Spatial SIR epidemic model with varying infectivity in an
unbounded domain: Law of Large Numbers

ARMAND KANGA' AND ETIENNE PARDOUX?

ABSTRACT. We consider a spatial SIR epidemic model where the infectivity of infected individuals
depends upon their age of infection, and infections are non local. The domain is an unbounded
subset of R?, and the individuals do not move. We extend our earlier result in [9], where the domain
was bounded, and prove a law of large numbers as the size of the population tends to oco.

1. INTRODUCTION

Epidemic models using ordinary differential equations have been the subject of much research
in recent years. Anderson and Britton [2], Britton and Pardoux [4] have shown that these models
are limits, when the population size tends towards infinity, of a stochastic Markovian models.
In particular, the Markovian nature of these models implies that the duration of infection is
exponentially distributed, which is unrealistic for most epidemics.

As a result, models with non-exponential infection durations have attracted some interest, see in
particular [13] and [16]. Kermack and McKendrick [8] proposed that infectivity should vary with
the time since infection. The duration of infection is the time taken by this function to vanish out
definitively; its law is completely arbitrary. In [5], the authors have established the law of large
numbers for the SIR model with variable infectivity, where the infectivity varies from one individual
to another and depends upon the time elapsed since infection. They assume that the infectivity
function has a finite number of jumps, and satisfy an assumption of uniform continuity between
jumps. In [6], the same law of large numbers is established under a much weaker assumption:
infectivity functions have their trajectories in ® (R, R;.), and are bounded by a constant. However, in
the various models studied above, the authors ignore the fact that a population extends over a spatial
region. Yet, spatial heterogeneity, habitat connectivity and movement rates play an important role
in the evolution of infectious diseases. Both deterministic and stochastic models have been used
to understand the importance the geographic dispersion and of the movement of individuals in a
population on the spread of infectious diseases, on the persistence or extinction of an endemic disease,
for example [1], [7] and [10]. Some Markovian models in this framework have been studied in [3].
They studied a stochastic SIR compartmental epidemic model for a population which moves on a
torus (T? = R%/Z?) according to Stochastic Differential Equations driven by independent Brownian
motions. They define sequences of empirical measures that describe the evolution of the positions of
susceptible, infected and recovered individuals. They establish large-population approximations of
these sequences of measures. In [15], the authors consider a population distributed in the space R?
whose individuals are characterized by: a position and an infection state, interact and move in R,
An epidemic model combining spatial structure and variable infectivity would be more realistic.

In a previous work, we studied a no-movement model describing a population distributed within a
bounded domain D C R? [9] . In this framework, individuals remain fixed at their spatial locations
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and interact locally according to their epidemiological states (susceptible, infected, or recovered).
The assumption that D is bounded simplifies the mathematical analysis and facilitates the derivation
of convergence results toward a deterministic limit as the population size tends to infinity.
However, this boundedness assumption restricts the applicability of the model to spatially confined
configurations and fails to account for systems where the population is distributed over a large or
unbounded spatial domain.

In the present paper, we extend this framework to the case of an unbounded domain D C R?, while
maintaining the no-movement assumption. This extension raises several analytical and probabilistic
challenges. We therefore develop refined tools to establish convergence results in this unbounded
setting. We introduce sequences of empirical measures describing the spatial distribution and
temporal evolution of the susceptible, infected, and recovered individuals. We then prove a law of
large numbers for these measures, characterizing the deterministic limiting system that governs
the macroscopic evolution of the population as the number of individuals tends to infinity. This
result extends those obtained in the bounded setting and shows that the model remains well-posed
in unbounded spatial domains. The case where the individuals follow random movements will be
considered in another publication

1.1. Notations. We note

e For z € R%, u > 0, B(xz,u) denotes the ball of radius u centered at x;

e M : The set of finite measures on D which we equip with the weak convergence topology;
e O :=9(R,Ry): The space of cadlag functions defined on Ry with values in R;

e ©q : The space of cadlag functions defined on Ry with values in M.

e Vi € Cy(D), Y € M, u(p) = (11 p) = / (@) u(de);

e c and C denote positive constants that can change from line to line.

2. MODEL DESCRIPTION

The epidemic model studied here is the SIR model in a spatial framework with variable infectivity;
the letters S, I and R represent the different states of an individual (”susceptible”,”infected” and
"recovered” respectively). The SIR model states that a susceptible individual can become infected,
and finally recovered when he/she recovers from the disease and is immune to the disease for
ever. In our spatial model, an individual is characterized by its state £ € {S,I, R} and its
position X, a continuous variable with values in D which is a closed subset of R?. To simplify the
mathematical description, we identify the S, I and R states as 0, 1 and 2 respectively. The space
of individuals is therefore D x {0, 1,2}. We consider a population of fixed size N; and we assume
that at time t=0 the population is divided into three subsets: those susceptible , there are SV (0) of
them, those infected, there are I’V (0) of them, and those removered, there are R (0) of them i.e
SN(0)+IV(0)+ RN (0) = N. At each time, the individuals occup the positions X!, X2, X3 ... XV
i.e the positions do not change over time.

We denote by, Gy := {z =1,---,N; Eé = O} the set of initially susceptible individuals
(Card(&n) = SN (0)); Iy :={i=1,--- ,N; Ej = 1} the set of initially infected individuals
(Card(Iy) =IN(0)); and Ry == {i =1,--- ,N; E} = 2} the set of initially recovered individuals
(Card(Rn) = RN (0)); (&n,In, R ) forms a partition of the set {1,2,--,N}. Now let us consider
{A_j,j > 1} and {};,j > 1} two mutually independent sequences of i.i.d random elements of .
A—j(t) is the infectivity at time ¢ of the j — th initially infected individual and A;(¢) is the infectivity
at time ¢ after its infection of the j —th infected individual among the initially susceptible individuals.
We assume that there exists a deterministic constant A* > 0 such that 0 < X\;(t) < A* a.s, for all

Jj € Z* and t > 0, with the convention: Vj € Z*, A\;(t) = 0 if t < 0 and we shall use the notations

Xo(t) =E(A_1(t)) and A(t) = E(\((¢)). It is natural that an infected individual is more likely to
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infect a close neighbor than a more distant one. While these different transmission behaviors are
averaged in homogeneous SIR models, in our model we use an infection rate that depends on the
relative positions of the two parties. The infection rate between two positions will be given by the
symmetric function K defined on D x D with values in R;. A susceptible individual ¢ becomes
infected (in other words, his/her state changes from 0 to 1) at time t at rate

1 K(X% X7) K(X%, X7) ,
JEIN [Z K(X‘],Xj)] JESN [Z K(Xg,Xj)]
L (=1 /=1 |
where 7V (j) is the infection time of the initially susceptible individual j .

o If v =1, the rate becomes

K(X?, X) K(X?, X) ,
Z ~ Z N = TN0)
TEN N R X‘,Xﬂ) JEON N K (X!, XY)
=1 =1

The interactions are normalized by the sum of the intensities of all contributions received
by each individual. Thus, the total quantity affecting an individual ¢ corresponds to a local
average rate, depending only on its neighbors and their relative influences. In this case, the
rate is not directly influenced by the total population size.

e v =0 the rate becomes

% S TRXLXDA )+ Y KX, XNt -7V ()
JEIN JjEGN

The interactions are not normalized by the sum of contributions. Each individual directly
influences the others, and the total effect on an individual 7 is averaged over the entire
population through the factor 1/N. Thus, the resulting quantity represents a global average
rate, reflecting the collective influence of all individuals.

Note also that (2.1) can be rewritten as follows:

N 1=y N 1—y
Z K(X*¢ X7) o Z K(X* X7) o
K(X', X7 el K(X', XJ ,
DR R WU == Y (al®)
j€in S R(xX7) j€6N > K(X4XY)
=1 =1

This shows that v < 1 has the effect of increasing the rate of infections in densely populated
regions, this effect being more important with smaller . Finally, due to the fact that our domain
is unbounded, for technical reasons which will be transparent below, we will need to assume that
v < 1. Therefore, in all what follows, we will assume that v € [0, 1).



4 ARMAND KANGA AND ETIENNE PARDOUX

At time t > 0, we define the following measures:

S,N
Y-S L
€GN
= > xi— D lnpix:
€GN €SN
I.N
W = Z 1E§:15Xi + Z 1EZ',N:15X1'
€T N €SN
= Z dyi — Z ]-ijiﬁt(sX" + Z ]-thN(i)dXi — Z 1t27—N(i)+m5Xi
i€IN i€EIN €GN €GN
R,N
Wy = Z dxi + Z ].E;L:26Xi + Z 1EZ',N:2(SX7L (2.2)
IERN 1€TN 1€ES N
=) 0kt D Ly<ibxi+ Y Lvgy el
IERN 1€TN 1€ES N
SN , IN , IN
o=t Y At =) oyt Y i ) O
€GN 1€TN IERN
N
Z)\_Z (Odx: + Y Nilt — 7V (0)dxi-
€I N €GN

e n; :=sup{t >0, A\;j(t) > 0} is the random duration of the infectious period of individual j,
jezr
,uf N is the empirical measure of susceptible individuals at time t;

uf’N is the empirical measure of the total force of infection at time #;

[ ]

° uf s the empirical measure of infected individuals at time ¢ ;

° Mf’N is the empirical measure of individuals recovered at time ¢ ;

° ,uiv is the empirical measure of the total population, whihc is independent of ¢.

sN . L sn _n 1 N _rRN 1 RN,
We now renormalize our measures as follows: N’ut s = N’ut HNTH =N —
1 1

= N,u,N and ﬁf’ = NMfN We can now rewrite (2.1) as

K(Xy) _
- /D [ /D K(z, y)uN(dz)] i

The two sequences of random variables {n_;,j > 1} and {7;,j > 1} are i.i.d and globally independent
of each other. F(t) := P(m < t) and Fy(t) := P(n—1 < t) are the distribution functions of 7; for
j € Zy and for j € Z_, respectively. For ¢ € Gy, consider a counting process Afv (t), which takes
the value 0 when individual 7 is not yet infected at time t, and takes the value 1 when the latter has
been infected by time t. Thus, 7VV(i) := inf{t > 0, AN(¢ ) = 1}. We define AV as follows :

// LN ()= u<fN(57,Xi)Pi(ds’du)’ where
K(z,y
) = [ { ) rﬁ”(dy»

| KGwrt:)




{P’, i > 1} are standard Poisson random measures on R? which are mutually independent.
The next proposition follows readily from our model

Proposition 2.1. For all ¢ € Cy(D), {ut T T T T 0} satisfies

(. - 1 i
@Y, ) = (@™, e) — N e(XAN(t)

€GN

™,0) = 5 3 Aalt)p(XY) +% S Nalt — V(@) p(X)

1€TN 1€ESN
_IN
") = (" ) NZ Ly <t
i€EIN
1 7 N 1 7 ! N
TN Z e(X")A(t) — N Z (X)) [ Ly<i—sdA7 (s)
€SN €SN 0
X ) , o N (2.3)
o St 3 00 [ 1ynida¥ ()
N . N 0
1€IN 1€6 N
A0 = Y0+ T X et 3 w0 [ iAo
’LGJN €GN

_ _S N _I.N —R,N
(uiv,so)=(u’ L)+ (1 7()0)+(/~Lt )

DI CORED SPCORED SPee
zEGN ZGJN IERN

_SN _IN _R,N o
\ = (", 0) + (", 0) + () = (EY, )

3. LAW OF LARGE NUMBERS OF MEASURES

In this section, we first state our assumptions, and then describe the limits of the empirical
measures defined in section 2 when the population size tends to infinity. We will then study the
limit system, and finally prove the convergence result.

Assumption 3.1. In the following

o 5(0) := 29 5 5(0); TV (0) := 50 - T(0); and RY (0) := £12 — R(0);
e P(Ej=0)=5(0), PE,=1)= I(O), and P(E} =2) = R(0);
The pairs {(Eé,Xi) i i=1;--- ;N} are i.i.d;

XL if Ey=0,
Foralli=1;---;N, X = X} if Eb=1,

X]i% if Eb=2;
(Xg,z' =1;--- ;N) are 1.1.d with the density function wg, (X},z' =1;--- ;N) are i.1.d with
the density function 7 and (Xf%,z‘ =1;--- ;N) are i.5.d with the density function mr. Those
three collections of r.v are mutually independent

Lemma 3.1. Under assumption 3.1, the sequence (EN)Nzl converges a.s. in M to [t which verifies

fi(dx) = 5 (dz) + g (de) + g (dax),
= (S(0)ms(x) + T(0)m; () + RO0)mp(x)) do (3.1)
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Proof. Let ¢ € Cy(D) and T > 0. For all ¢t € [0;T7,
Ny 1 iy, L iy, L i
(1 ,90)—NZ<P(X)+NZ@(X)+N Z<P(X)

iEGN €T N IERN

Z Lgizo¥ (X5) + ZlEl—ﬁO X7) + ZlEl 29(XR)

=1 =1
By applying the law of large numbers to each term on the right-hand side, we obtain that (z",) N>1
converges a.s. in M to I, such that

(7. 0) = 5(0) /D ()i (x)d + T(0) /D Pl (@)dn + TO) [ pw)mrla)d,

D
— /D ()i (dx) + /D (@) (d) + /D (@)l (da)
We deduce that,
A(de) = B (dz) + i (de) + Fl(dz).
— (5(0)ms(x) + T(O)m1(x) + B(O)mp(x)) da

71 is a probability measure, with density fi(x) = S(

& 0)ms(z) + 1(0)mr(z) + R(0)mg(x),Va € D.
We define S(0, z)a(z) := S(0)ws(z); I1(0,z)u(x) :=1(0

Yrr(x), and R(0, z)f(x) := R(0)wg(z) O

Lety € RY [, € RN\{0}, ||| = 1 and a € [0, 7). We define C(y, 1, @) := {:c cRY: % > cos } ,

the cone with vertex y, axis parallel to the vector [, and (half-)opening angle a.

Assumption 3.2. We assume that :
e dr,c, R,C > 0 such that
i) Ve,ye D, K(z,y)<C
i) [z -yl <r = K(z,y) >
iii) |l —y| > R = K(z,y) =0,
e 3co, Co,8,a > 0, coellel” < i(x) < Cpeallel’;
e Jdo,r > 0,Yy € D 3, ||ly|| =1 such that C(y,ly,«) N B(y,r) C D

We shall denote m := / dz.
C(nyva)mB(y?T)
We will assume that there exists a sequence {M,,, n > 1} of positive numbers such that M; > R

and M,, — oo, and for all n > 1, D,, := D N B(0, M,,) satisfies the last property of Assumption 3.2.
We shall need the following inequality.

Lemma 3.2. Let §,z,y > 0,
e If0<d<1: (x4y) <ad+4°
o Ifo>1: for any e >0, 3Cc5 s.t. (x +9)0 < (1+e)a + C’W;y‘s.

Proof. For 0 < 6 <1, x — f(z) = 20 is concave on R, hence the first part of the result.
If 6 = 2, we have, for any 6 > 0,

1
(x+y)2=m2+2\/§x%+y2§(1+0)x2+ <1+9> y2.

Iterating this result yields for any k € N

k
1 28 -1
(r+9)* < (1+0)* 12 + (1 + 9> v



k
, 1\ 2
<(1+6)22% + (1 + 9) y?'

Finally for any § > 1, there exists k € N such that 2871 < § < 2¥. Raising the last inequality to the
power §27% <1 and exploiting the first part of the result yields

1 é
(z+y) < (1+0)° + <1 + 6) v,

from which the second part of the result follows by choosing 6 = (1 + 6)1/5 -1 O

We now state the main result of our paper.

Theorem 3.1. Under assumptions 3.1 and 3.2, the sequence (ﬁS’N,E&N,ﬁI’N,ﬁR’N)Nzl converges

in probability in D aq to (7°, 7S, 7!, @) such that {Ef,ﬁf,ﬁt[,ﬁf, t> 0} satisfies, for all ¢ € Cy(D):

((ﬁt» (5, / / T(s,z)fs (dx)ds,

. 0) = (O o j/ Xt —s) J/ ()T (s, 2 () ds
o) = @ DF 0+ [ F =) [ e omS s 652)
u&wﬂﬁm+%w%w+/nw@/mmwm&ww

0 D

(2,9)
=), Umy dz]my)'

We will first establish the next result

Proposition 3.1. The system (3.2) admits at most one solution (ﬂf,ﬁf,ﬁ{,ﬁﬁ, t> 0) which is ab-

solutely continuous with respect to the measure i, with the densities (S(t,.),§(t,.),I(t,.), R(t,.),t > 0)
satisfying for all x € D

S(t,x) =S5(0,x) //A:py (s,y)S(s,z)dyds

(

§(tx) = ()10, ) + / ww/Axymuw@mww

0

I(t,x) = 1(0,x)F5(t) +/0 Fe(t —s) /D Az, y)(s,y)S (s, x)ds (3.3)

R(t,x) = R(0,x) + I(0,z)Fy(t) + /0 F(t—s) /D Az, y)§(s,y)S (s, x)dxdyds
(@, y)u(y)

W= 7
[ KCtaz)]

Admitting for a moment the first part of Proposition 3.1, we first establish the following a priori
estimates.

Lemma 3.3. For any ¢ € L®(RY),

(LMWW@@LSQMQ
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Proof. Let ¢ € L™(R?).

‘/DA(',y)SD(y)dyHoo B :g/p [/D iz,’z))z((j))dzrw(y)dy,

leYe; —allyll®

sup

: WmGD/D [/

Ljjo—yl<re

—7 ¢l
1—yj<re” 1 dZ]

)
c 11, e pe-al]
< e [ S dylolle,

6_0‘706716 zeD 7 5
dz| e—av(1+o)lyll
C(y,ly,2)NB(y,r)

_ _ é
chup/ Lo yepe— 010D gy o)
z€R4 JR?

where we have used Lemma 3.2, in the last inequality. Since v < 1, we can choose € > 0 such that
v(1+¢€) <1, and we obtain

H/ A(.,y)dyH SCSUP/ Ljjg—y|<rdYl®llco
D Rd

zCcRd
< Cllelloo-

Let © be defined on D x D, by Q(z,y) : K(z, y)n(x)

[/sz dz]

/D Oz, Yo(z)da

Lemma 3.4. For any ¢ € L=(RY),

< O]l oo

o0

Proof. Let ¢ € L™(R).

o y)7z)

s yeD/ [/szy dzrﬂx)dm’

p— e
|

Y
veD / 2| ool
C(y,ly,a)NB(y,r)

—al|z||® 1+e€) g
< Csup/ 10y pere P eI g o
o) yERd ]Rd

- efa'yCJ

‘/ Qz, )p(z)d
D
Morover, |y||® < (1 + €)||z||° + C¢|lz — y||°. Then

‘ /D Oz, )o(x)dz

where we have choosen ¢ > 0 such that y(1 + ¢)? < 1. The results follows. O

< C sup / 1,y < geCele—vl ema(1=90+ ) I8l g o] o,
oo yER JRE

5
< CetCeR sup /Rd Lja—y)<rd[| ] o,
ye



9

Lemma 3.5. Let T > 0, and let (S,§) be a solution of the first two equations of (3.3). Then there
exists a positive constant C such that:

oVt e [0;T], |1S(t)|leo < C
o Vt € [0;TT; [5(t)]lc < C.

Proof. Let t € [0;T] and Vx € D.
S(t,x) < 5(0,2)

[15(#)lloo < 15(0)[loo
<C.

_70 i ti — S S. T X S S
§(tx) = ()10, ) + /0 Xt - )S(s,z) /D Az, 9)3 (s, y)dyd

5001 < WO+ 27 [ 1Sl H / A<.7y>s<s,y>dyH ds

/A sydyH ds

Combining with the result of Lemma 3.3, we obtain

< A0 |]OO+A*C/

IF(®)llco < A*[T(0)[|oo + A*C’/O 15 (8)lloodss

Applying Gronwall’s inequality, we deduce that
IB(t)lloo < C, C = A |1(0)|oce T, t<T

O

Proof. of Proposition 3.1. Step 1: We first show that for all ¢ > 0 any solution of (3.2),
(ﬁts , ﬁf, 1l ,ﬁﬁ) is absolutely continuous with respect to the measure i, and the densities
(S(t,.),S(t,.), I(t, .),R(t, ) verify (3.3). From the first equation of (3.2), iy < f5. Since 7y is
absolutely continuous, ﬁt has the same property, and we denote its density by 7°(t, z). By setting
w2 (t,z) = S(t,z)f(x), thus S(,) is the density of 7y with respect to the measure 7.

t

From the third equation of (3.2), il < b + / [(s,.)ii3ds, thus 7! is absolutely continuous , since
0

No is absolutely continuous, as well as 775 for all s. A similar argument applies to ut and fif*. The
system of equation (3.3) now follows readily from (3.2).

Step 2: We will verify that equation (3.3) has at most one solution, which implies that (3.2)
has at most one solution. For that sake, it suffices to show that the system made of the first two
equations of (3.3) has most one solution. The first two equations of the system (3.3) constitute the
following system

(S( S(0,z) //A:cy (s,9)S(s,z)dyds,
S(t,x) = )\() (0,2) + /0 (t—s) /Aa:y%(s y)S(s,z)dyds, (3.4)
, y)i(y)
[/sz dz}
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Let (fi(t,.),q1(t,.)) and (f2(¢,.), g2(t,.)) be two solutions of the above system with the same initial

condition.
On the one hand

ﬁw@—ﬁww=A(ﬁ@@—ﬁ@w»AAwwm@w@w
+Aﬁ@@ﬁ}@wm@m—m@mww

Using the result of Lemma 3.3, we obtain

1f1(E,.) = fa(t, oo < C/O [f2(s,-) = fi(s, )lloollg2(s, )l cods

+Cl\m@J—ﬂN&MwWH&NM%

This combined with Lemma 3.5, implies that

Hfl(tv ) - f2(t7 )HOO < C/O (Hf2(87 ) - f1(87 )”OO + HQQ(S, ) - 91(37 )HOO) ds

Moreover,
mmm—@mw=AA@—Mﬁww—ﬁ@m»AAmwm@w@w
+AAmewméf@w@@w—m@www
wwm%ymwﬂscénﬁw»—ﬁwwu“AA@wm@w@Hds
e / t
0

Using the results of Lemma 3.3 and 3.5, we obtain

LA@@@@@—@@mmﬂ ds

[e.e]

Hgl(tv ) - 92(t7 )HOO < C/O (Hf1(37 ) - f2(37 )HOO + ||91(37 ) - 92(37 )HOO) ds

From (3.5) and (3.6), we infer that

(3.5)

(3.6)

lg1(2,) = g2(t; oo + 1 £1(E: ) = fo(t, )llo < C/O (lgr(s, ) = g2(s; Moo + 1 f1(55-) = fals, o) ds

Using Gronwall’s inequality, we conclude that

||gl(t7 ) - 92(t7 )HOO + ||f1(t7 ) - f2(ta )Hoo = 0.
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M,, and D,, being defined as below Assumption 3.2, we study the dynamics of the disease in this
domain . A susceptible individual i located in D,,, becomes infected at time ¢ at rate

=N i 1 K(XZ7X])
- ,
= [NZK(XK’XJNHXZSM”]
1 - K(X, X7) (3.7)
T N Z | : 7 At — Trjzv(j))lanHSMn-
<< ,
o [NZK(XE’XJ)lllXZSMn]
/=1

where 7Y (5) is the infection time of the initially susceptible individual j . Like in section 2, at time
t > 0 we define the following measures:

1
SN
Hnt = N > Oxilyxij<a, — 3 Z AN ()i i<,
iGGN ZEGN
1
—I,N
oy = Z Oxi Ly xi|<n, — N Z 1y <t0xilyxi|<n,
iEjN 1€TN
Z A (0)dx Ly xij<nr, — Z/ m<t—sAAY; (8)0xi 1 xi| <,
’LEGN 1EGN
RN _
i Z Oxilyxij<m, + 3 =3 L, (3.8)
16%]\] 1€IN
+— > / m<t—sdAN ()8 x: 1 xij <,
’LEGN
_ 1 1
Fins = N > Sxilxijear, + 5 D Sxilpxien, T D Sxiljxij<ar,
€GN 1€TIN 1ERN
_5,N
g = Z A-i(0)dxi ) xi<nr, + Z / (t = 8)dAY;(5)0xi 1 xi )<, »
\ zEJN ZGGN

with 7V (i) := inf{t > 0, Afxi(t) = 1}, where

// 1AN (s-)=01 u<T (s ’Xi)Qi(ds,du), where

an )= [ i Kfj’;)y) (dz)]wﬁiv ()

{Q", i > 1} are standard Poisson random measures on R% which are mutually independent and do

not depend upon n. D, is a bounded set, thus from the above work (see Theorem 3.1 of [9]), we

deduce that (,ui N,HEN,ﬁﬁN, ,uf ) converges, as N — oo in probability to (ﬁ;? ,ﬁ%,ﬁﬁ,ﬁff) such
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that for all ¢ € Cyp(D), t > 0,

(ﬁi,tvw) :U’n OWO / / 8 x :U’n s(dx)d
10 0) = X)L g0 ) + /0 Xt - s) /D ()T (5, )75, (d)ds,

(i) = (kg OFS0)+ [ 70 =9) [ oo, (d)as. 59)

(10 0) = (TR0, 0) + (k0 ) Fo(t) + /O F(t - s) /D ()T (s, )5 (d)ds,

2) = K(z,y) (dy).
=), | K(z,y>u<dz>]ﬁ"’ v

A proof similar to that of Proposition 3.1 shows that, the system (3.9) admits at most one solution

\

{ﬁit,ﬁgt,ﬁﬁ & ﬁft, t> 0} which is absolutely continuous with respect to the measure 7, with the
densities {Sy(t,.), Fn(t,.), In(t,.), Ru(t,.),t > 0} satisfying for all z € D

Sp(t,x (0, ) // n (2, 9)Fn(t,y)Sn(s, x)dyds
Fult,2) = X (1,(0,7) + /0 Nt =9) [ Aulw)Fals,)S0(s, )y

In(ta x) = In(O,:L')Fg@) +/0 Fc<t - 3) /DAn(wvy)gn(37y>5n<3’x)dyds

Ry (t,x) = R (0,2) + 1,,(0, 2) Fy(t) (3.10)

+ / F(t—s) | A2, 9)3n(s,y)Sn(s, z)dadyds
0 D
K(z,y)a(y)

o / K(ei(da)|

We shall use below the following construction. Consider the partition of R made of translates
of the hypercube (0, %]d, where the value of a will be specified in the proof of the next Lemma.
Let (201,22, ...) denote the subset of the elements of that partition which are contained in D. We
assume that the numbering is chosen in such a way that the sequence of the distances from the
center of 2y to 0 is a non decreasing function of k.

We next define the mapping ¢ : [M; V a, +00) — N which to each u > M V a associates

q(u) = inf{k > 1, Apr1 N B(0,u) # 0} .

In other words, (41,...,%,)) is the list of all elements of our partition which are included in
DN B(0,u).

Lemma 3.6. For alln > 1, y € D,, there exists a,r > 0 and 1 < k < ¢q(M,) such that
Q[k - C(y7 ly7 Oé) N B(y7 T)'

Proof. Let n > 1and y € D,,. According to the hypothesis, 3o, 7 > 0 such that C(y, l,,, «)NB(y,r) C
D,,. Let now u(y) :=y + Trsin(ayly and a = 1:8;?11(?02) Then, B(u(y),a) C C(y,ly,a) N B(y,r). In
fact, Vz € B(u(y),a) we have
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o lly =2l < lly = @) + ) — 2] < by + T =1 = 2 € B(y,7) -
e The minimum distance from u(y) to the boundary of the cone C(y, 1, o) is

lu(y) =yl sin(a) = £23205 > |z — u(y)| = = € C(y, 1y, a).

Let (eq,--- ,eq) denote the orthonormal basis of R¢ which has been implicitly used in the definition

of the sequence (i, & > 1). The hypercube H := { Ztlel, ti] < \f} is contained in

=1
B(u(y),a). It is plain that there exists 1 < k < ¢(M,,) such that 2, C H: we can choose the unique

k s.t. Ay contains u(y). O
The same argument as that used in the proof of Lemma 3.5 yields the following result

Lemma 3.7. Let T > 0, and let (Sy,8n,n € N) be a solution of the first two equations of (3.10).
Then there exists a positive constant C' such that: ¥Yn € N*,

o Vt € [0;T], ||Sn(t)]|eo < C

o Vi€ [0;T]; [[Fn(t)]loo < C.

We now prove that the deterministic model in D is well approximate by the deterministic model
n D,
Theorem 3.2. (117, fiS, fil,, i) converges in D%, to (7°, 1%, !, i®), as n — oco.
Proof. To prove this result, we prove that {(S,(¢,.), §n((¢,.), In((¢,.), Rn((t,.)) ,t > 0} converges in
LY(7) locally uniformly in t to {(S(¢,.),&(t,.), I(t,.), R(t,.)),t > 0}, as n — co. We will prove that,
locally uniformly in t , (S,(t,.), §n(t,.)) converges in L' () to (S(t,.),F(t,.)) as n — oo. The rest

of the result then follows easily.
Let T > 0. For all ¢ € [0;T], we have, exploiting Lemma 3.3, 3.4 and 3.5

|S(t,x) — Sp(t, x)\<]5’0x — Sn(0, )|

(z,y)n(s,y)Sm, (s, 2)dyds — A(z,y)§(s,y)S(s, x)) dyds|,

ds
Li(m)

t
sw@—&wmw+A

(5(5) — 50s)) /D A 1)F(s, )y

ds
L(m)

/ Al — Fuls,y))dy

ds,
L'(m)

5) / Sn(5.9) (A y) — An(9)) dy

I5() = Su(D)ll1 sy < 150) = a0V / I(56) = Su D | [ A o)y s
T
+ [ sl H [ AT
< 118(0) = $u(0lsgy +€ [ 1865) = SulsDls o 1506
# [ 15l 156) = a1 \ /D O, )i ds
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/ 190.(8) oo 15 () H/ ))1y||§Mndy’Llw) ds,
< 1S(0) = Su (O]l 1
e / 1(5(5) = S g1 gy + 18(5) — Fal5) 1)) s
+CT /D(A(.,y) —An(,9)) 1||y§MndyHLl(#), (3.11)

5t @) — Fnlt, )| < A |1(0,2) — I,(0, )]

+ A" / / (,y)Tn(s,y)Sn(s, x)dyds — Az, y)§(s,y)S(s,z)) dyds| .
Using the reasoning leading to (3.11), we deduce that
18(8) = Fn (Ol 1y < A" I1(0) = Iar,, (0 )HLl(ﬁ)

+0 [ (156) = Su(6) s+ 1506) — 56l 5
+ 07| [ ) = ) Ly, (3.12)
D L\ (@)
From (3.11) and (3.12), we have
1S() = Sl 1) + 150 = Fa (Ol 11y < X IO) = Tn(0) L 1y + 150) = SulO)111 3y
e / 15(5) = Su(s) 111y + I15(5) = Fal5)ll gy s
(3.13)

+c‘
D)

/D (ACy) = Aa(y)) 1||y<MndyH

Applying Gronwall’s inequality to (3.13), since [[1(0) — 1,(0)[| ;1) — 0, as well as
1S(0) = Sn(0)[ 1z —— 0, it remains to show that
n—oo

D L'(®)
. We have,
T e e T / / (A2, ) — M@, ) Ly <y, dy| @),
LY(z) D |JD

II,, < / / (z,y)dydz, where Gp(z,y) = A2, y) — A, y)| Ljy)<,y, B()-

Morever, by using inequality |¢(a) — ¢(b)| < |a — b| sup |¢'(2)| with ¢(c) = L, with

c€la;b]

a= / K(2,9)1)21<m,f(dz) and b = / K(z,y)i(dz) , we obtain:
D a D

/ K(z,9) 12>, 72(d2)
D 1
71 Yl <My

Gl y) < VK 2,0 )F()
[/p K (2, 9)1)z)<m, Al d2)
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)
—allz
L—yi<nl s>, e 71 dz

203 —allyll? g—ale® D
< C*Cye e Lic—yI<r A Ll
1 —al|lz
(cco)* [ / Ljemyi<rLs<an, eI dz
D
1y,._
< Cet(YME—(Mp—B)*) —al]|® lz—yli<E

'Y+1 )
C(y,ly,a)NB(y,r)

M‘s* My,—R é _ 5
< Ce (MO B) ey

Now / / e*a||x||5lum,y||<3dmdy < 00, and Lemma 3.2 combined with M, = M,, — R + R yields
R JR4

that yM? — (M, —R)? < (y— (1+ ))M +C.sR°. Choosing ¢ > 0 small enough such that y(1+¢) < 1,
we conclude that II,, — 0, as n — oo. O

The next step in the proof of Theorem 3.1 will be to establish the convergence result along a
subsequence Nj. For that sake, we will choose such a subsequence so that

S,N, &N —I,N, R,N, _ SN, —3§,N. —I,N, —R,N,
(untk7untkﬁﬂntk7“nt k) (lu’t knut knut kv/'Lt k)

locally uniformly in ¢ and uniformly in k. Lemma 3.10 below will be the essential step in our
argument Two other Lemmas and one Corollary will serve as a preparation. Define

Z // mln F s (0,X4);T (le))<u<max( (v,X%);T (U7XZ)>1HXL”§M7LPZ(dU7du)’
166

Z / / =0 = L )=0| Lyt e iccns, P (Ao, du)

266

Lemma 3.8. Let T > 0. For any n > 1, as N — co, sup Z2(t) and sup Y,N(t) converge in

te[0;T] te[0;T]
probability to 0.
Proof. We have
inf (A = inf / el gy > ¢ inf emallul’,
1<<q(Mp) 1<k<q(Mn) Jou, 1<€<q(Mn);u€e
> cem Mn = a(n).
inf  7(RAy) = inf / e=allul’ gy > ¢ inf eallull®
1<t<q(Mn+R) 1<0<q(Mn+R) Jou, 1<0<q(Mn+R);ucA,

> cemWBEMR) —: p(p).

}, and OV ;:{ inf MN(mg)Zb(n)}.

Let us consider:

QY = e VL) > A
0 {13@3(%)“ (o) =

1<¢<q(Mn+R) 2
T e e " 7N m 1 7N 1 m
Vee L sa(Ma)}, Y (RAe) ——— () = lgkISI;EMn)M (o) T 1<£;ng”)#(%),
* e e e * 7N m 3 m
veE L 5q(Ma + R)}, 1 (Ue) ——— () = 1§g§§?ﬂf4n+3)“ (Ae) ——— 1<£<;?Af4 +R)u(9le)-

Consequently, P [(Qév)c} m 0 and P [(Q{V)C} — 0.

N—oo
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On the one hand,

2
E <Sup Z,T(t))) Al gP[(QéVmQ{V)C}

te[0;7T

+4E N2 Z / 1QNQQN T

(S,XZ) - (SaXZ)‘ 1\\X¢||§Mnd8 )

1ES N
<P ()] +r[(@)]
4 T =N i =N i
tae 2 | B[ (LT X0 + LapoapT (5. X)) 1y, ] ds.
€SN
1 K(X, X7
T (s, X%) = N ( , : 7 A= ($)L)x3)<01, L x| <
o [ / K(z,XJ)uN(dz)]
D'IL
1 K(X' XJ 4
5 T ,( ) A (5 = 7 ()15 <a, LX<,
j€6N /K(Z,XJ)1||z<MnuN(d2)}
LS D
C Lyxi—xi|<r
<SSO T 7 Ljix5 <M,
J€IN / ﬁN(dz)
i C(X3,lyj,0)NB(X7,r)
C 1 xi_xi|<Rr
5 Dl ” =2 7 LX< Mo
jesn / i (dz)
C(XI,lyj,0)NB(X7,r)
T, (s,X%) < ¢ . 5
inf N2
)
N, 1 K(X, X
T (s X xig<an, = 37 D A=<,
J€IN [/ K(z, X))@ dz)}
1 K(X, X7 )
+ N Z ) )\j(s - TN(]))]-HXZ'HSMM
JEGN / K(z, X] dz):|
C L) x5) <R+ M,
<Y T L xi| <M
= | i (d2)
|/ B(X3 1 ,0)NB(X7,r)
C L)X || <R+ My
~ > LX<
=y i (d2)
B(X7,lyj,0)NB(X7,r)
N : C

T (s, X1 xi<m, <

[ inf MN(%)} '

1<6<q(Mn+R)



17

E Klﬂévf“ﬂffg(&)(i) + 1Qg)VmQ{VfN(S>Xi)) 1||XiHSMn] <C (a2n)>_7 +C (b(;)) -
= C(n).
2
2| (s 20) na) <=l oo o]+ 5 o

On the other hand,

2

4 T =N ;

E | sup V,Y(&) | ALl < e > / E [195 )1AN.(5*):0 - 1AN(57):0‘ Ly (s, X)L xi<ar, ds
te[0;T) icGy Y0 ot ¢

+P ()]
<P [(Qé\[)c} n C x (a(n)) T

0.
N N—oo

We conclude that sup Y, ¥(t) and sup ZY(t) converge in probability to 0. O
te[0;T] te[0;T]

Corollary 3.1. Given T > 0, for any subsequence of the sequence {N =1,2,...}, we can extract a
further subsequence {Ny,, k > 1} such that for any n > 1, (Y, Ve (t), ZNx(t)) — (0,0) as k — oo a.s.,
uniformly for t € [0,T].

Proof. Thanks to Lemma 3.8, we first extract a subsequence {Ny j, k& > 1} such that, as k — oo,

(YlNl’k(t),Zivl’k(t)) — (0,0) a.s., uniformly for t € [0,7]. We next extract from {N;, k> 1} a
second subsequence {N3 ;,, k > 1} such that, as k — oo, (YQN“ (1), ZéVQ’k(t)) — (0,0) a.s., uniformly

for t € [0,T]. We do that successively for n = 3,4, ..., so that along the subsequence {N,, 1, k> 1}
(extracted from the subsequence {N,_1 %, k > 1}), as k — o0, (nyv"‘k(t),ny"’k(t)) — (0,0) a.s.,
uniformly for ¢ € [0, 7.

Finally we define the diagonal sequence {Nj := Ny, k > 1}, along which it is clear that for any
n > 1, (YNe(t), ZNe(t)) — (0,0) as k — oo a.s., uniformly for ¢ € [0,T]. Indeed, for k > n, the
sequence Ny, is a subsequence of Ny, j. O

We consider the quantity

1 - 7 sN

— inf @V Qlk) 1)x, <M, :/ ( inf g mk> o (de) .

N iezGIN <k<q(llX¢II+R) () IXill <M, B(0,M,) \k<a(|z|+R) (k) 0" (dz)
We have the following result.

Lemma 3.9. As N — oo,

K -
/B<0,Mn> <k<q<x||+R>“ )] T2 oy \esallaem W) 0L

gl
Moreowver, sup/ ( inf (A > [LS dzx) < o0.
n JB0,M,) \k<a(lzl+R) (L) o ()
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Proof. We have

—y )
inf (A i (da —/ ( inf a1 ) _SN da
/B(O,Mn) (kSq(lle%)u( k)) Fo (d2) B(0,Mp) kgq(lelJrE)M () (dz)
-
inf (A 25 (de) — 3N (du
/Bm,Mn) (kngnm)“ ( ’“)> |75 (o) — g™ ( )H

-y -
inf (2 — inf i (A >
/B(O,Mn) [(kgqamm)“( '“)) (kSQ(IIIIHR)M ()

Since as N — oo, ﬁgN( ) = g (-) and x (infy<g(z)+R) i(2Ax)) " is bounded on B(0, M,) and

ﬁg () a.e. continuous, the first term on the right tends to 0 as N — oco. The convergence to 0 of the
second term follows from the facts that

-y -y
inf (A — inf N (A )
<k<q<||x+R>“ ( k)> <k<q<||x||+R)“ ()

as N — oo (this is a consequence of the fact that (BN (2Ay), . .. ,ﬂN(Q[q(Mn))) = (B(21), -+ 1(™Ag(ar,)))

a.s. as N — o), while the total mass of Mo N(.) is less than or equal to 1 a.s. for all N.
We finally prove the second part of the statement.

-
inf (A < CC—’Yea’Y(HIH-i-E)‘S’
<k<q<|x||+R>” ( k)> =

a5 (¢, dw) < 5(0,2)fi(z)dz < Ce= 1ol gy .

<

+ ,ug’N (dz)

sup — 0,

]| <My,

while

Consequently

- 5 5
sup inf (A ) i (dr) < C e (l2l+R)° j—allz]|® 7,.
n /B(O My) <k<q(|xll+R)'u( ) fi (dz) Rd

It remains to show that the right hand side is finite, which follows from the fact that v < 1. Indeed,
the integrand is locally bounded, and choosing any 7" € (v, 1), on the complement of the ball centered

at 0 with radius R ((7’/y)1/5 - 1)_1, the integrand is upper bounded by exp(—a(1 —+/)||z||®), which
clearly is integrable on R O

We can now establish our main technical result.

Lemma 3.10. For any T >0, as n — oo,

1
E limsup F Z sup ‘AT]XI; (t) - Aivk (t) ]'IIXi”SMn — 0.
k k €GN te€[0;T

Proof. We fix T > 0 arbitrary. For any ¢ € [0;T],
N, N, i
Apfi(s) — A7 / / (1 N () =0 Lu< Tk (o, x1) ~ L ANk (v)olugr’vk(v,xi)> P'(dv, du)
- / / 1 Nk —)=0 1u§f7]:rk(v,Xi) - 1u§ka(v,Xi)) P’L(dv’du)

/ / (1 8 1Aiv’€<v>=0> 1, <rh g, x F (A0, du)
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t max (sz) k( Xl) .
sup ‘A Aka(s)‘ _/ / (T ' >Pz(dv,du)
s€[05t] mln(F k (v, X7%); i (U,Xi)>

/ / ’A A;N’“(v)‘ 1u§fgk(v’xi)Pi(dv,du)

1
E |:limsup (JVk Z sup ‘ANI@( ) — Azj-vk(s)‘ 1X1<Mn)] < \pf’k(n,t) +\IJéVk(n,t) +\11§Vk(n,t) +\11fle(n, t);
€GN

k 86[0 t]
(3.14)
where
N, ! iy 7k i
Ui*(n,t) :/ E hmsu r, (S,X )—I""(s, X )‘IHXZ-HSM?] ds,
0 16 Ny,
¢
\Ifév’“(n,t) = / E hmsu sup Aiv’; (v) — AZ]-V’C (U)’fﬁ/k (0, X) 1 xi<nr, | | 9,
0 1€6N ve|0;s]
N, _ _ i
\Ij3 k(n’t) =E |lim Sup Z // mln r, (v X); (v,XQ)ﬁuﬁmax(fgk (v,Xi);ka(v,Xi)>1||Xl||§MnP (d’l), du)
N .
U, 5 (n,t) =E hmsup Z / / 1 N,C - 1A].V’“(v*):0 1u<ka(U Xi)]‘”Xi”SMnPZ(dU?du)
ZGG i - 7
According to Corollary 3.1, for any n > 1,
Uk (n,t) = Wi (n,t) = 0. (3.15)

Let Eﬁk(s, X4 = (5, X%) — ka(s,Xi)

On the one hand,

and T3 (s, X7) 1= | AN (s) — AN ()| T (s, X7).

B (s, ) < > KOO XN (6 oo, KX XA(5)
€N

[/ K(z, X9 Nk(dz)r VD1?((,z,Xj)uN’“(clzr)]7

K (X% XI5 =t D) xagem, K (X7, X9)(s — 7V (5)

e, { | KG X Nfe(dz)]7 [ /D lr((z,)ﬂ)uN’“(dz)]7

K(X' X7) /D K(z, Xj)1||ZH>MnﬁN’“(dz)

S| Lyxij<m,
" i, [ K(z, X))@ N’C(dz)}
Dy,
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. K(X', X7) /D K (2, X)) 150, BV (d2)

P Lyxi|<m,
JEGN, [ K(z, X)u N’“(dz)}
D7L

A" K(X', X9)
>

= [/ K (2, X9)7 (d2)

» K (X1, X9)
Z _

N JEG N, /DK(Z,Xj),lLNk(dZ)

]vluxwm

]vlllXj>Mn

K(X*, X)L x5<m,

icom, | / K(z X9 Nk(dz)}

n

2| ANs(s) — Al (s)

/ K (z,9) 1250, (d2)

< A*/DK(X ' Y) =Ly <anE (dy)

[ b K(z,yme(dz)r

N (dy)

/ [/ . )]vllyII>Mn“

K(X', X1 x5 <M,

+7

3 5 |ANs(s) = AN (s)]
J€6N, [

K(z, X)i N’“(dz)}
Dy,
Loy <rl s an, 7 * (d2)
] y+1 1IIyH<Mn *(dy)

< C/ Lxiy|<k
D

[ Nk (dz)
C(y,ly,2)NB(y,r)
Lixiy<r

+C/D X yl=k =Ly sz 2 (dy)

/ W(dz)]

C(y,ly,oa)ﬂB(y,r)

1 1xi_xil<plixs

rOx 3 |Xi- X3 |<RLIXI <M 7‘ AN (s) — ATk(s)

JEGN, / i (dz)
C(X7,lyj,0)NB(X7,r)

Lemyli<r L2500, B (d2)
]m L)<, (dy)

B, " (s, X)L xi)<m, < C/Dl||Xiy<R

[ "k (dz)
C(y,ly,2)NB(y,r)

L C / Lixi—yl <Lyl <pa+R

1y, 7 (dy)
(dZ)]

L(yvly 1a)mB(y7T)
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1 1) xi<rtx L x| < M N, N,
MR g = L LN Y A S YR

TEON / 7" (d2)
C(X3 1, ;,0)NB(X7,r)

Wx g

= 57X n) + 23% (XY ) + T3 (X, 5)

We need to estimate

E [limsup N Z B (s X)l\\X1||<M
k lGGNk ]
For that sake, we shall estimate
E |limsup | — Z E X ,N 1||XZH<M ,
k ZEGNk i
successively for j = 1,2, 3.
By using Lemma 3.6,
, C
N
B < “/ / Lxi g <rLs—yl<rLel> 0, A " (d2)E™ (dy),
(_inf ()
1§£§Q(Mn)
C —S,N ;
Z S (X)L i<, < — TR /D Loy <r Loy <r L2500, B (d2)E™e (dy) iy ™ (da
ZEGNk 1<¢<q(My) A R

Ce—aM;ie—a(Mn—g)é

STt @y
€6, 1<0<q(My) ¢

2
- Ce aMge a(Mn—E)é / d / 7aHI“6dCC
U e
o inf ce_“”“”(s)wrl B(0;R) Rd

1<<q(Mp);ue,

. 1 i
E [limsup N, Z Zivk(X7n)1HXi“§Mn

_ 1)
/ Ljoy<rlyeyj<ne” 1V dzdydz
g R3d

< €M ,—a(Mo—R)?

E |limsup | — SV X ) yigens, | | < Ce DM (3.16)
X<

k ZEGNk

which tends to 0 as n — oo, provided 1 + € < y~1.

. C
Sy (X, m) < ( . 7 /Dlw sl <Ryl <0t B jy1> a0, 1 (dy),
e >>

inf
1<0<q(My, +R)

Z 25" (X)L i<,

ZEGNk

IN

1<£<q(Mn+R)

//1”2: yH<Rluy||>M,, k(dy) T SNk(dgc)
( inf )

_ 5
E |1 i SN (X )1y v < e 1 —allzll® gy,
imsup > Ty (XL n)1xi<, —< 7 [ g eyl <B yda
e ))

k €GN, inf
1<0<q(Mn+R)
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—aM?
< ce [ ) [ et
; —allu]]® B(O;R R4
1<e<q(

inf ce
<q(M,, +E) uEBy

< Ce—all=1(14) M}

1 )
E |limsup N Z Eév’“(Xl,n)l“XiHSMn < CeoI(1+a)M; (3.17)
k iGGNk
235 (X7 1, 8) 1 xij<r, < — 1= ~ ‘A%(S)_A;Vk(s) L) xi)<m,
inf ok (Ae))Y N ’
1<0<q(IX7 | +R) IEON,

1 ; 1 : _ 7
— Z Eévk(Xzyn7S)1HXi||§Mn SCF’C Z < inf [LNk(QlZ)> 1|\X1||§Mn

Ny, icon, o, 1<<q(|| X |+ R)
1 N, Ny,
N, ‘An,’;(s) — 4 "(5)‘ L xs<m,
jGGNk
N - S,N|
hmsu E X , 1, 8) 1)y < Climsu inf wE (A Ty (dx
p e%;v Mixig<ar, | < Climsup /B(O,Mn) <1§e§q(||x|+R)'u ( 0) Ry ()
k

ANk( ) — A;Vk(s)‘ 1||Xj||§Mn

1
X limsup | — Z sup (A7

k k j€6n, v€E[0;s]

Exploiting Lemma 3.9, we deduce that

E l1msup Z Z F(XE 1, 8) 1| x| <,
ZEGNk

-
< C/ ( inf (A ) s e
B(0,Mn) rseaitity g PO ) T (d)

AY5(0) = A ()| Lo,

1
X E [limsup | — Z sup
k ijGNk v€E[0;5]

AN (v) — ATk (v)

. (3.18)

1
< CE |limsup | — Z sup
k k j€6n, v€E[0;]

From (3.16), (3.17) and (3.18), we have, with € chosen such that (1 +¢€)y < 1,

\I,i\fk (n,t) < Ce*a(ﬁ*’Y)Mgt + Ce—o(1=7(1+€)) My,

t
1
+C | E |limsup | — E sup Ag’;(v)—AlN’“(v) Lixij<m, | | ds (3.19)
0 ’ -

N .
k k i€, vE(0;s]

On the other hand, we apply Lemma 3.9 once again,

T, (5, X7) = | A5 () = AN ()| T (5, X7)
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C1yxj
1S, ) i)

- inf Ve
<1sesq<nXﬂ'n+r)M (o) )

=i, N 1 . _ -
T (s, X' )L xijens, S Corm D < inf MWW)) 1)x5)<nm, ’A%(s)—flka(s) L) xi|<m,

N ;& Ean, \st=alliX )
1 ~i,N, . N, s,
— sup T (v, X* )L xi <, <C inf k() by * (dx)
Ficey, vEMs] B(0,My) \1<¢<q([lell+r)
N
1 N, N,
X > sup AN (v) - A ’“(v))lnxiugMn
€GN 'L)G[O 8]
E |lim sup ! Z sup Ti’Nk(v X <C < inf (A )> _Wﬁs(d:ﬁ)
N ) i n > £
k Ny, €GN vE[0;s] " I l=a B(0,M,) \1<£<q(|lz||+r) 0
1
x E |limsup | — Z sup Ai:[’;(v) —Afv’“(v)‘ 1y xi|<m,
k Ny oy, VEID:s] ' B
t
U (n,t)) <C [ E |limsup | — sup AnN’;(v) — Af-v’“ ()| Lxij<m, | | ds (3.20)

From (3.14), (3.15), (3.19) and (3.20), we have

1 —a(l
E |limsup | 1= > sup |4Y5(s) = AN ()| Lpxpeny, | | < e Mg 4 cemeim UMy
k N, icen, sefog] -

AN’? (U) - Aivk (U)‘ 1||X’||SMn dS .

n,t

t

1
+C | E |limsup | — Z sup
0 k k i€, vE[0;9]

Using Gronwall’s inequality, we obtain

1
E |limsup A Z sup ‘A AZJ»V’“(S)‘lnXZ-”SMn < (C’e_a(l%e_wMgt—l-C'e_“(l_'Y(l"'e))Mgt) et

k kiEG s€[0;¢]

Thus, since € has been chosen such that (1+¢€)y < 1,

1
E |limsup [ — Z sup )A Afv’“(s)‘l“XqKM —0, as n— oo.
k Ni  seloi] -

1€ES Ny
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Completing the proof of Theorem 3.1
We first show that (7S-Nk /ﬁ N’“,ﬁf Ve ﬁf Nk 4 e R, )i>1 converges in probability in D%, uni-

formly in t to (:ut nut Hutalu‘t 7t € R+)
For all ¢t € [0;T], we have, exploiting Lemma 3.10

‘(ﬁf’Nkaw) — (77, w)‘ < ‘(Mf N _ﬁf,wlB(O;Mn))‘ + ’(Mka - ﬁfa@lBC(O;Mn))‘
SNy  — _ _
‘(Mt Ly, SplB(O;Mn))‘ + lleelloo | (BN, 15e0a1,))| + lelloo | (B 1peosna,)) |
_S,N; _ _ _
‘(Mt k) 90) - (:utsa QD)‘ < A(ta Nka TL) + ”QOHOO |(:UNk7 1BC(O;Mn))‘ + H(PHOO ‘(,ua 1BC(O;MTL))‘ (321)

SN, SN _SNy  — _ _
A(t, Ny, n) < ‘(Mt R UL ‘PlB(O;Mn))’ + ‘(Mn,t - Mg,m@lB(O;Mn))‘ + ‘(Mg,t - va@lB(O;Mn))|

_S,N, _SN, — _ _
< llelloo | ™ = ™ noian,y)| + | (™ —uit,w\ + |5 - 7))
< el lel
= - Z Lixisn, + = Z ‘A - (t)‘ 1 xi<m,
k ZEGNk ZEGNk
—S,N, _S _S _
+ )(um = Tt w)’ + | — 7 )| (3.22)
By combining (3.21) and (3.22), we obtain
_S.N _ [l ”SDH
‘(/J’t ") — (Mf,@)‘ < Nkoo D Lxipsa, + e Y ‘A - (t)‘ Lxi|<m,

ZGGNk ZEGNk
_S,N;, _S _S _
|~ S )|+ |~ 70

+llelloo [EY, 1aeona,))] + 1l | (7 Lpe(oin,))|
From Lemma 3.10 and Theorem 3.2, we deduce that

E [limsup < sup ‘(quk —Mf7¢)’>

< sup ‘ Mnt ﬁfa‘ﬁ)‘ + 3llelloo ‘(ﬁ,ch(o;Mn))}

k te[0;T7] te[0;T]
1
+E [limsup | — Z sup ‘A,]YIE(S)—A%(S)‘:[”XZ'\KM —0 (3.23)
k Ny tefo;r]! - n—00
1€6Nk ’
We next consider the other measures.
_I,N, ||<PH H‘PH
(@ 0) = (o) < T2 ST Yxoan, + = D0 [ANE®) - AN )| 1,
i€J Np, ZEGNk

I,N, — _ _
+ ‘(:U’nt a— Mgz,tv ¢1B(O;Mn))‘ + ‘(Mn,t - M{v 901B(O;Mn))‘

+ [lelloo ‘ (", 1Be(o;M,)) ‘ + [l ‘(E 1Bc(0;Mn))|

_R,N, ||90H H oo
| 0) - (@, 0)| < > i, + > Lyxigs,
leNk k ZESNk
‘P
€GN

_R, _ _ _
+ ‘(:U'n,t F - Hn,t7 QplB(O;Mn))‘ + ‘(Mﬁt - Hf) SDlB(O;Mn))‘
+ [lelloo ‘(ﬁN'“a 1BC(O;Mn))‘ + llellso |7, 1BC(0;Mn)>|
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)\* o0 )\ [e.e]
(ﬁf,Nk 7@3,@)‘ ||<P|| Z 1 ||90|| Z )A _ (t)‘ 1 i <ar,

ZEij ZEGNk
+ ‘(ﬁg’,t N SDlB(O-Mn))’ * )(:unt —, SOIB(O'M"))‘

+ A @lloo [ BV, peonn)| + A 0lloo | (s Lpeo:ns,))|

Ne _ i} and ,uR N _ 7, and all

those quantities tend to 0 in probability in ® .

The above arguments show that from any subsequence of the original sequence, we can further
extract a subsequence {Nk, k > 1} such that (@5, @SNk @l-Ne 71Nk converges in probability
in le\/t to (7°, S, @', i™t). This clearly implies that the whole sequence converges, hence Theorem
3.1 is established.
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