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Abstract

We study the stochastic SIR epidemic model with infection-age dependent infectiv-
ity for which a measure-valued process is used to describe the ages of infection for
each individual. We establish a functional law of large numbers (FLLN) and a func-
tional central limit theorem (FCLT) for the properly scaled measure-valued processes
together with the other epidemic processes to describe the evolution dynamics. In the
FLLN, assuming that the hazard rate function of the infection periods is bounded and
the ages at time 0 of the infections of the initially infected individuals are bounded, we
obtain a PDE limit for the LLN-scaled measure-valued process, for which we char-
acterize its solution explicitly. The PDE is linear with a boundary condition given by
the unique solution to a set of Volterra-type nonlinear integral equations. In the FCLT,
we obtain an SPDE for the CLT-scaled measure-valued process, driven by two inde-
pendent white noises coming from the infection and recovery processes. The SPDE
is also linear and coupled with the solution to a system of stochastic Volterra-type
linear integral equations driven by three independent Gaussian noises, one from the
random infection functions in addition to the two white noises mentioned above. The
solution to the SPDE can be also explicitly characterized, given this auxiliary process.
The uniqueness of the SPDE solution is established under stronger assumptions on
the distribution function of the infectious duration.
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1 Introduction

Kermack and MacKendrick introduced in their seminal paper [ 16] an integral equation
model to describe the SIR epidemic dynamics with infection-age dependent infectivity
and recovery rate. Various extensions of this model have been developed to study more
realistic epidemic dynamics with dependence on infection ages (see, e.g., [2, 14, 17,
29, 33] and Chapter 13 in [18]). An individual-based stochastic SIR epidemic model
has been recently developed in [8] and further studied in [9, 10, 20, 22, 23] where each
individual has an independent random infectivity function so that the infection and
recovery processes depend on the age of infection. It is shown in [8] (see also section 2
in [9] for the same result under weaker assumptions) that the Kermack - McKendrick
model in [16] is the law of large numbers limit, as the size of the population tends to
infinity, of that individual-based stochastic SIR epidemic model. In [23], the authors
show that, by introducing the age of infection as a new variable, one can turn the
limiting LLN integral equation model into a PDE model.

In the present paper, we continue studying the individual-based stochastic SIR
model by investigating the fluctuations of the epidemic dynamics around the PDE limit.
We take a different approach from our previous work [23], by using a measure-valued
process to describe the infection dynamics instead of a two-parameter process. In
particular, the measure-valued process gives at each time a “mass” for each individual’s
infection age if still infected (see (2.6)). To study its dynamics, we also come up
with a novel representation using two independent Poisson random measures (PRMs),
resembling the “birth" and “death" processes in the continuous-time branching process
setting. so that one dictates the new infections and the other dictates the recoveries,
see (2.11). The measure-valued process with this representation can be regarded as an
infinite-dimensional “birth" and “death" process. The novelty in this representation
lies in the way that determines which individual will recover next based on their
infection age. To completely describe the epidemic dynamics, we also need to include
the number of susceptible individuals and the total force of infection (which is the
aggregate of the random infectivity functions of all infected individuals evaluated
with their infection ages at each time). The number of infected individuals can be
obtained from the measure-valued process.

We first establish the FLLN for the LLN-scaled measure-valued processes, which
results in a linear PDE limit with a boundary condition which is the solution to a set of
Volterra-type integral equations. It recovers the PDE result in our previous work [23].
Because of the measure-valued representation for the PDE limit, we provide a new
proof for the uniqueness of its solution, which requires that the hazard rate function
for the distribution of the infection period is bounded. This new proof uses a duality
argument with an associated backward PDE. In addition, we also provide a new proof
for the tightness of the LLLN-scaled processes by exploiting the evolution dynamics
mentioned above.

We then establish a functional central limit theorem (FCLT) for the CLT-scaled
measure-valued processes, whose limit is an SPDE (see (2.39)). The SPDE is driven
by two white noises, one from the infection process and the other from the recovery
process (that is, the “birth" and “death" processes mentioned above, respectively).
The SPDE is linear, coupled with the solution to a system of stochastic Volterra-type
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linear integral equations driven by three independent Gaussian noises (in addition to
the two white noises, a third coming from the randomness of the random infectivity
functions). We are able to characterize the solution to the SPDE explicitly, see (2.40).
Under the additional conditions on the distribution function of the infection period
(the density and its derivative being locally bounded), we also show the uniqueness
of the solution (using a similar duality argument as for the PDE). The convergence of
the other associated processes follows from a slight modification of the proofs in our
previous work [22], by taking into account the initial conditions with infection-age
dependence.

The convergence of the CLT-scaled measure-valued processes is proved in the
space D(R, H'(R;),) (see the notations below). We exploit some useful properties
of stochastic integrals with respect to PRMs, particularly, the moment formulas (see,
e.g., [27]) and fourth moment estimates in Lemma 4.8. With these tools, we are able
to prove tightness of the stochastic integral terms with respect to the compensated
PRMs for the infection and recovery processes, by verifying the moment criterion for
tightness of processes in D in Billingsley [1]. In these calculations, we have to handle
some challenges caused by the functional that induces the recovery process based on
the infection ages. Moreover, for the CLT-scaled measure-valued processes, we are
also able to derive a prelimit “SPDE" driven by the PRMs so that the convergence
to the SPDE limit can be established by verifying the convergence for the driving
stochastic components.

Finally, we remark that although there have been a few studies on establishing
PDE limits for individual-based stochastic epidemic models, see for example [5, 7,
11, 12, 25, 26, 28], very little work exists for the study of the fluctuations of the
stochastic dynamics around the PDE limits. The work in [3] establishes both the PDE
and SPDE limits for stochastic epidemic model with contract-tracing, tracking the
infection duration since detection for each individual, but the model itself is Markovian,
unlike our model. To our best knowledge, this is the first work to establish an SPDE
limit for non-Markovian epidemic models in the literature, so this work will lay the
foundation for future work on this subject. On the other hand, FCLT results have been
established for stochastic non-Markovian epidemic models, for example, our earlier
works on non-Markov epidemic models with constant infection rate [21, 24], and
some previous works in the literature [30-32]. Our work is also somewhat related to
the SPDE limits in the queueing context, see for example [4, 15], but our approach of
establishing the convergence of the measure-valued processes is very different since
we exploit properties of PRMs and the measure-valued process is not necessarily
Markov and hence no martingale properties can be exploited.

1.1 Organization of the paper

The paper is organized as follows. We summarize the notation in the end of this section.
In Section 2.1, we describe the model in detail and use a measure-valued process and
other associated processes to describe the epidemic dynamics. In Section 2.2, we
present a linear first-order PDE and the associated properties that will be used in the
discussions of the PDE and SPDE limits. In Section 2.3, we state the FLLN and present
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the PDE limit. In Section 2.4, we state the FCLT results and present the SPDE limit
and its solution. In Section 3, we prove the FLLN in Theorem 2.1, focusing on a new
proof for the uniqueness of the solution to the PDE. In Section 4, we prove the weak
convergence of the CLT-scaled measure-valued process and prove the uniqueness of
the solution to the SPDE. In Sections 5 and 6, we provide sketch proofs for the other
associated epidemic processes.

1.2 Notation

The following notation will be used throughout the paper. R is the set of real numbers
and R the set of non-negative real numbers, N the set of natural numbers, and Z the
set of integers. For a, b € R, a vV b = max{a, b} and a A b = min{a, b}. We use 1,4
to denote the indicator function of a set A. We use 1 to denote the constant function
1(t) = 1foranyt € R.

Given any metric space S, Cp(S) is the space of bounded and continuous real-
valued functions on S, and C.(S) the space of continuous functions with compact
support. C'(S) is the space of real-valued, once continuously differential functions
on S, and Ccl, (S) is the subspace of functions in c! (S) with compact support, while
(o é (S) is the subspace of C 1(8) of functions that are bounded and have bounded first
order derivative. Let C2(S) be the space of real-valued, twice continuously differential
functions on S and C Cz (S) be the subspace of C?(S) of functions with compact support.
We will mostly use S = Ry or ]Rﬁ_. Let L?(R4), p > 1, be the space of measurable
functions f on R such that fR+ | f(x)|Pdx < oo.Let Llpoc (R4) be the corresponding
space in which the associated property holds only locally.

The space of Radon measures on a Polish space S, endowed with the Borel o-
algebra, is denoted by M(S), and M g(S) is the subspace of finite and nonnegative
measures. The space M (S) is equipped with the weak topology, that is, a sequence
of measures {1} in M (S) is said to converge to u in the weak topology (denoted by
u" =" ) if and only if for every ¢ € Cp(S),

/(p(x)un(dx) — /go(x),u(dx), as n — oQ. (1.1)
S S

The Sobolev space H' (R ) is the Hilbert space consisting of continuous functions
u : Ry +— Rwhicharesuchthatu € L?(R..) and there exists a function u’ € L2(R,.)
such that forall # > 0, u(t) = u(0) —I—fé u'(s)ds. Recall that H!(Ry) C Cp(Ry). We
shall consider the dual space (H T(R4)) of HY(R,), which we equip with its weak
topology. Let HJ (R.) be a subspace of H!(R.) consisting of functions with compact
support. Further, let H>(R..) be the Hilbert space consisting of continuous functions
u : Ry +— R such that u,u’,u” € L*(Ry), and H>(R,) be the corresponding
subspace of functions with compact support.

We write (u, ¢) = f ¢ @ (x)u(dx) for a Borel measurable function ¢ : § — R that
is integrable with respect to a measure u € M(S). In our case S = R... The symbol
8y is used to denote the measure with unite mass at the point x € S.
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We use D := D(R, R) to denote the space of R-valued, cadlag functions on R,
endowed with the usual Skorohod J; topology; see [1]. Let C be the subspace of D
of continuous functions.

We shall consider elements of D(R+; M ¢(R4)) and D(R,; (H'(R4))"). It fol-
lows from the results in [19] that tightness and weak convergence of a sequence
(XN, N > 1} in D(Ry; Mp(Ry)) (resp. in D(R,; (Hl(R+))’)) will follow from
tightness and weak convergence of the sequence {(XV, @), N > 1} for any ¢ € C)
(resp. H'(R4)).

2 Model and Results
2.1 Model

We consider an SIR model for a homogeneous population, each of which has a varying
infectivity depending on the age (elapsed time) of infection. Let N be the population
size, and the numbers of susceptible, infectious and recovered individuals at each time
t are denoted by SV (1), IV (t), RN (¢), respectively. Then we have the balance equation
N = SN@)+ IV (@) + RN (1), t > 0. Assume that 7V (0) > 0. Let uV (¢, da) be the
measure-valued process describing the infection-ages of the infected individuals at
time ¢. For each t > 0, [LN (t,da) is a finite measure over R . For convenience, we
write ,ufv or MN (1). It is clear that IV (1) = (MN (t), 1) for each t > 0, where 1 is the
constant function 1(¢) = 1 foreach ¢ > 0.

Let {X;(-)}ien and {A_; (")} j=1,...1N (0) be the nonnegative random infectivity func-
tions taking values in D for the newly infected and initially infected individuals,
respectively. They are non zero only during the infectious period. We assume that they
are mutually independent and have the same law. Let A1) = E[Ar; ()] for 7 > 0. Note
that A(-) also takes values in D.

Let AN (¢) be the cumulative number of newly infected/exposed individuals in (0, 7],
with event times {tl.N : i € N}. For each individual i, let n; be the associated infected
period, i.e.,

n;i :=sup{t > 0:A;(¢) > 0}. 2.1

The variables {n;} are i.i.d. with a distribution function F(-). Let F¢ = 1 — F'. We shall
assume that F has a density f w.r.t. the Lebesgue measure, and denote by h = f/F¢
the associated hazard rate function. Similar to (2.1), we also have n_; = inf{r > 0:
A_j@)>0)forj=1,...,1 N'(0), representing the infection duration for the initially
infected individuals. The variables 1_; have the same distribution function F.
Lettjo,j=1,....1 N'(0) be the times of being infected for the initially infected
individuals at time zero. We construct them from the corresponding A_; as follows.
Tio=-Tj0Jj=1...,1 N (0), which are the corresponding ages of infection at
time zero, are given as 7; 0 = (U;n—;) A a, where {U;, j > 1} is a sequence of
i.i.d. U([0, 1]) r.v.’s, which are supposed to be globally independent of all other given
random inputs, and a > 0 is arbitrarily fixed. As a result, the {T;0, 1 < j <1 N(0)}
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are i.i.d., and we denote their common law by fo(1)~ 1o, which is a probability
measure on R, where [io is a measure which satisfies the following assumption:

Assumption 2.1 [o({0}) = 0, ro has a compact support included in [0, a], for some
a > 0, and its total mass satisfies f1o(1) < 1.

Let n?, j=1,...,I"(0), be the variables representing the corresponding remaining
infected periods, where

n(} = sup{t >0:A_;(Tjo+1) > O} >0.
The aggregate infectivity process § (r) at time ¢ is given by

1N (0) AN (@)

Yoy =Y rjGot+n+ D ae—1N). =0 (2.2)

j=1 i=1
The instantaneous infection rate at time ¢ can be written as

SN ()

TV@) = TSN (1), t>0. (2.3)

Then the infection process AN (#) can be written as
N t o0
AN (1) = / / 1, N Qinf(ds, dv) , 2.4)
0 Jo

where Q;,r is a standard Poisson random measure (PRM) on R%r.

We assume that the three following sources of randomness are mutually indepen-
dent: generation of new infections via the PRM Q;, s, the random varying infectivity
functions {A ;(-)}j>1 of the newly infected individuals, and the pairs {(A_;, 7j.0)};>1
infectivity functions and infection ages of the initially infected individuals.

The number of susceptible individuals satisfies

SNoy=SN0)—ANe)=N-1"0t) - RV (@). (2.5)
The measure-valued process p.fv (da) can be expressed as
N (0) AN (@)
N
p (da) = X} Lo 8 g4 (da) + 21: LN oy ov (da). (2.6)
Jj= i=
Or equivalently, for any function ¢ € Cp(Ry),
™ (0) AN (@)
N ~ N
)= 30 Lo eGro+ 0+ Y vy, 06— 1),

j=1 i=1
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For convenience, we also write (,ufv , Q) as va (¢) sometimes.
The initial condition pLéV is given by

1V (0)
ny =y 8z, - 2.7)
j=1

The number of infected individuals at time ¢ can be written as

N6y = (uN, 1)
"V (0) AN (@)

DO TRED S 28
j=1 i=1

and the number of recovered individuals at time ¢:

V) AN (@)

N N
RY®) = RY O+ D Lo+ ) Lovy, 2.9)
j=1 i=1

We next write an equation to describe the evolution dynamics of /,L;V (¢). Before
proceeding, we introduce a function: for any measure v on R4, w — H (v, w) is the
right—continuous increasing function such that (recalling that A = f/F¢ is the hazard
rate function of 7):

v(hljo,a))

Hyv,w)<asw< o)

, (2.10)

in other words, H (v, -) is the “inverse of the distribution function of the normalized

h-biased v”. In particular, with G(a) := %, we have H(v,v) = G~ (v) and

H (v, G(a)) = a. Note that the function H (,uév,, v) in the last term plays the role
of identifying which individual recovers next, through the ages of infection, see the
justification below.

It is then easy to show that the above expression of ,ufv in (2.6) can be equivalently
(in distribution) written as: for ¢ € Cp(R4),

t o0
1N @) = 1l (ot + ) + / f (1 — )1,y () Qing (ds, dv)
0o 2.11)

t poo pl
- /0 /0 /(; et —s+ H(Mﬁv—a w))lvguN_(h) Orec(ds, dv, dw),

Qinr and Q.. being two independent standard PRM, respectively on ]R%_ and on
REL x [0, 1], representing the infection and recovery processes. The first term on the
right hand side of (2.11) indicates the evolution of the initially infected individuals in
terms of their infection ages, the second term indicating the new infection process and
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the third term indicating the recovery process for both the initially and newly infected
individuals. In some sense, the expression in (2.11) can be regarded as a measure-
valued birth and death process where the second term as the “birth" and the third term
as the “death". Let us justify the form of the “death term” in (2.11). We first note
that, since each infected individual, independently of the others and of the infection
process, recovers at rate 2(a(z)) if a(¢) is its infection age at time 7, the total recovery
rate in the population at time 7 is ufv (h). Moreover, we note that w is picked uniformly
at random in [0, 1], and that if W is a ([0, 1]) r.v. independent of the process u,
anda;(t7),1<i <1 N (t7) denote the ages of infection at time 7~ of the individuals
infected at that time, we have that

h(a; (1~
P(H@Y W) =a()pl) = %
N

which is the proper choice dictated by our model.

We remark that the measure-valued process (/Lfv )r>0 itself is not Markov because
of the random varying infectivity processes (A (-)) jez). However, in the special case
that (1) = i(t)l,S,]j for a deterministic function A(7), one can show that (va)zzo
is Markov.

2.2 Alinear first-order PDE

The PDE which follows will play a central role in this paper. Suppose we have a
continuous function u;(a) = u(¢, a) on Ri which satisfies the following: for any
smooth function ¢ € C Cl Ry),

d
E(ut’ (p) = (uy, (p/ — h§0> + (p(O)k([) + (gtv §0> ’ (2.12)

u(0, a) = uo(a),

where g;(a) = g(t, a) is measurable and bounded.
We claim that such a function u satisfies the following PDE

{ oru + dqu = —hu + g, (2.13)

u(0, @) = up(a), u(t,0)=k(@).
Moreover, the unique solution of this linear equation is given explicitly as

Fe(a) c
I/l(t, CL) = 1[<umuo(a — t) + luftF (Cl)k(f — Cl)

+/t F@ s a—t+sd
— o(s,a— s)ds .
oy Fela—1+9)°

(2.14)

To go from (2.12) to (2.13), we can argue as follows: first choose ¢, (a) = (1—na)™,
andletn — oo, which yields the boundary condition u (¢, 0) = k(¢). Next, we integrate
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(2.12) on the interval [0, ¢], with ¢ satisfying ¢(0) = 0, and deduce the first line of
(2.13). A similar argument allows to go from (2.13) to (2.12). Uniqueness is proved
using the formulation (2.12) and a duality argument, which will be given below. Hence,
in order to show that the above explicit formula is correct, it suffices to show that it
satisfies the equation, which is not so hard. We also deduce from the formula (2.14)
the following formula, valid for any ¢ € C.(R4):

o0 FC
<ut,<p>=/ oa +t)%

// ot —s +71) C(ZFZ(S)H) (s, r)drds .

t
up(a)da + / et —a)F°(t — a)k(a)da
(2.15)

Note thatitis easy torecover (2.12) from (2.15). Indeed, if ¢ € C Cl (R4), differentiating
the right hand side of (2.15) w.r.t. ¢ produces u; (¢’ — h¢), plus the derivative w.r.t. the
upper bound of the two integrals fot , which produces the last two terms on the right
hand side of the first line of (2.12).

The FLLN limit will solve a PDE of the above type, with g = 0, and uq being an
arbitrary measure, see (2.23).

The FCLT limit will be a PDE of the same type, but with u, k and g being Gaussian
random distributions, see (2.39).

2.3 FLLN

We give ourselves three numbers 0 < 1(0), S(0) < 1and 0 < R(0) < 1 such that
1(0) = {(jip, 1) and 1(0) + S(0) + R(0) = 1. Moreover, we assume that SV (0) =
[NS0)], IN(0) = [NI(0)] and RV (0) = [NR(0)] (taking integer parts, or more
precisely, setting SV (0) = [NS(0)], IV (0) = [NI(0)] and RN (0) = [NR(0)]) are
such that S¥(0) + IV (0) + RN (0) = N

Define the LLN-scaled processes XV = N~1 X" for any processes X It is clear
that IV (0) — 1(0), S¥(0) — S§(0) and RV (0) — R(0), as N — oc. Moreover, by
the strong law of large numbers (SLLN), /TL{)V = g a.s. as N — oo. The notation =
refers to the fact that the convergence is in the sense of weak convergence of measures,
while as random elements, the convergence is in the a.s. sense.

It follows from (2.11) that, Q;, ¢ (resp. 0,..) denoting the compensated measure
associated to Q;, s (resp. Qrec), we have for ¢ € Cp(Ry),

t t
i (@) = i (pt + ) + f ot — )T (s)ds — f i (ot — s + h)ds
0 (2.16)

—inf,N

T R () B TS (D

where

. 1 [! [® —
Mi"/’N(w):N/O/O @(t = )1, <yn -y Qing (ds. dv) , @17
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o 1 t e’} 1 o
N () = N/o /O fo (p(t—s+H(,u?’,,w))lvfuiy_(h)Q,ec(ds,dv,dw),
(2.18)

and we have used the following formula: for any ¢ € Cp(R),

v(¥rh)
v(h)

)

1
/ Y(HW, w))dw =
0

which follows from the definition of H in (2.10).
We first prove the following FLLN. It recovers Theorem 3.1 in [23]. Its proof is
given in Section 3.

Theorem 2.1 Assume that the initial law [io satisfies Assumption 2.1 and that the
hazard rate function h is locally bounded. Then, as N — oo,

(V.3 = (5.3) in D (2.19)

in probability, where (S’, §) € C x D is the unique solution to the following set of
integral equations,

S(t) = S(0) — A(t) = S(0) — /O lT(s)ds, (2.20)
HOES /Oooi(a + Dpo(da) + /Ot At — )Y (s)ds , (2.21)

with
Tt) =803 . (2.22)

IfA(-) € C, then §(t) and Y (t) are continuous. Given (S‘, §), we have
(i }i=0 = {firki=0 in DR, Mp(Ry)) as N — oo,

where the limit solves the PDE: for ¢ € CCl R4),

d —
(@) =0T @) + fi(p" —he), t =0,

00 (2.23)
fo(e) = [0 p(a)jiao(da)
whose unique solution is given as
_ P Fé(a) _
palt,da) =1a F ()Y (1 — a)da+ lo>r—————fo(da — 1), (2.24)

Fé(a—1)
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or equivalently, for ¢ € Cp(R4),

o0 FC t o
<llz,<p>=fo w(a+t)Mﬁo(a)da+/0 et —a)F(t — a)Y(a)da.

Fe(a)
(2.25)

As a consequence, we obtain (I_N, EN) — (I_, Ié) in D% in probability as N — 09,
where

o0 c t
i) = / w/lo(da)+ / FC(t — $)T(s)ds , (2.26)
0 (a) 0

and

o0 c t
R(t) = R(0)+/ (1 - M) ;lo(da)+/ F(t—s)Y(s)ds. (2.27)
0 F¢(a) 0

Since F is continuous, I and R are continuous.

Note that the argument which leads from (2.12) to (2.13) allows us to deduce from
(2.23) the following (at least formally):

O fa(t, ) + dapt(t, ) = —h(Hp(t, -),
(0, da) = fig(da), fu(1,0) =Y ().

By (2.16) and Theorem 2.1, we also obtain the following expression for the LLN
limit: for ¢ € Cp(R4),

t

t
wi (@) = pole(t +-) +/O @t —s)Y(s)ds _/o Ps(p(t —s + )h)ds . (2.28)
Remark 2.1 LetA_;(t) = X(I)1t<nq and A; () = X(t)ltf,,i, where A(7) is a determin-
-1
istic function. We obtain the limit
Féla+1) _

o0 t
§(z)=/ I\(a+r).—uo(da)+/ At — $)FC(t — s)Y (s)ds
0 Fe(a) 0

00 ~
- [ @i,
0
where [i; (a) is givenin (2.24). This second expression has a very intuitive interpretation
that the aggregate infectivity is equal to the infectivity function with respect to the

distribution of the infection ages of the infectious individuals. This is often assumed
in the study of epidemic PDE models (see, e.g., [11, 13, 17]).
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2.4 FCLT
Define the CLT-scaled process: for ¢ € Cp(R4),
A (@) = VN@Y (9) = (@), (2.29)

and similarly for any other process X, XN =N (XN — X) where X is the FLLN
limit of X"V, We make the following assumptions on the CLT-scaled initial quantities.

Recall that /L(I)V (da) is given by (2.7) and that fio satisfies fo(1) € (0,1). We
introduce the notation fig = jio(1)~! 1o, and define

1N(0)

i I _
o=— ; (85,0 = o)) (2.30)

We have the following result, which is a direct consequence of [1, Theorem 14.3].

Proposition 2.1 Under Assumption 2.1, as N — oo,
18 (10, 1) = f10([0, -] in D([0, a], R),
where
fi0([0. 1) == fio(1)* WO (120 ((0. 1))

and {Wo(s), 0 < s < t} is a Brownian bridge, i.e., a centered Gaussian process
whose covariance is given as E[JW(s)W0(s")] = s(1 — s') forany0 <s < s’ < 1.

_ Note that our choices for IV (0), SV (0) and RN (0) imply readily that I 0 =
S(0) = R(0) = 0. This is consistent with the fact that /(0) = fo(1) = 0, since
wo(1) = 0.

Remark 2.2 Since the mapping a — WO([io([0, a])) is not of bounded varia-
tion, i, which we define as the distributional derivative of the function a —
Lo(1) 172 Wo(ﬁo([O, a])) is not a signed measure. However, if the distribution function
of fio is Hoder continuous with exponent & > 0, then a — wo ([:L()([O, a])) is an ele-
ment of Hlso . (Ry) forany s < /2, see, e.g., formula (2.1) from [6], and its derivative

belongs to H _sl(R+), for any s* > 1 — /2. As a matter of fact, the distribution
j—aWO(/ZLQ([O, 1)) belongs to (H'(R4)), since for any ¢ € H'(R4), flo(p) can be
defined by integration by parts.

Remark 2.3 Since WO(¢) can be written as WOot) = W) — tW(l) for a Wiener
process W, if the distribution fio(-) has a density function go on [0, a], that is,
dig(da) = go(a)da, then we can write

£0([0, al) = jig(1)/2w?° ( /0 go(a>da>
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= ﬁo(1)1/2<W ( /0 go(a)da> - /0 go(a)daW(1)>~

If W is another standard Brownian motion, we have that the pair (W ( foa go(a)da) ,

s go(a)daW(l)) has the same law as ( & Veo@dW (a), [ go(a)da [

Vv gola)d W(a)). Thus, fio([0, a]) is equal in distribution to the following expression,
where Wis a standard Wiener process:

a a o
Ro([0, a]) = /10(11)‘/2( /O Vo(@dW(a) - fo go(a)da /0 \/go(a)dW(a)> :
(2.31)
We next give a heuristic derivation of the SPDE; the formal proof will be given in

Section 4. We first deduce from (2.16) and (2.28) that ,&;V has the following expression:
for any ¢ € Cp(R4),

t t
AV (@) = A (ot + ) + / ot — )TV ds — f AN (ot — 5 + h)ds
0 0 (2.32)

+ i1 (@) = 17N (),
where
. 1 t poo _
~inf,N
My ((p) = ﬁ A /(; (p(t — s)lvaN(s’)Qinf(ds’ dU) s (233)

R 1 t poo pl —
M:EC’N((p) = \/_N /(; /0 /0 ot —s+ H(Mév—a w))leM?L ) Qreclds, dv, dw).
(2.34)

We expect that, W,y denoting a standard Gaussian white noise on R, and W, a
centered Gaussian white noise process on Ri such that

00 poo 2 00 poo
E |:</ / g(saa)Wrec(ds’da)> :| = / / gz(s,a)h(a)/fcs(da)ds,
0 0 0 0

(2.35)
if we define for ¢ € H'(R.),
inf ! ~
A () = /0 o(t — )T () Wiy (ds), (236)
t o0
A (p) = / f ot — 5 + @) Wee(ds, da) 237)
0 JO
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then for any ¢ € H'(Ry), Y () = fi/(¢) in D, where

t

13
fi () = folp(r + ) +/0 @t —5)Yeds — / fus(p(t — s + hds + "™ (9)

+ (). (2.38)

where Y, will be defined in (2.55).

We differentiate this equation w.r.t. ¢, yielding (explanation: when we differentiate
the right-hand side of the above equation w.r.t. 7, we get [i;(¢’), plus the result of
differentiating w.r.t. the upper bounds of the integrals), hence integrating that derivative
on the interval [0, ], we obtain that for any ¢ € ch Ry),

t t
(@) = fro(p) +/0 fis(¢ — hp)ds + w(O)/O [Tsds + T(s)Wmf(dS)]

t poo
+/ / @(@)Wrec(ds, da) .
0 JO

Recall the formula (2.15) for the solution of the PDE (2.13). We hence conjecture
that the SPDE (2.39) has the unique solution: for ¢ € H ! Ry),

(2.39)

. e FC(t+a) . - =
fulp) = f ol +0) e o (de) + / gt —a)F (t*a)[T(a)da+ T(a)Wi,,f(da)]
/ / ot -5+t FC(S)“)W,M(ds,da). (2.40)

In order to check that this expression for [i;(¢) satisfies equation (2.39), we differ-
entiate the right hand side of (2.40) w.r.t. 7, and then integrate on the interval [0, ¢]. The
differentiation gives three types of terms. The terms involving the derivative of ¢ give
i (¢)), the differentiation of F¢ produces —/i; (hg), and finally we differentiate w.r.t.
the upper bounds of the three integrals, and this produces exactly what is expected,
hence the result. The informal “strong” formulation of this SPDE reads:

. . .92
Ofly + 0afly = —hjly + —— 3i9a Wree(t, -,
(2.41)

~ . .. ~ ~ dWinf(t)
Lo given by Proposition 2.1, fi(¢,0) = T(t) + T(I)T .

This means that [ is a distribution on R2 <, which satisfies the first line of (2.41) in the
sense of distributions in (0, +oo)2 and has traces on the boundaries t = 0 and a = 0
specified by the second line of (2.41). The rigorous meaning of this is formulated in
(2.39).

Note that (fig, ?, Winf, Wrec) are jointly Gaussian and (flo, Wins, Wree) are mutu-
ally independent (Y is given in Theorem 2.3 below).
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We state the following theorem on the convergence of uXN, given the convergence
of YN = ¥ in D, since the latter has been proved in [22] (under a slightly different
initial condition). We will state the convergence of the processes (SN, ZV, Y)Y in
Theorem 2.3 below and that of (/V, RV) as a corollary. The proof of the following
theorem is given in Section 4.

Theorem 2.2 Given the convergence of YN = X in D, under Assumption 2.1, if
F e C'and F(a) > 0 forall a > 0, then

(=0 = {tiki=o in DRy, (H'(Ry)) as N — oo, (2.42)

where [i; is specified by (2.40), and i € C(R,, (H'(R,)") a.s. If. moreover, F has
two derivatives f and f’ which are locally bounded, then [i, given by (2.40) is the
unique solution of the SPDE (2.39) satisfying i € C(Ry, (H'(R})) a.s.

Remark 2.4 The convergence YV = ¥ in D will be established below in Section 5.
That proof will rely upon Assumption 2.2, which is stated below. Hence it turns out
that the above theorem is in fact proved under that additional assumption.

Remark 2.5 In the solution to the SPDE in (2.40), we define the process [i; (go) for
t>0andg € L2(R,),

~0 Fe(t+a) .
_ T A d 243
17 () /0 p(a+ 1) —pors=hoda). (2.43)

By the representation of fi( using the Wiener process W in (2.31), we obtain
+a)

FC( ) Vgo(@dW(a)

—/0 plat+1)——— o(a)daf v go(a) dW(d))

F‘()

() = /10(]1)1/2<[0 platnUtD

By well-known properties of the Wiener integral, the process {/l? (p),t > 0,90 €
L2(R+)} is a generalized Gaussian process, with mean zero, and covariance function:
fort,t’ > 0and ¢, ¥ € L2(Ry),

~0 _ o0 L FC(t+a) FC(' + )
Cov(iiy (¢). fip (@) = MO(]l)(/O pla+ny(a+1) @ Fe(a) go(a)da

* Fe(t +a) Fe(t' 4+ a)
—/O plat+1)——— Fo@ %O o( )da/ ¥ (a +’)FC—@30(“)"“>-

In particular, the variance of the process is given by

FC(t + a)\2

~0 _ 5 > 2
Var(u,(so))—uo(m( /0 oot 0’ () so(@da
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* Fe(t + a) 2
_ (/0 <ﬂ(a+t)—FC(a) go(a)da) )

Remark 2.6 Denote the last two terms of the SPDE solution ji;(¢) in (2.40):

1
i (p) = /w(r—a)Ff(r—a>\/T(a>W,-nf<da>, (2.44)
i (9) = f / ot —s 4 L2HD (’Ff(s)+ D Wiec(ds, da). (2.45)

Note that they are different from ,ut inf (p) and [1;°“(¢) in (2.36) and (2.37) in the
SPDE (2.38). It is easy to calculate the covariances of these two terms: for 7,1 > 0
and g, ¥ € L*(Ry),

/

INt
Cov(iz” (@), 1 () =/(; ot — )y (' — ) F(t —a)FC (' — )Y (a)da,

and

INE o0
Cov ([ (9), 1 (9)) = fo /O ot — s+ (' —s5+0a)

Fé(t —s+a) FC(t' —s +a)
Fe(a) Fe(a)

h(a)jis(dayds .

In particular,

t
Var(ji" (¢)) = /O ot —a)*(F°(t — )T (a)da, (2.46)
and

FC
() f [ ot s+ oS hodaas. a1

Before proceeding to specify the limits (3‘ , §, ?), we give the following definitions
of the driving Gaussian processes.

Definition 2.1 We define the following process §0, 1(1):
_~ © -
So0.1(1) := / A(a+t)dfio(a).
0

By well-known properties of the Wiener integral, the process §o,1(f) is a Gaussian
process (continuous in probability) with mean zero and covariance function: forz, ¢’ >
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0’
—~~ S - -
Cov(Faa 0. F01() = [ A(a+0ita+ iiotdo)
0
o _ o0 _
- / Ala+ t)ﬁ«o(da)f rMa+1)ao(da) .
0 0
Definition 2.2 Define the following centered Gaussian processes:
—~ t —
S0 = [ T Wiy ds),
0
t
311 = f At — )T () P Winp(ds) .
0

Definition 2.3 We define the continuous Gaussian process §0,2, (independent of the
Gaussian random field W;,r), with mean zero and covariance function: for 7, t' >0,

Cov(Bo2(1), Foa (1)) = /0 @+t a+1)ioda).

We define another continuous Gaussian process §2, independent of (1o (-) (hence, Fo,1)
and of §o,2, as well as of W,y and W, with mean zero and covariance function: for
t,t' >0,

/

INE
Cov($2(1), :7?:2(/)) = /(; v(t —s,t —$)Y(s)ds .

Observe that the PRMs Qinr and Q.. in (2.11) by construction are independent of
the random infectivity functions {A;(-)};ez\(0} and hence the mfectlon durations n;
(see the expressions of the corresponding scaled processes SO , and Sz in (5.1) and
(5.2)). Therefore we have the independence of their corresponding limits Wi,y and
Wiec from the limits §o 2 and §2, which capture the randomness of {A;(-)}.

Remark 2.7 We discuss the correlations between fi9 and the processes ’3\0,1 and /3\0_2
associated with the initially infected individuals. Recall that Tj o = U, 77? A a, where

= G(A_j), for a certain mesurable function G : D — R, and U; = U(0, 1) is
independent of A_ ;. This specifies completely the joint law of A_; and 7j0-
First, 1o and §p,1 have the following covariance function: for z, ¢’ > 0,

Cov(f10(0, 11, Fo,1(t") = 1(0) Cov(l(g.11(F}.0), A(Zj.0 + 1)),
_ r_ _ _ a_ _
=1(0) </0 A" + @)o(da) — 10 ((0, t])/o A+ a)/lo(da)>.
Next, {19 and ’5\0,2 have the following covariance function: for z, ¢’ > 0,
Cov(°(), Fo.2(1)) = 1(0) Cov(L(0.1)(F;.0). A—; (Fj0 + 1))
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and §0,1 and §0,2 have the following covariance function: for ¢, ¢’ > 0,
Cov(Fo,1(1). To2(t")) = 1(0) Cov(i(Fj.0 +1). hej(Fr0 +1) .

Given the joint law of A_; and ?j,o, the above two covariances are well defined,
although they are not easily calculated explicitly. We do not go further into their
computation here.

Remark28 We next characterize the covariances between W,.. and i, 3’0 1(0),
50 »(1), T1, 52. Observe that Wo.(1) = fo fo @(a) Wree (ds da) is the limit of
the scaled process which is the last term in the expression of /i, (<p) in (4.15). Recall
the covariance function of W), (¢) is given in (2.35). It is easy to check that

1 1 poo el B
\/_N/o /o /0 (p(H(Miv*’w))lvsuf’_(h)Qrec(dS,dv,dw)

N N
1 17(0) AN (1) t
= 7= Do oG+, + D ey, -, / w1y (ho)ds
N j=1 i=1

One can then derive the following covariance functions: for ¢, a > 0,

Cov(WS,.(1), 1o (0, a])

0
_ . 7’]]-/\[ B B
=1(0) COV(I(O,a](Tj,o), w(ﬂfj)lngf, - /o o(Tj0+ Hh(Tj 0+ S)dS) ,

and forz, ¢ > 0,

Cov(W2,.(1), S1(t) =0,

rec
nOAt

CovWLe (0. 50, = 10) Cov(¢(n-1,p., - /0 " 00+ Dh(E 0+ 9ds, MEo+1).

CovWg,, (1), 532 = 10 Cov(p(n-p)1,0.,

At ~
- /o " 0G0+ 9h(E 0+ 0)ds, O — D(Fo + t/)) ,

Cov(We,.(1), Y (") =0,

rec
(s+mi)Nt

t
Cov(We,.(1), 3 () =/ Y(s) COV((p(Y]i)ls_H“St —/ o(r — s)h(r — s)dr, & (1" — s))ds.
0 0

Assumption 2.2 Let A(-) be a process having the same law of {A_; (~)}j:1 """"
{Ai ()}ien. Assume that there exists a constant A* such that foreach 0 < T < oo,
sup,co. 71 A(t) < A* almost surely. Assume that there exist an integer k, a ran-

IN(0) and

dom sequence 0 = CO < {1 < ... < g“k and associated random functions
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At e C(R4; [0, 4*]), 1 < £ < k, such that
k
NOEDIPN () RN} (2.48)
(=1
We assume moreover that there exists a deterministic nondecreasing function ¢ €
C(R; Ry) with ¢ (0) = 0 such that [A¢(r) — Af(s)| < ¢(t — s) almost surely for all
t,s >0andforall £ > 1.
In addition to the conditions on A(¢) above, the function ¢ satisfies that for some
a > 1/4,
(1) < Ct* . (2.49)

Also, if Fy denotes the c.d.f. of the r.v. ge, there exist C” and p > 0 such that for any
1<¢<k—-—1,0<s<t,

Fe(t) — Fe(s) < C'(t —5)°, (2.50)

and in addition, forany 1 < ¢ <[l —1,r > 0,
Pt ¢ =gt <t 2.51)

Theorem 2.3 Under Assumptions 2.1 and 2.2,
SV, ") = (.3 in D* as N — oo, (2.52)

where the limit processes (S 3) are the unique solution to the followmﬁ stochastic
lntegral equations driven by the continuous Gaussian processes j10, §0.1, $0.2, S 1 and

T

t
S(t) = —81(t) — / Y (s)ds, (2.53)
0
- t - -~ -~ -~ - -~
S = /0 At — )Y (s)ds 4+ Fo,1(t) + Fo,2() + F1(t) + F2(1) (2.54)
Y1) =SOF) + SOF @), (2.55)

where S and § are the limits in (2.20) and (2.21), respectively. The limit processes
(S S) are Gaussian, and continuous almost surely.

Corollary 2.1 Under Assumptions 2.1 and 2.2, and assuming that RN ©0) = R 0) as
N — o0, we have

(FV, ﬁN) — (T, @ in D*as N — oo, (2.56)
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Jjointly with the convergence of the processes (§N , §N ) in (2.52) and [;" in (2.42),
where

e o0 C t e e e
i) = f 0D djgta + / FO(t = YT (5)ds + Tp ) + Tree). (2.57)
0 (a) 0

oo<1_ FE(t + a)

R(1) = R(0
0 <)+/0 e

t -~ o~ -~
)d;lo(a) +/0 F(t — s)Y(s)ds + Ro(t) + Ry (1) .
(2.58)

vin

Here Zn () = 1, / (1) and i;ec () = [27¢“(1) are independent continuous Gaussian
processes, which have covariance functions: fort,t’ > 0,

At
Cov(Tins . Ty ) = [ P = 0P~ @ Tada,

and

- o~ [ F—s+a) F( —s+a)
COV(Irec(t)a Lyec(t )) = /O /; F(a) F<(a) h(a)ias(da)ds ,

where [1s(da) is the LLN limit appearing in Theorem 2.1. ﬁo (t) and ﬁl (t) are inde-
pendent Gaussian processes with covariance functions: for t,t' > 0,

Cov(Ro(1), Ro(1"))

®SFAt' +a)—F(a) F@+a)—F(a) Ft'+a)— F(a)) _
— / — Ho(da),
0 Fe(a) Fe(a) Fe(a)
(2.59)
and
R R [N o
Cov(Ri(t), Ri(1)) = / F(t At —5)Y(s)ds. (2.60)
0

Remark 2.9 We remark that we have taken a different approach from the previous
work [22] to derive the limit T(t), by exploiting the measure-valued process (i; in
(2.40). However, by extending the analysis in [22, Theorem 2.4] to take into account
the different initial conditions, we obtain the following representation for the limit

1(t):

o0 C t
T(r):[ wd,&o(a)+/ FC(t — )Y (s)ds + 1o(t) + 1 (1), (2.61)
0 Fe(a) 0
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where Io(¢) and /1 (¢) are independent continuous Gaussian processes with covariance
functions: for ¢, ¢ > 0,

~ =~ % FC(tVt’+a)_Fc(t+a)FC(t/+a) _
Cov(lo(t),lo(t))—/o ( Fe(a) Fe@  Fela) )Mo(da),
(2.62)
and
R . At o
Cov(I1 (1), I (1)) = / FC(t vt —s)Y(s)ds. (2.63)
0

It can shown that the driving Gaussian processes Z,, () + j;ec (t) and }B(t) + /I\l(t)
have the same law. See the relevant discussions in Section 6.

Remark 2.10 We remark that the stochastic epidemic model has essentially three mutu-
ally independent sources of randomness: (i) the generation process of new infections,
embedded in the Gaussian white noise W, ¢, and also S 1 and {? 1; (i) the randomness
from the random varying infectivity functions {2; (-)};en for the newly infected indi-
viduals (embedded in §7); and (iii) the randomness from the random varying infectivity
functions {A_; ()} jen for the initially infected individuals (embedded in Fo,2) and the
infection ages of the initially infected individuals (embedded in 7zo(-)). However, we
stress that the generalized Gaussian random field W, contains both the randomness
from (ii) and (iii), particularly, the infection duration variables {n;};en and {77(}} jeN
(see the covariances in Remarks 2.7 and 2.8).

3 Proof of Theorem 2.1

In this section we prove the FLLN in Theorem 2.1 using the new representation of
@ in (2.16), and provide a new proof for the uniqueness of the solution to the PDE
in (2.23).

Proof of Theorem 2.1 Most of the Theorem is contained in Theorem 2.1 from [23]. The
convergence (SV, §N) — (8, §) is proved under the condition that A(#) < A* in [9]
without requiring any regularity conditions in Assumption 2.2. We take that as given.
Thus, we also have the convergence

T 7Y in D 3.1)

in probability as N — oo, where Y() = S'(t)@(t), t > 0.

We only need to prove the convergence of the measure-valued process ji, and the
statement concerning equation (2.23).

To prove the convergence of 2" in D(R;, Mr(R,)), it suffices to show the con-
vergence of v (¢), forany ¢ € Cp(R4), by [19, Theorem 5.2] (in fact, only invoking
tightness criterion in [19, Theorem 4.1]).
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We have noted above that the solution of the PDE (2.12) is given by the formula
(2.15). We first derive an analogous formula for [, N (¢). Differentiating (2.16) with
respect to ¢, we obtain for ¢ € Cp(R),

d
Eﬂf\/&p) il (@' — he) + ¢(0) |:TN(I)+NE/ / )me(ds dv)]

a NZ/ / _/ QD(H(MV ’w))1U<MN (h)Qrec(dS dv,dw) .

We see that [ satisfies an equation of the type (2.12), but with uo(a)da replaced by
uf)v (da), and also

the function k(¢) replaced by 'Y‘N(t) + ﬁ a / f v<TN(s )me (ds, dv),

and the function g(z, a) replaced by — NE/ / / H(u )(da)1v</4N (h)Q,gC(ds dv,dw).

Hence it is not hard to show that for ¢ € Cp(R),

-N * Fe(t +a) _ aN ! . .
Hy (¢)=/0 ¢(“+’)Fc—() (da)+/ Pt —a)F(t —a)T" (a)da

1 t o0 i _
+ N /0 /0 @t —a)F(t — a)l,cynq+) Qing(da, dv)
1 [t ! Fe(t —s+ H(ul , v)
- —s+HuY S
N/ f / P s B ) G )
x1 _ n ) Q,ec(ds dv, dw) . 3.2)

vl

Theorem 2.1 will follow from the two next Lemmas, the first one says that for any
¢ € Cp(Ry), [LIN (p) — [ (p) in probability as N — oo, for each fixed r > 0, and
the second one that iV () is tight in D(R ), again for any ¢ € C,(R ). Both proofs
exploit the formula (3.2). O

Lemma 3.1 Assume that the hazard function h is bounded. Then, as N — 0o,
ufv((p) — [ (@) in probability, for eacht > 0 and ¢ € Cp(R), where

o0 t
() =/0 o+ )%‘ (da)+/ ot — W F( — )T (@)da. (3.3)

Proof For that sake, we consider each term of the right hand side of (3.2). The con-
vergence of the first term follows readily from the fact that a.s. /16\] = 1o weakly, and
foreach t > 0,

Fe(t +a)

at—> g(a+r) Fe )
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is continuous, and bounded by [|¢||c. The convergence of the second term in proba-
bility follows from that of YN to Y in D. Finally, the last two terms tend to O in mean
square. Indeed, we have

2)

1 [t ]
E (‘—/ / ot —a)F(r — a)IUSTN(cﬁ)Qinf(da, dv)
N Jo Jo

t
= i]E/ ot — ) FC(t — a)|> TV (a)da
N Jo

29 %
_ tllolP
- N

’

which tends to 0 as N — oo. Finally, we have

1 [t o ! FC(t —s + H(uN , w))
El|- — s+ HuY s
(N// J ottt FE(H ) w)
Lo iy Orec(ds. dv, dw)‘ )

r_ FC(t —s+-)
- _ N — ) P
= N]E/O Mg (h(p(l s+-) FoO) )ds

_ thllollelloo
- N

)

which tends to 0 as N — oo. O

We next establish the following tightness result.

Lemma 3.2 Assume that h is bounded, and that the measure iy has compact sup-
port and that F¢(a) > 0 for all a > 0. Then for each ¢ € Cp(Ry), the sequence
{,u (@), t = O}y>1 is tight in D.

Proof We will in fact show that the sequence { av (¢)}n=11s C—tight. This will follow
from the fact that for any 7 > 0, we have the following property: For any ¢, n > 0,
there exists § € (0, 1) and Ny such that

P( sup Ay (@) — ﬂf’(cp)‘ > e) <n VN=Ng. 3.4
0<t<t'<T, t'—t<§

We first rewrite (3.2) as follows: for ¢ € Cp(R4),

FC(t+a) _ N( da)

-N _ o
I ((0)—/0 pla+1) Fo@)

1 [f [ )
+ —/ / @t —a)F(t — )1, xyn (g+) Qing (da, dv)
N Jo Jo
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1 [t oo gl F(t —s + HuY ,w))
- — —s+HuY, s
AN R FeCH(ul w)

X IUSM‘y_(h) Qrec(dsa dv, dw). 3.5

We will show that each term on the right of the identity (3.5) satisfies the property
(3.4). We start with the first term. Recall that [0, a] is the support of f19. We note that

f0¢<a+r’>wuév(da)—fo o+ ED N g

Sup Fea) Fe(a)

0<t<t'<T, t'—t<$§

1
< == sup o) FE() — o F ()],
Fe(a) O<t<t/'<T+a, t'—1<§

which tends to 0 as § — 0, since both ¢ and F¢ are continuous.
We next consider the second term:

¢ poo
‘%/o fo ot — O ~ )1y N gty Qing (da, dv)
1 7[>
-5 /0 [) Pt =) F(t — a)l,oynq+) Qing(da, dv)
1 [ oo
= N[ fo (" — W) F(t" — a)l,cyn (g+) Qins (da, dv)
1 [t [
+ N/O /O ot — ) FC(t' — a) — @t — Q) F(t — )| 1,y () Qing (da, dv) .
The first term on the last right hand side is bounded by ||¢ ||« multiplied by

1 t NX*
v / /0 Oiny (da, dv) .
t

Note that, as N — oo,

1 t pNA*
N/(‘) /0 Qinr(da, dv) — A,

in probability, for any ¢+ > 0. Moreover, for any N, ¢ +— % fot ONA Qinr(da, dv)
is increasing, and the limit is continuous. Hence from the second Dini theorem, the
convergence is locally uniform in #. Now we obtain

1 t' pNAF
P sup —/ / Qinf(da,dv) > ¢
0<t<t/<T, t'—t<$ N t 0

1 t pNA*
ﬁ/o fo Qinf(da, dv) — A"t

0<t<T

<P (2 sup > 8/2> + L r—r)>e/2 -
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We choose § < ¢/2)*, and deduce from the above that

N
P sup / / Qinf(da,dv) > ¢ ] — 0,
0<t<t'<T, t'—t<$ N

as N — oo.
We next consider the term

1 t o0
N /0 /0 |<P(t/ —)F(t'—a)—p(t —a)F(t — a)| 1,y q+) Qing(da, dv) .
(3.6)

Define

wppe(8, T) = sup )V FE(t") — o) FC ()] .

0<t<t'<T, t'—t<$§

We have

sup // (' — Q) FE(1' — a) — (1 — a)F(t — )

0<t<t/<T, t'—t<$ N
X lufYN(a+)Qinf(da, dv)
Qinf ([0, T] x [0, NA*])
N .

< wyre(8,T)

On the last right hand side, the first factor tends to 0 as 6 — 0, while the second factor
tends to TA™ a.s., as N — oo. Hence the term in (3.6) also satisfies (3.4).

We finally consider the last term in (3.5). In other words, we need to establish the
C-tightness of

t cir_ )
WV () _/ 7 <h<p(t—s+ )F(IFC—(S)H>ds

FC(t —s + HuN , w))
- +H b z
/ / / 00 = H O ) ™ )

x1 _ w (h)Qrgc(ds dv, dw)

vSp

= Vz ((/’) + Vt ( ). 3.7
We first note that, if ¢ < ¢/,

- FC@ —s+9)
N /
Moo= [l (hw_.w.)im') )d

+/tagv (hw(z’—s+->F°'(z’—s+->—w(z—s+->Ff<z—s+->>ds
0 Fe()
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hence, provided ¢’ — t < 6,

Il
W @) =N ()] < lhllosll@llood + x joure 6.7+ K).

Fe(t+ K

Hence clearly v,N ’l(go) satisfies (3.4).
We finally consider v,N ’2(<p):

v 2 @) = v 2 )]

1/[//00/1 R GOl s el
< — t — —>
SN do o T T T T T R Y )

N Orec(ds, dv, dw)

s

IUS[L

1 /t/oofl lo(t'—=s+H (. 0) FE(t'=s+H (2, ) — p(t=s+H (., w) FC (1=s+H (1, w))|
NJoJo Jo Fe(H N wy)
x 1 N7(11)Qret'(ds7 dv, dw)

V=p
s

1
= ”‘P”OONQrec([t, 1 x [0, Nhlloo] x [0, 17)

Gppe@ 1T+ 1
FC(r +a) N Qrec([0, 1] x [0, N|Aloo] x [0, 1])
t]|A oo

Fe(t +a)

=" = Dleloolhlloc + wppe —1,T)

1 -
+ H‘/)”ooﬁQrec([t» "1 x [0, Nllhllso] x [0, 11)
wwpc(t/ —t,T+a) i _
T Fa+a N Orec([0,1] x [0, N|hlloo] x [0, 1]).
Thesupover0 <t < < T, t' —t < § of the first line on the right hand side tends
to 0 as § — 0, while the term on the second line tends to 0 in probability as N — oo,

uniformly over 0 < r <t < T, as explained above. This proves that v,N ’2((p) satisfies
(3.4). The Lemma is established. O

We finally establish uniqueness of the solution of the LLN limiting PDE.

Proposition 3.1 Assume that F € C' and F(a) > O for all a > 0. Then the PDE
(2.23) has at most one solution in the space C(Ry; Mp(Ry)).

Proof We use a duality argument. Note that if © € C(R; Mp(R.)) solves the PDE
(2.23), then for any ¢ € Cg (R4), the mapping ¢ — us(p) = fooo p(a)u(t,da) is
differentiable, and

d —
(@) =0T @) + 1i(g' —he), t=0. (3-8)
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Moreover, if {¢;, t > 0} solves the PDE (2.23) and (¢, a) — ¢(¢, a) = ¢;(a) is an
element of C!(R%), then

d —
@) = e O @) + 1 @Brgr + dapr — hpr), 120, (3.9

Suppose now that we have two solutions u; and v; of the PDE (2.23) with the same
initial condition. Then the difference Au; := u; — vy satisfies Apg = 0 and for any
¢ € C/(RY),

d
EAMI((pI) = Aps(0r¢r + 0ar — her), t>0. (3.10)

Now consider the following backward PDE: for T > 0 and g € Cg (Ry) arbitrary,
vy + 0qvy = hv,, 0<t<T, v(T,a) =ga). (3.11)
This last equation has the following explicit solution:

v(t, a) = F(c;:—@f)_t)g(a+ T—1).

Indeed, this function v satisfies v(T, a) = g(a). Moreover, 9; + dq of the factor
F(a4+ T —t)g(a+ T — t) vanishes, since it is a function of a — 7, while

1 f@  h

(8t+au)FC(a) = aFC(CI) - (Fc(a))? B Fe(a)

Hence this function v satisfies (3.11). Moreover, since in particular ' € C Ly e
C!(R?). Combining (3.10) and (3.11), we deduce that % Ay, (v,) = 0, for all €
[0, T]. Consequently, Aur(vr) = Auo(vg) = 0, i.e. Aur(g) = 0, for any g €
C} (R4). Therefore, Aur = 0. But this true for any 7 > 0. Uniqueness of the
solution of the PDE (2.23) has been established. O

4 Proof of Theorem 2.2

Recall the expressions of i (¢) in (2.32), with ,&i"f’N((p) in (2.33) and 20N (p)

in (2.34). Here we apply the tightness criterion in [19] for stochastic processes in
DR; (H'(Ry)).
Lemma 4.1 Under Assumption 2.1, for any ¢ € H'(R,),

(g (@t + ), 12 0} = {fo(p(t + ). t =0} in D

as N — oo, where {[19} is given in Proposition 2.1.
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Proof Recall the expression of /SL(])V in (2.30). In particular, given that dio(da) =
go(a)da, we have

)
AN _ 1 5 _ =
a0 a) = — ; (15,020 — 2010, aD) .

Thus we can write

Ay (gt + ) = /0 ot + )il (da)

V(0
1 - o -
== 2 (vt@o+n - | o+ niotan).

j=1

Observe that the summation is over a sequence of i.i.d. random variables. Thus, by
the CLT, we immediately obtain the convergence of finite dimensional distributions.

To prove tightness, we apply Theorem 13.5 in [1], which says in particular that it
suffices to show that forany 7 > O, any t; <t <tp < T, ¢ € HI(R+), and N > 1,

E[|ad (0t + ) — i (o1 + N[ |2 (0t + ) — i (ot + D[]
< (G(t) — G(11))" @.1)

for some @ > 1 and some nondecreasing nonnegative continuous function G. From
now on, T will be arbitrarily fixed.

We have
I V)
gy (pt + ) — g (pt1 +9) = —= Z [(Zj,t —-EZ;:)—(Zj, — E[Zj,tl])] )
VN o
and
V)
AN ~N 1
o (@2 +9) — g (pt + ) = — [(Zj, —ElZj ) — (Zj —E[Z;,:]],
N &
with
S -
Zjr =90+, ElZ;,] =/0 p(a+1)po(da).
Also, for notational convenience, we write Zj,, = Zj: — E[Z;,]. Note that the

stochastic processes Z ;.- are mutually independent and centered. Then, we have
N N 2| A N 2
E[|ad (0@t + ) = g (@t + D[ |2f (2 + ) = 15 (0 + N|']
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N (0)

1 } ) 2 N0 N2
- mE[< Z (Zji— Zj,tl)> < Z Zjn — Zj,t)) j|
Jj=1 j=1

1 IN(0) 1N (0)
B _EK SN - Zi*+ Y. Zju—Zpu)Zyy — Z,-/,t.>)
j=1

N2
JJ'=Lj'#]
1N (0) 1V (0)
X ( Z (Zjn—Zj)*+ Z (Zjn—Zj)(Zjyy — Zj/,t)>:|
j=1 JJ'=Lj#E]
1 IN(0) . . ) o
= m( 2} E[(Zj,t - Zj,t.) (Zj,tz - Zj,t) ]
j=
™)
+ Z E[(ZJJ - Zj,tl)z]E[(Zj’,tz - Zj’,t)2]
JJ'=Lj#E]
™)
+ Z E[(ZJ'J - Zl',fl)(zj,tz - Zj,t)]E[(Zj’,t - Zj’,tl)(Zj’,z2 - Zj/,;)]) .
JJ'=1j'#E]

We next calculate each of these terms. We write
Vi(a) :=¢(a+1t) —pla+1) and Wi (a) :=¢(a+hn) —e(a+1),
and observe that for Cauchy—Schwartz’s inequality, we deduce that

Wi(@)] = le(a+1) —¢(a+1)]

t+a
=, /It —nl ¢’ (r)|*dr
fn+a (4.2)

< cpt — 11,
W2 (a)] < cpv/tr — 1,

where ¢, 1=/ [;" ¢/ (r)|>dr. We have

E[(Z;, — Zj.0)*] = fo W2 (@)io(da) — ( /0 wa)ﬁo(da))

2

[ee)
< [ wiiiows <2 —nl

Similarly, the same bound holds for E[(Z;/,, — Z ;7 ,)*]. So we get

E((Zj.i — Zj)?|B[(Zjr, — Zjp.)*] < 4cjltn — 1]
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Next, we have

E[(Zj1 — Zji)Zjn — Z1.0)] = /0 W ()W (a)jio (da)

- /0 Wy (a)Lo(da) /0 Wy (a) Lo (da) .

By (4.2), we obtain that its absolute value is bounded by 2c5J |t —t1|. Similarly we can
bound E[(Z;r s — Zj» 1, )(Zjr, — Zjr ;)] So we have that for j # j,

E[(Zji = Zju)Zjiy — ZiD|E[(Zjry = Zjpu)(Zjriy — Zj )] < Ayl — 1117
Now we calculate
_ _ _ _ - o - 2/ o - 2
E[(Zja = Zj ) Zjy = 2] =E[(\P1 ~ [ wiiowa) (92— [ waiiow) ]

with \iJl =Zj;—Zj; and \112 =Zjn, — Zj,. Itisequal to (dropping a in ¥ and
U5 in the integrands below for brevity)

o0 _ o0 _ o0 _ 2 o0 _
/ W2W2jig(da) + f Wi io(da)( f Wafiodw) + f W io(da) f
0 0 0 0 0

o0 _ o0 _ o0 _
+ / W1 Ui (da) / Wi io(da) / Wfio(da)
0 0 0

oo

_ 2
ijio(da))

o0 _ o0 _ [e ] _ [e] _
-2 fo W1 W3 jio(da) /0 W) fig(da) — 2 [0 Wi jig(da) [0 W io(da)

-3( /0 o) /0 " Wit

By the bounds of |W| and |W;| in (4.2), the absolute value of each term is bounded
by 4Cg|l‘2 — 1 |2.

Combining the above estimates, we obtain (4.1) holds with G(t) = Ct, C being
equal to some finite factor times cé, and @ = 2, and then applying Theorem 13.5 in

[1], we conclude the convergence ,&6\’ (p(t + ) = fo(p(t ++)) in D. O

Lemma 4.2 Forany ¢ € Cp(R),
t

{/0t<ﬂ(f — )TN (s)ds, t > 0} = {/0 ot — )Y (s)ds, t > O]

inCas N — 0.

Proof By Theorem 2.3, we have ?N(-) = ?(-) in D where ?(r) is given in (2.55),
and has paths in C almost surely. Applying the continuous mapping theorem to the
mapping x € D — {fot @(t —s)x(s)ds ,t = 0} € C, we obtain the convergence as
claimed. O
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Lemma 4.3 Forany ¢ € H'(Ry), A" "N(p) = 2" (¢) in D as N — oo.

Proof We define

inf N Y A -
77 (¢)=J—N/() /0 @t — )1,y (s) Qing (ds, dv) .

We first note that
t
E [(Amf Ny — @ N(@) } /0 QX (t — $)[T(s) = T (s)|ds.

which tends to 0 as N — oo.

Next it follows from Corollary 2.9 in [27] that the joint cumulants of the random

variables (ﬁ;lnf N, ..., ﬁizf N (@m)) equals O for m = 1, and otherwise is given

as

~inf,N N
kmCiin” N @), i (om)

LA Al _
— Nl—m/Zf ®1 (tl _ S) X oo X @m(t'n — S)T(S)ds .
0

The cumulants of order 1 are 0, all cumulants of order m > 3 tend to 0, while for
m=2,

. . LA _
@ N @), @i (g2)) = /0 01(t1 — $)pa(ty — )T (s)ds .

The above arguments allow us to conclude that the finite dimensional distributions of

the generalized random field M;nf (¢) converge towards those of M;nf (¢). If remains
to establish tightness in D of the sequence /1/"/>" (¢), which will be a consequence
of the next two lemmas. O

Lemma 4.4 Forany ¢ € H'(R,), the sequence {i""/ "N (¢)} is tight in D.

Proof For the sake of simplifying our notations, we define, with ¢ € C ,l (R4+) being

fixed, &V = ”nf N((p) We will again exploit Theorem 13.5 in Billingsley, more
precisely Bilhngsley s condition (13.14) in the following special form. For any 7 > 0,
there exists a nondecreasing continuous function G and areal o > 1 such that for any
hH<t<th<T,N>=>1,

B[ —eD2Ey —&M)?] = G - Gy 43)

For that sake, we will make use of the following formula from Exercise 2.21 in [27].
Let Q be a Poisson Random measure on the measurable space (E, £) with mean
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measure i, and Q = Q — u its associated compensated measure. Then for any
fi, fre L'(E, & w) N LYE, &, ),

E[QU* 0] = nU D) + nUDRUD + 2P (G4
We shall apply this formula after having identified f1 and f> such that
& — &) =0() andg) — &Y =0(f).

in the case E = R%L, u(ds, du) = dsdu.

We have
1 r oo B
E,N — Etjlv = ﬁfo /0 1u<NT(s)‘/’(’ —5)Q(ds, du)
1 t poo B
- \/_Nfo /0 L, Ny @t — ) Q(ds. du)
= 0(f1),
where

1
fils,u) = ﬁl(tl,t](s)ﬁo(t - S)1u<1v?(s)

1
+ o6 (00 =) = 91 =91, vy
Similarly,
Stlzv - StN = a(fz),
with
1
fals,u) = ﬁl(t,tz](s)(ﬂ(ﬁ - s)1u<NT(s)
1
+ Lo (902 =) = =9 )1, )
Now we have

1
G0 fas.0) = 51,00t = 9) (012 = 9) = 9t =), )

1
+ 10016 (0 =) =01 =) (92 =) = ¢l =)L, _yrie) -
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Hence, with ¢, denoting the norm of ¢ in H 1 (0, T + K), by the same computation as
done in the proof of Lemma 4.1,

t _ Al 2__
(P =/ wz(t—s)T(s)der/O ((ﬂ(t—s)—w(n —s)) Y (s)ds
4]

< MlpllZ (¢ — 1) + M ekt — 1)
=C(n—n), (4.5)

where the constant C depends upon 12, 1* ||¢||oc and c,. We also obtain

w(f3) < Clty—t). (4.6)

We next compute

p(hf) = [ o =)ot = 5) = ot = ) T)ds

n

n J—
+ t—s)— @t — —5) — @t —5))Y(s)ds .
[ (o0 =9 =0t = 9) (910 5) = 40 =) T3
Thus, we have

L)) < A ll@lloocy (t — 1) + Mcp (p — 1) . “.7)

Finally, we obtain

2 p2 _l ! 200 _ _ _ 2=
w D =5 [ =9 (e =) =9 =) Tds
13|

+ % /Ot] (ﬁﬂ(r —5) — o — S)>2(‘/’(’2 —8) el - S)>ZT(S)dS

lpllaecsr* , At
< ———(Mm—-h)+
< N (t —11) N

I

(th—1)%. (4.8)

Putting together (4.4), (4.5), (4.6), (4.7) and (4.8), there exists a constant C7 such that
forany0 <t) <t <trp <T,N >1,

B[ - &M@y —&M?] = cra—n)?. (4.9)

Applying Theorem 13.5 in [1], we obtain the desired result. O

Lemma 4.5 Forany ¢ € H'(Ry), the sequence {i'" " () — g™V

tight in D.

(p), N =1}is
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Proof For the sake of simplifying our notations, we define

~inf,N ~inf,N
AN = "N @) — 1 ().

We shall exploit the Corollary page 83 of Billingsley [1]. More precisely, a conse-
quence of that Corollary is that, since A(’)V = 0 forall N > 1, taking into account the
inequality (12.7) in Billingsley [1], the statement of the lemma will follow from the
following fact: for any t > 0, ¢ > 0,as § — 0,

1
limsup~P [ sup AN, —AN|>¢] — 0. (4.10)
N—o0 0<r<é
In order to simplify our notations below, we define

Dy (s, u) i=1,cyn ) = Loy »

and we note that

IDn (s, u)| = ITN(s—)ANT(s)<u§TN(s_)\/NT(s)’

/ |Dy (s, w)ldu = | YN (s7) — NY(s)l,
0
i/ww (s, u)ldu = | TN (s7)|
N Jo TV - ’
1 o0 _ _
N/ Dy (s, w)ldu = [T (s7) = T(s)] .
0

We have

1 o[ _
AY = \/_ﬁfo /0 o(t —s)Dn(s,u)Q(ds, du),
N N 1 t+r o0 -
Ay, — A = \/—N/t /(; @t +r—s)Dy(s,u)Q(ds, du)

1 t oo B
+\/_N/(.)/0 (@(I—I-r—s)—(p(t—s))DN(s,u)Q(ds,dn,du)_

Next, we obtain

N N 1 t+r 00 t+r o N
A —A < — Dy(s,u ds,du) + [ YT (s)|ds
A, i «/N”(p”m/z /(; [Dn (s, u)| O( )+ llelloo ) [T (s)]

C

L Gedr /l foowN(s w)|Q(ds, du) + ¢ ﬁ/tﬁ’v(s)ws.
VN Jo Jo ' ' Y Jo
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As a consequence,

1
sup AN, — AN < —

0<r<é \/N

t [oe) t
+C%5Af() |DN(s,u)|Q(ds,du)+c¢J5[() TN (s)lds

_ 1
- UN

, t o0 ‘
+cz~§/0/0 |DN(s,u)|§(ds,du)+2C¢¢g/() TN (5)lds .

t+8 oo 1+§ N
||<p||oo/ /O \DN(s,u>|Q(ds,du)+nwnoo/ TN (s)lds
t t

t+8 oo _ 1+ N
||<pnoo/ /0 |DN<s,u)|Q(ds,du)+2uw||oo/ T (s)1ds
t t

We have proved that
sup [AN, — AN < ANs+2B]
0<r<é
where
N 1 t+6 o0 .
Als = —lel / / [Dy (s, u)|Q(ds, du)
no VN =) 0
cwﬁ f’/oo _
+ Dy (s, u)|Q(ds, du),
VN Jo Jo

t+8 t
BN, = ||¢||oo/ 1TV (s)|ds +c¢«/5/0 TN (5)lds .
t

Clearly, in order to establish (4.10), it suffices to establish the following two facts: for
anyt > 0, > 0,as 8§ — 0,

1
lim sup EP(A{YS > ) —> 0, (4.11)
N—o00

1
lim sup E]P(B,’j{s >¢e) > 0. (4.12)
N—o00

We first establish (4.12). We note that

t+6
(B)* < C(llgll3, + )8 x / TV (s)]%ds .
0

So we have
) 1 N 1 1+5 5 &
limsup -IP(B,’s > &) < <P IT()7ds = ———5—75—
Nooo O ' ) 0 Cllels +c3)é

2 2 2)25 +1 2
(||<P||202+c(/,) E|:</<; |T(s)|2ds) }
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which goes to 0 as § — 0. Hence, (4.12) follows.
We finally establish (4.11). For that sake, we first estimate the second moment of
AN .
t,6°

E[(A]5)?]

t+48 t
Blol [ T = Tods +¢s [ 1TV(6) = Too)ids]
t 0

—N p—
<E[ sw [T ()= T@I]lgl +1e2)s.
0<s<t+3$

Finally, we obtain
E[(AN)?]
5e2

c _ _
5—21@[ sup |TN(s)—T(s)|].
& 0<s<r+§

1
g]P’(AﬁYS >¢) <

We know that TN (s) — Y (s) in probability locally uniformly in s, and |?N (8)] < A%,
hence the lim sup as N — oo of the above right hand side is O for any § > 0. (4.11)
has been established. O

~We next prove that [t €N (p) = 2"°(p) in D. We shall treat 2"°“" similarly as
2N Our aim is to establish the following lemma.

Lemma 4.6 Forany ¢ € H'(Ry), 17N (@) = 1" (¢) in D as N — oc.

Let us first establish the convergence of finite-dimensional distributions, and then
tightness in D.

Lemma4.7 Foranyp € H' (R ) andany0 <t; <t) < --- < ty, as N — 09,

QN @), 1N (@) = (@), - 15 ()

Proof We define

_ 1 t o0 1 B —
M;eC’N((p) = ﬁ fo /0 [) ot —s + H(us, w))IUSNﬁx(h) Qreclds,dv, dw) .

The proof will be divided in two steps.
Step 1 We first want to show that for any 1 > 0, 27"V (¢) — i7"V
mean square, as N — oco. We have

() = O0in

A N ~ N
215N (0) — 115 (9)

1 t poo rl .
- Tﬁfo /0 /0 [ote =5+ HGEN.0) = 0t =5+ Hiis. )| Lz iy ) O0ds. du. dv)

1 t poo pl ~ .
+ ﬁfo fo fo ot —s+ H(@, v) [lugiv;z’_", n~ 1u§N/25(I1):| Q(ds, du, dv),
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and

E[1a7N ) - i @]

t
szE// [go(r—s+H(;z£V,v)>—¢<t—s+H(;1s,v))]zmh)dvds
0 JO

|y (h) — s (b))

_év(h) ds .

t o0
+ 2Ef / @*(t — s+ rhr) N dr)
0 Jo
It is plain that the second term in the last right hand side is bounded by

t
20lglIZE /0 12N (h) — s (h)lds

which tends to 0, as N — oo.
We now consider the first term of the above right hand side. We have

t 1 )
]Ef / [fﬂ(t —s+H(@Y, v) — ot — s+ H(iL,, v))] fis (h)dvdss
0 JO
t 1
= E/ / @*(t —s + H@Y, v)jts(h)dvds
0 JO
t 1
+/ / ©*(t — s + H (fis, v))jis(h)dvds
0 JO

t pl
- 2]E/ / @t —s+ H(@RY, v)e(t — s + H (s, v)jis(h)dvds

s (h )
N(h)

—E/ / 17 (t—s—l—r)h(r),us (dr)—
+ f / 0> (t — s + rh(r)is(dr)ds
0 JO

t [ee}
- ZE/ / ot — s+ H@RY, Go(r)e(t — s + r)h(r)ji(dr),
0 Jo
(4.13)

where we have used Gs(a) = % hence H(jig,v) = G;l(v) and

H (g, Gs(r)) = r, and we have done the change of variables v = G (r), hence
dv = %[Ls (dr). It remains to show that, as N — oo,

s (h )
// $2( =5 + R A B ds

- / / @*(t — s + r)h(r)jis(dr)ds,
0 JO

t [ee}
E/ / @t — s+ H(Y, Gy(r)e(t — s +r)h(r)jis(dr)
o Jo
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t o0
N / / 02t — s + r)h(r)jis(dr)ds .
0 JO

Since

fus(h) [

TG Jy O DR ) < el ()

for all s € [0, ¢] and & is bounded, the first convergence follows from Lebesgue’s
dominated convergence theorem and the facts that /lév = s for each s, and h €
Cp(R4).

The second convergence will follow from the fact that,as N — oo, H (/1?] ,Gs(r)) —
r, iy almost a.e., which follows from the fact that, given that 7 € Cp(R}),
ﬁﬁv(hl[o,,]) — s (h1jo,) for fis almost every r.

Step 2 We prove that foreachk > 1,0 < t; < --- < ty,and ¢y, ..., ¢ € H' (R}),

~rec,N ~rec,N ~rec ~rec .
N @) N (o) = (D). L (@), in R

Applying Corollary 2.9 in [27], we obtain that the joint cumulant of the variables

(,&ffc’N(gol), e ﬂfkec’N(wk)) equals O for k = 1, and otherwise is given as

~rec,N

Kk (N @0, - 1N (on))

L—k/2 IAWASRYAV /4 e°]
= NI / / @111 = s+ 1) XX @il = 5 + PR s (dr)ds
0 0

The cumulants of order 1 are 0, all cumulants of order k¢ > 3 tend to 0, while for k = 2,

13WAY ) o0
(N (on), 1N (92)) = /0 /0 @1ty —s +1r)pa(ta —s +r)h(r)jis(dr)ds .

Thus, we can conclude that the finite dimensional distributions of ,&;ec'N (¢) converge

towards those of [1}°“(¢). O
We will next prove tightness in D of the sequence {1"““" (¢)}, N > 1}. But before

doing so, let us establish a useful estimate of the fourth moment of our integrals w.r.t.

Qrec-

Lemma 4.8 Let the integrand g(s, v, w) be Fs—predictable and such that for some

T >0,
T o] 1
IE/ / / g4(s, v, w)dsdvdw < 0.
o Jo Jo
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Then forany 0 <t < T,

t o0 1 4
]E [(/ / / g(S1 v, w)arec(ds, d'l)’ dw)) }
0 JO 0
t 00 1
< 7e4qE/ / / g (s, v, w)dsdvdw . (4.14)
0 JO 0

Remark 4.1 We could prove the Lemma under the weaker assumption

T 00 1
f / / g4(s, v, w)dsdvdw < o0 a.s.
0 0 0

However, the result is useful only in the case where the right hand side of (4.14) is
finite, hence also the left hand side, in which case the second moment of the stochastic
integral of g w.r.t. Q,,, is finite, which implies our assumption.

We shall apply this lemma with some g’s which satisfy

|g(S, v, w] S Clvfzs’

where C is a constant, and Z; is predictable and satisfies E fOT Zyds < o0 a.s., for all
T > 0, which implies the assumption of the lemma.

Proof For any n > 1, let
gn(s,v,w) =g(s,v,w) AnV (—n)l,<,,

t (e’ 1
Xn(t) :/ / / gn(ss Uv w)arec(ds’dvsdw)v
0 JO 0
t [ee) 1
X(t) = / / / g(s, v, w) Qe (ds, dv, dw).
0 JO 0

t — X,(t) has bounded variations and X, (¢) has finite moments of any order. It
follows from elementary computations that

t e’} 1
Xn () = 4 /0 /0 /O X3(s7)gn(s. v, W) Oyec(ds. dv, dw)

t e’} 1
+/f f[(Xn<s‘>+gn(s,v,w))“—Xﬁ(s‘)—4X2(s‘)gn(s,v,w)]
0 JO 0
X Qrec(ds, dv, dw) .

We then deduce that
AT, 00 1
E(X, ()" = E /0 /0 /O [6X2(s)g2(5. v, )
+4X,(5)g2 (s, v, w) + gr(s, v, w)ldsdvdw
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t t poo pl
§4E/ |Xn(s)|4ds+7IE/ / / g;:(s,v, w)dsdvdw,
0 0 Jo 0

where we have used the two Young’s inequalities 6X%(s)g3(s, v, w) < 3X3(s) +
3gﬁ(s, v, w) and 4X,,(s)g2(s, v, w) < Xﬁ(s) + 3gﬁ(s, v, w). Now we deduce from
Gronwall’s Lemma that

t 00 1
E(IX, (1)) < 76" / / / ¢4(s, v, w)dsdvduw
0 JoO 0

t 00 1
< 7e4tIE/ / / g4(s, v, w)dsdvdw .
0 JO 0

The result follows from Fatou’s Lemma, since X,(f) — X (¢) in mean square, as
n— oo. m]

We now establish the tightness result.

Lemma 4.9 Forany ¢ € H'(R.), the sequence {{1"“"" (¢)} is tight in D.
~rec,N

Proof We will apply the tightness criterion (4.3) to [i, (¢) with the help of Lemma
48.Forany t| <t <t < T, we can write

ﬁ;ec,N((p) - ﬁ:fC’N((p) = arec(fl)’ and ll:;C)N(‘p) - ﬂ;ec,N(ﬂa) = Erec(fZ),
where

1 _
fils v, w) = — Ll —s + HEE w1, g

1 -N _N
+ ﬁl[om(s)(w(r s HGE w) = gl — s+ H@E w) )1 )

= fri(s, v, w) + f1,2(5, v, w),

and

1 _
fals,v,w) = —=1¢ 1)@t — s + HEY, w)l, v

VN
L _ =N _ _ =N
+ =Y. ) (92 — s + HGEY  w) — o — s + HG@EN . w) )1, g,

VN

= 2105, v, w) + fr2(5,v, w).

Below we shall apply Lemma 4.8 for estimating the 4th moment of the four random

variables Qo (f1,1)s Qrec(f1,2), Qrec(f2,1) and O, (f2,2). Clearly fT, fi2. f2.1
and f7 > satisfy the assumption in Remark 4.1. Note that in those integrals the same
time ¢ (or t1, or 1) appears both as the upper bound of the integral, and in the integrand.
This does not prevent us from using Lemma 4.8. Indeed, consider e.g. the term

t poo pl
Qrec(fl,l) = / /(; /() (p(t_s+H(/1§V—vw))lvleNi(h)Qrec(dS’dvvdw)~
1 S
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We consider the process

r 00 1
/ / / Loy @t — s + H(EY, w)1_ v gy Orec(ds, dv, dw), r €10,1].
0 JO 0 s

This is really of the form

r poo pl .
/ / / g(S,U,w)QrgC(ds,dU, dw)a
0 Jo 0

to which we can apply It6’s formula and the arguments in Lemma 4.8, which allows
us to conclude the result at r = ¢.
We want to estimate

E[Crec/1)?Crec(2] £ 2B [ Crecl ) Crec 21V
4B [rec (117 Crec 227
4 [Orec (/1.2 rec(f2.2?]

We first estimate the first term on the last right—hand side:

E [@rec(fl)zarec(fll)z] =FE [Erec(fl)zE]:’ [arec(fZ,l)Z]]
< IpI%E [Qmmf / N (h)ds}
t
< el lhllootts = OE [ Oyec(£1)?]

where we have used the fact that ,EL;V (1) < 1 a.s. Now

E [arec(fl)z] =E [arec(fl,l)z] + E [arec(fl,Z)z]
< lleliZlhllo(t — 11)
15l
+/ / lop(t —s +r — @t —s +r)h() Y (dr)ds
0 JRy
< lllelZ + e il — 1) .
‘We have shown that

E I:arec(fl)zarec(fll)z] <C( — [1)2 .

Consider now the second term:

E [arec(f1,1)2§rec(f2,2)2] = \/]E [arec(.fl,1)4]\/E [Erec(f2,2)4]
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201112
collell
917000 4y — )32

= Crlinlloo (12

Finally the third term is bounded as follows:

4

E[Crec(127Cree(£22] = Crlhlloo 22 = 1)?.

We now conclude the proof exactly as that of Lemma 4.4, in the sense that we verify
Billingsley’s condition (13.14) with again G(¢) = ¢ and this time o = 3/2. O

Proof (Completing the proof for the convergence of ;lfv in Theorem 2.2) We start
with (2.32), and by taking the derivative with respect to 7, we obtain

~ 1 d [t [ —
a0 () = i @' —hg) +(0) [T,N t ma / / L ,)Q,-nf<ds,dv>}
> rIua / DCHGE 0D, o ) Orecds. dv.dw).

Similar to (2.40), we obtain that the solution to (4.15) can be written as

(4.15)

o)) FC t -
ﬂfv(go):/o ot + >;T+)) N(da)+f ot — ) F(t — )Y (a)da

t
/ et —a)F(t —a)—= / v<NTN(a )me(da dv)

1 B _N FC(t—s—l—H(,ur,w))
N.// /W SO ) G w)

N g Orec(ds. dv, dw) . (4.16)

X 1U<NM

The first, third and fourth terms on the right hand side correspond to the limits /l?((p),
[L;nf (¢) and 27¢“ (@) deﬁned in (2.43), (2.44), (2.45) respectively. For convenience, we

vrec,N

denote these terms as ,&, (9), u;"f (¢) and [, (¢). To prove the convergence
[LZN (¢) = 1:(p) in D for the expression of [i; (¢) in (2.40), we proceed in the following
two steps:

Step (i): define the processes

vmfN

@ = / Pt — OF(t — ) / ven o) Oiny (da, vy, (417)

[iheN () = \/_/f /(p(t—s+H(us , w))

Fo(t — s + H iy, w)) _
- 1 i ds,dv,d 4.18
X FC(H(ﬂS—, w)) V<N, (h) Qrec( s,dv, dw), ( )
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and show the joint convergence of

( M), / ot — ) F<(t — )TN (a)da, 11"V (). [L?“N(w))

to
1 .
(#860. [ ot = 0F ¢~ 0T @d i ). @)

in D* as N — oo, and
Step (ii): show that in probability,

vl)'lfN v”’lfN

() — () > 0 in D, (4.19)

and
1Ny — iNg) >0 in D. (4.20)

We prove the claim in the first step now. By a similar argument of Lemma 4.1, we
obtain ,u, (go) - 9(p) in D. Given the convergence of YV = Y in D, by the
continuous mapping theorem, we obtain the convergence

t t
/ ot —a)F(t — u)?N(a)da:/ @t —a)F°(t —a)Y(a)da in D.
0 0

By a similar argument to that in Lemma 4.3, we obtain ,uf,"f (p) : /me (p) in
D. By modifying the arguments for the proof of the convergence of ji;“ ((p) in the

proof of Lemma 4.7 and 4.9, we obtain M;‘ec N(p) = [17*(¢) in D. Then the joint
convergence follows from the independence of the driving random quantltles i N(da),
Oin r and 0,.. in the three terms, given the convergence of YV = Y inD.

We move to prove the claim in the second step. The claim in (4.19) follows from a
similar argument as in Lemma 4.5 and that in (4.20) follows from slightly modifying
the arguments in the proofs of Lemmas 4.7 and 4.9.

Hence we have shown that ,uﬁv (¢) = [:(p) in D, where [1;(¢) is given by (2.40).
It remains to show uniqueness of the solution of the SPDE (2.39), in order to conclude
that the formula (2.40) can be identified with the solution of (2.39). O

Proof (Proof for the uniqueness of the SPDE solution to (i; in Theorem 2.2) We
will use the same argument as at the end of section 3, exploiting duality with the same
backward PDE. However, the regularities of both the forward and the backward PDE
are different.

We have that i € LIOC(R+; (H(R4))"). Suppose that equation (2.39) has more
than one solution with that regularity. Then the difference of two solutions solves the
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PDE:
t
(ur, @) =/ (us, @' — ho)ds,, (4.21)
0

forany ¢ € HCZ(R+).
Suppose now that 7 > 0 and ¢ is a function of 7 and a such that

@, %, dap € L2([0, T1; H (R})). (4.22)

Then it is not hard to see that (4.21) becomes

t
(ur, or) =/0 (s, Orps + daps — hog)ds, 0 <t <T. (4.23)

Consider again the adjoint backward PDE (3.11), whose solution is still

F¢ T —
v(t,a) = %g(aJrT—z).

Assuming that g € CZ(R+) and F has two derivatives f and f’ which are locally
bounded, that F“(a) > O for all a > 0, we have that a — wv(z, a) has compact
support for all # € [0, T] and satisfies v, dqv, 0;v, hv € L%([0, TT; HC1 (R4)), and
0:v 4+ dqv — hv = 0, hence from (4.23), recalling v(T', a) = g(a) in (3.11), we have
(ur,vr) = (ur, g) = 0, and this holds true for any g € CE(R+), hence ur = 0, for
all T > 0, from which the claimed uniqueness follows. O

5 On the convergence of (SV, 3V)
The proof for the convergence of (§N , §N ) has been established in [22], with a dif-
ferent initial condition (without tracking the infection age of of the initially infected

individuals). Here we only provide a sketch and highlight the differences.
We first write SV and F" as the following:

t
SNy =-1V0) - SV @) —/ TN (s)ds,
0

o8] t
§N(z)=/ Ma+ 1d g (a)+/ At — )YV (s)ds
0 0

IO+ +FV O +F 0,
TV =V T () + ¥ )TV (s)
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where

o 1 ropoo —
NG ::ﬁ/o/o L,y (s Qiny (ds, dv),
0= [ @t nad @

1V (0)
1 - % _ -
=7 ,X_; (x(;,,oﬂ) —/0 A(a+t)uo(da)),
Y0

o~ 1 _
F020) = —= D> (rjFo+1)—AFo0+1). (5.1)
\/N = VAN J

AN (1)

§]1V(t) = ﬁ( ; At — fiN) _ /0’ At — S)TN(s)ds>

t
= / At — 5)dSN (s),
0

AN (1)
~N R 1 . _ Ny _ ¥ _ N
o= ; (/\,(t Ny~ -1, )). (5.2)

Observe that § {V (1) is a square-integrable martingale with respect to the filtration
N = (FV () : t = 0} where FV (1) := o {SN(0), IN(0), T;,j = 1,.... IV (O)} v
{2 Oiezvio} V {Qing (s, v), s < t,v € Ry} with the quadratic variation (V) (1) =
fot b (s)ds for t > 0. Given the convergence of T % YinDin probability as
N — 00, we obtain S'IN = S’] in D, where 3‘1 (t) is given in Definition 2.2. This can
be done by establishing the convergence of finite-dimensional distributions using the
cumulants formula as in the proof of Lemma 4.3 and then a similar tightness argument
in the proof of Lemma 4.4. It can be also proved as done in Section 3.6 of [22].
The convergence of 30 = 30 1 in D can be proved in the same way as in Lemma
4 1. Note that this requires that condition (2.49) in Assumptlon 2.2, that is, the function
X is Holder with coefficient « > 1/4. The convergences of SN (1) and SN (1) follow
from the same arguments as in Lemmas 3.5 and 3.6 of [22]. It only remains to prove
the convergence of 30
We will need the followmg bounds on the increments of the infectivity functions
(which is Lemma 3.4 in [22]).

Lemma5.1 Fort > s > 0,

k
M@0 = 1) <@t =)+ 2" Y 1 o, and

=1
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k
(1) = ()] < $(t —5) + 1" Y (Fe(t) — Fe(s)).

=1
Lemma 5.2 Under Assumptions 2.1 and 2.2,
302 =To2 in D as N — oo, (5.3)

where the limit §o 2 is a continuous Gaussian process as given in Definition 2.3.

Proof We first prove the convergence of finite-dimensional distributions, that is, for
any [ > 1,

B0t B @) = Go2(t), ... Fo2m) in R as N — co. (54)

We start with [ = 1, and consider the convergence of %‘6\/ L) = §072(t)) in R as
N — oo. By the continuity theorem, it suffices to show the characteristic function of
SO ,(t) converges to that of 30 2(1), denoted by <p (9) and @0, 2(9) respectively. Let

Y =0(%j0.j = 1,...,1Y(0)). We have

(i0302(0)] = E[E[exp (i65,(1)160 ]]
™)

§002 (9) [GXP
E|: Jl:[l exp (l@ﬁ ()\._j(fj’O +1) — X(fj,O + [)))

=E|:

M) 02
= [H( TV Eo+ 1 +oN” )>]

gl

and

. 92 00
¢§2(9) = E[ exp (i60F0,.2(1))] = exp ( -5 /0 v(a+ t),llo(da)).

083" ©) — 68 ,©)|
N (0)

o Zvasnrt)- (-2
SE[ <1——v(ij()+t)+0(N_ )) — exp(——v(fj,o-i-t))H
il 2N il 2N

92 oo 92 [oo
+ ’E[exp(— Tf v(a—l—t)dﬂév(da))] —exp(— ?/ v(a—l—l)dﬁo(du))‘.
0 0
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We have
1Y(0)

2 N0 2
I1 1—9—1)(%- +0+oN ") =[] ex —e—v(f- +1)+o(N7hH
oy Vo - P 7y im0

Jj=1 j=I1

o)
ZCXP(— Z mv(f],O‘f‘t)‘i‘O(l)) y

J=1

hence the first term tends to 0, as N — o0.

The second term convergence to zero by the convergence ﬂév (-) = fto(+) in prob-
ability as N — oo and the boundedness of the variance function v(-). Thus we have
shown that

655" (0) — 93 ,(0)] - 0 as N — oo, (5.5)

and thus, §6V2(t) = ’3\0,2(1‘) as N — oo.
A straightforward generalization implies the convergence of finite dimensional
distributions in (5.4). For instance, for [ = 2, we have

Ef exp (01505 (11) + 6250 5 (12))]
O]

_ _ L2 2005 = =

=E| ] (1 07v(Fj,0 +11) +030(F; 0 + 1) +201020(F) 0 + 11, .0 + 12)
j=1

2N
+0(N—1>)],

and
E[ exp (i6150.2(11) + i620,2(12))]

1 [ _
= exp ( -3 /o (OFv(y +11) +030(y + 12) + 201620(y + 11, y + tz))uo(dy)>.

Then the claim follows similarly.
We next prove that for0 < r < s <,

~ ~ ~ ~ 1
P(|33{2<r) — B0 A [3020) — o0 = e) = 5(G0 - G(r))*
for some nondecreasing and continuous function G. It suffices to show that

E[ 8550 - 3L0['] = G0 - 6o (5.6)
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Let &_;(t) := A_j(t) — A(t). We have

E[ 55,0 -3, 0|*]
, Mo i
:E[’ﬁ ]2 (o4 -3 Go+9)

]

)

E[% 2:1 (;‘—j(fj,o +0) = j(Fjo+ s))“}
J:

IA

)

™o

6 . . 2, . 2

+JE[m ) (A,_,(r_,,0+t)—x,_,-(r_,-,o+s)) (}L_j/(rj/’0+t)—)L_j/(rj/,0+s)) }
J.j'=1]

#i'
5 O i 2\ 2
5E[ﬁ< Z‘I (x,_,(f_,,oqtz)7A,_,(f_,,0+s)) ) } 5.7
=

By Lemma 5.1, we have
A j () = A ) < 2A-j(@) = A—j()* + 2[A(1) — ()]

k 2
<8¢(t—s)*+ 4(/\*)2( Z 1s<§f;5t>
(=1 !

k 2
+ 4(x*>2(Z<Fe<r) - Fe(S))) :
=1
Thus,
i o) i 2
m1E[( > (jGo+n-ijGo+9) ) ]
j=1

| N (0) k 2
< —2E|:<8qb(t—s)21N(0)+ > (4@*)2(Z1I.AO+S<§£_S%:0+I>

N = = s ji=4

k 2 2
+ 4(,\*)2( Y (Fe(Fj0+10) — Fe(F +s))> )) }

=1

< %fw —)*1N 0)?

32059 N 0) k 2 k 2N 2
+ ]E[( > ((Zlfjo+s<{zl_<fj OH) +<Z(Fe(fj,o+t)—pg(fj +s))> >> ]
j=1 =1 e =1
< 128¢(t — )* TV (0)2
6404 Y0 k 4 k 4
+ E[[N(O) 3 ((Zlfj’oﬂqfl_gjﬂﬂ) +(Z(Fg(fj,o-i-t)—Fg(fj—l—s))) )]
j=1 (=1 ’ (=1
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1 o) , 4
4 4
< 1284 (1 — 5)* + 64(1*) E[ﬁ > (2;1%’0“%]_5@‘0%) ]

j=1 =
k

o0 4
+ 64(A*>4IE[ /0 <Z(Fz(y +0) = Fe(y +s)>) fig (dy)} .
=1

Here the first expectation is bounded by

| o) , &k
E[ﬁ Z (Z 1fj,0+s<{fj§fj,o+t + 14 Z 1fj,o+s<lzjSfj.o+tlfj_o+s<§zlj§fj,o+t>i|
j=1 Se=1 LAY

L ok
= E[ﬁ Z (Z(Fz(fj,o +1) = Fe(Tj0+5)

j=1 “e=1

+ 14 Z(Fz(fj,o +1) = Fe(Tj0+s)(Fp(Tjo+1) — Fp(Tjo+ S))]
vy

o s k
= EUO <Z(Fe(y +1) = Fe(y+5)

=1

14 (Fey+1) = Fely +)(Fo(y + 1) — Fo(y + S)>/16V (dy)].
AL

Thus, combining the above, we obtain that there exist some C’, C” such that
= = 4
E[‘S(I)Yz(t) ~ 302 ]

k
1 1 o
SO —9+ C’NE[/O (Z(Fuy +1) = F(y+ S))>/16V(dy)]
=1
o s Kk
+Cp(— ) + C”E[ fo (Z(Fz(y +1) = Fe(y + s)));zév <dy>] (5.8)

(=1

Under Assumptions 2.2, we have ¢ (r —s)* < C*|r —s|** and if F; satisfies the Holder
continuity condition,

IE[ / (Fe(y +1) — Fo(y + )b <dy)} < C@t—)"PYRE[EY M) < Cr — ',
0

and if Fy satisfies the discrete condition, say Fy = Y ;al,_ . for 3 ;a’ = 1 and

I ‘
1<ty then

E[ [0 £+ ol (dy)] = E[ AT N—— (dy)}
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< C(t—9)Elag (] < Ct —s)

for some constant C > 0. Thus, using the above estimates, by Theorem 4.1 in [22],
we can conclude that (5.6) holds. O

6 On the convergence of (i”, ﬁ”)

By the first expression in (2.8), the convergence of TN follows from directly from that

of ,u, and hence the expression of the limit It in (2.57) from the limit /i; in (2.40). As

discussed in Remark 2.9, the limit It has an equivalent in distribution expression as

given in (2.61). It can be derived from an alternative decomposition from the second

expression of /i, N (@) in (2. 29) and hence, an analogous decomposition for I in (2.8).
The CLT-scaled process [t N (¢) in (2.29) can be written as

ﬁf@)=£ o+t D N g

Fe¢(a)
t
+/0 ot —)F(t — )TN ()ds + 4 () + 21 (9) (6.1)
where
1V (0) .
ANO Fc(l‘-i-‘fj,()) -
(p) = 2:: (ln‘}>t W)(P(Tj,o +1), (6.2)
and

. 1 t o0 o0 o
MW=WAAA1MmMMWﬂWWMMWW

Using the fact that 7V (r) = /1N (1), we obtain

~ Fe(t Lo =
1,N=/ %AN(CZ )+/ Fé(t — )TN ()ds + VO + TV, (6.4)
0

where

O FE(t + %1.0)
; (=) (©5)

ﬂ\

and

P 1 t o0 o0 .
THE Z\/_N./o./o /O Lysr—s1yoxn() Ods, dn, du). (6.6)
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It is an easy extension to the proof of [22, Theorem 2.4] in order to prove the weak
convergence of IIN to I; in (2.61). More generally, it can be also shown that for any
¢ € H'(Ry), i (9) = fu(p) in D where

FC(t +a)

t
ST A _ Cir A\ ~0 A1
e o) + /0 ot = FC(t — )T (5)ds + 20) + B (@)

6.7)

o0
() = /0 p(a+1)

with ,&? (@) and 1 ,1 (¢) being independent and continuous centered Gaussian processes
whose covariance functions are given as follows: for 7, 7" > 0 and ¢, v € H 1 Ry),

. Fe@vt +a) FC(t+a)FC(t'+a)
Cov(i] (@), A () = / ( Fa  F@  F@ )

x@(a+ )y (a+1)ao(da), (6.8)

and

/

INt
Cov(iil (¢). ih () = /O FE@v 1 = )T (s)pt — )Wt —s)ds. (6.9)

It turns out that the last two terms ﬂ;nf (@) + (1 (p) of (i in (2.40) and ,&? () +
[Ltl (¢) in (6.7) have the same law. We verify that the variances of these expressions
are equal (the covariance functions can be also easily checked), and hence provide
a justification for the claim in Remark 2.9. Recall the variance formulas for 1" (¢)
and [17°“(¢) in (2.46) and (2.47), respectively and the expression of [i;(da) in (2.24).
Then we can write

N t o0 FC _ 2 .
Var (i1} (¢)) = fo /0 w(r—w@%%) h(a)(1a<sFC(a)T(s—a)da
F(a) _
+1g>s mﬂo(da — s))ds .

Then the first term is equal to

/ / ot —s + a) (Fc(t_s+“)) F(@)T (s — a)dads

Fe(a)
//ﬁﬂ(t s+ a) (F (;C(S)—i-a)) F(@Y (s — a)dsda

/ / ot — 5+ )2 F(t — s +a) T(s—a)ds(FC( ))/da

_ 1 /
_ N2 Cs a2
_/0 fo ot — )2 F(t —v) T(v)dv(FC(a)> da

t—a
=/ ot — v)2F(1 — v)zT(v)du(
0

1
Fe(a) ) a=0
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! 1 t—a ‘ -
_/0 (Fc<a>)d“/0 9t = FE (= v)*T(v)dv

t t
— / ot — V)’ F¢(t — v)> T (v)dv + / P(@)?FS(@)Y(t — a)da.
0 0

So summing this with /lﬁnf () in (2.46) will give us Var(2} (¢)) = fot ot —s)2F°(t—
$)Y (s)ds. Next, the second term in the expression above for Var(117“(¢)) is equal to

t o0 FC — 2
/O/ ot — s+ ( 4 H“)) Fcf(a) fio(da — s)ds

Fe(a) (a—ys)
ro[e FC(t+v\2f(v+s) _
— 2
_// go(t+v) o s)) Fo) fo(dv)ds

ZSFCt+v)? fuo+s) | -
//co(t+) Fow) FC(U+S)2dS/L0(dv)

2FC+0)? 1 futs)
/0 PO TRy o Feats?

Y L FO(t +v)? [f 1
_/0 ot +v) Fo) A (Fc(v—i— )) dsito(dv)

[ 5 F€(t + v)? 1 R
—/0 ol + 0 s (FC(UH) Fc(v))uo(dv)

[ 2Pt +v) 0 FO )y
_/0 ottt 0?2 (1 s ) otav)

dsjio(dv)

which is exactly the expressmn of Var(ut (¢)). This proves the claim above.
Now for the process RN (1), from (2.9), we obtain

A A o0 FC t+a . t - A —
RN :R{,V+/0 (1—%)% (da)—i—/o F@t —)YN(s)ds + RV + RN,

where

ﬁ\

Y (0) ¢ -
R e X (g 05
and

o~

| 1 t o] (e 9] .
R&W = — 1,<i—s1, ~n—O(ds, dn, du).
t \/N/O »/O /() N=t—=s tu<YN(s )Q n

Then a sli/ght mogiﬁcation of the proof of [22, Theorem 2.4] shows the weak conver-
gence of R,N to R; in (2.58).
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