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Abstract
For a generalized continuous-state branching process with non-vanishing diffusion
part, finite expectation and a directed (“left-to-right”) interaction, we construct the
height process of its forest of genealogical trees. The connection between this height
process and the population size process is given by an extension of the second Ray–
Knight theorem. This paper generalizes earlier work of the two last authors which was
restricted to the case of continuous branching mechanisms. Our approach is different
from that of Berestycki et al. (Probab Theory Relat Fields 172:725–788, 2018). There
the diffusion part of the population process was allowed to vanish, but the class of
interactions was more restricted.
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1 Introduction

The most general continuous-state branching processes (CSBP’s) are solutions of
SDEs of the form

Z x
t = x + γ

∫ t

0
Z x

r dr +√
2β
∫ t

0

∫ Z x
r

0
W (dr , du) +

∫ t

0

∫ Z x
r−

0

∫ 1

0
zM̃(dr , du, dz)

+
∫ t

0

∫ Z x
r−

0

∫ ∞

1
zM(dr , du, dz), t ≥ 0, (1.1)

where W (dr , du) is a space–time white noise, M(dr , du, dz) is a Poisson ran-
dom measure (PRM) on (0,+∞)3 with intensity dr du π(dz) and M̃(dr , du, dz) =
M(dr , du, dz) − dr du π(dz). The σ -finite measure π is assumed to be such that
(z2 ∧ 1)π(dz) is a finite measure on (0,∞).

We shall assume in this paper that

β > 0,
∫ ∞

0
(z2 ∧ z)π(dz) < ∞. (1.2)

The assumptionβ > 0will be essential to obtain a new representation of theheight pro-
cess (of a genealogical forest) that underlies (1.1), see Proposition 3.13. This approach,
using tools from stochastic analysis, will be the basis for a representation of H also in
the case with interaction, see (1.6). The second condition in (1.2) allows us to replace
the drift coefficient γ by −α := γ − ∫∞

1 zπ(dz), and to write the last two integrals in
equation (1.1) as a single integral with respect to M̃ , namely

Z x
t = x − α

∫ t

0
Z x

r dr +√
2β
∫ t

0

∫ Z x
r

0
W (dr , du)

+
∫ t

0

∫ Z x
r−

0

∫ ∞

0
zM̃(dr , du, dz), t ≥ 0.

(1.3)

Moreover, we shall consider a generalizedCSBP,where the linear drift−αz is replaced
by a nonlinear drift f (z), which in general destroys the branching property, making Z x

and Z x+y − Z x dependent. Specifically, we consider the collection of SDE’s, indexed
by x ≥ 0,

Z x
t = x +

∫ t

0
f (Z x

r )dr +√
2β
∫ t

0

∫ Z x
r

0
W (dr , du)

+
∫ t

0

∫ Z x
r−

0

∫ ∞

0
zM̃(dr , du, dz), t ≥ 0.

(1.4)

We assume
f ∈ C1(R+), f (0) = 0, f ′(z) ≤ θ, for all z ∈ R, (1.5)

for some θ ∈ R. The two assumptions (1.2) and (1.5) will be assumed to hold through-
out this paper, and will not be repeated in the statements.
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It follows from Theorem 2.1 in Dawson and Li [5] that equation (1.4) has a unique

strong solution. The introduction of the term
∫ t
0

∫ Z x
r

0 W (dr , du) to replace the more
traditional

∫ t
0

√
Z x

r dBr is due to [5] (see also Sect. 9.5 of [10] for the characterization
of a CSBP as the solution of a stochastic equation). Its motivation is to have a unified
noise driving the equation for all initial conditions x . In the case of linear f , this
provides a coupling for the CSBP’s with different initial conditions. We retain that
same coupling here.

Our motivation for considering the SDE (1.4) is to model large populations with a
specific form of interaction. It is shown in Dramé and Pardoux [7] that an appropri-
ately renormalized sequence of branching processes with interaction converges to the
solution of (1.4).

In this paper, we want to describe the height process (Hs) of a forest of genealogical
trees of the population whose total mass process (Z x

t ) satisfies (1.4). We will always
write s for the “exploration time” and t for the “real time”, so that Hs can be thought as
the real time at which an individual lives that is explored at time s. The basic building
block for the construction of H is a spectrally positive Lévy process X (see Sect. 3.1),
which due to the assumption β > 0 has a Brownian component. The equations for H
and the accompanying Lévy process X , then with a drift, are

βHs =
∫ s

0
f ′(L Hr (r))dr +√

2β Bs +
∫ s

0

∫ ∞

0
z Ñ (dr , dz) − inf

0≤r≤s
Xr

−
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu − Xr

)+
N (dr , dz) , s ≥ 0 ,

(1.6)

where Lt (s) stands for the local time accumulated by the process H at level t up to
time s,

Xs =
∫ s

0
f ′(L Hr (r))dr +√

2βBs +
∫ s

0

∫ ∞

0
z Ñ (dr , dz), s ≥ 0 , (1.7)

B is a standard Brownian motion, N is a Poisson random measure on (0,+∞)2 with
mean measure dr π(dz) and Ñ (dr , dz) = N (dr , dz) − drπ(dz). We shall see that in
the case f (x) = −αx , α ≥ 0, our formula for H is equivalent to the formulas which
appear in Duquesne and Le Gall [8]. In the general case, we solve the SDE for H with
the help of Girsanov’s theorem. This change of measure introduces the “local time
drift” that appears also in (1.7) for X .

We note that (1.4) and (1.6) go along with a natural linear (left-to-right) ordering of
the (continuum of) individuals that are alive at time t , and corresponds to the ordering
of the exploration time s. This results in an individual interaction which acts in a
directed way, and is compatible with the global feedback of the population size on the
population growth that is described by the function f . For example, for f (z) = −z2,
the population Z1 will experience less downward drift than the population Z2 − Z1;
this is the effect of the directed “trees under attack” dynamics that was the starting
point in Le et al. [9] and Pardoux and Wakolbinger [12] and was related to (1.4) by
the same authors in [13]. The present work thus extends previous work in case of

123



Journal of Theoretical Probability

continuous CSBPs, which started with the logistic interaction f (z) = az − bz2 in [9]
and [12], and then described more general interactions in Ba and Pardoux [1] and in
Pardoux [11].

The connection between the height process (Hs) and the population with total mass
(Z x

t ) will be given by an extension of the second Ray–Knight theorem, Theorem 4.9,
which roughly speaking says that if Lt (s) denotes the local time accumulated at level t
by the process H up to time s, and if Sx = inf{s > 0, L0(s) > x}, then {Lt (Sx ), t ≥ 0}
solves the SDE (1.4). In fact, since we do not know a priori whether or not the process
H returns to 0 often enough such that its local time at 0 accumulates mass x (or in
other words whether Z x hits zero in finite time), we will rather consider the process H
with an additional drift ga which modifies the dynamics of H above an arbitrary level
a > 0, and insures that the process H return to 0 after any time s > 0. The intuitive
reason why this works is that, due to the fact that X has independent increments,
and the properties of the Poisson random measure N , the pieces of trajectories of H
which accumulate local time at levels below a interact with the past of H only through
the drift, which is a function of the local time accumulated at the current level, so in
particular it does not depend upon the behavior of H , while it takes values in (a,+∞);
hence, it does not depend upon the additional drift ga . As a result, for fixed a, we have
the Ray–Knight interpretation only on the time interval [0, a]. In order to make sure
that Girsanov’s theorem is applicable, we start out by replacing f by a function fb

which coincides with f on the interval [0, b], while fb and f ′
b are bounded and the

latter is also uniformly continuous. The limit b → ∞ leads to a family of probability
measures Pa , a > 0, which admits two projective limits: one of the laws of (H , X)

under Pa which gives a unique weak solution of (1.6), (1.7), the other one of the laws
of {Lt

x (Sx ), 0 ≤ t ≤ a, x > 0} under Pa , which gives the Ray–Knight representation
of (1.4).

Berestycki, Fittipaldi and Fontbona [3] establish an extended Ray–Knight theorem
in the same situation as ours, except that, while they do not restrict themselves to the
case β > 0, their assumptions (in their Theorem 1.2) on the nonlinear interaction f
are more restrictive than our hypothesis (1.5); they assume that f (with f (0) = 0)
is differentiable and concave and has a non-positive and locally Lipschitz derivative.
Their equation (1.5) is the analogue to our equation (1.4), with the interaction term
working “from left to right” like in our setting. Their approach to the underlying tree
picture is, however, quite different from ours. While they translate the competition
type interaction (this follows from the non-positive assumption for f ′) into a pruning
procedure on the forest of trees corresponding to the CSBP, we consider the process
H as the solution of an SDE, with a drift which is f ′ evaluated at the local time of H
at time s and at the level Hs . This is an extension of the SDE for H in the case without
jumps, as it appears, e.g., in [1]. The new difficulty is that each jump of Z x creates a
new sub-forest of trees whichmust be explored. As a result, H is not aMarkov process.
It should remember at which level (i.e., time for the process Z x ) a forest of trees for
a certain mass of population was created, and that sub-forest should be completely
explored, before the height process is allowed to go below that level.

We shall need to consider local times of processes which are not necessarily contin-
uous semi-martingales. This will extend the following definition: If Y is a continuous
semi-martingale, we shall denote by La(s, Y ), or La(s) if there is no risk of ambiguity,
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the local time accumulated by the process Y at level a up to time s, in the sense that
it satisfies

La(s, Y ) = lim
ε→0

1

ε

∫ s

0
1[a,a+ε](Yr )dr . (1.8)

It then follows from the occupation times formula that for any Borel measurable
g : R → R+,

∫ s

0
g(Yr )dr =

∫ ∞

−∞
g(a)La

s da.

Our approach to the interactive case is built upon a fresh look at the height processes
H constructed by Duquesne and Le Gall [8], for general CSBP’s. We will give a new
representation of H which allows for an extension to the interactive case, including
the corresponding Ray–Knight representation of the solution Z x of (1.4).

As a matter of fact, a large part of the present paper is concerned with the linear
(CSBP) case, i.e., the case where Z x solves (1.3). In this case, thanks to the assumption
β > 0, the height process obeys (see formula (1.4) in [8])

βHs = |{X
s
r ; 0 ≤ r ≤ s}|, (1.9)

where X
s
r := infr≤u≤s Xu and |A| denotes the Lebesgue measure of the set A. The

first step of our work will consist in reinterpreting that formula, in a form which will
allow the generalization to a nonlinear function f (i. e., to the case of interaction).

The paper is organized as follows. Section 2 is very short. It makes precise some
properties of the space–time random field {Z x

t , t ≥ 0, x ≥ 0}. Section 3 considers the
case without interaction. We first establish preliminary results that are necessary for
the definition of the non-Markovian term in our representation of the height process
H , namely the non-compensated integral w.r.t. N which appears in equation (1.6). We
then study successively the cases π = 0 (no jumps), π finite, and finally the general
case where π satisfies (1.2), and establish the Ray–Knight theorem in a way which
is tailored for the subsequent extension to the interactive case. Section 4 considers
the case with the interaction f . We introduce the SDE for H which has a drift term
that depends on the local time accumulated at the current height. In order to prove the
Ray–Knight representation of the solution of (1.4) in terms of the local time of H , we
again treat successively the cases π = 0 (no jumps), π finite, and finally the general
case where π satisfies (1.2).

2 The Population Sizes as a Random Field

The population size process {Z x
t , t, x ≥ 0} solving (1.4) is an R+-valued random

field indexed by t and x . For each fixed x > 0, {Z x
t , t ≥ 0} is a jump-diffusion

Markov process. The coupling for various values of x is specified by the two noises
W and M̃ driving our SDE, which are independent of the initial condition x . In the
case of equation (1.3), for any sequence 0 < x1 < x2 < · · · < xn , the increments
Z x1 , Z x2 − Z x1 , . . . , Z xn − Z xn−1 are mutually independent. In fact this is true both
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concerning the increments in the processes, and the increments at some fixed value of
t . This is the branching property. There is no reason to believe that this independence
(or equivalently, the so-called branching property) still holds when f in (1.4) is non-
linear. However, also in this case, (Z x ) turns out to be a path-valued Markov process
parameterized by x .

Proposition 2.1 Let {Z x
t , t, x ≥ 0} be the solution of the collection indexed by x

of SDEs (1.4). Then {Z x
t , t ≥ 0}x>0 is a D([0,+∞))-valued Markov process with

parameter x.

Proof For x, y > 0, let V x,y
t := Z x+y

t − Z x
t . It is not hard to see that V x,y solves the

SDE

V x,y
t = y +

∫ t

0
[ f (Z x

r + V x,y
r ) − f (Z x

r )]dr +√
2β
∫ t

0

∫ V x,y
r

0
W (dr , Z x

r + du)

+
∫ t

0

∫ V x,y
r−

0

∫ ∞

0
zM̃(dr , Z x

r + du, dz) ,

(2.1)
where the pair of noises (W (dr , Z x

r + du), M̃(dr , Z x
r + du, dz)) is independent of

{Z x ′
, 0 < x ′ ≤ x} and has the same law as the pair (W , M̃). The independence

property follows from the fact that the restrictions of (W , M̃) to disjoint sets are
independent. Since the time dependent drift v 	→ f (Z x

r + v)− f (Z x
r ) is a function of

Z x , and the noise terms are functions of both the solution V x,y and noises which are
independent of {Z x ′

, 0 < x ′ ≤ x}, we conclude that the condition law of V x,y given
{Z x ′

, 0 < x ′ ≤ x} is a function of Z x . The result follows. 
�

3 The CaseWithout Interaction

Our starting point in this section will be the case f (x) = −αx , α ≥ 0 in (1.4), with a
CSBP Z x solving (1.3), and the corresponding Lévy process X . First, we recall some
basic facts about the latter.

3.1 The Lévy Process X

The branching mechanism of the CSBP Z x solving (1.3) is given as

ψ(λ) = αλ + βλ2 +
∫ ∞

0
(e−λz − 1 + λz)π(dz). (3.1)

The Laplace transform of the associated Lévy process X is given as

E (exp(−λXs)) = exp(sψ(λ)), s, λ ≥ 0, (3.2)

with characteristic exponent ψ = ψα,β,π given by (3.1). Our assumptions on β and π

have been formulated in (1.2).
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Let B be a standardBrownianmotion, N be a Poisson randommeasure on (0,+∞)2

withmeanmeasure ds π(dz), whereπ satisfies (1.2), and let Ñ denote the compensated
measure Ñ (dr , dz) = N (dr , dz) − drπ(dz). Then X has the representation

Xs = −αs +√
2βBs +

∫ s

0

∫ ∞

0
z Ñ (dr , dz), s ≥ 0. (3.3)

For part of our results, we will assume that X does not drift to +∞, which in the
presence of condition (1.2) is equivalent to

− α = E(X1) ≤ 0. (3.4)

We note that our standing assumption β > 0 implies that

∫ ∞

1

dλ

ψ(λ)
< ∞. (3.5)

Indeed, since e−λz − 1 + λz ≥ 0, we have ψα,β,π (λ) ≥ ψα,β,0(λ) = αλ + βλ2.
Property (3.5) implies continuity of the height process H even in the caseβ = 0, see

Duquesne and Le Gall [8], Theorem 1.4.3. In particular, for the case β > 0 considered
in the present work, the height process H , which is then given by (1.9), is continuous.

For the remainder of this section we assume that (3.4) holds, so that the Lévy
process X hits −x in finite time a.s., for any x > 0. We are now going to establish
properties of X which will be essential for our representation of the height process.
In the next statement, we shall write

∫ b
a to mean

∫
(a,b], except when b = ∞, in which

case
∫∞

a = ∫
(a,∞)

.

Proposition 3.1 For any s > 0, 0 ≤ a < b ≤ ∞, we have

E

∫ s

0

∫ b

a
(z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz) = E

∫ s

0
dr
∫ b

a
(z + inf

0≤u≤r
Xu)+π(dz).

Proof First step : π(0,∞) < ∞. In this case, we can write N = ∑∞
i=1 δ(Ri ,Zi ),

where 0 < R1 < R2 < · · · are stopping times. Let Fs = σ {Xr , 0 ≤ r ≤ s}. Since
Zi is FRi -measurable, we have

E

∫ s

0

∫ b

a
(z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)

=
∞∑

i=1

E

[
1{Ri ≤s,a<Zi ≤b}(Zi + inf

Ri ≤u≤s
Xu − X Ri )

+
]

=
∞∑

i=1

E

[
1{Ri ≤s,a<Zi ≤b}E

{
(Zi + inf

Ri ≤u≤s
Xu − X Ri )

+
∣∣∣FRi

}]

=
∞∑

i=1

E

[
1{Ri ≤s,a<Zi ≤b}E

{
(z + inf

Ri ≤u≤s
Xu − X Ri )

+
∣∣∣FRi

} ∣∣∣
z=Zi

]
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=
∞∑

i=1

E

[
1{Ri ≤s,a<Zi ≤b}E

{
(z + inf

0≤u≤s−r
Xu)+

} ∣∣∣
r=Ri ,z=Zi

]

= E

∫ s

0

∫ b

a
E

[
(z + inf

0≤u≤s−r
Xu)+

]
N (dr , dz)

=
∫ s

0
dr
∫ b

a
E

[
(z + inf

0≤u≤s−r
Xu)+

]
π(dz)

=
∫ s

0
dr
∫ b

a
E

[
(z + inf

0≤u≤r
Xu)+

]
π(dz),

where we have used the strong Markov property of Xs for the fourth equality.
Second step : the general case. This step is necessary only in the case a = 0,
which we now assume. It follows from the first step that for any k ≥ 1,

E

∫ s

0

∫ b

1/k
(z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz) = E

∫ s

0
dr
∫ b

1/k
(z + inf

0≤u≤r
Xu)+π(dz).

We can take the limit in that identity as k → ∞, thanks to the monotone convergence
theorem applied to the two expressions. 
�
Lemma 3.2 For any s, x > 0, we have, with c = (1 − e−1)−1

P

(
− inf

0≤r≤s
Xr ≤ x

)
≤
(

c√
βs

x

)
∧ 1.

Proof Let

Tx = inf

{
s > 0, inf

0≤r≤s
Xr < −x

}
.

Translating Theorem VII.1 from Bertoin [4] written for spectrally negative Lévy
processes into a statement for spectrally positive Lévy processes, we deduce that
{Tx , x ≥ 0} is a subordinator with the Laplace transform

Ee−λTx = e−x�(λ),

where � = ψ−1 is the inverse of the Laplace exponent ψ .
Combining the Markov inequality applied to the increasing function y → 1− e−y

and the inequality 1 − e−y ≤ y, we get

P

(
− inf

0≤r≤s
Xr ≤ x

)
= P(Tx > s)

≤ (1 − e−1)−1
E

(
1 − e−Tx /s

)

= (1 − e−1)−1
(
1 − e−x�(1/s)

)
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≤ (1 − e−1)−1�(1/s)x .

As we have already noted, ψα,β,π (λ) ≥ ψα,β,0(λ) = αλ + βλ2 ≥ βλ2 since α ≥ 0
(see our assumption (3.4)). Consequently, �(u) ≤ √

u/β and �(1/s) ≤ (βs)−1/2.
The result follows. 
�
Proposition 3.3 For any s, z > 0, we have with the constant c from Lemma 3.2

E

[
(z + inf

0≤r≤s
Xr )

+
]

≤
(

c

2
√

βs
z2
)

∧ z.

Proof It is plain that

E

[
(z + inf

0≤r≤s
Xr )

+
]

=
∫ z

0
P

(
z + inf

0≤r≤s
Xr ≥ x

)
dx

=
∫ z

0
P

(
− inf

0≤r≤s
Xr ≤ z − x

)
dx

=
∫ z

0
P

(
− inf

0≤r≤s
Xr ≤ x

)
dx .

The result now follows from Lemma 3.2. 
�
Next, we establish the

Proposition 3.4 Under condition (3.4), for any s > 0 and 0 ≤ a < b ≤ ∞,

E

∫ s

0
dr
∫ b

a
(z + inf

0≤u≤r
Xu)+π(dz) ≤ C(s)

∫ b

a
(z ∧ z2)π(dz),

with C(s) = (c
√

s/β) ∨ s and c = e/(e − 1).

Proof We deduce from Proposition 3.3 and Fubini’s Theorem that

E

∫ s

0
dr
∫ b

a
(z + inf

0≤u≤r
Xu)+π(dz) ≤

∫ b

a
π(dz)

∫ s

0

(
c

2
√

βr
z2
)

∧ z dr ,

from which the result follows. 
�
We now deduce readily from Propositions 3.1 and 3.4

Corollary 3.5 For any s > 0 and 0 ≤ a < b ≤ ∞ we have, with C(s) as in Proposi-
tion 3.4,

E

∫ s

0

∫ b

a
(z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz) ≤ C(s)
∫ b

a
(z ∧ z2)π(dz).
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Remark 3.6 By Proposition 3.1 and 3.4, the process

s 	→ Us :=
∫ s

0

∫ ∞

0
(z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)

is well-defined. In particular, if π is a finite measure, the process U has only finitely
many jumps on each bounded interval, so it has a right-continuous modification. We
shall from now on only consider such a modification. In the general case (1.2), the
existence of a right-continuous modification will follow from the fact that X is right-
continuous and H is continuous, see Proposition 3.13.

Note however that, if the measure π obeys
∫ 1
0 z π(dz) = ∞, then the processU has

infinite variation. Indeed, the contribution of the total variation of U on the interval
[r , s] induced by a jump of size z of X at some time r ′ ∈ (r , s) is bounded from below
by z and from above by 2z. Consequently, the total variation T VU ([r , s]) of U on the
interval [r , s] satisfies

∫ s

r

∫ ∞

0
zN (dr , dz) ≤ T VU ([r , s]) ≤ 2

∫ s

r

∫ ∞

0
zN (dr , dz).

It follows fromwell-knownproperties of Poisson randommeasures that
∫ s

r

∫∞
0 zN (dr ,

dz) = +∞ a.s., unless
∫∞
0 (z ∧ 1)π(dz) < ∞.

3.2 The Case� = 0

In this subsection, we assume that the Lévy process X is continuous, i.e.,

Xs = −αs +√
2β Bs, s ≥ 0.

Proposition 3.7 In the case π = 0, we have

Hs = 1

β

(
Xs − inf

0≤r≤s
Xr

)
, s ≥ 0.

Proof This result follows readily from (1.9), since r → X
s
r is continuous and increases

from inf0≤r≤s Xr to Xs . 
�
In this case, H is a drifted Brownian motion reflected above 0, and thus a fortiori

a continuous semi-martingale. The next proposition states the second Ray–Knight
theorem for this particular case. Let us define Lt (s) = Lt (s, H) and

Sx = inf{s > 0, L0(s, H) > x}. (3.6)

Proposition 3.8 The process {Lt (Sx ), t ≥ 0} is a CSBP with branching mechanism
ψα,β,0, starting from x at time t = 0.
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Proof This is classical, see e.g., Revuz and Yor [16] Chapter XI §2, and Theorem 5.1
in Ba, Pardoux, Sow [2] for an identification of the constants in our case. 
�
Remark 3.9 We note that the scaling of the local time of H is such that Lt (s, H) =
β
2Lt (s, H), where Lt (s, H) is the semi-martingale local time as defined in Revuz
and Yor [16] (see Corollary VI.1.9, page 227). Then, from the Tanaka formula, see
Theorem VI.1.2 page 222 in [16], and Proposition 3.7, we have

Hs =
∫ s

0
1Hr >0d Hr + 1

β
L0(s, H)

= 1

β
Xs + 1

β
L0(s, H).

The second equality can be justified as follows. Proposition 3.7 tells that

β d Hs = dXs + d(− inf
r≤s

Xr ).

However, it is plain that

1Hs>0 d(− inf
r≤s

Xr ) = 0,

since infr≤s Xr decreases only when Hs = 0. Consequently,

β

∫ s

0
1Hr >0d Hr =

∫ s

0
1Hr >0dXr = Xs,

since 1Hr >0 = 1 for Lebesgue-a.a. r and X is a drifted Brownian motion. We note in
particular that L0(s, H) = − inf0≤r≤s Xr , which is Lévy’s correspondence between
the local time of a reflected BM at the origin and the current minimum of a BM.

3.3 The Case of Finite�

We now suppose that π is a finite measure. In that case, in view of condition (1.2),
zπ(dz) is also a finite measure, and if we let

α′ = α +
∫ ∞

0
zπ(dz),

we have that
Xs = √

2βBs + Ps − α′s, (3.7)

where

Ps =
∫ s

0

∫ ∞

0
zN (dr , dz), s ≥ 0, (3.8)

is a compound Poisson process.
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Recall the notation introduced in (1.9). We note that [0, s] � r 	→ X
s
r is increasing.

Denote by 
X
s
r its possible jump at time r . It follows readily from (1.9) that

βHs = Xs − X
s
0 −

∑
0≤r≤s


X
s
r , (3.9)

which we rewrite as

βHs = Xs − inf
0≤r≤s

Xr −
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
(Xu − Xr )

)+
N (dr , dz), (3.10)

hereby using the equality

∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
(Xu − Xr )

)+
N (dr , dz) =

∑
0≤r≤s


X
s
r . (3.11)

As observed in Remark 3.6, the third term on the right-hand side of (3.10) has only
finitely many jumps on each bounded interval and its jumps compensate those of the
process X . This shows that H is continuous. The fact that the last term in (3.10) has
bounded variation shows that H is a semi-martingale. We have thus proved

Proposition 3.10 If the Lévy process X is given by (3.7) and (3.8)with π finite, then the
associated height process H is given by (3.10), and it is a continuous semi-martingale.

Recall that the second term on the right of (3.10) reflects the process above 0. We
will explain in words what the third term in (3.10) does. For that purpose, we need to
define for 0 ≤ r ≤ s

X̃r
s = Xs − inf

0≤r≤s
Xr −

∫ r

0

∫ ∞

0

(
z + inf

u≤v≤r
(Xv − Xu)

)+
N (du, dy),

which is the same as βHs , except that we have stopped the third term at time r . At
each jump time r of X , draw a piece of horizontal line which starts from (r , βHr ),
and extends to r+ := inf{s > r , X̃r

s ≤ βHr }. Then pull down X̃r
r to X̃r

r−, and reflect
the piece of trajectory of {X̃r

u, r ≤ u ≤ r+} above the level of X̃r
r−, that is above the

“horizontal stick” which extends from (r , X̃r
r−) to (r+, X̃r

r+).
We are now going to give a new derivation of the Ray–Knight theorem in this case,

since our proof of the corresponding result in the case with interaction will be based
upon the same argument.

Let X be the Lévy process given by (3.2), started in 0 and stopped at the time Sx

when first hitting−x . Let the height process H of X be given by (1.9) (or equivalently
by (3.9)), and Lt (s) be the local time accumulated by H at height t between times 0
and s.

Proposition 3.11 The process {Lt (Sx ), t ≥ 0} is a CSBP with branching mechanism
ψ := ψα,β,π , starting from x at time t = 0.
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Proof Let us first recall how we can construct X and Sx iteratively from (pieces of)
driftedBrownianmotions togetherwith (atomsof) thePoissonprocess�with intensity
ds π(dz). For y > 0 let B y be a BMwith drift α−∫∞

0 zπ(dz) started in y and stopped
when first hitting 0; let us denote this hitting time by S(B y).

The first step in the iteration is X (0) := −x + Bx . Let S(0)
x be the time at which X (0)

first hits −x ; note that S(0)
x = S(Bx ). Consider a Poisson process �0 on [0, S(0)

x ] ×
(0,+∞) with intensity ds π(dz). Denote the points of �0 by (si , zi )1≤i≤J . If J = 0,
the iteration stops at step 0. Otherwise each atom (si , zi ) gives rise to the injection of
a path Bzi (defined on an interval of length S(Bzi )) into X (0) as described below for
Bzm . Each piece B y that is injected in the k-th iteration is defined on some interval I ,
and gives rise to a Poisson process on I × R+, whose points in turn give rise to new
injected pieces. This procedure terminates after finitely many steps, ending in X .

Let m ∈ {1, . . . , J } be such that H (0)
sm = min{H (0)

si : 1 ≤ i ≤ J }. Given
that S(Bzm ) = s̃, take a Poisson process �̃1 with intensity measure ds π(dz) on
[sm, sm+s̃] × R+. Then, transport �0 into �̃0 by keeping each point (si , zi ) with
si < sm as it is, and shifting each point (si , zi ) with si > sm into (si + s̃, zi ). Put
�1 := �̃0 + �̃1, and keep iterating.

Let H (0) be the height process of X (0), given by (3.9) with X (0) instead of X . Inject
Bzm into X (0), by defining

X (1)
s =

⎧⎪⎨
⎪⎩

X (0)
s , for 0 ≤ s ≤ sm,

X (0)
sm + Bzm

s−sm
, for sm ≤ s ≤ sm + S(Bzm ),

X (0)
s−S(Bzm )

, for sm + S(Bzm ) < s ≤ S(0)
x + S(Bzm ) =: S(1)

x .

Let H (1) be the height process of X (1), given by (3.9) with X (1) instead of X .
We note that H (1)

sm = H (1)
sm+S(Bzm )

= H (0)
sm , and that (with T1 := H (0)

sm ) we have

LT1(H (1), S(1)
x ) = LT1(H (0), S(0)

x ) + zm .
A key observation is that the reflection of H below T1 equals the reflection of

H (0) below T1, and that Lt (H , Sx ) = Lt (H (0), S(0)
x ) for 0 ≤ t < T1, LT1(H , Sx ) =

LT1(H (1), S(1)
x ). Consequently, on {t < T1} we have Lt (H , Sx ) = Lt (H (0), S(0)

x ).
The height of the lowest jump of the local time of H is T1, which is measurable
with respect to (X (0),�0). By the classical Ray–Knight theorem (Proposition 3.8),
Lt (H , Sx ) follows before its first jump the dynamics of a subcritical Feller branching
diffusion. Moreover,

P(T1 > t |X (0)) = exp

(
−π(R+)

∫ S(0)
x

0
1{H (0)

s ≤t}ds

)

= exp

(
−π(R+)

∫ t

0
Lv(H (0), S(0)

x )dv

)
,

which shows that the first jump T1 of {Lt (Sx ), t ≥ 0} comes at rate π(R+)Lt (Sx )dt ,
since

∫ t
0 Lv(H (0), S(0)

x )dv = ∫ t
0 Lv(H , Sx )dv when t < T1. Also, its size has dis-

tribution π/π(R+). Thus, up to and including T1, {Lt (Sx ), t ≥ 0} is a CSBP with
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branching mechanism ψ . Proceeding in the same manner from T1 = H (1)
sm upward,

we arrive at our assertion. 
�

3.4 The General Case

3.4.1 The Height Process

We now consider the general case, that is π satisfies (1.2). Consequently, for any
ε > 0, π(ε,∞) < ∞. We define πk(dz) = 1(εk ,∞)(z)π(dz), where εk is a sequence
of positive reals which decreases to 0, and

ψk = ψα,β,πk .

The corresponding Lévy process Xk admits the Lévy–Itô decomposition

Xk
s = −αs +√

2β Bs +
∫ s

0

∫ ∞

εk

z Ñ (dr , dz)

= −(α +
∫ ∞

εk

zπ(dz))s +√
2β Bs +

∫ s

0

∫ ∞

εk

zN (dr , dz).

The last term in the right-hand side is a compound Poisson process. We have

Lemma 3.12 As k → ∞, Xk
s → Xs in L1(�), locally uniformly with respect to s.

Proof It is plain that

E

[
sup

0≤r≤s
|Xr − Xk

r |
]

≤
(
E

[
sup

0≤r≤s

∣∣∣∣
∫ r

0

∫ εk

0
z Ñ (du, dz)

∣∣∣∣
2
])1/2

≤ 2

√
s
∫ εk

0
z2π(dz) → 0,

as k → ∞, where we have used Doob’s inequality. The result follows. 
�

Thanks to Proposition 3.10, the height process Hk associated to the Lévy process
Xk is given by

βHk
s = Xk

s − inf
0≤r≤s

Xk
r −

∫ s

0

∫ ∞

εk

(z + inf
r≤u≤s

Xk
u − Xk

r )+N (dr , dz). (3.12)

Under our standing assumption (1.2), we have

Proposition 3.13 For any s ≥ 0, Hk
s → Hs in probability, where H is given by either

of the formulas (3.10), (3.9) or (1.9), and is continuous.
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Proof Lemma 3.12 implies that Xk
s −inf0≤r≤s Xk

r → Xs −inf0≤r≤s Xr in probability,
locally uniformly in s. We now consider the last term in (3.12) and prove pointwise
convergence. It follows from Corollary 3.5 with a = 0 and b = εk that

E

∫ s

0

∫ εk

0
(z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz) ≤ C(s)
∫ εk

0
(z ∧ z2)π(dz),

which clearly tends to 0, as k → ∞. From an adaptation of the argument of Proposi-
tion 3.1, we deduce that

E

∫ s

0

∫ ∞

εk

∣∣∣∣(z + inf
r≤u≤s

(Xu − Xr ))
+ − (z + inf

r≤u≤s
(Xk

u − Xk
r ))+

∣∣∣∣ N (dr , dz)

= E

∫ s

0
dr
∫ ∞

εk

∣∣∣∣(z + inf
0≤u≤r

Xu)+ − (z + inf
0≤u≤r

Xk
u)+

∣∣∣∣π(dz)

≤ E

∫ s

0
dr
∫ ∞

εk

{(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+

∧
∣∣∣∣ inf
0≤u≤r

Xu − inf
0≤u≤r

Xk
u

∣∣∣∣
}
π(dz),

hence

E

∫ s

0

∫ ∞

εk

∣∣∣∣(z + inf
r≤u≤s

(Xu − Xr ))
+ − (z + inf

r≤u≤s
(Xk

u − Xk
r ))+

∣∣∣∣ N (dr , dz)

≤
∫ s

0
dr
∫ ∞

εk

E

[(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+]

∧ E

∣∣∣∣ inf
0≤u≤r

Xu − inf
0≤u≤r

Xk
u

∣∣∣∣π(dz).

(3.13)

We deduce from Lemma 3.12 that

E

∣∣∣∣ inf
0≤u≤r

Xu − inf
0≤u≤r

Xk
u

∣∣∣∣ → 0, (3.14)

as k → ∞. Arguing as in the proof of Proposition 3.3, we obtain

E

[(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+]

=
∫ z

0
P

(
−
[

inf
0≤u≤r

Xu ∨ inf
0≤u≤r

Xk
u

]
≤ x

)
dx

≤
∫ z

0

[
P

(
− inf

0≤u≤r
Xu ≤ x

)
+ P

(
− inf

0≤u≤r
Xk

u ≤ x

)]
dx

≤ c

[
�

(
1

r

)
+ �k

(
1

r

)]
z2 ≤ c√

βs
z2.

123



Journal of Theoretical Probability

It is plain that the left-hand side in the previous chain of inequalities is dominated by
z; hence, we have proved that

E

[(
z + inf

0≤u≤r
Xu ∨ inf

0≤u≤r
Xk

u

)+]
≤
(

c√
βr

z2
)

∧ z. (3.15)

The right-hand side of (3.15) is dr × π(dz)—integrable over [0, s] × (0,∞) for any
s > 0. It then follows from (3.14) and the dominated convergence theorem that the
left-hand side of (3.13) tends to 0 as k → ∞. We can now take the limit in (3.12),
yielding the convergence.

It is clear that (3.11) still holds in the general situation, which re-establishes the
formulas (3.9) and (1.9). From (3.9), the continuity of H is essentially clear, as claimed
in [8]. Let us give a quick explanation. The right continuity follows from the right
continuity of the three terms on the right of (3.9). The left continuity follows from that
of the second term, while the eventual jumps of the first and the third term compensate.


�
Note that, under condition (3.5) which is weaker than β > 0, Duquesne and Le Gall

[8], Sec.1.4.3, prove that H is Hölder continuous. We shall not need that property.
We first prove

Lemma 3.14 For any s̄ > 0, there exists a random increasing function � : [0, 1] 	→
R+ such that �(h) ↓ 0 a.s. as h ↓ 0, and for any 0 ≤ s ≤ s̄, any 0 < h ≤ 1,

(Hk
s+h − Hk

s )− ≤ �(h), ∀k ≥ 1.

Proof Since X is a Lévy process with only positive jumps, it is not hard to check by
contradiction that

�X (h) := sup
0≤r≤s̄,0≤s−r≤h

(Xs − Xr )−

is a.s. a continuous function of h on [0, 1] such that �X (0) = 0. Since Xk → X
uniformly in probability on [0, s̄], one obtains that �Xk (h) → �X (h) in probability
as k → ∞, for any h > 0. Since each �Xk is increasing and the limit is continuous, it
follows from the second Dini theorem, that the convergence in probability is uniform
w.r.t. h ∈ [0, 1], see the statement 127 on page 81, and the proof on page 270 in Pólya
and Szegö [14]. This implies readily that

�(h) := β−1

(
sup
k≥1

�Xk (h) ∨ �X (h)

)
, h ≥ 0

is a.s. continuous in h, and �(0) = 0.
Now, using (3.9) and abbreviating Y := Xk

β(Hk
s+h − Hk

s ) = Ys+h − Ys − Y
s+h
0 + Y

s
0 −

∑
0≤r≤s

(
Y
s+h
r − 
Y

s
r )
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−
∑

s<r≤s+h


Y
s+h
r

≥ Ys+h − Ys −
∑

s<r≤s+h


Y
s+h
r .

Since Ys+h −∑
s<r≤s+h 
Y

s+h
r ≥ infs≤r≤s+h Yr , we conclude that

β(Hk
s+h − Hk

s ) ≥ inf
s≤r≤s+h

Yr − Ys,

and consequently

(Hk
s+h − Hk

s )− ≤ �(h),

which proves the result. 
�
We now deduce from the two previous statements

Corollary 3.15 Under the above assumptions, Hk
s → Hs in probability, locally uni-

formly w.r.t. s.

Corollary 3.15 is an immediate consequence of Proposition 3.13, Lemma 3.14,
the following extension of the second Dini theorem, and the equivalence of conver-
gence in probability and the fact that from any subsequence, one can extract a further
subsequence which converges a.s..

Lemma 3.16 Consider a sequence {gk, k ≥ 1} of functions from R+ into R and
T > 0, which are such that for any 0 ≤ t ≤ T , gk(t) → g(t), where g : [0, T ] 	→ R

is continuous, and supk≥1(gk(t + h) − gk(t))− → 0, as h → 0. Then gk(t) → g(t)
uniformly w.r.t. t ∈ [0, T ].
Proof Let ε > 0 be arbitrary. Since t 	→ g(t) is uniformly continuous on the compact
interval [0, T ], there exists η > 0 small enough such that whenever s, t ∈ [0, T ], 0 <

t < s < t + η,

|g(s) − g(t)| ≤ ε

3
, (3.16)

gk(s) − gk(t) ≥ −ε

3
for all k ≥ 1, (3.17)

where the second inequality follows from our assumption on the sequence gk .
We next choose an integer N > T /η and 0 = t0 < t1 < · · · < tN = T such that

t j+1 − t j < η, for all 0 ≤ j < N − 1. We now choose kε large enough such that, for
any k ≥ kε, 1 ≤ j ≤ N ,

|gk(t j ) − g(t j )| ≤ ε

3
. (3.18)

Now for any t ∈ [0, T ] either t = t j for some 1 ≤ j ≤ N (and then (3.18) ensures
that |gk(t) − g(t)| < ε), or else there exists 0 ≤ j < N such that t j < t < t j+1. In

123



Journal of Theoretical Probability

that case we obtain, using successively (3.17), (3.18) and (3.16), the two following
inequalities:

(i) gk(t) ≤ gk(t j+1) + ε

3

≤ g(t j+1) + 2ε

3
≤ g(t) + ε,

(i i) gk(t) ≥ gk(t j ) − ε

3

≥ g(t j ) − 2ε

3
≥ g(t) − ε.

The result clearly follows from those inequalities and the fact that ε > 0 is abitrary. 
�

3.4.2 The Local Time of the Height Process

Let Lt (s) denote the local time accumulated by the process H , defined by (3.9) or
(3.10), at level t up to time s. The existence of Lt (s) was established already in
Duquesne and Le Gall [8]. We shall give an independent definition of Lt (s), via an
Itô–Tanaka formula for (H − t)+, and prove some regularity.

Proposition 3.17 We have

β(Hs − t)+ =
∫ s

0
1Hr >t dXr −

∫ s

0

∫ ∞

0
1Hr >t (z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)+ Lt (s),

where Lt (s) is for any s > 0, t ≥ 0 the local time accumulated by H at level t up to
time s, in the sense that it satisfies the occupation times formula.

The formula in the Proposition can be rewritten as

Lt (s) = β(Hs − t)+−
∫ s

0
1Hr >tdXr +

∫ s

0

∫ ∞

0
1Hr >t (z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz).

(3.19)
The proof of Proposition3.17 will be based on a limiting procedure along the sequence
Xk of Lévy processes associated with πk(dz) = 1z>εk π(dz). This gives us a construc-
tion of the local time that is different from the construction in Duquesne and Le Gall
[8], but leads to the same result, as a consequence of the occupation time formula.

Note that the corresponding height process Hk is a continuous semi-martingale,
whose local time is well-defined using the classical theory, see e.g., Chapter VI in
Revuz and Yor [16]. We have the formula, analogous to (3.19)

Lt
k(s) = β(Hk

s − t)+ −
∫ s

0
1Hk

r >tdXk
r

+
∫ s

0

∫ ∞

εk

1Hk
r >t (z + inf

r≤u≤s
Xk

u − Xk
r )+N (dr , dz).

(3.20)
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Note that the formula would be different if Lt
k(s) were the “semi-martingale local

time”, as defined in [16]. In that case, there would be a factor β
2 in front of the local

time. Indeed, after the division of the whole formula by β, we should find a factor 1
2

in front of the local time, see the second formula in Theorem VI.1.2 in [16].
Before proving the above Proposition, let us establish a technical Lemma.

Lemma 3.18 For any s > 0,

sup
t>0, k≥1

ELt
k(s) < ∞.

Proof We need to show successively

sup
t>0, k≥1

E(Hk
s − t)+ < ∞,

sup
t>0, k≥1

E

∣∣∣∣
∫ s

0
1Hk

r >tdXk
r

∣∣∣∣ < ∞,

sup
t>0, k≥1

E

∫ s

0

∫ ∞

εk

1Hk
r >t (z + inf

r≤u≤s
Xk

u − Xk
r )+N (dr , dz) < ∞.

The first estimate is an easy exercise which we leave to the reader. The third one
follows readily from

∫ s

0

∫ ∞

εk

1Hk
r >t (z + inf

r≤u≤s
Xk

u − Xk
r )+N (dr , dz)

≤
∫ s

0

∫ ∞

εk

(z + inf
r≤u≤s

Xk
u − Xk

r )+N (dr , dz)

and Proposition 3.4. It remains to consider

∫ s

0
1Hk

r >tdXk
r = −α

∫ s

0
1Hk

r >tdr +√
2β
∫ s

0
1Hk

r >tdBr

+
∫ s

0
1Hk

r >t

∫ ∞

εk

z Ñ (dr , dz).

The first term on the right is bounded in absolute value by |α|s. We estimate the second
term using Cauchy–Schwartz

E

∣∣∣∣
∫ s

0
1Hk

r >tdBr

∣∣∣∣ ≤ √
s.

Finally,

E

∣∣∣∣
∫ s

0
1Hk

r >t

∫ ∞

εk

z Ñ (dr , dz)

∣∣∣∣
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≤ E

∣∣∣∣
∫ s

0
1Hk

r >t

∫ 1

εk

z Ñ (dr , dz)

∣∣∣∣+ E

∣∣∣∣
∫ s

0
1Hk

r >t

∫ ∞

1
z Ñ (dr , dz)

∣∣∣∣

≤
√

s
∫ 1

0
z2π(dz) + 2s

∫ ∞

1
zπ(dz).

The result follows. 
�

We now turn to the

Proof of Proposition 3.17 We first consider the case
∫∞
0 zπ(dz) < ∞ (which certainly

applies toπ(dz) := πk(dz) = 1z>εk π(dz)). Then, Hs is a continuous semi-martingale,
and the formula of our Proposition follows from Itô–Tanaka’s formula (see e.g., the
second identity in Theorem VI.1.2 in [16]), but with a different constant in front of
the local time, due to our definition (1.8). It is then crucial to note that whenever we
have a point (r , z) of the Point Process N such that Hr ≤ t , then until the first time s
for which z + infr≤u≤s Xu − Xr = 0, the process u 	→ infr≤v≤u Xv decreases only
when Hu = Hr ≤ t , hence the term 1Hr >t factorizes in the last integral.

We now take the limit along a sequence Xk associated to πk , thus establishing the
Itô–Tanaka formula in the general case.

From the occupation time formula, for any g ∈ C([0,∞)) with compact support

∫ ∞

0
g(t)Lt

k(s)dt =
∫ s

0
g(Hk

r )dr .

Clearly,
∫ s
0 g(Hk

r )dr → ∫ s
0 g(Hr )dr as k → ∞. Denote by Rt (s) (resp. Rt

k(s)) the
right-hand side of (3.19) (resp. of (3.20)). The Proposition will clearly follow from

sup
t>0

E
∣∣Rt (s) − Rt

k(s)
∣∣ → 0, as k → ∞.

In other words, all we have to show is that, as k → ∞,

sup
t>0

E

∣∣∣(Hs − t)+ − (Hk
s − t)+

∣∣∣ → 0, (3.21)

sup
t>0

E

∣∣∣∣
∫ s

0
1Hr >tdXr −

∫ s

0
1Hk

r >tdXk
r

∣∣∣∣ → 0, (3.22)

sup
t>0

E

∣∣∣
∫ s

0

∫ ∞

0
1Hr >t (z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)

−
∫ s

0

∫ ∞

εk

1Hk
r >t (z + inf

r≤u≤s
Xk

u − Xk
r )+N (dr , dz)

∣∣∣ → 0. (3.23)

Since x → (x − t)+ is continuous, (3.21) follows from Corollary 3.15 and the
uniform integrability of the sequence Hk

s . We next establish (3.23).We argue similarly
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as in the proof of Proposition 3.13.

E

∣∣∣∣
∫ s

0

∫ ∞

0
1Hr >t (z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)

−
∫ s

0

∫ ∞

εk

1Hk
r >t (z + inf

r≤u≤s
Xk

u − Xk
r )+N (dr , dz)

∣∣∣∣
≤ E

∫ s

0

∫ εk

0
1Hr >t (z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)

+ E

∫ s

0

∫ ∞

εk

∣∣∣1Hr >t (z + inf
r≤u≤s

(Xu − Xr ))
+

− 1Hk
r >t (z + inf

r≤u≤s
(Xk

u − Xk
r ))+

∣∣∣N (dr , dz).

The first term on the right is bounded from above by the same term without the factor
1Hr >t , which tends to 0 as k → ∞ thanks to Corollary 3.5. We now estimate the
second term.

E

∫ s

0

∫ ∞

εk

∣∣∣∣1Hr >t (z + inf
r≤u≤s

(Xu − Xr ))
+−1Hk

r >t (z+ inf
r≤u≤s

(Xk
u −Xk

r ))+
∣∣∣∣ N (dr , dz)

≤ E

∫ s

0

∫ ∞

εk

∣∣∣1Hr >t − 1Hk
r >t

∣∣∣ (z + inf
r≤u≤s

(Xu − Xr ))
+N (dr , dz)

+ E

∫ s

0

∫ ∞

εk

∣∣∣∣(z + inf
r≤u≤s

(Xu − Xr ))
+ − (z + inf

r≤u≤s
(Xk

u − Xk
r ))+

∣∣∣∣ N (dr , dz)

The first term on the right-hand side of the last inequality tends to zero by domi-
nated convergence, while the convergence to zero of the second term is proved in
Proposition 3.13. In order to finally establish (3.22), we first note that

∫ s

0
1Hr >tdXr −

∫ s

0
1Hk

r >tdXk
r

=
∫ s

0

[
1Hr >t − 1Hk

r >t

]
dXr +

∫ s

0
1Hk

r >t

∫ εk

0
z Ñ (ds, dz).

The sup in t of the expectation of the second term on the right tends to zero since

E

[(∫ s

0
1Hk

r >t

∫ εk

0
z Ñ (ds, dz)

)2
]

≤ s
∫ εk

0
z2π(dz)

→ 0, as k → ∞.

Concerning the first term, all we need to do is to use the same decomposition and
the same kind of estimates as used in the proof of Lemma 3.18, combined with the
following

sup
t>0

E

∫ s

0

∣∣∣1Hr >t − 1Hk
r >t

∣∣∣ dr → 0, as k → ∞. (3.24)
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In order to prove (3.24), we note that for any ε > 0,

E

∫ s

0

∣∣∣1Hr >t − 1Hk
r >t

∣∣∣ dr ≤
∫ s

0
P(|Hr − Hk

r | > ε)dr + E

∫ s

0
1{t−ε≤Hk

r ≤t+ε}dr

=
∫ s

0
P(|Hr − Hk

r | > ε)dr + E

∫ t+ε

t−ε

Lu
k (s)du.

The first term on the right does not depend upon t and tends to 0 as k → ∞ as a
consequence of Corollary 3.5, while the second term is dominated by

2ε sup
t>0, k≥1

Lt
k(s).

Hence, (3.24) follows from Lemma 3.18 and the fact that ε > 0 is arbitrary. The
Proposition is established. 
�

We have in fact proved

Corollary 3.19 For any t, s > 0, as k → ∞,

Lt
k(s) → Lt (s) in probability.

We next establish

Lemma 3.20 The local time Lt (s) is continuous in s, for all t ≥ 0.

Proof An argument very similar to that at the end of the proof of Proposition 3.13
yields the continuity of the map s 	→ β(Hs − t)+ − Lt (s), while the same Proposition
implies that s 	→ β(Hs − t)+ is continuous. The result follows. 
�

Before proving the next Proposition, we show a uniform L p-bound for the (approx-
imating) local time(s), up to the time of the first big jump of X . To prepare this, we
first fix k ≥ 1 and s > 0, and consider the process

At =
∫ s

0

∫ εk

0
1Hr ≤t z Ñ (dr , dz).

Let Gt denote the σ -algebra generated by the random variables

Ig =
∫ s

0

∫ εk

0
g(r , z) z Ñ (dr , dz), (3.25)

where g is bounded andP⊗B+ measurable (P stands for the σ -algebra of predictable
subsets of � × R+) and satisfies {g(r , z) = 0} ⊃ {Hr > t}. We first establish

Lemma 3.21 The process {At : t ≥ 0} is a (Gt )-martingale.

Proof It suffices to verify that E[(At ′ − At )Ig] = 0 for t < t ′ and any g as above,
where Ig is defined by (3.25). This, however, is obvious. 
�
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For K > 0, let τK be the time of the first jump of X of size greater than or equal to
K . We shall need the

Lemma 3.22 For any p ≥ 1, s > 0, K > 0, there exists a constant C which depends
only on those three parameters, such that

sup
t≥0

E[Lt (s ∧ τK )p] ≤ C,

sup
t≥0,k≥1

E[Lt
k(s ∧ τK )p] ≤ C .

Proof We shall prove the first inequality only. The second one is proved in exactly the
same way. Since Hs and Lt (s) are continuous in s, we can rewrite their expressions
(3.10) and (3.19) as

βHs = Xs− − inf
0≤r<s

Xr −
∫ s−

0

∫ ∞

0
(z + inf

r≤u<s
Xu − Xr )

+N (dz, dr),

Lt (s) = β(Hs − t)+−
∫ s−

0
1Hr >tdXr

+
∫ s−

0

∫ ∞

0
1Hr >t (z + inf

r≤u<s
Xu − Xr )

+N (dr , dz).

We first note that since 1[0,K ](z)(z2 ∧ z p) is π -integrable for all p ≥ 1, one can easily
show that for all p ≥ 1, K > 0, s > 0, there exists a constant C p,K ,s such that

E

(
sup

0≤r<s∧τK

|Xr |p

)
≤ C p,K ,s . (3.26)


�
We now estimate the last term in the above right-hand side. It is clear that (the

second inequality follows by combining βHs ≥ 0 with the above identity)
∫ s−

0

∫ ∞

0
1Hr >t (z + inf

r≤u<s
Xu − Xr )

+N (dr , dz)

≤
∫ s−

0

∫ ∞

0
(z + inf

r≤u<s
Xu − Xr )

+N (dr , dz)

≤ Xs− − inf
0≤r<s

Xr

≤ 2 sup
0≤r<s

|Xr |.

Next, we observe that

β(Hs − t)+ ≤ βHs ≤ Xs− − inf
0≤r<s

Xr

≤ 2 sup
0≤r<s

|Xr |.
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From the last two inequalities,

β(Hs∧τK − t)+ +
∫ (s∧τK )−

0

∫ ∞

0
1Hr >t (z + inf

r≤u<s
Xu − Xr )

+N (dr , dz)

≤ 4 sup
0≤r<s∧τK

|Xr |.
(3.27)

We now consider the second term

−
∫ s−

0
1Hr >tdXr = −√2β

∫ s

0
1Hr >tdBr −

∫ s−

0

∫ ∞

0
1Hr >t z Ñ (dr , dz).

The pth absolute moment of the first term on the right is easy to estimate, since by the
Burkholder–Davis–Gundy inequality,

E

(∣∣∣∣
∫ s

0
1Hr >tdBr

∣∣∣∣
p)

≤ C ps p/2. (3.28)

We finally estimate the pth absolute moment of the last term. Let Ys = ∫ s
0

∫∞
0 1Hr >t

z Ñ (dr , dz). We first note that

|Y(s∧τK )−| ≤ sup
r≤s

∣∣∣∣
∫ r

0

∫ K

0
1Hu>t z Ñ (du, dz)

∣∣∣∣ . (3.29)

Next, we use theBurkholder–Davis–Gundy inequality for possibly discontinuousmar-
tingales, see e.g., Theorem IV.48 in Protter [15], which yields

E

(
sup
r≤s

∣∣∣∣
∫ r

0

∫ K

0
1Hu>t z Ñ (du, dz)

∣∣∣∣
p
)

≤ cpE

[(∫ s

0

∫ K

0
z2N (du, dz)

)p/2]
.

(3.30)
The result follows from a combination of (3.26), (3.27), (3.28), (3.29), (3.30) and the
fact that if N is a Poisson random measure with mean measure ν and f ∈ L1(ν) ∩
L∞(ν), then all moment of N ( f ) are finite. The last statement can be deduced from
the fact that the kth cumulant of N ( f ) is given as κk(N ( f )) = ∫

f kdν, which is easy
to verify for any step function f .

Just as the reflection of H above zero leads to L0(s) > L0−(s) = 0, the process
t → Lt (s) is discontinuous, due to the fact that the jumps of X create accumulations
of local time of H at certain level. The points of discontinuity of t → Lt (s) are of
course at most countable. They can be described as follows : Let

Ns := {0 ≤ r ≤ s; N ({r} × R+) > 0}

be the projection onto the s-axis of the support of the Poisson randommeasure N . The
setNs is at most countable, and {Hr , r ∈ Ns} is the set of the points of discontinuity
of the mapping t → Lt (s).
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Proposition 3.23 The local time Lt (s) has a version which is a.s. continuous in s and
cadlag in t.

Proof The continuity in s has been established in Lemma 3.20. Considering now the
regularity in t , we note that the first term in the right of (3.19) is clearly continuous in t .
Concerning the second term, we have for any p > 2 and t < t ′ from the Burkholder–
Davis–Gundy inequality, with the stopping times introduced just before Lemma 3.22,
exploiting Jensen’s inequality for the last inequality,

E

(
sup

0≤r≤s∧τK

∣∣∣∣
∫ r

0
(1Hr >t − 1Hr >t ′)dBr

∣∣∣∣
2p
)

≤ 4E

{∣∣∣∣
∫ s∧τK

0
1t<Hr ≤t ′dr

∣∣∣∣
p}

= 4(t ′ − t)p
E

{(∫ t ′

t
Lu(s ∧ τK )

du

t ′ − t

)p}

≤ 4(t ′ − t)p−1
E

∫ t ′

t
(Lu(s ∧ τK ))pdu.

This combinedwith Kolmogorov’s lemma implies that themapping t → ∫ s
0 1Hr >tdBr

has a version which is continuous in the two variables t and s.
Concerning the two last terms, if we replace the integrals over (0, s] × (0,∞) by

integrals over (0, s]×(εk,∞), then the sum of those two terms is càdlàg, the evolution
between the jumps being absolutely continuous in the first term and decreasing in the
second one. It remains to show that the supremum over t of

−
∫ s

0

∫ εk

0
1Hr >t z Ñ (dr , dz) +

∫ s

0

∫ εk

0
1Hr >t (z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)

tends to 0 as k → ∞. Concerning the second term, this follows from the fact that

sup
t

∫ s

0

∫ εk

0
1Hr >t (z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz)

≤
∫ s

0

∫ εk

0
(z + inf

r≤u≤s
Xu − Xr )

+N (dr , dz),

and the right hand side converges to 0 in probability as k → ∞.
Finally, the uniform convergence of the first term follows from Lemma 3.21 and

Doob’s maximal inequality. 
�

3.4.3 The Ray–Knight Theorem

We can now establish the Ray–Knight Theorem.

Theorem 3.24 Under the assumption (3.4) the stopping time Sx defined in (3.6) is
finite a.s. and the process {Lt (Sx ), t ≥ 0} is a CSBP with branching mechanism ψ .
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Proof Let Sk
x := inf{s > 0, L0

k(s) > x}. Proposition 3.11 shows that {Lt
k(Sk

x ), t ≥ 0}
is a CSBPwith branchingmechanismψk (here again Lk denotes the local time of Hk).
It is plain that for any g ∈ Cb(R+;R+) with compact support, we have both

∫ ∞

0
g(t)Lt

k(Sk
x )dt =

∫ Sk
x

0
g(Hk

s )ds, and

∫ ∞

0
g(t)Lt (Sx )dt =

∫ Sx

0
g(Hs)ds.

Provided we show that Sk
x → Sx , which will be done in the next Lemma, it follows

fromCorollary 3.15 that the right-hand side of the first identity converges in probability
to the right-hand side of the second identity in probability, as k → ∞. Consequently
for any T > 0,

L ·
k(Sx ) → L ·(Sx )

in L2(0, T ) weakly, in probability, as k → ∞.
On the other hand, from Proposition 3.11, {Lt

k(Sk
x ), t ≥ 0} is a CSBP with branch-

ing mechanism ψk . Let now W be a space–time white noise, and M a Poisson random
measure with mean ds × du × π(dz), while M̃ will denote the compensated measure
M(ds, du, dz)−ds du π(dz). It is clear that if {Zk,x

t , t ≥ 0} denotes the unique strong
solution of the Dawson–Li type SDE (see [5])

Zk,x
t = x + α

∫ t

0
Zk,x

s ds +√
2β
∫ t

0

∫ Zk,x
s

0
W (ds, du)

+
∫ t

0

∫ Zk,x
s−

0

∫ ∞

εk

z M̃(ds, du, dz),

then for each k ≥ 1, {Lt
k(Sk

x ), t ≥ 0, x > 0} and {Zk,x
t , t ≥ 0, x > 0} have the

same law. On the other hand, it is not hard to show that Zk,x
t → Z x

t in probability,
locally uniformly in t , where Z x

t is the unique solution of the SDE

Z x
t = x + α

∫ t

0
Z x

s ds +√
2β
∫ t

0

∫ Z x
s

0
W (ds, du)

+
∫ t

0

∫ Z x
s−

0

∫ ∞

0
zM̃(ds, du, dz).

(3.31)

The result follows from a combination of the above arguments. 
�
It remains to show that Sk

x → Sx .

Lemma 3.25 For any x > 0, as k → ∞,

Sk
x → Sx in probability.
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Proof From the definition of Sx := inf{s > 0, L0(s, H) > x}, for any ε > 0,
L0(Sx + ε) > x . Hence lim supk→∞ Sk

x ≤ Sx . However, L0(s, H) = − inf0≤r≤s Xr .
By TheoremVII.1 of Bertoin [4], the process x 	→ Sx is a subordinator. Consequently,
by Proposition I.7 of [4], a.s. Sx = Sx− = inf{s > 0, L0(s, H) ≥ x}. So for any
ε > 0, L0(Sx − ε, H) < x , and a.s. lim infk→∞ Sk

x ≥ Sx . 
�

4 The Case with Interaction

For the rest of the paper we consider, instead of (1.3), the collection of SDE’s (1.4).
In other words, the linear drift term−αZ x

t dt in (1.3) is replaced by the nonlinear drift
term f (Z x

t )dt , with f satisfying (1.5).
Connecting to the results of the previous section, we consider a process X defined

by (3.3) with α = 0, i.e.,

Xs = √
2βBs +

∫ s

0

∫ ∞

0
z Ñ (dr , dz), s ≥ 0, (4.1)

where again Ñ denotes the compensated measure Ñ (dr , dz) = N (dr , dz)−dr π(dz).
Our final aim in this paper is to obtain a Ray–Knight representation for the solution

Z of (1.4) in terms of an appropriate height process. For this, our strategy will be to
introduce, via Girsanov’s theorem, the appropriate drift into the equation (3.10) for
the height process H . This change of measure will introduce the same drift into the
process X , and should lead to the SDE’s (1.6) and (1.7) for the pair (X , H).

However, condition (1.5) guarantees only local boundedness of f ′. Thus, in order
to make sure that Girsanov’s theorem is applicable, we use a localization procedure
and associate to each b ∈ (0,∞) a function

fb ∈ C1
b(R+), f ′

b is uniformly continuous on R+,

and fb(z) = f (z), 0 ≤ z ≤ b .
(4.2)

We also assume that f ′
b(z) ≤ θ , for all z > 0, b > 0.

Even with this localization, the process H (which then solves (1.6) with fb instead
of f ) might tend to infinity before its local time at t = 0 has achieved the value Sx ,
x > 0. Then, there would be no way to make sense of the process Lt (Sx ). One way to
circumvent this difficulty would be to define H reflected below an arbitrary level a as
in [6] and [11], and identifying the law of L ·(Sx ) as that of Z x , killed at time t = a.
However, there would be difficulties with the definition of the thus reflected SDE for
H , due to the jump terms. Therefore, we will use an additional localization by adding
a drift which acts only while H takes values above a > 0, and has the effect of forcing
H to hit 0 after any time s0 > 0, i.e., inf{s > s0, Hs = 0} < ∞ a.s.. Our choice for
this will be

ga(h) = −(h − a)+.
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After taking the limit b → ∞ we will identify the law of {Lt (Sx ), 0 ≤ t ≤ a} with
that of {Z x

t , 0 ≤ t ≤ a}, but will loose the interpretation of Lt (Sx ) for t > a.

4.1 The Case� = 0

This case is treated in Pardoux [11]. The equation (1.6) for the height process H reads

xβHs =
∫ s

0
f ′ (L Hr (r)

)
dr +√

2β Bs − inf
0≤r≤s

Xr . (4.3)

It is shown in Proposition 16 of [11] that in this case the process {Z x
t , t ≥ 0} goes

extinct a.s. in finite time for all x > 0 iff

∫ ∞

1
exp

(
− 1

β

∫ u

1

f (r)

r
dr

)
du = ∞, (4.4)

and in this case Corollary 7 of [11] shows that {Lt
Sx

, t ≥ 0} solves the SDE (1.4),

of course with M̃ ≡ 0. If the condition (4.4) is not satisfied, Z x
t need not go extinct,

and in that case the process Hs may tend to infinity as s → ∞, so that we may have
L0(∞) < x . However, one can still obtain an extension of the second Ray–Knight
theorem, by reflecting H below an arbitrary level, as in Delmas [6], see Theorem 14
in [11]. The equation (4.3) has a unique weak solution: for each x > 0, existence up
to time Sx follows from Girsanov’s theorem, see the explanation on p. 95–97 together
with Corollary 8 in [11]. Since Girsanov’s theorem can be applied also in the reverse
direction, this implies weak uniqueness up to time Sx ; see also [12] Sec. 4.1 for that
argument in the case of affine linear f ′.

4.2 The Case of Finite�

In this subsection, we assume that π((0,+∞)) < ∞. We now use Girsanov’s theorem
in order to describe the corresponding height process. Under the reference measure P,
let H denote the solution of (3.10). For any a, b > 0, let Y a,b denote the following
Girsanov Radon–Nikodym derivative

Y a,b
s = exp

(
1√
2β

∫ s∧Sx

0
[ f ′

b(L Hr (r)) + ga(Hr )]dBr

− 1

4β

∫ s∧Sx

0
[ f ′

b(L Hr (r)) + ga(Hr )]2dr

)
,

and define

Ba,b
s = Bs − 1√

2β

∫ s

0
[ f ′

b(L Hr (r)) + ga(Hr )]dr , s ≥ 0. (4.5)
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This is a Brownian motion up to time Sx under the unique probability measure Pa,b

which is such that, with Fs = σ {Hr , 0 ≤ r ≤ s},

dPa,b

dP

∣∣∣Fs
= Y a,b

s , s > 0. (4.6)

Since f ′
b and ga are bounded, this follows readily from Proposition 35 in [11]. It

is easy to verify that the law of the random measure N (dr , dz) is the same under
P

a,b and under P. Indeed, one way to check that under Pa,b, N is a Poisson random
measure on (0,+∞)2 with mean the Lebesgue measure is to check that for any ϕ ∈
C((0,+∞)2;R+) with compact support,

E
a,b exp[N (−ϕ)] = exp{

∫ ∞

0

∫ ∞

0
[e−ϕ(s,z) − 1]dsdz}, (4.7)

where we have used the notation

N (ψ) =
∫

(0,∞)2
ψ(r , z)N (dr , dz) .

To verify (4.7), note first that it follows from Itô’s formula that for any s > 0, if
ϕs(r , z) := ϕ(r , z)1[0,s](r),

exp[N (−ϕs)] = 1 +
∫ s

0
exp[N (−ϕr−)]

∫ ∞

0

(
e−ϕ(r ,z) − 1

)
Ñ (dr , dz)

+
∫ s

0
exp[N (−ϕr )]

∫ ∞

0

(
e−ϕ(r ,z) − 1

)
dzdr .

We now observe that the above integral with respect to Ñ is a martingale under Pa,b,
which follows, see e.g., Theorem III.36 in Protter [15], from the fact that both it is a
martingale under P, and its quadratic covariation with the Radon–Nikodym derivative
(4.6) vanishes, i.e.,

〈Y a,b· ,

∫ ·

0
exp[N (−ϕr−)]

∫ ∞

0

(
e−ϕ(r ,z) − 1

)
Ñ (dr , dz)〉 ≡ 0.

This readily implies that

E
a,b exp[N (−ϕs)] = 1 +

∫ s

0
E

a,b exp[N (−ϕr )]
∫ ∞

0

(
e−ϕ(r ,z) − 1

)
dzdr ,

from which (4.7) follows by explicit integration of a linear ODE, choosing s large
enough so that supp(ϕ) ⊂ [0, s] × (0,+∞).
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It follows from (4.1) and (4.5) that

Xs =
∫ s

0
[ f ′

b(L Hr (r)) + ga(Hr )]dr + Xa,b
s , s ≥ 0.

where

Xa,b
s = √

2β Ba,b
s +

∫ s

0

∫ ∞

0
z Ñ (dr , dz).

Consequently (3.10) can be written as

βHs =
∫ s

0
[ f ′

b(L Hr (r)) + ga(Hr )]dr + Xa,b
s − inf

0≤r≤s
Xr

−
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu − Xr

)+
N (dr , dz). (4.8)

Weak existence of a solution to (4.8) follows from the above explicit construction.
Weak uniqueness follows from the fact that

dP

dPa,b

∣∣∣Fs
= (Y a,b

s )−1.

We denote again by Lt (s) the local time accumulated by the process H at level t up
to time s, and Sx = inf{s > 0; L0(s) > x}.

We have

Lemma 4.1 For any a, b > 0 we have P
a,b(Sx < ∞) = 1.

Proof We observe that

f ′
b(L Hr (r)) + ga(Hr ) ≤ θ − (Hr − a)+.

Consequently, whenever Hr > θ + a + 1, the drift in the equation for H is bounded
from above by −1. This is enough to conclude that under Pa,b, the process H returns
to 0 after arbitrarily large times, hence accumulates arbitrary quantities of local time
at level 0. 
�

We can rewrite (4.8) as

βHs =
∫ s

0

[
f ′
b(L Hr (r)) + ga(Hr ) − γ

]
dr +√

2βBa,b
s − inf

0≤r≤s
Xr

+
∫ s

0

∫ ∞

0

(
z −

[
z + inf

r≤u≤s
Xu − Xr

]+)
N (dr , dz),

(4.9)

where γ = ∫
(0,+∞)

z π(dz).
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Proposition 4.2 Assume that the measure π is finite, and fix a, b > 0. Under Pa,b, the
process {Lt (Sx ), 0 ≤ t ≤ a, x > 0} is, on the time interval [0, a], a solution of the
collection indexed by x > 0 of SDEs

Z x,b
t = x +

∫ t

0
fb(Z x,b

r )dr +√
2β
∫ t

0

∫ Z x,b
r

0
W (dr , du)

+
∫ t

0

∫ Z x,b
r−

0

∫ ∞

0
zM̃(dr , du, dz), t ≥ 0.

(4.10)

Proof Step 1. Equation for Lt (Sx )Here x > 0 is fixed.We first note that HSx = 0

implies that
∑

0≤r≤Sx

X

Sx
r = 0. Moreover X Sx = −x . Consequently formula (3.19)

at s = Sx reads

Lt (Sx ) = −
∫ Sx

0
1Hr >tdXr

= x +
∫ Sx

0
1Hr ≤tdXr .

Note that

Xs = Bs +
∫ s

0

∫ ∞

0
z Ñ (dr , dz)

=
∫ s

0
[ f ′

b(L Hr (r) + ga(Hr )]dr + Ba,b
s +

∫ s

0

∫ ∞

0
z Ñ (dr , dz), hence for

t ≤ a

Lt (Sx ) = x +
∫ Sx

0
1Hr ≤t f ′

b(L Hr (r))dr +
∫ Sx

0
1Hr ≤tdBa,b

r

+
∫ Sx

0
1Hr ≤t

∫ ∞

0
z Ñ (dr , dz) ,

where we have exploited the fact that for t ≤ a, 1Hr ≤t ga(Hr ) ≡ 0. We will now
rewrite each of the three integrals of the last right hand side. For the first one, we use,
similar to an argument on page 728 of [12], the generalized occupation times formula
from Exercise 1.15 in Chapter VI of [16], and obtain

∫ Sx

0
1Hr ≤t f ′

b(L Hr (r))dr =
∫ t

0

∫ Sx

0
f ′
b(Lu(r))d Lu

r du

=
∫ t

0
fb(Lu(Sx ))du .

We next consider the process

Ut :=
∫ Sx

0
1Hr ≤t dBa,b

r , t ≥ 0.
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For t ≥ 0, letHB
t denote the sigma-algebra generated by the random variables of the

form

Yg =
∫ Sx

0
g(r)dBa,b

r ,

where g is progressively measurable and satisfies {g(r) = 0} ⊃ {Hr > t}. It is easily
seen that U = (Ut )t≥0 is anHB-martingale for the filtrationHB = (HB

t )t≥0. We now
show that it is a continuous martingale. Indeed, for any K > 0, let again τK denote the
time of the first jumps of X is size greater than K . On the event �x,K = {Sx ≤ τK },
for any t > 0,

Ut =
∫ Sx ∧τK

0
1Hr ≤tdBa,b

s .

Therefore, for t ′ > t > 0, p > 2,

E
[|Ut ′ − Ut |p;�x,K

] = E

[∣∣∣∣
∫ Sx ∧τK

0
1t<Hr ≤t ′dBa,b

r

∣∣∣∣
p
]

= E

[∣∣∣∣
∫ Sx ∧τK

0
1t<Hr ≤t ′dr

∣∣∣∣
p/2]

= E

⎡
⎣
∣∣∣∣∣
∫ t ′

t
Lu(Sx ∧ τK )du

∣∣∣∣∣
p/2
⎤
⎦

≤ sup
u>0

E

(∣∣Lu(Sx ∧ τK )
∣∣p/2

)
× |t ′ − t |p/2.

The a.s. continuity of U follows from this computation, Lemma 3.22, Kolmogorov’s
Lemma, and the fact that P

(∪K≥1�x,K
) = 1.

We next note that

〈U 〉t =
∫ t

0
Lu(Sx )du , t ≥ 0.

Indeed, by Itô’s formula,

U 2
t −

∫ t

0
Lu(Sx )du = 2

∫ Sx

0
1Hr ≤t

∫ r

0
1Hs≤tdBa,b

s dBa,b
r , t ≥ 0,

is aHB-martingale.
It is now clear that there exists a space–time white noise W (dr , du) such that

Ut =
∫ t

0

∫ Lr (Sx )

0
W (dr , du), t ≥ 0.
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Here the choice of representing the above martingale as a stochastic integral with
respect to a space time white noise, rather than with respect to a Brownian motion, is
motivated by Step 2 of the proof below.

We finally consider the process

∫ Sx

0
1Hr ≤t

∫ ∞

0
z Ñ (dr , dz) = Vt − γ

∫ t

0
Lu(Sx )du, t ≥ 0,

where

γ =
∫ ∞

0
zπ(dz), and Vt :=

∫ Sx

0
1Hr ≤t

∫ ∞

0
zN (dr , dz) ,

so that we have obtained

Lt (Sx ) = x +
∫ t

0
[ fb(Lr (Sx ))−γ Lr (Sx )]dr +

∫ t

0

∫ Lr (Sx )

0
W (dr , du)+ Vt . (4.11)

We now want to rewrite the process Vt in a different way. For that sake, we use again
the construction introduced in Proposition 3.11.

We start with X (0), H (0), L(0), S(0)
x defined as follows.

X (0)
s =

∫ s

0
[ f ′

b(L H (0)
r

(0) (r)) − γ ]dr +√
2β Ba,b

s ,

βH (0)
s =

∫ s

0
[ f ′

b(L H (0)
r

(0) (r)) − γ ]dr +√
2βBa,b

s − inf
0≤r≤s

X (0)
r ,

Lt
(0)(s) is the local time accumulated by H (0) at level t up to time s ,

S(0) = inf{s > 0, L0
(0)(s) > x} .

Let N (0) denote an independent copy of the Poisson random measure N , and
{(si , zi ), 1 ≤ i ≤ J } be the set of points of N (0) on [0, S(0)

x ] × (0,+∞). If J = 0,
then (X , H , L, Sx ) ≡ (X (0), H (0), L(0), S(0)

x ), and we are done. Otherwise, we select

the a.s. unique index m ∈ {1, . . . , J } such that H (0)
sm = min1≤i≤J H (0)

si , and we define

X (1), H (1), L(1), S(1)
x as follows. We consider an independent copy Ba,1 of Ba , and

define

X (1)
s =

⎧⎪⎪⎨
⎪⎪⎩

X (0)
s , for s ≤ sm,

X (0)
sm + zm + ∫ s

sm
[ f ′

b(L H (1)
r

(1) (r)) − γ ]dr + √
2β Ba,1

s−sm
, for sm < s ≤ sm + s̃1,

X (0)
sm + ∫ s

sm+s̃1
[ f ′

b(L H (1)
r

(1) (r)) − γ ]dr + √
2β Ba,b

s−s̃1
, for s ≥ sm + s̃1

βH (1)
s =

∫ s

0
[ f ′

b(L H (1)
r

(1) (r)) − γ ]dr +√
2β Ba,b

s − inf
0≤r≤s

X (1)
r ,

Lt
(1)(s) is the local time accumulated by H (1) at level t up to time s ,

123



Journal of Theoretical Probability

S(1)
x = inf{s > 0, L0

(1)(s) > x} ,

where

s̃1 = inf
{

s > 0, X (1)
sm+s < X (0)

sm

}
.

Note that S(1)
x = S(0)

0 + s̃1, since it is true under the reference probability P (see
the same construction in Proposition 3.11). We next define as follows the Poisson
random measure N (1) on [0, S(0)

x ] × (0,+∞). Given Ñ (1) an independent copy of
N , which we restrict to [0, s̃1] × (0,+∞), the points of N (1) are those of N (0) on
[0, sm] × (0,+∞), those of Ñ (1) whose first coordinate has been shifted by +sm on
[sm, sm+s̃1]×(0,+∞), andfinally those of the restriction of N to [sm, S(0)

x ]×(0,+∞)

shifted by +s̃1 on [sm + s̃1, S(1)
x ] × (0,+∞).

We are now ready to iterate our procedure, and construct the elements indexed by
2. The iteration terminates a.s. at rank K ≥ J which is such that N (K ) has no point.
The law of K is that of the number of points of our original Poisson random measure
N on [0, Sx ] × (0,+∞). Note that starting from X , H , L, Sx , we could construct a
copy of the above sequence in reverse order by deleting one by one the jumps of X on
[0, Sx ], starting from the one corresponding to the largest value of H .

Coming back to the above sequence, the jumps of {Vt , t > 0} are described by
that sequence in the order in which they appear as t increases. It follows from our
construction that the process V can be written as

Vt =
∫ t

0

∫ Lr−(Sx )

0

∫ ∞

0
zM(dr , du, dz), t ≥ 0,

where M is a Poisson random measure on (0,+∞)3 with mean measure dr du μ(dz)
as in Proposition 3.11.

Inserting this formula for V in (4.11), we have proved that for fixed x > 0, the
process {Lt (Sx ), 0 ≤ t ≤ a} satisfies equation (1.4).
Step 2 Identification of the law of {Lt (Sx ), 0 ≤ t ≤ a, x > 0} If we define
H̃ x

s = HSx +s and X̃ x
s = X Sx +s + x , we have X̃ x

0 = 0 and under P

H̃ x
s = X̃ x

s − inf
0≤r≤s

X̃ x
r +

∫ s

0

∫ ∞

0
(z + inf

r≤u≤s
X̃ x

u − X̃ x
r )+N (dr , dz) .

Denote again Fs=σ {Xr , 0≤r≤s}. It is not hard to see that under Pa,b {Lt (Sx+s) −
Lt (Sx ), s ≥ 0, 0≤t ≤ a} is a function of both {Lt ′(Sx ), 0 ≤ t ′ ≤ a} (through the
nonlinear coefficient f ′

b), and noises which are independent of FSx . Now we fix both
x and y > 0, and note that

Lt (Sx+y) − Lt (Sx ) = y +
∫ Sx+y−Sx

0
1H̃ x

r ≤t f ′
b(L H̃ x

r (Sx + r))dr

+
∫ Sx+y−Sx

0
1H̃ x

r ≤tdBa,b
Sx +r +

∫ Sx+y−Sx

0
1H̃ x

r ≤t

∫ ∞

0
z Ñ (Sx + dr , dz).
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Applying the same extended occupation times formula as above, we deduce that

∫ Sx+y−Sx

0
1H̃ x

r ≤t f ′
b(L H̃ x

r (Sx + r))dr =
∫ t

0

[
fb(Lu(Sx+y)) − fb(Lu(Sx )))

]
du .

From the same arguments of the previous steps, we see that Z x,y,b
t := Lt (Sx+y) −

Lt (Sx ) satisfies for 0 ≤ t ≤ a

Z x,y,b
t = y +

∫ t

0

[
fb(Lr (Sx ) + Z x,y,b

r ) − fb(Lr (Sx ))
]
dr

+√
2β
∫ t

0

∫ Z x,y,b
r

0
W x (dr , du)

+
∫ t

0

∫ Z x,y,b
r−

0

∫ ∞

0
zM̃x (dr , du, dz),

where W x and W (resp. Mx , M) are i.i.d. The independence follows by noting that
the cross quadratic variation is zero. It follows from the independence property of
the white noise and the Poisson random measure on disjoint subsets that the pair
{(Lt (Sx ), Lt (Sx+y) − Lt (Sx )), 0 ≤ t ≤ a} has the same law as {(Z x,b

t , Z x+y,b
t −

Z x,b
t ), 0 ≤ t ≤ a}, hence also the two pairs {(Lt (Sx ), Lt (Sx+y)), 0 ≤ t ≤ a} and

{(Z x,b
t , Z x+y,b

t ), 0 ≤ t ≤ a} have the same law.
A similar argument shows that for any n ≥ 2 and x1 < x2 < · · · < xn , the

two n-dimensional processes {(Lt (Sx1), Lt (Sx2), . . . , Lt (Sxn )), 0 ≤ t ≤ a} and
{(Z x1,b

t , Z x2,b
t , . . . , Z xn ,b

t ), 0 ≤ t ≤ a} have the same law. This proves the result.

�

4.3 The General Case

With εk and πk as in Sect. 3.4.1, we are now going to take the limit as k → ∞ in the
setting of the previous subsection. To this end, we first fix a, b > 0. Since the drift
f ′
b(L Hr (r)) is not Lipschitz in H with respect to any of the standard metrics on the

continuous paths, it seems that the only practical route to access H and its local time,
and to establish our final result Theorem 4.9, is to rely on the convergence result of
Sect. 3.4, and Girsanov’s theorem. We recall that | f ′

b| and ga are bounded.
Consider the sequence Hk , k ≥ 1, of Sect. 3.4, let Lk denote the local time of Hk

an define Sk
x = inf{s > 0; L0

k(s) > x}. We need to take the limit in the sequence of
Radon–Nikodym derivatives

Y a,b,k
s = exp

(
1√
2β

∫ s∧Sk
x

0
[ f ′

b(L
Hk

r
k (r)) + ga(Hk

r )]dBr

− 1

4β

∫ s∧Sk
x

0
| f ′

b(L
Hk

r
k (r)) + ga(Hk

r )|2dr

)
.
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The reference probability P governs the case fb ≡ 0 and ga ≡ 0. Hence under P,

βHk
s = Xk

s − inf
0≤r≤s

Xk
r −

∫ s

0

∫ ∞

εk

(
z + inf

r≤u≤s
Xk

u − Xk
r

)+
N (dz, dr). (4.12)

The quantities introduced in the previous subsection need now to be indexed by k ≥ 1.
That is we consider the probability measure P

a,b,k such that for all s > 0, with
Fk

s = σ {Hk
r , 0 ≤ r ≤ s},

dPa,b,k

dP

∣∣∣F k
s

= Y a,b,k
s , s > 0.

Under Pa,b,k , the process Hk solves the SDE (see (4.8))

βHk
s =

∫ s

0

[
f ′
b(L Hk

r (r)) + ga(Hk
r )
]
dr + Xa,b,k

s − inf
0≤r≤s

Xk
r

−
∫ s

0

∫ ∞

εk

(
z + inf

r≤u≤s
Xk

u − Xk
r

)+
N (dr , dz),

(4.13)

where

Xa,b,k
s = √

2β Ba,b
s +

∫ s

0

∫ ∞

εk

z Ñ (dr , dz),

and

Ba,b
s = Bs − 1√

2β

∫ s

0
[ f ′

b(L Hk
r (r)) + ga(Hk

r )]dr

is a Brownian motion under Pa,b,k , up to time Sk
x .

Under the reference probability P, H is defined by (3.10), that is

βHs = Xs − inf
0≤r≤s

Xr −
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu − Xr

)+
N (dz, dr). (4.14)

The definition of the pair (Y a,b,Pa,b), whichwas given at the beginning of the previous
subsection for the case of a finite π , remains the same also for a general π satisfying
(1.2). Under Pa,b, H solves the SDE

βHs =
∫ s

0

[
f ′
b

(
L Hr (r)

)
+ ga(Hr )

]
dr + Xa,b

s − inf
0≤r≤s

Xr

−
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu − Xr

)+
N (dr , dz).

(4.15)

Again by the argument developed in the previous subsection, (4.15) has a unique weak
solution. The main argument in this subsection is
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Proposition 4.3 Let a, b > 0 and s > 0 be fixed. Then, under the reference probability
measure P, Y a,b,k

s → Y a,b
s as k → ∞, in probability and also in L p for any p ≥ 1.

Proof Since | f ′
b| and ga are bounded, for any p ≥ 1, {(Y a,b,k

s )p}k≥1 is uniformly inte-
grable, hence it suffices to establish the convergence in probability. For that purpose,
we need to show that

∫ s

0

∣∣∣∣1r≤Sx f ′
b(L Hr (r)) − 1r≤Sk

x
f ′
b(L

Hk
r

k (r))

∣∣∣∣
2

dr → 0

and
∫ s

0

∣∣∣1r≤Sx ga(Hr ) − 1r≤Sk
x
ga(Hk

r )

∣∣∣2 dr → 0,

as k → ∞ in P-probability.
The second convergence follows readily from Lemma 3.25, Corollary 3.15, the

Lipschitz continuity of ga and the dominated convergence theorem. The rest of this
proof will be devoted to establishing the first convergence.

For this purpose, we consider

∣∣∣∣1r≤Sx f ′
b

(
L Hr (r)

)
− 1r≤Sk

x
f ′
b

(
L

Hk
r

k (r)

)∣∣∣∣
≤
∣∣∣ f ′

b

(
L Hr (r)

)
− f ′

b

(
L Hk

r (r)
)∣∣∣

+
∣∣∣∣1r≤Sx f ′

b

(
L Hk

r (r)
)

− 1r≤Sk
x

f ′
b

(
L

Hk
r

k (r)

)∣∣∣∣ .

The Proposition will be proved if we show that the above right-hand side tends to zero
in dP×dr -measure, as k → ∞. Consider the first term on the right. ByCorollary 3.15,
Hk

r → Hr in probability, locally uniformly in r , as k → ∞. Moreover, t → Lt (r)

is continuous for t outside an at most countable set, and H spends zero time in that
at most countable set. Hence, we have that L Hk

r (r) → L Hr (r) in probability, dr a.e.
Since f ′

b is continuous, the first term converges.
The second term on the r.h.s. of the previous inequality is bounded from above by

∣∣∣1r≤Sx − 1r≤Sk
x

∣∣∣ f ′
b

(
L Hk

r (r)
)

+
∣∣∣∣ f ′

b

(
L Hk

r (r)
)

− f ′
b

(
L

Hk
r

k (r)

)∣∣∣∣ .

The first term in this expression converges to 0 in dP × dr -measure thanks to
Lemma 3.25. Concerning the second term, since f ′

b is uniformly continuous, it suffices
to show that

L Hk
r (r) − L

Hk
r

k (r) → 0 in probability.

Due to (3.19) and (3.20) for the local times of H and Hk , this expression takes the
form

L Hk
r (r) − L

Hk
r

k (r) = β(Hr − Hk
r )+ −√

2β
∫ r

0
(1Hv>t − 1Hk

v >t )dBv

∣∣∣
t=Hk

r
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−
∫ r

0

∫ ∞

εk

(1Hv>Hk
r

− 1Hk
v >Hk

r
)z Ñ (dv, dz)

+
∫ r

0

∫ ∞

εk

(1Hv>Hk
r

− 1Hk
v >Hk

r
)(z + inf

v≤u≤r
Xu − Xv)

+N (dv, dz)

−
∫ r

0

∫ εk

0
1Hv>t z Ñ (dv, dz)

∣∣∣
t=Hk

r

+
∫ r

0

∫ εk

0
1Hv>Hk

r
(z + inf

v≤u≤r
Xu − Xv)

+N (dv, dz).

Note that we can insert the anticipative Hk
r in the last four integrals since three of

them are Stieltjes integrals, and the third is an integral with respect to a compensated
Poisson point process which is independent of Hk

r .
It is plain that

0 ≤
∫ r

0

∫ εk

0
1Hv>Hk

r
(z + inf

v≤u≤r
Xu − Xv)

+N (dv, dz)

≤
∫ r

0

∫ εk

0
(z + inf

v≤u≤r
Xu − Xv)

+N (dv, dz).

Consequently from Corollary 3.5

E

∫ r

0

∫ εk

0
1Hv>Hk

r
(z + inf

v≤u≤r
Xu − Xv)

+N (dv, dz) ≤ C(r)

∫ εk

0
z2π(dz)

→ 0, as k → ∞.

In order to estimate the next to last term, we note that from Lemma 3.21, for any given
T > 0,

E

(
sup

0≤t≤T

∣∣∣∣
∫ r

0

∫ εk

0
1Hv>t z Ñ (dv, dz)

∣∣∣∣
2
)

≤ 2E

(∣∣∣∣
∫ r

0

∫ εk

0
z Ñ (dv, dz)

∣∣∣∣
2
)

+ 2E

(
sup

0≤t≤T

∣∣∣∣
∫ r

0

∫ εk

0
1Hv≤t z Ñ (dv, dz)

∣∣∣∣
2
)

≤ 2r
∫ εk

0
z2π(dz) + 8E

(∣∣∣∣
∫ r

0

∫ εk

0
1Hv≤T z Ñ (dv, dz)

∣∣∣∣
2
)

≤ 10r
∫ εk

0
z2π(dz) .

Consequently,
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E

(
sup
t≥0

∣∣∣∣
∫ r

0

∫ εk

0
1Hv>t z Ñ (dv, dz)

∣∣∣∣
2
)

= lim
T →+∞E

(
sup

0≤t≤T

∣∣∣∣
∫ r

0

∫ εk

0
1Hv>t z Ñ (dv, dz)

∣∣∣∣
2
)

≤ 10r
∫ εk

0
z2π(dz) → 0, as k → ∞ .

We split the two previous terms into two, choosing an arbitrary δ > 0, which w.l.o.g.
we can assume to satisfy δ > εk . By the same arguments as above,

E

∣∣∣∣
∫ r

0

∫ δ

εk

(1Hv>Hk
r

− 1Hk
v >Hk

r
)(z + inf

v≤u≤r
Xu − Xv)

+N (dv, dz)

∣∣∣∣
≤ C(r)

∫ δ

0
z2π(dz)

and

E

(
sup
t≥0

∣∣∣∣
∫ r

0

∫ δ

εk

(1Hv>t − 1Hk
v >t )z Ñ (dv, dz)

∣∣∣∣
2
)

≤ 10r
∫ δ

0
z2π(dz).

Those can be made arbitrarily small by choosing δ > 0 small enough.
Denoting by Ns,δ the number of points of N in [0, s] × (δ,∞), we have that

∣∣∣∣
∫ r

0

∫ ∞

δ

(1Hv>Hk
r

− 1Hk
v >Hk

r
)(z + inf

v≤u≤r
Xu − Xv)

+N (dv, dz)

∣∣∣∣

≤
Ns,δ∑
i=1

|1HTi >Hk
r

− 1Hk
Ti

>Hk
r
|Zi

and
∫ r

0

∫ ∞

δ

(1Hv>Hk
r

− 1Hk
v >Hk

r
)z Ñ (dv, dz)

=
Ns,δ∑
i=1

(1HTi >Hk
r

− 1Hk
Ti

>Hk
r
)Zi −

∫ ∞

δ

zπ(dz)
∫ r

0
(1Hv>Hk

r
− 1Hk

v >Hk
r
)dv.

The fact that the finite sum converges to 0 as k → ∞ follows from the fact that
Hk

Ti
→ HTi , while Hk

r − Hk
Ti

→ Hr − HTi �= 0 a.s., and moreover

∣∣∣∣1HTi >Hk
r

− 1Hk
Ti

>Hk
r

∣∣∣∣ ≤ 1|HTi −Hk
Ti

|>|Hk
r −Hk

Ti
|,

which tends to 0 from the above claims. Moreover, by the occupation times formula,

∫ r

0
(1Hv>Hk

r
− 1Hk

v >Hk
r
)dv =

∫ ∞

Hk
r

(Lt (r) − Lt
k(r))dt .
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Let us use again the stopping times τK , defined just before Lemma 3.22. SinceP(τK ≤
r) → 0 as K → ∞, it suffices to consider

E

(∣∣∣∣∣
∫ ∞

Hk
r

(Lt (r) − Lt
k(r))dt

∣∣∣∣∣ ; r < τK

)
≤
∫ M

0
E
(∣∣Lt (r) − Lt

k(r)
∣∣ ; r < τK

)
dt

+
∫ ∞

M
E
(∣∣Lt (r) − Lt

k(r)
∣∣ ; r < τK

)
dt .

Since the integrand on the right converges to 0 in probability for any t , the convergence
to 0 of the first integral on the right follows from uniform integrability provided
by Lemma 3.22, for any M > 0. Concerning the last term, using the inequality∣∣Lt (r) − Lt

k(r)
∣∣ ≤ Lt (r)+ Lt

k(r), we have two integrals to estimate. We estimate the
first one, the estimate of the second being very similar.

E

∫ ∞

M
Lt (r)1r<τK dt =

∞∑
k=0

E

∫ M+k+1

M+k
Lt (r)1r<τK dt

≤
∞∑

k=0

P

(
sup

0≤u≤r∧τK

Hu > M + k

)

≤
∞∑

k=0

P

(
sup

0≤u≤r∧τK

|Xu | >
β

2
M

)

≤ C2,K ,r (2/β)2
∞∑

k=0

(M + k)−2,

where we have used (3.26) and Chebychev’s inequality for the last line. Clearly the
last right-hand side tends to 0 as M → ∞.

Finally, we consider the Brownian integral. Let us define

�(t, r) =
∫ r∧τK

0
1Hv>tdBv, �k(t, r) =

∫ r∧τK

0
1Hk

v >tdBv.

We need to show that �(Hk
r , r) − �k(Hk

r , r) → 0, which will follow from a variant
of the last argument which we have used and the fact that for any M > 0,

sup
0≤t≤M

|�(t, r) − �k(t, r)| → 0 (4.16)

in probability, as k → ∞. It is plain that for fixed t ,�k(t, r) → �(t, r) in probability.
So (4.16) will follow if we show that for any fixed r , the sequence of processes
{�k(·, r)}k≥1 is tight in C([0, M]). It follows from the computation done in the proof
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of Proposition 3.23 and from Theorem I.2.1 in [16] that with any p > 2, ρ < 1
2 − 1

p ,

ξk,ρ := sup
0≤t �=t ′≤M

|�k(t, r) − �k(t ′, r)|
|t ′ − t |ρ

satisfies

E[ξ2p
k,ρ] ≤ C pE

∫ M

0
(Lu

k (r ∧ τK ))pdu,

which thanks to Lemma 3.22 yields the desired tightness. The result follows, since
P(τK < r) → 0 as K → ∞, for any r > 0. 
�

Let us repeat here Lemma 24 from [11].

Lemma 4.4 Let (ξk, ηk), (ξ, η) be random pairs defined on a probability space
(�,F ,P) with ηk , η being non-negative random variables satisfying E[ηk] = E[η] =
1. Let ξ̃k stand for the r.v. ξk defined on (�,F , P̃k) with dP̃k/dP = ηk , ξ̃ for the r.v. ξ

defined on (�,F , P̃) with dP̃/dP = η. If (ξk, ηk) converges in law toward (ξ, η) as
k → ∞, then ξ̃k converges in law toward ξ̃ , as k → ∞.

Now a combination of Corollary 3.15, Proposition 4.3 and Lemma 4.4 yields

Proposition 4.5 As k → ∞, the solution Hk
s , s ≥ 0 of equation (4.13) converges in

probability, locally uniformly in s, to the solution Hs, s ≥ 0, of equation (4.15).

Imitating the proof of Theorem 3.24, we now deduce from Proposition 4.2 the
following

Theorem 4.6 For any a, b > 0, under the probability measure P
a,b, the process

{Lt (Sx ), 0 ≤ t ≤ a, x > 0} is a solution of the collection indexed by x of SDEs
(4.10) on the time interval [0, a].

It remains to let first b → ∞, then a → ∞.
First of all, let us fix x > 0. We would like to replace fb and f ′

b by f and f ′. Since
f ′ is not bounded from below, it is not clear that we can apply Girsanov’s theorem,
i.e., it is not clear that we have E(Y a

s ) = 1 if we define

Y a
s = exp

(
1√
2β

∫ s∧Sx

0
[ f ′(L Hr (r)) + ga(Hr )]dBr

− 1

4β

∫ s∧Sx

0
[ f ′(L Hr (r)) + ga(Hr )]2dr

)
.

We shall argue as in section 7.2.2 of [11]. Let

Sn := inf{s > 0, L Hs (s) > n} .
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Since f ′(L Hs (s)) is bounded on [0, Sn], we can define the probability measure Pa on∨
n FSn , which is such that for any n ∈ N

dPa

dP

∣∣∣FSn
= Y a

Sn .

Under Pa , H solves the SDE

βHs =
∫ s

0
[ f ′(L Hr (r)) + ga(Hr )]dr + Xa

s − inf
0≤r≤s

Xr

−
∫ s

0

∫ ∞

0

(
z + inf

r≤u≤s
Xu − Xr

)+
N (dr , dz) ,

(4.17)

with

Xa
s = √

2β Ba
s +

∫ s

0

∫ ∞

0
z Ñ (dr , dz),

where

Ba
s = Bs − 1√

2β

∫ s

0
[ f ′(L Hr (r)) + ga(Hr )]dr

is a Brownian motion under Pa . It remains to verify that for each s > 0, E(Y a
s ) = 1,

and dPa

dP

∣∣∣Fs
= Y a

s . From Proposition 28 in [11], this will be the case, provided

Lemma 4.7 As n → ∞, P(Sn < Sx ) → 0 and P
a(Sn < Sx ) → 0.

Proof Let us establish the first statement. We choose an arbitrary ε > 0 and observe
that for any A > 0

P

(
sup

0≤s≤Sx

L Hs (s) > n

)
≤ P

(
sup

0≤s≤Sx

L Hs (Sx ) > n

)

≤ P

(
sup

0≤s≤Sx

Hs > A

)
+ P

(
sup

0≤t≤A
Lt (Sx ) > n

)

Since under P, Sx < ∞ a.s. and H is continuous, the random variable sup0≤s≤Sx
Hs is

a.s. finite, and we can choose A large enough, such that P
(
sup0≤s≤Sx

Hs > A
) ≤ ε/2.

Next, under P, the second Ray–Knight theorem holds true, so that

P

(
sup

0≤t≤A
Lt (Sx ) > n

)
= P

(
sup

0≤t≤A
Z x

t > n

)
≤ ε/2,

provided n is chosen large enough.
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For the proof of the second statement, we start the argument in exactly the same
way. Again, thanks to the drift ga , the random variable sup0≤s≤Sx

Hs is a.s. finite
under Pa . In order to estimate the second term, we cannot use the identification with
the solution of (1.4) for t > a. However, if we go back to the proof of Proposition 4.2,
we note that for t > a which had been excluded in that proof, we have

Lt (Sx ) ≤ x +
∫ Sx

0
1Hr ≤t f ′

b(L Hr (r))dr +
∫ Sx

0
1Hr ≤tdBa

r

+
∫ Sx

0
1Hr ≤t

∫ ∞

0
z Ñ (dr , dz),

although the equality does not hold. Going through the first step of the proof of
Proposition 4.2, we deduce that Lt (Sx ) is a subsolution of Eq. (1.4), thus by the
comparison theorem for that SDE (see [5]), Lt (Sx ) ≤ Z x

t , which finishes the
proof. 
�

It is now easy to deduce from Theorem 4.6

Theorem 4.8 For any a > 0, under the probability measure P
a, the process

{Lt (Sx ), 0 ≤ t ≤ a, x > 0} is a solution of the collection indexed by x of SDEs (1.4)
on the time interval [0, a].

It now remains to let a → ∞. First of all let us observe that the projective limit of
the laws of (H , X) under Pa as a → ∞ renders a (unique) weak solution of (1.6),
(1.7). For that H there is, however, no guarantee that Sx < ∞. On the other hand, the
law of {Lt (Sx ), 0 < t ≤ t ′} depends only upon the pieces of trajectories of H below
t ′, and it does not depend upon a, provided a > t ′. Therefore, there exists a projective
limit of those laws as well, and we have our final theorem.

Theorem 4.9 There exists a random field {Lt
x , x > 0, t ≥ 0} defined on a probability

space (�′,F ′,P′) such that for any a > 0, the law of {Lt
x , x > 0, 0 ≤ t ≤ a}

is the same as the law of {Lt (Sx ), x > 0, 0 < t ≤ a} under P
a. Consequently,

{Lt
x , x > 0, t ≥ 0} solves the collection indexed by x > 0 of SDEs (1.4).
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