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Abstract. We study an individual-based stochastic spatial epidemic model where the number of
locations and the number of individuals at each location both grow to infinity. Each individual
is associated with a random infection-age dependent infectivity function. Individuals are infected
through interactions across the locations with heterogeneous effects. The epidemic dynamics can
be described using a time-space representation for the the total force of infection, the number of
susceptible individuals, the number of infected individuals that are infected at each time and have
been infected for a certain amount of time, as well as the number of recovered individuals. We prove
a functional law of large numbers for these time-space processes, and in the limit, we obtain a set of
time-space integral equations. We then derive the PDE models from the limiting time-space integral
equations, in particular, the density (with respect to the infection age) of the time-age-space integral
equation for the number of infected individuals tracking the age of infection satisfies a linear PDE
in time and age with an integral boundary condition. These integral equation and PDE limits can
be regarded as dynamics on graphon under certain conditions.

1. Introduction

In order to capture the geographic heterogeneity, spatial epidemic models have been well developed,
both in discrete and continuous spaces. In discrete space, multi-patch epidemic models have been
studied in [27, 3, 1, 31, 5, 20] and recently by the authors [22], where each patch represents a
geographic location, and infection may occur within each patch and from the distance (for example,
due to short travels). See also the multi-patch multi-type epidemic models in [5, 11], as well as
relevant models in [4, 17, 18]. Some of these studies assume migration of individuals among different
patches [27, 1, 20, 22, 11], while others do not but assume interactions between patches to induce
infection [3, 5, 31, 17, 18]. In continuous space, various PDE models have been developed (see
the monographs [25, 19, 8] and a survey [26]). There are two well–known models without spatial
movement: Kendall’s spatial model [14, 15] and Diekmann-Thieme’s PDE model [9, 10, 28, 29].
Kendall’s spatial model is a system of ODEs with a spatial parameter (without spatial partial
derivative). It was proved to be the functional law of large numbers (FLLN) limit of the multitype
Markovian SIR model by Andersson and Djehiche [2], where both the number of types and the
population size go to infinity, and being “Markovian” refers to the case of exponentially distributed
infection durations. Diekmann-Thieme’s spatial PDE model (with partial derivatives with respect
to time and infection-age) has the infection rate depending on the age of infection, as in the PDE
model first proposed by Kermack and McKendrick in their 1932 paper [16]. Similar to Kendall’s
spatial model, there is no partial derivative with respect to the spatial parameter, since there is no
movement in space. The Diekmann-Thieme PDE model was not yet proved to be the FLLN limit
of a non-Markovian stochastic epidemic model (in which the infectious durations have a general
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distribution), and can be seen as is a special case of our FLLN limit, which is new. We should
also mention the spatial models in continuous space in [7] and [30], where the stochastic model
starts with a continuous process for the movement of individuals, in particular, it is assumed that
individual movements follow an Itô diffusion process, and the epidemic models are Markovian.

In this paper, we start with an individual-based stochastic SIR epidemic model at a finite number
of locations. The individuals in the each location are grouped into “Susceptible”, “Infected” and
“Recovered” compartments. Each susceptible individual at every location may be infected from
his or her own location or from other locations (see the infection rate function in equation (2.5)).
Note that individuals do not migrate from one location to another in our model. Each individual is
associated with a random infectivity function/process, independent from any other individual but
having the same law as all the other individuals. This random infectivity function also determines
the law of the infectious duration of each individual. Those random functions are i.i.d. for all
individuals. For each individual, we track the age of infection, that is, the elapsed time since the
individual was infected (for the initially infected individuals, this means we also know their infection
times before time zero). To describe the epidemic dynamics at each location, we use the aggregate
infectivity process of the population and a two-parameter (equivalently, measure-valued) process
tracking the number of individuals that have been infected for less than or equal to a certain amount
of time as well as the numbers of susceptible and recovered individuals. Such an individual-based
stochastic model with only one location has been studied by the authors in [21], where an FLLN
is established and the associated PDE model for the limit is derived. In our previous works of
large population scaling limits for stochastic epidemic models (see the survey [12]), most models
consider a homogeneous population with the two exceptions of a multi-patch (discrete space) model
[22, 11]. Our model in this paper starts from a dense discrete space model, while the limit as both
the size of the population and the number of patches/locations tend to infinity simultaneously
is a deterministic spatial model in continuous space. In particular, the PDE model includes the
Diekmann-Thieme spatial model as a special case (see Remarks 3.1 and 3.3).

We consider this stochastic epidemic model in a spatially dense setting, where the number of
locations increases to infinity while the number of individuals in each location (and the total
population) also goes to infinity. This has the same flavor as the asymptotic regime in [2] for the
multitype Markovian SIR model where the number of types goes to infinity while the population in
each type also go to infinity. It is worth mentioning the paper [3] in which a measure-valued limit is
proved for a multi-patch Markovian SIS epidemic model without migration in the asymptotic regime
with both the number of patches and the number of individuals in each patch going to infinity. This
is also in a similar fashion as the asymptotic regime of the Markovian SIR epidemic model with
migration on a refining spatial grid in Rd (d = 1, 2, 3), recently studied in [20], where the mesh of
the grid goes to zero and the population size at each site also goes to infinity. In the limit of that
model, a Laplace operator describes the spatial movement in the time-space dynamics. Unlike these
works under Markovian assumptions, our model is non-Markovian and has an infection process with
the infection-age dependent infectivity, which brings new mathematical challenges.

For this model, it is convenient to describe the epidemic dynamics at all locations using a time-
space representation of the vector-valued processes (for the number of infected individuals tracking
the age of infection, this in fact becomes a time-age-space process). We prove an FLLN (Theorem
2.1) for the scaled time-space processes under a set of regularity conditions on the initial conditions,
infection contact rates and random infectivity functions (Assumptions 2.1, 2.2 and 2.3). The limits
in the FLLN are described by a set of time-space integral equations. It is worth highlighting that the
heterogeneity of interaction effects between different locations is represented by a function β(x, y)
for x, y ∈ [0, 1] (which resembles the kernel function of a graphon, see further discussions below).

For the weak convergence of the time-space processes, we introduce new weak convergence
criteria for these time-space processes (Theorems 4.1 and 4.2), which involves the L1 norm for the
spatial component. To verify these criteria, we establish moment estimates for the increments of
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these processes, which is challenging due to the interactions among the individuals at the different
locations. In particular, the interactions introduce nontrivial dependence in various components of
the time-space processes. We first study the joint time-space dynamics of the susceptible population
and total force of infection (Section 5). This involves the existence and uniqueness of solution to
a set of time-space Volterra-type integral equations (see equations (5.8)-(5.9)), and the moment
estimates associated with the increments involving the varying infectivity functions together with
their interactions (in order to use Theorem 4.1). Given this convergence, we then establish the
convergence of the time-age-space process tracking the infection ages of individuals (Section 6). In
order to employ Theorem 4.2, we need to establish the moment estimates for the increments with
respect to both time and infection-age parameters, for which the dependence due to interactions
also brings additional challenges.

From the limit tracking the rescaled number of infected individuals with a given age of infection,
we derive a PDE model with partial derivatives with respect to time and the age of infection (not
with respect to the spatial variable, since there is no migration among locations). It is a linear PDE
model with an integral boundary condition. It may be seen as an extension of the PDE models in
[21], with the addition of a spatial component. We then discuss how the PDE model is related to
the well-known Diekmann-Thieme PDE model and how it reduces to Kendall’s PDE model in the
Markovian case (see Remarks 3.1 and 3.3). Note that our PDE model is more general since we do
not require any condition on the distribution function of the infectious periods.

Our work also contributes to the recent studies of stochastic dynamics on graphon. Keliger et al.
[13] consider a finite-state Markov chain with local density-dependence on a discretized graph of a
graphon, and then prove an FLLN for the Markovian time-space dynamics. Their model includes a
Markovian SIS model on graphon, and since each individual is a node on the sampled graph and
naturally there is no spatial movement, the limit is in fact a system of ODEs without spatial partial
derivative. There is some resemblance between that limit and our PDE model for the Markovian
SIS model, see further discussions in Remark 3.4, although it is important to note that in our
stochastic multi-patch model, the number of individuals in each patch also goes to infinity while in
the stochastic model on the sampled graph from a graphon in [13], there is only one individual in
each node of the graph. Petit et al. [23] consider a random walk on graphon and prove an LLN
limit for the Markovian time-space dynamics, which is again a system of ODEs without spatial
partial derivative. However, we start with a non-Markovian multi-patch epidemic dynamics, and the
limiting integral equations in Theorem 2.1 and the PDE models in Proposition 3.1 and Corollaries
3.1 and 3.2 can be regarded as dynamics on graphon, when the kernel function β(x, y) is symmetric
and takes values in [0, 1] (see further discussions in Remark 2.2).

1.1. Organization of the paper. The paper is organized as follows. In Section 2.1, we provide
the detailed model description. We then present the scaled processes and assumptions and state the
FLLN result in Section 2.2. We derive the PDE models from the FLLN limits and discuss how they
are related to the already known spatial PDE models in Section 3. The proofs of the FLLN are
given in Sections 5 and 6 after some technical preliminaries in Section 4.

1.2. Notation. All random variables and processes are defined on a common complete probability
space (Ω,F ,P). Throughout the paper, N denotes the set of natural numbers, and Rk(Rk+) denotes
the space of k-dimensional vectors with real (nonnegative) coordinates, with R(R+) for k = 1. Let
D = D(R+;R) denote the space of R–valued càdlàg functions defined on R+. Here, convergence in
D means convergence in the Skorohod J1 topology, see Chapter 3 of [6]. Let C be the subset of D
consisting of continuous functions. Let DD = D(R+;D(R+;R)) be the D-valued D space, and the
convergence in the space DD means that both D spaces are endowed with the Skorohod J1 topology.
For any nondecreasing and bounded càdlàg function G(·) : R+ → R+, abusing notation, we write
G(dx) by treating G(·) as the positive (finite) measure on R+ whose distribution function is G.
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For any R–valued càdlàg function φ(·) on R+, the integral
∫ b
a φ(x)G(dx) represents

∫
(a,b] φ(x)G(dx)

for a < b. We use 1{·} for the indicator function. For x, y ∈ R, we denote x ∧ y = min{x, y} and
x ∨ y = max{x, y}.

We use ‖ · ‖1 to denote the L1([0, 1]) norm. For time-space processes Z(t, x) and Z(t, s, x), for
each x, we regard them in the spaces D and DD, respectively. For the weak convergence of the
time-space processes ZN (t, x) to Z(t, x) as N →∞, we use the Skorohod topology for the processes
in D with the L1([0, 1]) norm with respect to x. Similarly, for the weak convergence of the time-space
processes ZN (t, s, x) to Z(t, s, x) as N → ∞, we use the Skorohod topology for the processes in
DD with the L1([0, 1]) norm with respect to x. We write these spaces as D(R+, L

1([0, 1])) and
D(R+,D(R+, L

1([0, 1])), or D(R+, L
1) and D(R+,D(R+, L

1)) for short. See the weak convergence
criteria in Theorems 4.1 and 4.2.

2. Model and FLLN

2.1. Model Description. We consider a population of fixed size N distributed in K locations in
some bounded domain S in Rd (d ≥ 1). To be specific, we choose S = [0, 1]. The arguments in the
paper would remain the same for any such a domain S since we do not consider migration among
locations. Also let K depend on N , denoted as KN . Let the KN locations be at xNk , k = 1, . . . ,KN

in [0, 1] such that 0 ≤ xN1 < xN2 < · · · < xN
KN ≤ 1. For notational convenience, let INk , k = 1, . . . ,KN

be a partition of [0, 1] such that xNk ∈ INk and |INk | = (KN )−1 for all 1 ≤ k ≤ KN . In each location,
individuals are categorized into three groups: susceptible, infected (possibly including both exposed
and infectious) and recovered. We assume that individuals do not move among the different locations,
and susceptible individuals in each location can be infected from their own location as well as from
other locations (as explained below). Suppose that there are BN

k individuals at location xNk , such

that BN
1 + · · ·+ BN

KN = N . (For example, there is an equal number of individuals in each path,

that is, BN
k = N/KN for all k.) We assume that

both KN →∞ and
N

KN
→∞, as N →∞ . (2.1)

Notation: Whenever not causing any confusion, we drop the superscript N in xNk , INk , KN and BN
k .

For any vector z = (z1, . . . , zK), we write z(x) =
∑K

k=1 zk1INk
(x) where 1INk

(·) denotes the indicator

function of the set INk . For a process Z(t) = (Z1(t), . . . , ZK(t)), we write Z(t, x) =
∑K

k=1 Zk(t)1INk
(x)

for t ≥ 0, x ∈ [0, 1].
Let SNk (t), INk (t) and RNk (t) be the numbers of susceptible, infected and recovered individuals

in location xk at time t ≥ 0. We clearly have BN
k = SNk (t) + INk (t) + RNk (t) for each t ≥ 0. We

can also write the vectors SN (t) = (SN1 (t), . . . , SNK (t)), IN (t) = (IN1 (t), . . . , INK (t)) and RN (t) =

(RN1 (t), . . . , RNK(t)), as the following time-space processes SN (t, x) =
∑K

k=1 S
N
k (t)1Ik(x), IN (t, x) =∑K

k=1 I
N
k (t)1Ik(x) and RN (t, x) =

∑K
k=1R

N
k (t)1Ik(x), respectively. Note that SNk (t) = SN (t, xk),

and so on.
To each infected individual is attached a random infectivity function. Individual j in location xk

has a random infectivity function λj,k(·). We assume that λj,k(t) = 0 a.s. for t < 0, for all j ∈ Z\{0},
k = 1, . . . ,K, and that each λj,k has paths in D. We assume that the sequence {λj,k : j ∈ Z\{0}, k =
1, . . . ,K} is i.i.d., with j ≥ 1 indexing newly infected individuals after time 0 and j ≤ −1 indexing
the initially infected ones at time 0 (that is, those infected before time 0). We use λ(·) as a generic

function to denote them. Let λ̄(t) = E[λ(t)] and v(t) = Var(λ(t)) = E
[(
λ(t)− λ̄(t)

)2]
for t ≥ 0.

Define ηj,k = sup{t > 0 : λj,k(t) > 0}, which represents the duration of the infected period
for individual j. Note that this may include both the exposed and infectious periods for which
the function λj,k(t) start with being zero in the exposed period. Under the above assumption on
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{λj,k}, the variables {ηj,k} are also i.i.d. Let F (t) = P(ηj,k ≤ t) for j ∈ Z\{0} and k = 1, . . . ,K,
representing the cumulative distribution function (c.d.f.) for the duration of the infected period.
Define F c := 1− F .

Let {τNj,k : j ∈ Z \ {0}} be the associated infection times for each individual. Evidently, τNj,k ≥ 0

for j ≥ 1 and τNj,k < 0 for j ≤ −1. Let τ̃Nj,k = −τNj,k > 0 for j ≤ −1, which denotes the time
elapsed since infection, i.e. the infection age at time 0 for the initially infected individuals. The
counting process ANk (t) = max{j ≥ 1 : τNj,k ≤ t} represents the number of newly infected individuals

in location k over (0, t]. Some initially infected individuals may have recovered by time 0, that
is, if ηj,k ≤ τ̃Nj,k for j ≤ −1, then the individual j is in the compartment of the removed, RNk (0).

However, if ηj,k > τ̃Nj,k for j ≤ −1, then the individual j remains infected at time 0 and belongs to

the compartment of the infected, INk (0). Then we have RNk (0) = |RNk (0)|, INk (0) = |INk (0)| and

SNk (0) = BN
k − INk (0)−RNk (0) for each k. Let T Nk (0) = INk (0) ∪RNk (0). The process

TNk (0, a) =
∑

j:−j∈T Nk (0)

1τ̃N−j,k≤a
(2.2)

represents the number of initially infected individuals with an infection age less than or equal to
a at time 0, which include those that remain infected and those that are recovered. We assume
that for each k = 1, . . . ,K, the sequence {τN−j,k : −j ∈ T Nk } is independent of the sequence

{λ−j,k : −j ∈ T Nk }. We remark that this independence assumption may not be natural, since the
future event times may depend on the value of λ−j,k; however, this assumption is essential for the
proofs, and the sources of initial infections may differ from the new infections (such as migration).
Let η0

j,k = sup{t > 0 : λj,k(τ̃j,k + t) > 0} be the associated remaining infected period. It is clear that

η0
j,k = ηj,k− τ̃Nj,k. Then, for j ≤ −1, the conditional distribution of η0

j,k given that ηj,k > τ̃Nj,k = s > 0
is

P
(
η0
j,k > t

∣∣ηj,k > τ̃Nj,k = s
)

= P
(
ηj,k − τ̃Nj,k > t

∣∣ηj,k > τ̃Nj,k = s
)

=
F c(t+ s)

F c(s)
, for t, s > 0. (2.3)

Note that conditional on {τ̃j,k}, the η0
j,k’s are independent but not identically distributed.

The total force of infection of the infected individuals in location k is given by

FNk (t) =
∑

j:−j∈T Nk (0)

λ−j,k(τ̃
N
−j,k + t) +

SNk (0)∑
j=1

λj,k(t− τNj,k), t ≥ 0. (2.4)

Note that since λj,k(t) = 0 for t > ηj,k, those that are initially infected but recovered do not
contribute to the total force of infection. Then the first summation is equal to the summation over
j such that −j ∈ INk (0). We similarly write the time-space process for the total force of infection
in the population:

FN (t, x) =
KN∑
k=1

FNk (t)1Ik(x).

The rate of infection for individuals in location k is given by

ΥN
k (t) =

SNk (t)

BN
k

1

KN

KN∑
k′=1

βNk,k′F
N
k′(t), t ≥ 0. (2.5)

Here the factor βNk,k′ reflects the effect of infection of individuals from location k′ upon those in
location k. It also represents the heterogeneity of the effects of the interactions among different
locations.
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The number of newly infected individuals in location k by time t, ANk (t), can be expressed as

ANk (t) =

∫ t

0

∫ ∞
0

1u≤ΥNk (s)Qk(ds, du), (2.6)

where {Qk(ds, du), 1 ≤ k ≤ K} are mutually independent standard (i.e., with mean measure the
Lebesgue measure) Poisson random measures (PRMs) on R2

+. Recall that {ANk (t) : t ≥ 0} has the

event times {τNj,k, j ≥ 1}.
Let INk (t, a) be the number of infected individuals in location k that are infected at time t and

have been infected for less than or equal to a. Then we can write

INk (t, a) =
∑

j:−j∈INk (0)

1η0−j,k>t
1τ̃N−j,k≤(a−t)+ +

ANk (t)∑
j=ANk ((t−a)+)+1

1τNj,k+ηj,k>t
. (2.7)

Note that INk (0, a) (the first term on the right hand side) differs from TNk (0, a) since it only counts
the initially infected individuals that remain infected at time 0. It is also clear that for all t ≥ 0,

INk (t) = INk (t,∞).

To account for the location, we also write the time-age-space process

IN (t, a, x) =

KN∑
k=1

INk (t, a)1Ik(x).

Note that for each x, the process IN (t, a, x) has paths in DD. The quantity IN (0, a, x), corresponding
to INk (0, a), represents the infection-age distribution of the initially infected individuals at the different
locations. It is given as input data for our model, satisfying the condition in Assumption 2.1 below.

The dynamics of SNk (t), INk (t) and RNk (t) can be expressed as

SNk (t) = SNk (0)−ANk (t),

INk (t) =
∑

j:−j∈INk (0)

1η0−j,k>t
+

ANk (t)∑
j=1

1τNj,k+ηj,k>t
,

RNk (t) = RNk (0) +
∑

j:−j∈INk (0)

1η0−j,k≤t
+

ANk (t)∑
j=1

1τNj,k+ηj,k≤t .

2.2. FLLN. We recall that

N =

KN∑
k=1

(SNk (t) + INk (t) +RNk (t)) =

KN∑
k=1

BN
k , (2.8)

and observe that∫ 1

0
(SN (t, x) + IN (t, x) +RN (t, x))dx =

1

KN

KN∑
k=1

(SNk (t) + INk (t) +RNk (t)) =
N

KN
. (2.9)

It is then reasonable to introduce the scaling of the processes by N/KN , that is, for any process
ZNk = FNk , I

N
k ,Υ

N
k , A

N
k , S

N
k , I

N
k , R

N
k , we define Z̄Nk = (N/KN )−1ZNk . We then define the scaled

time-space processes

Z̄N (t, x) =
KN∑
k=1

Z̄Nk (t)1Ik(x), ZNk = FNk ,Υ
N
k , A

N
k , S

N
k , I

N
k , R

N
k
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and

ĪN (t, a, x) =

KN∑
k=1

ĪNk (t, a)1Ik(x) .

In addition, define the scaled population size at each location

B̄N (x) =
KN∑
k=1

B̄N
k 1Ik(x), with B̄N

k = (N/KN )−1BN
k .

Hence, from (2.9) and the scaling, we obtain∫ 1

0
(S̄N (t, x) + ĪN (t, x) + R̄N (t, x))dx =

∫ 1

0
B̄N (x)dx = 1 .

We make the following assumption on the initial condition.

Assumption 2.1. There exist nonnegative deterministic functions (S̄(0, x), T̄(0, a, x), R̄(0, x)) such
that for each x, T̄(0, ·, x) is in C, and for each a ∈ [0,∞],

‖S̄N (0, ·)− S̄(0, ·)‖1 → 0, ‖T̄N (0, a, ·)− T̄(0, a, ·)‖1 → 0, ‖R̄N (0, ·)− R̄(0, ·)‖1 → 0 (2.10)

in probability as N →∞. This implies that ‖ĪN (0, a, ·)− Ī(0, a, ·)‖1 → 0 in probability as N →∞,
where Ī(0, da, x) = T̄(0, da, x)F c(a); see Lemma 2.1 below. In addition, letting Ī(0, x) = Ī(0,∞, x),
we have ∫ 1

0
(S̄(0, x) + Ī(0, x) + R̄(0, x))dx = 1. (2.11)

There exists B̄(x) such that

‖B̄N (·)− B̄(·)‖∞ = sup
x∈[0,1]

|B̄N (x)− B̄(x)| → 0, (2.12)

where for some constants 0 < cB < CB <∞,

B̄(x) ∈ [cB, CB] ∀x ∈ [0, 1], (2.13)

and ∫ 1

0
B̄(x)dx = 1 .

Moreover, the following identity holds:

B̄(x) = S̄(0, x) + Ī(0, x) + R̄(0, x), ∀x ∈ [0, 1]. (2.14)

Note that, thanks to (2.12) and (2.13), we may and do assume that cB and CB have been chosen
in such a way that for some N0,

B̄N (x) ∈ [cB, CB] ∀N ≥ N0, x ∈ [0, 1]. (2.15)

Under the assumption in (2.10), it follows that

‖ĪN (0, ·)− Ī(0, ·)‖1 → 0

in probability as N →∞.

Lemma 2.1. Under the assumption in (2.10), ‖ĪN (0, a, ·)−Ī(0, a, ·)‖1 → 0 in probability as N →∞,
where Ī(0, da, x) = T̄(0, da, x)F c(a).
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Proof. By (2.2),

T̄N (0, da, x) =
KN

N

KN∑
k=1

∑
j:−j∈T Nk (0)

δτ̃N−j,k
(da)1Ik(x) .

By (2.7),

ĪN (0, da, x) =
KN

N

KN∑
k=1

∑
j:−j∈T Nk (0)

1η−j,k>τ̃N−j,k
δτ̃N−j,k

(da)1Ik(x)

=
KN

N

KN∑
k=1

∑
j:−j∈T Nk (0)

(
1η−j,k>a − F c(a)

)
δτ̃N−j,k

(da)1Ik(x)

+
KN

N

KN∑
k=1

∑
j:−j∈T Nk (0)

F c(a)δτ̃N−j,k
(da)1Ik(x)

:= ĪN0 (0, da, x) + ĪN1 (0, da, x) .

By the convergence ‖T̄N (0, a, ·)− T̄(0, a, ·)‖1 → 0 in probability, and for each x, T̄(0, ·, x) is in C,
we immediately have the convergence ‖ĪN1 (0, a, ·)− Ī(0, a, ·)‖1 → 0 in probability as N →∞. It is
easy to show that ‖ĪN0 (0, a, ·)‖1 → 0 in probability by the independence of the sequences {τ̃N−j,k}j
and {λ−j,k}j for each k (see a similar argument in the proof of Lemma 5.4 below). �

We introduce for each x, x′ ∈ [0, 1],

βN (x, x′) =
∑
k,k′

βNk,k′1Ik(x)1Ik′ (x
′) . (2.16)

Assumption 2.2. There exists a constant Cβ > 0 such that for all N ≥ 1, x ∈ [0, 1],∫ 1

0
βN (x, y)dy ∨

∫ 1

0
βN (y, x)dy ≤ Cβ . (2.17)

There exists a function β : [0, 1] × [0, 1] 7→ R+ such that for any bounded measurable function
φ : [0, 1] 7→ R, ∥∥∥∥∫ 1

0
[βN (·, y)− β(·, y)]φ(y)dy

∥∥∥∥
1

→ 0 . (2.18)

Remark 2.1. Concerning condition (2.17), let us first note that, if βNk,k′ = βNk′,k (symmetric) for

all N ≥ 1, 1 ≤ k, k′ ≤ K, the boundedness of
∫ 1

0 β
N (x, y)dy is equivalent to that of

∫ 1
0 β

N (y, x)dy.

Clearly (2.18) implies that (2.17) is satisfied with βN replaced by β. We note that this assumption
allows in particular β(x, y) to explode on the diagonal x = y, for example, β(x, y) = c√

|x−y|
for

some c > 0, meaning that infectious interactions between “close by” individuals are much more
frequent than between distant ones. See further discussions in Remark 2.2.

We make the following assumption on the random function λ.

Assumption 2.3. Let λ(·) be a process having the same law of {λj(·)}j. Assume that there exists
a constant λ∗ such that supt∈R+

λ(t) ≤ λ∗ almost surely. Assume that there exist an integer κ, a

random sequence 0 = ζ0 ≤ ζ1 ≤ · · · ≤ ζκ <∞ and associated random functions λ` ∈ C(R+; [0, λ∗]),
1 ≤ ` ≤ κ, such that

λ(t) =
κ∑
`=1

λ`(t)1[ζ`−1,ζ`)(t). (2.19)



FLLN FOR SPATIALLY DENSE NON-MARKOVIAN EPIDEMIC MODELS 9

We write F` for the c.d.f. of ζ`, ` = 1, . . . , κ. In addition, we assume that there exists a deterministic
nondecreasing function ϕ ∈ C(R+;R+) with ϕ(0) = 0 such that |λ`(t) − λ`(s)| ≤ ϕ(t − s) almost
surely for all t, s ≥ 0 and for all ` ≥ 1.

We next state the main result of the paper. In several formulas, whenever F c(a) appears in the
denominator, it is only possibly equal to zero if the corresponding numerator is also equal to zero,
and in that case, we use the convention that 0

0 = 0.

Theorem 2.1. Under Assumptions 2.1, 2.2 and 2.3,

‖F̄N (t, ·)− F̄(t, ·)‖1 → 0, ‖S̄N (t, ·)− S̄(t, ·)‖1 → 0, ‖R̄N (t, ·)− R̄(t, ·)‖1 → 0,

‖ĪN (t, a, ·)− Ī(t, a, ·)‖1 → 0 (2.20)

in probability as N → ∞, locally uniformly in t and a, where the limits are given by the unique
solution to the following set of integral equations. The limit (S̄(t, x), F̄(t, x)) is a unique solution to
the system of integral equations: for t ≥ 0 and x ∈ [0, 1],

S̄(t, x) = S̄(0, x)−
∫ t

0
Ῡ(s, x)ds , (2.21)

F̄(t, x) =

∫ ∞
0

λ̄(a + t)

F c(a)
Ī(0, da, x) +

∫ t

0
λ̄(t− s)Ῡ(s, x)ds , (2.22)

where

Ῡ(t, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)F̄(t, x′)dx′ = Īa(t, 0, x) , (2.23)

with Īa(t, a, x) being the derivative of Ī(t, a, x) with respect to the infection age a. Given S̄(t, x) and
F̄(t, x), the limits Ī(t, a, x) and R̄(t, x) are given by

Ī(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

(t−a)+
F c(t− s)Ῡ(s, x)ds , (2.24)

R̄(t, x) = R̄(0, x) +

∫ ∞
0

(
1− F c(a′ + t)

F c(a′)

)
Ī(0, da′, x) +

∫ t

0
F (t− s)Ῡ(s, x)ds . (2.25)

In addition,

‖ĪN (t, ·)− Ī(t, ·)‖1 → 0

locally uniformly in t in probability as N →∞, where

Ī(t, x) =

∫ ∞
0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

0
F c(t− s)Ῡ(s, x)ds . (2.26)

For each x, the limits S̄(t, x), F̄(t, x), Ī(t, a, x), Ī(t, x) and R̄(t, x) are continuous in t and a.

Remark 2.2. Our model can be regarded in some sense as non-Markovian epidemics dynamics
on graphon. In particular, the function β(x, x′) can be regarded as the graphon kernel function,
representing the inhomogeneity in the connectivity. However, the kernel function is often assumed
to take values in [0, 1] and to be symmetric in the graphon literature. In our model, β(x, x′) does
not necessarily take values in [0, 1] although it can be rescaled to [0, 1] in case it is bounded, and the
function β(x, x′) may not be necessarily symmetric. In the prelimit (the N th system), the locations
{INk }k can be regarded as a discretization of the unit interval [0, 1] and the infection rate functions

between different locations βNk,k′ in (2.16) can then be regarded as the corresponding discretization of

the function β(x, x′). We refer the readers to [13] and [23] for Markov dynamics on graphon and
the corresponding ODE approximations with a spatial parameter (no spatial partial derivative). See
also Remark 3.4 for further discussions on how our PDE model relates to the ODE limit with a
spatial parameter for the Markovian SIS model on graphon in [13].
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Remark 2.3. One could adapt the methods we use for a spatial SIS model, in which infected
individuals becomes susceptible right after recovery. For the spatial SIS model, we have the identity

BN
k = SNk (t) + INk (t) and

∑KN

k=1B
N
k =

∑KN

k=1(SNk (t) + INk (t)) = N for each t ≥ 0. In the limit,

B̄(x) = S̄(t, x) + Ī(t, x) for each t ≥ 0, x ∈ [0, 1] and
∫ 1

0 B̄(x)dx =
∫ 1

0 (S̄(t, x) + Ī(t, x))dx = 1

for each t ≥ 0. We use two processes F̄N (t, x) and ĪN (t, a, x) to describe the epidemic dynamics,
and can show that ‖F̄N (t, ·) − F̄(t, ·)‖1 → 0 and ‖ĪN (t, a, ·) − Ī(t, a, ·)‖1 → 0 in probability locally
uniformly in t and a as N →∞, where

F̄(t, x) =

∫ ∞
0

λ̄(a + t)T̄(0, da, x) +

∫ t

0
λ̄(t− s) S̄(s, x)

B̄(x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds , (2.27)

and

Ī(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

(t−a)+
F c(t− s) S̄(s, x)

B̄(x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds ,

(2.28)

with S̄(t, x) satisfying ∫ 1

0
(S̄(t, x) + Ī(t,∞, x))dx = 1 . (2.29)

Using Ī(t, x) = Ī(t,∞, x), we can write the last equation as
∫ 1

0 (S̄(t, x) + Ī(t, x))dx = 1, and the

limit Ī(t, x) is given by

Ī(t, x) =

∫ ∞
0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

0
F c(t− s) S̄(s, x)

B̄(x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds .

3. PDE Models

In this section we derive the PDE models associated with the limits from the FLLN. For each t, the
limits S̄(t, x), F̄(t, x), Ī(t, x), R̄(t, x) can be regarded as the densities of the quantities, susceptibles,
aggregate infectivity, infected and recovered, distributed over the location x ∈ [0, 1], and for each
t and a, the function Ī(t, a, x) can be also regarded as the density of the proportion of infected
individuals at time t with infection age less than or equal to a, over the location x ∈ [0, 1]. In
addition, for each fixed t and x, Ī(t, a, x) is increasing in a, and can be regarded as a “distribution”
over the infection ages. If Ī(t, a, x) is absolutely continuous in a, we let ī(t, a, x) = Īa(t, a, x) be the
density function of Ī(t, a, x) with respect to the infection age a.

In the following we will consider the dynamics of S̄(t, x), F̄(t, x), Ī(t, x), R̄(t, x), Ī(t, a, x) in t and
a, as a PDE model. Since there is no movement of individuals between locations, no derivative with
respect to x will appear. However, the interaction among individuals in different locations will be
captured in these dynamics, in particular, in the expression of Ῡ(t, x) in (2.23).

In this section, we restrict ourselves to F being a continuous distribution.

Proposition 3.1. Suppose that for each x, Ī(0, a, x) is absolutely continuous with respect to a with
density ī(0, a, x) = Īa(0, a, x). Then for t, a > 0 and x ∈ [0, 1], the function Ī(t, a, x) is absolutely
continuous in t and a, and its density ī(t, a, x) = Īa(t, a, x) with respect to a satisfies

∂ ī(t, a, x)

∂t
+
∂ ī(t, a, x)

∂a
= −ī(t, a, x)

F (da)

F c(a)
, (3.1)

(t, a, x) in (0,∞)2 × [0, 1], with the initial condition ī(0, a, x) = Īa(0, a, x) for (a, x) ∈ (0,∞)× [0, 1],
and the boundary condition

ī(t, 0, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

(∫ ∞
0

λ̄(a′)

F c(a′)
ī(t, a′, x′)da′

)
dx′ . (3.2)
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The function S̄(t, x) satisfies
∂S̄(t, x)

∂t
= −ī(t, 0, x) , (3.3)

with S̄(0, x) satisfying (2.14).
Moreover, the PDE (3.1)-(3.2) has a unique non-negative solution which is given as follows: for

a ≥ t and x ∈ [0, 1],

ī(t, a, x) =
F c(a)

F c(a− t)
ī(0, a− t, x), (3.4)

and for t > a and x ∈ [0, 1],
ī(t, a, x) = F c(a) ī(t− a, 0, x), (3.5)

and the boundary function is the unique non-negative solution to the integral equation

ī(t, 0, x) = (B̄(x))−1
(
S̄(0, x)−

∫ t

0
ī(s, 0, x)ds

)
×
∫ 1

0
β(x, x′)

(∫ ∞
0

λ̄(a + t)
ī(0, a, x′)

F c(a)
da +

∫ t

0
λ̄(t− s) ī(s, 0, x′)ds

)
dx′ . (3.6)

Given the PDE solution ī(t, a, x) and Ῡ(t, x) = ī(t, 0, x), the functions Ī(t, x) and R̄(t, x) are
given by

Ī(t, x) =

∫ ∞
0

F c(a′ + t)

F c(a′)
ī(0, a′, x)da′ +

∫ t

0
F c(t− s) ī(s, 0, x)ds ,

R̄(t, x) = R̄(0, x) +

∫ ∞
0

(
1− F c(a′ + t)

F c(a′)

)
ī(0, a′, x)da′ +

∫ t

0
F (t− s) ī(s, 0, x)ds .

Also, by definition,

Ī(t, x) = Ī(t,∞, x) =

∫ ∞
0

ī(t, a, x)da.

Proof. Using the expression of Ῡ(s, x) = Īa(s, 0, x) in (2.23) and with F c, we can equivalently
rewrite (2.24) as

Ī(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Īa(0, a

′, x)da′ +

∫ t

(t−a)+
F c(t− s)Īa(s, 0, x)ds . (3.7)

Exploiting the fact that ∂
∂t + ∂

∂a of a function of t− a vanishes, we deduce from (3.7) that

Īt(t, a, x) + Īa(t, a, x) = −
∫ (a−t)+

0

1

F c(a′)
Īa(0, a

′, x)F (t+ da′)

+ Īa(t, 0, x)−
∫ t

(t−a)+
Īa(s, 0, x)F (t− ds)

= −
∫ a∨t

t

1

F c(a′ − t)
Īa(0, a

′ − t, x)F (da′)

+ Īa(t, 0, x)−
∫ a∧t

0
Īa(t− s, 0, x)F (ds) .

We then take derivative with respect to a on both sides of this equation (denoting Īt,a(t, a, x) and
Īa,a(t, a, x) as the derivatives of Īt(t, a, x) and Īa(t, a, x) with respect to a) and obtain the following:

Īt,a(t, a, x) + Īa,a(t, a, x) = −1a≥t
F (da)

F c(a− t)
Īa(0, a− t, x)− 1t>aF (da)Īa(t− a, 0, x) .
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Rewriting ∂ ī(t,a,x)
∂t = Īa,t(t, a, x) = Īt,a(t, a, x) and ∂ ī(t,a,x)

∂a = Īa,a(t, a, x), we obtain the PDE:

∂ ī(t, a, x)

∂t
+
∂ ī(t, a, x)

∂a
= −1a≥t

F (da)

F c(a− t)
ī(0, a− t, x)− 1t>aF (da) ī(t− a, 0, x) . (3.8)

In order to see that the right hand side coincides with that in (3.1), we first establish (3.4) and
(3.5). For a ≥ t, 0 ≤ s ≤ t and x ∈ [0, 1],

d̄i(s, a− t+ s, x)

ds
= −F (a− t+ ds)

F c(a− t)
ī(0, a− t, x) ,

and for t > a, 0 ≤ s ≤ a and x ∈ [0, 1],

d̄i(t− a + s, s, x)

ds
= −F (ds) ī(t− a, 0, x) .

From these, by integration and simple calculations, we obtain (3.4) and (3.5). Now (3.1) follows
from (3.8), (3.4) and (3.5).

Then using (3.4) and (3.5), by (2.22) and the second equality in (2.23), we obtain

F̄(t, x) =

∫ ∞
0

λ̄(a + t)
ī(0, a, x)

F c(a)
da +

∫ t

0
λ̄(t− s) ī(s, 0, x)ds . (3.9)

The expression for the boundary condition in (3.6) then follows directly from (2.23) using this
expression of F̄(t, x). Again, using (3.4) and (3.5), we see that the boundary condition (3.6) is
equivalent to (3.2).

We now sketch the proof of existence and uniqueness of a non-negative solution to (3.6). Note
that, thanks to (3.4) and (3.5), existence and uniqueness of a non-negative solution to the PDE
(3.1)-(3.2) will follow from that result. First of all, let us rewrite that equation as

u(t, x) = (B̄(x))−1

(
f(x)−

∫ t

0
u(s, x)ds

)
×
∫ 1

0
β(x, x′)

(
g(t, x′) +

∫ t

0
λ̄(t− s)u(s, x′)ds

)
dx′,

where 0 ≤ f(x) ≤ B̄(x) and 0 ≤ g(t, x) ≤ λ∗B̄(x) are given from the initial conditions. Any
nonnegative solution satisfies

u(t, x) ≤
∫ 1

0
β(x, x′)

(
g(t, x′) +

∫ t

0
λ̄(t− s)u(s, x′)ds

)
dx′, hence

‖u(t, ·)‖∞ ≤ Cβλ∗
(
CB +

∫ t

0
‖u(s, ·)‖∞ds

)
≤ Cβλ∗CBeCβλ

∗t .

Here ‖u(t, ·)‖∞ = supx∈[0,1] |u(t, x)|. Let now u and v be two non negative solutions. Then,

|u(t, x)− v(t, x)| ≤ (B̄(x))−1

(∫ 1

0
β(x, x′)

[
g(t, x′) +

∫ t

0
λ̄(t− s)u(s, x′)ds

]
dx′
)∫ t

0
|u(s, x)− v(s, x)|ds

+ (B̄(x))−1

(
f(x) +

∫ t

0
v(s, x)ds

)∫ 1

0
β(x, x′)

∫ t

0
λ̄(t− s)|u(s, x′)− v(s, x′)|dsdx′ .

Integrating over dx, exploiting the previous a priori estimate and (2.17), we deduce the uniqueness
from Gronwall’s Lemma. Finally, the existence of a nonnegative L1([0, 1])-valued solution can be
established using a Picard iteration argument. Note that in the previous lines we have used the two
distinct inequalities contained in (2.17). �

If F is absolutely continuous, with density f , we denote by h(a) the hazard rate function, i.e.,

h(a) = f(a)
F c(a) for all a ≥ 0. We obtain the following corollary in this case.
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Corollary 3.1. Under the assumptions of Proposition 3.1, if F is absolutely continuous with density
f , then the PDE in (3.1) becomes

∂ ī(t, a, x)

∂t
+
∂ ī(t, a, x)

∂a
= −h(a) ī(t, a, x) , (3.10)

with the initial condition ī(0, a, x) = Īa(0, a, x) for (a, x) ∈ (0,∞)× [0, 1] and the boundary condition
(3.2). The function S̄(t, x) satisfies (3.3), and the PDE (3.10) has a unique solution which is given
by (3.4) and (3.5), and the boundary function is the unique solution of (3.6).

When the infectious periods are deterministic, using an approximation of the Dirac measure by
continuous distributions, we obtain the following corollary.

Corollary 3.2. Suppose that the infectious periods are deterministic and equal to ti, that is,
F (t) = 1t≥ti. Then the PDE in (3.1) becomes

∂ ī(t, a, x)

∂t
+
∂ ī(t, a, x)

∂a
= −δti(a) ī(t, a, x) , (3.11)

with δti(da) being the Dirac measure at ti, with the initial condition ī(0, a, x) = Īa(0, a, x) for
(a, x) ∈ (0, ti)× [0, 1], and the boundary condition

ī(t, 0, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

(∫ ti

0
λ̄(a′) ī(t, a′, x′)da′

)
dx′ . (3.12)

The PDE (3.11) has a unique solution which is given as follows: for t ≤ a < ti and x ∈ [0, 1],

ī(t, a, x) = ī(0, a− t, x), (3.13)

and for a < t ∧ ti and x ∈ [0, 1],
ī(t, a, x) = ī(t− a, 0, x), (3.14)

and for a ≥ ti and t ≥ 0, ī(t, a, x) = 0. The boundary function is the unique solution to the integral
equation: for 0 < t < ti,

ī(t, 0, x) = B̄(x)−1
(
S̄(0, x)−

∫ t

0
ī(s, 0, x)ds

)
×
∫ 1

0
β(x, x′)

(∫ ti

t
λ̄(a) ī(0, a− t, x′)da +

∫ t

0
λ̄(t− s) ī(s, 0, x′)ds

)
dx′ , (3.15)

and for t ≥ ti,

ī(t, 0, x) = B̄(x)−1
(
S̄(0, x)−

∫ t

0
ī(s, 0, x)ds

)
×
∫ 1

0
β(x, x′)

∫ ti

0
λ̄(t− s) ī(s, 0, x′)dsdx′ . (3.16)

Remark 3.1. In the special case when λi(t) = λ̃(t)1t<ηi for a deterministic function λ̃(t), the
boundary condition (3.2) becomes

ī(t, 0, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

(∫ ∞
0

λ̃(a′) ī(t, a′, x′)da′

)
dx′ . (3.17)

This is because λ̄(t) = λ̃(t)F c(t). This boundary condition resembles that given in the Diekmann
PDE model [9] (without B̄(x) in the denominator). See further discussions in Remark 3.3. We
remark that the PDE model first proposed by Kermack and McKendrick in [16] also corresponds to

this special infectivity function λi(t) = λ̃(t)1t<ηi; see further discussions on the PDE models with
infection-age dependent infectivity in Remarks 3.3 and 3.4 of [21].
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Remark 3.2. By using the solution expressions in (3.4) and (3.5) together with the second identity
Ῡ(t, x) = Īa(t, 0, x) in (2.23), we can rewrite F̄(t, x) in (2.22) as

F̄(t, x) =

∫ ∞
0

λ̄(a + t)
ī(0, a, x)

F c(a)
da +

∫ t

0
λ̄(t− s) ī(s, 0, x)ds

=

∫ ∞
0

λ̄(a + t)
1

F c(t+ a)
ī(t, t+ a, x)da +

∫ t

0
λ̄(a)

1

F c(a)
ī(t, a, x)da

=

∫ ∞
0

1

F c(a)
λ̄(a) ī(t, a, x)da . (3.18)

In the special case when λi(t) = λ̃(t)1t<ηi as described in the previous remark, we obtain

F̄(t, x) =

∫ ∞
0

λ̃(a) ī(t, a, x)da , (3.19)

which further gives

Ῡ(t, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

∫ ∞
0

λ̃(a) ī(t, a, x′)dadx′

=
S̄(t, x)

B̄(x)

∫ ∞
0

∫ 1

0
β(x, x′)λ̃(a) ī(t, a, x′)dx′da . (3.20)

Remark 3.3. In Diekmann [9], the spatial-temporal deterministic model is specified as follows. The
function Ī(t, x) is written as an integral of the function ī(t, a, x):

Ī(t, x) =

∫ ∞
0

ī(t, a, x)da .

The infectivity function is given by

Ῡ(t, x) = S̄(t, x)

∫ ∞
0

∫ 1

0
ī(t, a, x′)A(a, x, x′)dx′da , (3.21)

where A(a, x, x′) is the infectivity at x due to the infected individual with the infection age a at
x′. (Note the difference of Ῡ(t, x) in (3.21) from our limit Ῡ(t, x) in (3.20) with B̄(x) in the
denominator, and abusing notation we use the same symbols in this remark). Therefore, in order to
match the model by Diekmann [9], we can take

A(a, x, x′) = β(x, x′)λ̄(a). (3.22)

By (3.3) and (3.6), we obtain

∂S̄(t, x)

∂t
= − S̄(t, x)

B̄(x)

∫ ∞
0

∫ 1

0
β(x, x′)λ̄(a + t) ī(0, a, x′)dx′da

− S̄(t, x)

B̄(x)

∫ t

0

∫ 1

0
β(x, x′)λ̄(t− s) ī(s, 0, x′)dx′ds

=
S̄(t, x)

B̄(x)

(∫ t

0

∫ 1

0
β(x, x′)λ̄(a)

∂S̄(t− a, x′)

∂t
dx′da− h(t, x)

)
, (3.23)

where

h(t, x) =

∫ ∞
0

∫ 1

0
β(x, x′)λ̄(a + t) ī(0, a, x′)dx′da .

Then integrating (3.23) with respect to t, we can calculate u(t, x) = − ln S̄(t,x)
S̄(0,x)

. If one were to assume

B̄(x)=1 in the denominator of (3.23), then we would obtain

u(t, x) = − ln
S̄(t, x)

S̄(0, x)
=

∫ t

0

∫ 1

0
(1− e−u(t−a,x′))S̄(0, x′)β(x, x′)λ̄(a)dx′da +

∫ t

0
h(s, x)ds,
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and next using (3.22), we would then obtain the specification of u(t, x) in [9].
Moreover, if the infection rate is the constant λ and the infectious periods are exponential of rate

µ, we have F̄(t, x) = λĪ(t, x), and as a result, the infectivity function of Diekmann in (3.21) becomes

Ῡ(t, x) = S̄(t, x)

∫ 1

0
β(x, x′)λĪ(t, x′)dx′ . (3.24)

Because of the memoryless property of exponential periods, it is adequate to use the process I(t, x) to
describe the dynamics instead of I(t, a, x). In this case, we obtain Kendall’s spatial model [14, 15],
in which given the limit Ῡ(t, x) in (3.24),

∂S̄(t, x)

∂t
= −Ῡ(t, x),

∂Ī(t, x)

∂t
= Ῡ(t, x)− µĪ(t, x),

∂R̄(t, x)

∂t
= µĪ(t, x) . (3.25)

Remark 3.4. Recall the spatial SIS model in Remark 2.3. We obtain the same PDE in (3.1) with
the boundary condition in (3.2), in which S̄(t, x) is the solution to (3.3) with S̄(0, x) satisfying∫ 1

0 (S̄(0, x) + Ī(0, x))dx = 1 and S̄(0, x) = B̄(x)− Ī(0, x). The solution to the PDE is also given by

(3.4)–(3.5) with the boundary condition in (3.2), with S̄(0, x) mentioned above. Similarly, we also
obtain the expression of F̄(t, x) in (3.18).

In the Markovian case with a constant infection rate λ and recovery rate µ, our model reduces to
the following ODE with a spatial parameter:

∂Ī(t, x)

∂t
= λS̄(t, x)

∫ 1

0
β(x, x′)Ī(t, x′)dx′ − µĪ(t, x) (3.26)

with S̄(t, x) satisfying
∫ 1

0 (S̄(t, x) + Ī(t, x))dx = 1 B̄(x) = S̄(t, x) + Ī(t, x) for each t ≥ 0. (This can
be also seen from (3.25) and (3.24).) This resembles the ODE limit with a spatial parameter as
established by Keliger et al. [13] for the finite-state Markov SIS model on a sampled graph from
graphon (since there is only one individual at each node of the graph, S̄(t, x) in (3.26) is replaced by
1− Ī(t, x), see equation (10) in that paper).

Returning to the integral limit for the spatial SIS model in Remark 2.3, we assume that
limt→∞ Ī(t, a, x) exists and the limit is denoted as Ī∗(a, x), and let Ī∗(x) = limt→∞ Ī(t, x) =
Ī∗(∞, x). Also let S̄∗(x) = limt→∞ S̄(t, x). Note that∫ 1

0
(S̄∗(x) + Ī∗(x))dx = 1. (3.27)

Let β−1 =
∫∞

0 F c(a)da and Fe(a) = β
∫ a

0 F
c(s)ds.

By (2.28) and (3.18), we obtain

Ī∗(a, x) =

∫ a

0
F c(s)ds S̄∗(x)

∫ 1

0
β(x, x′)

∫ ∞
0

1

F c(a′)
λ̄(a′)Ī∗(da′, x′)dx′

= β−1Fe(a)S̄∗(x)

∫ 1

0
β(x, x′)

∫ ∞
0

1

F c(a′)
λ̄(a′)Ī∗(da′, x′)dx′ . (3.28)

By letting a→∞ on the both sides, we obtain

Ī∗(x) = β−1S̄∗(x)

∫ 1

0
β(x, x′)

∫ ∞
0

1

F c(a′)
λ̄(a′)Ī∗(da′, x′)dx′ . (3.29)

This implies
Ī∗(a, x) = Fe(a)Ī∗(x) ,

which then gives
∂

∂a
Ī∗(a, x) = βF c(a)Ī∗(x) .
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Thus,

Ī∗(a, x) = β−1Fe(a)S̄∗(x)

∫ 1

0
β(x, x′)

∫ ∞
0

1

F c(a′)
λ̄(a′)βF c(a′)Ī∗(x′)da′dx′

= Fe(a)
(∫ ∞

0
λ̄(a′)da′

)
S̄∗(x)

∫ 1

0
β(x, x′)Ī∗(x′)dx′ .

Define Λ̄ =
∫∞

0 λ̄(t)dt. By letting a→∞ again on both sides, we obtain that the equilibrium Ī∗(x)
must satisfy

Ī∗(x) = Λ̄(B̄(x)− Ī∗(x))

∫ 1

0
β(x, x′)Ī∗(x′)dx′ , x ∈ [0, 1].

This equation has a solution Ī∗(x) ≡ 0, which is the disease-free equilibrium. Let us now discuss the
existence of an endemic equilibrium. First, observe that if B̄(x) ≡ B̄ and β(x, y) ≡ β are constant,
then the equation reduces to Ī∗ = Λ̄(B̄− Ī∗)βĪ∗, which has a positive solution if and only if Λ̄B̄β > 1.
Next, we give a sufficient condition under which the integral equation (below k(x, y) = Λ̄β(x, y))

u(x) = (B̄(x)− u(x))

∫ 1

0
k(x, y)u(y)dy

has a non zero solution. The condition reads:

inf
x∈[0,1]

B̄(x)

∫ 1

0
k(x, y)dy > 1 . (3.30)

We first note that condition (3.30) implies that there exists δ > 0 such that

B̄(x)

∫ 1

0
k(x, y)dy ≥ 1 + δ, ∀x ∈ [0, 1] .

From this and the assumption that supx
∫ 1

0 k(x, y)dy <∞, we deduce that there exists θ > 0 such
that

(B̄(x)− θ)
∫ 1

0
k(x, y)dy ≥ 1, ∀x ∈ [0, 1] .

Let us now remark that u : [0, 1] 7→ R+ is a solution of our integral equation iff

u = Φ(u), where Φ(u)(x) = B̄(x)

∫ 1
0 k(x, y)u(y)dy

1 +
∫ 1

0 k(x, y)u(y)dy
.

The mapping Φ has the three following properties (below θ(x) :≡ θ):

Φ(θ) ≥ θ, Φ(B̄) ≤ B̄ and u ≤ v ⇒ Φ(u) ≤ Φ(v) .

We deduce readily from those properties that

θ ≤ Φ(θ) ≤ Φ(B̄) ≤ B̄ .
Exploiting the third property of Φ, we can iterate our argument, and deduce that

θ ≤ Φ(θ) ≤ · · · ≤ Φ◦(n−1)(θ) ≤ Φ◦n(θ) ≤ Φ◦n(B̄) ≤ Φ◦(n−1)(B̄) ≤ · · · ≤ Φ(B̄) ≤ B̄ .
Hence both sequences Φ◦n(θ) and Φ◦n(B̄) have a limit, which are positive solutions of our integral
equations. We conjecture that one should be able to establish uniqueness of a non zero solution,
possible under slightly different conditions.



FLLN FOR SPATIALLY DENSE NON-MARKOVIAN EPIDEMIC MODELS 17

4. Some technical preliminaries

We will use the following convergence criteria for the processes: a) XN (t, x) in D(R+, L
1) and

b) XN (t, s, x) in D(R+,D(R+, L
1)). They extend the convergence criterion for the processes in D

(the Corollary on page 83 of [6]) and in DD ([21, Theorem 4.1]). The proof is a straightforward
extension of those results (in [6] it is noted that with very little change, the theory can be extended
to functions taking values in metric spaces that are separable and complete). We remark that one
may also replace the L1 norm ‖ · ‖1 by the L2 norm in the following results.

Theorem 4.1. Let {XN (t, x) : N ≥ 1} be a sequence of random elements such that XN is in
D(R+, L

1). If the following two conditions are satisfied: for any T > 0,

(i) for any ε > 0, supt∈[0,T ] P
(
‖XN (t, ·)‖1 > ε

)
→ 0 as N →∞, and

(ii) for any ε > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P
(

sup
u∈[0,δ]

‖XN (t+ u, ·)−XN (t, ·)‖1 > ε

)
→ 0,

then ‖XN (t, ·)‖1 → 0 in probability, locally uniformly in t, as N →∞.

Theorem 4.2. Let {XN : N ≥ 1} be a sequence of random elements such that XN is in
D(R+,D(R+, L

1)). If the following two conditions are satisfied: for any T, S > 0,

(i) for any ε > 0, supt∈[0,T ] sups∈[0,S] P
(
‖XN (t, s, ·)‖1 > ε

)
→ 0 as N →∞, and

(ii) for any ε > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P
(

sup
u∈[0,δ]

sup
s∈[0,S]

‖XN (t+ u, s, ·)−XN (t, s, ·)‖1 > ε

)
→ 0,

lim sup
N

sup
s∈[0,S]

1

δ
P
(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖XN (t, s+ v, ·)−XN (t, s, ·)‖1 > ε

)
→ 0,

then ‖XN (t, s, ·)‖1 → 0 in probability, locally uniformly in t and s, as N →∞.

We shall also need the following Lemma.

Lemma 4.1. For each N ≥ 1, let fN : R+ × [0, 1] 7→ R+ be measurable and such that t 7→ fN (t, x)
is non–decreasing for each x ∈ [0, 1]. Assume that there exists f : R+ × [0, 1] 7→ R+ such that
t 7→ f(t, x) is continuous for each x ∈ [0, 1], and for all t ≥ 0, as N →∞,

‖fN (t, ·)− f(t, ·)‖1 → 0 . (4.1)

Let g ∈ D(R;R+) be such that there exists C > 0 with g(t) ≤ C for all t ≥ 0. Define

hN (t, x) =

∫ t

0
g(s)fN (ds, x), h(t, x) =

∫ t

0
g(s)f(ds, x) .

Then for any t > 0, ‖hN (t, ·)− h(t, ·)‖1 → 0 as N →∞. In addition,
∫ 1

0 hN (t, x)dx→
∫ 1

0 h(t, x)dx
locally uniformly in t, as N →∞.

Moreover, if for each N ≥ 1, fN is random and the convergence (4.1) holds in probability, then
the conclusion holds in probability as well.

Proof. Fix T > 0. Let {sn, n ≥ 1} be a countable dense subset of [0, T ]. By successive extraction
of subsequences we can extract a subsequence from the original sequence {fN , N ≥ 1}, which
by an abuse of notation we still denote as the original sequence, and which is such that there
exists a subset N ⊂ [0, 1] with zero Lebesgue measure, such that for all n ≥ 1 and x ∈ [0, 1]\N ,
fN (sn, x) → f(sn, x). Since for all N and x, s 7→ fN (s, x) is nondecreasing and s 7→ f(s, x) is
continuous, we deduce that for all s ∈ [0, T ] and x ∈ [0, 1]\N , fN (s, x) → f(s, x). Consequently,
for all x ∈ [0, 1]\N , the sequence of measures fN (ds, x) on [0, T ] converges weakly to the measure
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f(ds, x). Since the set of points of discontinuity of g on [0, T ] is at most countable and s 7→ f(s, x)
is continuous, that set is of zero f(ds, x) measure. Hence a slight extension of the Portmanteau
theorem (see Theorem 1.2.1 in [6]) yields that for all x ∈ [0, 1]\N , hN (t, x) → h(t, x). Moreover,
0 ≤ hN (t, x) ≤ CfN (t, x), and the upper bound converges in L1([0, 1]), hence the sequence hN (t, ·)
is uniformly integrable and converges in L1([0, 1]) towards h(t, x). Now all converging subsequences
have the same limit, so the the whole sequence converges.

The “locally uniform in t” convergence of the integrals follows from the second Dini theorem (see,

e.g., Problem 127 on pages 81 and 270 in [24]). Indeed the convergence
∫ 1

0 hN (t, x)dx→
∫ 1

0 h(t, x)dx

for each t follows from the above arguments, for each N ≥ 1, t 7→
∫ 1

0 hN (t, x)dx is non–decreasing

and the limit t 7→
∫ 1

0 h(t, x)dx is continuous.
The case of random fN is treated similarly. The extraction of subsequences is done in such a way

that for each n, fN (sn, x) converges as N →∞ on a subset of Ω× [0, 1] of full dP⊗ dx measure.
We conclude that from any subsequence of the original sequence {hN (t, ·), N ≥ 1}, we can extract
a further subsequence which converges a.s. in L1([0, 1]), hence the convergence in probability in
L1([0, 1]), as claimed. �

5. Proof of the Convergence of S̄N (t, x) and F̄N (t, x)

In this section we prove the convergence of S̄N (t, x) and F̄N (t, x) to S̄(t, x) and F̄(t, x) given by
the set of equations (2.21) and (2.22) together with (2.23). We first write SNk (t) = SNk (0)−ANk (t)
as follows by (2.6):

SNk (t) = SNk (0)−
∫ t

0

∫ ∞
0

1u≤ΥNk (s)Qk(ds, du),

and recall FNk (t) in (2.4). Then, we have

S̄N (t, x) = S̄N (0, x)−
KN∑
k=1

KN

N

∫ t

0

∫ ∞
0

1u≤ΥNk (s)Qk(ds, du)1Ik(x)

= S̄N (0, x)−
∫ t

0
ῩN (s, x)ds − M̄N

A (t, x) , (5.1)

where Qk(ds, du) = Qk(ds, du)− dsdu and

M̄N
A (t, x) :=

KN∑
k=1

KN

N

∫ t

0

∫ ∞
0

1u≤ΥNk (s)Qk(ds, du)1Ik(x) . (5.2)

We then write

F̄N (t, x) = F̄N0 (t, x) +

∫ t

0
λ̄(t− s)ῩN (s, x)ds+ ∆N

1,1(t, x) + ∆N
1,2(t, x) , (5.3)

where

F̄N0 (t, x) =
KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

λ−j,k(τ̃
N
−j,k + t)1Ik(x), (5.4)

∆N
1,1(t, x) =

KN∑
k=1

KN

N

ANk (t)∑
j=1

(
λj,k(t− τNj,k)− λ̄(t− τNj,k)

)
1Ik(x) , (5.5)
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and

∆N
1,2(t, x) =

KN∑
k=1

KN

N

∫ t

0
λ̄(t− s)

∫ ∞
0

1u≤ΥNk (s)Qk(ds, du)1Ik(x) . (5.6)

Observe that

ῩN (s, x) =

KN∑
k=1

KN

N

SNk (s)

BN
k

1

KN

KN∑
k′=1

βNk,k′F
N
k′(s)1Ik(x)

=
KN∑
k=1

S̄Nk (s)

B̄N
k

1Ik(x)

∫ 1

0

KN∑
k′=1

βNk,k′F̄
N
k′(s)1Ik′ (x

′)dx′

=
S̄N (s, x)

B̄N (x)

∫ 1

0
βN (x, x′)F̄N (s, x′)dx′ , (5.7)

where βN (x, x′) is defined in (2.16).
Before proceeding to prove the convergence of S̄N (t, x) and F̄N (t, x), we describe the proof

strategy as follows. In the expressions of S̄N (t, x) and F̄N (t, x) in (5.1) and (5.3), the stochastic
terms M̄N

A (t, x), ∆N
1,1(t, x) and ∆N

1,2(t, x) will converge to zero in probability as N →∞, which are

proved in Lemmas 5.5 and 5.6. The term F̄N0 (t, ·) will converge to a limit F̄0(t, ·) (in the ‖ · ‖1 norm
in probability), which is proved in Lemma 5.4. Thus, the proof for the convergence of S̄(t, x) and
F̄N (t, x) can be carried out by studying the set of integral equations (5.1) and (5.3) together with
the expression of ῩN (s, x) above, given the convergence of the terms S̄N (0, ·), F̄N0 (t, ·), M̄N

A (t, x),
∆N

1,1(t, x) and ∆N
1,2(t, x). In the following we will first provide this argument in Proposition 5.1 and

then provide the proofs for the convergence of the required individual terms.
The following Lemma follows readily from (2.9) and (2.4), and the conditions on B̄N (x) in (2.15).

Lemma 5.1. The processes S̄N (t, x) and F̄N (t, x) are nonnegative and satisfy the following a priori
bounds:

sup
N

sup
t≥0, x∈[0,1]

S̄N (t, x) ≤ CB and sup
N

sup
t≥0, x∈[0,1]

F̄N (t, x) ≤ λ∗CB a.s.

Next, recall the set of the limiting equations:

S̄(t, x) = S̄(0, x)−
∫ t

0

S̄(s, x)

B̄(x)

∫ 1

0
β(x, y)F̄(s, y)dyds,

F̄(t, x) = F̄0(t, x) +

∫ t

0
λ̄(t− s) S̄(s, x)

B̄(x)

∫ 1

0
β(x, y)F̄(s, y)dyds ,

(5.8)

where

F̄0(t, x) :=

∫ ∞
0

λ̄(a + t)

F c(a)
Ī(0, da, x). (5.9)

We have the following lemmas on the solution properties to this set of equations, and also the
existence and uniqueness of its solution.

Lemma 5.2. Under Assumptions 2.1 and 2.3, any (L∞([0, 1]))2–valued solution (S̄(t, x), F̄(t, x)) of
equation (5.8) is nonnegative, and satisfies supt≥0 S̄(t, x) ≤ S̄(0, x) ≤ CB and for any T > 0, there
exists CT > 0 such that

sup
0≤t≤T,x∈[0,1]

F̄(t, x) ≤ CT .

Proof. The non–negativity of S̄ follows from that of the initial condition and the linearity of the
equation. For the second statement, we first note that T̄(0,∞, x) ≤ CB, hence from (5.9) and
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Assumption 2.3, 0 ≤ F̄0(t, x) ≤ λ∗CB. Hence from the second line of (5.8) and (2.17) and from the
assumption that B̄(x) ≥ cB > 0 for each x ∈ [0, 1] in (2.13), we obtain

‖F̄(t, ·)‖∞ ≤ λ∗CB +
Cβ
cB
λ∗CB

∫ t

0
‖F̄(s, ·)‖∞ds.

Thus, the second statement with CT = λ∗CB exp
(Cβ
cB
λ∗CBT

)
follows from Gronwall’s lemma. We

next show that F̄(t, x) ≥ 0. Suppose that F̄(t, x) = F̄+(t, x)− F̄−(t, x). Then we have

F̄−(t, x) ≤
∫ t

0
λ̄(t− s) S̄(s, x)

B̄(x)

∫ 1

0
β(x, y)F̄−(s, y)dyds,

and by a similar argument as above using Gronwall’s Lemma, we deduce that ‖F̄−(t, ·)‖∞ = 0,
hence the result. Finally it follows readily from Assumption 2.1 that S̄(0, x) ≤ supN S̄

N (0, x) ≤ CB
for all x. From the first line of (5.8), since S̄ and F̄ are nonnegative, S̄(t, x) ≤ S̄(0, x), hence the
first statement. �

Lemma 5.3. Under Assumptions 2.1 and 2.3, equation (5.8) has a unique (L∞([0, 1]))2–valued
solution.

Proof. We already know that any solution is nonnegative and locally bounded. Uniqueness is then
easy to deduce from the following estimate. Consider two solutions (S̄, F̄) and (S̄′, F̄′), and define

Ῡ(t, x) = S̄(t,x)
B̄(x)

∫ 1
0 β(x, y)F̄(t, y)dy, Ῡ′(t, x) similarly, replacing (S̄, F̄) by (S̄′, F̄′).

Since from (2.13) B̄(x) ≥ cB, and from Lemma 5.2 S̄(t, x) ≤ CB and for 0 ≤ t ≤ T, x ∈ [0, 1],
F̄(t, x) ≤ CT , we obtain

‖Ῡ(t, ·)− Ῡ′(t, ·)‖∞ ≤ sup
x∈[0,1]

∣∣∣∣ S̄(t, x)

B̄(x)
− S̄′(t, x)

B̄(x)

∣∣∣∣ ∫ 1

0
β(x, y)F̄(t, y)dy

+ sup
x∈[0,1]

S̄′(t, x)

B̄(x)

∫ 1

0
β(x, y)|F̄(t, y)− F̄′(t, y)|dy

≤ 1

cB
‖S̄(t, ·)− S̄′(t, ·)‖∞ sup

x∈[0,1]

∫ 1

0
β(x, y)F̄(t, y)dy

+
CβCB
cB
‖F̄(t, ·)− F̄′(t, ·)‖∞

≤
Cβ
cB
CT ‖S̄(t, ·)− S̄′(t, ·)‖∞ +

CβCB
cB
‖F̄(t, ·)− F̄′(t, ·)‖∞.

From this inequality, we see that uniqueness follows from Gronwall’s Lemma. The same estimate
can be used repeatedly for proving convergence in L∞([0, 1]) of the Picard iteration procedure,
which establishes existence. �

We can now prove the main result of this section. Let us first introduce a notation. We let
ENF (t, x) = ∆N

1,1(t, x) + ∆N
1,2(t, x) and

ΨN (t) :=

∫ 1

0
|F̄N0 (t, x)− F̄0(t, x)|dx+

∫ 1

0
|M̄N

A (t, x)|dx+

∫ 1

0
|ENF (t, x)|dx .

Proposition 5.1. Let T > 0 be arbitrary. Given that
∫ 1

0 |S̄
N (0, x)− S̄(0, x)|dx→ 0 in Assumption

2.1, and assuming that sup0≤t≤T ΨN (t)→ 0 in probability as N →∞, we have

sup
0≤t≤T

(
‖S̄N (t, ·)− S̄(t, ·)‖1 + ‖F̄N (t, ·)− F̄(t, ·)‖1

)
→ 0

in probability as N →∞.
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Proof. Referring to the notations in Lemmas 5.1 and 5.2, let us assume that λ∗ ≤ CT . We first
upper bound the following difference

S̄(t, x)

B̄(x)

∫ 1

0
β(x, y)F̄(t, y)dy − S̄N (t, x)

B̄N (x)

∫ 1

0
βN (x, y)F̄N (t, y)dy

=

(
S̄(t, x)

B̄(x)
− S̄N (t, x)

B̄N (x)

)∫ 1

0
βN (x, y)F̄N (t, y)dy

+
S̄(t, x)

B̄(x)

(∫ 1

0
β(x, y)F̄(t, y)dy −

∫ 1

0
βN (x, y)F̄N (t, y)dy

)
≤ CβCT

∣∣∣∣ S̄(t, x)

B̄(x)
− S̄N (t, x)

B̄N (x)

∣∣∣∣+

∫ 1

0
βN (x, y)(F̄(t, y)− F̄N (t, y))dy

+

∫ 1

0
(β(x, y)− βN (x, y))F̄(t, y)dy .

Note that by (2.13) and (2.15),∣∣∣∣ S̄(t, x)

B̄(x)
− S̄N (t, x)

B̄N (x)

∣∣∣∣ =

∣∣∣∣ S̄(t, x)− S̄N (t, x)

B̄(x)
+ S̄N (t, x)

(
1

B̄(x)
− 1

B̄N (x)

)∣∣∣∣
≤ c−1

B |S̄(t, x)− S̄N (t, x)|+ c−2
B CB|B̄N (x)− B̄(x)| .

Consequently,∥∥∥∥ S̄(t, ·)
B̄(·)

∫ 1

0
β(·, y)F̄(t, y)dy − S̄N (t, ·)

B̄N (·)

∫ 1

0
βN (·, y)F̄N (t, y)dy

∥∥∥∥
1

≤ CβCT c−1
B ‖S̄(t, ·)− S̄N (t, ·)‖1 + CβCT c

−2
B CB‖B̄N (·)− B̄(·)‖1

+

(
sup
N,y

∫ 1

0
βN (x, y)dx

)
‖F̄(t, ·)− F̄N (t, ·)‖1

+

∫ 1

0

∣∣∣∣∫ 1

0
(β(x, y)− βN (x, y))F̄(t, y)dx

∣∣∣∣ dy .
We can now estimate the norm ‖S̄(t, ·)−S̄N (t, ·)‖1 and ‖F̄(t, ·)−F̄N (t, ·)‖1. Let C̄ := max{Cβ, CβCT c−1

B ,

CβCT c
−2
B CB}. We now deduce from (5.1), (5.8) and the last computation that

‖S̄(t, ·)− S̄N (t, ·)‖1 ≤ ‖S̄(0, ·)− S̄N (0, ·)‖1 + ‖M̄N
A (t, ·)‖1

+

∫ t

0

∫ 1

0

∣∣∣∣∫ 1

0
(β(x, y)− βN (x, y))F̄(s, y)dx

∣∣∣∣ dyds
+ C̄

∫ t

0
‖S̄(s, ·)− S̄N (s, ·)‖1ds+ C̄‖B̄N (·)− B̄(·)‖1

+ C̄

∫ t

0
‖F̄(s, ·)− F̄N (s, ·)‖1ds.

Next from (5.3) and (5.8), we get

‖F̄(t, ·)− F̄N (t, ·)‖1 ≤ ‖F̄0(t, ·)− F̄N0 (t, ·)‖1 + ‖ENF (t, ·)‖1

+

∫ t

0

∫ 1

0

∣∣∣∣∫ 1

0
(β(x, y)− βN (x, y))F̄(s, y)dx

∣∣∣∣ dyds
+ C̄

∫ t

0
‖S̄(s, ·)− S̄N (s, ·)‖1ds+ C̄‖B̄N (·)− B̄(·)‖1
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+ C̄

∫ t

0
‖F̄(s, ·)− F̄N (s, ·)‖1ds .

Adding those two inequalities, the result follows from our assumptions, the fact that (2.18) in
Assumption 2.2 implies that∫ t

0

∫ 1

0

∣∣∣∣∫ 1

0
(β(x, y)− βN (x, y))F̄(s, y)dx

∣∣∣∣ dyds→ 0 as N →∞,

and the following variant of Gronwall’s Lemma: if f(t) and g(t) are nonnegative real-valued functions

of t and satisfy f(t) ≤ g(t) + c
∫ t

0 f(s)ds for all 0 ≤ t ≤ T and for some c > 0, then for those t,

f(t) ≤ g(t) + c
∫ t

0 e
c(t−s)g(s)ds. �

It remains to show that sup0≤t≤T ΨN (t)→ 0 in probability, which follows from the next three

lemmas, where we establish the convergence of F̄N0 (t, ·) to F̄0(t, x), and that the stochastic terms
M̄N
A (t, x), ∆N

1,1(t, x) and ∆N
1,2(t, x) of (5.2), (5.5) and (5.6) tend to 0 in probability, as N →∞.

Lemma 5.4. Under Assumptions 2.1 and 2.3,

‖F̄N0 (t, ·)− F̄0(t, ·)‖1 → 0 (5.10)

in probability, locally uniformly in t, as N →∞, where F̄0(t, x) is defined in (5.9).

Proof. We apply Theorem 4.1. First, we have

F̄N0 (t, x)− F̄0(t, x) = ∆N
0,1(t, x) + ∆N

0,2(t, x),

where

∆N
0,1(t, x) =

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

(
λ−j,k(τ̃

N
−j,k + t)− λ̄(τ̃N−j,k + t)

)
1Ik(x) ,

∆N
0,2(t, x) =

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

λ̄(τ̃N−j,k + t)1Ik(x)−
∫ ā

0
λ̄(a + t)T̄(0, da, x)

=

∫ ā

0
λ̄(a + t)[T̄N (0, da, x)− T̄(0, da, x)] .

We now verify condition (i) of Theorem 4.1. For the first term ∆N
0,1(t, x), we have

‖∆N
0,1(t, ·)‖1 ≤

1

KN

KN∑
k=1

KN

N

∣∣∣∣∣∣
∑

j:−j∈T Nk (0)

(
λ−j,k(τ̃

N
−j,k + t)− λ̄(τ̃N−j,k + t)

)∣∣∣∣∣∣ .
Here the summands over k are independent, and for each k, conditional on {τ̃N−j,k}j , the summands
over j are also independent and centered. Using Jensen’s inequality for the sum over k, and the
conditional independence for the sum over j, we deduce

E

 1

KN

KN∑
k=1

KN

N

∣∣∣∣∣∣
∑

j:−j∈T Nk (0)

(
λ−j,k(τ̃

N
−j,k + t)− λ̄(τ̃N−j,k + t)

)∣∣∣∣∣∣
2

≤ E

 1

KN

KN∑
k=1

KN

N

∫ ā

0
v(a + t)T̄Nk (0, da)

→ 0 as N →∞,
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since under Assumption 2.1, thanks to Lemma 4.1,

1

KN

KN∑
k=1

∫ ā

0
v(a + t)T̄Nk (0, da)→

∫ 1

0

∫ ā

0
v(a + t)T̄(0, da, x)dx

in probability and KN

N → 0 as N →∞. Recall that v(t) is the variance of the random function λ(t)
in Assumption 2.3, which is bounded.

The fact that ‖∆N
0,2‖1 → 0 in probability follows again from Lemma 4.1 and Assumption 2.1.

Now to check condition (ii) of Theorem 4.1, we first have for t, u > 0,

∆N
0,1(t+ u, x)−∆N

0,1(t, x)

=
KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

(
λ−j,k(τ̃

N
−j,k + t+ u)− λ−j,k(τ̃N−j,k + t)

)
1Ik(x)

−
KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

(
λ̄(τ̃N−j,k + t+ u)− λ̄(τ̃N−j,k + t)

)
1Ik(x) .

Observe that ∥∥∥∥∥∥
KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

(
λ−j,k(τ̃

N
−j,k + t+ u)− λ−j,k(τ̃N−j,k + t)

)
1Ik(x)

∥∥∥∥∥∥
1

≤ 1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

∣∣∣λ−j,k(τ̃N−j,k + t+ u)− λ−j,k(τ̃N−j,k + t)
∣∣∣ ,

and similarly for the second term. Thus,

‖∆N
0,1(t+ u, x)−∆N

0,1(t, x)‖1 ≤
1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

∣∣∣λ−j,k(τ̃N−j,k + t+ u)− λ−j,k(τ̃N−j,k + t)
∣∣∣

+
1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

∣∣∣λ̄(τ̃N−j,k + t+ u)− λ̄(τ̃N−j,k + t)
∣∣∣

=: ∆
N,(1)
0,1 (t, u) + ∆

N,(2)
0,1 (t, u) .

By Assumption 2.3, using the expression of λ(t) in (2.19), that is, λ−j,k(t) =
∑κ

`=1 λ
`
−j,k(t)1[ζ`−1

−j,k,ζ
`
−j,k)(t),

we obtain

∆
N,(1)
0,1 (t, u) (5.11)

=
1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

∣∣∣∣ κ∑
`=1

λ`−j,k(τ̃
N
−j,k + t+ u)1[ζ`−1

−j,k,ζ
`
−j,k)(τ̃

N
−j,k + t+ u)

−
κ∑
`=1

λ`−j,k(τ̃
N
−j,k + t)1[ζ`−1

−j,k,ζ
`
−j,k)(τ̃

N
−j,k + t)

∣∣∣∣
≤ 1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

κ∑
`=1

∣∣∣λ`−j,k(τ̃N−j,k + t+ u)− λ`−j,k(τ̃N−j,k + t)
∣∣∣1ζ`−1
−j,k≤τ̃

N
−j,k+t≤τ̃N−j,k+t+u≤ζ`−j,k
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+ λ∗
1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

κ∑
`=1

1τ̃N−j,k+t≤ζ`−j,k≤τ̃
N
−j,k+t+u

≤ ϕ(u)
1

KN

KN∑
k=1

(ĪNk (0) + R̄Nk (0)) + λ∗
1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

κ∑
`=1

1τ̃N−j,k+t≤ζ`−j,k≤τ̃
N
−j,k+t+u . (5.12)

Since both terms in the right hand side are increasing in u, we obtain

sup
u∈[0,δ]

∆
N,(1)
0,1 (t, u) ≤ ϕ(δ)

1

KN

KN∑
k=1

(ĪNk (0) + R̄Nk (0))

+ λ∗
κ∑
`=1

1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

1τ̃N−j,k+t≤ζ`−j,k≤τ̃
N
−j,k+t+δ . (5.13)

Note that

1

KN

KN∑
k=1

(ĪNk (0) + R̄Nk (0))→
∫ 1

0
(Ī(0, x) + R̄(0, x))dx as N →∞

under Assumption 2.1. For the second term in (5.13), we have

κ∑
`=1

1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

1τ̃N−j,k+t≤ζ`−j,k≤τ̃
N
−j,k+t+δ

=

κ∑
`=1

1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

[
1τ̃N−j,k+t≤ζ`−j,k≤τ̃

N
−j,k+t+δ −

(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)]

+
κ∑
`=1

1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)
. (5.14)

In the first expression, for each k, conditional on {τ̃N−j,k}j , the summands over j are independent.
We have

E

 1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

[
1τ̃N−j,k+t≤ζ`−j,k≤τ̃

N
−j,k+t+δ −

(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)]2
≤ E

 1

KN

KN∑
k=1

(KN

N

)2
( ∑
j:−j∈T Nk (0)

[
1τ̃N−j,k+t≤ζ`−j,k≤τ̃

N
−j,k+t+δ −

(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)])2


= E

 1

KN

KN∑
k=1

(KN

N

)2 ∑
j:−j∈T Nk (0)

[
1τ̃N−j,k+t≤ζ`−j,k≤τ̃

N
−j,k+t+δ −

(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)]2


= E

[
1

KN

KN∑
k=1

(KN

N

)2 ∑
j:−j∈T Nk (0)

[(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)

×
(

1−
(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

))]]
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≤ 1

KN

KN∑
k=1

(KN

N

)2
(INk (0) +RNk (0))

1

4

≤ 1

4

1

KN

(KN

N

)2
N =

1

4

KN

N
→ 0 as N →∞ .

Hence, the first term in (5.14) converges to zero in probability as N →∞. For the second term in
(5.14), we have

κ∑
`=1

1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)

=

κ∑
`=1

1

KN

KN∑
k=1

∫ ā

0

(
F`(a + t+ δ)− F`(a + t)

)
ĪNk (0, da)

→
κ∑
`=1

∫ 1

0

∫ ā

0

(
F`(a + t+ δ)− F`(a + t)

)
Ī(0, da, x)dx ,

in probability as N → ∞. For each ` = 1, . . . , κ, the function δ →
∫ 1

0

∫ x̄
0

(
F`(a + t + δ) − F`(a +

t)
)
Ī(0, da, x)dx is continuous and equal to zero at δ = 0. Thus we have shown that for any ε > 0,

there exists δ > 0 small enough such that

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(
sup

0≤u≤δ
∆
N,(1)
0,1 (t, u) > ε/2

)
= 0. (5.15)

Note that

∆
N,(2)
0,1 (t, u) =

∫ 1

0

∫ ā

0

∣∣λ̄(a + t+ u)− λ̄(a + t)
∣∣ ĪN (0, da, x)dx . (5.16)

By similar calculations leading to (5.13), we obtain for any small enough δ > 0,

sup
u∈[0,δ]

∆
N,(2)
0,1 (t, u) ≤ ϕ(δ)

1

KN

KN∑
k=1

ĪNk (0)

+ λ∗
κ∑
`=1

1

KN

KN∑
k=1

KN

N

∑
j:−j∈T Nk (0)

(
F`(τ̃

N
−j,k + t+ δ)− F`(τ̃N−j,k + t)

)
.

Thus, by the same arguments for these two terms as in the proof for (5.15), we obtain that (5.15)

holds for ∆
N,(2)
0,1 (t, u). Thus, combining these two results, we obtain that for any ε > 0, for δ > 0

small enough,

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(
sup

0≤u≤δ
‖∆N

0,1(t+ u, x)−∆N
0,1(t, x)‖1 > ε

)
= 0 . (5.17)

Now for ∆N
0,2(t, x), we have for t, u > 0,

‖∆N
0,2(t+ u, x)−∆N

0,2(t, x)‖1

≤
∫ 1

0

∫ ā

0
|λ̄(a + t+ u)− λ̄(a + t)|[ĪN (0, da, x) + Ī(0, da, x)]dx,
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which is treated exactly as ∆
N,(2)
0,1 (t, u), see formula (5.16). This completes the proof of the

lemma. �

Lemma 5.5. Under Assumptions 2.1, 2.2 and 2.3, for all T > 0,

E
[

sup
t∈[0,T ]

‖M̄N
A (t, ·)‖21

]
→ 0 , (5.18)

and thus, ∥∥∥ĀN (t, ·)−
∫ t

0
ῩN (s, ·)ds

∥∥∥
1
→ 0 (5.19)

in probability, locally uniformly in t.
In addition, there exists CT > 0 such that for all N ≥ 1,

E

[
sup
t≤T
‖ĀN (t, ·)‖1

]
≤ CT . (5.20)

Proof. Recall the expressions of ANk (t) in (2.6) and ΥN
k (t) in (2.5). By (2.4), under Assumption 2.3

that λ(t) ≤ λ∗, under the condition on B̄(x) in (2.13), and (2.15), we have F̄N (t, x) ≤ λ∗CB and
thus, under Assumption 2.2, ῩN (t, x) ≤ λ∗CBCβ, where we have used (2.17). Hence

‖ῩN (t, ·)‖1 ≤ λ∗CBCβ, (5.21)

and ∥∥∥∫ t

0
ῩN (r, ·)dr −

∫ s

0
ῩN (r, ·)dr

∥∥∥
1
≤ λ∗CBCβ(t− s) . (5.22)

For each k, we can write

ĀNk (t) =

∫ t

0
ῩN
k (s)ds+ M̄N

A,k(t)

where

M̄N
A,k(t) =

KN

N

∫ t

0

∫ ∞
0

1u≤ΥNk (s−)Q̄k(ds, du)

with Q̄k(ds, du) = Qk(ds, du)− dsdu being the compensated PRM associated with Qk. We have
the representation:

ĀN (t, x) =

∫ t

0
ῩN (r, x)dr + M̄N

A (t, x) . (5.23)

It is clear that for each k, {M̄N
A,k(t) : t ≥ 0} is a square-integrable martingale with respect to the

filtration FNA = {FNA (t) : t ≥ 0} where

FNA (t) := σ
{
INk (0), τ̃N−j,k : j = 1, . . . , INk (0), k = 1, . . . ,K

}
∨ σ
{
λj,k(·), j ∈ Z \ {0}, k = 1, . . . ,K

}
∨ σ
{∫ t′

0

∫ ∞
0

1u≤ΥNk (s−)Qk(ds, du) : 0 ≤ t′ ≤ t, k = 1, . . . ,K

}
,

and has the quadratic variation

〈M̄N
A,k〉(t) =

KN

N

∫ t

0
ῩN
k (s)ds, t ≥ 0.

Then,

‖M̄N
A (t, ·)‖1 =

∫ 1

0

∣∣∣∣ KN∑
k=1

M̄N
A,k(t)1Ik(x)

∣∣∣∣dx =
1

KN

KN∑
k=1

∣∣M̄N
A,k(t)

∣∣ . (5.24)
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By Doob’s inequality for submartingales,

E
[

sup
t∈[0,T ]

∣∣M̄N
A,k(t)

∣∣2] ≤ 4E
[∣∣M̄N

A,k(T )
∣∣2] = 4E

[
KN

N

∫ T

0
ῩN
k (s)ds

]
≤ 4λ∗CBCβT

KN

N
.

Since KN

N → 0 as N →∞, the last inequality entails that as N →∞,

sup
1≤k≤KN

E
[

sup
t∈[0,T ]

∣∣M̄N
A,k(t)

∣∣2]→ 0.

This combined with (5.24) implies that (5.18) holds.
Note that the above computations, combined with (5.23) and (5.21), yield (5.20).
Finally (5.19) follows directly from (5.23) and (5.18). �

We finally show that ∆N
1,1(t, ·) and ∆N

1,2(t, ·) tend to 0.

Lemma 5.6. Under Assumptions 2.1, 2.2 and 2.3, as N →∞, both ∆N
1,1(t, ·) and ∆N

1,2(t, ·) defined

in (5.5) and (5.6) converge to zero in L1([0, 1]) in probability, locally uniformly in t.

Proof. We apply Theorem 4.1. We first consider ∆N
1,1(t, x). To verify condition (i) of Theorem 4.1,

we have

‖∆N
1,1(t, ·)‖1 ≤

1

KN

KN∑
k=1

KN

N

∣∣∣∣∣∣
ANk (t)∑
j=1

(
λj,k(t− τNj,k)− λ̄(t− τNj,k)

)∣∣∣∣∣∣ .
Recall the expression of ANk (t) in (2.6) and the associated ΥN

k (t) in (2.5). It is clear that the
summands over k are not independent due to the interactions among individuals in different locations
in the infection process. Using first Jensen’s inequality, and then the fact that for each k, conditional
on the arrivals {τNj,k}j , the summands over j are independent and centered, we have

E


 1

KN

KN∑
k=1

KN

N

∣∣∣∣∣∣
ANk (t)∑
j=1

(
λj,k(t− τNj,k)− λ̄(t− τNj,k)

)∣∣∣∣∣∣
2


≤ E

 1

KN

KN∑
k=1

KN

N

ANk (t)∑
j=1

(
λj,k(t− τNj,k)− λ̄(t− τNj,k)

)2


= E

 1

KN

KN∑
k=1

(KN

N

)2
ANk (t)∑
j=1

∣∣∣λj,k(t− τNj,k)− λ̄(t− τNj,k)
∣∣∣2


= E

 1

KN

KN∑
k=1

(KN

N

)2
∫ t

0
v(t− s)dANk (s)


≤ (λ∗)2E

 1

KN

KN∑
k=1

KN

N
ĀNk (t)


= (λ∗)2K

N

N
E
[
‖ĀN (t, ·)‖1

]
→ 0 as N →∞ ,

where we used v(t) ≤ (λ∗)2 under Assumption 2.3, and the convergence follows from the assumption

that KN

N → 0 as N →∞, and (5.20) in Lemma 5.5.
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We next check condition (ii) in Theorem 4.1 for ∆N
1,1(t, x). We have

∆N
1,1(t+ u, x)−∆N

1,1(t, x) =

KN∑
k=1

KN

N

ANk (t)∑
j=1

(
λj,k(t+ u− τNj,k)− λj,k(t− τNj,k)

)
1Ik(x)

−
KN∑
k=1

KN

N

ANk (t)∑
j=1

(
λ̄(t+ u− τNj,k)− λ̄(t− τNj,k)

)
1Ik(x)

+

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk (t)+1

(
λj,k(t+ u− τNj,k)− λ̄(t+ u− τNj,k)

)
1Ik(x) ,

and

‖∆N
1,1(t+ u, x)−∆N

1,1(t, x)‖1 ≤
1

KN

KN∑
k=1

KN

N

ANk (t)∑
j=1

∣∣∣λj,k(t+ u− τNj,k)− λj,k(t− τNj,k)
∣∣∣

+
1

KN

KN∑
k=1

KN

N

ANk (t)∑
j=1

∣∣∣λ̄(t+ u− τNj,k)− λ̄(t− τNj,k)
∣∣∣

+
1

KN

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk (t)+1

∣∣∣λj,k(t+ u− τNj,k)− λ̄(t+ u− τNj,k)
∣∣∣

=: ∆
N,(1)
1,1 (t, u) + ∆

N,(2)
1,1 (t, u) + ∆

N,(3)
1,1 (t, u) .

Similar to ∆
N,(1)
0,1 (t, u) in (5.11), we have

sup
u∈[0,δ]

∆
N,(1)
1,1 (t, u) ≤ ϕ(δ)

∫ 1

0
ĀN (t, x)dx+ λ∗

1

KN

KN∑
k=1

KN

N

ANk (t)∑
j=1

κ∑
`=1

1t−τNj,k≤ζ
`
j,k≤t+δ−τ

N
j,k
.

We note that ∫ 1

0
ĀN (t, x)dx =

∫ 1

0

∫ t

0
ῩN (s, x)dsdx+

∫ 1

0
M̄N
A (t, x)dx

≤ λ∗CBCβt+

∫ 1

0
M̄N
A (t, x)dx .

Hence, we deduce from (5.18) that as soon as δ > 0 is small enough such that ϕ(δ)λ∗CBCβt < ε/6,

lim sup
N

1

δ
P
(
ϕ(δ)

∫ 1

0
ĀN (t, x)dx > ε/6

)
= 0 . (5.25)

For the second term, we have

E


 κ∑
`=1

1

KN

KN∑
k=1

KN

N

ANk (t)∑
j=1

1t−τNj,k≤ζ
`
j,k≤t+δ−τ

N
j,k

2


≤ 2E

 κ∑
`=1

1

KN

KN∑
k=1

KN

N

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1r≤ΥNk (s−)Qk,`(ds, dr, dζ)

2
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+ 2E

 κ∑
`=1

1

KN

KN∑
k=1

KN

N

∫ t

0

(
F`(t+ δ − s)− F`(t− s)

)
ΥN
k (s)ds

2
where Qk,`(ds, dr, dζ) is a PRM on R3

+ with mean measure dsdrF`(dζ) whose projection on the first

two coordinates is Qk, and Qk,`(ds, dr, dζ) is the corresponding compensated PRM. Observe that

E

 κ∑
`=1

1

KN

KN∑
k=1

KN

N

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1r≤ΥNk (s−)Qk,`(ds, dr, dζ)

2
≤ κ

κ∑
`=1

E

 1

KN

KN∑
k=1

(
KN

N

∫ t

0

∫ ∞
0

∫ t+δ−s

t−s
1r≤ΥNk (s−)Qk,`(ds, dr, dζ)

)2


= κ

κ∑
`=1

1

KN

KN∑
k=1

(KN

N

)2
E
[∫ t

0

(
F`(t+ δ − s)− F`(t− s)

)
ΥN
k (s)ds

]

≤ λ∗CBCβκ
κ∑
`=1

1

KN

KN∑
k=1

KN

N

∫ t

0

(
F`(t+ δ − s)− F`(t− s)

)
ds

≤ λ∗CBCβκ2δ
KN

N
→ 0 as N →∞,

where we have used the inequality

0 ≤
∫ t

0
[F`(s+ δ)− F`(s)]ds ≤

∫ t+δ

0
F`(s)ds−

∫ t

0
F`(s)ds ≤ δ , (5.26)

and

E

 κ∑
`=1

1

KN

KN∑
k=1

KN

N

∫ t

0

(
F`(t+ δ − s)− F`(t− s)

)
ΥN
k (s)ds

2
≤ κ

κ∑
`=1

1

KN

KN∑
k=1

E

[(
KN

N

∫ t

0

(
F`(t+ δ − s)− F`(t− s)

)
ΥN
k (s)ds

)2
]

≤ κ(λ∗CBCβ)2
κ∑
`=1

(∫ t

0
[F`(s+ δ)− F`(s)]ds

)2

≤ (κλ∗CBCβδ)
2 .

This combined with (5.25) shows that

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(
sup

0≤u≤δ
∆
N,(1)
1,1 (t, u) > ε/3

)
→ 0 as δ → 0 . (5.27)

Next, similar to ∆
N,(1)
0,1 (t, u) in (5.11), we have

sup
u∈[0,δ]

∆
N,(2)
1,1 (t, u) ≤ ϕ(δ)

1

KN

KN∑
k=1

ĀNk (t) + λ∗
1

KN

KN∑
k=1

KN

N

ANk (t)∑
j=1

κ∑
`=1

(
F`(t+ δ − τNj,k)− F`(t− τNj,k)

)
.

Then using the same arguments leading to (5.27), we obtain that (5.27) holds for ∆
N,(2)
1,1 (t, u).
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Finally, for ∆
N,(3)
1,1 (t, u), we have

sup
0≤u≤δ

∆
N,(3)
1,1 (t, u) ≤ λ∗ 1

KN

KN∑
k=1

(ĀNk (t+ δ)− ĀNk (t))

= λ∗
∫ 1

0

∫ t+δ

t
ĀN (ds, x)dx .

So

P

(
sup

0≤u≤δ
∆
N,(3)
1,1 (t, u) > ε/3

)
≤ 18(λ∗)2

ε2

{
E

[(∫ 1

0

∫ t+δ

t
ῩN (s, x)dsdx

)2
]

+ E
[
‖M̄N

A (t+ δ, ·)− M̄N
A (t, ·)‖21

]}
,

and from (5.18) and (5.21),

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(
sup

0≤u≤δ
∆
N,(3)
1,1 (t, u) > ε/3

)
≤

18(λ∗)4(CB)2C2
β

ε2
δ

→ 0, as δ → 0 .

Consequently (5.27) holds for ∆
N,(3)
1,1 (t, u).

Thus combining the three last results, we obtain

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(
sup

0≤u≤δ
‖∆N

1,1(t+ u, x)−∆N
1,1(t, x)‖1 > ε

)
→ 0, as δ → 0. (5.28)

Thus we have shown that ∆N
1,1(t, ·)→ 0 in L1([0, 1]) in probability, locally uniformly in t, as N →∞.

We now consider ∆N
1,2(t, x). To check condition (i) in Theorem 4.1, we have for each t ≤ T ,

E
[
‖∆N

1,2(t, ·)‖21
]
≤ E

 1

KN

KN∑
k=1

KN

N

∫ t

0

∫ ∞
0

λ̄(t− s)1u≤ΥNk (s)Qk(ds, du)

2
≤ E

 1

KN

KN∑
k=1

(KN

N

)2
(∫ t

0

∫ ∞
0

λ̄(t− s)1u≤ΥNk (s)Qk(ds, du)

)2


= E

 1

KN

KN∑
k=1

(KN

N

)2
∫ t

0
λ̄(t− s)2ΥN

k (s)ds


≤ (λ∗)2K

N

N
E

 1

KN

KN∑
k=1

∫ t

0
ῩN
k (s)ds


≤ (λ∗)3CBCβT

KN

N
→ 0

as N →∞. To check condition (ii) in Theorem 4.1, we have

∆N
1,2(t+ u, x)−∆N

1,2(t, x)

=

KN∑
k=1

KN

N

∫ t+u

0

∫ ∞
0

(
λ̄(t+ u− s)− λ̄(t− s)

)
1r≤ΥNk (s)Qk(ds, dr)1Ik(x)
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+

KN∑
k=1

KN

N

∫ t+u

t

∫ ∞
0

λ̄(t− s)1r≤ΥNk (s)Qk(ds, dr)1Ik(x) .

Thus,

‖∆N
1,2(t+ u, ·)−∆N

1,2(t, ·)‖1

≤ 1

KN

KN∑
k=1

∣∣∣∣KN

N

∫ t+u

0

∫ ∞
0

(
λ̄(t+ u− s)− λ̄(t− s)

)
1r≤ΥNk (s)Qk(ds, dr)

∣∣∣∣
+

1

KN

KN∑
k=1

∣∣∣∣KN

N

∫ t+u

t

∫ ∞
0

λ̄(t− s)1r≤ΥNk (s)Qk(ds, dr)

∣∣∣∣
≤ 1

KN

KN∑
k=1

KN

N

∫ t+u

0

∫ ∞
0

∣∣λ̄(t+ u− s)− λ̄(t− s)
∣∣1r≤ΥNk (s)Qk(ds, dr)

+
1

KN

KN∑
k=1

KN

N

∫ t+u

0

∣∣λ̄(t+ u− s)− λ̄(t− s)
∣∣ΥN

k (s)ds

+
1

KN

KN∑
k=1

KN

N

∫ t+u

t

∫ ∞
0

λ̄(t− s)1r≤ΥNk (s)Qk(ds, dr)

+
1

KN

KN∑
k=1

KN

N

∫ t+u

t
λ̄(t− s)ΥN

k (s)ds ,

from which we obtain

sup
0≤u≤δ

‖∆N
1,2(t+ u, ·)−∆N

1,2(t, ·)‖1

≤ 1

KN

KN∑
k=1

KN

N

∫ t+δ

0

∫ ∞
0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
1r≤ΥNk (s)Qk(ds, dr)

+
1

KN

KN∑
k=1

KN

N

∫ t+δ

0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
ΥN
k (s)ds

+
1

KN

KN∑
k=1

KN

N

∫ t+δ

t

∫ ∞
0

λ̄(t− s)1r≤ΥNk (s)Qk(ds, dr)

+
1

KN

KN∑
k=1

KN

N

∫ t+δ

t
λ̄(t− s)ΥN

k (s)ds .

For the first term, we have

E

 1

KN

KN∑
k=1

KN

N

∫ t+δ

0

∫ ∞
0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
1r≤ΥNk (s)Qk(ds, dr)

2
≤ 2E

 1

KN

KN∑
k=1

KN

N

∫ t+δ

0

∫ ∞
0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
1r≤ΥNk (s)Qk(ds, dr)

2
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+ 2E

 1

KN

KN∑
k=1

KN

N

∫ t+δ

0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
ΥN
k (s)ds

2
≤ 2E

 1

KN

KN∑
k=1

(
KN

N

∫ t+δ

0

∫ ∞
0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
1r≤ΥNk (s)Qk(ds, dr)

)2


+ 2E

 1

KN

KN∑
k=1

(
KN

N

∫ t+δ

0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
ΥN
k (s)ds

)2


≤ 2E

 1

KN

KN∑
k=1

KN

N

∫ t+δ

0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]2
ῩN
k (s)ds


+ 2E

 1

KN

KN∑
k=1

(∫ t+δ

0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
ῩN
k (s)ds

)2


≤ 2
KN

N
λ∗CBCβ

∫ t+δ

0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]2
ds

+ 2(λ∗CBCβ)2

(∫ t+δ

0

[
ϕ(δ) + λ∗

κ∑
`=1

(
F`(t+ δ − s)− F`(t− s)

)]
ds

)2

.

Since the integral terms can be made arbitrarily small by choosing δ > 0 small enough, we have that

lim sup
N→∞

sup
t∈[0,T ]

P

(
sup

0≤u≤δ
∆
N,(1)
1,2 (t, u) > ε/4

)
= 0

for δ > 0 small enough. The second term is already treated above as the second component in the
upper bound. The other two terms can be treated in a similar but simpler way. Thus we have
shown that

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(
sup

0≤u≤δ
‖∆N

1,2(t+ u, x)−∆N
1,2(t, x)‖1 > ε

)
→ 0, as δ → 0. (5.29)

Thus we have shown that ∆N
1,2(t, ·)→ 0 in L1([0, 1]) in probability, locally uniformly in t, as N →∞.

The proof for the lemma is complete. �

We now deduce the following Corollary from the results in Proposition 5.1 and Lemmas 5.5, 5.4
and 5.6.

Corollary 5.1. Under Assumptions 2.1, 2.2 and 2.3, we have that ‖ῩN (t, ·) − Ῡ(t, ·)‖1 → 0
in probability, locally uniformly in t, as N → ∞ where Ῡ(t, x) is given in (2.23), and thus,
‖ĀN (t, ·)− Ā(t, ·)‖1 → 0 in probability, locally uniformly in t, as N →∞, where

Ā(t, x) =

∫ t

0

S̄(s, x)

B̄(x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds =

∫ t

0
Ῡ(s, x)ds . (5.30)

Proof. Combining the results in Lemmas 5.5, 5.4 and 5.6 we have shown that sup0≤t≤T ΨN (t)→ 0

in probability as N →∞. Thus by Proposition 5.1, we can conclude the convergence of S̄N (t, ·) and
F̄N (t, ·) in L1([0, 1]) in probability, locally uniformly in t. By the expression of ῩN (t, x) in (5.7),
we immediately obtain the convergence of ῩN (t, ·). Then by the expression of ĀN (t, x) in (5.23),
we obtain the convergence in probability of ĀN (t, ·) to Ā(t, ·) given in (5.30), as announced. The
uniformity in t follows from the second Dini theorem. �
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6. Proof for the Convergence of ĪN (t, a, x)

In this section, we prove the convergence of ĪN (t, a, x) to Ī(t, a, x) as stated in Proposition 6.1
below. Recall INk (t, a) in (2.7). We write the two decomposed processes:

ĪN0 (t, a, x) =
KN∑
k=1

KN

N

∑
j:−j∈INk (0)

1η0−j,k>t
1τ̃N−j,k≤(a−t)+1Ik(x) =

KN∑
k=1

KN

N

INk (0,(a−t)+)∑
j=1

1η0−j,k>t
1Ik(x) ,

(6.1)
and

ĪN1 (t, a, x) =

KN∑
k=1

KN

N

ANk (t)∑
j=ANk ((t−a)+)+1

1τNj,k+ηj,k>t
1Ik(x) . (6.2)

Lemma 6.1. Under Assumptions 2.1 and 2.3,

‖ĪN0 (t, a, ·)− Ī0(t, a, ·)‖1 → 0 (6.3)

in probability, locally uniformly in t and a, as N →∞, where

Ī0(t, a, x) :=

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) . (6.4)

Proof. We first write
ĪN0 (t, a, x) = ĪN0,1(t, a, x) + ĪN0,2(t, a, x)

where

ĪN0,1(t, a, x) =
KN∑
k=1

KN

N

INk (0,(a−t)+)∑
j=1

F c(τ̃N−j,k + t)

F c(τ̃N−j,k)
1Ik(x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x) , (6.5)

ĪN0,2(t, a, x) =
KN∑
k=1

KN

N

INk (0,(a−t)+)∑
j=1

(
1η0−j,k>t

−
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)
1Ik(x) . (6.6)

We apply Theorem 4.2. We first consider the process ĪN0,1(t, a, x) and show that

‖ĪN0,1(t, a, ·)− Ī0(t, a, ·)‖1 → 0, in probability, locally uniformly in t and a, (6.7)

as N →∞. We first check condition (i) of Theorem 4.2. we have

ĪN0,1(t, a, x)− Ī0(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
[ĪN (0, da′, x)− Ī(0, da′, x)] .

Condition (i) of Theorem 4.2 follows from Lemma 4.1 and Assumption 2.1.
Next, we check condition (ii) of Theorem 4.2 for the processes ĪN0,1(t, a, x)− Ī0(t, a, x). We verify

the condition for ĪN0,1(t, a, x) in detail below, since the similar calculations can be done for Ī0(t, a, x).

Namely, we show that for any ε > 0, and for any T, ā′ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P
(

sup
u∈[0,δ]

sup
a∈[0,∞′]

‖ĪN0,1(t+ u, a, ·)− ĪN0,1(t, a, ·)‖1 > ε

)
→ 0 , (6.8)

lim sup
N

sup
a∈[0,∞′]

1

δ
P
(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN0,1(t, a + v, ·)− ĪN0,1(t, a, ·)‖1 > ε

)
→ 0 . (6.9)

To prove (6.8), we have

ĪN0,1(t+ u, a, x)− ĪN0,1(t, a, x)
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=

∫ (a−t−u)+

0

F c(a′ + t+ u)

F c(a′)
ĪN (0, da′, x)−

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x) ,

and ∥∥ĪN0,1(t+ u, a, ·)− ĪN0,1(t, a, ·)
∥∥

1
≤
∫ 1

0

∫ (a−t−u)+

0

F c(a′ + t)− F c(a′ + t+ u)

F c(a′)
ĪN (0, da′, x)dx

+

∫ 1

0

∫ (a−t)+

(a−t−u)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .

Thus,

sup
u∈[0,δ]

sup
a∈[0,∞′]

∥∥ĪN0,1(t+ u, a, ·)− ĪN0,1(t, a, ·)
∥∥

1
≤
∫ 1

0

∫ (∞′−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

+ sup
a∈[0,∞′]

∫ 1

0

∫ (a−t)+

(a−t−δ)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .

Thanks to Lemma 4.1 and Assumption 2.1, the first term on the right converges in probability as
N →∞ to ∫ 1

0

∫ (∞′−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx ,

which converges to zero as δ → 0. It follows from the uniform convergence established in Lemma 4.1
that the second term on the right converges in probability as N →∞, to

sup
a∈[0,∞′]

∫ 1

0

∫ (a−t)+

(a−t−δ)+

F c(a′ + t)

F c(a′)
Ī(0, da′, x)dx ≤ sup

a∈[0,∞′]

∫ 1

0

∫ (a−t)+

(a−t−δ)+
Ī(0, da′, x)dx .

Under Assumption 2.1, it is clear that the upper bound converges to zero at δ → 0. Thus we have
shown that for ε > 0, if δ > 0 is small enough,

lim sup
N

sup
t∈[0,T ]

P
(

sup
u∈[0,δ]

sup
a∈[0,∞]

‖ĪN0,1(t+ u, a, ·)− ĪN0,1(t, a, ·)‖1 > ε

)
= 0 .

To prove (6.9), we have

ĪN0,1(t, a + v, x)− ĪN0,1(t, a, x) =

∫ 1

0

∫ (a+v−t)+

(a−t)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx ,

and

sup
v∈[0,δ]

sup
t∈[0,T ]

∥∥ĪN0,1(t, a + v, ·)− ĪN0,1(t, a, ·)‖1 ≤ sup
t∈[0,T ]

∫ 1

0

∫ (a+δ−t)+

(a−t)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .

In order to show that the supt on the above right hand side converges in probability, as N →∞, to

sup
t∈[0,T ]

∫ 1

0

∫ (a+δ−t)+

(a−t)+

F c(a′ + t)

F c(a′)
Ī(0, da′, x)dx ≤ sup

t∈[0,T ]

∫ 1

0

∫ (a+δ−t)+

(a−t)+
Ī(0, da′, x)dx , (6.10)

it suffices to show that the convergence of
∫ 1

0

∫ (a+δ−t)+
(a−t)+

F c(a′+t)
F c(a′) ĪN (0, da′, x)dx is uniform in t. Indeed,

we note that∫ 1

0

∫ (a+δ−t)+

(a−t)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx

=

∫ 1

0

∫ (a+δ−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx−

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .
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This right hand side is the difference of two non–increasing functions of t which converge pointwise
to their limit in probability, as N → ∞, and both limits are continuous in t. Hence the uniform
convergence follows from the second Dini theorem, exactly as in the proof of Lemma 4.1. Going
back to (6.10), we note that, under Assumption 2.1, the right hand side converges to zero at δ → 0.
Thus we have shown that for ε > 0, if δ > 0 is small enough,

lim sup
N

sup
a∈[0,∞]

P
(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN0,1(t, a + v, ·)− ĪN0,1(t, a, ·)‖1 > ε

)
= 0 .

Thus we have verified condition (ii) of Theorem 4.2 for the processes ĪN0,1(t, a, x), and with a similar

argument for Ī0(t, a, x), and thus, for the difference ĪN0,1(t, a, x)− Ī0(t, a, x). Therefore, the claim

on the convergence of ĪN0,1(t, a, x) in (6.7) is proved.

We next prove the convergence of ĪN0,2(t, a, x):

‖ĪN0,2(t, a, ·)‖1 → 0, in probability, locally uniformly in t and a, as N →∞. (6.11)

To check condition (i) of Theorem 4.2, we have

‖ĪN0,2(t, a, ·)‖1 ≤
1

KN

KN∑
k=1

∣∣∣∣∣KN

N

INk (0,(a−t)+)∑
j=1

(
1η0−j,k>t

−
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)∣∣∣∣∣ .
We deduce from Jensen’s inequality that

E

[(
1

KN

KN∑
k=1

KN

N

∣∣∣∣∣
INk (0,(a−t)+)∑

j=1

(
1η0−j,k>t

−
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)∣∣∣∣∣
)2]

≤ 1

KN

KN∑
k=1

KN

N
E

[∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(
1− F c(a′ + t)

F c(a′)

)
ĪNk (0, da′)

]
, (6.12)

where we have used the fact that the η0
−j,k’s are conditionally independent, given the τ̃N−j,k’s. Note

that under Assumption 2.1, thanks to Lemma 4.1, as N →∞, in probability,

1

KN

KN∑
k=1

∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(
1− F c(a′ + t)

F c(a′)

)
ĪNk (0, da′)

=

∫ 1

0

∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(
1− F c(a′ + t)

F c(a′)

)
ĪN (0, da′, x)dx

→
∫ 1

0

∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(
1− F c(a′ + t)

F c(a′)

)
Ī(0, da′, x)dx .

Thus, the upper bound in (6.12) converges to zero as N →∞. This implies that for any ε > 0,

sup
t∈[0,T ]

sup
a∈[0,∞]

P
(
‖ĪN0,2(t, a, ·)‖1 > ε

)
→ 0 as N →∞.

Next, to check condition (ii) of Theorem 4.2, we show that for any ε > 0, and for any T, ā′ > 0, as
δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P
(

sup
u∈[0,δ]

sup
a∈[0,∞′]

∥∥ĪN0,2(t+ u, a, ·)− ĪN0,2(t, a, ·)
∥∥

1
> ε

)
→ 0 , (6.13)

lim sup
N

sup
a∈[0,∞]

1

δ
P
(

sup
v∈[0,δ]

sup
t∈[0,T ]

∥∥ĪN0,2(t, a + v, ·)− ĪN0,2(t, a, ·)
∥∥

1
> ε

)
→ 0 . (6.14)
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To prove (6.13), we have

ĪN0,2(t+ u, a, x)− ĪN0,2(t, a, x)

=
KN∑
k=1

KN

N

INk (0,(a−t−u)+)∑
j=1

(
1t<η0−j,k≤t+u

−
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

)
1Ik(x)

−
KN∑
k=1

KN

N

INk (0,(a−t)+)∑
j=INk (0,(a−t−u)+)+1

(
1η0−j,k>t

−
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)
1Ik(x) ,

and ∥∥ĪN0,2(t+ u, a, ·)− ĪN0,2(t, a, ·)
∥∥

1

≤ 1

KN

KN∑
k=1

∣∣∣∣∣KN

N

INk (0,(a−t−u)+)∑
j=1

(
1t<η0−j,k≤t+u

−
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

)∣∣∣∣∣
+

1

KN

KN∑
k=1

∣∣∣∣∣KN

N

INk (0,(a−t)+)∑
j=INk (0,(a−t−u)+)+1

(
1η0−j,k>t

−
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)∣∣∣∣∣
≤ 1

KN

KN∑
k=1

KN

N

INk (0,(a−t−u)+)∑
j=1

1t<η0−j,k≤t+u

+
1

KN

KN∑
k=1

KN

N

INk (0,(a−t−u)+)∑
j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

+
1

KN

KN∑
k=1

(
ĪNk (0, (a− t)+)− ĪNk (0, (a− t− u)+)

)
. (6.15)

For the first term on the right, we have

P

(
sup
u∈[0,δ]

sup
a∈[0,∞′]

1

KN

KN∑
k=1

KN

N

INk (0,(a−t−u)+)∑
j=1

1t<η0−j,k≤t+u
> ε

)

≤ P

(
1

KN

KN∑
k=1

KN

N

INk (0,(∞′−t)+)∑
j=1

1t<η0−j,k≤t+δ
> ε

)

≤ P

(
1

KN

KN∑
k=1

KN

N

INk (0,(∞−t)+)∑
j=1

(
1t<η0−j,k≤t+δ

−
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)

)
> ε/2

)

+ P

(
1

KN

KN∑
k=1

KN

N

INk (0,(∞−t)+)∑
j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)
> ε/2

)
. (6.16)

Here using Jensen’s inequality and the fact that the summands over j are independent, conditionally
upon the τ̃N−j,k’s, the first probability is bounded by

4

ε2
E

[(
1

KN

KN∑
k=1

KN

N

INk (0,(∞−t)+)∑
j=1

(
1t<η0−j,k≤t+δ

−
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)

))2
]
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≤ KN

N

4

ε2
E
∫ 1

0

∫ (∞−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx. (6.17)

Now under Assumption 2.1, it follows from Lemma 4.1 that∫ 1

0

∫ (∞−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

→
∫ 1

0

∫ (∞−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx

in probability as N →∞. Hence the upper bound in (6.17) converges to zero, as N →∞. Inside
the second probability in (6.16), we have

1

KN

KN∑
k=1

KN

N

INk (0,(∞−t)+)∑
j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)

=

∫ 1

0

∫ (∞−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

→
∫ 1

0

∫ (∞−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx

in probability as N →∞, again from Lemma 4.1, and the limit converges to zero as δ → 0. Hence
for any ε > 0, if δ > 0 is small enough, lim supN of the second term in the right hand side of (6.16)
is zero.

For the second term on the right of (6.15), we have

sup
u∈[0,δ]

sup
a∈[0,∞′]

1

KN

KN∑
k=1

KN

N

INk (0,(a−t−u)+)∑
j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

≤
∫ 1

0

∫ (∞′−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

which, thanks to Lemma 4.1 and Assumption 2.1, converges in probability as N →∞, to∫ 1

0

∫ (∞−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx.

This expression will also converge to zero as δ → 0. For the third term on the right of (6.15), we
have

sup
u∈[0,δ]

∫ 1

0

(
ĪN (0, (a− t)+, x)− ĪN (0, (a− t− u)+, x)

)
dx

≤
∫ 1

0

(
ĪN (0, (a− t)+, x)− ĪN (0, (a− t− δ)+, x)

)
dx

which converges in probability to∫ 1

0

(
Ī(0, (a− t)+, x)− Ī(0, (a− t− δ)+, x)

)
dx

as N → ∞. Since ĪN (0, ·, x) and Ī(0, ·, x) are nondecreasing and the limit is continuous, the
convergence also holds uniformly over a ∈ [0,∞′]. Moreover, we also have that

sup
a∈[0,∞]

∫ 1

0

(
Ī(0, (a− t)+, x)− Ī(0, (a− t− δ)+, x)

)
dx→ 0,
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as δ → 0. Combining the results on the three terms on the right of (6.15), we have shown that
(6.13) holds.

We next prove (6.14). We have

ĪN0,2(t, a + v, x)− ĪN0,2(t, a, x) =
KN∑
k=1

KN

N

INk (0,(a+v−t)+)∑
j=INk (0,(a−t)++1

(
1η0−j,k>t+u

−
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)
1Ik(x) ,

and∥∥ĪN0,2(t, a + v, ·)− ĪN0,2(t, a, ·)‖1 ≤
1

KN

KN∑
k=1

∣∣∣∣∣KN

N

INk (0,(a+v−t)+)∑
j=INk (0,(a−t)++1

(
1η0−j,k>t+u

−
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)∣∣∣∣∣
≤ 1

KN

KN∑
k=1

∣∣ĪNk (0, (a + v − t)+)− ĪNk (0, (a− t)+
∣∣ .

Thus,

sup
v∈[0,δ]

sup
t∈[0,T ]

∥∥ĪN0,2(t, a + v, ·)− ĪN0,2(t, a, ·)‖1

≤ sup
t∈[0,T ]

1

KN

KN∑
k=1

(
ĪNk (0, (a + δ − t)+)− ĪNk (0, (a− t)+)

)
= sup

t∈[0,T ]

∫ 1

0

(
ĪN (0, (a + δ − t)+, x)− ĪN (0, (a− t)+, x)

)
dx

and we claim that the right hand side converges in probability as N →∞, to

sup
t∈[0,T ]

∫ 1

0

(
Ī(0, (a + δ − t)+, x)− Ī(0, (a− t)+, x)

)
dx .

Indeed, the convergence without the supt follows from Assumption 2.1, and both t 7→
∫ 1

0 ĪN (0, (a +

δ − t)+, x)dx and t 7→
∫ 1

0 ĪN (0, (a− t)+, x)dx are non–increasing, while the limits are continuous.
Hence again an application of the second Dini theorem implies that the convergence is locally
uniform in t, hence the claim. The limit then converges to zero as δ → 0. Thus we have shown
(6.14). This completes the proof of the lemma. �

Lemma 6.2. Under Assumptions 2.1, 2.2 and 2.3,

‖ĪN1 (t, a, ·)− Ī1(t, a, ·)‖1 → 0 (6.18)

in probability, locally uniformly in t and a, as N →∞, where

Ī1(t, a, x) :=

∫ t

(t−a)+
F c(t− s)Ā(ds, x) , (6.19)

where Ā(t, x) is given in (5.30).

Proof. We first write
ĪN1 (t, a, x) = ĪN1,1(t, a, x) + ĪN1,2(t, a, x)

where

ĪN1,1(t, a, x) =
KN∑
k=1

KN

N

ANk (t)∑
j=ANk ((t−a)+)+1

F c(t− τNj,k)1Ik(x) =

∫ t

(t−a)+
F c(t− s)ĀN (ds, x) , (6.20)
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ĪN1,2(t, a, x) =
KN∑
k=1

KN

N

ANk (t)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)
1Ik(x) . (6.21)

We apply Theorem 4.2. We start with the process ĪN1,1(t, a, x) and show that∥∥ĪN1,1(t, a, ·)− Ī1(t, a, ·)
∥∥

1
→ 0, in probability, locally uniformly in t and a, (6.22)

as N →∞. Since

ĪN1,1(t, a, x)− Ī1(t, a, x) =

∫ t

(t−a)+
F c(t− s)

(
ĀN (ds, x)− Ā(ds, x)

)
,

condition (i) of Theorem 4.2 follows from Lemma 4.1 and Corollary 5.1. In other words, we have
that for each t and a, and for any ε > 0,

P(‖ĪN1,1(t, a, ·)− Ī1(t, a, ·)‖1 > ε)→ 0 as N →∞.

We next want to check (ii) of Theorem 4.2 for the processes ĪN1,1(t, a, x) − Ī1(t, a, x). We will

verify the following conditions for ĪN1,1(t, a, x): for any ε > 0, and for any T, ā′ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P
(

sup
u∈[0,δ]

sup
a∈[0,∞′]

‖ĪN1,1(t+ u, a, ·)− ĪN1,1(t, a, ·)‖1 > ε

)
→ 0 , (6.23)

lim sup
N

sup
a∈[0,∞′]

1

δ
P
(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN1,1(t, a + v, ·)− ĪN1,1(t, a, ·)‖1 > ε

)
→ 0 . (6.24)

It will be clear that the same results hold (and are simpler to prove) for Ī1(t, a, ·). To prove (6.23),
we have

ĪN1,1(t+ u, a, x)− ĪN1,1(t, a, x)

=

∫ t+u

(t+u−a)+
F c(t+ u− s)ĀN (ds, x)−

∫ t

(t−a)+
F c(t− s)ĀN (ds, x)

=

∫ t+u

(t−a)+

(
F c(t+ u− s)− F c(t− s)

)
ĀN (ds, x)

−
∫ (t+u−a)+

(t−a)+
F c(t+ u− s)ĀN (ds, x) +

∫ t+u

t
F c(t− s)ĀN (ds, x) ,

and ∥∥ĪN1,1(t+ u, a, ·)− ĪN1,1(t, a, ·)
∥∥

1

≤
∫ 1

0

∫ t+u

(t−a)+

(
F c(t− s)− F c(t+ u− s)

)
ĀN (ds, x)dx

+

∫ (t+u−a)+

(t−a)+
F c(t+ u− s)ĀN (ds, x)dx+

∫ t+u

t
F c(t− s)ĀN (ds, x)dx . (6.25)

Here the first term on the right satisfies

sup
u∈[0,δ]

sup
a∈[0,∞′]

∫ 1

0

∫ t+u

(t−a)+

(
F c(t− s)− F c(t+ u− s)

)
ĀN (ds, x)dx

≤
∫ 1

0

∫ t+δ

(t−∞′)+

(
F c(t− s)− F c(t+ δ − s)

)
ĀN (ds, x)dx

→
∫ 1

0

∫ t+δ

(t−∞′)+

(
F c(t− s)− F c(t+ δ − s)

)
Ā(ds, x)dx
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in probability as N →∞ by Lemma 5.5 and Corollary 5.1, and the limit converges to zero as δ → 0.
The second term on the right side of (6.25) satisfies

sup
u∈[0,δ]

sup
a∈[0,∞′]

∫ 1

0

∫ (t+u−a)+

(t−a)+
F c(t+ u− s)ĀN (ds, x)dx

≤ sup
a∈[0,∞′]

∫ 1

0

(
ĀN ((t+ δ − a)+, x)− ĀN ((t− a)+, x)

)
dx

→ sup
a∈[0,∞′]

∫ 1

0

(
Ā((t+ δ − a)+, x)− Ā((t− a)+, x)

)
dx

in probability as N →∞ by Corollary 5.1 and the second Dini theorem, and the limit converges to
zero as δ → 0. The third term on the right side of (6.25) does not depend on a and satisfies

sup
u∈[0,δ]

∫ 1

0

∫ t+u

t
F c(t− s)ĀN (ds, x)dx

≤
∫ 1

0

(
ĀN (t+ δ, x)− ĀN (t, x)

)
dx→

∫ 1

0

(
Ā(t+ δ, x)− Ā(t, x)

)
dx

in probability as N →∞ by Corollary 5.1, and the limit converges to zero as δ → 0. Thus we have
shown that for small enough δ > 0, for any ε > 0, and for any T, ā′ > 0,

lim sup
N

sup
t∈[0,T ]

P
(

sup
u∈[0,δ]

sup
a∈[0,∞′]

‖ĪN1,1(t+ u, a, ·)− ĪN1,1(t, a, ·)‖1 > ε

)
= 0 .

To prove (6.24), we have

ĪN1,1(t, a + v, x)− ĪN1,1(t, a, x) =

∫ (t−a)+

(t−a−v)+
F c(t− s)ĀN (ds, x) ,

and ∥∥ĪN1,1(t, a + v, ·)− ĪN1,1(t, a, ·)
∥∥

1
=

∫ 1

0

∫ (t−a)+

(t−a−v)+
F c(t− s)ĀN (ds, x)dx .

Hence,

sup
v∈[0,δ]

sup
t∈[0,T ]

∥∥ĪN1,1(t, a + v, ·)− ĪN1,1(t, a, ·)
∥∥

1

≤ sup
t∈[0,T ]

∫ 1

0

(
ĀN ((t− a)+, x)− ĀN ((t− a− δ)+, x)

)
dx

→ sup
t∈[0,T ]

∫ 1

0

(
Ā((t− a)+, x)− Ā((t− a− δ)+, x)

)
dx

in probability as N →∞ by Corollary 5.1 and again the second Dini theorem. Moreover, the limit
converges to zero as δ → 0. Thus we have shown that for small enough δ > 0, for any ε > 0, and for
any T, ā′ > 0,

lim sup
N

sup
a∈[0,∞′]

P
(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN1,1(t, a + v, ·)− ĪN1,1(t, a, ·)‖1 > ε

)
= 0 .

Therefore, combining the above, we have proved the convergence of ĪN1,1(t, a, x) as stated in (6.22).

We next consider the process ĪN1,2(t, a, x) and show that∥∥ĪN1,2(t, a, ·)
∥∥

1
→ 0, in probability, locally uniformly in t and a, as N →∞. (6.26)
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To check condition (i) of Theorem 4.2, we have

∥∥ĪN1,2(t, a, ·)‖1 =
1

KN

KN∑
k=1

∣∣∣∣KN

N

ANk (t)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)∣∣∣∣ ,

and

E
[∥∥ĪN1,2(t, a, ·)‖21

]
= E

[(
1

KN

KN∑
k=1

∣∣∣∣KN

N

ANk (t)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)∣∣∣∣
)2]

≤ E

[
1

KN

KN∑
k=1

(
KN

N

ANk (t)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
))2]

= E

[
1

KN

KN∑
k=1

(KN

N

)2
ANk (t)∑

j=ANk ((t−a)+)+1

F (t− τNj,k)F c(t− τNj,k)

]

≤ KN

N
E

[∫ 1

0

∫ t

(t−a)+
F (t− s)F c(t− s)ĀN (ds, x)dx

]
.

By Corollary 5.1 and Lemma 4.1, we obtain the convergence∫ 1

0

∫ t

(t−a)+
F (t− s)F c(t− s)ĀN (ds, x)dx→

∫ 1

0

∫ t

(t−a)+
F (t− s)F c(t− s)Ā(ds, x)dx

in probability as N →∞. This implies that for any ε > 0,

sup
t∈[0,T ]

sup
a∈[0,∞′]

P
(
‖ĪN1,2(t, a, ·)‖1 > ε

)
→ 0 as N →∞.

Next, to check condition (ii) of Theorem 4.2, we need to show that for any ε > 0, and for any
T, ā′ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P
(

sup
u∈[0,δ]

sup
a∈[0,∞′]

‖ĪN1,2(t+ u, a, ·)− ĪN1,2(t, a, ·)‖1 > ε

)
→ 0 , (6.27)

lim sup
N

sup
a∈[0,∞′]

1

δ
P
(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN1,2(t, a + v, ·)− ĪN1,2(t, a, ·)‖1 > ε

)
→ 0 . (6.28)

To prove (6.27), we have

ĪN1,2(t+ u, a, x)− ĪN1,2(t, a, x)

=

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t+u−a)+)+1

(
1τNj,k+ηj,k>t+u

− F c(t+ u− τNj,k)
)
1Ik(x)

−
KN∑
k=1

KN

N

ANk (t)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)
1Ik(x)

=
KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t+u

− F c(t+ u− τNj,k)
)
1Ik(x)
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−
KN∑
k=1

KN

N

ANk ((t+u−a)+)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t+u

− F c(t+ u− τNj,k)
)
1Ik(x)

−
KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)
1Ik(x)

+

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk (t)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)
1Ik(x)

= −
KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

(
1t<τNj,k+ηj,k≤t+u −

(
F c(t− τNj,k)− F c(t+ u− τNj,k)

))
1Ik(x)

−
KN∑
k=1

KN

N

ANk ((t+u−a)+∧t)∑
j=ANk ((t−a)+)+1

(
1τNj,k+ηj,k>t+u

− F c(t+ u− τNj,k)
)
1Ik(x)

+

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk (t)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)
1Ik(x) .

Thus we obtain∥∥ĪN1,2(t+ u, a, ·)− ĪN1,2(t, a, ·)
∥∥

1

≤ 1

KN

KN∑
k=1

∣∣∣∣KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

(
1t<τNj,k+ηj,k≤t+u −

(
F c(t− τNj,k)− F c(t+ u− τNj,k)

))∣∣∣∣
+

1

KN

KN∑
k=1

∣∣∣∣KN

N

ANk ((t+u−a)+∑
j=ANk ((t−a)+∧t)+1

(
1τNj,k+ηj,k>t+u

− F c(t+ u− τNj,k)
)∣∣∣∣

+
1

KN

KN∑
k=1

∣∣∣∣KN

N

ANk ((t+u)+∧t)∑
j=ANk (t)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)∣∣∣∣

≤ 1

KN

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

1t<τNj,k+ηj,k≤t+u

+
1

KN

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

(
F c(t− τNj,k)− F c(t+ u− τNj,k)

)

+
1

KN

KN∑
k=1

(
ĀNk (t+ u)− ĀNk (t)

)
+

1

KN

KN∑
k=1

(
ĀNk ((t+ u− a)+)− ĀNk ((t− a)+)

)
. (6.29)

For the first term on the right, we have

E

[(
sup
u∈[0,δ]

sup
a∈[0,∞′]

1

KN

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

1t<τNj,k+ηj,k≤t+u

)2]
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≤ E

[(
1

KN

KN∑
k=1

KN

N

ANk (t+δ)∑
j=ANk ((t−∞′)+)+1

1t<τNj,k+ηj,k≤t+δ

)2]

≤ E

[
1

KN

KN∑
k=1

(
KN

N

ANk (t+δ)∑
j=ANk ((t−∞′)+)+1

1t<τNj,k+ηj,k≤t+δ

)2]

≤ 2E

[
1

KN

KN∑
k=1

(
KN

N

∫ t+δ

(t−∞′)+

∫ ∞
0

∫ t+δ−s

t−s
1r≤ΥN (s−)Qk,`(ds, dr, dz)

)2]

+ 2E

[
1

KN

KN∑
k=1

(
KN

N

∫ t+δ

(t−∞′)+
(F (t+ δ − s)− F (t− s))ΥN

k (s)ds

)2]

= 2
KN

N
E

[
1

KN

KN∑
k=1

∫ t+δ

(t−∞′)+
(F (t+ δ − s)− F (t− s))ῩN

k (s)ds

]

+ 2E

[
1

KN

KN∑
k=1

(∫ t+δ

(t−∞′)+
(F (t+ δ − s)− F (t− s))ῩN

k (s)ds

)2]

≤ 2λ∗CBCβ
KN

N

∫ t+δ

(t−∞′)+
(F (t+ δ − s)− F (t− s))ds

+ 2(λ∗CBCβ)2

(∫ t+δ

(t−∞′)+
(F (t+ δ − s)− F (t− s))ds

)2

,

where Qk,`(ds, dr, dz) is the PRM on R3
+ with mean measure dsdrF (dz) already introduced in the

proof of Lemma 5.6, and Qk,`(ds, dr, dz) is the corresponding compensated PRM, and we have used

the bound ῩN
k (t) ≤ λ∗CBCβ . The first term on the right goes to zero as N →∞, and the integral

in the second is bounded from above by∫ t

0

(
F (s+ δ)− F (s)

)
ds ≤ δ ,

as in (5.26) above. Thus we obtain that for any ε > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(
sup
u∈[0,δ]

sup
a∈[0,∞′]

1

KN

KN∑
k=1

KN

N

ANk (t+u)∑
j=ANk ((t−a)+)+1

1t<τNj,k+ηj,k≤t+u > ε

)
→ 0 .

For the second term on the right side of (6.29), we have

E

[(
sup
u∈[0,δ]

sup
a∈[0,∞′]

1

KN

KN∑
k=1

1

BN
k

ANk (t+u)∑
j=ANk ((t−a)+)+1

(
F c(t− τNj,k)− F c(t+ u− τNj,k)

))2]

≤ E

[
1

KN

KN∑
k=1

(
KN

N

ANk (t+δ)∑
j=ANk ((t−∞′)+)+1

(
F c(t− τNj,k)− F c(t+ δ − τNj,k)

))2]

≤ 2E

[
1

KN

KN∑
k=1

(KN

N

)2
(∫ t+δ

(t−∞′)+

(
F c(t− s)− F c(t+ δ − s)

)
dMN

A,k(s)

)2
]
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+ 2E

[
1

KN

KN∑
k=1

(∫ t+δ

(t−∞′)+

(
F c(t− s)− F c(t+ δ − s)

)
ῩN
k (s)ds

)2
]

= 2λ∗CBCβ
KN

N

∫ t+δ

(t−∞′)+

(
F c(t− s)− F c(t+ δ − s)

)2
ds

+ 2(λ∗CBCβ)2

(∫ t+δ

(t−∞′)+

(
F c(t− s)− F c(t+ δ − s)

)
ds

)2

.

It is clear that the first term converge to zero locally uniformly in t, and the second term can be
treated in the same way above. The third and fourth terms on the right side of (6.29) can be also
treated similarly as the last two terms in (6.25). Thus, we have shown that (6.27) holds.

To prove (6.28), we have

ĪN1,2(t, a + v, x)− ĪN1,2(t, a, x) =

KN∑
k=1

KN

N

ANk ((t−a)+)∑
j=ANk ((t−a−v)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)
1Ik(x) ,

and∥∥ĪN1,2(t, a + v, ·)− ĪN1,2(t, a, ·)‖1 ≤
1

KN

KN∑
k=1

∣∣∣∣KN

N

ANk ((t−a)+)∑
j=ANk ((t−a−v)+)+1

(
1τNj,k+ηj,k>t

− F c(t− τNj,k)
)∣∣∣∣

≤
∫ 1

0

(
ĀN ((t− a)+, x)− ĀN ((t− a− v)+, x)

)
dx .

Then, we obtain

sup
v∈[0,δ]

sup
t∈[0,T ]

∥∥ĪN1,2(t, a + v, ·)− ĪN1,2(t, a, ·)‖1

≤ sup
t∈[0,T ]

∫ 1

0

(
ĀN ((t− a)+, x)− ĀN ((t− a− δ)+, x)

)
dx .

Here the upper bound converges in probability to

sup
t∈[0,T ]

∫ 1

0

(
Ā((t− a)+, x)− Ā((t− a− δ)+, x)

)
dx

which converges to zero as δ → 0, uniformly in a. Indeed, the convergence of the supt follows from

the fact that the convergence in probability
∫ 1

0 Ā
N (t, x)dx →

∫ 1
0 Ā(t, x)dx is locally uniform in t,

thanks to Corollary 5.1. Thus we have proved (6.28) holds, and hence, the convergence of ĪN1,2(t, a, x)

in (6.26). This completes the proof of the lemma. �

By the two lemmas above, we can conclude the convergence of ĪN (t, a, x) to Ī(t, a, x).

Proposition 6.1. Under Assumptions 2.1, 2.2 and 2.3,

‖ĪN (t, a, ·)− Ī(t, a, ·)‖1 → 0 (6.30)

in probability, locally uniformly in t and a, as N →∞, where Ī(t, a, x) = Ī0(t, a, x) + Ī1(t, a, x), Ī0

and Ī1 being given respectively by (6.4) and (6.19).

Completing the proof of Theorem 2.1. Given the results in Propositions 5.1 and 6.1 and
Corollary 5.1, the convergence of R̄N (t, x) and ĪN (t, x) can be easily established and their limits
R̄(t, x) and Ī(t, x) follows directly. The second expression of Ῡ(t, x) in (2.23) is obtained from

Ī(t, a, x) in (2.24), by noting that Īa(t, 0, x) = lima→0
Ī(t,a,x)−Ī(t,0,x)

a .
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[21] G. Pang and É. Pardoux. Functional law of large numbers and PDEs for epidemic models with infection-age
dependent infectivity. Applied Mathematics and Optimization, forthcoming, 2022. arXiv:2106.03758.
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