ s

0

∫ ϕr

0

M(dr, du)

}]
. IE exp

{
a

∫ t

0

∫ ϕs

0

M(ds, du)

}
≤
(

IE exp

{
2a

∫ t

0

∫ ϕs

0

M(ds, du)− 2b

∫ t

0

ϕsds

})1/2

×
(

IE exp

{
2b

∫ t

0

ϕsds

})1/2

If 2b = e2a − 1− 2a, the first factor on the last right hand side equals 1. �
In order to complete the proof of Lemma 12, we still need to establish

Lemma 13. The process ϕ satisfying the same assumptions as in Lemma
12, and Xt being given by (7), Mt =

∫ t
0

∫ ϕs
0
eXs−M(ds, du) is a martingale.

Proof It is plain that Mt is a local martingale, whose predictable quadratic
variation is given as

< M >t=

∫ t

0

e2Xsϕsds

≤ exp
{

2a
∫ t

0

∫ ϕs
0
M(ds, du)

}∫ t
0
ϕsds, if a > 0 ;

≤ exp
{
−2(a+ b)

∫ t
0
ϕsds

}∫ t
0
ϕsds, if a ≤ 0 .

All we need to show is that the above quantity is integrable. It is clearly
a consequence of the assumption in case a < 0. In case a > 0, the second

18



factor of the right hand side has finite exponential moments, so is square
integrable, and all we need to show is that

(8) IE exp

{
4a

∫ t

0

∫ ϕs

0

M(ds, du)

}
<∞.

Using Itô’s formula we have

Yt = exp

{
8a

∫ t

0

∫ ϕs

0

M(ds, du)− (e8a − 1)

∫ t

0

ϕsds

}
= 1 + (e8a − 1)

∫ t

0

∫ ϕs

0

Ys−M(ds, du).

It is easy to conclude that IEYt ≤ 1. It follows from Cauchy–Schwartz that

IE exp

{
4a

∫ t

0

∫ ϕs

0

M(ds, du)

}
≤
√

IEYt

√
IE exp

{
(e8a − 1)

∫ t

0

ϕsds

}
,

and the result follows from our assumption on ϕ. �

We now turn to the
Proof of Proposition 10 We note that

Y
N,α

t − Ỹ N,α
t = Y

N,α

t − Y N,α
t + λ

∫ t

0

(ZN
s − z∗)2ds.

Proposition 10 will follow from the fact that for any C > 0, as N →∞,

aN log IE exp
[
Ca−1

N ν(Y N,α − Y N,α
)
]
→ 0,(9)

aN log IE exp
[
Ca−1

N ν(Y
N,α − Y N,α)

]
→ 0,(10)

aN log IE exp

[
Ca−1

N Nαν

(∫ ·
0

(ZN
s − z∗)2ds

)]
→ 0 .(11)

We shall prove (9) and (11). The proof of (10) is quite similar to that of (9).
Step 1 : Proof of (9) It suffices to consider one of the terms in the sum
over j, and we suppress the index j for simplicity. We note that

a−1
N (Y N,α − Y N,α

) = N−α
∫ t

0

∫ N [β(ZNs )∨β(z∗)]

Nβ(z∗)

M(ds, du)

−N−α
∫ t

0

∫ N [β(ZNs )∨β(z∗)]

Nβ(ZNs )

M(ds, du)
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It is not hard to see that one can treat each of the two terms on the right
separately, and we treat only the first term, the treatment of the second one
being quite similar. We note that there exists a compensated Poisson process
on IR+ M such that this first term can be rewritten as

V N
t := N−αM

(
N

∫ t

0

(β(ZN
s )− β(z∗))+ds

)
.

We need to estimate IE exp[Ca−1
N ν(V N)]. If we decompose the signed measure

ν as the difference of two measures as follows ν = ν+ − ν−, we again have
two terms, and it suffices to treat one of them, say ν+. Of course it suffices
to treat the case where ν+ 6= 0. Since the positive constant C is arbitrary,
we can w.l.o.g. assume that ν+ is a probability measure on [0, T ]. It is then
clear that

exp

[
Ca−1

N

∫ T

0

V N
t ν+(dt)

]
≤ exp

[
Ca−1

N sup
0≤t≤T

V N
t

]
.

We choose a new parameter 0 < % < α, and we split the expression whose
expectation needs to be estimated in two terms.

exp

{
CN−α sup

0≤t≤T
V N
t

}
= exp

{
CN−α sup

0≤t≤T
V N
t

}
1sup0≤t≤T |ZNt −z∗|≤N−%

+ exp

{
CN−α sup

0≤t≤T
V N
t

}
1sup0≤t≤T |ZNt −z∗|>N−%(12)

We now estimate the first term on the right hand side of (12). For that sake,
we define the stopping time

σN = inf{0 ≤ t ≤ T ; |ZN
t − z∗| > N−%}

and note that

exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZN
s )− β(z∗))+ds

)}
1sup0≤t≤T |ZNt −z∗|≤N−%

≤ exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t∧σN

0

(β(ZN
s )− β(z∗))+ds

)}
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Consequently the expectation of the first term on the right of (12) is bounded
from above by

IE exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t∧σN

0

(β(ZN
s )− β(z∗))+ds

)}
≤ IE exp

{
(e2CN−α − 1− 2CN−α)N

∫ T∧σN

0

(β(ZN
t )− β(z∗))+dt

}
≤ exp

{
cN1−2α−%} ,

where the first inequality follows from Lemma 12, and the second one exploits
the Lipschitz property of β. Consider now the second term on the right hand
side of (12).

IE

(
exp

{
N−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZN
s )− β(z∗))+ds

)}
1sup0≤t≤T |ZNt −z∗|>N−%

)
≤
(

IE exp

{
2N−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZN
s )− β(z∗))+ds

)})1/2

× IP

(
sup

0≤t≤T
|ZN

t − z∗| > N−%
)1/2

≤ exp
{
cN1−2α

}
IP

(
sup

0≤t≤T

∣∣∣∣M (
N

∫ t

0

β(ZN
s )ds

)∣∣∣∣ > N1−%
)1/2

,

where the second inequality follows from Lemma 12 and the boundedness of
β. For the second factor in the last expression, we need to consider

IP

(
sup

0≤t≤T
M

(
N

∫ t

0

β(ZN
s )ds

)
> N1−%

)
and

IP

(
sup

0≤t≤T

(
−M

(
N

∫ t

0

β(ZN
s )ds

))
> N1−%

)
.

Both probabilities are estimated in a similar way. By an exponential estimate,

(13) IP

(
sup

0≤s≤t
M

(
N

∫ s

0

β(ZN
r )dr

)
> N1−%

)
. exp{−(16ct)−1N1−2%},

for N large enough. Finally the expectation of the second term of the right
hand side of (12) is bounded by exp{c1N

1−2α−c2N
1−2%}, with c1, c2 > 0, and

IE exp

{
N−α sup

0≤s≤t
M

(
N

∫ t

0

(β(ZN
s )− β(z∗))+ds

)}
≤ ecN

1−2α−%
+ ec1N

1−2α−c2N1−2%

.
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From the inequality log(a+ b) ≤ log(2) + log(sup(a, b)), for N large enough,

aN log IE exp

{
N−α sup

0≤s≤t
M

(
N

∫ t

0

(β(ZN
s )− β(z∗))+ds

)}
≤ aN log(2) + cN−%,

which establishes (9).
Step 2 : Proof of (11) We in fact must prove that for any C > 0, as
N →∞,

aN log IE

[
exp

{
a−1
N CNα

∫ T

0

(ZN
t − z∗)2dt

}]
→ 0 .

In this proof, C will denote a constant whose value may change from line to
line. We now introduce a new process, where β̄ = sup0≤z≤1 β(z),

XN
t :=

1

N

∫ t

0

∫ Nβ̄

0

M(ds, du) ,

the event

ANb :=

{
sup

0≤t≤T
|Y N

t | ≤ b

}
∩
{
XN
t ≤ β̄T

}
,

and the stopping time

τ̄b := inf{t > 0, |Y N

t | > b} ∧ inf{t, XN
t > β̄T} ,

where the constant b will be chosen below. From (4), the fact that |z∗−z∗N | ≤
N−1 and Cauchy–Schwartz,

aN log IE

[
exp

{
a−1
N CNα

∫ T

0

(ZN
t − z∗)2dt

}]
. Nα−1 + aN log IE

[
exp

{
a−1
N CNα sup

0≤t≤T
|Y N
t |1(ANb )c

}]
(14)

+ aN log IE

[
exp

{
a−1
N CNα sup

0≤t≤T
|Y N
s |21ANb

}]
,(15)

We take the limit successively in the two terms of the above right hand side.
Step 2a : Estimate of (14) We have

IE

[
exp

{
a−1
N CNα sup

0≤t≤T
|Y N
s |1(ANb )c

}]
≤ IE

[
exp

{
CN−α sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∫ Nβ(ZNs )

0

M(ds, du)

∣∣∣∣∣
}
1(ANb )c

]
+ 1,
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It remains to note that

IE

[
exp

{
CN−α sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∫ Nβ(ZNs )

0

M(ds, du)

∣∣∣∣∣
}]
. eCN

1−2α

,

and

IP(
(
ANb )c

)
≤ IP

(
sup

0≤t≤T
|Y N
t | > b

)
+ IP

(
sup

0≤t≤T
XN
t > β̄T

)
. e−CN ,

for some positive constant C, so that finally there exist two positive constants
C1 and C2 such that, for N large enough,

IE

[
exp

{
a−1
N CNα sup

0≤t≤T
|Y N
s |1(ANb )c

}]
≤ 1 + exp{C1N

1−2α − C2N} ≤ 2.

Step 2b : Estimate of (15) Since Y N is a martingale, it is clear that the
process

exp

{
a−1
N

C

2
Nα|Y N

t |2
}

is a submartingale. Consequently, from Doob’s L2 submartingale inequality,

IE

[
exp

{
a−1
N CNα sup

0≤t≤T
|Y N
t |21ANb

}]
≤ 4IE

[
exp

{
a−1
N CNα|Y N

T∧τ̄b|
2
}]

≤
√

IE
[
exp

{
2CN1−α

(
|Y N
T∧τ̄b|2 − |Y

N

T∧τ̄b |2
)}]

×
√

IE
[
exp

{
2CN1−α|Y N

T∧τ̄b|2
}](16)

Consider first the first factor on the right hand side of (16). We have

|Y N
T∧τ̄b|

2 − |Y N

T∧τ̄b|
2 =

(
Y N
T∧τ̄b − Y

N

T∧τ̄b

)(
Y N
T∧τ̄b + Y

N

T∧τ̄b

)
≤ (b+ β̄T )

∣∣∣Y N
T∧τ̄b − Y

N

T∧τ̄b

∣∣∣ ,
and the result follows from (9) and (10).

We finally consider the second term in the right hand side of (16). We
have ∣∣∣Y N

T∧τ̄b

∣∣∣2 ≤ ∣∣∣Y N

T

∣∣∣2 1{|Y NT |≤b} + (b+N−1)21{τ̄b<T}.
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Hence the second term on the right of (16) satisfies

IE
[
exp

{
CN1−α|Y N

T∧τ̄b|
2
}]

≤
√

IE
[
exp

{
2CN1−α|Y N

T |21{|Y NT |≤b}
}]

IE
[
exp

{
2C ′N1−α1{τ̄b<T}

}](17)

We now write

Y
N

T =
1

N

∫ T

0

∫ Nβ(z∗)

0

M(ds, du) =

√
Tβ(z∗)√
N

ξN ,

with

ξN =
θN − aN√

aN
, where θN ∼ Poi(aN), a = Tβ(z∗).

Clearly ξN ⇒ N (0, 1). We choose b = a/3.

IE exp
{
CN−α|ξN |21{|ξN |≤√aN/3}

}
=

4aN/3∑
k=2aN/3

exp

{
CN−α

(k − aN)2

aN

}
e−aN

(aN)k

k!

∼
∫ √aN/3
−
√
aN/3

exp
{
CN−αx2

}
e−aN

(aN)aN+x
√
aN

(aN + x
√
aN)!

√
aNdx

.
1√
2π

∫ √N/3
−
√
N/3

exp
{
CN−αx2

}
ex
√
aN

(
1 +

x√
aN

)−(aN+x
√
aN)

dx

≤ 1√
2π

∫ √aN/3
−
√
aN/3

exp

{
CN−αx2 − x2

3

}
dx

We have proved that the first factor on the right of (17) remains bounded,
as N →∞. Next consider the second term on the right of (17). We have

exp
{

4C ′N1−α1{τb<T}
}
≤ 1 + exp

{
4C ′N1−α}1{τb<T}, and

IP (τ̄b < T ) ≤ IP

(
sup

0≤t≤T
|Y N

t | > b

)
+ IP

(
sup

0≤t≤T
XN
t > βT

)
. e−cN .

It follows that the second factor in (16) is bounded from above by

1 + exp{C1N
1−α − C2N},

where C1 and C2 are two positive constants. This last expression is bounded
say by 2, as soon as N is large enough. �
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4.2.3 Step3 : Moderate Deviations of ZN − z∗

Recall that Z̃N,α := Nα(ZN−z∗) is the image of Ỹ N,α by the mapping x 7→ y
from D([0, T ]) into itself, which is continuous if we equip D([0, T ]) with the
supnorm topology, defined by:

y(t) = −(λ− γ)

∫ t

0

y(s)ds+ x(t), 0 ≤ t ≤ T.

Note also that the above mapping is a bijection. The following result is then
a consequence of Corollary 11 and the contraction principle.

Theorem 14. The collection of processes {Nα(ZN
t − z∗), 0 ≤ t ≤ T}N≥1

satisfies a large deviation principle with the good rate function

IT (φ) =

{
1

2σ2

∫ T
0
|φ′(t) + (λ− γ)φ(t)|2dt, if φ is absolutely continuous;

+∞, otherwise.

Remark 15. While the LD rate function of a Poisson driven stochastic
differential equation is very different from the rate function of LDs for its
Brownian driven diffusion approximation, the rate function for moderate de-
viations of Poisson driven stochastic differential equations is identical to that
of LDs for its Brownian driven diffusion approximation.

4.2.4 Wentzell–Freidlin theory and extinction of an epidemic

We want to conclude from the Wentzell–Freidlin theory an estimate of the
time needed for Nα(ZN

t − z∗) to make a deviation of −c, i.e. to go from 0 to
−c, which, for the value of N such that z∗ = cN−α, means the time for ZN

t

to hit 0. For that sake, we first compute

V c = min
T>0

min
φ, φ(0)=0,φ(T )=−c

IT (φ).

An application of Pontryaguin’s maximum principle, see [15], yields

V c =
λ

2γ
c2 .

Using the same arguments as in [12] and [5], we then deduce from Theo-
rem 14
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Theorem 16. Let TN,αc := inf{t > 0, Z̃N,α
t ≤ −c}. For any δ > 0,

lim
N→∞

IP
(
exp{a−1

N (V c − δ)} < TN,αc < exp{a−1
N (V c + δ)}

)
= 1 .

Moreover
lim
N→∞

aN IE(TN,αc ) = V c .

Recall that a−1
N = N1−2α. In the CLT regime, α = 1/2, a−1

N = 1, while in
the LD regime, α = 0, a−1

N = N .

Let us now compute the corresponding critical population size. eN
1−2αV c

is the order of magnitude of the time needed for ZN
t − zt to make a deviation

of size cN−α. This is sufficient to extinguish an epidemic, provided i∗ is of
the same order, so that the corresponding critical size is Nα ∼ (1/i∗)1/α,
that is roughly the CLT critical population size raised to the power 1/2α.
In the case of the SIR model with demography for measles, the CLT critical
population size is of the order of a few millions, so e.g. with α = 1/3, we go
from 106 to 109, i.e. a few billions, which is the order of magnitude of of the
biggest countries, China and India.
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