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Abstract

We consider a semilinear parabolic partial differential equation inR+×[0, 1]d ,
where d = 1, 2 or 3, with a highly oscillating random potential and either homoge-
neousDirichlet orNeumann boundary condition. If the amplitude of the oscillations
has the right size compared to its typical spatiotemporal scale, then the solution of
our equation converges to the solution of a deterministic homogenised parabolic
PDE, which is a form of law of large numbers. Our main interest is in the associated
central limit theorem. Namely, we study the limit of a properly rescaled difference
between the initial random solution and its LLN limit. In dimension d = 1, that
rescaled difference converges as onemight expect to a centred Ornstein–Uhlenbeck
process. However, in dimension d = 2, the limit is a non-centred Gaussian process,
while in dimension d = 3, before taking the CLT limit, we need to subtract at an
intermediate scale the solution of a deterministic parabolic PDE, subject (in the
case of Neumann boundary condition) to a non-homogeneous Neumann boundary
condition. Our proofs make use of the theory of regularity structures, in particular
of the very recently developed methodology allowing to treat parabolic PDEs with
boundary conditions within that theory.
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1. Introduction

Fix D = [0, 1]d with d ≤ 3, and consider the family of functions uε : [0, T ] ×
D → R solving the PDE

∂t uε(t, x) = �uε(t, x)+ H(uε(t, x))+ G(uε(t, x))ηε(t, x), uε(0, x) = u0(x),

(1.1)

endowed with either Dirichlet boundary conditions uε(t, x) = 0 for x ∈ ∂D or
Neumann boundary conditions 〈n(x),∇uε(t, x)〉 = 0,where n denotes the outward
facing unit vector normal to the boundary of D. The driving noise ηε appearing in
this equation is given by

ηε(t, x) = ε−1η(ε−2t, ε−1x), (1.2)

where η(t, x) is a stationary centred random field, which we do not assume Gaus-
sian, but with relatively good mixing properties (see Assumption 2.1 for details)
and moments of all orders after testing against a test function. Note that ηε is scaled
by ε−1 rather than ε−(d+2)/2, so the noise from [10,14] (which were restricted to
d = 1) has been multiplied by εd/2.

In the case when G is linear and H = 0, this problem has been well studied.
See for example [1] for the case where furthermore η is Gaussian and constant in
time [note that in our case m = 2 so the exponent α appearing there would equal
1 in our case, as used in (1.2)], [4] for a similar result in the non-Gaussian case.

Although we will allow η to be a generalised random field in d = 1, we assume
throughout that there exist locally integrable functions κp : (Rd+1)p → R that are
continuous outside of the big diagonal �p = {(z1, . . . , z p) ∈ (Rd+1)p : ∃i 	=
j with zi = z j } and such that, for any C∞0 test functions φ1, . . . , φp, the joint
cumulant κp(φ1, . . . , φp) of η(φ1), . . . , η(φp) satisfies

κp(φ1, . . . , φp) =
∫

κp(z1, . . . , z p) φ1(z1) · · ·φp(z p) dz1 · · · dz p.

(By stationarity, the functions κp only depend on the differences of their arguments.)
Here and below, we always use the convention that z (resp. zi , z̄, etc) denotes a
space-time coordinate given by z = (t, x) (resp. zi = (ti , xi ), z̄ = (t̄, x̄), etc). We
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furthermore normalise our problem by assuming that the covariance of η integrates
to 1 in the sense that

∫
Rd+1

κ2(0, z) dz = 1. (1.3)

In particular, we assume that κ2(0, ·) is absolutely integrable, but this will in any
case follow from Assumption 2.1. Furthermore, define the constants

=
∫

P(z) κ2(0, z) dz, =
∫

P(z) xκ2(0, z) dz,

=
∫

P(z)P(z′) κ3(0, z, z′) dz dz′, =
∫

P(z)P(z′ − z) κ3(0, z, z
′) dz dz′,

where P denotes the heat kernel, that is the fundamental solution to the heat
equation on the whole space. Here and below, symbols drawn in red denote fixed
constants, while symbols drawn in blue will later denote basis vectors of a suitable
regularity structure associated to our problem. In dimension d = 1, our assumptions
on κ2 will guarantee that the integral converges absolutely, while in dimensions
2 and 3 our assumptions on κ2 and κ3 will guarantee that all of these integrals
converge absolutely.

The scaling ε−1 chosen in ηε is such that uε converges as ε → 0 to a limit u(0),
which is our first result. Indeed, writing

Hη(u) = H(u)+ G ′(u)G(u), (1.4)

we have the following “law of large numbers”:

Theorem 1.1. Let uε be as above and let u(0) be the (local) solution to the deter-
ministic PDE

∂t u
(0) = �u(0) + Hη(u

(0)), (1.5)

with the same initial condition u0 ∈ Cα as (1.1) [for some arbitrary α ∈ (0, 1)]
and with homogeneous Dirichlet (resp. Neumann) boundary condition. In the case
of Dirichlet boundary conditions, we impose that u0 vanishes on the boundary.

Assume that the functions G, H : R → R are of class C5 and C4 respectively,
that the driving field η satisfies Assumption 2.1, and let furthermore T > 0 be such
that the (possible) explosion time for u(0) is greater than T . Then, in probability
and uniformly over [0, T ] × D, uε converges to u(0) as ε → 0.

The proof of this result will be given in Section 3. Our main quantity of interest
however are the fluctuations of uε around its limit u(0). One interesting feature of
this problem is that in order to see these fluctuations, it is not sufficient to recenter
around u(0). Instead, as soon as d ≥ 2, a suitable first-order correction u(1) living
at scale ε has to be subtracted first. Our precise “central limit theorem” then takes
the following form:
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Theorem 1.2. Let u0 be such that its extension to all ofRd by reflections1 is of class
C3, let uε and u(0) be as above and assume G, H, T and η are as in Theorem 1.1.
Let furthermore u(1) = 0 for d = 1 and, for d ∈ {2, 3}, let u(1) be the solution to

∂t u
(1) = �u(1) + H ′

η(u
(0))u(1) +	(u(0),∇u(0)),

	(u, p) = 1

2
(G2G ′′)(u)+ (G(G ′)2)(u)+ (G ′)2(u) 〈 , p〉, (1.6)

with zero initial condition. (Note that is an Rd -valued constant.) In the case of
Neumann boundary condition, we furthermore impose that 〈∇u(1)(t, x), n(x)〉 =
c(x)GG ′(u(0)(t, x)) for x ∈ ∂D, where c is an explicit function on the boundary
of D which is constant on each of its faces [the precise values of c on each face will
be given in (5.16)], while we impose homogeneous Dirichlet boundary conditions
otherwise.

Then, in law and in Cα([0, T ] × D) for any α < 1− d
2 , one has

lim
ε→0

uε − u(0) − εu(1)

εd/2
= v, (1.7)

where v is the Gaussian process solving

∂tv = �v + H ′
η(u

(0))v + G(u(0))ξ, (1.8)

endowed with homogeneous Dirichlet (resp. Neumann) boundary condition and 0
initial condition, and ξ denotes a standard space-time white noise.

Proof. Combining Proposition 4.18 with Proposition 4.16 and (4.1) shows that if
we set vε = ε−d/2

(
uε − u(0) − εu(1)

)
then we do indeed have limε→0 vε = v

(weakly in C(d−2)/2−κ on [0, T ]). The limit v is identified as the solution to (1.8)
by combining the second part of Proposition 4.16 with Lemma 4.10. �
Remark 1.3. If all we were interested in is the law of large numbers, then the
conditions of Assumption 2.1 on η could easily be weakened.

Remark 1.4. In the case of Neumann boundary conditions, it may appear paradoxal
that, even though uε, u(0) and v all satisfy homogeneous boundary conditions,
u(1) does not! This phenomenon is very similar to the presence of the “boundary
renormalisation” that can appear in the context of singular SPDEs [9]. There is
no contradiction since the convergence vε → v takes place in a very weak topol-
ogy in which the notion of “normal derivative at the boundary” is meaningless in
a pointwise sense. (A very simple example displaying a similar phenomenon is
n−1/2 sin(nx), whose derivative at the origin diverges like

√
n while that of its limit

vanishes.)

1 Here we perform the reflections consistent with the reflection principle for our choice
of boundary conditions.
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Remark 1.5. Regarding the precise meaning of the equation fulfilled by u(1) in the
case of Neumann boundary condition, denote by δ∂D the distribution on R × ∂D
given by

δ∂D(φ) =
∫
R

∫
∂D

φ(t, x) dx dt,

where the integrationover the faces of ∂D are performedagainst the two-dimensional
Lebesgue measure. With this notation, the solution to any equation of the form

∂t u = �u + f in D, 〈∇u(t, x), n(x)〉 = g(x) on ∂D, u(0, x) = u0(x),

(1.9)

(and in particular the equation determining u(1)) is defined as the solution to the
integral equation

u(z) =
∫
D
PNeu(z, (0, x

′)) u0(x ′) dx ′ +
∫
R4

PNeu(z, z
′)
(
f 1D+ + gδ∂D

)
( dz′),

(1.10)

where PNeu denotes the homogeneous Neumann heat kernel, with the convention
that g(t, x) = 0 for t ≤ 0, and where 1D+(t, x) = 1{t≥0}1{x∈D}. Here, we used the
notation

∫
φ(z) η( dz) for the usual pairing between a distribution η and a suitable

test function φ. To see that solutions to (1.10) and (1.9) do indeed coincide if f and
g are sufficiently regular for the solution to be differentiable up to the boundary,
it suffices to note that the mild formulation is equivalent to the weak formulation,
see for example [20], with the term gδ∂D appearing as the boundary term when
integrating by parts.

Remark 1.6. In dimension d = 1, the term u(1) in (1.7) is of course redundant. In
dimension d = 2, it is still the case that ε−d/2(uε − u(0)) converges to a limit,
but this limit is not centred anymore. In higher dimensions, additional corrections
appear. We expect to have a result of the form

lim
ε→0

ε−d/2

⎛
⎝uε −

�d/2�∑
k=0

εku(k)

⎞
⎠ = v, (1.11)

where u(0) is as above and the ū(k) satisfy an equation of the type

∂t u
(k) = �u(k) + H ′

η(u
(0))u(k) +	k,

for some inhomogeneity 	k depending on the u(�) for � < k and some of their
derivatives. Since v has vanishing expectation, we expect to also have

lim
ε→0

ε−d/2(uε − Euε
) = v,

so that the u(k) provide an expansion of Euε in powers of ε. Note however that the
techniques used in this paper do not provide moment bounds on the solution, so
that even in d ≤ 3 this would require some additional work.
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Remark 1.7. The form of the terms appearing in the successive correctors as well
as the constants multiplying them can in principle be derived from [2, Eq. 2.12]
which describes the form of the counterterms ϒ associated to a given tree τ . The
recursion given there suggests a correspondence ∼ G(u) with incoming edges
corresponding to functional derivatives with respect to u (so ∼ G ′(u) and ∼
G ′′(u)) and powers of X corresponding to formal directional derivatives, so ∼
G ′(u)∇u. This shows a priori that the counterterm multiplying for example must
be of the form G ′(u)G(u), etc. The numerical constants multiplying these terms do
however differ from those appearing in [2] since their meaning is slightly different:
in [2] we use counterterms to “recenter” the original equation in order to obtain a
finite limit while here we leave the original equation untouched and compute its
“centering”. If we leave aside the behaviour at the boundary, this in principle allows
to guess the general form of the equations for the u(k) appearing in (1.11) for any
dimension.

The most surprising part of Theorem 1.2 is surely the fact that in the case
when uε has homogeneous Neumann boundary conditions, even though v and u(0)

both also have homogeneous boundary conditions, u(1) does not, which seems to
contradict (1.7). This is of course not a contradiction but merely suggests that if
we write vε for the expression appearing under the limit in (1.7), then vε exhibits a
kind of boundary layer. Note also that the statement that “v satisfies homogeneous
boundary conditions” only makes sense in terms of the integral equation that it
solves since v itself is not differentiable at the boundary. (It is not even a function!)

Before we proceed, let us give a heuristic explanation for the appearance of
this boundary layer. Consider the simplest case H = 0, G(u) = u and u0 > 0, in
which case we can consider the Hopf-Cole transform hε = log uε, yielding

∂t hε = �hε + |∇hε|2 + ηε.

To leading order, one would expect the right hand side to behave like |∇hε|2 �
E|∇Zε|2,where Zε solves ∂t Zε = �Zε+ηε endowedwith homogeneousNeumann
boundary conditions. It turns out that, in the interior of the domain, one has

lim
ε→0

E|∇Zε|2 = ,

which allows one to “guess” the correct limit u(0). On the boundary however∇Zε =
0, so that one expects E|∇Zε|2 − to be of order O(1) in a layer of width O(ε)

around ∂D. When going to the next scale, this results in a boundary correction of
orderO(ε−1) in this boundary layer, which precisely scales like a surface measure
on the boundary. Remark 1.5 shows that the net effect of this correction is to modify
the boundary condition.

The remainder of the article is structured as follows. First, in Section 2, we
formulate our main assumption on the driving noise η and we show that this as-
sumption is “reasonable” by exhibiting an explicit class of examples for which it is
satisfied. In Section 3, we then show that the law of large numbers holds. Although
this could probably be shown by “classical” means without toomuch effort, we will
use the theory of regularity structures because it shortens the argument and allows
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us to introduce some results and notation that will be of use later on. In Section 4,
we then show that the central limit theorem holds. The main tool in this proof is
the convergence of a certain “model” for an appropriate regularity structure as well
as refinements of the type of boundary estimates first considered in [9]. The con-
vergence of the model is given in Section 5. “Appendix B” is devoted to the proof
of a result showing that the operations of “convolution by a singular kernel” and
“multiplication by a smooth function” almost commute, modulo a much smoother
remainder, a fact that will undoubtedly sound familiar to anyone acquainted with
microlocal analysis. “Appendix C” contains a version of the reconstruction theorem
that is purpose-built to allow us to deal with modelled distribution that have very
singular boundary behaviour and goes beyond the version obtained in [9]. This
appendix was written in collaboration with Máté Gerencsér.

2. Assumptions on the Noise

In this section,we formulate our precise assumptions on the drivingnoise andwe
show that they are satisfied for example by amollified Poisson process. In a nutshell,
we want to assume that correlations are bounded by ‖z− z̄‖−2c at small scales and
‖z − z̄‖−2c at large scales with c = 1

2 − δ and c = d+2
2 + δ for some δ ∈ (0, 1

2 ).
However, we also want to encode the fact that higher order cumulants behave
“better” than what is obtained from simply using the Cauchy–Schwartz inequality.
Note that our assumptions are trivially satisfied by any continuousGaussian process
with correlations that decay at least like ‖z− z̄‖−2c. Here and below, ‖·‖will always
denote the parabolic distance between space-time points. It will be convenient (in
particular in “Appendix A”) to make sure that ‖ · ‖ is smooth away from the origin,
so we set for example ‖z‖4 = ‖(t, x)‖4 = |x |4 + |t |2.

2.1. Coalescence Trees

In order to formulate this precisely, we need a simplified version of the con-
struction of [15, Appendix A]. Given any configuration (z1, . . . , z p) of p points in
Rd+1 with all distances distinct, we associate to it a binary tree T in the following
way. Consider Kruskal’s algorithm [17] for constructing the minimal spanning tree
of the complete graph with vertices {z1, . . . , z p} and edge-weights given by their
(parabolic) distances. One way of formalising this is the following. Consider the
set Pp of partitions of �p = {1, . . . , p}. We define a distance dz between subsets
of �p as the Hausdorff distance induced by {z1, . . . , z p}, namely

dz(A, B) = max
{
sup
i∈A

inf
j∈B ‖zi − z j‖, sup

j∈B
inf
i∈A ‖zi − z j‖

}
.

We then define a map K : Pp → Pp in the following way. If π = {�p}, then
K (π) = π . Otherwise, let A 	= B ∈ π be such that dz(A, B) ≤ dz(C, D) for all
C, D ∈ π . Thanks to our assumption on the zi , this pair is necessarily unique. We
then set

K (π) = (π\{A, B}) ∪ {A ∪ B},
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that is K (π) is obtained by coalescing the two sets A and B in the partition π .
The vertices of T are then given by VT = ⋃n≥0 K

n({{1}, . . . , {p}}), that is VT
consists of all the blocks of those partitions. The set VT comes with a natural partial
order given by inclusion: A ≤ B if and only if A ⊃ B. The (directed) edge set
ET ∈ VT × VT of T is then given by the Hasse diagram of (VT ,≤): (A, B) ∈ ET

if and only if A < B and there is no C ∈ VT such that A < C < B. It is easy to
verify that T is a binary tree and that its leaves are precisely given by the singletons.
It will be convenient to also add to VT a “point at infinity” � which is connected
to �p by an edge (�p,�) and to view � as the minimal element of VT .

We write V̊T = VT \{{1}, . . . , {p},�} for the interior nodes. Each interior node
A ∈ V̊T has exactly two children A1 and A2 such that (A, Ai ) ∈ ET for i = 1, 2.
We then define an integer labelling n : V̊T → Z by n(A) = −�log2 dz(A1, A2)�.
We will always view n as a function on all of VT with values in Z ∪ {±∞} by
setting n(�) = −∞ and n({i}) = +∞ for i = 1, . . . , p. Note now that if A, B
and C are three disjoint sets, then

dz(A, B) ≤ min{dz(A,C), dz(B,C)} ⇒ dz(A, B) ≤ dz(A ∪ B,C).

As a consequence, the map n is monotone increasing on VT . Furthermore, as in
[15, Eq. A.15], there exist constants c,C depending only on p such that

c2−n({i}∧{ j}) ≤ ‖zi − z j‖ ≤ C2−n({i}∧{ j}),

for all i, j .
Given a configuration of points z = (z1, . . . , z p) ∈ (Rd+1)p, we now write

tz = (T,n) for the corresponding data constructed as above.We furthermore define
a function ρ : R+ → R+ by

ρ(r) = r−c ∧ r−c.

(Beware that ρ is an upper bound for the square root of the covariance between
two points.) We then assume that the following bound holds:

Assumption 2.1. With the notations as above, for any p ≥ 2 and any {ki }pi=1 ⊂
Zd+1+ , the pth joint cumulant for η satisfies the bound

∣∣∣
( p∏
i=1

Dki
i

)
κp(z1, . . . , z p)

∣∣∣ � ρ
(
2−n(�p)

) ∏
A∈V̊T

ρ
(
2−n(A)) p∏

i=1

2|ki | n(i↑), (2.1)

uniformly over all z ∈ (Rd+1)p. (Recall that�p is the root of the tree T .) Here and
below, the length of the multiindex k should be interpreted in the parabolic sense,
namely |k| = 2k0 +∑d

i=1 ki .
In dimensions d ∈ {2, 3}, we furthermore assume that η : �×Rd+1 → R is a

measurable function with E|η(0)|p < ∞ for p = (d + 2)/c.

Remark 2.2. The additional condition that η takes values in L p for sufficiently high
p is mainly technical and could probably be dropped with some additional effort. It
will be used to bound R̂(d)

ε in the proof of Proposition 4.16. The exponent (d+2)/c
is consistent with the condition on the correlation function in the sense that this is
the lowest value of p for which L p

loc ⊂ C−c.
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Note also that the cumulants κ(ε)
p of the rescaled process ηε satisfy

κ(ε)
p (z1, . . . , z p) = ε−pκp(Sεz1, . . . , Sεz p), (2.2)

where Sε(t, x) = (t/ε2, x/ε).

2.2. Justification

We claim that the assumption on the noise is rather weak on the ground that
many natural constructions yield stationary random processes that satisfy it. We
provide details for the following example:

Proposition 2.3. Let θ : Rd+1 → R be smooth away from 0 and such that for
all k ∈ Zd+, |Dkθ(z)| � ‖z‖−2c−|k| for ‖z‖ > 1 and |Dkθ(z)| � ‖z‖−c−|k| for
‖z‖ ≤ 1. Let μ be a Poisson point measure over Rd+1 with intensity 1 and set
η = μ � θ , then η satisfies the above assumption.

Before proving this proposition, let us first establish a property of joint cumulants
of integrals of deterministic functions with respect to a Poisson point measure.

Lemma 2.4. Let p ≥ 1 and let f1, . . . , f p be elements of L1(Rd+1) ∩ L p(Rd+1),
and again μ be a Poisson point measure over Rd+1 with intensity 1. Then the
joint cumulant κp(μ( f1), . . . , μ( f p)) of the random variables μ( f1), . . . , μ( f p)
satisfies

κp(μ( f1), . . . , μ( f p)) =
∫
Rd+1

f1(z)× · · · × f p(z) dz.

Proof. It is sufficient to prove the result in case there exist disjoint Borel subsets
A1, . . . , Ak of Rd+1 with finite Lebesgue measure such that for 1 ≤ i ≤ p,

fi (z) =
k∑
j=1

ai, j1A j (z).

In this case, however, the result follows readily from the fact that the joint cumulant
is p-linear, and that the joint cumulant of a collection of random variables which
can be split into twomutually independent subcollections vanishes, see for example
property (iii) in [19, p. 32]. �
Proof of Proposition 2.3. It follows from Lemma 2.4 that

κp(z1, . . . , z p) =
∫
Rd+1

θ(z1 − z) · . . . · θ(z p − z) dz, (2.3)

so it remains to obtain a bound on this integral. We now consider z1, . . . , z p to be
fixed and we shall make use of the labelled tree (T,n) built from these points as
above. We are first going to treat the simpler case with all ki vanishing and then
show how the argument can be modified to deal with the general case.
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Case 1. The case with all ki = 0. For every edge e = (e, ē) ∈ ET and every n ∈ Z
with n(e) < n < n(ē), we define the domain

D(e,n) =
{
z ∈ Rd+1 : c−12−ni ≤ ‖z − zi‖ ≤ c2−ni , ∀i ∈ {1, . . . , p}},

where

ni =
{

n if {i} ≥ ē,
n({i} ∧ ē) otherwise.

It is possible to convince oneself that, provided that the constant c appearing in the
definition of D(e,n) is sufficiently large, one has

⋃
e∈ET

⋃
n(e)<n<n(ē)

D(e,n) = Rd+1\{z1, . . . , z p}, |D(e,n)| ≤ (2c)d+22−(d+2)n .

As a consequence, the integral appearing in (2.3) is bounded by some constant
times

∑
e∈ET

∑
n(e)<n<n(ē)

2−(d+2)n
p∏

i=1

ρ̄(2−ni ), ρ̄(r) = r−c ∧ r−2c. (2.4)

We first use the fact that ρ̄ is decreasing to conclude that, for n(e) < n < n(ē), one
has the bound

2−(d+2)n
p∏

i=1

ρ̄(2−ni ) ≤ 2−(d+2)n ρ̄(2−n)
∏
v∈V̊T

ρ̄(2−n(v)). (2.5)

This can be seen as follows.Write {v1, . . . , vk} for the (possibly empty) set of nodes
in V̊T lying on the shortest path joining ē to � (not including ē and � themselves).
We then have, for every j = 1, . . . , k,

∏
i : {i}∧ē=v j

ρ̄(2−ni ) =
∏

i : {i}∧ē=v j

ρ̄(2−n(v j )) ≤
∏

v∈V̊T : v∧ē=v j

ρ̄(2−n(v)),

since the number of factors appearing in each term is the same. Similarly, we have
∏

i : {i}≥ē

ρ̄(2−n) ≤ ρ̄(2−n)
∏

v∈V̊T : v≥ē

ρ̄(2−n(v)),

hence (2.5). Since ρ̄ ≤ ρ ∧ ρ2, it follows from (2.5) that

2−(d+2)n
p∏

i=1

ρ̄(2−ni ) ≤ 2−(d+2)n ρ̄(2−n)ρ(2−n(�p))
∏
v∈V̊T

ρ(2−n(v)).

It remains to observe that
∑

n∈Z 2−(d+2)n ρ̄(2−n) =∑n∈Z 2(c−d−2)n∧2(2c−d−2)n <

∞, so that (2.4) is indeed bounded by the required expression.
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Case 2. Note that we actually showed that the expression (2.3) with θ replaced by
ρ̄ is bounded by the right hand side of (2.1) with ki = 0. To obtain the general
case, it therefore suffices to show that

∫
Rd+1

d∏
i=1

Dki θ(zi − z) dz �
p∏

i=1

2|ki | n(i↑)
∫
Rd+1

d∏
i=1

ρ̄(zi − z) dz. (2.6)

Let χ ∈ C∞(Rd+2) be such that

χ(z) =
{
1, on B(0, 1/4);
0, on B(0, 1/2)c.

For 1 ≤ j ≤ p, we defineχ j (z) = χ
(
2n( j

↑)(z−z j )
)
, andχ0(z) = 1−∑p

j=1 χ j (z).
It is clear that

∫
Rd+1

d∏
i=1

Dki θ(zi − z) dz

=
p∑

j=0

∫
Rd+1

χ j (z)
d∏

i=1

Dki θ(zi − z) dz

=
∫
Rd+1

χ0(z)
d∏

i=1

Dki θ(zi − z) dz

+
p∑

j=1

∫
Rd+1

θ(z j − z)Dk j
(
χ j (·)

∏
i 	= j

Dki θ(zi − ·)
)
(z) dz .

We note that for z in the support of χ0, for 1 ≤ i ≤ p, 2‖zi − z‖ ≥ 2−n(i↑),

|Dki θ(zi − z)| � ρ̄(‖zi − z‖) · ‖zi − z‖−|ki |

� ρ̄(‖zi − z‖) · 2|ki |n(i↑),
thus yielding (2.6) as required.

To bound the final term, we note that its integrand can be written as a finite sum
of terms of the form

M(z) = θ(z j − z)Dkχ j (z)
∏
i 	= j

Dki+k j,i θ(zi − z),

where k, k j,i ∈ Zd+1+ and k +∑i 	= j k j,i = k j . Each of these terms is bounded
above by the indicator function of the support of χ j times

ρ̄(‖z − z j‖)2|k|n( j↑)
∏
i 	= j

ρ̄(‖z − zi‖)‖z − zi‖−|ki |−|k j,i |.

Since for z in the support of χ j and i 	= j , 2‖z − z j‖ ≤ ‖zi − z j‖, so that

‖zi − z j‖ ≤ ‖zi − z‖ + ‖z − z j‖ ≤ ‖zi − z‖ + 1

2
‖z j − zi‖,
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one has 2‖z− zi‖ ≥ ‖z j − zi‖ ≥ 2−n(i↑)∧2−n( j↑). Combining all of these bounds,
we finally obtain

|M(z)| ≤ ρ̄(‖z − z j‖)2|k|n( j↑) ∏
i 	= j

ρ̄(‖z − zi‖)2−|ki |n(i↑)2−|k j,i |n( j↑)

≤∏
i
ρ̄(‖z − zi‖)2|ki |n(i↑),

at which point we apply again (2.6) to obtain the required bound. �

3. Law of Large Numbers

The aim of this section is to use a simplified variant of the arguments in [14]
to show that Theorem 1.1 holds.2 Although it would probably not be much more
involved to obtain this proof by usual techniques, we give a proof using regularity
structures. The main reason is that this allows us to introduce in a simpler setting a
number of notions and notations that will be useful in the proof of our main result
later on.

Before we turn to the proof proper, let us comment on the way in which we
deal with the Neumann boundary conditions. Writing PNeu for the Neumann heat
kernel and using the notation z = (t, x) (and similarly for z′), we rewrite (1.1) as
an integral equation

uε(z) =
∫
Dt

PNeu(z, z
′)
(
H(uε(z

′))+ G(uε(z
′))ηε(z′)

)
dz′

+
∫
D
PNeu
t (x, x ′)u0(x ′) dx ′,

where Dt = [0, t] × D and PNeu
t (x, x ′) = PNeu((t, x), (0, x ′)). We also fix an

arbitrary time horizon T ≤ 1 which is not a restriction since the argument can be
iterated.

Following [9], we then construct two functions K on Rd+1 and K∂ on Rd+1 ×
Rd+1 such that K is compactly supported, K∂ is supported on a strip of finite width
around the diagonal, and the identity

PNeu(z, z
′) = KNeu(z, z

′),

holds for z, z′ ∈ [0, 1] × D, where we set

KNeu(z, z
′) = K (z − z′)+ K∂ (z, z

′). (3.1)

See “Appendix A” for more details on the construction of these kernels and a proof
that this can be done in a way that is compatible with the results of [9,11] that we
will use in our argument.

2 Simplified except for the treatment of the boundary conditions, which leads to non-trivial
complications.
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Remark 3.1. We make no claim on the values of K and K∂ for arguments outside
of [0, 1]× D. This is because these will always be integrated against functions that
are supported on [0, 1]× D and only the values of the result inside the domain will
matter.

We choose K in such a way that it coincides with the whole space heat kernel P
on the (parabolic) ball of radius 1 and is compactly supported in the ball of radius
2.We furthermore choose K in such a way that it annihilates polynomials of degree
up to 3, is invariant under the transformation (t, x)  → (t,−x), and is such that
the sum of its reflections agrees with the Neumann heat kernel on [0, 1] × D. (See
“Appendix A” for more details.) For example, we can choose K as in [14]. The
kernel K∂ is a correction term that encodes the effect of the boundary condition.
Regarding our regularity structure, we then proceed as if there was no boundary
condition whatsoever: we construct models defined on the whole space that are
translation invariant and we use convolution with K as our integration operator. We
then define an operator PNeu on modelled distributions by setting

PNeu = K + K̃∂ , where K̃∂ = L2K∂R, (3.2)

and K is built in exactly the same way as in [11, Sec. 4]. Note that K̃∂ encodes the
effect of the boundary condition. (There is a completely analogous definition in the
case of Dirichlet boundary conditions.)

Here, Lγ : Cγ → Dγ denotes the “Taylor lift” given by

(Lγ f )(z) =
∑
|k|≤γ

f (k)(z)

k! Xk, (3.3)

where z = (t, x) and k denotes a multiindex in N1+d .
We now have the preliminaries in place to turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. We use a strategy similar to that in [14,15], combining this
with results from [9] to deal with the boundary conditions. We refer to [7,8,12] for
introductions to the theory of regularity structures, as well as to [11] for details. In
our present context, we use the regularity structure obtained by extending the usual
polynomial structure with parabolic scaling with a symbol �1 of degree −1 − κ

representing the driving noise ηε, as well as an abstract integration operator I of
order 2 representing convolution with the (singular part of) heat kernel. As usual,
we will often use graphical representations for the basis vectors in our regularity
structure(s), and we decree that is our symbolic representation for �1. (The
reason for introducing the “accent” representing the index “1” will become clear
later on where more general notations of this type are needed.) Although our goal
is to consider (1.1) on the bounded domain D ⊂ Rd , we construct the models for
our regularity structure on the whole of R × Rd .

With notations almost identical to those in [14] and the formula (3.19) there, it
would then be natural to consider a fixed point problem of the type

U = PNeu1D+
(
Ĥη(U )+ Ĝ(U )

)+ PNeuu0, (3.4)
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where 1D+ denotes the indicator function of the space-time domainR+×D. Leaving
considerations regarding the precise spaces of modelled distributions in which this
equation makes sense aside for the moment, it is straightforward to see as in [11]
that if we solve (3.4) for the renormalised lift of ηε, that is the admissible model
such that

�̂ε = ηε, �̂ε = ηε(K � ηε)− , (3.5)

then the function uε = RεU actually solves (1.1).
Indeed, iterating (3.4), we see that any solutionU to such a fixed point problem

is necessarily of the form

U = u1+ G(u) +∇u X ,

for some continuous functions u and ∇u. (This is purely notational, ∇u is not
the gradient of u, but can be interpreted as a kind of “renormalised gradient”.) In
particular, the factor multiplying PNeu1D+ in the right hand side of (3.4) is given by

L
def= Hη(u)1+ G(u) + G ′(u)G(u) + G ′(u)u′ , (3.6)

where we projected onto terms of negative (or vanishing) degree. At this point, it
then suffices to note that the application of the reconstruction operator to L yields

(RεL)(z) =
(
�̂ε

z L(z)
)
(z) = Hη(u(z))+ G(u(z))ηε(z)− (G ′G)(u(z))

= H(u(z))+ G(u(z))ηε(z),

as required.
The problem with the argument outlined above is that since deg < −1, the

behaviour of the modelled distribution 1D+L near ∂D is such that the reconstruction
operator is not a priori well-defined on it, see [9, Secs 4.1 & 4.2]. This is for
precisely the same reason why the restriction of a generic distribution ζ ∈ Cα to a
“nice” domain D is only well-defined if α > −1. (For α ≤ −1 there are non-zero
distributions with support contained in ∂D.)

Before we tackle this problem, recall the definition of the spacesDγ,η as in [11,
Sec. 6] (the hyperplane P being given by the time slice t = 0) as well as the spaces
Dγ,w as in [9, Sec. 4] (inwhich case P0 is again the time 0 slicewhile P1 = R×∂D).
These two spaces are distinguished by the fact that η is a real exponent while w

denotes a triple of exponents describing the singular behaviour near t = 0, ∂D
and the intersection of both regions respectively. It will be convenient to use the
notation (α)3 with α ∈ R as a shorthand for the triple (α, α, α).

The idea then is the following. First, we introduce a new symbol , also of
degree−1−κ , but representing the function ηε1R×D instead of representing ηε and
we add to our regularity structure the symbols X and . Write then V for the
sector spanned by , , and X , V̂ for the sector spanned by , , and X ,
and ι : V → V̂ for the linear map with ι = and similarly for the remaining
basis vectors. We will furthermore only ever consider models � with the property
that

(
�ιτ
)
(φ) =

{
0 if suppφ ⊂ R × Dc,(

�τ
)
(φ) if suppφ ⊂ R × D,

(3.7)
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for all τ ∈ V . Since ι commutes with the structure group and preserves degrees,
it follows that F  → ιF is continuous from Dγ,w(V ) to Dγ,w(V̂ ) for all choices
of exponents γ and w and, for γ > 0, the local reconstruction operator R̃ (which
yields a distribution on R × (Rd\∂D) and is always well-defined) satisfies

(
R̃ιF
)
(φ) =

{
0 if suppφ ⊂ R × Dc,(

R̃F
)
(φ) if suppφ ⊂ R × D.

The reason for the introduction of these extra symbols is that we would like to
interpret (3.4) as a fixed point problem in the space D1+2κ,(2κ)3 with values in V0
(for small enough κ), where V0 is spanned by 1, , and X . The problem now is that,
for F ∈ D1+2κ,(2κ)3 , we have F ∈ Dκ,(κ−1)3 , but we lose some regularity at the
boundarywhenmultiplying by the indicator function of our domain (see [9]), so that
we only have 1D+F ∈ Dκ,(−κ−1)3 . Since the boundary index is now below −1,
it follows that the reconstruction operator of [9] is not well-defined on 1D+F . By
Theorem C.5, it is however perfectly well-defined on 1+F = 1+ι(F ) since
only the temporal singularity index is below−1 (but above −2). Furthermore, one
has the identity R(1+F ) = R̃(1D+F ) for test functions whose support does
not intersect the boundary of D.

Recall now that, given a modelled distribution F and a distribution ζ agreeing
with R̃F outside the boundary of D, [9, Lem 4.12] defines a modelled distribution
Kζ F with improved regularity and such that RKζ F = K � ζ . Furthermore, the
map (ζ, F)  → Kζ F is Lipschitz continuous in the natural topologies. This allows
us to define an operator PD : Dκ,(κ−1)3(V ) → Dκ+2,(1−κ)3(V ) by setting

PD : F  → KRιF1D+F + K̃∂1+ιF.

Our discussion suggests that, instead of (3.4), we should consider the fixed point
problem

U = PNeu1D+ Ĥη(U )+ PDĜ(U ) + PNeuu0, (3.8)

which admits unique local solutions inD1+2κ,(2κ)3(V ) by [9], which are continuous
with respect to admissible models on the full regularity structure satisfying further-
more the consistency condition (3.7). Here, we need to choose κ small enough to
guarantee that PNeuu0 does indeed belong to the space Cκ+2,(1−κ)3 , which is pos-
sible thanks to our assumption that u0 itself is Hölder continuous for some positive
exponent.

Retracing the discussion given at the beginning of the proof, but now with the
renormalised model �̂ε such that, in addition to (3.5), one has �̂ειτ = 1R×D�̂ετ

for τ ∈ V , we conclude that for ε > 0, solutions to (3.8) coincide with those
of (1.1). We now refer to Theorem 4.8 which shows that the sequence of models
�̂ε converges, as ε → 0, to a limiting model �̂ such that �̂ = �̂ = 0,
extended canonically to the whole regularity structure. It follows immediately that
the solution Ū to (3.4) with the model �̂ is such that u(0) = RŪ does indeed solve
(1.5) as claimed. �
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Remark 3.2. Note that (3.7) does not force us to set �̂ε = 1R×D�̂ε =
1R×Dηε, but we could have added a sufficiently regular distribution supported
on ∂D. This however would break the identity

RεPDG = PNeu1D+RεG,

on [0, 1] × D and would therefore modify the boundary condition of the resulting
solution.

4. Central Limit Theorem

We now turn to the proof of the main result of this article, Theorem 1.2. We will
mainly focus on the case of Neumann boundary conditions in dimension d = 3,
which is the most interesting (and technically most difficult) case. We set

vε = uε − u(0) − εu(1)

εd/2
, ξε = ε−d/2ηε, σε = εd/2ηε. (4.1)

With this notation, we then have in the case d ∈ {2, 3}
∂tvε = �vε + H ′

η(u
(0))vε + ε−

d
2
(
H(uε)− Hη(u

(0))− H ′
η(u

(0))(uε − u(0))
)

+G(uε)ξε − ε1−
d
2 	(u(0),∇u(0))

= �vε + H ′
η(u

(0))vε + G(u(0))ξε

+ ε−
d
2
(
Hη(uε)− Hη(u

(0))− H ′
η(u

(0))(uε − u(0))
)− ε−

d
2 (GG ′)(u(0))

− ε−
d
2
(
(G ′)2 + GG ′′)(u(0))(uε − u(0))+ G ′(u(0))(uε − u(0))ξε

+ 1

2
G ′′(u(0))(uε − u(0))2ξε − ε1−

d
2 	(u(0),∇u(0))+ R1,ε,

where, setting

wε = ε−
d
2 (uε − u(0)) = vε + ε1−

d
2 u(1),

we have the explicit expression for the remainder term

R1,ε = −εd/2w2
ε

∫ 1

0
(GG ′)′′(u(0) + sεd/2wε)(1− s) ds

+ ε
3d
2

2
w3

ε

∫ 1

0
G(3)(u(0) + sεd/2wε)(1− s)2 ds ξε.

Furthermore, due to the non-vanishing boundary condition of u(1) in the Neumann
case, vε is then endowed with the inhomogeneous boundary condition

〈∇vε, n(x)〉 = −ε1−d/2c(x)GG ′(u(0)(t, x)).

We now also incorporate the first part of the second line into the remainder, so that
we can write

∂tvε = �vε + H ′
η(u

(0))vε + G(u(0))ξε − ε−
d
2 (GG ′)(u(0))
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− (GG ′)′(u(0))(vε + ε1−
d
2 u(1))+ G ′(u(0))(vε + ε1−

d
2 u(1))ηε

+ 1

2
G ′′(u(0))(vε + ε1−

d
2 u(1))2σε − ε1−

d
2 	(u(0),∇u(0))+ R̂(d)

ε (vε, ε
αξε),

(4.2)

where the remainder term R̂(d)
ε is given by

R̂(d)
ε (v, ς) = R(d)

ε (v + ε1−d/2u(1), ς),

R(d)
ε (w, ς) = εd/2w2

∫ 1

0
H ′′(u(0) + sεd/2w)(1− s) ds

+ ε
3d
2 −α

2
w3
∫ 1

0
G(3)(u(0) + sεd/2w)(1− s)2 ds ς.

(4.3)

Note that here we have H appearing in (4.3) rather than Hη and that the two are

related by (1.4). In dimension d = 1, we set u(1) = 0 so that R̂(d)
ε = R(d)

ε and
vε = (uε−u(0))/

√
ε, andwe obtain in the sameway the slightly simpler expression

∂tvε = �vε + H ′
η(u

(0))vε + G(u(0))ξε − ε−
1
2 (GG ′)(u(0))

− (GG ′)′(u(0))vε + G ′(u(0))vεηε + 1

2
G ′′(u(0))v2εσε + R̂(1)

ε (vε, ε
αξε).(4.4)

(The reasonwhy the term containing	 does not appear in this expression is because
this was generated by ∂t u(1) which vanishes by definition in dimension one.) The
exponent α appearing in this expression is of course arbitrary, but allowing to tune
it will be convenient when expressing this as a fixed point problem.

4.1. Decomposition of the Solution

In order to show that vε converges to a limit, it will be convenient to break it
into a sum of three terms. The first term will be a straightforward approximation to
the stochastic heat equation with noise strength G(u(0)) and homogeneous bound-
ary condition. The second term will converge to 0, but incorporates the diverging
boundary condition, which is used to compensate a resonance appearing in its right
hand side. The final term will be a remainder that is sufficiently regular to be dealt
with by the techniques of [9]. For this, we write

vε = v(0)ε + v(1)ε + v̄ε,

and, with the convention that G and its derivatives are always evaluated at u(0), we
set

∂tv
(0)
ε = �v(0)ε + Gξε, (4.5)

∂tv
(1)
ε = �v(1)ε + G ′(v(0)ε ηε − ε−

d
2 G − ε1−

d
2 G ′ 〈 ,∇u(0)〉

)
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+ 1

2
G ′′((v(0)ε )2σε − 2 G v(0)ε − ε1−

d
2 G2

)
, (4.6)

endowed with the boundary conditions on ∂D

〈∇v(0)ε , n〉 = 0, 〈∇v(1)ε , n〉 = −ε1−
d
2 cGG ′,

aswell as vanishing initial conditions. The reasonwhy v(1)ε will actually converge to
0 despite the diverging boundary condition when d ≥ 2 is the following. Consider
the function �ε defined by

(
�ε

)
(z) =

∫
R×D

KNeu(z, z
′)ξε(z′) dz′ −

∫
Rd+1

K (z − z′)ξε(z′) dz′, (4.7)

Then, we will see in (4.24) that the behaviour of v(0)ε is locally very well de-
scribed by that of

G(u(0))
(
�ε + �ε

)
, (4.8)

where �ε = K � ξε as usual. This implies that the behaviour of the term
G ′(u(0))v(0)ε ηε appearing in the right hand side of the equation for v(1)ε is well
described locally by that of

(
GG ′)(u(0))(�ε + �ε

)
, (4.9)

Where denotes multiplication by ηε as previously, while denotes multi-
plication by ηε1R×D . (This will be formalised later on.) We will see that, up to

vanishingly small errors, �ε ≈ ε− d
2 , while �ε ≈ ε1− d

2 cδ∂D for a suitable
constant c (in fact a different constant for each face of ∂D in general), so that the

first term in (4.9) is cancelled up to small errors by the term −ε− d
2 (GG ′)(u(0))

appearing in the equation for v(1)ε , while the second term in (4.9) is cancelled by

the term −ε1− d
2 cGG ′δ∂D created by the boundary condition.

Note that this argument does not seemuch of a difference between theNeumann
and Dirichlet cases. Indeed, if we want the right hand side of the equation for v(1)ε

to converge to a limiting distribution for the latter, we also need to add a diverging
(when d = 3) term proportional to δ∂D . The difference is that KDir(z, z′) vanishes
for z′ ∈ ∂D, so that this term has no influence on v

(1)
ε in the Dirichlet case.

The idea now is to proceed as follows:

• In a first step, we describe in Section 4.2 a regularity structure that is sufficiently
rich to allow us to give precise control on the behaviour of v(0)ε , v(1)ε and vε.
As already alluded to, this will in particular include symbols representing non-
stationary space-time stochastic processes, but we will try to keep these to an
absoluteminimum.We also describe there the renormalisation procedure which
allows us to construct a suitable (random) model.
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• We thenmake precise the description (4.8) for v(0)ε by expressing it as amodelled
distribution in this regularity structure, which in particular contains the two
symbols and . The main conclusion in (4.24) will be that the presence of
allows us to express v(0)ε as a modelled distribution with a good behaviour near
∂D. (At this stage, we could of course also use one symbol only and define our
model using the Neumann heat kernel only, but the decompositions (4.8) and
(4.9) are convenient for the remainder of the argument and to be able to reuse
existing results.)

• In a second step, we show that if we set

�̂ε = �ε − ε−
d
2 , �̂ε = �ε − ε1−

d
2 cδ∂D,

then �̂ε converges to a limiting model as ε → 0, which furthermore has good
restriction properties to D, uniformly in ε. Furthermore, since �̂ε is only

singular near the boundary of D, we can describe v(0)ε by another modelled dis-
tribution with worse behaviour near the boundary, but which only uses “trans-
lation invariant symbols” in its description, see Lemma 4.10, which allows us
to give a description of v(1)ε in terms of such symbols in Lemma 4.12.

• We set up a sufficiently large regularity structure so that we can formulate a
fixed point problem for the remainder v̄ε and control its behaviour as ε → 0,
see Propositions 4.16 and 4.18. Combining this with the convergence of the
corresponding renormalised model which is performed in Theorem 4.8 but
relies crucially on the next section, we are finally able to conclude.

4.2. Definition of the Ambient Regularity Structure

We start by defining a regularity structure that is sufficiently large to allow
us to perform the steps mentioned above and in particular to formulate (4.2) as a
fixed point problem for a modelled distribution V . This fixed point problem will
be chosen precisely in such a way that if we take as our model the renormalised
lift of the noise ηε, then the corresponding counterterms are precisely such that if
V solves the fixed point problem, then RV solves (4.2).

Let � j
i be new symbols representing ξεε

α(i, j) with

α(i, j)
def=
(
1− d

2

)
j + d

2
i, 0 ≤ j ≤ i ≤ 2. (4.10)

(Beware that j is simply a superscript in� j
i , not a power.) In the graphical notation

analogous to [14], we will use “accents” to denote the upper and lower indices on
� = �0

0 = , so for example �2 = , �1
1 = , etc. We will also sometimes

write j
i instead of � j

i . The degree of these symbols is given by

deg� j
i = δ − 1

2
∧
(
α(i, j)− d + 2

2
− κ
)
. (4.11)

The main reason why we never consider these “noises” as having degree larger
than δ−1

2 is that we want to view them as “noise types” and so the structure group
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should act trivially on them. A byproduct of this choice is that it allows us to deal
with driving noises η that are themselves unbounded.

We now build a regularity structure extending the one built in Section 3, in
which (4.35) can be formalised, by applying the framework of [5, Sec. 5]. We take
as our basic “noise types” the noises j

i with 0 ≤ j ≤ i ≤ 2, as well as an
additional noise type which will be used to represent the noise ξε, restricted
to R × D. We also introduce two “edge types” I representing convolution by a
suitable cutoffK of the standard heat kernel in the whole space and III representing
the integral operator with kernel KNeu as in (3.1) (see “Appendix A” for a precise
definition), both having degree 2. It will be convenient to also introduce edge types
I i and III i with i = 1, . . . , d of degree 3 representing the integral operators with
kernel Ki (x, y) = (yi − xi )K (y − x) and KNeu,i (x, y) = (yi − xi )KNeu(y − x)
respectively. Finally, we introduce a “virtual” edge types Î of degree 2 which will
allow us to produce a rule (in the technical sense of [5, Sec. 5]) generating the
relevant trees containing non-translation invariant symbols III and , but without
cluttering our regularity structure with unneeded symbols.

The rule used to generate the regularity structure is then given by R( j
i ) = {1}

and

R(I) = {1, I, I i , I i } ∪ {Ik j
i : k ≤ i − j},

R(I i ) = {1, }, R(III) = R(III i ) = {1, },
R(Î) = {1, ,III ,III,III i , , , I, I , I i }. (4.12)

Recall that, given a collection L of “edge types” (in our case, these are the “in-
tegration” types I, III, etc as well as the “noise” types j

i and j
i which are

also interpreted as edges for the purpose of this discussion), a “rule” is a map
R : L → P(P̂(L))\{∅}, where P(A) denotes the powerset of a set A, P̂(L) de-
notes the set of non-emptymultisets with elements inL.3 In other words, an element
R(t) is a collection of “node types”, with each node type being a collection of edge
types, with repetitions allowed. In (4.12), we use the identification between a mul-
tiset and a formal monomial, that is I2 denotes the multiset with one copy of
and two copies of I.

The basis vectors for our regularity structure are rooted trees (V, E, ρ) with
edges e ∈ E labelled by L and nodes v ∈ V labelled by Nd , denoting polynomial
factors, with the convention that 0 ∈ N. By convention, edges are oriented away
from the root. Any node v ∈ V then has a “type” N (v) ∈ P̂(L) given by the
collection of the types of the outgoing edges adjacent to v. If v ∈ V \{ρ}, there is
a unique edge coming into v and we write t(v) ∈ L for the type of the incoming
edge. A tree is said to “conform” to a rule R if, whenever v ∈ V \{ρ}, one has
N (v) ∈ R(t(v)), while N (ρ) ∈⋃t∈L R(t).

Remark 4.1. Note that Î never appears inside any R(t), so that a tree conforming
to the rule R is not allowed to have any edge of type Î. The only reason for its

3 We ignore the possibility of having “derivatives” on our edges as in [5], as these do not
occur in this article.
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presence is to allow the root of a conforming tree to be of typeN (ρ) ∈ R(Î), since
otherwise the tree which will be used later on would not be conforming to our
rule. Actually, the symbol , which was introduced in a completely ad hoc manner
so far, will then be interpreted as = −

We assign degrees to the components appearing here by (4.11) as well as

deg = deg , deg = deg ,

deg I = deg Î = degIII = 2, deg I i = degIII i = 3.

It is straightforward to verify that this rule is subcritical and complete. We hence-
forth denote by (T ,G) the (reduced in the terminology of [5, Sec. 6.4]) regularity
structure generated by the rule R.

4.3. Description of the Models

Throughout this article, we will use the notation � (possibly with additional
decorations) for a continuous linear map � : T → D′(Rd+1) such that there exists
a (necessarily unique) admissible model (�,�) related to � by [11, Sec. 8.3].
Here, we associate the kernel K to I and Î, Ki to I i , and KNeu, KNeu,i to III, III i

respectively.
We henceforth make a slight abuse of terminology and call � itself a model.

The following notion of an “admissible” model is a slight strengthening of the
usual one to our context which essentially states that our “square” symbols are the
restrictions of the “round” symbols to R × D.

Definition 4.2. A model � for (T ,G) is admissible if it is admissible in the sense
of [11, Def. 8.29] for the kernels listed above and furthermore, for any τ ∈ T and
i, j such that j

i τ,
j
i τ ∈ T , one has
(
�

j
i τ
)
(φ) = (� j

i τ
)
(φ)

for test functions φ with suppφ ⊂ R × D and
(
�

j
i τ
)
(φ) = 0 for test functions

with suppφ ⊂ R × Dc.

Remark 4.3. Note furthermore that all basis vectors τ̂ ∈ T with deg τ̂ < −1 are
of the form τ̂ = j

i τ (or similar with replaced by ) for some i, j and τ as in
Definition 4.2. As a consequence, admissible models in our sense admit a canonical
decomposition� = �++�− as inAssumption C.1 by setting�+ j

i τ = �
j
i τ .

This is a crucial fact which allows us to use Theorem C.5.

We also define the following notion:

Definition 4.4. Consider the rule R given by R (
j
i ) = R (III) = R(III i ) = {1}

and

R (I) = {1, I, I i , I i } ∪ { j
i I

k : k ≤ i − j},
R (I i ) = {1, }, R (Î) = {1, I}.

We write T ⊂ T for the sector spanned by trees conforming to R and we call T
the translation invariant sector.
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Given any admissible model for (T ,G), we then write K, Ki , KNeu, KNeu,i
for the corresponding integration operators as defined in [11, Sec. 5]. We now
provide a complete description of the renormalised models �̂ε we will use for
this regularity structure. From now on, whenever we do not explicitly mention a
model on (T ,G), we assume that we talk about the specific (random) model �̂ε,
and not a general admissible model. In particular, all the variants of the spaces
Dγ used below will be the spaces associated to this model. In order to specify the
ε-dependence, we will write Rε for the reconstruction operator associated to the
model �̂ε. Theorem 4.8 shows that �̂ε converges to some limiting model � as
ε → 0, giving rise to a reconstruction operatorR0. Whenever we simply writeR,
it denotes the reconstruction operator for a generic admissible model.

Writing 1D for the indicator function of R × D, we first define a family of
non-renormalised (random) models �ε as the canonical lift for the “noise” given
by

�ε�
j
i = ξεε

α(i, j), �ε = 1Dξε, �ε = 1Dηε,

with α(i, j) as in (4.10). We then define an intermediate model �̃ε related to �ε

by

�̃ε = �ε − ε−
d
2 1D −

d∑
i=1

ε1−
d
2
(
ci,0δ∂i,0D + ci,1δ∂i,1D

)
,

�̃ε = �ε − ε−
d
2 1D,

�̃ε = �ε − ε−
d
2 1D�εX − ε1−

d
2 1D, (4.13)

aswell as �̃ε I i ( ) = �̃ε( − ).We furthermore impose admissibilitywhich
forces us to set �̃εXτ = �εX · �̃ετ . One can verify that the only remaining basis
vector of T of negative degree and not belonging to the translation invariant sector
is . However, this element will never be needed for our considerations, so we do
not need to specify the action of �̃ε on it.

We now construct a renormalised model �̂ε from �̃ε by applying a slight mod-
ification of the BPHZ renormalisation procedure [5,6] to the translation invariant
sector (which can be viewed as a regularity structure in its own right, generated by
the rule R ). Writing T− for the subspace of T consisting of symbols of strictly
negative degree, we will define �̂ε by an expression of the form

�̂ετ = (gε ⊗ �̃ε

)
�−τ,

where�− is a certain linear operator from T into AlgT−⊗T , with AlgT− the free
unital algebra generated by T−, and gε is a character of AlgT−, which is canonically
identified with an element of the dual space T ∗− . In the BPHZ renormalisation
procedure, one should choose gε of the form

gbphzε = (E�̃ε) ◦A, (4.14)
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where A : AlgT− → AlgT is the “twisted antipode” [5] and E�̃ε is the character
of AlgT determined by (E�̃ε)(τ ) = E(�̃ετ )(φ), for any fixed test function φ with∫
zkφ(z) dz = δk,0 for |k| small enough. (In our case |k| ≤ 1 suffices.)
Recall that �− is an “extraction/contraction” operator which iterates over all

possible ways of extracting divergent subsymbols of its argument, so for example

�− = ⊗ 1+ 1⊗ + ⊗ + ⊗ .

The twisted antipode behaves in a somewhat similar fashion, in this case

A = − + + .

Remark 4.5. Inspection of the rule R and our degree assignment shows that the
basis vectors of T− are given by

T− = Vec
{

, , X2, , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , ,
}
.

(4.15)

It will be convenient to have an alternative degree assignment deg on T which
better reflects the self-similarity properties of our objects given by setting

deg� j
i = α(i, j)− d + 2

2
,

and then extending it as usual. Instead of choosing the character gε as in the BPHZ
specification (4.14), it will be convenient to choose it in a way such that, for some
constants C(τ ) that are independent of ε, one has

gε(τ ) =
{

0 if degτ > 0,

−εdegτC(τ ) if degτ < 0.

For degτ = 0, we choose gε(τ ) = −C(τ ) whenever the symbol τ contains an
“accent”, that is one of the noises� j

i with i + j > 0. The only symbols of negative
degreewithout accents that appear in the translation invariant sector of our regularity
structure and that contain at least two copies of the noise are and ,
which are of vanishing degree deg in dimensions 2 and 3 respectively, and will be
considered separately below.

The constants C(τ ) themselves are chosen to coincide with the ones appearing
in Theorems 1.1 and 1.2 with the convention that for any symbol τ the constant
C(τ ) is also written as the same symbol τ , but drawn in red and with its “accents”
stripped. For example, we set

C( ) = C( ) = C( ) = C( ) = .

We also set C(τ ) = 0 whenever τ contains only one instance of the noise, namely
we set

= = 0. (4.16)
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[In general, we should also set C(τ ) = 0 if τ is of the form τ = I(τ ′) for some
τ ′, but the only symbol of negative degree of this type appearing in this work is
which is already covered by (4.16).] Other constants that will be relevant for our
analysis (in dimension d = 3) are given by = 0 as well as

=
∫

P(z)P(z′)κ2(z, z′) dz dz′, =
∫

x P(z)P(z′)κ2(z, z′) dz dz′,

=
∫

P(−z)P(−z′)P(z − z′′)κ3(z, z′, z′′) dz dz′ dz′′,

=
∫

P(−z)P(−z′)P(z′′)κ3(z, z′, z′′) dz dz′ dz′′.

The convergence of integrals corresponding to , and in dimension
3 can easily be verified by using our assumption on the cumulants and the self-
similarity of the heat kernel. The convergence of the integral for is more subtle
since deg = 0. As a consequence, although κ2(z, z′) decays fast enough when
‖z − z′‖ is large, the function z  → x P2(z) is homogeneous of (parabolic) degree
−5 and is therefore not absolutely integrable at large scales. However, since it is
odd under (t, x)  → (t,−x), additional cancellations occur and the integral should
be interpreted as

= 1

2

∫
x
(
P(z′)− P(z)

)
P(z)κ2(z, z

′) dz dz′, (4.17)

which does converge absolutely, so we set gε( ) = − in dimension 3.
In dimension 2, deg > 0, but deg = 0 and the expectation of �̃ε

diverges logarithmically and the expression given above fails to converge. We
then have no choice but to set

gε( ) = − ε, ε
def=
∫

Kε(z)Kε(z
′)κ2(z, z′) dz dz′,

where Kε(t, x) = ε2K (ε2t, εx). We then have the following preliminary result:

Proposition 4.6. The model �̂ε restricted to the translation invariant sector con-
verges as ε → 0 to the BPHZ model �̂ such that �̂ = ξ and �̂�

j
i = 0 for

i + j > 0.

Proof. Consider the “BPHZ model” �bphz
ε on T given by

�bphz
ε τ = (gbphzε ⊗ �ε)�

−τ,

with gbphzε defined as in (4.14). Thanks to Proposition 5.5, our noises are such that
the norm of [6, Def. A.18] is finite, uniformly in ε, for the cumulant homogeneity
described in (5.3).

It therefore follows from [6, Thm 2.33] that �bphz
ε converges to �̂. Since

furthermore the action of the character group of T− on the space of admissible
models is continuous [5], it suffices to show that one can write

�̂ε = (δgε ⊗ �bphz
ε )�−, (4.18)

for some δgε ∈ T ∗− with limε→0 δgε = 0. For this, the following result is useful:
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Lemma 4.7. Let g, ḡ ∈ T ∗− such that furthermore g(τ ) = ḡ(τ ) = 0 for every τ of
the type (4.16). Then, one has the identity

(
g ⊗ (ḡ ⊗ id)�−)�−τ = ((g + ḡ)⊗ id

)
�−τ,

for all τ ∈ T .

Proof. It was shown in [5,11] that

(
g ⊗ (ḡ ⊗ id)�−)�−τ = ((g ⊗ ḡ)�− ⊗ id

)
�−τ,

where�− : AlgT− → AlgT−⊗AlgT− is an extraction/contraction operator defined
just like above, but extended multiplicatively to AlgT− and such that only those
terms are kept that actually belong to AlgT− ⊗ AlgT− (that is every factor needs
to be of negative degree on both sides of the tensor product). Inspection of the list
(4.15) reveals that in our case, the only situation in which we have a “subsymbol”
of negative degree appearing in any of our symbol in such a way that the contracted
symbol is still of negative degree is when the subsymbol contains only one noise.
We conclude that

(g ⊗ ḡ)�−τ = (g ⊗ ḡ)(τ ⊗ 1+ 1⊗ τ) = g(τ )+ ḡ(τ ),

and the claim follows. �
We conclude from Lemma 4.7 that (4.18) holds with δgε = gε − gbphzε , so that

it remains to show that limε→0 δgε(τ ) = 0 for every τ ∈ T−. For elements τ of
the form τ = Xk�

j
i we have gε(τ ) = gbphzε (τ ) = 0. For all other elements τ with

degτ ≤ 0, a simple scaling argument shows that gbphzε (τ ) is given by the exact
same formula as gε(τ ), except that all instances of the heat kernel P are replaced
by Kε, where

Kε(t, x)
def= εd K (ε2t, εx).

Note that Kε coincides with P in a parabolic ball of radius O(1/ε) around the
origin and vanishes outside of another ball of radius O(1/ε).

This in particular shows that

δgε( ) = ε−d/2
∫ (

P(z)− Kε(z)
)
κ2(0, z) dz. (4.19)

Since κ2(0, z) decreases like ‖z‖−2c̄ = ‖z‖−(d+2+2δ) for large z and P decreases
like ‖z‖−d , it follows that

|δgε( )| � εd/2+2δ,

which of courses converges to 0. The symbols τ differing from only by the
placement of their accents then also converge since δgε(τ ) is given by the same
expression as (4.19), except for being multiplied by a higher power of ε.
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Turning now to (which only appears when d ∈ {2, 3}), it follows from [15,
Lem. 6.8] that δgε( ) is a sum of terms of the form

ε2−d
∫ (

P(z)− Kε(z)
)
G(z) dz,

where |G(z)| � (1+‖z‖)2−2c̄ = (1+‖z‖)−(d+2δ). It follows that |δgε( )| � ε2δ

as desired, and δgε( ) is controlled in the same way by a higher power. In
dimension 3, deg = 0 and it was shown in (4.17) that converges absolutely,
which immediately implies that δgε( ) → 0.

To deal with the symbol (again with d ∈ {2, 3}), we first note that Assump-
tion 2.1 implies the bound

|κ3(z1, z2, z3)| � ρ(‖z1 − z2‖) ρ(‖z2 − z3‖) ρ(‖z1 − z3‖).
We also note that for any κ ∈ [0, d] one has the bound

|P(z)− Kε(z)| � εκ
(
1 ∧ ‖z‖κ−d). (4.20)

This allows us to make use of [13, Thm 4.3]. Since deg = 2−d
2 we apply the

bound (4.20) with κ = δ + d−2
2 which, in the notation of [13], yields a bound of

the type

|δgε( )| ≤ εδ|�K̄ ,R̄�|,
for some ε-dependent kernel assignment (K̄ , R̄) ∈ K−

0 ×K+
0 with bounds that are

independent of ε and the Feynman diagram

� =
(δ − 1

2,
−d − 2)

(δ − 1
2 ,−δ − d+2

2 )

(δ − d − 1
2 ,−δ − 3d+2

2 ) .

Here, the first coordinate of the label for each edge denotes its small-scale degree
assignment while the second coordinate denotes its large-scale degree assignment.
It is straightforward to verify that the small-scale degree assignment for this diagram
satisfies the assumption of [13, Prop. 2.3], so that it does not require renormalisation.
Furthermore, the large-scale degree assignment is seen to satisfy the assumption
of [13, Thm 4.3], which guarantees that the integral converges absolutely and is
bounded independently of ε, so that |δgε( )| ≤ εκ .

The symbols and (in dimension 3) which have vanishing degree deg,

can be dealt with using the same technique, leading to the bound |δgε( )| +
|δgε( )| � ε1/2 by using the Feynman diagrams

(−3,−3
)

(−3,−3)

(δ − 1
2 ,−δ − 5

2 )

(δ − 1
2 ,−δ − 5

2 )

(δ −
1
2
,−δ − 5)

,

(−3,−3
)

(0,− 5
2 )

(δ − 1
2 ,−δ − 5

2 )

(δ − 1
2 ,−δ − 5

2 )

(δ −
7
2
,−δ − 11

2
)

,
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for bounding and

(δ −
1
2
,−δ −

5
2
)

(δ − 1
2 ,−δ − 5

2 )

(0,− 5
2 ) (−3

,−3
)

(−3,−3)

(δ − 1
2 ,−δ − 5

2 ) ,

for bounding . All three are easily seen to satisfy both the small-scale and large-
scale integrability conditions.

The remaining three symbols τ ∈ { , , } in the list (4.15) are all such
that degτ > 0, so we need to show that gbphzε (τ ) → 0. This can in principle be
shown again by using the bounds from [13]. A “cheaper” way of showing that
gbphzε (τ ) → 0 is to note that in all three cases we can make use of a combination of
Proposition 5.5 (used in the same way as in the proof of Proposition 5.9) and (4.14)
to conclude that one can build a regularity structure T̂ extending T (by adding
additional “noises” representing η

(α)
ε for suitable choices of α) such that, for every

τ , one can find κ > 0 and a symbol τ̂ ∈ T̂ such that deg τ̂ > 0 and such that

gbphzε (τ ) = εκE
(
�bphz

ε τ̂
)
(φ),

for some suitable fixed test function φ. Since we know from [6, Thm 2.33] that the
BPHZ renormalised model �bphz

ε converges (so in particular remains uniformly
bounded), we conclude that gbphzε (τ ) → 0 as required. �

Theorem 4.8. The random models �̂ε converge weakly to a limiting admissible
model �̂ which, on the translation invariant sector, is given by the BPHZ lift of

�̂ = ξ, �̂�
j
i = 0, i + j > 0.

For the remaining symbols, it is given by the unique admissible model such that

�̂ = ξ1R×D, �̂ = 0,

as well as �̂τ = 0 for any symbol τ containing the noise .

Remark 4.9. Note that only symbols � j
i with i ≥ j appear in our regularity struc-

ture.

Proof. Convergence on the translation invariant sectorwas already shown in Propo-
sition 4.6, so it only remains to consider the non-translation invariant symbols of
negative degree. In dimension 3, these are , , , , , , , and .
(There is also the symbol I i ( ), but applying the model to it yields the exact
same distribution as when applying it to − .)

The convergence on the remainder of the regularity structure is shown in the
next section, but we collect the various parts of the proof here. Convergence of
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�̂ε , �̂ε and �̂ε to ξ1D and 0 in C− 5
2−κ , C−1−κ and C− 3

2−κ respectively
follows from Corollary 5.13 and Corollary 5.6.

Convergence of �̂ε essentially follows from [6, Thm 2.31], noting that the
bound for τ = does not require any derivative of the test function in this case,
so that we immediately obtain the required bound by noting that

(
�̂ε

)
(φ) =(

�̂ε

)
(1R×Dφ). The reason why this is so is that the only point in the proof where

derivatives of the test function could potentially appear is in the bound [6, Eq. A.29]
in the proof of [6, Thm A.32]. By the definition of R(S), these derivatives can only
hit a test function in a situation where τ contains a connected subtree containing
its root and of degree less than − d+2

2 . This is not the case for .

Convergence of �̂ε , �̂ε and �̂ε also follows in the sameway. Regarding
, we note that = + by (4.23) and we already obtained convergence of

�̂ε . Convergence of �̂ε is the content of Theorem 5.20. The convergence of
�̂ε follows from Corollary A.3, combined with the usual Schauder estimates for
integration against K . �

Most of Section 5 is devoted to filling in the missing parts in the proof of
Theorem 4.8, namely the proofs of Theorem 5.11 and Theorem 5.20.

4.4. Description of v(0)ε

We now have the notation in place to formalise the discussion given above
regarding the local behaviour of v(0)ε and v

(1)
ε . Recall the definition (4.5) of v(0)ε

which we rewrite in integral form as

v(0)ε = KNeu
(
G(u(0)) 1D+ξε

)
. (4.21)

Depending on context, we will model v(0)ε by three different modelled distributions
V (0)
ε , Ṽ (0)

ε and V̂ (0)
ε .

Regarding V (0)
ε , we use Proposition 6.1, which guarantees that one can find

�ε ∈ C 3
2−κ,− 1

2−κ such that, setting4

V (0)
ε = �ε + LG(u(0))KNeu(1+ )+ G ′(u(0))∂i u(0) KNeu,i (1+ ), (4.22)

where the integration operatorsKNeu, andKNeu,i should be interpreted as the natural
extensions of the corresponding integration operators described in Proposition 6.1,
one has

V (0)
ε ∈ D 3

2−κ,− 1
2−κ , RεV

(0)
ε � R+ × D = v(0)ε ,

provided that we consider admissible models �̂ε with �̂ε = ξε1R×D . Note that
V (0)
ε depends on ε via the choice of model �̂ε. Furthermore, Theorem 4.8 and

Lemma 5.14 guarantee that the bounds on V (0)
ε are uniform over ε and that one has

4 with the convention L = L1 for L1 the Taylor lift (3.3)
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V (0)
ε → V (0) in D 3

2−κ,− 1
2−κ with respect to the renormalised models �̂ε and the

limiting model �̂.
It is natural at this stage, as already mentioned earlier, to define the symbol

as the element of T of degree − 1
2 − κ given by

= − , (4.23)

which is indeed consistent with (4.7). With this notation, Propositions A.2 and A.4

combined with (4.22) guarantee the existence of a function �̃ε ∈ C 3
2−κ,w with

w = (− 1
2 − κ, 1

2 − κ,− 1
2 − κ

)
in the sense of [9, Def. 3.2] such that if we set

Ṽ (0)
ε = Ṽ (0,1)

ε + Ṽ (0,2)
ε with

Ṽ (0,1)
ε = LG(u(0)) ,

Ṽ (0,2)
ε = LG(u(0)) + G ′(u(0))∂i u(0) Ki ( )+ L�̃ε, (4.24)

then we have Ṽ (0,1)
ε ∈ D 3

2−κ , Ṽ (0,2)
ε ∈ D 3

2−κ,w and
(
Rε Ṽ

(0)
ε

)
(φ) = (RεV

(0)
ε

)
(φ)

for all test functions φ supported in R+ × D. As before, all these objects converge
in the limit ε → 0 provided that the underlying models converge. To see this, we
note that we can choose

�̃ε = �ε + 1+G(u(0))KNeu((1+ − 1)1Dξε)

+ 1D+G ′(u(0))∂i u(0) Ki ∗
(
(1D+ − 1)ξε

)
+ 1D+G ′(u(0))∂i u(0) K∂,i

(
1D+ξε
)
,

and then apply Proposition A.4 to bound the first term and Proposition A.2 to bound
the remaining two terms.

On the other hand, we define V̂ (0)
ε by setting

V̂ (0)
ε = K

(
L2G(u(0))1+

)+ L1D+
(
K∂

(
G(u(0))ξε1D+

)− K
(
G(u(0))ξε1D

c

+
))

,

where we use the convention that u(0) is extended outside of R+ × D in any way
that makes it globally C3. (For positive times, this is possible since the extension
of u0 to the whole space by suitable reflections is of class C3 by our assumptions.
For negative times, this is possible by Whitney’s extension theorem [21].) Here we
made a slight abuse of notation: the operatorK should be interpreted in the sense of
[9, Sec. 4.5] with R̂

(
L2G(u(0))1+

) = G(u(0))1+ξε, which converges as ε → 0
by an argument very similar to that of Proposition 6.1, combined with the fact that
G(u(0)) is C3.

Note that we have

Rε V̂
(0)
ε = Rε Ṽ

(0)
ε = RεV

(0)
ε = v(0)ε on R+ × D.

Themodelled distribution V̂ (0)
ε exhibits rather singular behaviour near the boundary

of the domain, but by Proposition A.2 it converges as ε → 0 in D1,w with w =(− 1
2−κ
)
3 [weuse again the notation (η)3 = (η, η, η)]. It has the advantage however

of not involving the integration map III and the restricted noise , so it is purely
described in terms of the “translation invariant” part of the regularity structure, that
is the sector generated by I and . We summarise the above discussion with the
following statement.
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Lemma 4.10. We have V̂ (0)
ε ∈ D1,(− 1

2−κ)3

− 1
2−κ

, Rε V̂
(0)
ε = v

(0)
ε on R+ × D, and V̂ (0)

ε

is of the form

V̂ (0)
ε = 1+

(
G(u(0)) + G ′(u(0))∇u(0)

)+�(0)
ε 1,

for somecontinuous function�(0)
ε . Furthermore, limε→0 V̂

(0)
ε = V̂ (0) ∈ D1,(− 1

2−κ)3

withR0V̂ (0) = PNeu
(
1D+G(u(0))ξ

)
.

4.5. Description of v(1)ε

Recall that v(1)ε was defined in (4.6) as the solution to an inhomogeneous linear
equation with inhomogeneous boundary conditions (et least in the Neumann case).
Regarding v

(1)
ε , we would like to describe it by a modelled distribution V (1)

ε given
by

V (1)
ε = 1D+PNeu1+

(
L(G ′(u(0)))Ṽ (0)

ε

)+ v(1,�)ε 1, (4.25)

with PNeu as in (3.2) and where v(1,�)ε would be given by the solution to

∂tv
(1,�)
ε = �v(1,�)ε + 1

2
G ′′(u(0))W1,ε,

W1,ε = (v(0)ε )2σε − 2 G(u(0))v(0)ε − ε1−
d
2 G2(u(0)), (4.26)

endowed with homogeneous Neumann boundary conditions. The reason why the
identity RεV

(1)
ε = v

(1)
ε holds (on R+ × D as usual) is as follows. By (4.24),

Ṽ (0)
ε = L(G(u(0)))

( + )+ G ′(u(0))∂i u(0) Ki ( )+ L�̃ε . (4.27)

It then follows from the definition (4.13) of the renormalised model and the fact
that Rε(Ṽ

(0)
ε ) = v

(0)
ε that, applying the reconstruction operator to this expression

yields

Rε

(
Ṽ (0)
ε

) = 1Dv(0)ε ηε −
d∑

i=1

G(u(0))ε1−
d
2
(
ci,0δ∂i,0D + ci,1δ∂i,1D

)

− ε−
d
2 1DG(u(0))− ε1−

d
2 1DG ′(u(0)) 〈 ,∇u(0)〉.

We then note that the two terms appearing on the second line, when multiplied by
another factor ofG(u(0)), are exactly the additional two terms appearing on the first
line of (4.6), while the singular term involving Dirac masses on the boundary of D,
when hit by KNeu, is responsible for the non-homogeneous boundary conditions.

The problem with such a definition is that it yields a description of V (1)
ε in

terms of symbols involving , while the general convergence results of [6] require
translation invariance of the noise objects, which is not the case here. If we were
to try to improve the situation by replacing 1+ by 1D+ in (4.25), then we
immediately run into the problem that the behaviour of this modelled distribution
on the boundary of D is too singular for the general results of [9] to apply. This is
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not just a technicality: this singular behaviour is precisely what is responsible for
the additional boundary renormalisation!

Instead, we define V (1)
ε as a sum of terms that is “equivalent” to the definition

(4.25) in the sense that they reconstruct the same function, but such that each of the
terms can be controlled in a slightly different, situation-specific, way.

We first deal with the boundary correction by setting

V (1,0)
ε = 1D+L K∂

(
1+G ′(u(0))Rε

(
Ṽ (0)
ε

))
. (4.28)

Since Ṽ (0)
ε ∈ D 1

2−2κ,w with w = (− 3
2 − 2κ,− 1

2 − 2κ,− 3
2 − 2κ) and since it

belongs to a sector of regularity− 3
2 − 2κ , its reconstruction belongs to C− 3

2−2κ . It

then follows from Proposition A.2 that V (1,0)
ε ∈ D2,(0)3 .

We now break up Ṽ (0)
ε in (4.25) as in (4.24) and deal with the first term. By

Proposition 6.3, we can find V (1,1)
ε ∈ D2−2κ,w̄ with w̄ = ( 12 − 2κ, 1

2 − 2κ, 0
)
of

the form

V (1,1)
ε = 1D+ G ′G(u(0))(�̂ε ) +�(1,1)

ε , (4.29)

with �
(1,1)
ε taking values in the classical Taylor polynomials, and such that

RεV
(1,1)
ε = K

(
(G ′G)(u(0))1+�̂ε

) = RεK1+
(
L(G ′(u(0)))Ṽ (0,1)

ε

)
.

The second term is dealt with similarly. As a consequence of Proposition 6.4
with g1 = G ′G(u(0)), g2,i = G ′(u(0))2∂i u(1) and g3 = G ′(u(0))�̃ε (with �̃ε as in
(4.25)), we can find V (1,2)

ε ∈ D2−2κ,w̄ such that

RεV
(1,2)
ε = K1+

(
G ′G(u(0))�̂ε

+G ′(u(0))2∂i u(1)Rε( Ki ( ))+ G ′(u(0))�̃ε�̂ε

)
,

and such that furthermore V (1,2)
ε takes values in the translation invariant sector and

is of the form

V (1,2)
ε = 1D+

(
(G ′G)(u(0)) + �̃ε

)+�(1,2)
ε , (4.30)

for some �(1,2)
ε taking values in the Taylor polynomials. In order to define V (1,3)

ε ,
we make use of the following lemma:

Lemma 4.11. Let φε be such that on R+ × D one has the identity

v(0)ε = G(u(0)) �̂ε + φε1,

and one has φε(t, x) = 0 for t < 0 or x 	∈ D. Then, for any α ∈ [0, 1), one has
the bound E‖φε‖α+ 1

2−κ,w � ε−α with w = (α − 1
2 − κ

)
3.
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Proof. We decompose φε as

φε = K∂

(
1D+G(u(0))ξε

)+ G(u(0))K
(
(1− 1D+)ξε

)
+
(
K
(
1D+G(u(0))ξε

)− G(u(0))K
(
1D+ξε
))

,

and we treat the three terms separately. The first two terms are estimated by com-
bining Proposition A.2 with Corollary 5.10.

The bound on the last term follows from combining Proposition 5.9 with Corol-
lary B.5. To apply the latter, we set θ = κ (small enough) and χ = α − 5

2 − κ ,
which yields a bound in Cκ+2 on

K
(
1D+G(u(0))ξε

)− G(u(0))K
(
1D+ξε
)−∑

i

G ′(u(0))∂i u(0)Ki
(
1D+ξε
)
.

Since Ki gains three derivatives, the term Ki
(
1D+ξε
)
itself satisfies the required

bound and we are done. �
RecallingW1,ε as defined in (4.26), it follows from Lemma 4.11 combined with

the definition of the renormalised model that we can rewrite it as

W1,ε = G2(u(0))�̂ε + 2G(u(0))φε�̂ε + φ2
ε �̂ε . (4.31)

As a consequence of Proposition 5.9 (with α = κ), combined with Lemma 4.11
(with α = 1

2 ), we conclude that one has

lim
ε→0

‖W1,ε‖− 1
2−3κ = 0. (4.32)

Indeed, the reconstruction theorem [9, Thm 4.9] and the multiplication rules [9,
Lem. 4.3] imply that if g ∈ Cγ,(η)3 for η ≤ 0 and γ > 0, and ζ ∈ Cβ with β ≤ 0
and γ +β > 0 then, provided that η+β > −1, one has gζ ∈ Cη+β . (View ζ as the
constant function in a regularity structure containing only one symbol of degree β
and apply the reconstruction theorem to gζ .)

Since − 1
2 − 3κ > −1, we can multiply such a distribution by the indicator

function of R+ × D. It follows that, setting

V (1,3)
ε

def= 1

2
LKNeu

(
1+DG

′′(u(0))W1,ε
)
, (4.33)

we have limε→0 V
(1,3)
ε = 0 in D 3

2−3κ and furthermore RεV
(1,3)
ε = v

(1,�)
ε . Com-

bining these definitions, we set

V̂ (1)
ε = V (1,0)

ε + V (1,1)
ε + V (1,2)

ε + V (1,3)
ε .

Summarising this discussion, one has the following result:

Lemma 4.12. We have V̂ (1)
ε ∈ D 3

2−3κ,(0)3 , Rε V̂
(1)
ε = v

(1)
ε and V̂ (1)

ε is of the form

V̂ (1)
ε = 1D+ G ′G(u(0)) + 1D+ G ′(u(0))�(0)

ε +�(1)
ε , (4.34)

for some �
(1)
ε taking values in the Taylor polynomials, and where �

(0)
ε is as in

Lemma 4.10. Furthermore, limε→0 V̂
(1)
ε = V̂ (1) ∈ D 3

2−3κ,(0)3 withR0V̂ (1) = 0.
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Proof. Collecting (4.28), (4.29), (4.30) and (4.33),we see that (4.34) holds, butwith
�

(0)
ε replaced by G(u(0))(�̂ε )+ �̃ε. These two expression are seen to coincide

on R+ × D by comparing Lemma 4.10 with (4.24).
The only statement we haven’t shown yet is thatR0V̂ (1) = 0. Since we already

know by (4.32) that W1,ε converges to 0 and since Rε V̂
(1)
ε = RεV

(1)
ε , it remains

by (4.25) to show that limε→0 Rε

(
Ṽ (0)
ε

) = 0. This in turn is immediate from
(4.27) when combined with Theorem 4.8 which guarantees that the limiting model
vanishes on all accented symbols. �

4.6. Formulation of the Fixed Point Problem

Introduce now amodelled distribution Vε and, using the shorthand V̂ε = V̂ (0)
ε +

V̂ (1)
ε + Vε, consider the fixed point problem

Vε = PNeu1D+
(
H ′
η(u

(0))V̂ε + L(G ′(u(0)))(V̂ε − V̂ (0)
ε ) + L(G ′(u(0))u(1))

+ 1

2
L(G ′′(u(0)))(V̂ 2

ε − (V̂ (0)
ε )2) + L(G ′′(u(0))u(1))V̂ε

+ 1

2
L(G ′′(u(0))(u(1))2)

)
+ LPNeu1D+

(
R̂(d)
ε (Rε V̂ε, ς)+ R̃(d)

ε (ς̄)
)
,

(4.35)

where R̃(d)
ε = 0 for d = 1 and

R̃(2)
ε (ς̄) = εκ

1

2
G2G ′′

ε ς̄ ,

R̃(3)
ε (ς̄) = εκ(G ′′G)

(1
2

G + εG ′( G + 〈 ,∇u(0)〉 + u(1)
))

ς̄ .

(4.36)

Remark 4.13. We will set this up as a fixed point problem in the space D 3
2−3κ,(0)3 .

Since deg < −1 and deg < −1 (in d ∈ {2, 3} for the latter), this forces us
to rely on Theorem C.5 for the reconstruction of the right hand side of (4.35) and
to combine this with [9, Lem. 4.12] to provide an interpretation for the integration
operator K appearing in the definition (3.2) of PNeu.

Remark 4.14. Recall that the definition (4.3) of the remainder R̂(d)
ε involves an

arbitrary exponent α. We henceforth fix a choice α = α(d) depending on the
dimension, namely

α(1) = 5

4
, α(2) = 9

4
, α(3) = 11

4
. (4.37)

All further statements about R̂(d)
ε hold for this particular choice.
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We claim that with this definition and provided that we consider the renor-
malised model constructed in Section 4.3, (4.35) admits a unique solution in

D 3
2−3κ,(0)3 and, provided that we set ς = εαξε and ς̄ = ε−1−κσε, one has

vε = Rε V̂ε. The reason for the appearance of R̃(d)
ε is to cancel out some addi-

tional unwanted terms arising from the renormalisation procedure. Before this, we
formulate a technical lemma, where we write ‖θ‖α for the Cα norm of the function
/ distribution θ on DT = [0, T ] × D with T as in Theorem 1.2.

Lemma 4.15. Let w, w̄ with ‖w‖L∞ +‖w̄‖L∞ ≤ ε−d/2 on the domain DT and let
κ ∈ (0, 1

4 ). Writing X = ‖ς‖− 1
2+2κ + 1, one has the bounds

‖R(1)
ε (w, ς)‖− 1

2+2κ � ε1/4
(
1+ ‖w‖ 1

2−κ

)3X,
‖R(1)

ε (w, ς)− R(1)
ε (w̄, ς)‖− 1

2+2κ � ε1/4‖w − w̄‖ 1
2−κ

(
1+ ‖w‖ 1

2−κ
+ ‖w̄‖ 1

2−κ

)3X,
for some proportionality constants depending only on u(0), G and H. In dimensions
2 and 3, we set X = ‖ς‖L p + 1 (for any fixed p ∈ [1,∞]) and we have the bounds

‖R(d)
ε (w, ς)‖L p � εκ

(
1+ εβ‖w‖L∞

)3X,
‖R(d)

ε (w, ς)− R(d)
ε (w̄, ς)‖L p � εκ+β‖w − w̄‖L∞

(
1+ εβ‖w‖L∞ + εβ‖w̄‖L∞

)3X,
with β(2) = 1

4 − κ
3 and β(3) = 7

12 − κ
3 for κ sufficiently small.

Proof. The case of dimensions 2 and 3 is straightforward to verify since all bounds
are uniform. In dimension 1, the first term of (4.3) is easy to bound. To bound the
second term, we use the fact that composition with a smooth function is a (locally)

Lipschitz continuous operation in C 1
2−κ , combined with the fact that the product

is continuous as a bilinear map from C 1
2−κ × C− 1

2+2κ into C− 1
2+2κ , see [3] or [8,

Thm 13.16]. �
Proposition 4.16. Fix an initial condition u0, a final time T < 1 and nonlinearities
G and H, all as in Theorem 1.2, as well as the random model �̂ε as defined in

Section 4.3. Choose ς ∈ L p with p = (d+2)/c (for d ∈ {2, 3}) or ς ∈ C2κ− 1
2 (for

d = 1), as well as ς̄ ∈ C− 1
2−2κ (for d ∈ {2, 3}). Then, the the fixed point problem

(4.35) admits a unique local solution Vε in D 3
2−3κ,(0)3 . Furthermore, bounds on

the solution are uniform over ε ∈ [0, 1] and over ς , ς̄ in bounded balls in their
respective spaces.

Furthermore, for ε = 0 and �̂ as in Theorem 4.8, the solution V is such that
v̄ = R0V solves

∂t v̄ = �v̄ + H ′
η(u

(0))(v̄ +R0V̂
(0)), (4.38)

with homogeneous boundary conditions, where V̂ (0) is as in Lemma 4.10. In par-
ticular, limε→0 V̂ε = V̂ is such that R0V̂ coincides with the process v defined in
(1.8).

Remark 4.17. In the case d = 1, there is no condition on ς̄ since the fixed point
problem does not depend on it.
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Proof. We first consider the case d = 3. Note first that, for any C4 function G̃,

we have L(G̃(u(0), u(1))) ∈ D2,(0)3 . Since V̂ (0)
ε ∈ D1,(− 1

2−κ)3 by Lemma 4.10 and

V̂ (1)
ε ∈ D 3

2−3κ,(0)3 by Lemma 4.12, it then follows from [9, Lem. 4.3] that, for

Vε ∈ D 3
2−3κ,(0)3 , all the terms appearing after PNeu1D+ in the right hand side of

(4.35) belong toD 1
2−4κ,(− 3

2−2κ)3 , provided that κ is sufficiently small. In particular,
the operator K (defined as described in Remark 4.13) maps this continuously into
D2,(0)3 , with arbitrarily small norm for small time intervals.

Furthermore, the reconstruction operator of Theorem C.5 continuously maps

the space D 1
2−4κ,(− 3

2−2κ)3 into C− 3
2−2κ , which is then mapped continuously into

C2,(0)3 by K∂ by Proposition A.2, and therefore into D2,(0)3 by the Taylor lift L,
again with arbitrarily small norm for small time intervals as a consequence of the
bound (A.3) which also holds for K∂ .

Note now that byCorollary 5.6, we haveE‖ξε‖κ−2 � ε− 1
2−κ . As a consequence

of (4.21), we conclude from this that E|v(0)ε |L∞ � ε− 1
2−κ . Since β > 1

2 , it follows
from Lemma 4.15 that, for p = (d + 2)/c,

‖R̂(d)
ε (Rε V̂ε, ς)‖−c � ‖R(d)

ε (Rε V̂ε + ε−
1
2 u(1), ς)‖L p � ‖ς‖L p ,

uniformly over bounded sets for the model �̂ε and over bounded sets for Vε+ V̂ (1)
ε

in D 3
2−3κ,(0)3 . Since u(0) and u(1) are bounded in C1, it is immediate from (4.36)

that one has a bound of the type

‖R̃(3)
ε (ς̄)‖− 1

2−2κ � ‖ς̄‖− 1
2−2κ .

In particular, the argument of PNeu appearing in the last term on the right hand side

of (4.35) is mapped continuously by PNeu into C 3
2−3κ,(0)3 , again with arbitrarily

small normwhen considering a short enough time interval. Furthermore, all of these
expressions are locally Lipschitz continuous (with similar bounds) as a function of

Vε in D 3
2−3κ,(0)3 and of the model �̂ε, uniformly over ε ∈ [0, 1] which yields the

first claim over a short enough time (but bounded from below independently of ε)
interval. This can be maximally extended as usual, and the claim follows from the
fact that we know a priori that solutions to (4.38) do not explode.

The second claim is straightforward by simply setting ε = 0 and applying
the reconstruction operator to both sides of (4.35). The case of d = 2 is virtually
identical, noting in particular that even though ε diverges in this case, it only
does so logarithmically and is therefore compensated by the factor εκ in (4.36). We
leave the verification of the case d = 1 to the reader. �
Proposition 4.18. Let ςε = εαξε, ς̄ε = ε2−d−κσε, and define �̂ε as in Section 4.3.
Then, the assumptions of Proposition 4.16 are satisfied and we have ςε, ς̄ε → 0
in their respective spaces. Furthermore, for any ε > 0, the modelled distribution
V̂ε constructed in Proposition 4.16 is such thatRε V̂ε coincides with the process vε
defined in (4.1).

Proof. We first show that the assumptions of Proposition 4.16 are satisfied. The
fact that the random models �̂ε are uniformly bounded (in probability) as ε → 0
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and converge in probability to �̂ is the content of Theorem 4.8. By the second part
of Assumption 2.1 combined with stationarity, we furthermore see that

E‖ςε‖pL p = E‖εαξε‖pL p = ε pα−
(d+2)p

2 TE|η(0)|p � ε p/4,

when d ∈ {2, 3}. For d = 1, we have

E‖ςε‖2κ− 1
2
= ‖ε(1/4)ε ‖2κ− 1

2
≤ ‖ε(1/2−3κ)

ε ‖2κ− 1
2
,

which converges to 0 in probability by Corollary 5.6.We also conclude fromCorol-

lary 5.6 andour definitions that, ford ∈ {2, 3},‖ς̄ε‖− 1
2−2κ = ‖η(

d
2−1+κ)

ε ‖− 1
2−2κ →

0 in probability.

It remains to show that solutions coincide with vε. This is a special case of
the general result obtained in [2] and could in principle also be obtained in a way
similar to [14]. We present a short derivation here in order to remain reasonably
self-contained.

The powercounting of the various symbols appearing in our structure depends
on the dimension, so we first restrict ourselves to the case d = 3, which is the one
with the largest number of terms of negative degree appearing. Combining (4.35)
with Lemmas 4.10 and 4.12, we conclude that if we take for Vε any solution to
(4.35), there exist functions v and∇v such that, for�(0)

ε and�(1)
ε as in Lemma 4.12,

the following identities hold on R+ × D:

V̂ (0)
ε = G +�(0)

ε 1+ G ′∇u(0) ,

V̂ (1)
ε = �(1)

ε 1+ GG ′ + G ′�(0)
ε ,

V̂ε = G + v1+ GG ′ + G ′∇u(0) + G ′u(1)

+ G ′′G2

2
+ G ′v +∇v X .

Developing the argument of PNeu1D+ in (4.35) up to order 0, we conclude that it is
given by

H ′
ηG + H ′

ηv1+
1

2
G ′′∇2u(0) �X2 + G ′(v −�(0)

ε

) + G(G ′)2

+ (G ′)2∇u(0) + (G ′)2u(1) + (G ′)2v + G ′∇v + 1

2
G2G ′G ′′

+ GG ′′∇u(0) + G ′′v∇u(0) + G ′u(1) + G ′∇u(1)

+ G ′′∇u(0)u(1) + 1

2
G2G ′′ + 1

2
G ′′v2 + 1

2
G ′′(u(1))2 + GG ′′u(1)

+ GG ′′∇u(1) +GG ′′v +G ′G ′′(u(1))2 +G2G ′G ′′ + GG ′G ′′∇u(0)

+ GG ′G ′′u(1) + G ′′u(1)v + GG ′G ′′u(1) + G ′G ′′u(1)∇u(0) .

(4.39)
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At this point, we apply the results of [2]. Comparing [2, Eq. 2.20] with [2, Def. 3.20]
and [2, Thm. 3.25], we see that each term appearing on the right hand side gen-
erates a counterterm for the renormalised equation. Each of these terms is of the
form F̂(v,∇v, u(0),∇u(0), u(1),∇u(1))τ for some function F̂ and some symbol τ .
The counterterm generated by any such term is then obtained precisely by simply
replacing τ by the corresponding renormalisation constant and by interpreting the
first two arguments of F̂ as the value and gradient of the actual solution (after
reconstruction).

Remark 4.19. One may worry that we are not quite in the framework of [2] because
of the special treatment of V̂ (0)

ε and V̂ (1)
ε . This however is due to purely analytical

reasons that only affect the boundary behaviour. The computation of the renormal-
isation terms on the other hand is a purely algebraic affair which is not affected
by this. The boundary conditions of vε however are affected by our decomposition
and need to be determined separately.

It follows that, in dimension 3, the solution vε = Rε V̂ε to the fixed point
problem with the renormalised model satisfies in R+ × D the PDE

∂tvε = �vε + H ′
ηvε + G ξε + (vε + ε−1/2u(1))G ′ηε + 1

2
(vε + ε−1/2u(1))2G ′′σε

− ε−3/2G ′G − ε−1/2G(G ′)2 − ε−1/2〈∇u(0), (G ′)2 + GG ′′ 〉
− (vε + ε−1/2u(1))(GG ′)′ − ε−1/2

2
G2G ′′ − ε−1

2
G2G ′′ σε

−G ′′(G2G ′ + GG ′〈 ,∇u(0)〉 + GG ′u(1)
)
σε

+ R̂(3)
ε (vε, ς)+ R̃(3)

ε (ς̄).

Furthermore, both Rε V̂ε and v
(0)
ε = Rε V̂

(0)
ε have homogeneous boundary condi-

tions, so that the boundary conditions of vε coincide with those of v
(1)
ε = Rε V̂

(1)
ε .

By (4.36) and since we chose ς̄ = ε−1−κσε, there is a cancellation between
R̃ε(ς̄) and some of the other terms appearing in this equation. Since furthermore
= 0, we obtain

∂tvε = �vε + H ′
ηvε + G ξε + (vε + ε−1/2u(1))G ′ηε + 1

2
(vε + ε−1/2u(1))2G ′′σε

− ε−3/2G ′G − ε−1/2G(G ′)2 − ε−1/2〈∇u(0), (G ′)2 〉
− (vε + ε−1/2u(1))(GG ′)′ − ε−1/2

2
G2G ′′ + R̂(3)

ε (vε, ς),

which, when combining with the definition of 	 given in (1.6) and the fact that
ς = εαξε, precisely coincides with (4.2). Since its initial condition and boundary
condition coincide as well, this completes the proof of the claim.

In dimension 2, a similar argument (but taking less terms into account) yields

∂tvε = �vε + H ′
ηvε + G ξε + (vε + u(1))G ′ηε + 1

2
(vε + u(1))2G ′′σε

− ε−1G ′G − G(G ′)2 − 〈∇u(0), (G ′)2 + GG ′′ 〉
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− (vε + u(1))(GG ′)′ − 1

2
G2G ′′ − 1

2
G2G ′′

ε σε + R̂(2)
ε (vε, ς)

+ R̃(2)
ε (ς̄).

Again, the term R̃(2)
ε precisely cancels the term proportional to ε σε, so that this

again coincides with (4.2). In dimension 1, an even simpler argument shows that

∂tvε = �vε + H ′
ηvε + G ξε + vεG

′ηε + 1

2
v2εG

′′σε

− ε−1/2G ′G − vε (GG ′)′ + R̂(1)
ε (vε, ς),

which again coincides with (4.2), noting that in this case one has u(1) = 0. �

5. Convergence of Models

In order to show convergence of the models, we apply the general result of [6,
Thm 2.31]. This result shows that if one considers the “BPHZ lifts” of a sequence
of smooth and stationary stochastic processes ξn as given in [5, Thm 6.17] then,
provided that one has uniform bounds of a suitable “norm” of ξn and under a few
relatively weak additional algebraic assumptions, the resulting sequence of models
converges to a limit, provided that ξn → ξ weakly in probability.

5.1. Cumulant Homogeneity Assignments

In this section, we define

η(α)ε (t, x) = ε−αη(ε−2t, ε−1x), (5.1)

and we often use z = (t, x) for space-time coordinates. The exponents α will
always be chosen in

(
c, d+2

2

]
. Our aim is to obtain a suitable bound independent

of ε for joint cumulants of the form

κp
(
η(α1)ε (z1), . . . , η

(αp)
ε (z p)

)
.

Given a finite collection of at least two space-time points z = {za}a∈A, we again
consider the corresponding labelled binary tree tz = (T,n) as in Section 2.1, with
the leaves of T identified with the index set A. Recall that the nodes VT of T are
given by subsets of A, with inner nodes V̊T given by subsets with at least two
elements and the root of T given by A itself.

Recall from [6, Def. A.14] the following definition:

Definition 5.1. A“consistent cumulant homogeneity” consists, for eachfinite index
set A, each binary tree T over A as above, and each choice of indices α : A →
[c, d+2

2 ], a function c
(α)
T : V̊T → R+ satisfying furthermore

• For every B ⊂ A,
∑

v∈V̊T :v∩B 	=∅ c
(α)
T (v) ≥∑a∈B αa .

• For every u ∈ V̊T ,
∑

v∈V̊T :v⊂u c
(α)
T (v) ≤∑a∈u αa .
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• If |A| ≥ 3, then for every u ∈ V̊T with |u| ≤ 3, one has
∑

v∈V̊T :v⊂u c
(α)
T (v) <

(d + 2)(|u| − 1).

Remark 5.2. Applying the first two conditions with B = A and u = A respectively
implies in particular that

∑
v∈V̊T c

(α)
T (v) =∑a∈A αa .

We will now display a consistent cumulant homogeneity such that, for every
finite set A, space-time points {za}a∈A, and choices α : A → [c, d+2

2 ], We have the
bound

|κA
({
η(αa)ε (za)

}
a∈A
)| �

∏
u∈V̊T

2c
(α)
T (u)n(u), (T,n) = tz . (5.2)

We claim that one possible choice is obtained by setting

c
(α)
T (u) =

∑
a∈A

αa2
−d(u,a), (5.3)

where

d(u, a) =
⎧⎨
⎩
|{v ∈ V̊T : a ∈ v ⊂ u}| if a ∈ u and u 	= A,
|{v ∈ V̊T : a ∈ v}| − 1 if u = A,

+∞ if a 	∈ u.
(5.4)

Proposition 5.3. The choice (5.3) is a consistent cumulant homogeneity.

Proof. The first two conditions of Definition 5.1 follow immediately from the
structure of the formula (5.3), in particular the facts that 2−d(u,a) is positive, vanishes
for a 	∈ u, and is such that

∑
u∈V̊T 2

−d(u,a) = 1.
Regarding the last condition, the case |u| = 3 follows from the fact that the

second condition holds and αa ≤ d+2
2 . The case |u| = 2 follows from the condition

|A| ≥ 3 which guarantees that the corresponding sum is bounded by d+2
2 since

d(u, a) = 1 in this case. �
Lemma 5.4. Setting α = infa∈A αa and α = supa∈A αa, one has c

(α)
T (u) ∈ [α, α]

for u ∈ V̊T \{A} and c
(α)
T (A) ∈ [2α, 2α].

Proof. By convexity of (5.3), it suffices to consider the case where αa = 1 for all
a. We proceed by induction on the size of A. When |A| = 2, one has V̊T = {A}, so
that d(A, a) = 0 and therefore c(α)T (A) = 2 as claimed.

Assume now that |A| > 2 and fix a binary tree T over A. Write A1 and A2 for
the children of A in V̊T , so that A = A1 � A2. We distinguish two cases. In the first
case, |A1| ∧ |A2| ≥ 2, so that the tree T can naturally be thought of as two trees
T1, T2 over A1, A2 joined by their roots. By (5.4) (in particular the fact that there
is an additional −1 at the root), we then have

c
(α)
T (A1) = 1

2
c
(α)
T1

(A1), c
(α)
T (A2) = 1

2
c
(α)
T2

(A2),
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c
(α)
T (A) = 1

2

(
c
(α)
T1

(A1)+ c
(α)
T2

(A2)
)
,

while c(α)T (u) = c
(α)
Ti

(u) for all other u ∈ V̊T , with i ∈ {1, 2} depending on whether
u ⊂ A1 or u ⊂ A2. We conclude by using the induction hypothesis, which implies
that c(α)T1

(A1) = c
(α)
T2

(A2) = 2.
In the second case, we have |A1| = 1 and |A2| ≥ 2 (or vice-versa), the case

|A| = 2 having already been dealt with. In this case, the tree T consists of a subtree
T2 over A2 as before, with an additional root vertex A and single extra leaf. In this
case, we have

c
(α)
T (A2) = 1

2
c
(α)
T2

(A2), c
(α)
T (A) = 1+ 1

2
c
(α)
T2

(A2),

whence we conclude as before. �
Proposition 5.5. Under Assumption 2.1, the bound (5.2) holds for the choice (5.3).

Proof. It follows from Assumption 2.1 and (5.1) that

|κA
({
η(αa)ε (za)

}
a∈A
)| � εcε(n(A))−

∑
a∈A αa2cε(n(A))n(A)

∏
u∈V̊T

εcε(n(u))2cε(n(u))n(u),

(5.5)

where

cε(n) =
{
c if n ≥ log2

1
ε
,

c otherwise.
(5.6)

Let now ĉ : V̊T → [c, c] be any map such that ĉ(A) +∑u∈V̊T ĉ(u) =
∑

a∈A αa ,
and rewrite (5.5) as

|κA
({
η(αa)ε (za)

}
a∈A
)| � εcε(n(A))−ĉ(A)2cε(n(A))n(A)

∏
u∈V̊T

εcε(n(u))−ĉ(u)2cε(n(u))n(u).

(5.7)

We now note that (5.6) implies that

εcε(n)−ĉ2cε(n)n = (ε2n)cε(n)−ĉ2ĉn ≤ 2ĉn,

for every ĉ ∈ [c, c], uniformly over n ∈ Z and ε ∈ (0, 1]. Inserting this into (5.7)
immediately yields that, uniformly in ε, one has

|κA
({
η(αa)ε (za)

}
a∈A
)| � 2ĉ(A)n(A)

∏
u∈V̊T

2ĉ(u)n(u). (5.8)

Since the map c
(α)
T is of the desired type by Lemma 5.4 [modulo the additional

factor 2 at the root which is taken care of explicitly in (5.8)], the claim follows. �
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Corollary 5.6. For any α ∈ (c, d+2
2

)
, one has η(α)ε → 0 in probability in Cβ for

every β < −α. In particular, ηε → 0 in probability in Cβ for every β < −1 and
ζε → 0 in probability in Cβ for every β < d−2

2 . The same holds for η(α)ε 1A for any
fixed Borel set A.

Proof. The first statement is an immediate consequence of [6, Thm 2.31]. The fact
that we can multiply η

(α)
ε by an arbitrary indicator function follows from the fact

that these bounds do not involve the derivative of the test function in this case. �

5.2. Power-Counting Conditions

By (5.3)–(5.4), the quantityhc,D(A) defined in [6, Def. A.24] can be estimated
by

hc,D(A) =
∑
a∈D

2−d(D,a)αa ≥ 2−(|D|−1)
∑
a∈D

αa . (5.9)

This is because for D ∈ V̊T with D 	= A, one always has d(D, a) ≤ |D| − 1.
Furthermore, by [6, Rem. 2.28], one hasjD(A) ≥ d+2

2 −κ for all typed sets A and
D. These observations allow us to conclude the following:

Lemma 5.7. All the decorated trees generated by the rule R of Definition 4.4 are
c-super regular in the terminology of [6, Def. A.27].

Remark 5.8. Since our scaling and degree assignment are fixed throughout and
since we consider all cumulants, that is we choose LCum to contain all possible
cumulants, we omit these from our notation.

Proof. We reduce ourselves to considering symbols of negative degree since the
claim then follows automatically for the remaining ones. These symbols are listed
in (4.15). Note also that the definition of c-super regularity is non-trivial only for
trees that contain at least three noises, so that it suffices to consider the symbols

, , , , , , , , . (5.10)

By (5.9), it is sufficient to verify that for every subtree τ containing k ≥ 2 instances
of a noise one has the bound

deg τ +
(d + 2

2
∧ 2−(k−1)

k∑
i=1

| deg�i |
)
− κ ≥ 0,

where�i denotes the i th noise appearing in τ . This can be seen simply by inspection
of the list (5.10). �
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5.3. Special Bounds

For some of the symbols in our regularity structure, we will bounds that are
stronger than what is suggested by the degrees of the symbols in question. In this
statement, φ denotes an arbitrary measurable function with

sup
z

|φ(z)| ≤ 1, suppφ ⊂ B(0, 1). (5.11)

Proposition 5.9. Let δ > 0 be as in Section 2. For α ∈ [−δ, 1] and β = − 1
2 − α,

we have the bounds

(
�̂ε

)
(φλ

z ) � εαλβ,
(
�̂ε

)
(φλ

z ) � ε
1
2+αλβ,

(
�̂ε

)
(φλ

z ) � ε1+αλβ,

where we write X � Y as a shorthand for the existence, for every p ≥ 1, of a
constant C such that E|X |p ≤ CY p, uniformly over all λ ≤ 1, ε ≤ 1 and φ as in
(5.11).

Proof. Recall that, by Proposition 5.5, we can view any η
(θ)
ε as in (5.1) for θ ∈

[ 12−δ, 5
2 ] as a “noise” of regularity−θ whose “norm”, asmeasured by [6,Def.A.18]

with respect to the cumulant homogeneity just described remains uniformlybounded
as ε → 0.

In particular, we can write

�ε = εα(K ∗ η(2)ε )2η
( 12+α)
ε ,

and we can apply [6, Thm 2.31], showing that the BPHZ renormalisation of this
term satisfies the required bounds. Recall that �̂ε doesn’t quite agree with the
BPHZ renormalisation, but the error between the two is given by 2ε3/2δgε( )�ε

with δgε as in (4.19), which is easily seen to satisfy the required bounds.
The other two terms can be dealt with similarly by writing

�ε = ε
1

2+α (K ∗ η(2)ε )η
( 12+α)
ε , �ε = ε1+αη

( 12+α)
ε ,

thus concluding the proof. �

Corollary 5.10. For every κ > 0, every α ∈ [0, 1), and every Borel set A ⊂ Rd+1,
one has the bound

(
E‖1Aξε‖pCw

)1/p � ε−α with w = α − 5
2 − κ .

Proof. This follows from the third bound of Proposition 5.9 by Kolmogorov’s
criterion, using the fact that �̂ε = ε3ξε and that we can move the multiplication
by 1A onto the test function. �



Fluctuations Around a Homogenised Semilinear Random PDE 193

5.4. Tightness and Convergence for the Noise

In this section, we show that the convergence announced in Theorem 4.8 holds.
As usual, convergence is obtained by first showing tightness and then identification
of the limiting distribution. More precisely, we prove the following:

Theorem 5.11. One has ξε → ξ weakly in Cα for every α < − d+2
2 .

It turns out that this statement is a relatively straightforward consequence of the
following proposition.Writing κp(X) for the pth cumulant of a real-valued random
variable X , one has the following:

Proposition 5.12. For p ≥ 2, we have the bound

|κp
(〈η, φλ

0 〉
)| �
(
λ−cp + λ−(d+2)(p−1)) ∧ λ−cp,

uniformly over all λ ∈ R+ and all φ as in (5.11).

Before we turn to the proof of Proposition 5.12, let us show how to deduce
Theorem 5.11 from it. First, we have the following corollary:

Corollary 5.13. For any κ ≤ 1
2 and p ≥ 2, one has the bounds

E
∣∣〈ξε, φλ

0 〉
∣∣p � λ−

d+2
2 p,

uniformly over λ ≤ 1, ε ≤ 1 and φ as in (5.11).

Proof. By simple rescaling, it is straightforward to see that the required bound is
equivalent to the bound

E
∣∣〈η, φλ̄

0 〉
∣∣p � λ̄−

d+2
2 p, (5.12)

uniformly over λ̄ ≤ 1/ε and ε ≤ 1.

For even integers p ≥ 2, Proposition5.12 implies that |κp
(〈η, φλ

0 〉
)| � λ− d+2

2 p∧
λ−cp, so that.

E|〈η, φλ
0 〉|p � λ−

d+2
2 p ∧ λ−cp, (5.13)

It remains to observe that (5.13) implies that E|〈η, φλ̄
0 〉|p � λ̄−cp, uniformly over

all λ̄ > 0, for any c ∈ [c, d+2
2 ]. Since (5.12) is of this form and our assumptions

guarantee that the values of c appearing there fall into the correct interval, this
concludes the proof. �
Proof of Theorem 5.11. Using [11, Eq. 10.4] (which is nothing but an analogue of
Kolmogorov’s continuity criterion) and the compactness of the embeddings Cα ⊂
Cβ for α > β (over any bounded domain), it follows from Corollary 5.13 that the
laws ξε are tight in Cα for every α < − d+2

2 .
It remains to show that every limit ξ of a convergent subsequence of ξε is space-

time white noise. It thus suffices to show that, for every φ ∈ C∞0 with
∫
φ2(z) dz =
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1, ξ(φ) is centred normal with variance 1. Since all moments of 〈ξε, φ〉 remain
bounded as ε → 0 by Corollary 5.13, one has

κp
(
ξ(φ)
) = lim

ε→0
κp
(〈ξε, φ〉) = lim

ε→0
ε−

(d+2)p
2 κp

(〈η, φ1/ε
0 〉)

� lim
ε→0

ε−
(d+2)p

2
(
εcp + ε(d+2)(p−1)).

For p ≥ 3, this vanishes, thus showing that ξ(φ) is Gaussian. It clearly has zero
mean since this is already the case for 〈ξε, φ〉. Its variance is given by

E|〈ξε, φ〉|2 = ε−(d+2)
∫

κ2(z, z̄)φ
1/ε
0 (z)φ1/ε

0 (z̄) dz dz̄.

Note now that, for every ε > 0, every δ ∈ [0, 1] and any z, z̄ ∈ Rd+1, one has the
bound

|φ1/ε
0 (z)− φ

1/ε
0 (z̄)| � εd+2(ε‖z − z̄‖)δ.

Recalling that
∫
φ2 = 1 and that

∫
κ2(0, z) dz = 1 by (1.3), we thus obtain

∣∣E|〈ξε, φ〉|2 − 1
∣∣ =
∣∣∣ε−(d+2)

∫
κ2(z, z̄)φ

1/ε
0 (z)

(
φ
1/ε
0 (z̄)− φ

1/ε
0 (z)

)
dz dz̄
∣∣∣

� εδ
∫ ∣∣∣κ2(z, z̄)φ1/ε

0 (z)
∣∣∣ ‖z − z̄‖δ dz dz̄

� εδ
∫ (‖z′‖−2c ∧ ‖z′‖−2c)‖z′‖δ dz′ � εδ.

Here, we used the fact that the integral of φ1/ε
0 is independent of ε, as well as our

assumptions (1.3) and (2.1) on the covariance function of η. In particular, we choose
δ as in the definition of c, see Section 2, whence 2c− δ > d + 2 which guarantees
integrability at infinity. (Integrability at 0 is guaranteed by 2c−δ = d−δ < d+2.)
�
Proof of Proposition 5.12. We expand the expression for the cumulant as

κp
(〈η, φλ

0 〉
) =
∫

κp(z1, . . . , z p) φ
λ
0 (z1) . . . φ

λ
0 (z p) dz1 . . . dz p. (5.14)

In order to bound this integral, we use a simplified version of the type of multiscale
analysis used in [15,16]. Let us recall how this works.

We now write t = (T,n) for a generic binary tree, together with a scale assign-
ment as above (that is we enforce the fact that n is monotone) and T for the set of
all such t. Given t ∈ T, we write Vt/Et for the vertex/edge set of the corresponding
tree and nt for the scale assignment. In particular, nt(�p) denotes the scale as-
signment for the root, which controls the diameter of the set {z1, . . . , z p} in Rd+1.
The number p will always be considered fixed, so we do not include it explicitly
in our notation. Denoting by T the map T : (z1, . . . , z p)  → t ∈ T defined at the
start of Section 2, we set Dt = T −1(t) for the set of all configurations of points
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z ∈ (Rd+1)p giving rise to a given combinatorial data. Then, it was shown in [15,
Lem. A.13] that, for every bounded Borel set U ∈ Rd+1 one has the bound

|Dt ∩ {z : z1 ∈ U }| � |U |
∏
A∈V̊t

2−(d+2)nt(A),

where | · | denotes Lebesgue measure. Furthermore, by construction,
⋃

t∈T Dt is of
full Lebesgue measure.

Without loss of generality,we can restrict ourselves to the casewhere the support
of φ has diameter bounded by 1 in the parabolic distance. With all of this notation
at hand, we then bound (5.14) by

|κp
(〈η, φλ

0 〉
)| � λ−(d+2)p

∑
t∈T

|Dt ∩ {z : zi ∈ suppφλ
0 ∀i}| sup

z∈Dt

|κp(z1, . . . , z p)|.

We simplify this expression as follows. First, we note that

Dt ∩ {z : zi ∈ suppφλ
0 ∀i} = ∅

as soon as 2−n(�p) ≥ λ, since the support of φλ
0 is bounded by λ, so that we can

restrict the sum above to those t satisfying 2−n(�p) ≤ λ. Furthermore, one has

|Dt ∩ {z : zi ∈ suppφλ
0 ∀i}| ≤ |Dt ∩ {z : z1 ∈ suppφλ

0 }| � λd+2
∏
A∈V̊t

2−(d+2)nt(A).

Combining this with Assumption 2.1, we conclude that

|κp
(〈η, φλ

0 〉
)| � λ(d+2)(1−p)

∑
t∈T

12−n(�p )≤λ
2c(�p)nt(�p)

∏
A∈V̊t

2(c(A)−(d+2))nt(A).

We treat separately the cases λ ≤ 1 and λ ≥ 1. In the former case, we can
apply [15, Lem. A.10] with the distinguished vertex ν� appearing there equal to
the root �p. The first condition appearing there is then satisfied by the fact that
2c− (d+2) < 0 by assumption, while the second condition is empty and therefore
trivially satisfied. Note that the shape T of the tree is fixed in [15, Lem. A.10], while
we also sum over all possible shapes, but since there are finitely many of them for
any fixed p, this just yields an additional prefactor. We thus obtain the bound

|κp
(〈η, φλ

0 〉
)| � λ(d+2)(1−p)

∑
t∈T

12−n(�p )≤λ
2c nt(�p)

∏
A∈V̊t

2(c−(d+2))nt(A)

� λ(d+2)(1−p)−c
∏
A∈V̊t

λd+2−c.

Since V̊t contains exactly p − 1 elements (the tree T is binary and has p leaves),
we finally obtain

|κp
(〈η, φλ

0 〉
)| � λ−pc,

as required.



196 M. Hairer & É. Pardoux

The case λ > 1 is split into two subcases. If p ≥ 3, we use the fact that
|κp(z)| � κ̄p,c(z) uniformly over all z, so that, using [15, Lem. A.10] as above, we
have

|κp
(〈η, φλ

0 〉
)| � λ(d+2)(1−p)

∑
t∈T

12−n(�p )≤λ
2c nt(�p)

∏
A∈V̊t

2(c−(d+2))nt(A) � λ−pc.

Note that, in order to be able to apply that result, we need to verify that, for every
subtree t̂ of t spanned by some subset of its leaves satisfies

∑
A∈V̊t̂ α(A) < 0, where

α(A) = 2c−(d+2) if A = �p and α(A) = c−(d+2) otherwise. This is of course
trivially satisfied as soon as t̂ 	= t since c < d + 2 by assumption. The exponent at
the root however is given by 2c−(d+2), which is positive, but since p ≥ 3, the sum
of all exponents is given by 2c−(d+2)+(p−2)(c−(d+2)) = pc−(d+2)(p−1),
which is indeed negative for p ≥ 3 and δ < d+2

6 ,which we assume w.l.o.g..
It remains to consider the case p = 2 and λ > 1. In this case, the above

computation reduces to

|κ2
(〈η, φλ

0 〉
)| � λ−(d+2)

⎛
⎝ ∑

1≤2−n≤λ

2(2c−(d+2))n +
∑

2−n<1

2(2c−(d+2))n

⎞
⎠ � λ−(d+2),

as required, thus concluding the proof. �
We also use the following convergence results which do not strictly speaking

follow from Theorem 5.11 since multiplication by an indicator function (even that
of a hypercube) is not a continuous operation on Cβ for β < 0:

Lemma 5.14. Let ξε,D = ξε1R×D and ξ+ε,D = ξε1R+×D. Then, ξε, ξε,D, and ξ+ε,D
jointly weakly converge to limits ξ , ξD and ξ+D .

Proof. The proof is identical to that of Theorem 5.11, using the fact that all bounds
we used are uniform over test functions as in (5.11), so that multiplying them by
the indicator function of some domain changes nothing. �

5.5. Boundary Term

Recall that we have set

�̂ε = �ε −
d∑

i=1

ε1−
d
2
(
ci,0δ∂i,0D + ci,1δ∂i,1D

)
, (5.15)

where ∂i,0D = {x ∈ D : xi = 0} and ∂i,1D = {x ∈ D : xi = 1} and the
constants are given by

ci, j =
∫
R+

Qi, j (s) ds, (5.16)
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where the function Qi, j is defined as follows. For i = 1, . . . , d, write ιi : R×Rd →
Rd+1 for the map given by

ι−1
i (t, x) = (xi , v), v = (t, x (i)),

where x (i) ∈ Rd−1 denotes the vector obtained from x by deleting the i th coordi-
nate. With this notation, we then set

Qi,0(s) =
∫
R+×Rd

(P ◦ ιi ) (s + β, v) [(κ2 ◦ ιi ) (s − β, v)

−(κ2 ◦ ιi ) (s + β, v)] dβ dv,

Qi,1(s) =
∫
R+×Rd

(P ◦ ιi ) (s + β, v) [(κ2 ◦ ιi ) (β − s, v)

−(κ2 ◦ ιi ) (−s − β, v)] dβ dv.

Remark 5.15. Wewill show in Lemma 5.21 that both the integrands in the definition
of Qi, j and the functions Qi, j themselves are integrable, so that these expressions
are all finite.

Remark 5.16. The formula given above is valid for the case of Neumann boundary
conditions. In the case of Dirichlet boundary conditions, a similar formula holds,
but the precise values of the constants do not matter since they do not affect the
solutions.

Note that although P ◦ ιi 	= P , it does not depend on i , while κ2 ◦ ιi does
depend on i in general, since we do not assume that the driving noise is isotropic.
We henceforth write P̂ = P ◦ ιi . One of the main results of this section is that the
renormalised model on vanishes in a suitable sense as ε → 0. We first provide a
bound on its expectation, which requires the bulk of the work. For the formulation
of this result, we write B1

0 for the set of all test functions φ ∈ C10 with support
contained in the parabolic ball of radius 1 and such that max{‖φ‖∞, ‖Dφ‖∞} ≤ 1.

Proposition 5.17. With �̂ε defined as in (5.15), one has for d ∈ {2, 3} and any
κ > 0 small enough,

∣∣E(�̂ε

)
(φλ

z )
∣∣ � εκλ−

d
2−κ , (5.17)

uniformly over ε, λ ≤ 1, z ∈ Rd+1, and φ ∈ B1
0 .

Before we turn to the proof, we introduce a number of notations and preliminary
bounds. Write G for the reflection group generated by “elementary” reflections
across the 2d planes containing the faces of D. The group G is naturally identified
with Zd (as a set, not as a group!) since for each k ∈ Zd there exists exactly one
element Rk ∈ G mapping k+ D into D. We also write G ( R  → (−1)R ∈ {−1, 1}
for the group homomorphism mapping the elementary reflections to −1. We will
write ! : Rd+1 → R× D for the map such that ! � R× (k + D) = id×Rk and
S : Rd+1 → {−1, 1} by S � R × (k + D) = (−1)Rk .
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With these notations, it follows from Proposition A.1 that the truncated Neu-
mann and Dirichlet heat kernels are such that for z ∈ R× D one has the identities

∫
R×D

KNeu(z, z
′) f (z′) dz′ =

∫
Rd+1

K (z − z′) f (!(z′)) dz′,
∫
R×D

KDir(z, z
′) f (z′) dz′ =

∫
Rd+1

S(z′)K (z − z′) f (!(z′)) dz′. (5.18)

(Note that S is ill-defined on themeasure zero set consisting of the reflection planes,
but since it always appears in an integral this does not matter.)

Lemma 5.18. Let U ⊂ Rd+1 and let� : U → Rd+1 be a diffeomorphism between
U and its image such that ‖D�−1‖ is bounded uniformly over �(U ). Assume
furthermore that z is such that ‖z − z′‖ ≥ λ for all z′ ∈ U. Then,

∫
U
K (z − z′) |κ(ε)

2 (z,�(z′))| dz′ � ε
d
2+κλ−

d
2−κ .

for all κ ∈ [0, d
2 ].

Proof. We write U = U1 �U2 where

U1 = {z′ ∈ U : ‖z − z′‖ ≥ ‖z −�(z′)‖}.
Since ‖z− z′‖ ≥ λ for z′ ∈ U by assumption, we have the bound K (z− z′) � λ−d .
On U1, it follows from the definition that K (z − z′) � ‖z − �(z′)‖−d . As a
consequence, we obtain the bound

∫
U1

K (z − z′) |κ(ε)
2 (z,�(z′))| dz′

�
∫
�(U1)

(‖z − z′‖−d ∧ λ−d)|κ(ε)
2 (z, z′)| dz′

�
∫
Rd+1

(‖z′‖−d ∧ (λ/ε)−d)ρ2(‖z′‖) dz′ � 1 ∧ εdλ−d

≤ ε
d
2+κλ−

d
2−κ ,

as claimed. OnU2 on the other hand, we use the fact that ρ is a decreasing function,
so that ∫

U2

K (z − z′) |κ(ε)
2 (z,�(z′))| dz′

� ε−2
∫
U2

(‖z − z′‖−d ∧ λ−d)ρ2(‖Sε(z −�(z′))‖) dz′

� ε−2
∫
Rd+1

(‖z − z′‖−d ∧ λ−d)ρ2(‖Sε(z − z′)‖) dz′,

which is then bounded exactly as above. �
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Lemma 5.19. For any fixed c > 0, one has
∫
‖z‖≥c

|κ(ε)
2 (0, z)| dz � εd+2δ,

uniformly over ε ∈ (0, 1].
Proof. We can assume that ε < c, so that

|κ(ε)
2 (0, z)| � εd+2+2δ‖z‖−d−2−2δ

by Assumption 2.1, and the bound follows at once. �
Proof of Proposition 5.17. We now consider the Neumann case, the Dirichlet case
follows from a virtually identical calculation. We start by bounding the expectation
of
(
�̂ε

)
(φλ

z ). By the reflection principle (5.18), the correction due to theNeumann
boundary conditions is given by

∫
R×D

KNeu(z, z
′)ξε(z′) dz′ −

∫
Rd+1

K (z − z′)ξε(z′) dz′

=
∫
Rd+1

K (z − z′)
(
ξε(!z′)− ξε(z

′)
)
dz′.

It then follows from the definitions that

E
(
�̂ε

)
(ψ) = ε−

d
2

∫
R×D

ψ(z)
∫
Rd+1

K (z − z′)
(
κ
(ε)
2 (z,!z′)

−κ
(ε)
2 (z, z′)

)
dz′ dz. (5.19)

Writing λ = λψ for the diameter of suppψ , we aim to give a bound of the form

∣∣E(�̂ε

)
(ψ)
∣∣ � εκλ−

d
2−κ
(
λd‖ψ‖∞ + λd+1‖Dxψ‖∞

)
, (5.20)

for any κ > 0 small enough, uniformly over ε, λ ≤ 1. We restrict ourselves to the
case λψ ≤ 1

8 and we set

Wψ = {z : ∃z′ ∈ suppψ ‖z − z′‖ ≤ λψ }.
We furthermore assume for the moment that

Wψ ⊂ R × [−3/4, 3/4]d (5.21)

and that, whenever Wψ ∩ ∂D = ∅, one has Wψ ⊂ D. We will see later that it is
always possible to reduce oneself to this case. Finally, for x ∈ Rd , we write |x |0 for
the number of vanishing coordinates of x andwe set dψ = sup{|x |0 : (t, x) ∈ Wψ }.
We treat the different cases separately.
The case dψ = 0. In this case Wψ ∩ ∂D = ∅, so that suppψ ∩ ∂D = ∅ and in
particular

(
�̂ε

)
(ψ) = (�ε

)
(ψ). We then have

|E(�̂ε

)
(ψ)| ≤ ε−

d
2

∫
R×D

|ψ(z)|
∫
R×Dc

K (z − z′)
(|κ(ε)

2 (z,!z′)|
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+ |κ(ε)
2 (z, z′)|) dz′ dz. (5.22)

We break the inner integral into a finite sum of integrals over R × (k + D), since
K has compact support and z ∈ R× D. Since we can restrict z to the support of ψ ,
we have |x − x ′| ≥ λ for all x ′ ∈ k + D with k 	= 0 by the definition of Wψ . We
can then apply Lemma 5.18 with U = R × (k + D) and � = ! for the first term,
while � = id for the second term. It follows that |E(�̂ε

)
(ψ)| is bounded by

εκλ−
d
2−κ

∫
|ψ(z)| dz, (5.23)

which is indeed bounded by the right hand side of (5.20).
The case dψ = 1. In this case, the support of ψ is located near one of the faces
of D (say ∂i,0D), but its distance to the other faces is at least λ. Write R for the
element of G which corresponds to reflection around the plane containing ∂i,0D
and πi : Rd+1 → Rd+1 for the orthogonal projection onto that plane.We also write
Ei = {(t, x) : xi < 0}.

We first note that

E
(
�ε

)
(ψ) = ε−

d
2

∫
R×D

ψ(z)
∫
Ei

K (z − z′)
(
κ
(ε)
2 (z,Rz′)

− κ
(ε)
2 (z, z′)

)
dz′ dz + R, (5.24)

where |R| is bounded by (5.23). Indeed, the integrands in (5.19) and (5.24) vanish on
D and coincide onRD. Their integral over the complement of these two regions is
then bounded exactly as before by applying Lemma 5.18 to finitely many translates
of D. By Lemma 5.19, we can furthermore replace K by P so that

E
(
�ε

)
(ψ) = ε−

d
2

∫
R×D

ψ(z)
∫
Ei

P(z − z′)
(
κ
(ε)
2 (z,Rz′)

− κ
(ε)
2 (z, z′)

)
dz′ dz + R̃, (5.25)

where |R̃| is bounded by (5.23). The reason for this is that P − K is supported
outside of an annulus of radius 1 and ψ is supported at a distance of at most 1/4
from the reflection plane of R, and one has ‖z − Rz′‖ ≥ 1/2 for all z, z′ with
z ∈ suppψ and ‖z − z′‖ ≥ 1.

On the other hand, we claim that

ε1−
d
2 ci,0δ∂i,0D(ψ) = ε−

d
2

∫
R×D

ψ(πi z)
∫
Ei

P(z − z′)
(
κ
(ε)
2 (z,Rz′)

− κ
(ε)
2 (z, z′)

)
dz′ dz.

To see that this is the case, we first perform the change of variables z = ιi (s, v) and
similarly for z′, and we note that πi ιi (s, v) = ιi (0, v), so that the right hand side is
given by

ε−
d
2

∫
R+×Rd

ψ(ιi (0, v))
∫
R−×Rd

P(ιi (s − s′, v − v′))
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(
κ
(ε)
2 (ιi (s + s′, v − v′))− κ

(ε)
2 (ιi (s − s′, v − v′))

)
d(s′, v′) d(s, v)

= ε−
d
2

∫
Rd

ψ(ιi (0, v)) dv
∫
R+

∫
R−×Rd

P(ιi (s − s′, v′))
(
κ
(ε)
2 (ιi (s + s′, v′))− κ

(ε)
2 (ιi (s − s′, v′))

)
d(s′, v′) ds

= ε1−
d
2

∫
Rd

ψ(ιi (0, v)) dv
∫
R+

∫
R−×Rd

P(ιi (s − s′, v′))
(
κ2(ιi (s + s′, v′))− κ2(ιi (s − s′, v′))

)
d(s′, v′) ds

Performing the substitution s′  → −β and comparing to the definition of Qi,0, we
conclude that

E
(
�̂ε

)
(ψ) = ε−

d
2

∫
R+

Qi,0

( s
ε

) ∫
Rd

(
(ψ ◦ ιi )(s, u)− ψ ◦ ιi )(0, u)

)
du ds + R̃.

(5.26)

By Lemma 5.21, the function Qi,0 satisfies the bounds

sup
s∈R+

∣∣Qi,0 (s)
∣∣ < ∞,

∫
R+

|Qi,0 (s) | ds < ∞,

∫
R+

|Qi,0 (s) |s ds < ∞.

Note now that the integral over u is restricted to the projection of the support of ψ
which is of volume at most λd+1 (since u consists of d − 1 spatial variables and
one time variable). Bounding ψ by its supremum, it follows that

E
(
�̂ε

)
(ψ) � ε1−

d
2 λd+1‖ψ‖∞

∫
R+

|Qi,0(s)| ds + |R|.

On the other hand, we can bound |(ψ ◦ ιi )(s, u)− ψ ◦ ιi )(0, u)| by |s| ‖Dxψ‖∞,
which similarly yields

E
(
�̂ε

)
(ψ) � ε2−

d
2 λd+1‖Dxψ‖∞

∫
R+

|Qi,0(s)|s ds + |R|.

Combining these and choosing ψ = φλ
z so that ‖ψ‖∞ � λ−d−2 and ‖Dxψ‖∞ �

λ−d−3 yields a bound of the order ε− d
2 (ελ−1 ∧ ε2λ−2), which does imply (5.17)

since − d
2 − κ ∈ (−2,−1).

The case dψ = 2. We claim that this case can be obtained as a consequence of
the bounds for the cases dψ = 0 and dψ = 1. We consider the case of dimension
d = 2 (but the computation below is done in a way that keeps track of dimension
and applies to d = 3 as well) so that by (5.21)

Wψ ∩ {(t, x) : x1 = x2 = 0} 	= ∅.
We then fix a smooth function χ : R → R+ such that suppχ ⊂ [0, 2] and such that∑

k∈Z χk(x) = 1, where χk(x) = χ(x − k). For some fixed constant c > 1 and
integers n, ki and �, we then set

χn,k,�(z) = χn(− log |x |/ log 2)χk1(c2nx1)χk2(c2nx2)χ�(c
222nt).
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By choosing c sufficiently large, we can guarantee that, for every n, k and �, the
function χn,k,� is such that dχn,k,� ∈ {0, 1}. Furthermore, there are only finitely
many values of k (independently of n and �) for which χn,k,� 	= 0. This is because
χn,k,�(S2n z) is independent of n. Fix now a test function of the form ψ = φλ

z0 and
write

ψn,k,�(z) = φλ
z0(z)χn,k,�(z).

By construction, one has ψn,k,� = 0 for n such that 2−n ≥ 2λ, so that

λψn,k,� ≤ 2−n, ‖Dmψn,k,�‖∞ � λ−d−2 2n|m|.

Applying the bounds we already obtained for dψ ∈ {0, 1}, we conclude that
∣∣E(�̂ε

)
(ψn,k,�)

∣∣ � εκ2n(
d
2+κ)λ−d−22−n(d+2).

For any given n, the number of values for k and � leading to non-vanishing λψn,k,�

is of the order of (λ2n)d , so that we eventually obtain the bound

∣∣E(�̂ε

)
(ψ)
∣∣ � εκ

∑
2−n≥2λ

(λ2n)d2n(
d
2+κ)λ−d−22−n(d+2)

= εκλ−2
∑

2−n≥2λ

2n(
d
2+κ−2) � εκλ−

d
2−κ ,

as claimed. The case of dimension d = 3 is identical, the only difference being that
� now has two components. Note that this calculation breaks in d = 4 where the
sum over n diverges. This suggests that in this case one would have to add to �̂ε

an additional correction term that charges faces of codimension 2.
The case dψ = 3. This is relevant only for d = 3, we shall however keep track of
d in our calculation to illustrate how this would behave in higher dimensions. We
then proceed in the same way as for the case dψ = 2, making use this time of the
fact that we already have the required bound for all test functions with dψ < 3.
This time, we have

Wψ ∩ {(t, x) : x1 = x2 = x3 = 0} 	= ∅,
and we set in a fashion similar to above,

χn,k,�(z) = χn(− log |x |/ log 2)χk1(c2nx1)χk2(c2nx2)χk3(c2nx3)χ�(c
222nt).

This time, for any given n, the number of values for k and � leading to non-vanishing
λψn,k,� is of the order of (λ2

n)d−1, which then yields similarly to above

∣∣E(�̂ε

)
(ψ)
∣∣ � εκ

∑
2−n≥2λ

(λ2n)d−12n(
d
2+κ)λ−d−22−n(d+2)

= εκλ−3
∑

2−n≥2λ

2n(
d
2+κ−3) � εκλ−

d
2−κ .

Note that this time the series actually converges for all d < 6.
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To conclude, we justify the assumption (5.21) and the fact that, forWψ ∩∂D =
∅, one has Wψ ⊂ D. Indeed, by our assumption on λψ , it is always possible to
enforce this by applying a finite number of reflections around the planes {x : xi =
1/2}. If suppψ intersects ∂i,1D for example, then we reflect around xi = 1

2 to have
suppψ intersect ∂i,0D instead. The only effect of this reflection is that, in order to
obtain the same answer, we only need to reflect the noise η around that plane. The
effect of this operation on its covariance function is to change the sign of the i th
spatial coordinate of its argument, which is why how we obtain Qi,1 rather than
Qi,0 in (5.26). �

We now have the main ingredients in place to prove the main result of this
section.

Theorem 5.20. With �̂ε defined as in (5.15), one has for d ∈ {2, 3} and any
κ > 0 small enough,

∥∥(�̂ε

)
(φλ

z )
∥∥
L p � εκλ−

d
2−κ , (5.27)

uniformly over ε, λ ≤ 1, z ∈ Rd+1, and φ ∈ B1
0 .

Proof. Writing ψ = φλ
z , the triangle inequality yields

∥∥(�̂ε

)
(ψ)
∥∥
L p ≤

∥∥(�̂ε

)
(ψ)− E

(
�̂ε

)
(ψ)
∥∥
L p +
∣∣E(�̂ε

)
(ψ)
∣∣,

and we already obtained the required bound on the second term in Proposition 5.17,
sowe focus on the first one. Furthermore, �̂ε differs from�ε by a deterministic
quantity, so that we only need to bound

∥∥(�ε

)
(ψ)− E

(
�ε

)
(ψ)
∥∥
L p .

By (4.7) combined with (5.18), this random variable equals

ε−
d
2

∫
R×D

ψ(z)
∫
Rd+1

K (z − z′)
(:ηε(z)ηε(!z′): − :ηε(z)ηε(z′):

)
dz′ dz.(5.28)

This time, we will not need to exploit the cancellation between these two terms
on R × D, so we simply bound both terms separately. The second term equals(
�̂ε

)
(ψ), which is bounded by the right hand side of (5.27) by Theorem 4.8.

For the first term, we use the fact that K is compactly supported, so that it can
be bounded by a finite sum of terms of the type

ε−
d
2

∫
R×D

ψ(z)
∫
R×D

K (z − Rz′) :ηε(z)ηε(z′): dz′ dz,

with R ∈ G.
The expectation of the pth power of this expression is given by a multiple

integral with the integrand given by a sum of terms, each of which is a product of
heat kernels and of cumulants. At this stage, we note that the bound in [6] does not
exploit any further cancellations, so we can put absolute values everywhere, bound
K (z − Rz′) by ‖z − z′‖−d , and use the bounds from that paper. �
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5.6. Bounds on the Function Q

It remains to prove

Lemma 5.21. Under Assumption 2.1,

sup
s∈R+

∣∣Qi,0 (s)
∣∣+
∫
R+

|Qi,0 (s) |(1+ s) ds < ∞,

and similarly for Qi,1.

Proof. Wefix i andwe simplywrite Q instead of Qi,0. In all the estimates belowwe
will use repeatedly the inequality |(κ2◦ιi )(s−β, v)|∨|(κ2◦ιi )(s+β, v)| � t−c∧t−c.

We first estimate sups∈R+ |Q (s)|. Here β ∈ R+, v = (t, x), with x ∈ Rd−1.

|Q (s)| �
∫ ∞

0

∫ ∞

0

∫
Rd−1

P̂(s + β, v)t−c ∧ t−c dβ dv

�
∫ ∞

0

∫ ∞

0

e−(s+β)2/(4t)

√
t

t−c ∧ t−c dβ dt

�
∫ ∞

s

∫ ∞

0

e−1/t

√
t
|a|
((
a2t
)−c ∧ (a2t)−c

)
da dt

�
∫ ∞

0

e−1/t

t1−δ
dt
∫ t−1/2

0
a2δ da +

∫ ∞

0

e−1/t

t c+1/2
dt
∫ ∞

t−1/2

da

a2c−1

�
∫ ∞

0

e−1/t

t3/2
dt +
∫ ∞

0

e−1/t

t3/2
dt < ∞,

and the bound does not depend upon s. Here, to go from the second to the third
line, we set a = s + β and we performed the substitution t  → a2t/4.

It remains to estimate
∫
R+ |Q (s) |(1+ s) ds. Again v = (t, x), with x ∈ Rd−1.

∫
R+

|Q (s) |(1+ s) ds �
∫ ∞

0

∫ ∞

0

∫
Rd

(1+ s)P̂(s + β, v)t−c ∧ t−c dv dβ ds

�
∫ ∞

0

∫
Rd

(a + a2)P̂(a, v)t−c ∧ t−c dv da

�
∫ ∞

0

∫ ∞

0
(a2 + a3)

e−1/t

√
t

(
a2t
)−c ∧

(
a2t
)−c

dt da

�
∫ ∞

0

e−1/t

t1−δ
dt
∫ t−1/2

0
(a1+2δ + a2+2δ) da

+
∫ ∞

0

e−1/t

t c+1/2
dt
∫ ∞

t−1/2
(a2−2c + a3−2c) da

�
∫ ∞

0

(
1

t2
+ 1

t5/2

)
e−1/t dt

+
∫ ∞

0

(
1

t2
+ 1

t5/2

)
e−1/t dt < ∞,

thus concluding the proof. �
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6. Auxiliary Results

In this section, we collect a number of results that are more or less straightfor-
ward consequences of known results, specialised to our setting. Throughout this
section, we assume that we are working with the regularity structure defined in
Section 4.2 and that ξε is defined as in (4.1) and satisfies Assumption 2.1.

We will write Cγ as a shorthand for Dγ (T̄ ), where T̄ is the sector spanned by
the Taylor polynomials, and similarly for Cγ,η, etc. Note that for γ 	∈ N this is
consistent with the usual definition of Cγ .

Proposition 6.1. Let ζ+, ζ ∈ C− 5
2−κ be such that ζ+(φ) = 0 for φ supported in

{t < 0} and ζ+(φ) = ζ(φ) for φ supported in {t > 0} and let � be an admissible

model with � = ζ . Write K1+ = Kζ̂1+ for Kζ̂ defined as in [9, Sec. 4.5].
Define KNeu1+ , Ki1+ and KNeu,i1+ analogously and, given �, let V (0) be
given by (4.22) for some u(0) ∈ C3−κ .

Then, setting γ̄ = 3
2 − κ and η̄ = − 1

2 − κ , there exists a choice� ∈ C γ̄ ,η̄ such
thatRV (0) = KNeu

(
G(u(0))ζ+

)
and V (0) belongs toDγ̄ ,η̄. In particular, if ζ+ ∈ Cα

for some α > −1 is supported inR+×D then, for t ∈ [0, 1],RV (0) coincides with
the solution of ∂tv = �v + G(u(0))ζ+ with vanishing initial condition, endowed
with Neumann (respect. Dirichlet) boundary conditions.

If furthermore ζn → ζ in C− 5
2−κ and �n → � as admissible models, then one

has |||V (0)
n ; V (0)|||γ̄ ,η̄ → 0.

Remark 6.2. In principle, themodel� does contain non-trivial information through
its action on . This is because the kernel K∂ is not 2-regularising (condition 5.5
in [11, Ass. 5.1] fails to be satisfied), so that the extension theorem [11, Thm 5.14]
cannot be applied here.

Proof. We aim to apply Corollary B.6. Let γ = 1
2 − 2κ , η = − 5

2 − κ (so that in
particular γ −η = 3−κ), and let B = Cγ−η (on which Cγ−η then acts canonically
by multiplication) with the injection ιg = (Lγ−ηg) 1+ ∈ Dγ,η. (This is actually
independent of the model �.) Given g ∈ B, we set

R̂g = g ζ+,

which is consistent with the reconstruction operator by our assumption on ζ+. We
are therefore in the setting of Corollary B.6 provided that we set K0 = KNeu.

This guarantees that we can find� ∈ Cγ+2,η+2 with the desired properties. The
continuity as a function of ζ+ and the model � follows from the corresponding
continuity statement in Corollary B.6. �
Proposition 6.3. For every g ∈ C2−κ one can find � taking values in the Taylor
polynomials such that, setting

V = 1D+ g(�̂ε ) +�,

one has V ∈ D2−2κ,w̄ with w̄ = ( 12 − 2κ, 1
2 − 2κ, 0

)
, and RεV = K

(
1+g�̂ε

)
.
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Proof. We make use of [9, Lem. 4.12] and Corollary B.6. For this, similarly to
above, we set B = C2−κ and, for g ∈ B, we set

ιg
def= 1D+L2−κ

(
g�̂ε

)
, R̂g

def= 1+ g�̂ε .

Note that as a consequence of Proposition A.2 one has �̂ε ∈ C γ̃ ,w̃ for any γ̃ > 0

and for w̃ = (− 1
2−κ
)
3, where (η)3

def= (η, η, η). Since deg = −1−κ , it follows
from [9, Lem. 4.3] that ιg ∈ Dγ,w for γ = 1−2κ and forw = (− 3

2 −2κ
)
3. It then

follows from [9, Lem. 4.12] that one can find a modelled distribution V ∈ D2−2κ,w̄

with w̄ = ( 12 − 2κ, 1
2 − 2κ, 0

)
of the form

V = 1D+
(
g�̂ε

) + �̂,

with �̂ taking values in the Taylor polynomials and such that

RεV = K R̂g = K
(
1+g�̂ε

)
,

thus concluding the proof. �
Proposition 6.4. Equip the regularity structure (T ,G) with an admissible model
� in the sense of Definition 4.2 and let G be a modelled distribution of the form

G = (L(g1) + L(g2,i )Ki ( )+ L(g3)
)
,

for some functions g1, g2 ∈ C2−κ and g3 ∈ C 3
2−κ,w withw = (− 1

2−κ, 1
2−κ, 1

2−κ
)
.

Then, there exists a unique modelled distribution which we callR( G) such that
R( G) = R̃( G) on test functions whose support does not intersect R × ∂D
and such that

(
R( G)−�x ( G(x))

)
(ψλ

x ) � λ−
1
2−2κ

locally uniformly over x ∈ R × D and uniformly over λ ∈ (0, 1].
Furthermore, there exists V ∈ D2−2κ,w̄ with w̄ = ( 12 − 2κ, 1

2 − 2κ, 0
)
taking

values in the translation invariant sector, and such that RV = KR( G). The
function V is of the form

V = 1+I( G)+�,

with� taking values in the Taylor polynomials, and the map (g1, g2, g3,�)  → V
is uniformly Lipschitz continuous on bounded sets.

Proof. We use again the same strategy of proof as in Proposition 6.3, but this time
we take as our space B the space of triples g = (g1, g2,i , g3) as in the statement of
the proposition and we set

ιg = 1+ G, R̂g = R
(

G
)
,

whereR is the reconstruction operator given by Theorem C.5. This time, we have
deg = − 3

2 − 2κ and deg = −1− κ , so that it follows from [9, Lem. 4.3] that
ιg, G ∈ Dγ,w for γ = 1

2 − 2κ and w = (− 3
2 − 2κ,− 1

2 − 2κ,− 3
2 − 2κ

)
.
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This shows that Theorem C.5 can indeed be applied to this situation since
furthermore our admissible models are such that �̂ε( τ )(φ) = 0 as soon as φ
is supported outside of R × D. The remainder of the proof then follows from an
application of [9, Lem. 4.12] in the same way as in the proof of Proposition 6.3. �
Remark 6.5. Note that the results of [9] do not apply here since deg and deg
are both strictly below−1. Our saving grace is that the coefficients are sufficiently
well-behaved near the boundary of the domain.
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Appendix A: Extension of the Kernel

We fix a function K : Rd+1 → R which is smooth, non-anticipative (that is which is
supported on positive times), even in the spatial variable, agrees with the heat kernel on
[0, 1] × [−1, 1]d , and is supported on [0, 2] × [−2, 2]d . As usual, we write K =∑n≥0 K̃n

with K̃n satisfying the conditions of Definition B.1 with β = 2. We furthermore write

Ki (x, y) = (y − x)i K (y − x).

In order to implement integration against the heat kernel withNeumann boundary conditions,
we set

KNeu(z, z
′) =
∑
n≥0

∑
R∈G

φ(2n‖z − z′‖) K̃n(z − R(z′)), (A.1)

(recall that the reflection group G was defined in Section 4.1) where ψ : R+ → R+ is a
smooth function such that φ(r) = 1 for r ≤ 2 and φ(r) = 0 for r ≥ 3. The kernel KDir is
defined similarly.
Furthermore, it is obvious that Assumption B.1 is satisfied with β = 2, since this is the case
for K itself. Note that this would not be true if it weren’t for the presence of the cutoff φ in
(A.1) since the kernel without cutoff has singularities at z = R(z′) for all reflections R ∈ G.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proposition A.1. One has KNeu(z, z
′) =∑R∈G K (z − R(z′)) for z, z′ ∈ ([0, 1] × D)2.

Proof. Recall that K̃n is supported in the ball of radius 2−n and note that ‖z−R(z′)‖ ≥ ‖z−
z′‖whenever both z and z′ belong toR×D. As a consequence, for every z, z′ ∈ ([0, 1]×D)2,
every n ≥ 0 and every R ∈ G, one has either K̃n(z − R(z′)) = 0 or φ(2n‖z − z′‖) = 1, so
that one can replace φ by 1 in (A.1). �
In order to state the main result of this appendix, we write D̃ = R+ × D as a shorthand.

Proposition A.2. Let K , K∂ , Ki and K∂,i be as above and let ζ, ζ c ∈ Cα with α ≤ −2 be
such that ζ is supported on D̃ and ζ c is supported on its complement. Then, restricted to D̃,
both K ζ c and K∂ ζ belong to Cγ,w for w = (α + 2

)
3 and any γ > 0. Furthermore, when

restricted to D̃c, K ζ belongs to Cγ,w .
The same statements holdwhenα ≤ −3with K and K∂ replaced by Ki and K∂,i respectively
and w = (α + 3

)
3.

Proof. Consider the case z 	∈ D̃, so that

(
DkK ζ

)
(z) =

∑
n≥0

〈ζ, Dk K̃n(z − ·)〉.

We now note that 〈ζ, Dk K̃n(z − ·)〉 = 0 whenever 2−n ≤ d(z, D̃), while in general

|〈ζ, Dk K̃n(z − ·)〉| � 2−n(α+2−|k|), (A.2)

by definition of Cα . It immediately follows that one has

|(DkK ζ
)
(z)| � d(z, D̃)α+2−|k|, (A.3)

so that one has indeed K ζ ∈ Cγ,(α+2)3 for every γ > 0. The case of K ζ c, Ki ζ and Ki ζ
c

is dealt with in exactly the same way.
Consider now the case z ∈ D̃ and define

K̃ R
n (z, z′) = φ(2n |z − z′|) K̃n(z − R(z′)).

We then have the identity

(
DkK∂ ζ

)
(z) =

∑
n≥0

∑
R∈G\{id}

〈ζ, Dk K̃ R
n (z, ·)〉. (A.4)

It follows again from the definition of Cα that the bound (A.2) holds with K̃n(z−·) replaced
by K̃ R

n (z, ·).
We also note that K̃ R

n (z, ·) = 0 unless there exists a point z′ such that one has on one hand
‖z − z′‖ � 2−n and on the other hand ‖z − R(z′)‖ � 2−n . In particular, there exists a
constant C such that, if d(z, ∂ D̃) ≥ C2−n , one has K̃ R

n (z, ·) = 0 unless R = id (which is
excluded from the sum (A.4)). If on the other hand d(z, ∂ D̃) ≤ C2−n , then K̃ R

n (z, ·) is only
non-zero for at most eight different reflections R. Combining these observations shows as
before that the bound (A.3) holds with K ζ replaced by K∂ ζ . The proof for K∂ replaced by
K∂,i is virtually identical. �
Corollary A.3. For α ∈ (−3,−2] and ζ ∈ Cα supported onR+×D, one has K∂ ζ ∈ Cα+2.

Proof. This follows immediately fromPropositionA.2, combinedwith the fact thatCγ,(η)3 ⊂
Cη whenever γ ≥ η > −1. �
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Proposition A.4. Let ζ ∈ Cα with α ≤ −2 be supported on R− × Rd . Then, restricted to
R+ × Rd , KNeuζ belongs to Cγ,w for w = (α + 2, γ, α + 2

)
and any γ > 0.

Proof. With the same notations as above, we have for z = (t, x),

(
DkKNeuζ

)
(z) =

∑
n≥0

∑
R∈G

〈ζ, Dk K̃ R
n (z, ·)〉.

As before, the summand vanishes as soon as 2−n �
√|t | and, for all z ∈ R+ × Rd and

n ≥ 0, only at most a fixed number of test functions K̃ R
n (z, ·) are non-vanishing, so that we

obtain for t > 0 the bound
∣∣(DkKNeuζ

)
(t, x)
∣∣ � t

α+2
2 −k0 .

This then implies the required bound by the definition of the spaces Cγ,w . �

Appendix B: Integration and Multiplication by Smooth Functions Almost
Commute

We will use a form of the multilevel Schauder theorem of [11, Sec. 5] with slightly weaker
assumptions on the kernel K . In this section, we fix a space-time scaling s as in [11]. (In our
case this would be the parabolic scaling s = (2, 1, . . . , 1).)

Definition B.1. A function K : Rd × Rd → R is said to be β-regularising if it can be
decomposed as

K (x, y) =
∑
n≥0

K̃n(x, y), (B.1)

where the functions K̃n have the following properties:

• For all n ≥ 0, the map K̃n is supported in the set {(x, y) : ‖x − y‖s ≤ 2−n}.
• For any two multiindices k and �, there exists a constant C such that the bound

∣∣Dk
x D

�
y K̃n(x, y)

∣∣ ≤ C2(|s|−β+|�|s+|k|s)n, (B.2)

holds uniformly over all n ≥ 0 and all x, y ∈ Rd .

Remark B.2. This is identical to [11, Ass. 5.1], but with the last condition absent. It turns out
that the only place where the third condition of [11, Ass. 5.1] is ever used in [11, Sec. 5] is
in the proof of [11, Lemma 5.19], which in turn is only used for the proof of the extension
theorem, [11, Thm 5.14].

We assume that we are given a regularity structure of the type studied in [5,11], endowed
with a family of integration maps Ik for multiindices k ∈ Nd . We also assume that we are
given a model (�, �) which is admissible for the collection of kernels Kk such that

Kk(x, y) = (y − x)k K0(x, y). (B.3)

Wewill furthermore assume that our regularity structure contains the polynomial structure on
Rd (for some fixed scaling) and that admissible models satisfy the usual identity�x Xkτ =
( •− x)k�x τ for every τ ∈ T . Assuming that I0 is of order β, we assume that Ik is of order
β+|k|s, which is compatible with (B.3) in the sense that if K0 is β-regularising in the sense
of Definition B.1, then Kk is (β + |k|s)-regularising.
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Lemma B.3. Let K0 be a β-regularising kernel for some β > 0 and let (�,�) be an
admissible model for the collection of kernels Kk given in (B.3). Then, one has the identities

�xIk(X�τ ) =
∑
m≤�

(
�

m

)
�x X

�−mIk+m(τ ),

�xyIk(X�τ )− Ik(�xy(X
�τ )) =

∑
m≤�

(
�

m

)
�xy X

�−m(�xyIk+m(τ )− Ik+m(�xyτ)
)
.

(B.4)

Proof. We first consider the identity for �x . We can assume that k = 0 since the general
case then follows at once by simply setting Ĩ� = Ik+�. We also assume without loss of
generality that τ is homogeneous of degree α, so that

(
�xI0(X�τ )

)
(y) =

∫
(z − x)�K (y, z)

(
�x τ
)
( dz)

−
∑
k

1

k!
∫

(z − x)�(y − x)k Dk
x K (x, z)

(
�x τ
)
( dz),

(B.5)

where the sum is constrained by |k|s < α + β + |�|s. On the other hand, one has
∑
m

(
�

m

)(
�x X

mIn(τ ))
)
(y)

=
∑
m

(
�

m

)
(y − x)m

∫
(z − y)�−mK (y, z)

(
�x τ
)
( dz)

−
∑
m,k

(
�

m

)
(y − x)m

∫
(y − x)k

k! Dk
x
(
(z − x)�−mK (x, z)

) (
�x τ
)
( dz),

where the sum this time is constrained by |k|s < α + β + |� − m|s. The first term in this
expression clearly equals the first term of (B.5) by the binomial theorem, so we only need
to consider the second term. The integrand can be written as

∑
m,k

(
�

m

)
(y − x)m

(y − x)k

k! Dk
x
(
(z − x)�−mK (x, z)

)

=
∑
m,k,p

(−1)p�!
m!(�− m − p)!p!(k − p)! (y − x)k+m(z − x)�−m−pDk−p

x K (x, z),

where p is constrained by p ≤ k ∧ (�− m). Setting q = k − p and r = k + m, this can be
written as

∑
q,r,p

(−1)p�!
(r − q − p)!(�− r + q)!p!q! (y − x)r (z − x)�−r+q Dq

x K (x, z),

where the sum is constrained by the fact that all three variables are positive mutiindices and
furthermore

|r |s < α + β + |�|s, p + q ≤ r, r ≤ �+ q.
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It follows that for any fixed values of q and r the above sum vanishes, except when r−q = 0,
so that it equals

∑
q

1

q! (y − x)q (z − x)�Dq
x K (x, z),

constrained by |q|s < α+β+|�|s, which is precisely the integrand appearing in the second
term of (B.5).
The second identity immediately follows from the first one. Indeed, both sides take values
in the Taylor polynomials by the definition of an admissible model. Furthermore, the first
identity implies that

�xI(�xy(X
�τ )) =

∑
p≤�

(
�

p

)
(x − y)�−p�xI(X p�xyτ)

=
∑
p≤�

∑
m≤p

(
�

p

)(
p

m

)
(x − y)�−p�x X

p−mIm(�xyτ)

=
∑
m≤�

∑
n≤�−m

(
�

m

)(
�− m

n

)
(x − y)�−m−n�x X

nIm(�xyτ)

=
∑
m≤�

(
�

m

)
�x
(
(�xy X

�−m)Im(�xyτ)
)
. (B.6)

As a consequence of combining this with the first identity of (B.4), both sides of the second
identity of (B.4) are equal after applying �x to them. Since furthermore both sides belong
to the space of Taylor polynomials on which �x is injective, the claim follows. �
Corollary B.4. In the context of LemmaB.3, writeKk for the integration operator associated
to Ik as in [11] and write Lγ for the Taylor lift Cγ → Dγ . Then, for every F ∈ Dγ

χ with

χ ≤ 0 < γ and g ∈ Cθ−χ with θ ∈ (0, γ ] (and such that θ + β 	∈ Z), one can find a
function φ ∈ Cθ+β such that, setting

G = Lθ+βφ +
∑

|�|s<θ−χ

1

�!Lθ−χ−|�|s(D�g)K�

(
F
)
, (B.7)

one has G ∈ Dθ+β and RG = K (gRF).

Proof. Astraightforward calculation virtually identical to (B.6) shows that, as a consequence
of the first identity of Lemma B.3, one has

�xI(Lθ−χ (g)(x)F(x)) =
∑

|�|s<θ−χ

1

�!D
�g(x)�xI�

(
F(x)
)
. (B.8)

For F ∈ Dγ
χ , write Nk(F) = Kk(F) − Ik(F), so that Nk(F) takes values in the Taylor

polynomials of degree at most γ + β, and set

� = N0(Lθ−χ (g)F)−
∑

|�|s<θ−χ

1

�!Lθ−χ−|�|s(D�g)N�

(
F
)
.

We then set

G = �+
∑

|�|s<θ−χ

1

�!Lθ−χ−|�|s(D�g)K�

(
F
)
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= N0(F)+
∑

|�|s<θ−χ

1

�!Lθ−χ−|�|s(D�g)I�

(
F
)
.

Combining this with (B.8), it follows that, setting Ḡ = K0(Lθ−χ (g)F), one has

�xG(x) = �xN0(Lθ−χ (g)F)(x)+�xI(Lθ−χ (g)(x)F(x)) = �x Ḡ(x). (B.9)

Combining this with the second identity of Lemma B.3 and writing Q̄ for the projection
onto the Taylor polynomials, we conclude that

Q̄
(
G(x)− �xyG(y)

) = Q̄
(
Ḡ(x)− �xy Ḡ(y)

)
.

Since furthermore Ḡ and each of the terms Lθ−χ−|�|s(D�g)K�

(
F
)
belong to Dθ+β , we

conclude that one necessarily has G ∈ Dθ+β . This in turn implies that� ∈ Dθ+β , so that it
is the lift of a function φ ∈ Cθ+β . By (B.9), we furthermore haveRG = RḠ = K (gRF),
thus concluding the proof. �
One simple but very useful corollary of this result can be formulated as follows:

Corollary B.5. Let ζ ∈ Cχ with χ ≤ 0, let K and Kk be as above, and let g ∈ Cθ−χ with
θ > 0 and θ + β 	∈ Z. Then,

K (gζ )−
∑

|�|s<θ−χ

D�g

�! K�ζ ∈ Cθ+β .

Proof. It suffices to consider the case of a regularity structure with symbol � (plus Taylor
polynomials and their products with �) and model mapping � to ζ . We then apply the
reconstruction operator to both sides of (B.7) with F = �. �
In our context, we will need an analogous result, but for the spaces Dγ,η of [11, Sec. 6].
Furthermore, we will need to be able to cover situations in which [11, Prop. 6.16] does not
apply because we consider elements taking values in a sector of regularity below −2, so
that the reconstruction theorem [11, Prop. 6.9] fails. We therefore make use instead of [9,
Lem. 4.12] which, given F ∈ Dγ,η(V ) with V of regularity α ≥ η, allows us to specify a
distribution ζ ∈ Cη such that (RF)(φ) = ζ(φ) for every test function φ whose support does
not intersect the plane P = {(t, x) : t = 0}. We then have the following result.

Corollary B.6. Let γ > 0, let V be a sector of regularity α ≤ 0, and let w = (η, σ, μ) with
η, σ, μ ≤ α and η ≤ σ ∧ μ, η + β > −2, σ + β > −1. For each admissible model �,
let B be a Banach space equipped with a bounded map ι : B → Dγ,w(V ). (Since the latter
depends on � in general, this can also be the case for B and/or ι. In this case, we assume
that ι is bounded independently of the underlying model.) Let furthermore R̂ : B → Cη be
a continuous linear operator such that (R̂F)(φ) = (RιF)(φ) for every F ∈ B and every
test function φ whose support does not intersect the two boundaries.
We furthermore assume that we have a continuous bilinear map

Cγ−η × B → B (g, F)  → g F

such that ι(gF) = Lγ−η(g)ιF and such that

R̂(g F) = g R̂(F),

where the right hand side is meaningful thanks to the fact that γ > 0. Then, with γ̄ and w̄ as
in [9, Lem. 4.12], one can find φ ∈ Cγ̄ ,w̄ such that the modelled distribution G given by (B.7)
(with suitably defined K�, see the proof) belongs to Dγ̄ ,w̄ and satisfiesRG = K0(gR̂F).
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If furthermore one has a sequence of models �n → � with associated subspaces Bn ⊂
Dγ,w(V ) and reconstruction operators R̂n, as well as a sequence Fn ∈ Bn such that
|||Fn; F |||γ,w → 0 and ‖R̂n Fn−R̂F‖η → 0, then the sequence ofmodelled distributionsGn
constructed in the first part of the statement converges to G in the sense that |||Gn;G|||γ̄ ,w̄ →
0.

Proof. The proof is virtually identical to that of Corollary B.4. The only difference is that
we use [9, Lem. 4.12] to define mapsKk : B → Dγ̄k ,w̄k (with γ̄k and w̄k defined like γ̄ and
w̄, but with β replaced by β + |k|s) such that RKk F = KkR̂F . (Since η + β > −2 by
assumption, the assumptions of that lemma are satisfied and RKk F is always well-defined
as a distribution on the whole space-time.) �

Appendix C: Reconstruction Theorem

In this section, we present a version of the reconstruction theorem that allows to bypass to
some extent the condition ν > −1 appearing in [9]. This appendix was written in collabo-
ration with Máté Gerencsér. In this section we assume that P0 = {0} ×Rd , P1 = R × ∂D,
and P = P0 ∪ P1, and we write |x |Pi for the parabolic distance between x and Pi . Generic
points x , y, etc are space-time points.
Throughout this section, we fix a regularity structure (T,G) containing the polynomial
structure and such that the product with elements of the polynomial structure T̄ is well-
defined in T . We also only consider models such that�x,y acts on T̄ by translations by y−x .
Let us recall from [11, Sec 8] that, given any regularity structure (T,G), a model (�,�)
can alternatively be described by a linear map � : T → D′, together with a continuous map
F : Rd → G such that, setting �x = �Fx , �xy = (Fx )−1Fy , the analytic bounds for
models are satisfied. The main assumption we impose on our models in the present setting
is the following:

Assumption C.1. Setting T< = ⊕α≤1 Tα , there exist linear maps �+,�− : T< → D′
with �+ + �− = � � T< and such that

• (�+τ
)
(ψ) = 0 for all τ ∈ T< and all ψ supported in R × Dc and

(
�−τ
)
(ψ) = 0 for

all ψ supported in R × D;
• Setting �+

x = �+Fx , �
−
x := �−Fx the pairs (�+, �) and (�−, �) are models on

(T<,G) in the sense of [11]. (But they are not admissible in general!)

Wewill always write α for the lowest degree appearing in our ambient regularity structure T .
We also fix γ > 0 as well as exponents η and σ onwhich wemake the following assumption:

Assumption C.2. The exponents satisfy the condition

0 > σ > −1 � α ≥ η > −2. (C.1)

We also use the shorthandw = (η, σ, η) similarly to [9] (except that wemake the simplifying
assumption that the “corner exponent” coincides with η which is not essential but simplifies
our argument). One crucial ingredient for our result is the following:

Lemma C.3. For every f ∈ Dγ,w , there exist f± ∈ Dσ,η such that f+(x) = f (x) for
x ∈ R × D and f−(x) = f (x) for x ∈ R × Dc.

Proof. It follows from the definition of the spaces Dγ,w that the restriction of Q<σ f to
either R × D̄ or R × Dc belongs to Dσ,η. In particular, components of f of degree below
σ can be extended continuously to (R\{0}) × D. (Note that σ < 0 though!) The claim
then follows from an adaptation of Whitney’s extension theorem to the setting of regularity
structures, see for example [18, Thm 5.3.16]. �
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Remark C.4. In general there is no reason for f+ and f− to coincide on R × ∂D.

We define spaces Cα,η with η ≤ α < 0 as consisting of those distributions ζ ∈ Cη(R1+d )∩
Cα(R1+d\P0) such that

∣∣ζ(ψλ
x )
∣∣ � λα |x |η−α

P0
,

uniformly over x in compacts away from P0, 2λ ∈ (0, 2∧ |x |P0 ], and test functions ψ ∈ B.
Here and below we write B for the set of functions supported in the centred (parabolic) ball
of radius 1 and with r derivatives bounded by 1, where r is some fixed sufficiently large
value. Note that if η > −2, ζ ∈ Cα,η is uniquely determined by its action on test functions
supported outside P0, see [11].

Theorem C.5. Under AssumptionsC.1 andC.2, there then exists a unique continuous linear
operator R : Dγ,w

P → Cα,η such that R f (ψ) = R̃ f (ψ) for all ψ supported in Rd\P,
and such that one has the bound

(
R f −�+

x f+(x)−�−
x f−(x)

)
(ψλ

x ) � λσ |x |μ−σ
P0

(C.2)

uniformly over x ∈ P1\P0 (in compacts), over λ ∈ (0, 1] such that 2λ � |x |P0 , and over
ψ ∈ B.

Remark C.6. Wedid not specify the continuity of themapRwith respect to differentmodels.
We will continue to omit continuity statements in the sequel, on one hand for the sake of
easing the presentation, and on the other hand due to the fact that since all the operations
discussed here are linear, the “linearisation trick” of [14, Prop 3.11] automatically implies
all the required continuity properties.

Proof. The proof is very similarly to that of [9, Thm 4.10], but due to the central role of the
statement in our proof, we provide some detail. The uniqueness part is quite straightforward:
take two Cα,η distributions ξ1, ξ2 that have the properties claimed for R f in the theorem.
Their difference then vanishes away from P , and thanks to the bound (C.2), must belong to
Cα,η. Since η > −2 however, such a distribution necessarily vanishes.
To construct R, we use essentially the same construction as in the proof of [11, Prop. 6.9].
Similarly to the construction of the functions φx,n performed there, we can find, for every
n ∈ N, a countable index set �n and functions φx,n with n ∈ N and x ∈ �n with the
following properties. There exist constants ci > 0 such that:

(i) For every n ∈ N and x ∈ �n there exists ψ ∈ B, y ∈ Rd+1 with |y|P1 = 2−n such
that, setting λ = 2−n−1, one has φx,n = c1λ

d+2ψλ
y .

(ii) For every ball B of (parabolic) radius λ, there exist at most c2λd+1 elements x ∈ �n
with suppφx,n ∩ B 	= ∅.

(iii) For every y ∈ Rd+1 with 0 < |y|P1 ≤ 1, one has
∑

n∈N
∑

x∈�n
φx,n(y) = 1.

(Note that the sum appearing in the last claim always converges since, by the first two
properties, it is guaranteed to only contain finitely many terms.)
WenowwriteR± for the reconstruction operators forDγ spaceswithγ < 0 associated to the
models�± as in the second part of [11, Thm 3.10], we fix y ∈ Rd+1\P0, λ ≤ 1∧ |y|P0/C
for some large enough (but fixed) constant C , and ψ ∈ B, and we define
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(R f )(ψλ
y ) =

(
R+ f+ +R− f−

)
(ψλ

y )

+
∑
n≥0

∑
x∈�n

(
R̃ f −R+ f+ −R− f−

)(
φx,nψ

λ
y
)
.

If one also has λ ≤ |y|P1/2, then the second sum only contains finitely many terms and one
has (R f )(ψ) = (R̃ f )(ψ). Since in this case it follows from [9, Def. 3.1] combined with
[11, Lem. 6.7] that one has the bound

|(R̃ f )(ψλ
y )| � |y|η−α

P0
λα,

it remains to consider the convergence of the second term. Since we can restrict ourselves to
the case |y|P1 ≤ 2λ, we can assume without loss of generality that y ∈ P1\P0. In particular,
the terms in the sum vanish unless 2−n � λ.
We also note that for these terms, one can write

φx,nψ
λ
y = λ̄d+2λ−d−2ψ̃ λ̄

z ,

for some z, some ψ̃ ∈ B, and λ̄ = 2−n−1. Provided that C is sufficiently large, properties
(i) and (ii) guarantee furthermore that z is such that λ̄ � |z|P1 ≤ |z|P0 . It follows from this

that, when restricted to the support of ψ̃ λ̄
z , one has ‖Q<δ f ‖Dδ � |z|η−σ

P0
λ̄σ−δ , provided

that δ ∈ [σ, γ ], so that [11, Lem. 6.7] yields again

∣∣(R̃ f −�z f (z)
)(
ψ̃ λ̄
z
)∣∣ � |z|η−σ

P0
λ̄σ ,

∣∣(R± f± −�±
z f±(z)

)(
ψ̃ λ̄
z
)∣∣ � |z|η−σ

P0
λ̄σ .

Finally, since the support of ψ̃ is either fully contained inR×D or fully contained inR×Dc,
it follows that
∣∣(�z f (z)−�+

z f+(z)−�−
z f−(z)

)
(ψ̃ λ̄

z )
∣∣ = ∑

σ≤α<γ

∣∣(�z Qα f (z)
)
(ψ̃ λ̄

z )
∣∣

� |z|η−σ
P0

∑
σ≤α<γ

|z|σ−α
P1

λ̄α � |z|η−σ
P0

λ̄σ ,

and we conclude that
∣∣(R̃ f −R+ f+ −R− f−

)(
φx,nψ

λ
y
)∣∣ � |z|η−σ

P0
λ−d−22−(σ+d+2)n .

Since there are at most 2n(d+1) such terms and since σ > −1 by assumption, both the
convergence of the sum and the required bound (C.2) follow. �
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