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Abstract. We study an individual-based stochastic SIR epidemic model with infection-age
dependent infectivity on a large random graph, capturing individual heterogeneity and non-
homogeneous connectivity. Each individual is associated with particular characteristics (for
example, spatial location and age structure), which may not be i.i.d., and represented by a
particular node. The connectivities among the individuals are given by a non-homogeneous
random graph, whose connecting probabilities may depend on the individual characteristics
of the edge. Each individual is associated with a random varying infectivity function, which
is also associated with the individual characteristics. We use measure-valued processes to
describe the epidemic evolution dynamics, tracking the infection age of all individuals, and
their associated characteristics. We consider the epidemic dynamics as the population size
grows to infinity under a specific scaling of the connectivity graph related to the convergence
to a graphon. In the limit, we obtain a system of measure-valued equations, which can
be also represented as a PDE model on graphon, which reflects the heterogeneities in
individual characteristics and social connectivity.

1. Introduction

In the current paper, we are interested in the large population limit of a stochastic
model of an epidemic that spreads among an heterogeneous population with random
connectivities. Such models have been studied to an extent in the literature. For example,
in [11], an epidemic model with an age structure and various social activity levels is studied
to understand the effect of population heterogeneity on herd immunity. In addition to
‘age’ as an obvious heterogeneous factor, spatial locations and other characteristics/features
may also indicate individual heterogeneity. Another source of heterogeneity arises from the
individual connectivities (such as households, communities and social activities), which is
often modeled as a non-homogeneous random graph. For example, epidemic models on
random graphs with given degrees, typically under the configuration model are studied in
[1, 52, 49, 9, 5, 32, 24, 39, 40, 15], on weighted (configuration) graphs [12, 18, 13, 50], on
dynamic (evolving) graphs [3, 2, 33, 22, 14, 23, 28]. (See also the relevant models on random
networks with household structures in [7, 4, 6, 38], and on multilayer networks in [29, 38].)

A few papers have established large population limits for epidemic models on random
graphs. In particular, [17, 31] proved a functional law of large numbers (FLLN) for a
Markovian SIR model on a configuration model graph with specified degree distributions
and edges being randomly matched, and established the measure-valued limit as a systems
of nonlinear differential equations, which verifies the conjecture in [52]. In [37], a functional
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central limit theorem (FCLT) is established for a similar Markovian SI model for the total
count processes. In [10], an FLLN is established for a Markovian SIR model on a stochastic
block model. In [17, 31, 37, 10], the degree distribution converges to a finite limit as the
number of nodes tends to infinity and the number of edges is thus of the same order as
the number n of nodes. Such a description with very sparse graphs leads to limits that
are of distinct nature from the one of dynamics on a graphon. On the other hand, for
dense connectivities among individuals, one can derive large population approximations of
the epidemic dynamics as PDEs on graphons. In [36], an FLLN is established for density-
dependent Markov processes with finite state space on large random graphs, which includes
the Markovian SIS model with individual heterogeneity on graphs as a special case, and a
PDE on graphon is derived as the limit. In [20], an FLLN is established for a Markovian SIS
model with a general form of individual heterogeneity on random graphs, where a PDE on
graphon for the measure-valued state descriptors is also derived. In the two later references
([36, 20]) the scalings of the parameters allow for the random generation of graphs whose
number of edges is of order n1+a, where n is the number of nodes and a can be freely taken
in (0, 1]. This extends the classical assumption of a dense graph for the convergence to a
graphon, where the number of edges is of order n2. However, all these FLLN results are
about epidemic models on random graphs that are Markovian, where the infectious durations
or recovery times are exponentially distributed. In the present paper, we establish an FLLN
for a non-Markovian SIR model on large random graphs that results in a measure-valued
limit on a graphon.

Non-Markovian stochastic epidemic models with a homogeneous population (no age
structure, homogeneous social connectivity, etc.) have been recently studied, see the recent
survey [27]. Although these models offer much more possibilities to fit observational data
on infection profiles, many of the classical tools in probability cannot be directly exploited.
In particular, the standard epidemic models with a constant infection rate and a general
infection duration distribution are recently studied in [42] (see also [54, 53] for Gaussian
approximations and [48] for measure-valued state descriptors and PDE limit for the FLLN),
and epidemic models with varying infectivity are studied in [25, 43, 26], where deterministic
or stochastic integral equations are derived for the FLLNs and FCLTs, respectively. By
tracking the elapsed infectious times, measure-valued processes are used to describe the
epidemic evolution dynamics in models with such infection-age dependent infectivity, and the
corresponding PDE and SPDE limits are established for the FLLNs and FCLTs in [44] and
[45], respectively. An epidemic model with contact tracing and general infection duration
distributions is studied in [21], where measure-valued processes are used to describe the
dynamics and the FLLN is established with a PDE limit. In [38], an individual-based multi-
layer SIR model with households and workplaces to take into account social connectivity
heterogeneity is studied, where measure-valued processes tracking remaining infectious times
are used to describe the epidemic dynamics and a PDE limit is established for the FLLN.

In this paper we consider an SIR model with infection-age dependent infectivity on a
large random graph that captures both individual and connectivity heterogeneities. In
particular, connectivities among individuals are given by a non-homogeneous random graph.
Each node on this graph represents a single individual, each associated with an individual
characteristic/feature. These may account for spatial locations, age and/or social belongings.
So they may be distributed on a compact subset of Rd, as in the spatial SIR model considered
in [35], which we generalize in the simplest setting of pairwise interactions. In the case of age
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structure or social activity levels, our model generalizes [11] in that they only consider a finite
number of compartments while our model includes a possibly continuous age model. The
random connectivity of each edge is then assumed to depend on the individuals’ characteristics
in a general manner. The connectivities indicate various levels of social activities, which may
for instance depend on the spatial locations or age (again more generally than the model
with age and social activity heterogeneities in [11]). The random graphs that we consider
are of the same form as the ones in [20]. The main difference is that the connectivity of
each edge was assumed in [20] to be a deterministic function of the pair of individuals’
characteristics, while we allow for an additional degree of randomness. In [36], there was no
heterogeneity in the contact rate and the dependency of the graph on individual types is
more restrictive. Our model extends the framework of stochastic block models considered in
[10] except that the scalings of the contact probability are compatible only in the degenerate
cases.

Each individual is moreover associated with a random varying infectivity function, which
reflects the propensity for/ force of infection of each individual at any elapsed time of
infection, and depends as well on the individual characteristics. As a result, the infectious
duration is also individualized (we express the corresponding distribution as a function Fx(·)
of the individual characteristic x).

Individuals are grouped into three compartments: Susceptible, Infected and Recovered.
Infections are generated by the interactions between susceptible and infected individuals.
Each individual is thus exposed to a specific force of infection which changes over time
and which is given by aggregating the weighted infectivity levels of the individuals that
are connected to him/her in the graph. The whole dynamic of the epidemic depends on
the non-homogeneous random graph and on the random infectivity functions through the
expression of this total force of infection for each individual.

To describe the evolution dynamics, we use three measure-valued processes for the three
compartments, where the measure for the infected process is over both the individual
characteristics and the infection ages, while the measure for the susceptible and recovered
processes is only over the individual characteristics. We prove a FLLN for these measure-
valued processes when the population size goes to infinity. As the population size increases,
so does the connectivity graph. We impose conditions on the connectivity probabilities to
keep the graph consistency as it grows, which notably covers the case of a graphon in the
limit. The limits for the FLLN are given by a set of measure-valued equations, from which
we further derive a PDE model for the measure-valued infection process. The PDE model is
linear, but with a boundary condition which is given by the product of the measure-valued
susceptible process and the aggregate force of infection. To note, the dynamics described
from the set of measure-valued equations and the PDE may be seen as evolving on a graphon.

The proof for the FLLN is challenging with this level of realism because of the complicated
dependence among the variables and processes. First of all, the individual characteristics
are not assumed to be i.i.d., and they affect the random infectivity functions and the edge
connectivities. Second, the measure-valued processes all depend on the aggregate forces of
infection that act specifically on each individual. Notably, these forces of infection are not
functions of the three measure-valued state descriptors, but more generally expressed in
terms of the detailed graph structure. Thus it is difficult to prove the convergence of the
processes directly.
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Our approach consists in constructing an intermediate model for which the infection
rates are derived from the limiting model of the FLLN rather than the interactions through
the connectivity graph. This approach facilitates the proof of convergence by enabling
specific decoupling of the dependence. It extends the one that was first developed for the
homogeneous model in [26], which was motivated by ideas from the theory of propagation of
chaos [51]. In this way, the regularity conditions imposed on the random varying infectivity
functions in [25] could be relaxed to only require their boundedness. The current extension
is highly non-trivial however because of the heterogeneities among both the individuals and
the connectivities. Moreover, we consider measure-valued processes in this paper, while
in [26], only total count processes are considered. Different weak convergence criteria are
therefore required for this setting.

In addition, we have made the effort to allow for the individual characteristics to take
values in a state space as general as possible instead of the classical choice of [0, 1] for
graphon kernels. This is particularly of importance regarding the regularity assumptions
of the interaction kernel in the limit, which we only assume to be almost everywhere
continuous. One of our motivations was to allow for kernels on multidimensional state spaces
that possibly display discontinuity thresholds in terms of the distance between the two
parameters, as discussed in [20]. We prove in Appendix A a generic convergence result of
independent interest, to deal with these weak regularity properties in conjunction with weak
convergence of random measures in probability. The approach demonstrates its potential by
extending very efficiently to this level of heterogeneity, even with the randomness additionally
considered for the varying infectivity functions. The conditions that we assume on the
average infection rate per edge and on the average variance in this infection rate seem
very close to optimal. We refer the reader to Section 5 for the detailed construction of the
intermediate processes and for the proofs of weak convergence.

1.1. Organization of the paper. The rest of the paper is organized as follows. We give a
summary of some common notations used throughout the paper in the next subsection. We
provide a detailed model description and assumptions in Section 2. In Section 3, we present
the main result of the paper. We establish the uniqueness of the solution to the limiting
deterministic PDE model and establish some properties of that solution in Section 4. The
proofs for the convergence of the FLLN are given in Section 5, with additional technical
supporting results proved in Appendix A.

1.2. Notation. We denote by N∗ the set of positive integers and N = N∗ ∪ {0}. We also
set [[1, n]] = {k ∈ N : 1 ≤ k ≤ n} for n ∈ N∗. For a, b ∈ R, we write a ∧ b for the minimum
between a and b and a ∨ b for the maximum between a and b. For a real-valued function
defined on a set X , we denote by ‖f‖∞ its supremum norm with

‖f‖∞ = sup
X
|f |.

We denote by Cb(X ) the set of continuous and bounded functions on a metric space X .
For a measurable set (X ,F), we denote by M1(X ) and M(X ) the sets of respectively

probability and non-negative finite measures on X . For µ ∈ M(X ) and a real-valued
measurable function f defined on X , we will sometimes denote the integral of f with respect
to the measure µ, if well-defined, by 〈µ, f〉 =

∫
X f(x)µ(dx) =

∫
f dµ. For a metric space X

endowed with its Borel σ-field, we endow M1(X ) with the topology of weak convergence.
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We also denote by D(R+,X ) the space of right-continuous left-limited (càd-làg) paths from
R+ to X . This space is endowed with the Skorokhod topology (see, e.g., [8, Chapter 3]).

In what follows (X, d) will denote a Polish metric space (complete and separable).

2. Model description

We consider a population consisting of N individuals, who are in either of the three states –
susceptible, infected or recovered at each time, and may interact with each other according to
a random graph described below. Susceptible individuals can be infected randomly through
interactions with the infected ones. Once infected, an individual will become infectious for a
random period of time until recovery, and once recovered, he or she will no longer infect any
susceptibles, or become infected again. Let SN (t), IN (t),RN (t) be the subsets of [[1, N ]] that
denote the sets of susceptible, infected or recovered individuals at each time t, respectively.
The corresponding processes SN (t) = |SN (t)|, IN (t) = |IN (t)| and RN (t) = |RN (t)| denote
the numbers of susceptible, infected or recovered individuals at each time t.

In the limit of a large population, our goal is to relate the spread of the disease in the
population of N individuals to a dynamics acting on a Polish space X that accounts for the
heterogeneity of individuals. Any individual i ∈ [[1, N ]] is actually characterized by some
random variable XN

i ∈ X (which is fixed over time). The characteristic XN
i of individual i

is allowed to affect the infectious contact rates with the other individuals as well as the
evolution of its own infectivity level.

2.1. Infection-age dependent infectivity. For an individual i ∈ SN (0), let τNi > 0 be
the time at which he/she starts being infected, and let ANi (t) = t − τNi be the infection
age of the individual i at time t (by default it is equal to zero for t < τNi ). For an initially
infected individual j ∈ IN (0), let τNj = −ANj (0) denote the infection time before time 0, so

that ANj (t) = t+ANj (0) is the infection age at time t.

Let FN0 be the σ-field generated by the (XN
i , i ≤ N), SN (0), IN (0) and (ANj (0), j ∈

IN (0)). We shall generally consider the dynamics conditional on this sigma-field FN0 . Thus,
we shall use the notations PN0 and EN0 to express probabilities and expectations conditional
on FN0 , respectively.

At time t, each individual i ∈ IN (t) who is infectious has an infectivity function depending
randomly on the infection age:

λNi (ANi (t)), t ≥ 0. (2.1)

For the initially infected individuals j ∈ IN (0), we also define their infectivity level at a

given time t > 0 as λN,0j (t):

λN,0j (t) := λNj (t+ANj (0)) .

Remark 2.1. A typical way to define these random functions λNi (·) is specified as follows,
although we do not rely in our proofs on this representation. Let Y be a Polish space. Let
YN = {Y N

i }i≤N be an i.i.d. sequence of random variables taking values in Y, with common
distribution µY . We assume that the sequence YN = {Y N

i }i≤N is independent from FN0 . Let

λ̂ be a deterministic measurable function from X× Y× R+ to R+. Then we can define the
random functions λNi (·) for each i as

λNi (a) = λ̂(XN
i , Y

N
i , a) . (2.2)
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The variables {Y N
i } capture the random factors associated with the infectivity of the individ-

uals apart from their characteristics and their infection age.

Assumption 2.2. There exists a global upper-bound λ∗ <∞ on the random functions λNi
taking values in D(R+,R+), in the sense that the following holds almost surely:

λNi (a) ≤ λ∗ , ∀N, ∀i ∈ [[1, N ]], ∀a ∈ R+ .

Remark 2.3. For Assumption 2.2 to hold under the formalism presented in Remark 2.1, it

is sufficient to require the function λ̂ to be uniformly upper-bounded by this value λ∗.

The infection duration ηNi of individual i ∈ SN (0) is defined as

ηNi := sup{a > 0 : λNi (a) > 0} .

Likewise, we consider the infection duration ηN,0j of an initially infected individual j ∈ IN (0)

with initial infection age AN (0):

ηN,0j := sup{a > 0 : λNj (AN (0) + a) > 0} .

We specify the individual distribution of infection duration through its cumulative distri-
bution. Under the formalism of Remark 2.1 it is to be thought as depending only on the
variables (XN

i , Y
N
i ).

Assumption 2.4. There exists a measurable function (Fx(a))x∈X,a∈R+ with values in [0, 1]
which is right-continuous, non-decreasing in the variable ‘a’ such that lima→∞ Fx(a) = 1 for
all x ∈ X and that the two following identities hold for any N ≥ 1, t > 0, i ∈ SN (0) and
j ∈ IN (0) with the notation F cx(a) = 1− Fx(a):

PN0 (ηNi > t) = F c
XN
i

(t),

PN0 (ηN,0j > t) =
F c
XN
j

(ANj (0) + t)

F c
XN
j

(ANj (0))
.

Recall that PN0 (ηNi > t) equals by definition P
(
ηNi > t

∣∣FN0 ) and similarly that PN0 (ηN,0j >

t) = P
(
ηN,0j > t

∣∣FN0 ).
Remark 2.5. This assumption appear more explicitly stated under the formalism presented
in Remark 2.1. By definition, there exists a deterministic measurable function g : X×Y→ R+

such that ηNi = g(XN
i , Y

N
i ). For each x ∈ X, we define the cumulative distribution:

Fx(t) = P(g(x, Y N
1 ) ≤ t) =

∫
Y
1{g(x,y)≤t}µY (dy)

and set F cx(·) = 1−Fx(·). F cx is clearly non-increasing for any x ∈ X, with values in [0, 1]. As
a consequence, we check the first identity in Assumption 2.4, for any N ≥ 1, any i ∈ SN (0),
and any t > 0:

PN0 (ηNi > t) = P
(
g(XN

i , Y
N
i ) > t

∣∣XN
i

)
= F c

XN
i

(t).

For any N and any initially infected individual j ∈ IN (0), the constraint that ηN,0j > 0,

which translates into g(XN
j , Y

N
j ) > ANj (0), explains the form of the second identity in
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Assumption 2.4, where for any t > 0,

PN0 (ηN,0j > t) = P
(
g(XN

j , Y
N
j ) > t+ANj (0)

∣∣XN
j , A

N
j (0),1{g(XN

j ,Y
N
j )>ANj (0)}

)
=
F c
XN
j

(ANj (0) + t)

F c
XN
j

(ANj (0))
.

Assumption 2.6. There exists a function λ̄ in D(X× R+,R+) such that the two following
identities hold for any N ≥ 1, any a ≥ 0, any t ≥ 0, any i ∈ SN (0) and any j ∈ IN (0):

EN0
[
λNi (a)

]
= λ̄(XN

i , a),

EN0
[
λN,0j (t)

]
=
λ̄(XN

j , A
N
j (0) + t)

F c
XN
j

(ANj (0))
,

where F c
XN
j

(ANj (0)) > 0 holds a.s. for any j ∈ IN (0). Moreover, the function χ : X× R+ 7→
R+ defined as χ(x, a) = λ̄(x, a)/F cx(a) if F cx(a) > 0 and χ(x, a) = 0 otherwise, is upper-
bounded by λ∗.

Recall that EN0
[
λNi (a)

]
equals by definition E

[
λNi (a)

∣∣FN0 ] and similarly for EN0
[
λN,0j (t)

]
.

Remark 2.7. Under the formalism presented in Remark 2.1, λ̄ is directly expressed as
follows:

λ̄(x, a) =

∫
Y
λ̂(x, y, a) µY (dy) ,

and the first identity in Assumption 2.6 is automatic. We can also check the second identity:

EN0
[
λN,0j (t)

]
= E

[
λ̂(XN

j , Y
N
j , t+ANj (0))

∣∣XN
j , A

N
j (0),1{g(XN

j ,Y
N
j )>ANj (0)}

]
=

∫
Y λ̂(XN

j , y, t+ANj (0)) µY (dy)

F c
XN
j

(ANj (0))
=
λ̄(XN

j , t+ANj (0))

F c
XN
j

(ANj (0))
,

where we have exploited in the second line the fact that λ̂(XN
j , y, t + ANj (0)) > 0 entails

g(XN
j , Y

N
j ) > t + ANj (0) and a fortiori g(XN

j , Y
N
j ) > ANj (0). In addition, for any x ∈ X

and any a ≥ 0 such that F cx(a) > 0, since λ̂(x, y, a) = 0 on the set {g(x, y) ≤ a},

λ̄(x, a)

F cx(a)
=

∫
Y λ̂(x, y, a)1{g(x,y)>a} µY (dy)∫

Y 1{g(x,y)>a} µY (dy)
,

and is actually upper-bounded by λ∗ as soon as λ̂ is itself upper-bounded by λ∗.

Remark 2.8. In this work we generally allow for intricate dependencies between the possible
value of λNi (a) and the infection duration of individual i. Though, a classical choice for the

function λ̂ is to be defined in terms of two given deterministic functions λ̃(x, a) and g(x, y)

as follows: λ̂(x, y, a) = λ̃(x, a)1{a<g(x,y)}. In this case, the expression for λ̄ simplifies as
follows:

λ̄(XN
i , a) = λ̃(XN

i , a) · F c
XN
i

(a).
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Remark 2.9. As an instance of the case presented in the above Remark 2.8, the most
standard Markovian description of a constant infectivity λ̌ > 0 with an exponential random
duration with mean ǧ(x) is obtained as follows. We can choose µY to be the law of a

standard exponential random variable with mean 1, on Y = R+, and take λ̃(a, x) ≡ λ̌ and
g(x, y) = ǧ(x) · y. The expression for λ̄ further simplifies:

λ̄(XN
i , a) = λ̌ · exp

(
− a/ǧ(XN

i )
)
.

2.2. Construction of the connectivity graph. We consider the underlying connectivity
graph among the individuals, which is denoted as a graph (GN , EN ) with GN being the

set of N nodes and EN being the set of edges (which are undirected). We write i
N∼ j to

indicate that nodes i and j are connected, whose connectivity depends on N . We assume
that the connectivity probability of nodes i, j ∈ GN is given by the deterministic symmetric
measurable function κN : X× X→ [0, 1]:

PN0
(
i
N∼ j
)

= P
(
i
N∼ j

∣∣FN0 ) = κN (XN
i , X

N
j ), (2.3)

in terms of the characteristic variables Xi and Xj for individuals i and j. We assume

in addition that the events {i N∼ j}i 6=j are mutually independent and independent of the

sequence (Y N
i )i≤N conditionally on FN0 .

The typical construction of such a random graph starts from a graphon kernel. For
example, assuming here that X = [0, 1], let κ̄(x, x′) be a deterministic function on [0, 1]2,
such as κ̄(x, x′) = x · x′. One can sample a N -node random graph with κN = κ̄ so that

PN0
(
i
N∼ j

)
= κ̄(XN

i , X
N
j ) for nodes i, j = 1, . . . , N , where the XN

i are uniformly and

independently sampled in [0, 1]. Another very natural choice of XN
i is also XN

i = i/N for
i = 1, . . . , N , which also leads to µ̄X being the Lebesgue measure on [0, 1]. In the case
κ̄(x, x′) = x · x′, the degree of individual i in the graph then scales linearly with N and
with the individual type XN

i . The fact that the degree scales linearly in N is typically how
a “dense” graph is defined. Yet, we allow for more generality in the graph density with a
sequence (κN ) of functions that may scale with N . The first way to do so is to introduce a
scaling factor εN > 0, typically εN = N−α with α ∈ (0, 1), so that κN = εN · κ̄ as in [36].
Following [20], this form of scaling is however not assumed to allow for even more general
dependencies between the pair of individual characteristics (XN

i , X
N
j ) and N . The role of

the denseness of the graph will be discussed in Subsection 3.1, after the statement of our
main theorem.

2.3. Epidemic dynamics. To describe the force of infection, we introduce a random weight
function (ωN (i, j))i,j∈[[1,N ]] that is non-negative and equal to zero except for the edges (i, j)

of EN . ωN (i, j) is meant to represent the scaling factor that translates the infectivity value
of individual j, typically λNj (ANj (t)) at time t, into the rate at which individual i is subject

to an infectious contact with individual j, which becomes ωN (i, j) · λNj (ANj (t)) at time t.
Note that heterogeneity in the susceptibility to infection can be included in the model

through this values ωN (i, j), such heterogeneity between individuals being possibly partly
explained by the characteristic XN

i . This is a major reason for us not to assume that
ωN is symmetric. Such a framework for ωN (i, j) allows in addition more realistic and
intricate relations between the contact rates of individuals i and j depending on their
respective characteristics XN

i and XN
j . Even more generally than contact matrices typically
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exploited for epidemiological predictions, see, e.g., [41], we allow for the interplay between
characteristics that are continuous and for an additional degree of independent randomness.

The values (ωN (i, j))i,j∈[[1,N ]] are assumed in addition to be mutually independent between

different edges and independent of the (λNi )i≤N conditionally on FN0 , that is, of the (Y N
i )

if we consider the formalism in Remark 2.1. The deterministic measurable function γN :
X× X→ R+ captures the expected infectious rate of interaction of active contacts, in that
the following identity is assumed:

E
[
ωN (i, j)

∣∣FN0 , EN] =

{
γN (XN

i , X
N
j ) if (i, j) ∈ EN ,

0 otherwise.
(2.4)

We may also allow for a degree of variability in the infectious rate of interaction, that we
synthetize with the following variance term υN , for any (i, j) ∈ EN :

υN (i, j) = Var
[
ωN (i, j)

∣∣FN0 , EN] . (2.5)

Given the above definition of γN , this definition of υN shall be interpreted as follows:

E
[
ωN (i, j)2

∣∣FN0 , EN] =

{
υN (i, j) + γN (XN

i , X
N
j )2 if (i, j) ∈ EN ,

0 otherwise.
(2.6)

Aa a consequence of these definitions, we have

N · EN0
[
ωN (i, j)] = ω̄N (XN

i , X
N
j ), where ω̄N := N · κN · γN . (2.7)

Remark that γN , thus ω̄N , are not required to be symmetric, given that the allowed
asymmetry of ωN (i, j) has no good reason to vanish after taking conditional expectation.
However, recall that the construction imposes κN to be symmetric.

For each individual i, the aggregated force of infection at time t acting upon i is given by

F
N
i (t) =

∑
j∈IN (t)

ωN (i, j) · λNj (ANj (t)) . (2.8)

For each i ∈ SN (0), we describe the progression of the disease through the following
process:

DN
i (t) =

∫ t

0

∫ ∞
0

1{DNi (s−)=0}1
{
u≤FNi (s−)

}Qi(ds, du) , (2.9)

where Qi(ds, du) is a standard Poisson random measure on R2
+ with mean measure ds du, the

(Qj)j∈N being globally independent and independent of FN0 , the random graph generation

(ωN (j, k))j,k≤N , and the random infectivity functions (λNj )j≤N (in the sense that they are

independent of the YN in the formulation (2.2)). Let

τNi = inf{t ≥ 0; DN
i (t) = 1}; DN (t) := {i ∈ SN (0); τNi ≤ t}, (2.10)

so that the infection time τNi is the unique jump time of DN
i (which takes the value ∞ in

the absence of such a jump), while DN (t) is the subset of initially susceptible individuals
infected by the disease by time t after time 0, or equivalently those i ∈ SN (0) such that
DN
i (t) = 1. Note that ANi (t) > 0 means DN

i (t−) = 1, which is not exactly DN
i (t) = 1. In

other words, DN (t) = (IN (t) ∪RN (t)) \ (IN (0) ∪RN (0)).
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Using DN
i (t) in (2.8), we also obtain the following alternative expression for FNi (t) for

each i = 1, . . . , N :

F
N
i (t) =

∑
k∈IN (0)

ωN (i, k)λNk (ANk (0) + t)

+
∑

j∈SN (0)

ωN (i, j)

∫ t

0

∫ ∞
0

λNj (t− s)1{DNj (s−)=0}1
{
u≤FNj (s−)

}Qj(ds, du) . (2.11)

Define the following measure-valued processes associated with the susceptible, infectious
and recovered individuals:

µS,Nt (dx) =
∑

i∈SN (t)

δXN
i

(dx) , (2.12)

µI,Nt (dx, da) =
∑

i∈IN (t)

δXN
i

(dx)δANi (t)(da) , (2.13)

µR,Nt (dx) =
∑

i∈RN (t)

δXN
i

(dx) . (2.14)

For any t > 0, µS,Nt and µR,Nt are regarded as elements in the set M(X) of non-negative
finite measure on X, which is equipped with the topology of weak convergence, and similarly

for µI,Nt belonging to the set M(X× R+).
The dynamics of these measure-valued processes can be represented using DN

i (t) and

F
N
i (t) as follows, in terms of test functions ϕ ∈ Cb(X) and ψ ∈ Cb(X× R+):

• for the susceptible process:

〈µS,Nt , ϕ〉 = 〈µS,N0 , ϕ〉 −
∑

i∈DN (t)

ϕ(XN
i ) , (2.15)

with∑
i∈DN (t)

ϕ(XN
i ) =

∑
i∈SN (0)

∫ t

0

∫ ∞
0

1{DNi (s−)=0}1
{
u≤FNi (s−)

}ϕ(XN
i )Qi(ds, du),

• for the infected process:

〈µI,Nt , ψ〉 =
∑

j∈IN (0)

1{ηN,0j >t}ψ(XN
j , A

N
j (0)+t)+

∑
i∈DN (t)

1{τNi +ηNi >t}ψ(XN
i , t−τNi ) , (2.16)

with∑
i∈DN (t)

1{τNi +ηNi >t}ψ(XN
i , t− τNi )

=
∑

i∈SN (0)

∫ t

0

∫ ∞
0

1{DNi (s−)=0}1
{
u≤FNi (s−)

}1{ηNi >t−s}ψ(XN
i , t− s)Qi(ds, du) ,

• for the recovered process:

〈µR,Nt , ϕ〉 = 〈µR,N0 , ϕ〉+
∑

j∈IN (0)

1{ηN,0j ≤t}ϕ(XN
j ) +

∑
i∈DN (t)

1{τNi +ηNi ≤t}ϕ(XN
i ) . (2.17)
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Note that the processes SN (t), IN (t) and RN (t) corresponding to respectively the numbers
of susceptible, infected and recovered individuals at time t can be obtained from these

measure-valued processes: SN (t) = 〈µS,Nt ,1〉, IN (t) = 〈µI,Nt ,1〉 and RN (t) = 〈µR,Nt ,1〉 with
1(x) ≡ 1 and 1(a, x) ≡ 1.

3. Functional law of large numbers

We consider the LLN-scaled measure-valued processes derived from respectively (2.12),
(2.13) and (2.14):

µ̄S,N = N−1 · µS,N , µ̄I,N = N−1 · µI,N , µ̄R,N = N−1 · µR,N . (3.1)

We make the following assumptions on the initial quantities.

Assumption 3.1. There exist finite measures µ̄S0 (dx) on X, µ̄I0(dx,da) on X × R+ and

µ̄R0 (dx) on X that are the weak limits in probability as N →∞ of respectively µ̄S,N0 , µ̄I,N0 ,

and µ̄R,N0 . In addition, the following inequality holds between the measures µ̄R0 and µ̄I0:

µ̄R0 (dx) ≥
∫ ∞

0

Fx(a)

F cx(a)
µ̄I0(dx, da). (3.2)

We consider also the two complete distributions µNX and µX of characteristics on X:

µ̄NX(dx) = µ̄S,N0 (dx) + 〈µ̄I,N0 (dx, .),1〉+ µ̄R,N0 (dx) =
1

N

∑
i≤N

δXN
i

(dx), (3.3)

µ̄X(dx) = µ̄S0 (dx) + 〈µ̄I0(dx, .),1〉+ µ̄R0 (dx). (3.4)

Here 1(a) ≡ 1. A direct consequence of Assumption 3.1 is that µ̄X is a probability
distribution, and µ̄NX converges weakly to µ̄X .

Remark 3.2. The property that relates µ̄R0 to µ̄I0 in Assumption 3.1 is justified by the
following guiding idea: individuals infected with age a at time 0 should be interpreted as the
outcomes of infection events at time −a that produced a larger proportion of infected (with a
scaling factor [F cx(a)]−1), from which a proportion Fx(a) got to recover.

In addition, we make the following two assumptions to capture the behavior of the graph
structure (ωN (i, j))i,j∈[[1,N ]] as N tends to infinity, firstly in terms of conditional expectations.

Assumption 3.3. Recalling the relation ω̄N = N · κN · γN , the following convergence as
N →∞ holds in probability uniformly over X× X:

ω̄N → ω̄,

where ω̄ : X × X → R+ is some deterministic and bounded measurable function that is
µ̄⊗2
X -almost everywhere (a.e.) continuous.

Complementary to Assumptions 2.4 and 2.6, the function : (x, a) 7→ Fx(a) is µ̄I0-a.e.
continuous while the function : x 7→ λ̄(x, .) taking values in D(R+,R+) equipped with the
uniform norm topology is µ̄X-a.e. continuous.

The sequence ω̄N is uniformly upper-bounded by virtue of Assumption 3.3:

Lemma 3.4. Under Assumption 3.3, there exists a constant ω∗ > 0 that is an upper-bound
on ω̄N uniformly on X2 and for N sufficiently large.
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Without loss of generality regarding our convergence results in N →∞, we assume in the
following that ω∗ > 0 is actually an upper-bound uniformly on X2 and on any N .

The next assumption provides the crucial estimate to deal with the variability of the
random graph generation. Its relation to the denseness of the graph and to possibly high
levels of infection rates is discussed after the statement of the main result.

Assumption 3.5. The two following quantities γ̄N and ΥN converge in probability to zero
as N →∞:

γ̄N :=
1

N2

∑
i,j

γN (XN
i , X

N
j ),

ΥN :=
1

N

∑
i,j

EN0
[
υN (i, j); (i, j) ∈ EN

]
=

1

N

∑
i,j

κN (XN
i , X

N
j ) · EN0

[
υN (i, j)

∣∣ (i, j) ∈ EN] .
(3.5)

To be clear with our notations of conditional expectations, EN0
[
υN (i, j)

∣∣∣ (i, j) ∈ EN]
describes the ratio of E

[
υN (i, j); (i, j) ∈ EN

∣∣FN0 ] by P
[
(i, j) ∈ EN

∣∣FN0 ] = κN (XN
i , X

N
j ).

For brevity, we denote D1 := D(R+,M(X)) and D2 := D(R+,M(X× R+)).

Theorem 3.6. Under Assumptions 2.2, 2.4, 2.6, 3.1, 3.3 and 3.5,

(µ̄S,N· , µ̄I,N· , µ̄R,N· )→ (µ̄S· , µ̄
I
· , µ̄

R
· )

in D1 × D2 × D1 as N → ∞. In the above limit, µ̄S· is the first component of the unique
solution (µ̄S· ,F(·)) to the following set of equations,

µ̄St (dx) = µ̄S0 (dx)−
∫ t

0
F(s, x)µ̄Ss (dx)ds , (3.6)

and

F(t, x) =

∫ ∞
0

∫
X
ω̄(x, x′)

λ̄(x′, a′ + t)

F cx′(a
′)

µ̄I0(dx′, da′)

+

∫ t

0

∫
X
ω̄(x, x′)λ̄(x′, t− s)F(s, x′)µ̄Ss (dx′)ds ,

(3.7)

with λ̄, ω̄ being given respectively in Assumptions 2.6 and 3.3. The uniqueness of the above
system is stated among the potential candidates (µ̄St ,F(t))t≥0 in which µ̄S· is a M(X)-valued

càd-làg process such that µt(X) ≤ 1 for any t ≥ 0, while F(·) is a càd-làg process whose
values are bounded measurable functions from X to R+, with local in time upper-bounds.

Given the pair (µ̄S· ,F(·)), 〈µ̄It , ψ〉 and 〈µ̄Rt , ϕ〉 are given as follows, with the test functions
ψ ∈ Cb(X× R+) and ϕ ∈ Cb(R+),

〈µ̄It , ψ〉 =

∫ ∞
0

∫
X
ψ(x, a+ t)

F cx(a+ t)

F cx(a)
µ̄I0(dx, da)

+

∫ t

0

∫
X
ψ(x, t− s)F cx(t− s)F(s, x)µ̄Ss (dx)ds ,

(3.8)
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and

〈µ̄Rt , ϕ〉 = 〈µ̄R0 , ϕ〉+

∫ ∞
0

∫
X
ϕ(x)

(
1− F cx(a+ t)

F cx(a)

)
µ̄I0(dx,da)

+

∫ t

0

∫
X
ϕ(x)Fx(t− s)F(s, x)µ̄Ss (dx)ds .

(3.9)

Note that the unique solution to (3.6) is given by

µ̄St (dx) = exp

(
−
∫ t

0
F(s, x)ds

)
µ̄S0 (dx) . (3.10)

3.1. Discussions of the main result.

About the limiting description of heterogeneity.
Our conditions on the limiting kernel of interaction ω̄ encompasses most, if not all, of the
pairwise kernel interactions. Contact matrices over a discrete space are allowed, as, e.g.,
in [11], as well as spatial interactions as considered in [35] with characteristics that are
distributed on a compact subset of Rd, or even combination of both settings. A possible
extension of our result would be to consider individual types that evolves in time, typically
when the individual locations move in space. It is another natural objective to establish the
FLLN in instances where the limiting kernel ω̄ incorporates an additional dependency on
the overall distribution µ̄X as in the general setting of [35].

About the boundedness of the kernel.
For the existence and uniqueness of the limiting system, the boundedness conditions on ω̄
could certainly be relaxed, with conditions that involve the integral over µ̄X (see [19] for
similar results in this direction). The uniform boundedness of

(
ω̄(x, x′)

)
is however really

helpful for the convergence of the random N -model. Further insights are required to extend
the result in the context of superspreading, defined as the occurrence of highly heterogeneous
transmission patterns across the individual types (XN

i ).

About the relation to dynamics on a graphon.
It is through the expression of the limiting force of infection F in terms of the limiting kernel
ω̄ that we can relate our result to previous works about dynamics on a graphon.

Let us recall the previously introduced example where κ̄N = κ̄ for anyN and κ̄(x, x′) = x·x′
while the (XN

i ) are uniformly sampled in [0, 1]. Let us assume in addition that the contact
rate function γN is fixed and does not depend on the types of the individuals i and j in
contact while ω̄ is non-zero. In this case, ΥN ≡ 0.

If we denote by γ̄N > 0 the value taken by the constant contact rate, then Assumption 3.3
holds if and only if γ̄N is equivalent to γ̄/N for some value γ̄ > 0, in which case ω̄(x, x′) =
γ̄ · κ̄(x, x′) = γ̄ · x · x′. Assumption 3.5 is then automatically satisfied. The proposed kernel
structure displays a convenient property of separation between three contributions to the
value: the role (i) of the susceptible type, (ii) of the infector type and (iii) of the contact
rate. This property is then inherited by the force of infection in that F(t, x) = γ̄ · x · F̌(t)
where F̌(t) describes the aggregated contribution of the potential infectors at time t:

F̌(t) =

∫ ∞
0

∫
X
x′ · λ̄(x′, a′ + t)

F cx′(a
′)

µ̄I0(dx′, da′) +

∫ t

0

∫
X
x′ · λ̄(x′, t− s)F(s, x′)µ̄Ss (dx′)ds .



14 GUODONG PANG, ÉTIENNE PARDOUX, AND AURÉLIEN VELLERET

As considered in [36], such a setting for the dynamics on a graphon can be generalized by
assuming a scaling factor εN > 0 depending on N , for instance εN = N−α with α ∈ (0, 1), in
that κ̄N = εN · κ̄. Provided we again assume the contact rate to be fixed constant at a value
γ̄N > 0, we can follow the same reasoning except that γ̄N is then equivalent to γ̄/(NεN )
instead of γ̄/N and that NεN →∞ is required (and sufficient) for Assumption 3.5 to hold.

Note also that NεN →∞ typically means that the node degrees are asked to go to infinity,
without condition on the relation to the number N of nodes. We refer to [20] for more
details on the relation to the denseness level of the graph (in terms notably of the number of
edges or the node degrees). The additional condition proposed in [36] corresponding to the
convergence to infinity of NεN/ log(N) appears related to their technique of proof rather
than to the convergence of the epidemic process itself. The case where εN = N−1 leads to
limiting equations of a different nature, as hinted with exploratory simulations in [20] and
explicited in the result of [10] for instances of stochastic block models.

In practice, different contact patterns could induce different scalings of γN (XN
i , X

N
j ) in

relation to the two types XN
i and XN

j of individuals in contact. The interest in (3.5) is
then to quantify the convergence in terms of an aggregate quantity that is more directly
accessible than a global scaling factor to be inferred.

In the setting of [20] still, the variability in the contact rate is purely determined by
the individual types. We see with Theorem 3.6, which could be adapted to the simpler
epidemiological behavior considered in [20], that the criteria can be efficiently extended to
random contact rates. The same average over pairs should then be evaluated in terms of
conditional expectations together with a similarly averaged criterion on the variance, as
stated in Assumption 3.5.

About the role of a negligible subset of edges.
The two statistics introduced in Assumption 3.5 are averages over the total set of edges.
Therefore, the introduction of a high rate of contagion on a negligible fraction of edges
would be insufficient to compromise the convergence result deduced from the other edges.
In particular, the introduction of a high rate of contagion from or to a negligible fraction of
individuals would lead to the same conclusion.

About heterogeneous denseness of the graph.
In the setting of Assumption 3.3, we ask for the convergence of the product NγNκN without
asking for separate convergence properties of γN on the one hand and of κN on the other
hand. This choice was made to emphasize that the scaling in N between the contact
probability and the contact rate could itself be mediated by various kinds of interactions
reflected through the individual types XN

i and XN
j .

For example, we may consider the (XN
i ) as spatial coordinates, still uniformly sampled

in [0, 1] yet with the norm-distance d(x, y) = |x− y| on the circle so that all the locations
are equivalent (i.e., on the one-dimensional torus with 0 and 1 identified). Let us then
distinguish in the expressions of κN and γN a local interaction pattern (specified by the
index L) with radius δ ∈ (0, 1/2) and a global interaction pattern (with index G) over the
whole domain:

κN (x, y) =

{
κN,L

κN,G
, γN (x, y) =

{
γN,L if |x− y| ≤ δ,
γN,G otherwise.
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Typically, we could expect κN,L � κN,G while γN,G � γN,L, that is many small local
contacts as compared to rare yet strongly connected global contacts. Such a framework on a
network is captured by our model.

Both types of contacts remain in the limit provided both κN,L · γN,L and κN,G · γN,G scale
as N−1. Actually we see that the contribution of the local contacts then outcompetes the one
of global contacts under the following condition: (κN,L · γN,L)/(κN,G · γN,G) ≥ (2δ)/(1− 2δ).

Such a variability could be introduced more generally to capture different kinds of
interactions, for instance with more denseness but less frequent contacts for the infections
during travels than at the workplaces.

About the randomness in the contact rate.
To fix ideas regarding the variance term in Assumption 3.5, let us consider the case where
the heterogeneity in individual contacts is purely neutral, so independent of the (XN

i ). Let
us assume the existence of three positive parameters κ̄N , γ̄N and σ̄N ∈ (0, γ̄N ) such that
the two following conditions hold in addition to the above-described construction:

(i) the graph of active contacts is an Erdös-Rényi graph with parameter κ̄N , that is

PN0
(
i
N∼ j
)

= κ̄N for any i, j.

(ii) on the event {(i, j) ∈ EN} and conditionally on FN0 , ωN (i, j) is distributed as a
uniform random variable between γ̄N − σ̄N and γ̄N + σ̄N .

Then (2.3) and (2.4) are satisfied with

κN (x, y) ≡ κ̄N , γN (x, y) ≡ γ̄N , υN (i, j) ≡ (σ̄N )2

3
.

Assumption 3.3 then translates into the convergence of the product N κ̄N γ̄N to some
limiting value ω̄. The notation γ̄N is coherent with the formula given in Assumption 3.5
while ΥN = N ῡN κ̄N = N · (σ̄N )2 · κ̄N/3. Let us assume the system to be non-degenerate
in that ω̄ > 0 and γ̄N > 0 for any N .

Then, ΥN ∼ ω̄ · (σ̄N )2/(3γN ) converges to zero as required in Assumption 3.5 if and only
if (σ̄N )2 � γN . Since σ̄N < γN in this case (to keep ωN non-negative), both properties hold
true if and only if γN tends to zero, which is exactly the first condition in Assumption 3.5.
So we do not have any additional restriction on σ̄N in this model.

For another example with possibly high levels of heterogeneity, let us replace the uniform
distribution in (ii) by a gamma distribution, whose two parameters we fix by taking γ̄N as
the mean and σ̄N · γ̄N as the variance. Then, the convergence of ΥN to zero corresponds
exactly to the convergence of σ̄N to zero.

We remark that σ̄N is classically described as the scale parameter. If it would not converge
to zero, then the convergence to 0 of the mean γ̄N would entail the convergence to 0 of the
corresponding shape parameter ᾱN = γ̄N/σ̄N .

Generally with ῡN the variance of the corresponding distribution in (ii), ΥN converges

to zero if and only if the standard deviation
√
ῡN is negligible against the root of the

average rate
√
γ̄N . Given that γ̄N itself is expected to tend to 0, we stress that our result

covers fluctuation levels in the rate of transmission that are quite large in comparison to the
expected value.
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4. Properties of the limiting system of equations

4.1. Existence and uniqueness of solution to the limiting equations.

Proposition 4.1. Under Assumptions 2.2 and 3.3, the set of equations (3.6)–(3.7) has a
unique solution (µ̄S· ,F·).

Proof. We first prove the uniqueness. Before proceeding, we establish some useful bounds.
Suppose that (µ̄S· ,F·) is a solution. By Assumptions 2.2 and 3.3, we have λ̄(x, t) ≤ λ∗ and
ω̄(x, x′) ≤ ω∗ for some ω∗ > 0. Recalling (3.7) and Assumption 3.1, we derive

F(t, x) ≤ λ∗
∫
X
ω̄(x, x′)

∫ ∞
0

[
1 +

Fx′(a
′)

F cx′(a
′)

]
µ̄I0(dx′,da′)

+ λ∗
∫
X
ω̄(x, x′)

∫ t

0
F(s, x′) exp

(
−
∫ s

0
F(r, x′)dr

)
ds µ̄S0 (dx′)

≤ λ∗
∫
X
ω̄(x, x′) ·

[
〈µ̄I0(dx′, .),1〉+ µ̄R0 (dx′) + µ̄S0 (dx′)

]
≤ λ∗ω∗ <∞,

(4.1)

where we exploited that 1 is a natural upper-bound of the integral over s in the second line
and that µ̄X in (3.4) is a probability measure.

On the other hand by (3.6),

µ̄Ss (dx′) ≤ µ̄S0 (dx′) ≤ µ̄X(dx). (4.2)

Suppose now that there are two solutions (µ̄S,`· ,F
`
· ), ` = 1, 2. By (3.6) and (3.7), for

ϕ ∈ Cb(R+), we obtain

〈µ̄S,1t − µ̄
S,2
t , ϕ〉 = −

∫ t

0
〈µ̄S,1s − µ̄S,2s ,F

1
(s)ϕ〉ds−

∫ t

0
〈µ̄S,2s , (F

1
(s)− F

2
(s))ϕ〉ds , (4.3)

and

F
1
(t, x)− F

2
(t, x) =

∫ t

0

∫
X
ω̄(x, x′)λ̄(x′, t− s)F1

(s, x′)(µ̄S,1s (dx′)− µ̄S,2s (dx′))ds

+

∫ t

0

∫
X
ω̄(x, x′)λ̄(x′, t− s)(F1

(s, x′)− F
2
(s, x′))µ̄S,2s (dx′)ds .

(4.4)

Let

Dt = (λ∗ω∗) ·
∥∥∥µ̄S,1t − µ̄S,2t ∥∥∥

TV
+ ‖F1

(t, .)− F
2
(t, .)‖∞.

By (4.3), (4.4), (4.1) and (4.2):

Dt ≤ C
∫ t

0
Dsds, (4.5)

where C = 2λ∗ω∗. Thanks to Gronwall’s inequality, the proof of the uniqueness is concluded.
Finally, the existence can be proved by Picard iteration (which will invoke similar estimates

as above). �
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4.2. Regularity of F(·).

Lemma 4.2. The function : x 7→ F(., x) with values in the set of bounded measurable
functions from R+ to itself equipped with the uniform norm topology is µ̄X-almost everywhere
continuous.

Proof. Recalling (3.7), with the uniform upper-bound of λ̄ by λ∗, we first deduce the following
inequality for any t ≥ 0 and any x1, x2 ∈ X:∣∣∣F(t, x1)− F(t, x2)

∣∣∣ ≤ λ∗ ∫
X
|ω̄(x1, x

′)− ω̄(x2, x
′)|
{(

1 +
Fx′(a

′)

F cx′(a
′)

)
µ̄I0(dx′,da′)

+

∫ t

0
F(s, x′) exp

(
−
∫ s

0
F(r, x′)dr

)
ds µ̄S0 (dx′)

}
.

With similar arguments as in the proof of Proposition 4.1 to deduce (4.1), notably with
Assumption 3.1, we obtain

‖F(., x1)− F(., x2)‖∞ ≤ λ∗
∫
X
|ω̄(x1, x

′)− ω̄(x2, x
′)| µ̄X(dx′). (4.6)

As stated in Appendix A in Proposition A.2 and proved just afterwards, the function
x 7→ ω̄(x, .) is µ̄X a.e. continuous with the L1(µ̄X) distance, provided that ω̄ is µ̄⊗2

X -a.e.
continuous as in Assumption 3.3. This concludes the proof of Lemma 4.2. �

4.3. Alternative representation of the limit as PDEs.

Provided that the hazard rate function corresponding to the durations before remission is
regular enough, one can describe the solution µ̄I of the limiting system in Theorem 3.6 in
terms of a PDE as stated in the next proposition.

Proposition 4.3. Assume that Fx is absolutely continuous with density fx for each x ∈ X
and that F cx(a) > 0 for any a ∈ R+. Assume that hx(a) = fx(a)/F cx(a), the hazard rate
function, is continuous and bounded uniformly in both x ∈ X and a ∈ R+. Assume moreover
that µ̄I0(X × {0}) = 0. Then, µ̄It (dx,da) in (3.8) is the unique solution to the following
equation, defined for any ψ ∈ C0,1(X× R+) and t > 0,

d

dt
〈µ̄It , ψ〉 = 〈µ̄It , ∂aψ − hψ〉+

∫
X
ψ(x, 0)F(t, x)µ̄St (dx) . (4.7)

Hence, µ̄It (dx,da) is the unique solution to the following PDE:

〈∂tµ̄It , ψ〉+ 〈∂aµ̄It , ψ〉 = −〈µ̄It , hψ〉 (4.8)

with the initial condition µ̄I0 given in Assumption 3.1 and the boundary condition at

a = 0: µ̃It (dx, 0) = F(t, x)µ̄St (dx), where µ̃It (dx, a) is the “density” of µ̄It (dx,da), that
is, µ̄It (dx, da) = µ̃It (dx, a)da and a 7→ µ̃It (dx, a) is continuous at 0+.

Recalling (3.10), remark that we can also write the last term in (4.7) as∫
X
ψ(x, 0)F(t, x) exp

(
−
∫ t

0
F(s, x)ds

)
µ̄S0 (dx) .

which only involves the initial µ̄S0 (dx) and F(t, x).
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Proof. By taking derivative with respect to t in the expression of 〈µ̄It , ψ〉 in (3.8), we obtain

d

dt
〈µ̄It , ψ〉 =

∫ ∞
0

∫
X
∂aψ(x, a+ t)

F cx(a+ t)

F cx(a)
µ̄I0(dx,da)

−
∫ ∞

0

∫
X
ψ(x, a+ t)

fx(a+ t)

F cx(a)
µ̄I0(dx,da)

+

∫
X
ψ(x, 0)F(t, x)µ̄St (dx)

−
∫ t

0

∫
X
ψ(x, t− s)fx(t− s)F(s, x)µ̄Ss (dx)ds

+

∫ t

0

∫
X
∂aψ(x, t− s)F cx(t− s)F(s, x)µ̄Ss (dx)ds .

Next, from (3.8), we observe that

〈µ̄It , ∂aψ〉 =

∫ ∞
0

∫
X
∂aψ(x, a+ t)

F cx(a+ t)

F cx(a)
µ̄I0(dx,da)

+

∫ t

0

∫
X
∂aψ(x, t− s)F cx(t− s)F(s, x)µ̄Ss (dx)ds ,

and

〈µ̄It , hψ〉 =

∫ ∞
0

∫
X
ψ(x, a+ t)

fx(a+ t)

F cx(a)
µ̄I0(dx,da)

+

∫ t

0

∫
X
ψ(x, t− s)fx(t− s)F(s, x)µ̄Ss (dx)ds .

Hence, the last three identities lead to the expression in (4.7).

Next, (3.8) entails the following formula

〈µ̄It , ψ〉 =

∫ ∞
t

∫
X
ψ(x, a)

F cx(a)

F cx(a− t)
µ̄I0(dx, da− t)

+

∫ t

0

∫
X
ψ(x, a)F cx(a)F(t− a, x)µ̄St−a(dx)da .

(4.9)

We see from this formula that the restriction of the measure µ̄It to the set X × [0, t) is
absolutely continuous w.r.t. the measure µ̄St−a(dx)da, hence the existence of the “density”

µ̃Is(dx, a), whose value at a = 0 is specified above by the boundary condition.

Now integrating (4.7) over the interval [0, t], we obtain

〈µ̄It , ψ〉 = 〈µ̄I0, ψ〉+

∫ t

0
〈µ̄Is, ∂aψ − hψ〉ds+

∫ t

0

∫
X
ψ(x, 0)F(s, x)µ̄Ss (dx)ds . (4.10)

We now choose in (4.10) ψn(x, a) = ς(x)(1−na)+ for some ς ∈ C1(R+). Since µ̄I0(X×{0}) = 0,
we deduce from (4.9) that µ̄It (X× {0}) = 0 holds for any t ≥ 0. We have

〈µ̄It , ψn〉 → 0 and

∫ t

0
〈µ̄Is, hψn〉ds→ 0, as n→∞.
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Also ψn(x, 0) = ς(x), while∫ t

0
〈µ̄Is, ∂aψn〉ds = −n

∫ 1/n

0

∫
X
ς(x)µ̄Is(dx,da) .

We deduce from the above computations that, as n→∞,

n

∫ t

0
ds

∫ 1/n

0
µ̄Is(dx,da)⇒

∫ t

0
F(s, x)µ̄Ss (dx)ds,

in the sense of weak convergence of measures on X. If we denote by µ̃It (dx, 0) the limit as

n→∞ of n
∫ 1/n

0 µ̄Is(dx,da), we have∫ t

0
µ̃Is(dx, 0)ds =

∫ t

0
F(s, x)µ̄Ss (dx)ds, hence also

µ̃Is(dx, 0) = F(s, x)µ̄Ss (dx) .

From this, by the integration by parts formula, we obtain∫ t

0
〈µ̄Is, ∂aψ〉ds+

∫ t

0

∫
X
ψ(x, 0)F(s, x)µ̄Ss (dx)ds = −

∫ t

0
〈∂aµ̄Is, ψ〉ds. (4.11)

Hence, from (4.7) and (4.11), we obtain the PDE model in (4.8) with the boundary condition
at a = 0: µ̃Is(dx, 0) = F(s, x)µ̄Ss (dx).

Reciprocally, let us consider in addition to µ̄I any arbitrary solution (µ̃It ) to the PDE in
(4.7) that satisfies the initial condition µ̃I0 = µ̄I0, and define ∆µI(dx) = µ̃I(dx)− µ̄I(dx). For
any t > 0, we define as follows the function Ψt ∈ C0,1(X×R+) in terms of ψ0 ∈ C0,1(X×R+)
and ϕ0 ∈ C0,1(X× [0, t]):

Ψt(x, a) =

ψ0(x, a− t) · exp
[ ∫ a

a−t h(x, a′)da′
]

for any x ∈ X, a ∈ (t,∞),

ϕ0(x, t− a) · exp
[ ∫ a

0 h(x, a′)da′
]

for any x ∈ X, a ∈ [0, t].
(4.12)

The interest of this definition lies in the relation between the time-derivatives in t and in a,
that makes the process 〈∆µIt ,Ψt〉 stay constant as stated next in (4.15).

Given that h is a bounded continuous function, (Ψt(x, a))t,x,a ∈ C1,0,1(R+ ×X×R+). Let
us compute the relevant partial derivatives for our concern, first for any x ∈ X and any
a ∈ (t,∞),

∂tΨt(x, a) = −∂aψ0(x, a− t) exp
[ ∫ a

a−t
h(x, a′)da′

]
+ Ψt(x, a) · h(x, a− t), (4.13)

∂aΨt(x, a) = ∂aψ0(x, a− t) exp
[ ∫ a

a−t
h(x, a′)da′

]
+ Ψt(x, a) ·

[
h(x, a)− h(x, a− t)

]
.

On the other hand, for any x ∈ X and any a ∈ [0, t],

∂tΨt(x, a) = ∂aϕ0(x, t− a) exp
[ ∫ a

0
h(x, a′)da′

]
,

∂aΨt(x, a) = −∂aψ0(x, t− a) exp
[ ∫ a

0
h(x, a′)da′

]
+ Ψt(x, a) · h(x, a).

(4.14)

Thanks to (4.13) and (4.14), we obtain

∂tΨt + ∂aΨt − h ·Ψt ≡ 0.
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Since µ̃I , µ̄I are solutions to the PDE in (4.8) and satisfy the same initial condition µ̃I0 = µ̄I0,
the above identity implies the following one:

〈∆µIt ,Ψt〉 = 〈∆µI0, ψ0〉 = 0, (4.15)

which, for any t > 0, holds for any ψ0, ϕ0 ∈ C0,1(X× R+).
We next verify that for any ψ ∈ C0,1(X × R+), we can choose ψ0 and ϕ0 such that Ψ

given by (4.12) satisfies ΨT (x, a) = ψ(x, a). Since h(x, a) = −∂a logF cx(a), we know that

exp
[
−
∫ a

0 h(x, a′)da′
]

= F cx(a) > 0. Let T > 0 and ψ ∈ C0,1(X× R+). For ψ to agree with

ΨT , we define for any x ∈ X, any a ∈ R+ and any r ∈ [0, T ]:

ψ0(x, a) = ψ(x, a+ T ) · F
c
x(a+ T )

F cx(a)
, ϕ0(x, r) =

ψ(x, T − r)
F cx(T − r)

.

We then check, for any a > T , that ψ0(x, a− T ) · exp
[ ∫ a

a−T h(x, a′)da′
]

agrees with ψ(x, a)

and similarly for any a ∈ [0, T ] with ϕ0(x, T − a) · exp
[ ∫ a

0 h(x, a′)da′
]

instead. Thanks

to (4.15), with the specific choice of t = T , we deduce that 〈µ̃IT , ψ〉 = 〈µ̄IT , ψ〉 holds for any
ψ ∈ C0,1(X× R+). Since this identity is valid for any T provided h is bounded continuous,
the uniqueness of the solution to the PDE in (4.8) is deduced.

Finally, if (µ̃It ) is instead assumed to be any solution to the PDE in (4.8), with the
boundary condition at a = 0 as specified in Proposition 4.3. Then, the integration by
parts formula in (4.11) holds with µ̃I instead of µ̄I , and so (4.10) similarly for any t > 0.
Therefore, µ̃I is actually solution to the PDE in (4.8). So it coincides with µ̄I by the
preceding uniqueness result. �

5. Proof of Theorem 3.6, our main result

5.1. Convergence of (µ̄S,N· ,F
N

(·)). We start by constructing an auxiliary model using the
limit F. Recall DN

i (t) in (2.9). Define

D̃N
i (t) =

∫ t

0

∫ ∞
0

1{D̃Ni (s−)=0}1{u≤F(s,XN
i )}Qi(ds, du) , (5.1)

and

〈µ̃S,Nt , ϕ〉 =
1

N

∑
i∈SN (0)

1{D̃Ni (t−)=0}ϕ(XN
i ) . (5.2)

Considering this approximation considerably helps to justify the proximity with the
limiting measure µ̄S , as we can see from the next Lemma 5.1.

Lemma 5.1. As N →∞, the following convergence holds in probability for any t and any
bounded continuous function ϕ from X to R:

〈µ̃S,Nt , ϕ〉 → 〈µ̄St , ϕ〉,

where the limit µ̄S is the first term of the unique solution of (3.6)-(3.7).

Proof. We start with the formula (5.2). Noting that

PN0 (D̃N
i (t) = 0) = exp

(
−
∫ t

0
F(s,XN

i )ds

)
,



21

we deduce

EN0
[
〈µ̃S,Nt , ϕ〉

]
= 〈µ̄S,N0 , ϕ · exp

(
−
∫ t

0 F(s, .)ds
)
〉. (5.3)

Recall from Assumption 3.1 that µ̄S,N0 converges in probability to µ̄S0 ≤ µ̄X , and from

Lemma 4.2 that the (deterministic) function ϕ · exp
(
−
∫ t

0 F(s, .)ds
)

is µ̄X -a.e. continuous
and bounded. Thanks to the Portmanteau theorem, we thus deduce the convergence in
probability of the expectation in (5.3) to

〈µ̄S0 , ϕ · exp
(
−
∫ t

0 F(s, .)ds
)
〉 = 〈µ̄St , ϕ〉. (5.4)

On the other hand, we control the fluctuations through the variance, by exploiting the

independence property of D̃N
i between individuals i. Similarly as EN0 denotes the expecta-

tion conditional on FN0 , VarN0 denotes the variance conditional on FN0 , in the sense that

VarN0 (Z) = EN0 [Z2]− EN0 [Z]2 for any random variable Z. We have

VarN0 (〈µ̃S,Nt , ϕ〉) =
1

N2

∑
i∈SN (0)

ϕ(XN
i )2 ·VarN0

(
1{D̃Ni (t)=0}

)
≤ ‖ϕ‖

2
∞

N
. (5.5)

Let ε > 0. By choosing N larger than ε−3 ·‖ϕ‖2∞, we deduce as a consequence of Chebyshev’s
inequality:

P
(∣∣〈µ̃S,Nt , ϕ〉 − EN0

[
〈µ̃S,Nt , ϕ〉

]∣∣ ≥ ε) ≤ ε.
So this sequence of centered random variables converges in probability to 0. With the
convergence in probability of the conditional expectation stated in (5.4), this concludes the
proof of Lemma 5.1. �

In order to relate µ̃S,N to our original process µ̄S,N , we will study the convergence of the
following quantity, notably with the forthcoming Proposition 5.11:

D
N

(t) := EN0

[
1

N

∑
i∈SN (0)

sup
r∈[0,t]

|DN
i (r)− D̃N

i (r)|

]
, (5.6)

We relate this convergence to the differences F
N
i (s)− F(s,XN

i ) for s ≥ 0 and i ∈ SN (0). We
deduce from (2.8) and (3.7) that those differences can then be decomposed into seven terms,
by exploiting the following definitions.

We first define

A
N
i (t) =

∑
j∈SN (0)

ωN (i, j) ·
[
λNj (t− τNj )− λNj (t− τ̃Nj )

]
, (5.7)

where τ̃Nj is the first jump time corresponding to the process (D̃N
j (s))s>0 in (5.1), so that

A
N
i (t) captures the discrepancies between the jumps of (DN

j ) and those of (D̃N
j ).

Remark 5.2. Similarly to DN (t) in (2.10), we can define D̃N (t) accordingly to (τ̃Nj ):

D̃N (t) =
{
j ∈ SN0 ; τ̃Nj ≤ t

}
, (5.8)

that is the subset of individuals infected by time t, while being affected by the mean-field

infection rate. For any j ∈ D̃N (t), ÃNj (t) = t− τ̃Nj can be interpreted as the corresponding

infection age, of individual j at time t, like ANj (t) = t − τNj for any j ∈ DN (t). Possibly

ÃNj (t) > ηNj , thus the individual j has recovered by time t and λNj (t − τ̃Nj ) = 0. For any
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j ∈ SN0 \ D̃N (t) on the other hand, t− τ̃Nj < 0, which entails also λNj (t− τ̃Nj ) = 0. Similar

observations hold for the value of λNj (t− τNj ) depending on whether j ∈ DN (t) or not, and

if yes whether ANj (t) > ηNj holds or not. It justifies the statement that A
N
i (t) corresponds to

the component due to the discrepancies between infection ages.

We next define

V
N,1
i (t) =

1

N

∑
j∈SN (0)

[
NωN (i, j) ·λNj (t− τ̃Nj )− ω̄N (XN

i , X
N
j ) ·EN0 [λ̄(XN

j , t− τ̃Nj )]
]
, (5.9)

so that V
N,1
i concerns the approximation of the transmission rate by its average, where the

expectation in the last term averages the randomness of the infection time τ̃Nj with the

exterior field F(., XN
j ) acting on individual j.

For any x ∈ X and t ≥ 0, we define

L
N,1

(t, x) =

∫
X

[
ω̄N (x, x′)− ω̄(x, x′)

]
· E[λ̄(x′, t− τ̃x′)]µ̄S,N0 (dx′) , (5.10)

where we define the random time τ̃x′ whatever x′ ∈ X as follows in term of some Poisson
random measure Q on R2

+ with intensity dsdu:

τ̃x′ = inf
{
t ≥ 0;

∫ t

0

∫ ∞
0

1{u≤F(s,x′)}Q(ds, du) ≥ 1
}
. (5.11)

Thus, L
N,1

concerns the approximation of ω̄N by the kernel ω̄.

Remark 5.3. The time τ̃x′ will only be considered through expectations taken at fixed x′

value, so that we are not concerned about letting the random measure Q depend on x′.

The approximation of the initial condition µ̄S,N0 by µ̄S0 is treated separately with the next
term, defined also for any x ∈ X and t ≥ 0,

E
N,1

(t, x) =

∫
X
ω̄(x, x′) · E[λ̄(x′, t− τ̃x′)]

[
µ̄S,N0 − µ̄S0

]
(dx′). (5.12)

We will see in Remark 5.5 that E
N

(t,XN
i ) can also be related to the approximation of the

empirical measure process (µ̃S,Ns ) by the limiting (µ̄Ss ).
We then define

V
N,0
i (t) =

1

N

∑
j∈IN (0)

[
NωN (i, j)λNj (ANj (0) + t) − ω̄N (XN

i , X
N
j )

λ̄(XN
j , A

N
j (0) + t)

F c
XN
j

(ANj (0))

]
,

(5.13)

in a similar way as V
N
i (t) for the initially infected individuals. We recall from Assumption 2.6

that for any j ∈ IN (0) the value of the conditional expectation λ̄(XN
j , A

N
j (0)+t) is amplified

by the denominator F c
XN
j

(ANj (0)) to account for the bias in λNj (ANj (0) + t) due to the fact

that individual j has not recovered by time 0. The next terms L
N,0

and E
N,0

are similarly

the analogs of respectively L
N,1

and E
N,1

for the initially infected individuals. For any x ∈ X
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and t ≥ 0,

L
N,0

(t, x) =

∫
X

∫ ∞
0

[
ω̄N (x, x′)− ω̄(x, x′)] · λ̄(x′, a′ + t)

F cx′(a
′)

µ̄I,N0 (dx′, da′) , (5.14)

and finally,

E
N,0

(t, x) =

∫
X

∫ ∞
0

ω̄(x, x′) · λ̄(x′, a′ + t)

F cx′(a
′)

[
µ̄I,N0 (dx′,da′)− µ̄I0(dx′, da′)

]
, (5.15)

so that E
N,0

(t,XN
i ) accounts for the approximation of the initial condition µ̄I,N0 by µ̄I0.

Lemma 5.4. With the above definitions, for any N ≥ 1, i ∈ SN (0), t ≥ 0, we have

F
N
i (t)− F(t,XN

i )

= V
N,0
i (t) + L

N,0
(t,XN

i ) + E
N,0

(t,XN
i ) + A

N
i (t) + V

N,1
i (t) + L

N,1
(t,XN

i ) + E
N,1

(t,XN
i ).

Proof. From (5.11) it follows that P(τ̃x′ > s) = exp
( ∫ s

0 F(r, x′)dr
)
, hence the law of τ̃x′ has

the density F(s, x′) exp[
∫ s

0 F(r, x′)dr]. This fact combined with (3.10) leads to∫ t

0

∫
X
ω̄(x, x′)λ̄(x′, t− s)F(s, x′)µ̄Ss (dx′)ds =

∫
X
ω̄(x, x′)E[λ̄(x′, t− τ̃x′)]µ̄S0 (dx′) . (5.16)

Plugging this identity in (3.7), we deduce the decomposition F(t, x) = F
0
(t, x) + F

1
(t, x),

where

F
0
(t, x) =

∫
X

∫ ∞
0

ω̄(x, x′) · λ̄(x′, a′ + t)

F cx′(a
′)

µ̄I0(dx′,da′) , (5.17)

F
1
(t, x) =

∫
X
ω̄(x, x′) · E[λ̄(x′, t− τ̃x′)] µ̄S0 (dx′) . (5.18)

We aim at a similar decomposition for F
N
i (t). Recall (2.10) where DN (t) has been defined

as the subset in SN0 of individuals that have been infected by the disease by time t. If
j ∈ IN (t) ∩ SN0 , then j ∈ DN (t) and thus ANj (t) = t − τNj . If, on the other hand,

j ∈ SN0 \ DN (t), then ANj (t) = 0, and thus λNj (ANj (t)) = 0.

Recalling (2.11), we thus get the decomposition F
N
i (t) = F

N,0
i (t) + F

N,1
i (t), where

F
N,0
i (t) =

∑
j∈IN (0)

ωN (i, j) · λNj (ANj (0) + t) (5.19)

F
N,1
i (t) =

∑
j∈SN (0)

ωN (i, j) · λNj (t− τNj ) . (5.20)

We first show that F
N,0
i (t)− F

0
(t,XN

i ) = V
N,0
i (t) + L

N,0
(t,XN

i ) + E
N,0

(t,XN
i ), and next

that F
N,1
i (t)− F

1
(t,XN

i ) = A
N
i (t) + V

N,1
i (t) + L

N,1
(t,XN

i ) + E
N,1

(t,XN
i ).

By combining (5.13) with (5.19), then with the definition of µ̄I,N0 in (3.1), we have

F
N,0
i (t)−V

N,0
i (t) =

1

N

∑
j∈IN (0)

ω̄N (XN
i , X

N
j )

λ̄(XN
j , A

N
j (0) + t)

F c
XN
j

(ANj (0))

=

∫
X

∫ ∞
0

ω̄N (XN
i , x

′) · λ̄(x′, a′ + t)

F cx′(a
′)

µ̄I,N0 (dx′,da′) .
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Plugging (5.14) into this expression, then exploiting (5.15) and (5.17), we obtain

F
N,0
i (t)−V

N,0
i (t)− L

N,0
(t,XN

i ) =

∫
X

∫ ∞
0

ω̄(XN
i , x

′) · λ̄(x′, a′ + t)

F cx′(a
′)

µ̄I,N0 (dx′, da′)

= E
N,0

(t,XN
i ) + F

0
(t,XN

i ) ,

(5.21)

which concludes our first claim. For the second claim, there is a first additional step where

ANi (t) is related to ÃNi (t) = t− τ̃Ni , through A
N
i (t), before we can exploit the same arguments.

We first combine (5.7) with (5.20), and hence,

F
N,1
i (t)− A

N
i (t) =

∑
j∈SN (0)

ωN (i, j)λNj (t− τ̃Nj ) .

Plugging (5.9) into this expression and exploiting the definitions of µ̄S,N in (3.1) and of τ̃x′
in (5.11), we deduce that

F
N,1
i (t)− A

N
i (t)−V

N,1
i (t) =

1

N

∑
j∈SN (0)

ω̄N (XN
i , X

N
j ) · EN0 [λ̄(XN

j , t− τ̃Nj )]

=

∫
X
ω̄N (XN

i , x
′)E[λ̄(x′, t− τ̃x′)]µ̄S,N0 (dx′) .

(5.22)

Next plugging (5.10) into this expression, then exploiting (5.12) and (5.18), we get

F
N,1
i (t)− A

N
i (t)−V

N,1
i (t)− L

N,1
(t,XN

i ) =

∫
X
ω̄(XN

i , x
′)E[λ̄(x′, t− τ̃x′)]µ̄S,N0 (dx′)

= E
N,1

(t,XN
i ) + F

1
(t,XN

i ).

(5.23)

Since F(t, x) = F
0
(t, x) +F

1
(t, x) and F

N
i (t) = F

N,0
i (t) +F

N,1
i (t), combining (5.21) and (5.23)

concludes the proof of Lemma 5.4. �

Remark 5.5. In the expression of E
N,1

(t, x) in (5.12), we decided to relate as directly as

possible to the difference between µ̄S,N0 and µ̄S0 . That being said, this term has the following

alternative interpretation in terms of the difference between the processes µ̃S,Ns and µ̄Ss :

E
N,1

(t, x) = EN0

[∫ t

0

∫
X
ω̄(x, x′)λ̄(x′, t− s) · F(s, x′)

[
µ̃S,Ns − µ̄Ss

]
(dx′) ds

]
. (5.24)

Proof of (5.24). Recall the identity (5.16). Similarly, we express τ̃Nj through the Poisson
random measure Qj :

1

N

∑
j∈SN (0)

ω̄(x,XN
j )EN0 [λ̄(XN

j , t− τ̃Nj )] (5.25)

= EN0

[
1

N

∑
j∈SN (0)

∫ t

0

∫ ∞
0

ω̄(x,XN
j )λ̄(XN

j , t− s)1{D̃Nj (s−)=0}1{u≤F(s−,XN
j )}Qj(ds, du)

]
.

In the expression in the second line, we can replace Qj by its intensity since the integrant

is predictable with respect to its filtration (F̃Nt ), then express the sum over j ∈ SN (0) in
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terms of the empirical measure µ̃S,Ns , recall (5.2), which leads to

EN0
[ ∫ t

0

∫
X
ω̄(x, x′)λ̄(x′, t− s)F(s, x′)µ̃S,Ns (dx′)ds

]
. (5.26)

Recalling (5.22) in addition to (5.16), (5.25) and (5.26), we deduce identity (5.24). �

In the following, we treat separately the various terms distinguished in Lemma 5.4, first

A
N
i , see Lemma 5.6, second V

N,1
and V

N,0
, see Lemma 5.7, third L

N,1
and L

N,0
, see

Lemma 5.8, and finally E
N,1

and E
N,0

, see Lemma 5.10. We start with the processes (A
N
i )

defined in (5.7).

Lemma 5.6. Under Assumptions 2.2, 3.1, 3.3 and 3.5, there exist a constant C > 0 such
that

EN0

[
1

N

∑
i∈SN (0)

∣∣∣ANi (t)
∣∣∣] ≤ C ·DN

(t) + V
N

holds a.s. for any t ≥ 0, where D
N

(t) is defined in (5.6), and V
N

is given by

V
N

:= λ∗ ·
√

ΥN + ω∗ · γ̄N . (5.27)

We recall the defining property of ω∗ given just after Lemma 3.4.

Proof. Recalling (5.7) and exploiting the upper-bound λ∗ of the functions (λNj ), we get∑
i∈SN (0)

∣∣∣ANi (t)
∣∣∣ ≤ λ∗ · ∑

j∈SN (0)

sup
r≤t
|DN

j (r)− D̃N
j (r)| ·

∑
i∈SN (0)

ωN (i, j). (5.28)

We observe for any j ∈ SN (0), the following identity by virtue of (2.7):

EN0
[ ∑
i∈SN (0)

ωN (i, j)
]

=

∫
X
ω̄N (x,XN

j )µ̄S,N0 (dx).

Since ω̄N is upper-bounded by ω∗ and µ̄S,N0 (X) ≤ 1, we obtain the upper bound

1

N

∑
i∈SN (0)

∣∣∣ANi (t)
∣∣∣ ≤ λ∗

N

∑
j∈SN (0)

sup
r≤t
|DN

j (r)− D̃N
j (r)| · (S̃Nj + ω∗) , (5.29)

where

S̃Nj :=
∑

i∈SN (0)

ωN (i, j)− EN0
[ ∑
i∈SN (0)

ωN (i, j)
]
. (5.30)

Since supr≤t |DN
j (r)− D̃N

j (r)| is upper-bounded by 1 for any j ∈ SN (0), (5.29) entails

EN0

[
1

N

∑
i∈SN (0)

∣∣∣ANi (t)
∣∣∣] ≤ C ·DN

(t) + U
N
,

where C = λ∗ · ω∗ and

U
N

:=
λ∗

N
EN0

[ ∑
j∈SN (0)

∣∣S̃Nj ∣∣
]
. (5.31)
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So Lemma 5.6 will be concluded by showing that U
N ≤ V

N
. Thanks twice to the Cauchy-

Schwartz inequality, with the fact that the cardinality of SN (0) is less than N :

EN0

[
1

N

∑
j∈SN (0)

∣∣∣S̃Nj ∣∣∣
]
≤ 1

N

∑
j∈SN (0)

√√√√EN0

[(
S̃Nj

)2
]

≤

√√√√ 1

N

∑
j∈SN (0)

EN0

[(
S̃Nj

)2
]
.

(5.32)

For any j ∈ SN (0) and conditionally on FN0 , S̃Nj is the sum of independent centered variables,
which leads to the following identity:

EN0

[(
S̃Nj

)2
]

=
∑

i∈SN (0)

VarN0

[
ωN (i, j)

]
.

We recall that VarN0 (Z) = EN0 (Z2)− EN0 (Z)2 by definition of this variance conditional on
FN0 for any random variable Z. As we will need later the conditional second moment of
ωN (i, j) instead of its variance, we rather consider it as the upper-bound, then exploit (2.6)
and (2.3) to deduce the following inequality:

EN0

[(
S̃Nj

)2
]
≤

∑
i∈SN (0)

EN0
[
ωN (i, j)2

]
=

∑
i∈SN (0)

EN0
[
υN (i, j); (i, j) ∈ EN

]
+

∑
i∈SN (0)

κN (XN
i , X

N
j ) · γN (XN

i , X
N
j )2 . (5.33)

Remark that for any i, j ∈ SN (0), κN (XN
i , X

N
j ) · γN (XN

i , X
N
j ) = ω̄N (XN

i , X
N
j )/N ≤ ω∗/N .

Recalling the definitions given in Assumption 3.5, we thus deduce

1

N

∑
j∈SN (0)

EN0

[(
S̃Nj

)2
]
≤ ΥN + ω∗ · γ̄N . (5.34)

Recalling (5.31) and (5.32), this entails U
N ≤ V

N
a.s. and concludes the proof of Lemma 5.6.

�

For the upper-bound of V
N,1
i and V

N,0
i as defined in respectively (5.9) and (5.13), the

proof of the next lemma follows similar principles as in the previous one.

Lemma 5.7. The following upper-bound holds for any t > 0 with the sequence (V̄N )N≥1

defined in (5.27):

EN0
[ 1

N

∑
i∈SN (0)

∣∣VN,1
i (t)

∣∣] ∨ EN0
[ 1

N

∑
i∈SN (0)

∣∣VN,0
i (t)

∣∣] ≤ V
N
.
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Proof. We treat this component similarly as UN , first thanks to the Cauchy-Schwartz
inequality:

EN0
[ 1

N

∑
i∈SN (0)

∣∣VN,1
i (t)

∣∣] ≤ 1

N

∑
i∈SN (0)

√
EN0
[(
V
N,1
i (t)

)2]

≤

√√√√ 1

N

∑
i∈SN (0)

EN0
[(
V
N,1
i (t)

)2]
,

Recalling (5.9), we note that the random variables V
N,1
i (t) are centered conditionally on

FN0 , so that the term under the square root is actually a variance. V
N,1
i (t) is a sum of r.v.’s

which are orthogonal in L2(Ω,PN0 ). Thus, for any i ∈ SN (0),

EN0
[(
V
N,1
i (t)

)2]
=

∑
j∈SN (0)

VarN0
[
ωN (i, j) · λNj (t− τ̃Nj )

]
.

For any i, j ∈ SN (0), since ωN (i, j) and λNj (t− τ̃Nj ) are independent conditionally on FN0
and since the functions (λNj ) are uniformly upper-bounded by λ∗:

VarN0
[
ωN (i, j) · λNj (t− τ̃Nj )

]
≤ (λ∗)2 · EN0

[
ωN (i, j)2

]
. (5.35)

The argument for the following inequality is then the same as for (5.34):

1

N

∑
i∈SN (0)

EN0
[(
V
N,1
i (t)

)2] ≤ (λ∗)2 ·
[
ΥN + ω∗ · γ̄N

]
. (5.36)

Concerning the sequence (V
N,0
i (t)), we first recall the following identity for any j ∈ IN (0)

as part of Assumption 2.6:

EN0
[
λNj (ANj (0) + t)

]
=
λ̄(XN

j , A
N
j (0) + t)

F c
XN
j

(ANj (0))
. (5.37)

Since ωN (i, j) and λNj (ANj (0) + t) are independent conditionally on FN0 , we deduce that

V
N,0
i (t) is also conditionally centered, whatever i ∈ SN (0) and t ≥ 0. We can then exploit

the same argument for V
N,0
i (t) as for V

N,1
i (t), thanks to the Cauchy-Schwartz inequality

and replacing (5.35) by

VarN0
[
ωN (i, j) · λNj (ANj (0) + t)

]
≤ (λ∗)2 · EN0

[
ωN (i, j)2

]
.

Lemma 5.7 is therefore concluded with V
N

in (5.27). �

L
N,1

and L
N,0

as defined respectively in (5.10) and (5.14) are quite directly upper-bounded.

Lemma 5.8. By virtue of Assumptions 2.6 and 3.1:∣∣∣LN,1(t, x)
∣∣∣+
∣∣∣LN,0(t, x)

∣∣∣ ≤ λ∗ · ‖ω̄N − ω̄‖∞
holds for any t > 0 and x ∈ X.
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Proof. We first upper-bound |ω̄N (x, x′)− ω̄(x, x′)| by ‖ω̄N − ω̄‖∞. By virtue of Assumption
2.6, we exploit λ∗ as the upper-bound for any x′ ∈ X and any a′, t ∈ R+ of E[λ̄(x′, t− τ̃x′)]
in (5.10) and of λ̄(x′, a′+ t)/F cx′(a

′+ t). Since F cx′ is non-increasing for any such x′ by virtue
of Assumption 2.4, the latter upper-bound entails the one of λ̄(x′, a′ + t)/F cx′(a

′) in (5.14).

Finally, by virtue of the considered scaling of µ̄S,N (dx′) and of µ̄I,N (dx′,da′), recall (3.1),
their added masses is upper-bounded by 1, which concludes the proof of Lemma 5.8. �

In order to finally deal with the upper-bound of both E
N,1

and E
N,0

, defined respectively
in (5.12) and (5.15), we exploit the following proposition which will be proved in Appendix A.

Proposition 5.9. Let X and Y be Polish spaces. Let µ ∈ M(X ), ν ∈ M(Y) and k :
X × Y 7→ R be a bounded measurable function that is continuous µ⊗ ν almost everywhere.
Let in addition (µN )N≥1 and (νN )N≥1 be two sequences of possibly random measures in
M(X ) and M(Y), respectively, that converge in probability respectively to µ and ν, for the
topology of weak convergence. Then, the following quantity converges to zero in probability
as N tends to infinity: ∫

X

∣∣∣ ∫
Y
k(x, y)[νN − ν](dy)

∣∣∣µN (dx).

We are now ready for the estimate of E
N,1

and E
N,0

provided in the next lemma.

Lemma 5.10. For any t > 0, the following random variable converges to 0 in probability as
N tends to infinity:

E
N

(t) := 〈µ̄S,N0 , |EN,1(t, .)|+ |EN,0(t, .)|〉 .

Proof. Recalling (5.15), the fact that 〈µ̄S,N0 , |EN,0(t, .)|〉 converges to zero is a direct conse-
quence of Proposition 5.9 with X = X, Y = X× R+ and

µN := µ̄S,N0 , µ := µ̄S0 , k(x, x′, a′) =

{
ω̄(x, x′) · λ̄(x′,a′+t)

F c
x′ (a

′) if F cx′(a
′ + t) > 0

0 otherwise,

νN (dx′,da′) := µ̄I,N0 (dx′, da′), ν(dx′,da′) := µ̄I0(dx′,da′) .

Assumption 3.1 states that µN and νN converge weakly to respectively µ and ν. Exploiting
first the fact that a 7→ F cx′(a) is non increasing, and next Assumption 2.6, we have that for
all x′ ∈ X, a′, t ≥ 0,

λ̄(x′, a′ + t)

F cx′(a
′)

≤ λ̄(x′, a′ + t)

F cx′(a
′ + t)

≤ λ∗ .

We recall also the uniform upper-bound ω∗ of ω̄N , as defined just after Lemma 3.4. ω∗ · λ∗
thus defines a global upper-bound of k.

Note that λ̄(x′, a′) < λ∗ · F cx′(a′) as long as F cx′(a
′) > 0, by virtue of Assumption 2.6. By

virtue of Assumptions 2.4, 2.6 and 3.3, k is (µ⊗ ν) a.e. continuous, those points (x, x′, a′)
that satisfy F cx′(a

′) = 0 being handled specifically thanks to the above property. Indeed,
thanks to the second part of Assumption 3.3 for (µ⊗ ν) almost every such realization, since
t > 0, we know that for any (x̌, x̌′, ǎ′) in a small enough neighborhood of (x, x′, a′) that
F cx̌′(ǎ

′ + t) = 0, thus λ̄(x̌′, ǎ′ + t) = 0 and k(x̌, x̌′, ǎ′) = 0.

Recalling (5.12), the fact that 〈µ̄S,N0 , |EN,1(t, .)|〉 converges to zero is a consequence as
well of Proposition 5.9 with this time Y = X, still X = X and

µN = νN := µ̄S,N0 , µ = ν = µ̄S0 , k(x, x′) = ω̄(x, x′) · E[λ̄(x′, t− τ̃x′)] .
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The fact that µN and νN converge weakly in probability to µ = ν follows from Assumption 3.1.
k is bounded under Assumptions 2.2 and 3.3. To check that k is (µ⊗ ν) a.e. continuous, we
exploit the following alternative expression:

k(x, x′) = ω̄(x, x′)

∫ t

0
λ̄(x′, t− s) · F(s, x′) · exp

[
−
∫ s

0
F(r, x′)dr

]
,

derived with the same argument as for (5.24). Thanks to Assumptions 2.2 and 3.3 and
Lemma 4.2, we then conclude that k is (µ⊗ ν) a.e. continuous. �

With Lemmas 5.6, 5.7, 5.8 and 5.10, we are ready to prove the following comparison result
with the original model.

Proposition 5.11. As N →∞, D
N

(t) defined in (5.6) converges in probability to 0 locally
uniformly in t.

Proof. First note that it suffices to prove the convergence for any fixed t. The locally

uniform convergence then follows from Lemma A.1 in Appendix A since : t 7→ D
N

(t) is a.s.
non-decreasing for any N . For any i and t,

sup
r≤t
|DN

i (r)− D̃N
i (r)| ≤

∫ t

0

∫ ∞
0

1{u∈BNi (s)}Qi(ds, du),

where the interval BNi (s) is defined as follows:

BNi (s) =
[
F
N
i (s) ∧ F(s,XN

i ), F
N
i (s) ∨ F(s,XN

i )
]
,

with a length equal to
∣∣FNi (s)− F(s,XN

i )
∣∣. Summing over i and taking expectation on the

(Qi)i≤N , we obtain

D
N

(t) ≤ EN0
[ 1

N

∑
i∈SN (0)

∫ t

0
|FNi (s)− F(s,XN

i )|ds
]
. (5.38)

Starting from (5.38), for any i and t, we decompose the integrand into seven terms according
to Lemma 5.4. Five among these terms are first treated thanks to Lemmas 5.6, 5.7 and 5.8,

so that there exists C > 0, V
N

= λ∗ ·
√

ΥN + ω∗ · γ̄N and L
N

= λ∗ · ‖ω̄N − ω̄‖∞, the later
two converging in probability to zero by virtue respectively of Assumptions 3.5 and 3.3, such
that

D
N

(t) ≤ C ·
∫ t

0
D
N

(s) + t · (2VN
+ L

N
) +

∫ t

0
〈µ̄S,N0 , |EN,1(s, .)|+ |EN,0(s, .)|〉ds . (5.39)

Thanks to Lemma 5.10, the integrand (〈µ̄S,N0 , |EN,1(s, .)|+ |EN,0(s, .)|〉)s∈[0,t] converges to 0
pointwise in probability for any s > 0. By virtue of Assumption 2.6 and Lemma 3.4, for the
defining properties of λ∗ and ω∗, we obtain that

|EN,1(s, x)| ∨ |EN,0(s, .)| ≤ ω∗ λ∗,

holds for any s ≥ 0 and any x ∈ X. Since µ̄S,N0 (X) ≤ 1, the integrand is itself upper-bounded
by ω∗ λ∗. By Lebesgue’s dominated convergence theorem, we deduce the convergence to 0 in
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probability as N tends to infinity of the following random variable for any t, the r.v. being
non-decreasing with t: ∫ t

0
〈µ̄S,N0 , |EN,1(s, .)|+ |EN,0(s, .)|〉ds .

With (5.39), we are therefore in situation to apply Gronwall’s inequality and conclude

Proposition 5.11 in that D
N

(t) converges to 0 in probability for any t as N →∞. �

Before proceeding, let us state a result in Proposition 5.12 which is exactly Theorem II.4.1
in [46] and will be needed in the next proof. Let us generally consider a Polish space X and
the set Cb(X ) of bounded continuous functions on X . We say that a subset M of Cb(X ) is
separating if (i) it includes the constant function : x 7→ 1 and (ii) it discriminates elements
of M1(X ), in that for any (ν, ν ′) ∈ M1(X )2, ν = ν ′ is equivalent to the property that
〈ν, φ〉 = 〈ν, φ〉 for any φ ∈M. It is classical that Cb(X ) itself is separating.

Proposition 5.12. A sequence of processes (νN )n∈N∗ is C-tight in D if and only if:

(a) Compact Containment Condition (CCC). For all ε > 0 and T , there exists a
compact set Kε in X such that:

sup
N∈N∗

P

(
sup
t≤T

νNt (Kc
ε) > ε

)
< ε.

(b) Tightness of the projections. The sequence (〈νN· , ϕ〉)N∈N∗ is C-tight in D(R+,R)
for any function ϕ in a separating class M.

We can then conclude to the convergence of the measure µ̄S,N :

Proposition 5.13. As N →∞, the following convergence holds in probability

µ̄S,N → µ̄S in D(R+,M(X)) .

Proof. We apply Proposition 5.12 with X = X, νN = µ̄(S,N) and M = Cb+(X) the set of
bounded continuous functions from X to R+. Cb+(X) is separating since Cb(X) is itself

separating. Point (a) follows readily from the two facts: µ̄
(S,N)
t (Kc

ε) ≤ µ̄
(S,N)
0 (Kc

ε), and

µ
(S,N)
0 ⇒ µS0 in probability (exploiting for instance the Lévy-Prokhorov metric).
Concerning Point (b), let us consider any ϕ ∈ Cb(X), ϕ ≥ 0. Recall that from Lemma 5.1

〈µ̃(S,N)
t , ϕ〉 converges in probability to 〈µ̄St , ϕ〉 for any t > 0. Moreover, by definition of

µ̃(S,N) and D
N

in respectively (5.2) and (5.6):∣∣〈µ̄(S,N)
t , ϕ〉 − 〈µ̃(S,N)

t , ϕ〉
∣∣ ≤ ‖ϕ‖∞ ·DN

t , (5.40)

with an upper-bound that converges to 0 in probability locally uniformly in t thanks to

Proposition 5.11. Therefore, 〈µ̄(S,N)
t , ϕ〉 converges in probability to 〈µ̄St , ϕ〉 pointwise for

any t > 0. In addition, since ϕ is non-negative, t → 〈µ̄(S,N)
t , ϕ〉 is non-increasing for each

N ≥ 1. Also, t→ 〈µ̄St , ϕ〉 is continuous for any N . Thanks to Lemma A.1 in Appendix A,

the convergence in probability of 〈µ̄(S,N)
t , ϕ〉 to 〈µ̄St , ϕ〉 therefore holds locally uniform in t.

Thanks to Proposition 5.12, the sequence (µ̄(S,N))N∈N∗ is thus C-tight. By the convergence

of the projection, any limit point is necessarily µ̄
(S)
· , which concludes that µ̄(S,N) converges

to µ̄(S) in D(R+,M(X)). �



31

The above arguments directly entail the following pointwise in time convergence result on
the potential force of infection.

Proposition 5.14. The following convergence to 0 in conditional expectation holds for any
t > 0:

lim
N→∞

EN0

[
1

N

∑
i∈SN (0)

∣∣∣FNi (t)− F(t,XN
i )
∣∣∣] = 0. (5.41)

Proof. As a consequence of Lemmas 5.4 , 5.6, 5.7, 5.8 and 5.10, we obtain

EN0

[
1

N

∑
i∈SN (0)

∣∣∣FNi (t)− F(t,XN
i )
∣∣∣] ≤ C ·DN

(t) + 3V
N

+ λ∗ · ‖ω̄N − ω̄‖∞ + E
N

(t)

where C, λ∗ <∞ while D
N

(t), V
N

, ‖ω̄N − ω̄‖∞ and E
N

(t) all tend to 0 thanks respectively
to Proposition 5.11, Assumption 3.5, Assumption 3.3, and Lemma 5.10. This concludes the
proof of Proposition 5.14. �

As a consequence of Propositions 5.11 and 5.14, by exploiting a similar approach as for
the convergence to µ̄St in Lemma 5.1, we could typically prove the following pointwise in
time convergence in probability in terms of any test function ϕ ∈ Cb(X):∑

i≤N
F
N
i (t)1{DNi (t)=0} ϕ(XN

i )→ 〈F(t)µ̄St , ϕ〉 .

The test function ϕ evaluates here the convergence of a distribution on X that we call the
activated force of infection. The measure on the left-hand side can be interpreted as minus
the derivative of the process µ̄S at time t.

5.2. Convergence of (µ̄I,N· , µ̄R,N· ). Because the proof is simpler and more related to the one
of Proposition 5.13 we first justify in the next proposition the convergence of the LLN-scaled

recovered process µ̄R,Nt , before we treat similarly in Proposition 5.16 the process µ̄I,Nt .

Proposition 5.15. As N →∞, the following convergence holds in probability

µ̄R,N → µ̄R in D(R+,M(X)) .

Proof. We distinguish three components depending on the initial condition of the individuals:

µ̄R,Nt = µ̄R,N0 + µ̄R,N,0t + µ̄R,N,1t , (5.42)

where the measures µ̄R,N,0 and µ̄R,N,1 act as follows on test functions ϕ ∈ Cb(R+) and time
t ≥ 0:

〈µ̄R,N,0t , ϕ〉 =
1

N

∑
j∈IN (0)

1{ηN,0j ≤t}ϕ(XN
j ) , (5.43)

and

〈µ̄R,N,1t , ϕ〉 =
1

N

∑
i∈DN (t)

1{τNi +ηNi ≤t}ϕ(XN
i ) . (5.44)

We recall that DN (t) is defined in (2.10) as the subset in SN0 of individuals infected by the

disease by time t. The convergence for the first term 〈µ̄R,N0 , ϕ〉 to 〈µ̄R0 , ϕ〉 follows directly
from Assumption 3.1.
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Concerning µ̄R,N,0, we will justify the convergence in probability through the computation
of the expectations and variances, conditional on FN0 .

EN0
[
〈µ̄R,N,0t , ϕ〉

]
=

∫ ∞
0

∫
X
ϕ(x)

(
1− F cx(a+ t)

F cx(a)

)
µ̄I,N0 (dx,da) (5.45)

Thanks to Assumption 3.1, the above conditional expectation converges in probability to

〈µ̄R,0t , ϕ〉 =

∫ ∞
0

∫
X
ϕ(x)

(
1− F cx(a+ t)

F cx(a)

)
µ̄I0(dx, da) . (5.46)

By the independence of the ηN,0j for j ∈ IN (0) conditionally on FN0 , we obtain

VarN0

[
〈µ̄R,N,0t , ϕ〉

]
=

1

N

∫ ∞
0

∫
X
ϕ(x)2 · F

c
x(a+ t)

F cx(a)
·
(

1− F cx(a+ t)

F cx(a)

)
µ̄I,N0 (dx,da)

≤ ‖ϕ‖
2
∞

N
.

(5.47)

Finally we conclude the convergence in probability of µ̄R,N,0t to µ̄R,0t as defined in (5.46).

We then look at the mean-field approximation of µ̄R,N,1 as defined in (5.44):

〈µ̃R,N,1t , ϕ〉 =
1

N

∑
i∈D̃N (t)

1{τ̃Ni +ηNi ≤t}ϕ(XN
i ) . (5.48)

We recall that D̃N (t) is defined in (5.8) as the subset of individuals infected according to
(τ̃Ni ) during the time-interval (0, t].

EN0
[
〈µ̃R,N,1t , ϕ〉

]
=

∫
X
ϕ(x)

∫ t

0
F(s, x) · exp

[
−
∫ s

0
F(r, x)dr

]
·Fx(t− s)ds µ̄S,N0 (dx) . (5.49)

Thanks to Assumption 3.1 and (3.10), the above conditional expectation converges in
probability to:

〈µ̄R,1t , ϕ〉 =

∫ t

0

∫
X
ϕ(x) · Fx(t− s) · F(s, x) · exp

[
−
∫ s

0
F(r, x)dr

]
µ̄S0 (dx) ds

=

∫ t

0

∫
X
ϕ(x) · Fx(t− s) · F(s, x)µ̄Ss (dx) ds .

(5.50)

By the independence of the ηNi and of the τ̃Ni for i ∈ SN (0) conditionally on FN0 , we obtain

VarN0

[
〈µ̃R,N,1t , ϕ〉

]
≤ ‖ϕ‖

2
∞

N
. (5.51)

Recalling (5.6), since the two events {τ̃Ni + ηNi ≤ t} and {τNi + ηNi ≤ t} agree on the event

{DN
i (r) = D̃N

i (r), ∀r ∈ [0, t]}:

|〈µ̃R,N,1t − µ̄R,N,1t , ϕ〉| ≤ ‖ϕ‖∞ ·D
N
t . (5.52)

The right-hand side converges in probability to 0 as N → ∞ thanks to Proposition 5.11.

With (5.49), (5.50), (5.51) and (5.52) we deduce the convergence in probability of 〈µ̃R,N,1t , ϕ〉
to 〈µ̃R,1t , ϕ〉 as defined in (5.48). By recalling (5.42), the convergence of µ̄R,N,0t and (3.9), we

conclude the convergence in probability of 〈µ̄R,Nt , ϕ〉 to 〈µ̄Rt , ϕ〉.
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For non-negative ϕ, the function : t 7→ 〈µ̄R,Nt , ϕ〉 is non-decreasing. We can thus easily
adapt the argument given in Proposition 5.13, which notably involves the tightness criteria
given in Proposition 5.12 with νN = µ̄R,N , still X = X and M = Cb+(X) so as to apply the

Second Dini theorem. For any t and any compact set K, µ̄R,Nt (Kc) ≤ µ̄NX(Kc) as defined in
(3.3). Since the latter converges in probability to µ̄X , recalling (3.3), we can find for any
ε > 0 some compact set Kε such that

sup
N≥1

P
(
µ̄NX(Kc

ε) > ε
)
< ε.

Point (a) in Proposition 5.12 is therefore verified as well. So we deduce that the convergence in
probability extends to the function µ̄R,N in D1, which concludes the proof of Proposition 5.15.

�

Proposition 5.16. As N →∞, the following convergence holds in probability

µ̄I,N → µ̄I in D(R+,M(X× R+)) .

Proof. Although the proof is more technical than the one of Proposition 5.15, we exploit
similar arguments. In order to exploit the Second Dini theorem, we wish to consider non-

increasing projections. This is why we will study the following extended measure µ̄SI,Nt for
test functions ψ in the set M(X× [−1,∞)) of functions from X× [−1,∞) to R+ that are
continuous, bounded, non-negative and non-increasing in the second variable:

〈µ̄SI,Nt , ψ〉 := 〈µ̄S,Nt , ψ( . ,−1)〉+ 〈µ̄I,Nt , ψ|X×[0,∞)〉

=
1

N

∑
i∈SN (0)

(
1{DNi (t)=0}ψ(XN

i ,−1) + 1{DNi (t)=1} 1{ηNi >t−τNi }ψ(XN
i , t− τNi )

)

+
1

N

∑
j∈IN (0)

1{ηN,0i >t}ψ(XN
j , A

N
j (0) + t) .

In words, µ̄SI,N is derived from the addition of both µ̄S,N and µ̄I,N where the first measure
on X is projected with a fixed component −1 according to the age variable. Intuitively, what
we are doing is considering susceptible individuals as infected with infection age −1. The
fact that ψ is non-negative implies that any recovery event leads to a reduction of 〈µ̄SI,N , ψ〉
at this particular time. The fact that ψ is non-increasing in the second variable implies
that the aging of the actively infected leads as well to a reduction of 〈µ̄SI,N , ψ〉 over time.
With this trick of combining µ̄S,N to µ̄I,N into µ̄SI,N , any infection event leads as well to a
reduction of 〈µ̄SI,N , ψ〉 at the infection time.

We will make use of Proposition 5.12 in combination with the following lemma by
considering for νN = µ̄SI,N the set X = X× [−1,∞) and the proposed set M(X× [−1,∞))
as the separating class.

Lemma 5.17. The set M(X × [−1,∞)) of functions that are continuous, bounded, non-
negative and non-increasing in the second variable is a separating class.

Proof. The fact that the constant function equal to 1 is part of M(X × [−1,∞)) comes
readily from the definition. If ν, ν ′ are such that 〈ν, φ〉 = 〈ν ′, φ〉 for any φ ∈ M, then the
classical approximation scheme of indicator functions by bounded continuous functions leads
to the identity ν(A× [−1, a]) = ν ′(A× [−1, a]), for any a ∈ [−1,∞) and measurable subset
A of X. The sets of this form A× [−1, a] form a π-system of subsets of the product space
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X× [−1,∞) that contains X× [−1,∞) itself and generates the Borel σ-field of X× [−1,∞).
The identity ν = ν ′ is thus deduced thanks e.g. to [34, Lemma 1.17]. This concludes the
proof of Lemma 5.17. �

Then, it mainly remains to adapt the computations of conditional expectations and
variances from the proof of Proposition 5.15. µ̄I,N is similarly decomposed into the sum of
µ̄I,N,0 and µ̄I,N,1, that are represented as follows for any ψ ∈ Cb(X× R+) and t ≥ 0:

〈µ̄I,N,0t , ψ〉 =
1

N

∑
j∈IN (0)

1{ηN,0j >t}ψ(XN
j , A

N
j (0) + t) , (5.53)

and

〈µ̄I,N,1t , ψ〉 =
1

N

∑
i∈DN (t)

1{τNi +ηNi >t}ψ(XN
i , t− τNi ) . (5.54)

Concerning µ̄I,N,0, we have

EN0
[
〈µ̄I,N,0t , ψ〉

]
=

∫ ∞
0

∫
X
ψ(x, a+ t) · F

c
x(a+ t)

F cx(a)
µ̄I,N0 (dx, da)

Thanks to Assumption 3.1, the above conditional expectation converges in probability to:

〈µ̄I,0t , ψ〉 =

∫ ∞
0

∫
X
ψ(x, a+ t) · F

c
x(a+ t)

F cx(a)
µ̄I0(dx,da) . (5.55)

By the independence of the ηN,0j for j ∈ IN (0) conditionally on FN0 , we obtain

VarN0

[
〈µ̄I,N,0t , ψ〉

]
=

1

N

∫ ∞
0

∫
X
ψ(x, a+ t)2 · F

c
x(a+ t)

F cx(a)
·
(

1− F cx(a+ t)

F cx(a)

)
µ̄I,N0 (dx,da)

≤ ‖ψ‖
2
∞

N
.

So we conclude to the convergence in probability of 〈µ̄I,N,0t , ψ〉 to 〈µ̄I,N,0t , ψ〉 as defined in
(5.55), valid for any t > 0 and any ψ ∈ Cb(X× R+).

We then consider the mean-field approximation of µ̄I,N,1 as defined in (5.54), exploiting

the notations τ̃Ni and D̃N (t) from (5.8):

〈µ̃I,N,1t , ψ〉 =
1

N

∑
i∈D̃N (t)

1{τ̃Ni +ηNi >t}ψ(XN
i , t− τ̃Ni ) . (5.56)

EN0
[
〈µ̃I,N,1t , ψ〉

]
=

∫
X

∫ t

0
F(s, x) · exp

[
−
∫ s

0
F(r, x)dr

]
· Fx(t− s) · ψ(x, t− s)ds µ̄S,N0 (dx) .

(5.57)
Thanks to Assumption 3.1 and (3.10), the above conditional expectation converges in
probability to

〈µ̄I,1t , ψ〉 =

∫
X

∫ t

0
ψ(x, t− s) · Fx(t− s) · F(s, x) · exp

[
−
∫ s

0
F(r, x)dr

]
ds µ̄S0 (dx)

=

∫ t

0

∫
X
ψ(x, t− s) · Fx(t− s) · F(s, x)µ̄Ss (dx) ds .

(5.58)
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By the independence of the ηNi and of the τ̃Ni for i ∈ SN (0) conditionally on FN0 , we obtain

VarN0

[
〈µ̃I,N,1t , ψ〉

]
≤ ‖ψ‖

2
∞

N
. (5.59)

Recalling (5.6), since the two events {τ̃Ni + ηNi > t} and {τNi + ηNi > t} agree on the event

{DN
i (r) = D̃N

i (r), ∀t ∈ [0, t]}, we get

|〈µ̃I,N,1t − µ̄I,N,1t , ψ〉| ≤ ‖ψ‖∞ ·D
N
t . (5.60)

The right-hand side converges in probability to 0 as N tends to infinity thanks to Proposi-
tion 4.1. With (5.57), (5.58), (5.59) and (5.60) we deduce the convergence in probability of

〈µ̃I,N,1t , ψ〉 to 〈µ̃I,1t , ψ〉 as defined in (5.58).

This concludes the proof that 〈µ̄I,Nt , ψ〉 converges in probability to 〈µ̄It , ψ〉, for any t > 0

and any ψ ∈ Cb(X× R+). Recalling Proposition 5.13, we deduce specifically that 〈µ̄SI,Nt , ψ〉
converges in probability to 〈µ̄SIt , ψ〉, for any t > 0 and any ψ ∈M, where

〈µ̄SIt , ψ〉 := 〈µ̄St , ψ( . ,−1)〉+ 〈µ̄It , ψ|X×[0,∞)〉 . (5.61)

Note about the above definition of µ̄SIt through test functions ψ ∈M that it already uniquely
specifies µ̃SIt due to M being a separating class. The extension of this definition to any
ψ ∈ Cb(X× [−1,∞)) is yet very natural.

With the crucial arguments given at the beginning of this proof of Proposition 5.16, recall

that 〈µ̄SI,Nt , ψ〉 is for any ψ ∈ M non-increasing as a function of t. On the other hand,
〈µ̄SIt , ψ〉 is deterministic, continuous and non-increasing as a function of t. We can thus
adapt the argument given in Proposition 5.13 to show that the convergence in probability of

〈µ̄SI,Nt , ψ〉 to 〈µ̄SIt , ψ〉 is locally uniform in t. This concludes Point (b) in Proposition 5.12.
Concerning Point (a), we remark for any compact set K in X and any A > 0 that

µ̄SI,Nt

[
(K × [−1, A+ t])c

]
≤ µ̄S,N0

[
Kc
]

+ µ̄I,N0

[
(K × [0, A])c

]
. (5.62)

Since µ̄S,N0 and µ̄I,N0 converge in probability to respectively µ̄S0 and µ̄I0, there exists for any
ε > 0 such a compact set K in X and A > 0 that satisfy

sup
N

P(µ̄S,N0

[
Kc
]

+ µ̄I,N0

[
(K × [0, A])c

]
> ε) < ε.

Recalling (5.62), this entails Point (a), for any T > 0 with K(X ) = K × [−1, A + T ]. We

then exploit Proposition 5.12 and conclude the proof of Proposition 5.16 that µ̄(I,N), as the
restriction of µ̄(SI,N) to X×R+, converges in probability to µ̄(I,N) in D(R+,M(X×R+)). �

Appendix A. Technical supporting results

In Appendix A, we prove three technical results that are exploited in the current paper.
Lemma A.1 is used to deduce local uniform convergence in probability from pointwise
estimates. Proposition A.2 is used to deduce the a.e. continuity of sections of a.e. continuous
kernels. The more technical proof of proposition 5.9 is given afterwards.
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A.1. From pointwise to locally uniform convergence in probability.
In Lemma A.1, we state that the second Dini theorem extends to convergences in probability
of random functions.

Lemma A.1. Let ψ be a possibly random non-decreasing and continuous function from R+

to R. Let also ψn be a possibly random sequence of non-decreasing functions from R+ to R
that converges pointwise in probability to ψ. Then, ψn converges in probability to ψ locally
uniformly.

Proof. We exploit the relation between the convergence in probability and the a.s. conver-
gence along sequence extractions as stated in [34, Lemma 4.2].

Let (N [k])k≥1 ∈ NN be an increasing sequence and for any T , let (ti)i≥1 be a countable

dense subset of [0, T ]. By a triangular argument, we can then define an extraction (Ñn)n≥1 =

(N [kn])n≥1 ∈ NN, with the sequence (kn)n≥1 being increasing, such that for any i ≥ 1, ψÑn(ti)
converges a.s. to ψ(ti) as n tends to infinity. Thanks to the second Dini theorem (see Exercise
127 on page 81, and its solution on page 270 in Polya and Szegö [47]), this entails the a.s.

convergence of ψÑn(t) to ψ(t) uniformly in t ∈ [0, T ]. Since the sequence (Ñn) is an extraction
of any initial subsequence and T can be freely chosen, this concludes thanks to [34, Lemma

4.2] that ψÑn(t) converges in probability to ψ(t) locally uniformly in t. �

A.2. Almost everywhere continuity.

Proposition A.2. Assume that ω̄ is µ̄⊗2
X -a.e. continuous. Then the function : x 7→ ω̄(x, .)

is µ̄X a.e. continuous from X with values in L1(µ̄X).

Proof. Let us define the following function of x ∈ X and η > 0:

Ψ(x; η) = sup
{∫

X
|ω̄(x1, x

′)− ω̄(x2, x
′)| µ̄X(dx′); x1, x2 ∈ B(x; η)

}
,

where B[x; η] denotes the open ball centered in x of radius η. It follows from (4.6) that the
irregularities of F in x will be located through the following subsets Ψ[δ, η] of X, defined for
any δ, η > 0:

Ψ[δ, η] := {x ∈ X; Ψ(x; η) > δ}. (A.1)

On the other hand, the µ̄X -a.e. continuity of the kernel ω̄ is related to the two following
similar definitions. First the function Φ is defined for (x, x′) ∈ X2 and η > 0:

Φ((x, x′); η) = sup
{
|ω̄(x1, x

′
1)− ω̄(x2, x

′
2)|; (x1, x

′
1), (x2, x

′
2) ∈ B((x, x′); η)

}
,

with B[(x, x′); η] the open ball centered in (x, x′) of radius η (with the supremum norm
between the two components). Then, the sets Φ[δ, η] are defined for δ, η > 0 as:

Φ[δ, η] := {(x, x′) ∈ X2; Φ((x, x′); η) > δ}. (A.2)

The measurability of the sets Φ[δ, η] and Ψ[δ, η], for any δ, η > 0, is proven for completeness
in Lemma A.3 just after we conclude the proof of Proposition A.2.

Note that ∪δ>0 ∩η>0 Φ[δ, η] is exactly the set of discontinuity points in X2 of the kernel
ω̄. ∪δ>0 ∩η>0 Ψ[δ, η] similarly covers the set of discontinuity points in X of the function
: x 7→

∫
ω̄(x, x′) µ̄X(dx′). Since Φ[δ, η] is non-increasing in η and increasing in δ, the fact
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that ω̄ is µ̄⊗2
X a.e. continuous translates into the following convergence property to 0 for any

δ > 0:
lim
η→0

µ̄⊗2
X (Φ[δ, η]) = 0. (A.3)

We will also consider the sections Φx[δ, η] of Φ[δ, η] with the fixed first component x, i.e.,

Φx[δ, η] := {x′ ∈ X; (x, x′) ∈ Φ[δ, η]}. (A.4)

Then, by exploiting ω∗ as the uniform upper-bound of the non-negative kernel ω̄ and recalling
(A.2), we deduce the following inequality for any x ∈ X, δ, η > 0,

Ψ(x; η) ≤ ω∗ · µ̄X(Φx[δ, η]) + δ.

As a consequence, for any x ∈ Ψ[2δ, η], it holds that µ̄X(Φx[δ, η]) ≥ δ/ω∗. Since µ̄X is a
probability measure, it entails the following for any δ, η > 0,

µ̄⊗2
X (Φ[δ, η]) ≥ δ

ω∗
µ̄X(Ψ[2δ, η]).

Recalling from (A.3) that the l.h.s. tends to zero as η tends to 0, so does the sequence
µ̄X(Ψ[δ, η]) for any δ. Up to the next Lemma A.3, this concludes the proof of Proposition A.2.

�

Lemma A.3. For any δ, η > 0, the sets Φ[δ, η] and Ψ[δ, η] as defined respectively in (A.2)
and (A.1) are measurable.

Proof. The measurability of the set Φ[δ, η] can be verified through the following definition,
which happens to be equivalent to the one given in (A.2):

Φ[δ, η] = ∪{q∈Q+,m≥1}ω̄
−1([0, q])η ∩ ω̄−1([q + δ + 2−m, ω∗])η,

where Aη is defined as follows for any Borel subset A of X2 and any η > 0:

Aη := {(x, x′) ∈ X2; B[(x, x′); η] ∩A 6= ∅}, (A.5)

so that Aη denotes the η-vicinity of A.
The measurability of the sets Ψ[δ, η] is a bit more technical than the one of Φ[δ, η], yet

follows similar ideas. We exploit here the density in L1(µ̄X) of a countable subset Q,
according to [16, Proposition 3.4.5]. Let εm = 2−m and W : x ∈ X 7→ ω(x, .). Then, we
claim that the following definition is equivalent to the one of Ψ[δ, η] in (A.1):

Ψ[δ, η] = ∪{m≥1} ∪{(ω1,ω2)∈Q2∩Dδ,m}W
−1
(
BL1(µ̄X)(ω1, εm)

)η
∩W−1

(
BL1(µ̄X)(ω2, εm)

)η
,

where the couple (ω1, ω2) ∈ Q2 belong to Dδ,m provided that∫
X
|ω1 − ω2| µ̄X ≥ δ + 2εm. (A.6)

It is clear from this definition that Ψ[δ, η] is measurable. We next prove the equality with
Ψ[δ, η]. If x ∈ Ψ[δ, η], then it means that there exists m ≥ 1, (ω1, ω2) ∈ Q2 ∩ Dδ,m and
(x1, x2) ∈ B(x, η)2 such that∫

X
|ω(x1, .)− ω1| µ̄X < εm,

∫
X
|ω(x2, .)− ω2| µ̄X < εm.

This entails the following property from which x ∈ Ψ[δ, η] is a direct consequence:∫
X
|ω(x1, .)− ω(x2, .)| µ̄X > δ. (A.7)
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Reciprocally, if we assume that there exist a couple (x1, x2) ∈ B(x, η)2 which satisfies (A.7),
then we can first choose m ≥ 1 such that∫

X
|ω(x1, .)− ω(x2, .)| µ̄X ≥ δ + 4εm.

We can next identify two elements (ω1, ω2) ∈ Q2 in respectively BL1(µ̄X)(ω(x1, .), εm) and

BL1(µ̄X)(ω(x2, .), εm). By construction, (ω1, ω2) ∈ Dδ,m, x1 ∈ W−1
(
BL1(µ̄X)(ω1, εm)

)
and

similarly for x2 (with ω2 instead of ω1). This entails that x ∈ Ψ[δ, η]. From this we have
concluded that Ψ[δ, η] = Ψ[δ, η], so that the former is indeed measurable. �

A.3. Proof of Proposition 5.9. We first consider (µN ) and (νN ) as deterministic sequences,
and then extend the result to random sequences in the last fifth step of the proof.

Proof. By linearity of the above quantity in the function k and in the pair (νN , ν), we may
assume without loss of generality that k is non-negative and bounded by 1, while νN (Y) ≤ 1
and ν(Y) ≤ 1. Let us define the integrand in x as εN (x):

εN (x) =
∣∣ ∫
Y
k(x, y)[νN − ν](dy)

∣∣ . (A.8)

In the degenerate case where ν ≡ 0, the convergence of 〈µN , εN 〉 to 0 can be directly
deduced with the upper-bound of εN by ‖k‖∞ ·νN (Y) which converges to 0. In the degenerate
case where µ ≡ 0, it suffices to take 3‖k‖∞ · ν(Y) as the uniform upper-bound of εN for any
N sufficiently large, as µN (X ) then tends to 0. In the following, we can thus assume that
both ν(Y) > 0 and µ(X ) > 0.

The irregularities of k will be located through the following subset G[δ, η] of X ×Y , defined
for any δ, η > 0 similarly as in (A.2):

G[δ, η] := {(x, y) ∈ X × Y; Diamk(B[(x, y); η]) > δ}, (A.9)

where the diameter function Diamk corresponding to the kernel k is defined as follows for
any measurable subset A of X × Y:

Diamk(A) := sup{|k(z)− k(z′)|; z, z′ ∈ A}, (A.10)

while B[(x, y); η] denotes the open ball centered in (x, y) of radius η. The size η of the
vicinities in (A.9) shall be considered sufficiently small to ensure that discrepancies of order
δ are exceptional. The measurability of G[δ, η], for any δ, η > 0, is proved as in Lemma A.3.

Step 1: Convergence of 〈µ, εN 〉 to zero.
Since k is continuous µ⊗ ν almost everywhere, in particular, k(x, .) is continuous ν almost
everywhere for x on a measurable set A ⊂ X such that µ(A) = 1. For any x ∈ A, thanks
to the Portmanteau theorem, see e.g. [30], Subsection IV.3a on the ”Weak Convergence of
Probability Measures”, εN (x) converges to 0. Remark as compared to the classical version
of Portmanteau theorem that we allow νN and ν to be general non-negative finite measure
rather than probability measures, given that the proof is not difficult to adapt for this
setting. As a consequence of Lebesgue’s dominated convergence theorem, recalling that εN

is bounded (by 1 under our assumption), we deduce

lim
N→∞

〈µ, εN 〉 = 0. (A.11)
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Step 2: Convergence of [µ⊗ ν](G[δ, η]) and [µ⊗ νN ](G[δ, η]) to zero.
Remark that the points of discontinuity of the kernel k are identified as follows in terms of
the sets G[δ, η]:

∪n≥1 ∩m≥1 G[2−n, 2−m].

Note also that the sets G[δ, η] are increasing as δ decreases and non-increasing as η decreases.
Therefore, due to the fact that k is µ ⊗ ν almost everywhere continuous, the following
convergence to zero holds for any δ:

lim
η→0

[µ⊗ ν](G[δ, η]) = 0. (A.12)

Secondly, we remark that the weak convergence of νN to ν implies the weak convergence of
µ⊗ νN to µ⊗ ν. For any N sufficiently large, thanks to the Portmanteau theorem:

[µ⊗ νN ](G[δ, η]) ≤ [µ⊗ ν](G[δ, η]η) + η, (A.13)

where we recall the notation Aη from (A.5). Since B[(x, y); η] ⊂ B[(x′, y′); 2η] holds true
for any (x′, y′) ∈ B[(x, y); η], it is a straightforward consequence of definition (A.9) that
G[δ, η]η ⊂ G[δ, 2η]. Recalling (A.12) and coming back to (A.13), we have proved the following
convergence to zero for any δ:

lim
η→0

[µ⊗ νN ](G[δ, η]) = 0. (A.14)

Step 3: Relation between the level sets of εN to G[δ, η].
We consider for any value δ > 0 the corresponding level-set of εN :

HN [δ] := {x ∈ X ; εN (x) ≥ δ} . (A.15)

Let θ := 2 + 2ν(Y) > 0. For any η sufficiently small, we will relate in the following lemma
the intersection HN [δ]c ∩HN [θ δ]η to conditions on the following subsets of Y:

Gx[δ, η] := {y ∈ Y; (x, y) ∈ G[δ, η]}, (A.16)

namely the restriction of G[δ, η], recall (A.9), with x as the first coordinate.

Lemma A.4. The following inclusion holds for any δ, η > 0 and N ≥ 1:

HN [δ]c ∩HN [θ δ]η ⊂
{
x ∈ X ; νN (Gx[δ, η]) ≥ δ

2

}
∪
{
x ∈ X ; ν(Gx[δ, η]) ≥ δ

2

}
.

Proof. Let us consider any x ∈ HN [δ]c ∩HN [θ δ]η. We can thus choose some x′ ∈ HN [θ δ] ∩
B(x, η). By virtue of (A.16), for N sufficiently large, we obtain∣∣∣ ∫

Gx[δ,η]c
|k(x, y)− k(x′, y)| [νN − ν](dy)

∣∣∣ ≤ [νN ∨ ν](Gx[δ, η]c) · δ

≤ 2δ · ν(Y) ,

(A.17)

where we have exploited that k, νN and ν are non-negative and that νN (Y) converges to
ν(Y) > 0. On the other hand,∣∣∣ ∫

Gx[δ,η]
|k(x, y)− k(x′, y)| [νN − ν](dy)

∣∣∣ ≤ [νN ∨ ν](Gx[δ, η]), (A.18)

where we recall the assumption that k is non-negative and bounded by 1. Since x ∈ HN [δ]c

while x′ ∈ HN [θ δ]:

|εN (x)− εN (x′)| ≥ εN (x′)− εN (x) ≥ δ · (1 + 2ν(Y)).
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Recalling (A.8) to combine this result with (A.17) and (A.18), we deduce:

[ν ∨ νN ](Gx[δ, η]) ≥ δ.
This inequality implies either νN (Gx[δ, η]) ≥ δ/2 or ν(Gx[δ, η]) ≥ δ/2. This concludes the
proof of Lemma A.4. �

Step 4: Proof of Proposition 5.9 in the particular case where (µN ) and (νN ) are determinis-
tic.
For any δ > 0 and N ≥ 1 sufficiently large, since the mass of µN converges to the one of µ,
we obtain

〈µN , εN 〉 ≤ 2θ δ · µ(X ) + µN (HN [θ δ]), (A.19)

where we recall (A.15).
We choose η ∈ (0, δ) sufficiently small thanks to Step 2, to ensure both that [µ⊗ν](G[δ, η])

is smaller than δ2/2 and similarly for [µ⊗ νN ](G[δ, η]) for any N sufficiently large. Thanks
to the Markov inequality, we have

µ
({
x ∈ X ; ν(Gx[δ, η]) ≥ δ

2

})
≤ 2[µ⊗ ν](G[δ, η])

δ
≤ δ. (A.20)

Similarly,

µ
({
x ∈ X ; νN (Gx[δ, η]) ≥ δ

2

})
≤ 2[µ⊗ νN ](G[δ, η])

δ
≤ δ. (A.21)

Since µN converges weakly to µ, for any N sufficiently large we have

µN (HN [θ δ]) ≤ µ(HN [θ δ]η) + η, (A.22)

where we adapt the definition of η vicinity given in (A.5) to subsets of X . As we expect
HN [θ δ]η to be mostly comprised into HN [δ], we make the following distinction

µ(HN [θ δ]η) ≤ µ(HN [δ]) + µ(HN [δ]c ∩HN [θ δ]η). (A.23)

Thanks to the Markov inequality, we obtain

µ(HN [δ]) ≤ δ−1 · 〈µ, εN 〉,
which converges to 0 as N tends to infinity as stated in (A.11). We thus restrict to N
sufficiently large in order to ensure that

µ(HN [δ]) ≤ δ. (A.24)

On the other hand, as a consequence of Step 3, see Lemma A.4, we obtain

µ(HN [δ]c ∩HN [θ δ]η)

≤ µ
({
x ∈ X ; νN (Gx[δ, η]) ≥ δ

2

})
+ µ

({
x ∈ X ; ν(Gx[δ, η]) ≥ δ

2

})
. (A.25)

For the next upper-bound, valid for η sufficiently small then N sufficiently large, we recall
(A.20), (A.21), (A.23),(A.24), (A.25) and get

µ(HN [θ δ]η) ≤ 3δ.

It remains to combine this result with (A.19) and (A.22) to conclude the proof that (〈µN , εN 〉)
tends to 0 as N tends to infinity, since δ can be taken arbitrarily small. This concludes
the proof of Proposition 5.9 in the particular case where the sequences (µN ) and (νN ) are
deterministic.
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Step 5: Proof of Proposition 5.9 in the general case where (µN ) and (νN ) are random.
For this final step, we no longer require the sequences (µN ) and (νN ) to be a priori
deterministic, though our approach consists in referring to this convenient situation. We
exploit [34, Lemma 4.2] to relate the convergence of probability to a.s. convergence of
sequence extractions. Let (N [k])k≥1 ∈ NN be an increasing sequence. Since µN and νN

converge in probability, we can extract a subsequence (Ň [`])`≥1 = (N [K[`]])`≥1 from this

sequence such that (µ̌`) = (µŇ [`]) and (ν̌`) = (νŇ [`]) converge a.s. respectively to µ and ν.
On this event of probability 1, we deduce from Step 4 that 〈µ̌`, ε̌`〉 converges to 0 as ` tends
to infinity. Since the convergence of such an extraction of the sequence (〈µN , εN 〉) holds
whatever the initial extraction, this concludes the proof of Proposition 5.9 in that (〈µN , εN 〉)
converges in probability to 0. �
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New York, NY, 2013.

[17] L. Decreusefond, J.-S. Dhersin, P. Moyal, and V. C. Tran. Large graph limit for an SIR process in
random network with heterogeneous connectivity. Ann. Appl. Probab., 22(2):541–575, 2012.

[18] M. Deijfen. Epidemics and vaccination on weighted graphs. Mathematical Biosciences, 232(1):57–65,
2011.

[19] J.-F. Delmas, D. Dronnier, and P.-A. Zitt. An infinite-dimensional metapopulation SIS model. J. Differ.
Equ., 313:1–53, 2022.
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