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Abstract: We consider a space–time SI epidemic model with infection age dependent infectivity
and non-local infections constructed on a grid of the torus Td = [0, 1)d, where the individuals may
migrate from node to node. The migration processes in either of the two states are assumed to be
Markovian. We establish a functional law of large numbers by letting the initial approximate number
of individuals on each node, N, to go to infinity and the mesh size of the grid, ε, to go to zero jointly.
The limit is a system of parabolic PDE/integral equations. The constraint on the speed of convergence
of the parameters N and ε is that Nεd → ∞ as (N, ε) → (+∞, 0).
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equations
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1. Introduction

In order to capture the geographic heterogeneity, spatial epidemic models have been
well developed, both in discrete and continuous spaces. In discrete space, multi-patch
epidemic models have been studied in [1–6], and more recently by [7], where each patch
represents a geographic location, and infection may occur within each patch and across
distances (for example, due to short travels). See also the multi-patch multi-type epidemic
models in [3,8], as well as relevant models in [9–11]. Some of these studies assume mi-
gration of individuals among different patches [1,4,5,7,8], while others do not, instead
assuming that interactions between patches to induce infection [3,6,10–12]. In continuous
space, various PDE models have been developed (see the monographs [13–15] and a sur-
vey [16]). There are two well-known models without spatial movement: Kendall’s spatial
model [17,18] and Diekmann–Thieme’s PDE model [19–22], as well as the recent paper [23],
which studies an epidemic model with age-dependent infectivity, as in the present paper.
Kendall’s spatial model is a system of ODEs with a spatial parameter (without spatial
partial derivative). It was proved to be the FLLN limit of the multitype Markovian SIR
model by Andersson and Djehiche [24], where both the number of types and the population
size go to infinity. Diekmann–Thieme’s spatial PDE model (with partial derivatives with
respect to time and infection-age) has the infection rate depending on the age of infection,
as in the PDE model first proposed by Kermack and McKendrick in their 1932 paper [25].
Similar to Kendall’s spatial model, there is no partial derivative with respect to the spatial
parameter, since there is no movement in space. The Diekmann–Thieme PDE model can be
seen as the FLLN limit of a sequence of stochastic models; see [23]. We should also mention
the spatial models in continuous space obtained as FLLN limits of stochastic models in
continuous space (see [26,27]), where the stochastic model involves a continuous process
for the movement of individuals: it is assumed that individual movements follow an Itô
diffusion process, and the epidemic models are Markovian.
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In the present paper, we consider an epidemic model on a refining grid of the d
dimensional torus Td. Like in the earlier work [4], the individuals move from one patch
to its neighbors according to a random walk. The first novelty of this paper is that the
infectivity of each individual is a random function, which evolves with the time elapsed
since infection, as first considered in [28], and recently studied in [8,29]. The second novelty
is that we allow infection of a susceptible individual by infectious individuals located in
distinct patches, and we use a very general rate of infection.

There are two parameters in our model: N, which is the order of the number of
individuals in each patch; and ε, which is the distance between two neighboring sites.
The total number of patches is ε−d, and the total number of individuals in the model is
Nε−d. Our goal is to study the limit of the renormalized stochastic finite population model
as both N → ∞ and ε → 0. In this paper, we obtain a convergence result in L∞ under
the restriction that Nεd → ∞. In [4], the restriction was much weaker, thanks to clever
martingale estimates due to Blount [30]. However, in contradiction with the model in [4],
our model is non Markovian, and several of the fluctuating processes are not martingales.
As a result, it does not seem possible to extend the techniques of [30] to the situation studied
in the present paper.

There are three models in the present paper. The stochastic SDE model parametrized
by the pair (N, ε); the deterministic model, which is an ODE on the patches parametrized
by ε (and is the LLN limit of the first model when N → ∞ with ε fixed); and the PDE
model on the torus Td, which is the limit of the ODE model as ε → 0. The convergence of
the ODE model to the PDE model exploits standard arguments on semigroups and their
approximation, based on some results in [31]. The main new argument in the present paper
consists in showing that the difference in L∞ between the stochastic and the ODE models,
which tends to zero as N → ∞ while ε is fixed according to [8], tends also to zero when
(N, ε) → (+∞, 0), provided Nεd → ∞.

In this paper, we consider the SI model, S as susceptible, I as infected. An infected
individual has an age of infection-dependent infectivity, which we suppose to vanish after
some random time. It would be natural to decide that at that time, the individual leaves
the I compartment, and enters the R compartment as recovered. For the sake of simplifying
our model, we decide that after being infected, an individual remains in the I compartment
forever. This does not affect the evolution of the epidemic, since when its infectivity remains
zero, an individual from the I compartment does not contribute anymore to the propagation
of the illness, just like an individual in the R compartment of an SIR model.

Let us finally comment on the assumptions regarding the age-dependent infectivity.
We assume that to each individual who gets infected is attached a random infectivity func-
tion, the functions attached to the various individuals being independent and identically
distributed (abbreviated i.i.d. below), all having the law of a random function λ (the law is
different for the initially infected individuals). In this paper, as in [8], we only assume that
λ belongs a.s. to the Skorohod space of càlàg functions D, and satisfies 0 ≤ λ(t) ≤ λ∗, for
some λ∗ > 0. This is weaker than the assumptions made in [29]. The proof in [8] is quite
different from the proof in [29]. Here, we use a proof similar to that in [29]. The limitation is
that we obtain only the pointwise convergence of the renormalized total infectivity function,
while we obtain uniform convergence in t for the proportions of susceptible and infected
individuals. We believe that this proof is interesting, due to its simplicity.

Our result allows us to approximate a complicated stochastic model of an epidemic
propagating in a population distributed over a large number of patches, by a simpler
deterministic PDE model in continuous space. In other words, our result says that, if
the population is large, as well as the number of patches, the number of individuals per
patch being large as well, then provided the numbers of individuals in the various patches
are of the same order, a good approximation of the model is given by a PDE model in
continuous space.

The paper is organized as follows. We describe our model in detail in Section 2, in
particular, the complex form of the rate of infection. Section 3 is devoted to the mathematical
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analysis of our model. In Section 3.1, we state the law of large numbers limit as N → ∞,
with ε fixed, referring to [8] for the proof. In Section 3.2, we take the limit as ε → 0 in the
ODE model. In Section 3.3, we study the difference between the stochastic and the ODE
model, as (N, ε) → (+∞, 0), and conclude our main result. The next section is a conclusion,
where we explain how our results can be used in practice, and describe our future projects
for extending the present results. Finally, in Appendix A, we recall both the Duhamel
formula, which is an essential tool in several of our proofs, and Kotelenez’ extension of
Doob’s maximal inequality.

2. Model Formulation

We consider a total population size Nε−d, initially distributed on the ε−d nodes of a
refining spatial grid Dε := [0, 1)d ∩ εZd, see Figure 1, in which an infection is introduced.
Here, ε is the mesh size of the grid (we assume that ε−1 ∈ N\{0}). We focus our attention
to the periodic boundary conditions on the hypercube [0, 1]d; that is, our domain is the
torus Td := [0, 1)d. Our results can be extended to a bounded domain of Rd with smooth
boundary, and Neumann boundary conditions.

xε

Figure 1. Our refining spatial grid Dε in dimension d = 2, with periodic boundary conditions. The
arrows are drawn to indicate that opposite edges are identified. The arrows at the bottom correspond
to the arrows at the top, and those on the left correspond to those on the right. ε is the mesh size of the
grid. The blue arrows around site xε indicate the possible movements of individuals from and to xε.

2.1. Set-Up and Notations

We split the population into two subsets SN,ε and IN,ε. SN,ε stands for the susceptible
individuals, who do not have the disease and who can become infected, while IN,ε refers to
the subset of those individuals who are suffering from the illness or have recovered from
the disease.

We shall denote by xε the nodes of the grid Dε. SN,ε(t, xε) denotes the number of
susceptible individuals at site xε at time t. Let BN,ε(t, xε) denote the total number of
individuals at site xε at time t, i.e. BN,ε(t, xε) := SN,ε(t, xε) + IN,ε(t, xε). We define SN,ε(t)
(resp. IN,ε(t)) as the total number of susceptible individuals (resp. infected individuals) at
time t in the whole population; that is,

SN,ε(t) := ∑
xε

SN,ε(t, xε), and IN,ε(t) := ∑
xε

IN,ε(t, xε) , ∀t ≥ 0.

We have BN,ε(t) := ∑
xε

BN,ε(t, xε) = Nε−d , ∀t ≥ 0.
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We now describe our model of varying infectivity. {λ−1(t), t ≥ 0} and {λ−1(t), t ≥ 0}
will denote two mutually independent random functions of time, whose trajectories are in
D, the space of càdlàg paths from R+ into R+, which we equip with the Skorohod topology,
and which are such that 0 ≤ λ−1(t), λ1(t) ≤ λ∗ for all t ≥ 0, for some constant λ∗ > 0.
λ−1(t) will be the infectivity at time t of an initially infected individual, while λ1(t) will
be the infectivity at time t after his/her infection of an initially susceptible individual. We
might assume that an infected individual is first exposed, during a latent period during
which λ1(t) = 0. Then λ1(t) becomes positive, and eventually the infected individual
ceases to be infectious at time η = sup{t > 0, λ1(t) > 0}, after the time of his/her infection.
An initially infected individual has been infected at some time in the past, and at time
0, he/she might still be exposed (in which case λ−j(0) = 0), or infectious (in which case
λ−j(0) > 0), or no longer infectious (in which case λ−j(t) = 0 for all t ≥ 0). We think
that a continuous function λ(t) is a good model of reality. However, we prefer to assume
more generally that the trajectories of λ(t) are in D, in particular, in order to include in our
model the classical case where λ(t) jumps from 0 to some fixed deterministic value λ̄ at
some random time, and then jumps back to zero later on.

To each initially infected individual, 1 ≤ j ≤ IN,ε(0) is attached a random infectivity
process {λ−j(t) : t ≥ 0}: λ−j(t) is the infectivity at time t of the j-th initially infected
individual. To each initially susceptible individual, 1 ≤ j ≤ SN,ε(0) is associated a random
infectivity process {λj(t) : t ≥ 0}. The initially susceptible individual j, who is infected at
a random time τN,ε

j , has an infectivity of λj(t − τN,ε
j ) at time t, i.e., λj(t) is the infectivity

at time t after the individual j was infected. We assume that λj(t) = 0 for all t < 0 and all
j ∈ Z, and that {λ−j : j ≥ 1} and {λj : j ≥ 1} are two mutually independent sequences of
i.i.d random functions taking values in the interval [0, λ∗].

We define the infected periods of newly and initially infected individuals j > 0 and
j < 0, respectively, by the random variables

ηj := sup{t > 0 : λj(t) > 0}, j ∈ Z\{0}.

We define F(t) := P(η1 ≤ t), F0(t) := P(η−1 ≤ t), the distributions functions of ηj for
j ≥ 1 and for j ≤ −1, respectively. Let Fc(t) := 1 − F(t) and Fc

0(t) := 1 − F0(t). Moreover,
we define

λ(t) := E[λ1(t)] and λ0(t) := E[λ−1(t)].

We assume that susceptible individuals move from patch to patch according to a
time-homogenous Markov process X(t) with jump rates νS/ε2 and transition function

pxε ,yε
ε (s, t) = P(X(t) = yε|X(s) = xε),

and while infectious individuals move from patch to patch according to a time-homogeneous
Markov process Y(t) with jump rates νI/ε2 and transition function

qxε ,yε
ε (s, t) = P(Y(t) = yε|Y(s) = xε).

νS and νI are positive diffusion coefficients for the susceptible and infected subpopulations,
respectively. We assume that those movements of the various individuals are mutually
independent.

In addition, we use Xs,xε
j (t) (resp. Ys,xε

j (t)) to denote the position at time t of the
individual j if it is susceptible (resp. infected) during the time interval (s, t), and was in
location/node xε at time s.

For all xε ∈ Dε, let Vε(xε) be the cube centered at the site xε with volume εd. Let
Hε ⊂ L2(Td) denote the space of real valued step functions that are constant on each
cell Vε(xε).
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∆ε is the discrete Laplace operator, defined as follows

∆ε f (xε) =
d

∑
i=1

ε−d[ f (xε + εei)− 2 f (xε) + f (xε − εei)
]
, f ∈ Hε

and we define the operators ∆S
ε f := νS∆ε f and ∆I

ε f := νI∆ε f , f ∈ Hε.
∆ denotes the d-dimensional Laplace operator, i.e.,

∆ f (x) =
d

∑
i=1

∂2 f
∂x2

i
(x) .

Let TS,ε (resp. TI,ε) be the semigroup acting on Hε generated by νS∆ε (resp. νI∆ε).
Similarly, we denote by TS (resp. TI) the semigroup acting on L2(Td) generated by νS∆
(resp. νI∆).

2.2. Model Description

All random variables and processes are defined on a common complete probability
space (Ω,F ,P). We consider an SI epidemic model, where each infectious individual has
an infectivity that is randomly varying with the time elapsed since infection. We assume
that a susceptible individual in patch xε has contacts with infectious individuals of patch yε

at rate β
xε ,yε
ε (t) at time t.

Given a site xε, the total force of infection at each time t at site xε is the aggregate
infectivity of all the individuals that are currently infectious in this site:

FN,ε(t, xε) =
IN,ε(0)

∑
j=1

λ−j(t)1Yj(t)=xε

+ ∑
yε

∫ t

0

∫ ∞

0

∫
D

∫
D

λ(t − s)1
u≤SN,ε(s− ,yε)Γ

N,ε
(s− ,yε)

1Ys,yε (t)=xε
Qyε(ds, du, dλ, dY),

where
ΓN,ε

(t, yε) :=
1

N1−γ[BN,ε(t, yε)]γ
∑
xε

β
yε ,xε
ε (t)FN,ε(t, xε)

is the force of infection exerted on each susceptible individual in patch xε, and {Qyε , yε ∈ Dε}
are i.i.d. standard Poisson random measures (PRM) on R2

+ × D2 with intensity ds ⊗
du ⊗ dPλ ⊗ dPY. We assume that γ ∈ [0, 1]. By an abuse of notation, we denote by
Qxε(ds, du) the projection of Qxε(ds, du, dλ, dY) on the first two coordinates. Let, with
ΥN,ε(t, xε) := SN,ε(t, xε)Γ

N,ε
(t, xε),

AN,ε(t, xε) :=
∫ t

0

∫ ∞

0
1u≤ΥN,ε(s− ,xε)

Qxε(ds, du).

In what follows, xε ∼ yε means that the nodes xε and yε are neighbors (each point of
Dε has 2d neighbors).

The epidemic dynamic of the model can be described by the following equations

SN,ε(t, xε) = SN,ε(0, xε)− AN,ε(t, xε)− ∑
yε∼xε

Pxε ,yε

S

(∫ t

0

νS
ε2 SN,ε(s, xε)ds

)
+ ∑

yε∼xε

Pyε ,xε

S

(∫ t

0

νS
ε2 SN,ε(s, yε)ds

)
IN,ε(t, xε) = IN,ε(0, xε) + AN,ε(t, xε)− ∑

yε∼xε

Pxε ,yε

I

(∫ t

0

νI

ε2 IN,ε(s, xε)ds
)
+ ∑

yε∼xε

Pyε ,xε

I

(∫ t

0

νI

ε2 IN,ε(s, yε)ds
)

,
(1)

where Pxε ,yε

S , Pxε ,yε

I , xε , yε ∈ Dε are mutually independent standard Poisson processes.
In the above equations, Pxε ,yε

S (resp. Pxε ,yε

I ) is the counting process of susceptible (resp.
infected) individuals that migrate from the patch xε to yε.

In the sequel of this paper, we may use the same notation for different constants (we
use the generic notations c, C for positive constants). These constants can depend upon
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some parameters of the model, as long as these are independent of ε and N, and we will
not necessarily mention this dependence explicitly. The exact value may change from line
to line.

3. Model Analysis
3.1. Law of Large Numbers as N → ∞, ε Being Fixed

We consider the renormalized model by dividing the number of individuals in each
compartment and at each patch by N. Hence, we define

S N,ε
(t, xε) :=

1
N

SN,ε(t, xε), I N,ε
(t, xε) :=

1
N

IN,ε(t, xε), and F
N,ε

(t, xε) :=
1
N
FN,ε(t, xε).

Assumption 1. We make the following assumptions on the initial conditions. We assume that

(i) there exists a collection of positive numbers { Sε
(0, xε), Iε

(0, xε), xε ∈ Dε } such that

∑
xε

[
Sε
(0, xε) + Iε

(0, xε)
]
= ε−d ,

and
∣∣∣SN,ε(0)− NSε

(0)
∣∣∣ ≤ 1 ,

∣∣∣IN,ε(0)− NIε
(0)
∣∣∣ ≤ 1;

(ii) there exists two continuous functions S, I : Td −→ R+ and two constants 0 < c0 < C0

such that c0 ≤ S(x) ≤ C0, I(x) ≤ C0 for all x ∈ Td,
∫
Td

[
S(x) + I(x)

]
dx = 1,∫

Td I(x)dx > 0, and

S ε
(0, xε) = ε−d

∫
Vε(xε)

S(x)dx, I ε
(0, xε) = ε−d

∫
Vε(xε)

I(x)dx .

(iii) {Xj(0) , 1 ≤ j ≤ SN,ε(0)} and {Yj(0) , 1 ≤ j ≤ IN,ε(0)} are two mutually independent collec-

tions of i.i.d. random variables satisfying P
(
Xj(0) = xε

)
=

S ε
(0, xε)

S ε
(0)

, and P
(
Yj(0) = xε

)
=

I ε
(0, xε)

I ε
(0)

for all xε ∈ Dε, where S ε
(0) := ∑

xε

S ε
(0, xε) and I ε

(0) := ∑
xε

I ε
(0, xε). Moreover,

SN,ε(0, xε) =
SN,ε(0)

∑
j=1

1Xj(0)=xε
and IN,ε(0, xε) =

IN,ε(0)

∑
j=1

1Yj(0)=xε
.

Assumption 2.

(i) We assume that β
xε ,yε
ε (t) = βt(xε, Vε(xε)), where βt(x, A) is a transition kernel and there

exists a constant β∗ such that βt(x,Td) ≤ β∗, for all x ∈ Td and t ≥ 0.
(ii) there exists a positive constant λ∗ > 0 such that 0 ≤ λj(t) ≤ λ∗, for all j ∈ Z\{0} and

t ≥ 0.

Under Assumptions 1 and 2, we have the

Theorem 1 (Law of Large Numbers: N → ∞, ε being fixed). As N → ∞,(
SN,ε

(t, xε), F
N,ε

(t, xε), IN,ε
(t, xε), t ≥ 0, xε ∈ Dε

)
converges in D3ε−d

in probability, to the

unique solution
(

Sε
(t, xε), F

ε
(t, xε), Iε

(t, xε), t ≥ 0, xε ∈ Dε

)
of the following system of inte-

gral equations
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S ε
(t, xε) = S ε

(0, xε)−
∫ t

0
S ε

(s, xε)Γ
ε
(s, xε)ds +

∫ t

0

[
∆S

ε S ε]
(s, xε)ds

F
ε
(t, xε) = λ0(t)∑

yε

I ε
(0, yε)qyε ,xε(0, t) + ∑

yε

∫ t

0
λ(t − s)S ε

(s, yε)Γ
ε
(s, yε)qyε ,xε(s, t)ds

I ε
(t, xε) = I ε

(0, xε) +
∫ t

0
S ε

(s, xε)Γ
ε
(s, xε)ds +

∫ t

0

[
∆I

ε I ε]
(s, xε)ds,

t ≥ 0, xε ∈ Dε,

(2)

where

Γ ε
(t, xε) =

1[
B ε

(t, xε)
]γ ∑

yε

β
xε ,yε
ε (t)F ε

(t, yε) and B ε
(t, xε) = S ε

(t, xε) + I ε
(t, xε).

This Theorem is a special case of Theorem 3.1 in [8], whose proof, which is written for
a multi-patch multi-group SIR model, is easily adapted to our case.

3.2. Limit as ε → 0 in the Deterministic Model

Before letting ε go to zero in the limit system (2) extended to the whole space Td, we
prove some technical lemmas.

Lemma 1. Let T > 0. There exists a positive constant C such that
∥∥Sε

(t)
∥∥

∞ ≤ C and
∥∥Iε

(t)
∥∥

∞ ≤
C, for all ε > 0 and t ∈ [0 , T].

Proof. Using the Duhamel Formula (see (A3) in the Appendix A below), the solution of
the first line of (2) reads

Sε
(t, xε) = [et∆S

ε Sε
(0, ·)](xε)−

∫ t

0
e(t−s)∆S

ε [S ε
(s, ·)Γ ε

(s, ·)](xε)ds .

It is explained in Appendix A below that all entries of the matrix e(t−s)∆S
ε are non–

negative. Clearly, all coordinates of the vector S ε
(s, ·)Γ ε

(s, ·) are non–negative as well. It
then follows from the above formula that

Sε
(t, xε) ≤ [et∆S

ε Sε
(0, ·)](xε) .

As explained in Appendix A,(
et∆S

ε

)
xε ,yε

= pxε ,yε
ε (0, t),

which, combined with the last inequality, implies that

sup
xε∈Dε

Sε
(t, xε) = ∥Sε

(t, ·)∥∞ ≤ ∥Sε
(0, ·)∥∞ ≤ C,

as a consequence of Assumption 1 (ii).
We now consider the term Iε. First, using the previous estimate, we obtain

Sε
(s, xε)(

Bε
(s, xε)

)γ =

(
Sε
(s, xε)

Bε
(s, xε)

)γ[
Sε
(s, xε)

]1−γ
≤ C(T, γ).

Next, we have ∑
yε

β
xε ,yε
ε F

ε
(s, yε) ≤ λ∗

wwwIε
(s)
www

∞
∑
yε

β
xε ,yε
ε (s) ≤ λ∗β∗∥∥Iε

(s)
∥∥

∞. Thus,

using the Duhamel formula again,
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wwwIε
(t)
www

∞
≤
www(TI,ε(t)Iε

(0)
)www

∞
+
∫ t

0
TI,ε(t − s)C

wwwIε
(s)
www

∞
ds

≤ C + C
∫ t

0

wwwIε
(s)
www

∞
ds.

The second statement then follows from Gronwall’s Lemma.

Lemma 2. For any T > 0, there exists ε0 and c > 0 such that B ε
(t, xε) ≥ c, for all 0 < ε ≤ ε0,

xε ∈ Dε and 0 ≤ t ≤ T.

Proof. Let c and C be two positive constants such that 0 < 2c ≤ inf
xε

S ε
(0, xε) ≤ C. The

existence of such constants is a consequence of Assumption 1 (ii). We now define the
random time Tε

c , which is the first time that infxε S ε
(t, xε) is less than c (and +∞ if this

never happens). Formally, Tε
c := inf{t > 0 , inf

xε
S ε

(t, xε) < c}. On the interval [0 , Tε
c ),

S ε
(t, xε) ≥ c, ∀xε ∈ Dε. For t ≤ Tε

c , we have

Γε
(t, xε) =

1[
B ε

(t, xε)
]γ ∑

yε

β
xε ,yε
ε (t)Fε

(t, yε) ≤
λ∗β∗

cγ

∥∥Iε
(t)
∥∥

∞ := c,

Sε
(t, xε) ≤ Sε

(0, xε)− c
∫ t

0
Sε
(s, xε) +

∫ t

0

[
∆S

ε Sε]
(s, xε)ds.

Hence, ectSε
(t, xε) ≥ infyε Sε

(0, yε) = 2c, and consequently Tε
c ≥ log 2/c. Then for all

0 ≤ t ≤ Tε
c , we have ectSε

(t, xε) ≥ 2c. So Sε
(t, xε) ≥ 2e−ctc ≥ c iff e−ct ≥ 1

2 .
From Assumption 1 (ii) and the fact that I(0) ̸= 0, there exists a ball B(x0, ρ) and a > 0

such that I(y) ≥ a, for all y ∈ B(x0, ρ). Let us consider the following ODE

d uε

dt
= νI∆εuε, uε(0) = a1B(x0,ρ).

We have that uε −→ u in L∞
(
[0, T]×Td

)
as ε → 0, where u is the solution of

d u
dt

= νI∆u, u(0) = a1B(x0,ρ).

For all
log 2

c
< t ≤ T, there exists a positive constant c, such that u(t, x) ≥ 2c, ∀x ∈ Td.

Then, there exists ε0 > 0 such that ∀ε ≤ ε0, Iε
(t, xε) ≥ uε(t, xε) ≥ c, for all

log 2
c

< t ≤ T.

We have shown that Bε
(t, xε) ≥ c ∧ c, for all 0 ≤ t ≤ T, x ∈ Dε, ε ≤ ε0.

We now extend the solution of the system (2) to the whole space Td. So, we define

S ε
(t, x) := ∑

xε

Sε
(t, xε)1Vε(xε)(x), I ε

(t, x) := ∑
xε

Iε
(t, xε)1Vε(xε)(x), F ε

(t, x) := ∑
xε

F
ε
(t, xε)1Vε(xε)(x),

X ε := (S ε , F ε , I ε
).

Theorem 2. For all T ≥ 0, sup
0≤t≤T

∥∥∥X ε
(t)− X(t)

∥∥∥
∞

−→ 0 as ε → 0, where X := (S , F , I) is

the unique solution of the following system of parabolic PDE/integral equations.
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S(t, x) = S(0, x)−
∫ t

0
S(s, x)Γ(s, x)ds +

∫ t

0

[
∆SS

]
(s, x)ds,

F(t, x) = λ0(t)
(
TI(t)I(0)

)
(x) +

∫ t

0
λ(t − s)TI(t − s)

(
S(s)Γ(s)

)
(x)ds,

I(t, x) = I(0, x) +
∫ t

0
S(s, x)Γ(s, x)ds +

∫ t

0

[
∆II
]
(s, x)ds,

with S(t, x)Γ(t, x) =
S(t, x)[
B(t, x)

]γ

∫
Td

F(t, y)β(x, dy), t ≥ 0, x ∈ Td.

(3)

where TI denotes the semigroup generated by νI∆.

Before proving this theorem, we first establish two Propositions.

Proposition 1. Let T > 0. If (S , F , I) is a solution of (3), then for all 0 ≤ t ≤ T, there exists C,
c > 0 such that

∥∥S(t)
∥∥

∞ ≤ C,
∥∥I(t)

∥∥
∞ ≤ C and B(t, x) ≥ c, for all x ∈ Td.

Proof. The arguments used in the proofs of Lemmas 1 and 2 are easy to transpose to the
present situation.

Remark 1. Let H
(
S, I, F

)
(t, x) :=

[
S(t, x) ∨ 0

]
∧ C[

B(t, x) ∨ c
]γ

∫
Td

βt(x, dy)
[

F(t, y) ∧ λ∗C
]

where C is

the upper bound and c the lower bound in Proposition 1, Lemmas 1 and 2. We note hat
(
S , I , F

)
is

a solution of (3) if it is a solution of the following system

S(t, x) =
(

TS(t)S(0)
)
(x)−

∫ t

0

(
TS(t − s)H

(
S(s), I(s), F(s)

))
(x)ds,

F(t, x) = λ0(t)
(

TI(t)I(0)
)
(x) +

∫ t

0
λ(t − s)

(
TI(t − s)H

(
S(s), I(s), F(s)

))
(x)ds,

I(t, x) =
(

TI(t)I(0)
)
(x) +

∫ t

0

(
TI(t − s)H

(
S(s), I(s), F(s)

))
(x)ds, 0 ≤ t ≤ T, x ∈ Td.

(4)

Note also that the map H :
(

L∞(Td)
)3

−→ L∞(Td) is bounded and globally Lipschitz.

Proposition 2. The system of Equation (4) has a unique solution.

Proof. The uniqueness of the solution uses the contraction character of the semigroups TS
and TI on L∞(Td), and the fact that the map H is bounded and globally Lipschitz. The
existence of the solution can be proved using the Picard iteration procedure.

We introduce the canonical projection Pε : L2(Td) −→ Hε given by

φ 7−→ Pε φ(x) = ε−d
∫

Vε(xε)
φ(y)dy if x ∈ Vε(xε).

Proof of Theorem 2. Using the fact that the map H is bounded and globally Lipschitz, we
have, provided that ε ≤ ε0,∥∥∥X ε

(t)− X(t)
∥∥∥

∞
≤ C(λ∗, β∗)

∫ t

0

∥∥∥X ε
(s)− X(s)

∥∥∥
∞

ds + πε(t),

where πε(t) = πS
ε (t) + π I

ε (t) + πF
ε (t), with
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πS
ε (t) =

wwwTS,ε(t)S
ε
(0)− TS(t)S(0)

www
∞

+
∫ t

0

wwwwwPε

(
S(s)[
B(s)

]γ

∫
Td

F(s, y)βs(., dy)

)
− S(s)[

B(s)
]γ

∫
Td

F(s, y)βs(., dy)

wwwww
∞

ds

+
∫ t

0

wwwwwTS,ε(t − s)Pε

(
S(s)[
B(s)

]γ

∫
Td

F(s, y)βs(., dy)

)
− TS(t − s)

(
S(s)[
B(s)

)γ

∫
Td

F(s, y)βs(., dy)

)wwwww
∞

ds,

π I
ε (t) is a quantity similar to πS

ε (t), with TI,ε (resp. TI , I ε and I) in place of TS,ε (resp. TS,
S ε and S), and

πF
ε (t) = λ∗

∥∥∥TI,ε(t)I
ε
(0)− TI(t)I(0)

∥∥∥
∞

+
∫ t

0

∥∥∥Pε

(
S(s)[
B(s)

]γ

∫
Td

F(s, y)βs(., dy)

)
− S(s)[

B(s)
]γ

∫
Td

F(s, y)βs(., dy)
∥∥∥

∞
ds

+
∫ t

0

∥∥∥TI,ε(t − s)Pε

(
S(s)[
B(s)

]γ

∫
Td

F(s, y)βs(., dy)

)
− TI(t − s)

(
S(s)[
B(s)

]γ

∫
Td

F(s, y)βs(., dy)

)∥∥∥
∞

ds.

Then from Gronwall’s lemma, sup0≤t≤T

∥∥∥X ε
(t) − X(t)

∥∥∥
∞

→ 0 follows from

sup0≤t≤T πε(t) → 0.

Since the maps x 7−→ S(0, x), x 7−→ I(0, x) and x 7−→ S(t,x)
[B(t,x)]

γ

∫
Td F(t, y)βt(x, dy)

are continuous on Td, and TS,ε −→ TS, TI,ε −→ TI as operators on L∞ as ε → 0, then
sup

0≤t≤T
πε(t) −→ 0, as ε → 0 (see Kato [31], Chapter 9, Section 3, Example 3.10).

3.3. Limit as N → ∞ and ε → 0

In this section, we extend our stochastic model to the whole space Td and let both
N → ∞ and ε → 0 in such a way that Nεd → ∞. Before stating the main theorem of this
section, we first prove some lemmas and propositions.

Lemma 3. There exist two constants 0 < c < C such that for all t ≥ 0, ε > 0 and xε ∈ Dε,

cεd ≤ P(X(t) = xε) ≤ Cεd.

Proof. Define uε(t, xε) := P(X(t) = xε). We have that uε(t, xε) =

(
et
[

∆S
ε

]∗
uε

0

)
(xε). Using

the assumption on the initial condition P(X(0) = xε), then 0 < cεd ≤ uε(0, xε) ≤ Cεd, from

which we deduce that 0 < cεd ≤ et
[

∆S
ε

]∗
uε(0, xε) ≤ Cεd; hence, the result.

Lemma 4. There exits a positive constant C such that for all 0 ≤ s ≤ t, ε > 0 and xε ∈ Dε

∑
yε

qyε ,xε
ε (s, t) = 1 and P

(
Yj(t) = xε

)
≤ Cεd.

Proof. The uniform distribution on Dε is invariant for the process Y(t). So, if we start Y at
time s with the uniform distribution, i.e., P(Y(s) = xε) = εd, the law of Y at time t is also
the uniform law. But

P(Y(t) = xε) = ∑
yε

P(Y(s) = yε)q
yε ,xε
ε (s, t) i.e εd = εd ∑

yε

qyε ,xε
ε (s, t);
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thus, ∑
yε

qyε ,xε
ε (s, t) = 1. Finally,

P
(
Yj(t) = xε

)
= ∑

yε

P
(
Yj(0) = yε

)
qyε ,xε

ε (0, t)

≤ sup
yε

P
(
Yj(0) = yε

)
∑
yε

qyε ,xε
ε (0, t).

Hence, the second result follows from the first one and Assumption 1 (ii) and (iii).

Let us define F
N,ε
0 (t, xε) :=

1
N

IN,ε(0)

∑
j=1

λ−j(t)1Yj(t)=xε
and F

ε
0(t, xε) := λ0(t)∑

yε

Iε
(0, yε)

qyε ,xε
ε (0, t).

We have the

Lemma 5. Let us assume that (N, ε) → (∞, 0). Then for all T > 0,

sup
0≤t≤T

E
(∥∥∥FN,ε

0 (t)− F
ε
0(t)

∥∥∥2

∞

)
−→ 0, as (N , ε) → (∞ , 0).

Proof. F
N,ε
0 (t, xε) can be decomposed as follows

F
N,ε
0 (t, xε) =

1
N

IN,ε(0)

∑
j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε

+ λ0(t)
1
N

IN,ε(0)

∑
j=1

1Yj(t)=xε
.

Let us consider the first term. Since
(
λ−j(t)

)
j are independent and identically dis-

tributed and independent of Yj(t), then

E


 1

N

IN,ε(0)

∑
j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε

2
 =

1
N2

IN,ε(0)

∑
j=1

E
[∣∣λ−j(t)− λ0(t)

∣∣21Yj(t)=xε

]

≤ 1
N2 C(λ∗)IN,ε(0)P(Y1(t) = xε)

≤ C(λ∗)

N
P(Y1(t) = xε).

Now, since ∑xε
P(Y1(t) = xε) = 1,

E

 sup
xε∈Dε

 1
N

IN,ε(0)

∑
j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε

2
 ≤ ∑

xε

E


 1

N

IN,ε(0)

∑
j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε

2


≤ C(λ∗)

N
→ 0, (5)

as N → ∞. It remains to show that

sup
xε∈Dε

∣∣∣∣∣∣λ0(t)
1
N

IN,ε(0)

∑
j=1

1Yj(t)=xε
− λ0(t)∑

yε

Iε
(0, yε)q

yε ,xε
ε (0, t)

∣∣∣∣∣∣ −→ 0, as (N, ε) −→ (∞, 0).

We have

1
N

IN,ε(0)

∑
j=1

1Yj(t)=xε
=

1
N

IN,ε(0)

∑
j=1

[
1Yj(t)=xε

− P
(
Yj(t) = xε

)]
+

1
N

IN,ε(0)

∑
j=1

P
(
Yj(t) = xε

)
.
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E


 1

N

IN,ε(0)

∑
j=1

[
1Yj(t)=xε

− P
(
Yj(t) = xε

)]2
 =

1
N2

IN,ε(0)

∑
j=1

E
(∣∣∣1Yj(t)=xε

− P
(
Yj(t) = xε

)∣∣∣2)

≤ C
N
P(Y1(t) = xε) .

It follows that

E

 sup
xε∈Dε

 1
N

IN,ε(0)

∑
j=1

[
1Yj(t)=xε

− P
(
Yj(t) = xε

)]2
 ≤ C

N
→ 0, (6)

as N → 0.

Since λ0(t) is bounded, it remains to evaluate the quantity
1
N

IN,ε(0)

∑
j=1

P
(
Yj(t) = xε

)
−

∑
yε

Iε
(0, yε)q

yε ,xε
ε (0, t). We have

1
N

IN,ε(0)

∑
j=1

P
(
Yj(t) = xε

)
=

1
N ∑

yε

IN,ε(0)

∑
j=1

P
(
Yj(0) = yε

)
qyε ,xε

ε (0, t); thus,

sup
xε

∣∣∣∣ 1
N

IN,ε(0)

∑
j=1

P
(
Yj(t) = xε

)
− ∑

yε

Iε
(0, yε)q

yε ,xε
ε (0, t)

∣∣∣∣ ≤ 1
N

sup
xε

∑
yε

qyε ,xε
ε (0, t)

∣∣∣∣ IN,ε(0)

∑
j=1

P
(
Yj(0) = yε

)
− NIε

(0, yε)

∣∣∣∣
≤ 1

N
sup

xε

∑
yε

qyε ,xε
ε (0, t)

Iε
(0, yε)

Iε
(0)

∣∣∣∣IN,ε(0)− NIε
(0)
∣∣∣∣

≤ C
N

−→ 0 . (7)

Combining (5)–(7), we finally have

sup
0≤t≤T

E

 sup
xε∈Dε

∣∣∣∣∣∣ 1
N

IN,ε(0)

∑
j=1

λ−j(t)1Yj(t)=xε
− λ0(t)∑

yε

Iε
(0, yε)q

yε ,xε
ε (0, t)

∣∣∣∣∣∣
2
 −→ 0 , (8)

as N → +∞.

Let σN,ε be the stopping time defined by

σN,ε(ω) := inf{t > 0 , ω /∈ At,δ ∩ Bt,δ}, (9)

where for all t ≤ T, δ > 0,

At,δ =

{wwww∫ t

0
TS,ε(t − s)dM N,ε

S (s)
wwww

∞
≤ δ

}
, Bt,δ =

{wwww∫ t

0
TI,ε(t − s)dM̃ N,ε

I (s)
wwww

∞
≤ δ

}
,

with

M N,ε
S (t, xε) = ∑

yε∼xε

1
N

Myε ,xε

S

(
N
∫ t

0

νS

ε2 SN,ε
(s, yε)ds

)
− ∑

yε∼xε

1
N

Mxε ,yε

S

(
N
∫ t

0

νS

ε2 SN,ε
(s, xε)ds

)
,

M̃ N,ε
I (t, xε) = M N,ε

I (t, xε) +M N,ε
SI (t, xε),
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where

M N,ε
I (t, xε) = ∑

yε∼xε

1
N

Myε ,xε

I

(
N
∫ t

0

νI

ε2 IN,ε
(s, yε)ds

)
− ∑

yε∼xε

1
N

Mxε ,yε

I

(
N
∫ t

0

νI

ε2 IN,ε
(s, xε)ds

)
,

M N,ε
SI (t, xε) =

1
N

∫ t

0

∫ ∞

0
1

u≤SN,ε(s− ,xε)Γ
N,ε

(s− ,xε)
Qxε(ds, du).

Qxε(ds, du) := Qxε(ds, du)− dsdu is the compensated PRM associated with Qxε
ε (ds, du),

and we have used the notations

Mxε ,yε

S (t) = Pxε ,yε

S (t)− t, Mxε ,yε

I (t) = Pxε ,yε

I (t)− t.

Let ¯̄c :=
λ∗β∗

wwwIN,ε
(t)
www

∞
cγ

, where c stands for the bound in Lemma 2. We define the
stopping time

τN,ε = inf
{

t > 0 ,
wwww∫ t

0
e(t−s)(∆S

ε − ¯̄cId)dM̃ N,ε
S (s)

wwww
∞
≥ c

8

}
,

where Id is the identity operator on Hε, and M̃ N,ε
S (t, xε) := M N,ε

S (t, xε)−M N,ε
SI (t, xε).

With those notations, we deduce from (1) that

SN,ε
(t, xε) = SN,ε

(0, xε) +
∫ t

0
[∆S

ε SN,ε
](s, xε)ds −

∫ t

0
SN,ε

(s, xε)Γ
N,ε

(s, xε)ds + M̃ N,ε
S (t, xε)

IN,ε
(t, xε) = IN,ε

(0, xε) +
∫ t

0
[∆I

ε IN,ε
](s, xε)ds −

∫ t

0
SN,ε

(s, xε)Γ
N,ε

(s, xε)ds + M̃ N,ε
I (t, xε)

(10)

In the proof of the next Proposition, we shall need the following Lemma.

Lemma 6. As (N, ε) → (∞, 0) in such a way that Nεd → ∞,
∥∥SN,ε

(0, .)− Sε
(0, .)

∥∥
∞ −→ 0 in

L2(Ω).

Proof. We have

SN,ε
(0, xε)− Sε

(0, xε) =
1
N

SN,ε(0)

∑
j=1

1Xj=xε − P(X = xε)S
ε
(0)

= Sε
(0)

1

NSε
(0)

SN,ε(0)

∑
j=1

[
1Xj=xε − P(X = xε)

]
+

P(X = xε)

N

[
SN,ε

(0)− NSε
(0)
]
.

E
[∣∣∣SN,ε

(0, xε)− Sε
(0, xε)

∣∣∣2] ≤ 2
N2

SN,ε(0)

∑
j=1

Var[1X=xε ] +
2[P(X = xε)]

2

N2

≤ Sε
(0)
N

C
c

εd +
Cε2d

N2 ≤ C′

N
+

Cε2d

N2 .

Then

E
[

sup
xε∈Dε

∣∣SN,ε
(0, xε)− Sε

(0, xε)
∣∣2] ≤ C′

Nεd +
Cεd

N2 .

The result follows.
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Proposition 3. For all T > 0, there exists C such that for N large enough if t ≤ σN,ε ∧ T, thenwwwSN,ε
(t)
www

∞
≤ C and

wwwIN,ε
(t)
www

∞
≤ C, for all ε > 0. Moreover, there exists ε0 > 0 and c0 > 0

such that if t ≤ σN,ε ∧ τN,ε ∧ T, BN,ε
(t, xε) ≥ c0, for all xε ∈ Dε, provided ε ≤ ε0.

Proof. Let us first treat the term
∥∥SN,ε

(t)
∥∥

∞.
Using the Duhamel formula (A4) from Appendix A, applied to the first line of (10),

we have

SN,ε
(t, xε) ≤

(
TS,ε(t)S

N,ε
(0, .)

)
(xε) +

∫ t

0

(
TS,ε(t − s)dM N,ε

S (s, .)
)
(xε).

Since SN,ε
(0, xε) ≤ C, for all xε ∈ Dε, we obtain that for t ≤ σN,ε ∧ T,

∥SN,ε
(t)
∥∥

∞ ≤ C + δ .

We now consider the term
wwwIN,ε

(t)
www

∞
. Arguing as in the proof of Lemma 1, we have

for t ≤ σN,ε ∧ T,

wwwIN,ε
(t)
www

∞
≤ eCt

(
C + sup

0≤t≤T

wwww∫ t

0
TI,ε(t − s)dM̃ N,ε

I (s)
wwww

∞

)
≤ (C + δ)eCT .

We finally consider the term BN,ε
(t, xε). It follows from Lemma 6 that

∥∥SN,ε
(0, .)−

Sε
(0, .)

∥∥
∞ −→ 0 and from Lemma 2 that Sε

(0, xε) ≥ c, for all xε ∈ Dε. Then for sufficiently

large N, P
(

infxε SN,ε
(0, xε) ≥ c

2

)
is close to 1. Let TN,ε

c = inf
{

t , inf
xε

SN,ε
(t, xε) <

c
4

}
. On

the interval [0 , TN,ε
c ), SN,ε

(t, xε) ≥
c
4

, ∀xε ∈ Dε. For all t ≤ TN,ε
c ∧ σN,ε ∧ T, we have

ΓN,ε
(t, xε) =

1[
BN,ε

(t, xε)
]γ ∑

yε

β
xε ,yε
ε (t)FN,ε

(t, yε) ≤
4γλ∗β∗

wwwIN,ε
(t)
www

∞
cγ

= ¯̄c

and moreover, if t ≤ τN,ε,

SN,ε
(t, xε) ≥

(
e(∆

S
ε − ¯̄cId)tSN,ε

(0)
)
(xε) +

∫ t

0

(
e(t−s)(∆S

ε − ¯̄cId)dM̃ N,ε
S (s)

)
(xε)

≥ c
2

e− ¯̄ct − c
8

. (11)

We note that c
2 e− ¯̄ct ≥ c

4
iff t ≤ log 2

¯̄c = T¯̄c.

So, on the event τN,ε ∧ σN,ε ∧ T ≥ T¯̄c, SN,ε
(t, xε) ≥

c
8

, ∀ 0 ≤ t ≤ T¯̄c .

For t > T¯̄c, IN,ε
(t, xε) ≥

(
TI,ε(t)IN,ε

(0)
)
(xε) +

∫ t

0

(
TI,ε(t − s)dM N,ε

I (s)
)
(xε).

We choose T > T¯̄c arbitrary. We know from the proof of Lemma 2 that there exists ε0

and c such that Iε
(t, xε) ≥ c for all ε ≤ ε0, xε ∈ Dε and

log 2
¯̄c

≤ t ≤ T. If we now choose

δ =
c
2

in the definition of σN,ε, we deduce that for any ε ≤ ε0, xε ∈ Dε, T¯̄c ≤ t ≤ σN,ε ∧ T,

IN,ε
(t, xε) ≥

c
2

.

From now on, we decree that σN,ε = 0 whenever inf
xε

SN,ε
(0, xε) <

c
2

, or ε > ε0.
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Lemma 7. Given T > 0, there exists C > 0 such that for any t < τN,ε ∧ σN,ε, we have

wwwSN,ε
(t)ΓN,ε

(t)− Sε
(t)Γε

(t)
www

∞
≤ C

(wwwSN,ε
(t)− Sε

(t)
www

∞

+
wwwFN,ε

(t)− F
ε
(t)
www

∞
+
wwwIN,ε

(t)− Iε
(t)
www

∞

)
.

(12)

Proof. Note that, using the map H defined in Remark 1, with a slight modification of the
constants, we have

SN,ε
(t, xε)Γ

N,ε
(t, xε)− Sε

(t, xε)Γ
ε
(t, xε) = H

(
SN,ε, IN,ε,FN,ε

)
(t, xε)−H

(
Sε, Iε,Fε

)
(t, xε),

and the result then follows from the fact that H is bounded and globally Lipschitz.

We define ωN,ε(t) = ωN,ε
S (t) + ωN,ε

I (t) + ωN,ε
F (t), with

ωN,ε
S (t) =

wwwSN,ε
(0)− Sε

(0)
www

∞
+

wwww∫ t

0
TS,ε(t − s)dM̃ N,ε

S (s)
wwww

∞
,

ωN,ε
I (t) =

www ĪN,ε(0)− Iε
(0)
www

∞
+

wwww∫ t

0
TI,ε(t − s)dM̃ N,ε

I (s)
wwww

∞
,

ωN,ε
F (t) =

wwwFN,ε
0 (t)− F

ε
0(t)

www
∞
+
wwwM N,ε

F (t)
www

∞
,

(13)

where

M N,ε
F (t, xε) =

1
N ∑

yε

∫ t

0

∫ ∞

0

∫
D

∫
D

λ(t − s)1
u≤SN,ε(s− ,yε)Γ

N,ε
(s− ,yε)

1Ys,yε (t)=xε
Qyε(ds, du, dλ, dY).

Note that M N,ε
F is not a martingale.

Lemma 8. As (N, ε) → (∞, 0), in such a way that Nεd → ∞,

sup
0≤t≤T

E
(
1t≤σN,ε∧τN,ε∧T [ωN,ε(t)]2

)
→ 0.

Proof. We shall use the following notation

∥∥Φε
∥∥
H

ε :=

[
∑
xε

∣∣Φε
xε

∣∣2]1/2

,

for any step function Φε (Φε
xε

denoting the value of Φε on the cell Vε(xε)).
Thanks to Theorem 2.1 in P. Kotelenez [32] (see Formula (A6) in Appendix A below),

we have

E
[

sup
t≤σN,ε∧τN,ε∧T

wwww∫ t

0
TS,ε(t − s)dM N,ε

SI (s)
wwww2

H
ε

]
≤ CE

[wwwM N,ε
SI (σN,ε ∧ τN,ε ∧ T)

www2

H
ε

]
≤ C

N ∑
xε

E
(∫ T

0
SN,ε

(s ∧ σN,ε ∧ τN,ε, xε)Γ
N,ε

(s ∧ σN,ε ∧ τN,ε, xε)ds
)

.

Provided t ≤ σN,ε ∧ τN,ε ∧ T, ΓN,ε
(t, xε) ≤ C(λ∗, β∗) and SN,ε

(t, xε) ≤ C. Then

E
[

sup
t≤σN,ε∧τN,ε∧T

wwww∫ t

0
TS,ε(t − s)dM N,ε

SI (s)
wwww2

H
ε

]
≤ C(λ∗, β∗)

1
Nεd .
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Since the L∞ norm is bounded by the H
ε

horm, as (N, ε) → (∞, 0), provided Nεd → 0,

E
[

sup
t≤σN,ε∧τN,ε∧T

wwww∫ t

0
TS,ε(t − s)dM N,ε

SI (s)
wwww2

∞

]
−→ 0. (14)

The same argument can be used for the term
wwww∫ t

0
TS,ε(t − s)dM N,ε

S (s)
wwww

∞
. We con-

clude that as (N, ε) −→ (∞, 0), in such a way that Nεd → 0,

sup
t≤σN,ε∧τN,ε∧T

ωN,ε
S (t) −→ 0 in L2(Ω) . (15)

A similar proof establishes that

sup
t≤σN,ε∧τN,ε∧T

ωN,ε
I (t) −→ 0 in L2(Ω) . (16)

We now consider ωN,ε
F (t). The convergence to zero of the first term has been established

in Lemma 5. We now consider the second term. We have

sup
t≤T

E
(
1t≤σN,ε∧τN,ε∧T sup

xε

∣∣∣M N,ε
F (t, xε)

∣∣∣2)

=
1

N2 sup
t≤T

E
[
1t≤σN,ε∧τN,ε∧T sup

xε

(
∑
yε

∫ t

0

∫ ∞

0

∫
D

∫
D

λ(t − s)1
u≤SN,ε(s− ,yε)Γ

N,ε
(s− ,yε)

× 1Ys,yε (t)=xε
Qyε(ds, du, dλ, dY)

)2]
≤ 1

N2 ∑
xε ,yε

E
∫ σN,ε∧τN,ε∧T

0
λ2(t − s)SN,ε(s, yε)Γ

N,ε
(s, yε)q

yε ,xε
ε (s, t)ds

≤ (λ∗)2

N ∑
xε

E
[∫ σN,ε∧τN,ε∧T

0
sup

yε

∣∣∣SN,ε
(s, yε)Γ

N,ε
(s, yε)

∣∣∣∑
yε

qyε ,xε
ε (s, t)ds

]

≤ C(λ∗)
T

Nεd . (17)

The result follows. Note that since M N,ε
F (t, xε) is not a martingale, the result for

ωN,ε
F (t) is weaker than (15) and (16).

Lemma 8 clearly implies

Lemma 9. As (N, ε) −→ (∞, 0) in such a way that Nεd → ∞, 1t≤σN,ε∧τN,ε∧T

∫ t

0
ωN,ε(s)ds −→

0 in probability.

It remains to establish the next result.

Lemma 10. As (N, ε) → (∞, 0), P
(
σN,ε < T

)
−→ 0 and P

(
τN,ε < T

)
−→ 0.

Proof. We have

P
(

σN,ε < T
)
≤ P

(
sup

t≤σN,ε∧T

wwww∫ t

0
TS,ε(t − s)dM N,ε

S (s)
wwww

∞
≥ δ/2

)

+ P
(

sup
t≤σN,ε∧T

wwww∫ t

0
TI,ε(t − s)dM̃ N,ε

I (s)
wwww

∞
≥ δ/2

)
.

(18)
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We consider the second term only. The first one is treated similarly. Sincewwww∫ t

0
TI,ε(t − s)dM̃ N,ε

I (s)
wwww

∞
≤
wwww∫ t

0
TI,ε(t − s)dM N,ε

SI (s)
wwww

∞
+

wwww∫ t

0
TI,ε(t − s)dM N,ε

I (s)
wwww

∞
,

from Proposition 3.2 of [4], we have

P
(

sup
t≤σN,ε∧T

wwww∫ t

0
TI,ε(t − s)dM N,ε

I (s)
wwww

∞
≥ δ

2

)
≤ 4ε−d−2 exp

(
−a

δ2

16
N
)

(19)

Thanks to the fact that Nεd −→ 0, the right hand side, and hence, also the left hand
side of (19), tends to 0. By Chebyshev’s inequality, we have

P
(

sup
t≤σN,ε∧T

wwww∫ t

0
TI,ε(t − s)dM N,ε

SI (s)
wwww
H

ε
≥ δ

2

)
≤ 4

δ2E
[

sup
t≤σN,ε∧T

wwww∫ t

0
TI,ε(t − s)dM N,ε

SI (s)
wwww2

H
ε

]
.

The right hand side tends to 0, as shown in the proof of Lemma 8. Since the L∞ norm
is bounded by the H

ε
norm, this finishes the proof that P

(
σN,ε < T

)
→ 0. A similar proof

establishes the same result for τN,ε.

We now extend our stochastic process to the whole space Td. So, we define

S N,ε
(t, x) := ∑

xε

Sε
(t, xε)1Vε(xε)(x), I N,ε

(t, x) := ∑
xε

Iε
(t, xε)1Vε(xε)(x)

B N,ε
(t, x) := ∑

xε

Bε
(t, xε)1Vε(xε)(x), F N,ε

(t, x) := ∑
xε

F
ε
(t, xε)1Vε(xε)(x)

and set X N,ε := (S N,ε , F N,ε , I N,ε
).

Let us recall the following Gronwall’s lemma.

Lemma 11. Let ϕ and ψ be two nonegative Borel measurable locally bounded functions on an
interval [0, T), with T < ∞ and C a non-negative constant. If for all t ∈ [0, T), the following
inequality is satisfied :

ϕ(t) ≤ C
∫ t

0
ϕ(s)ds + ψ(t), (20)

then ϕ(t) ≤ C
∫ t

0
eC(t−s)ψ(s)ds + ψ(t) for all t ≤ T.

Theorem 3. As (N, ε) → (∞, 0), in such a way that Nεd → ∞,wwwX N,ε
(t)− X ε

(t)
www

∞
−→ 0, in probability, ∀ t ≥ 0. (21)

Proof. Since
wwwX N,ε

(t)− X ε
(t)
www

∞
=
wwwX N,ε

(t)− X ε
(t)
www

∞
, it suffices to show thatwwwX N,ε

(t)− X ε
(t)
www

∞
−→ 0, in probability, for all t ≥ 0.

We first consider
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F
N,ε

(t, xε) =
1
N

IN,ε(0)

∑
j=1

λ−j(t)1Yj(t)=xε
+ ∑

yε

∫ t

0
λ(t − s)S N,ε

(s, yε)Γ
N,ε

(s, yε)q
yε ,xε
ε (s, t)ds +M N,ε

F (t, xε),

F
ε
(t, xε) = λ0(t)∑

yε

Iε
(0, yε)q

yε ,xε
ε (0, t) + ∑

yε

∫ t

0
λ(t − s)Sε

(s, yε)Γ
ε
(s, yε)q

yε ,xε
ε (s, t)ds.

Exploiting Lemma 7, we have the following: for all t ≤ σN,ε ∧ τN,ε

∥∥∥FN,ε
(t)− F

ε
(t)
∥∥∥

∞
≤ ωN,ε

F (t) + C
∫ t

0

(wwwSN,ε
(s)− Sε

(s)
www

∞
+
wwwFN,ε

(s)− F
ε
(s)
www

∞

+
wwwIN,ε

(s)− Iε
(s)
www

∞

)
ds. (22)

By writing SN,ε
(t, xε) − Sε

(t, xε) and IN,ε
(t, xε) − Iε

(t, xε) in their mild semigroup
form, and using estimates in Lemmas 1–3 and 7, we obtain, for t ≤ σN,ε ∧ τN,ε ∧ TwwwX N,ε

(t)− X ε
(t)
www

∞
≤ C

∫ t

0

wwwX N,ε
(s)− X ε

(s)
www

∞
ds + ωN,ε(t). (23)

Then, it follows from Gronwall’s Lemma 11 thatwwwX N,ε
(t)− X ε

(t)
www

∞
≤ C

∫ t

0
eC(t−s)ωN,ε(s)ds + ωN,ε(t)

≤ CeCt
∫ t

0
ωN,ε(s)ds + ωN,ε(t), ∀ t ≤ σN,ε ∧ τN,ε.

(24)

Consequently, using Lemmas 8–10, for any t > 0, as (N, ε) → (∞, 0), in such a way
that Nεd −→ ∞, wwwX N,ε

(t)− X ε
(t)
www

∞
−→ 0 in probability, ∀t ≥ 0.

Theorem 4. For all T > 0, as (N, ε) −→ (∞, 0) in such a way that Nεd → ∞, we have,

sup
0≤t≤T

(wwwS N,ε
(t)− S ε

(t)
www

∞
+
wwwI N,ε

(t)− I ε
(t)
www

∞

)
−→ 0 in probability.

Proof. In the proof of Theorem 3, we have established the following:wwwS N,ε
(t)− S ε

(t)
www

∞
≤ C

∫ t

0

wwwX N,ε
(s)− X ε

(s)
www

∞
ds + ωN,ε

S (t)wwwIN,ε
(t)− Iε

(t)
www

∞
≤ C

∫ t

0

wwwX N,ε
(s)− X ε

(s)
www

∞
ds + ωN,ε

I (t).
(25)

It follows that

sup
0≤t≤σN,ε∧τN,ε∧T

wwwSN,ε
(t)− Sε

(t)
www

∞
≤ sup

0≤t≤σN,ε∧τN,ε∧T
C
∫ t

0

wwwXN,ε
(s)− Xε

(s)
www

∞
ds

+ sup
0≤t≤σN,ε∧τN,ε∧T

ωN,ε
S (t).
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On the other hand, from (24), for all t ≤ σN,ε ∧ τN,ε,wwwX N,ε
(t)− X ε

(t)
www

∞
≤ CeCt

∫ t

0
ωN,ε(s)ds + ωN,ε(t). (26)

So,we deduce from Lemmas 8–10 and (15) that

sup
0≤t≤T

wwwSN,ε
(t)− Sε

(t)
www

∞
−→ 0 in probability as (N, ε) −→ (∞, 0),

and the same is true for IN,ε
(t)− Iε

(t). Thus, the claim follows.

We can now state our main result.

Theorem 5. For all T > 0, as (N, ε) −→ (∞, 0) in such a way that Nεd → ∞, we have,

∀ t ∈ [0, T],
∥∥∥FN,ε

(t)− F(t)
∥∥∥

∞
−→ 0, in probability,

and

sup
0≤t≤T

(wwwS N,ε
(t)− S(t)

www
∞
+
wwwI N,ε

(t)− I(t)
www

∞

)
−→ 0 in probability

as (N, ε) → (∞, 0) in such a way that Nεd → ∞.

Proof. By using the triangle inequality, the first statement follows from Theorems 2 and 3,
and the second statement from Theorems 2 and 4.

4. Conclusions

In this paper, we have considered the propagation of an epidemic in a population
that is distributed in various patches, the individuals being allowed to move between
the patches, and the infection being not necessarily local. Our main result is that, if the
population is large, as well as the number of patches, the number of individuals per patch
being large as well, then provided that the numbers of individuals in the various patches
are of the same order, a good approximation of the model is given by a PDE model in
continuous space, which is rather simple.

Note that we also assume that the patches constitute a regular grid in space. It is rather
clear that this assumption could be avoided, at the price of modifying the limiting PDE.
On the other hand, if the orders of magnitude of the population in the various patches
are not the same, then it is not clear how to extend our results. In fact, in such a situation,
it is not clear whether an approximate continuous space model can be used, and which
approximate model is the proper one.

The main novelty of our work is to allow movements of the individuals, non local
infection, and age-dependent infectivity. This last feature allows us to merge the I and R
compartments, a recovered individual being for us an infected individual whose infectivity
is null. However, there are two drawbacks of the present model. First, we do not follow
the evolution of the number of infectious individuals, since we have merged the I and
the R compartments. Second, while we distinguish the rate of movements of the S type
and the I type individuals, we cannot distinguish the rate between the infectious and the
recovered individuals. The reason for studying the SI model in the present paper is that, in
our “Varying Infectivity” model, the techniques for proving the convergence as ε → 0 of
the ODE model to the PDE model, which we are using in the SI case, will not be available
in the SIR case. One is forced to use different techniques. We will study the extension of
the present results to the SIR model in a future publication. But our conviction is that it
is worth presenting the results in the SI case, due to the possibility in this case of using
classical semigroup techniques.
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We also intend to compare in another future work numerical simulations of our
models, both the discrete and the continuous space models, with data of a real epidemic,
namely the recent Covid epidemic in various parts of the town of Marseille. This will be an
occasion to compare our limiting continuous space model with the discrete space model,
and to verify that our models do reflect the reality of an epidemic. It will be carried out in
cooperation with epidemiologists, who have collected spatial data of the Covid epidemic
in Marseille.
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Appendix A

Appendix A.1. The Duhamel Formula

In this paper, we use as an essential tool, the so-called Duhamel formula, which we
now present.

Denote by {X(t), t ≥ 0} an Rk-valued function of t, solution of the following differen-
tial equation:

dX
dt

(t) = AX(t) + f (t),

X(0) = x,
(A1)

where A is an arbitrary k × k matrix, f ∈ L1
loc(R+;Rk), and x ∈ Rk. Then the Duhamel

formula says that the unique solution X(t) of this ODE is given as

X(t) = etAx +
∫ t

0
e(t−s)A f (s)ds . (A2)

Indeed, it is easy to check that the function given by (A2) solves the ODE (A1); hence,
it is the unique solution of this ODE. When the forcing term f is given, the Duhamel
formula expresses the solution X(t) of the linear ODE (A1) in terms of the initial condition
x and f (t). However, if the equation is not linear, and f (t) = g(t, X(t)) depends upon the
solution, the Duhamel formula becomes

X(t) = etAx +
∫ t

0
e(t−s)Ag(s, X(s))ds (A3)

and is still valid. We use this Duhamel formula in Lemma 1, in which case, (A1) is the first
line of (2), k = |Dε|, the cardinal of the set Dε, and A = ∆S

ε . Note that ∆S
ε is the infinitesimal

generator of the jump Markov process X(t), and(
e(t−s)∆S

ε

)
xε ,yε

= pxε ,yε
ε (s, t) ≥ 0,

for all xε, yε ∈ Dε.
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We also have a Duhamel formula for a stochastic equation of the following type:

X(t) = X(0) +
∫ t

0
[AX(s) + g(s, X(s))]ds + M(t),

where M(t) is an Rk-valued martingale. Then

X(t) = etAx +
∫ t

0
e(t−s)Ag(s, X(s)ds +

∫ t

0
e(t−s)AdM(s) . (A4)

Another version of the Duhamel formula is implicitly used in the proof of Proposition 1
for the solution of the first line of the system of Equation (3), which is a parabolic PDE of
the form

∂u
∂t

(t) = [∆Su](t, x)− u(t, x)v(t, x), t > 0, x ∈ Td,

u(0, x) = u0(x), x ∈ Td .
(A5)

In this case, the Duhamel formula becomes

u(t, x) = [et∆S
u(0, ·)](x)−

∫ t

0
e(t−s)∆S

[u(s, ·)v(s, ·)](x)ds .

Here, et∆S
denotes the semigroup whose generator is ∆S. Again, the formula is

established by verifying if u satisfies the last formula, then it solves the parabolic PDE. The
Duhamel formula says that if u solves the parabolic PDE, then it satisfies the last formula.

Appendix A.2. Kotelenez’ Inequality

In Theorem 2.1 of his paper [32], P. Kotelenez has established a maximal inequality
of the following type. Let H be a Hilbert space, M(t) an H-valued martingale, and T(t) a
semigroup of continuous operators on H satisfying for some c ≥ 0,

∥T(t)u∥H ≤ ect∥u∥H , ∀u ∈ H, t ≥ 0 .

Then, for any T > 0, there exists a constant CT such that, for any stopping time τ
satisfying τ ≤ T a.s.,

E
(

sup
0≤t≤τ

∥∥∥∥∫ t

0
T(t − s)dM(s)

∥∥∥∥2
)

≤ CTE
(
∥M(τ)∥2

H

)
. (A6)

If we replace the semigroup T(t) by the identity operator, then this inequality is the
classical Doob’s second moment stopped inequality for martingales. Note, however, that∫ t

0 T(t − s)dM(s), in general, is not a martingale.
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