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Abstract
We study the stochastic SIR epidemic model with infection-age dependent infectiv-
ity for which a measure-valued process is used to describe the ages of infection for
each individual. We establish a functional law of large numbers (FLLN) and a func-
tional central limit theorem (FCLT) for the properly scaled measure-valued processes
together with the other epidemic processes to describe the evolution dynamics. In the
FLLN, assuming that the hazard rate function of the infection periods is bounded and
the ages at time 0 of the infections of the initially infected individuals are bounded, we
obtain a PDE limit for the LLN-scaled measure-valued process, for which we char-
acterize its solution explicitly. The PDE is linear with a boundary condition given by
the unique solution to a set of Volterra-type nonlinear integral equations. In the FCLT,
we obtain an SPDE for the CLT-scaled measure-valued process, driven by two inde-
pendent white noises coming from the infection and recovery processes. The SPDE
is also linear and coupled with the solution to a system of stochastic Volterra-type
linear integral equations driven by three independent Gaussian noises, one from the
random infection functions in addition to the two white noises mentioned above. The
solution to the SPDE can be also explicitly characterized, given this auxiliary process.
The uniqueness of the SPDE solution is established under stronger assumptions on
the distribution function of the infectious duration.
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1 Introduction

Kermack andMacKendrick introduced in their seminal paper [16] an integral equation
model to describe the SIR epidemic dynamics with infection-age dependent infectivity
and recovery rate. Various extensions of this model have been developed to studymore
realistic epidemic dynamics with dependence on infection ages (see, e.g., [2, 14, 17,
29, 33] and Chapter 13 in [18]). An individual-based stochastic SIR epidemic model
has been recently developed in [8] and further studied in [9, 10, 20, 22, 23] where each
individual has an independent random infectivity function so that the infection and
recovery processes depend on the age of infection. It is shown in [8] (see also section 2
in [9] for the same result under weaker assumptions) that the Kermack - McKendrick
model in [16] is the law of large numbers limit, as the size of the population tends to
infinity, of that individual-based stochastic SIR epidemic model. In [23], the authors
show that, by introducing the age of infection as a new variable, one can turn the
limiting LLN integral equation model into a PDE model.

In the present paper, we continue studying the individual-based stochastic SIR
model by investigating thefluctuations of the epidemic dynamics around thePDE limit.
We take a different approach from our previous work [23], by using a measure-valued
process to describe the infection dynamics instead of a two-parameter process. In
particular, themeasure-valued process gives at each time a “mass” for each individual’s
infection age if still infected (see (2.6)). To study its dynamics, we also come up
with a novel representation using two independent Poisson randommeasures (PRMs),
resembling the “birth" and “death" processes in the continuous-time branching process
setting. so that one dictates the new infections and the other dictates the recoveries,
see (2.11). The measure-valued process with this representation can be regarded as an
infinite-dimensional “birth" and “death" process. The novelty in this representation
lies in the way that determines which individual will recover next based on their
infection age. To completely describe the epidemic dynamics, we also need to include
the number of susceptible individuals and the total force of infection (which is the
aggregate of the random infectivity functions of all infected individuals evaluated
with their infection ages at each time). The number of infected individuals can be
obtained from the measure-valued process.

We first establish the FLLN for the LLN-scaled measure-valued processes, which
results in a linear PDE limit with a boundary condition which is the solution to a set of
Volterra-type integral equations. It recovers the PDE result in our previous work [23].
Because of the measure-valued representation for the PDE limit, we provide a new
proof for the uniqueness of its solution, which requires that the hazard rate function
for the distribution of the infection period is bounded. This new proof uses a duality
argument with an associated backward PDE. In addition, we also provide a new proof
for the tightness of the LLN-scaled processes by exploiting the evolution dynamics
mentioned above.

We then establish a functional central limit theorem (FCLT) for the CLT-scaled
measure-valued processes, whose limit is an SPDE (see (2.39)). The SPDE is driven
by two white noises, one from the infection process and the other from the recovery
process (that is, the “birth" and “death" processes mentioned above, respectively).
The SPDE is linear, coupled with the solution to a system of stochastic Volterra-type
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linear integral equations driven by three independent Gaussian noises (in addition to
the two white noises, a third coming from the randomness of the random infectivity
functions). We are able to characterize the solution to the SPDE explicitly, see (2.40).
Under the additional conditions on the distribution function of the infection period
(the density and its derivative being locally bounded), we also show the uniqueness
of the solution (using a similar duality argument as for the PDE). The convergence of
the other associated processes follows from a slight modification of the proofs in our
previous work [22], by taking into account the initial conditions with infection-age
dependence.

The convergence of the CLT-scaled measure-valued processes is proved in the
space D(R+, H1(R+)′w) (see the notations below). We exploit some useful properties
of stochastic integrals with respect to PRMs, particularly, the moment formulas (see,
e.g., [27]) and fourth moment estimates in Lemma 4.8. With these tools, we are able
to prove tightness of the stochastic integral terms with respect to the compensated
PRMs for the infection and recovery processes, by verifying the moment criterion for
tightness of processes in D in Billingsley [1]. In these calculations, we have to handle
some challenges caused by the functional that induces the recovery process based on
the infection ages. Moreover, for the CLT-scaled measure-valued processes, we are
also able to derive a prelimit “SPDE" driven by the PRMs so that the convergence
to the SPDE limit can be established by verifying the convergence for the driving
stochastic components.

Finally, we remark that although there have been a few studies on establishing
PDE limits for individual-based stochastic epidemic models, see for example [5, 7,
11, 12, 25, 26, 28], very little work exists for the study of the fluctuations of the
stochastic dynamics around the PDE limits. The work in [3] establishes both the PDE
and SPDE limits for stochastic epidemic model with contract-tracing, tracking the
infectionduration since detection for each individual, but themodel itself isMarkovian,
unlike our model. To our best knowledge, this is the first work to establish an SPDE
limit for non-Markovian epidemic models in the literature, so this work will lay the
foundation for future work on this subject. On the other hand, FCLT results have been
established for stochastic non-Markovian epidemic models, for example, our earlier
works on non–Markov epidemic models with constant infection rate [21, 24], and
some previous works in the literature [30–32]. Our work is also somewhat related to
the SPDE limits in the queueing context, see for example [4, 15], but our approach of
establishing the convergence of the measure-valued processes is very different since
we exploit properties of PRMs and the measure-valued process is not necessarily
Markov and hence no martingale properties can be exploited.

1.1 Organization of the paper

The paper is organized as follows.We summarize the notation in the end of this section.
In Section 2.1, we describe the model in detail and use a measure-valued process and
other associated processes to describe the epidemic dynamics. In Section 2.2, we
present a linear first-order PDE and the associated properties that will be used in the
discussions of the PDE and SPDE limits. In Section 2.3, we state the FLLN and present
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the PDE limit. In Section 2.4, we state the FCLT results and present the SPDE limit
and its solution. In Section 3, we prove the FLLN in Theorem 2.1, focusing on a new
proof for the uniqueness of the solution to the PDE. In Section 4, we prove the weak
convergence of the CLT-scaled measure-valued process and prove the uniqueness of
the solution to the SPDE. In Sections 5 and 6, we provide sketch proofs for the other
associated epidemic processes.

1.2 Notation

The following notation will be used throughout the paper. R is the set of real numbers
and R+ the set of non-negative real numbers, N the set of natural numbers, and Z the
set of integers. For a, b ∈ R, a ∨ b = max{a, b} and a ∧ b = min{a, b}. We use 1A
to denote the indicator function of a set A. We use 1 to denote the constant function
1(t) ≡ 1 for any t ∈ R.

Given any metric space S, Cb(S) is the space of bounded and continuous real-
valued functions on S, and Cc(S) the space of continuous functions with compact
support. C1(S) is the space of real-valued, once continuously differential functions
on S, and C1

c (S) is the subspace of functions in C1(S) with compact support, while
C1
b(S) is the subspace of C1(S) of functions that are bounded and have bounded first

order derivative. LetC2(S) be the space of real-valued, twice continuously differential
functions on S andC2

c (S) be the subspace ofC2(S) of functions with compact support.
We will mostly use S = R+ or R2+. Let L p(R+), p ≥ 1, be the space of measurable
functions f onR+ such that

∫
R+ | f (x)|pdx < ∞. Let L p

loc(R+) be the corresponding
space in which the associated property holds only locally.

The space of Radon measures on a Polish space S, endowed with the Borel σ -
algebra, is denoted by M(S), and MF (S) is the subspace of finite and nonnegative
measures. The space M(S) is equipped with the weak topology, that is, a sequence
of measures {μn} inM(S) is said to converge to μ in the weak topology (denoted by
μn →w μ) if and only if for every ϕ ∈ Cb(S),

∫

S
ϕ(x)μn(dx) →

∫

S
ϕ(x)μ(dx), as n →∞. (1.1)

The Sobolev space H1(R+) is the Hilbert space consisting of continuous functions
u : R+ 
→ Rwhich are such that u ∈ L2(R+) and there exists a function u′ ∈ L2(R+)

such that for all t > 0, u(t) = u(0)+ ∫ t
0 u

′(s)ds. Recall that H1(R+) ⊂ Cb(R+). We
shall consider the dual space (H1(R+))′ of H1(R+), which we equip with its weak
topology. Let H1

c (R+) be a subspace of H1(R+) consisting of functions with compact
support. Further, let H2(R+) be the Hilbert space consisting of continuous functions
u : R+ 
→ R such that u, u′, u′′ ∈ L2(R+), and H2

c (R+) be the corresponding
subspace of functions with compact support.

We write 〈μ, ϕ〉 = ∫
S ϕ(x)μ(dx) for a Borel measurable function ϕ : S → R that

is integrable with respect to a measure μ ∈ M(S). In our case S = R+. The symbol
δx is used to denote the measure with unite mass at the point x ∈ S.
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We use D := D(R+,R) to denote the space of R-valued, càdlàg functions on R+,
endowed with the usual Skorohod J1 topology; see [1]. Let C be the subspace of D
of continuous functions.

We shall consider elements of D(R+;MF (R+)) and D(R+; (H1(R+))′). It fol-
lows from the results in [19] that tightness and weak convergence of a sequence
{XN , N ≥ 1} in D(R+;MF (R+)) (resp. in D(R+; (H1(R+))′)) will follow from
tightness and weak convergence of the sequence {〈XN , ϕ〉, N ≥ 1} for any ϕ ∈ Cb

(resp. H1(R+)).

2 Model and Results

2.1 Model

We consider an SIRmodel for a homogeneous population, each of which has a varying
infectivity depending on the age (elapsed time) of infection. Let N be the population
size, and the numbers of susceptible, infectious and recovered individuals at each time
t are denoted by SN (t), I N (t), RN (t), respectively. Thenwe have the balance equation
N = SN (t)+ I N (t)+ RN (t), t ≥ 0. Assume that I N (0) > 0. Let μN (t, da) be the
measure-valued process describing the infection-ages of the infected individuals at
time t . For each t ≥ 0, μN (t, da) is a finite measure over R+. For convenience, we
write μN

t or μN (t). It is clear that I N (t) = 〈μN (t),1〉 for each t ≥ 0, where 1 is the
constant function 1(t) ≡ 1 for each t ≥ 0.

Let {λi (·)}i∈N and {λ− j (·)} j=1,...,I N (0) be the nonnegative random infectivity func-
tions taking values in D for the newly infected and initially infected individuals,
respectively. They are non zero only during the infectious period. We assume that they
are mutually independent and have the same law. Let λ̄(t) = E[λ1(t)] for t ≥ 0. Note
that λ̄(·) also takes values in D.

Let AN (t) be the cumulative number of newly infected/exposed individuals in (0, t],
with event times {τ N

i : i ∈ N}. For each individual i , let ηi be the associated infected
period, i.e.,

ηi := sup{t > 0 : λi (t) > 0} . (2.1)

The variables {ηi } are i.i.d. with a distribution function F(·). Let Fc = 1−F . We shall
assume that F has a density f w.r.t. the Lebesgue measure, and denote by h = f /Fc

the associated hazard rate function. Similar to (2.1), we also have η− j = inf{t > 0 :
λ− j (t) > 0} for j = 1, . . . , I N (0), representing the infection duration for the initially
infected individuals. The variables η− j have the same distribution function F .

Let τ j,0, j = 1, . . . , I N (0) be the times of being infected for the initially infected
individuals at time zero. We construct them from the corresponding λ− j as follows.
τ̃ j,0 = −τ j,0, j = 1, . . . , I N (0), which are the corresponding ages of infection at
time zero, are given as τ̃ j,0 = (Ujη− j ) ∧ ā, where {Uj , j ≥ 1} is a sequence of
i.i.d. U([0, 1]) r.v.’s, which are supposed to be globally independent of all other given
random inputs, and ā > 0 is arbitrarily fixed. As a result, the {τ̃ j,0, 1 ≤ j ≤ I N (0)}
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are i.i.d., and we denote their common law by μ̄0(1)−1μ̄0, which is a probability
measure on R+, where μ̄0 is a measure which satisfies the following assumption:

Assumption 2.1 μ̄0({0}) = 0, μ0 has a compact support included in [0, ā], for some
ā > 0, and its total mass satisfies μ̄0(1) < 1.

Let η0j , j = 1, . . . , I N (0), be the variables representing the corresponding remaining
infected periods, where

η0j := sup
{
t > 0 : λ− j (τ̃ j,0 + t) > 0

}
> 0 .

The aggregate infectivity process FN (t) at time t is given by

FN (t) =
I N (0)∑

j=1
λ− j (τ̃ j,0 + t)+

AN (t)∑

i=1
λi (t − τ N

i ) , t ≥ 0. (2.2)

The instantaneous infection rate at time t can be written as

ϒN (t) = SN (t)

N
FN (t), t ≥ 0. (2.3)

Then the infection process AN (t) can be written as

AN (t) =
∫ t

0

∫ ∞

0
1v≤ϒN (s−)Qin f (ds, dv) , (2.4)

where Qin f is a standard Poisson random measure (PRM) on R
2+.

We assume that the three following sources of randomness are mutually indepen-
dent: generation of new infections via the PRM Qin f , the random varying infectivity
functions {λ j (·)} j≥1 of the newly infected individuals, and the pairs {(λ− j , τ j,0)} j≥1
infectivity functions and infection ages of the initially infected individuals.

The number of susceptible individuals satisfies

SN (t) = SN (0)− AN (t) = N − I N (t)− RN (t) . (2.5)

The measure-valued process μN
t (da) can be expressed as

μN
t (da) =

I N (0)∑

j=1
1η0j>tδτ̃ j,0+t (da)+

AN (t)∑

i=1
1τ N

i +ηi>tδt−τ N
i

(da). (2.6)

Or equivalently, for any function ϕ ∈ Cb(R+),

〈μN
t , ϕ〉 =

I N (0)∑

j=1
1η0j>tϕ(τ̃ j,0 + t)+

AN (t)∑

i=1
1τ N

i +ηi>tϕ(t − τ N
i ).
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For convenience, we also write 〈μN
t , ϕ〉 as μN

t (ϕ) sometimes.
The initial condition μN

0 is given by

μN
0 =

I N (0)∑

j=1
δτ̃ j,0 . (2.7)

The number of infected individuals at time t can be written as

I N (t) = 〈μN
t ,1〉

=
I N (0)∑

j=1
1η0j>t +

AN (t)∑

i=1
1τ N

i +ηi>t , (2.8)

and the number of recovered individuals at time t :

RN (t) = RN (0)+
I N (0)∑

j=1
1η0j≤t +

AN (t)∑

i=1
1τ N

i +ηi≤t . (2.9)

We next write an equation to describe the evolution dynamics of μN
t (ϕ). Before

proceeding, we introduce a function: for any measure ν on R+, w → H(ν,w) is the
right–continuous increasing function such that (recalling that h = f /Fc is the hazard
rate function of η):

H(ν,w) ≤ a⇔ w ≤ ν(h1[0,a])
ν(h)

, (2.10)

in other words, H(ν, ·) is the “inverse of the distribution function of the normalized
h–biased ν”. In particular, with G(a) := ν(h1[0,a])

ν(h)
, we have H(ν, v) = G−1(v) and

H(ν,G(a)) = a. Note that the function H(μN
s− , v) in the last term plays the role

of identifying which individual recovers next, through the ages of infection, see the
justification below.

It is then easy to show that the above expression of μN
t in (2.6) can be equivalently

(in distribution) written as: for ϕ ∈ Cb(R+),

μN
t (ϕ) = μN

0 (ϕ(t + ·)+
∫ t

0

∫ ∞

0
ϕ(t − s)1v≤ϒN (s−)Qin f (ds, dv)

−
∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μN

s− , w))1v≤μN
s− (h)Qrec(ds, dv, dw) ,

(2.11)

Qin f and Qrec being two independent standard PRM, respectively on R
2+ and on

R
2+ × [0, 1], representing the infection and recovery processes. The first term on the

right hand side of (2.11) indicates the evolution of the initially infected individuals in
terms of their infection ages, the second term indicating the new infection process and
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the third term indicating the recovery process for both the initially and newly infected
individuals. In some sense, the expression in (2.11) can be regarded as a measure-
valued birth and death process where the second term as the “birth" and the third term
as the “death". Let us justify the form of the “death term” in (2.11). We first note
that, since each infected individual, independently of the others and of the infection
process, recovers at rate h(a(t)) if a(t) is its infection age at time t , the total recovery
rate in the population at time t isμN

t (h). Moreover, we note thatw is picked uniformly
at random in [0, 1], and that if W is a U([0, 1]) r.v. independent of the process μN ,
and ai (t−), 1 ≤ i ≤ I N (t−) denote the ages of infection at time t− of the individuals
infected at that time, we have that

P

(
H(μN

t− ,W ) = ai (t
−) |μN

t−
)
= h(ai (t−))

μN
t−(h)

,

which is the proper choice dictated by our model.
We remark that the measure-valued process (μN

t )t≥0 itself is not Markov because
of the random varying infectivity processes (λ j (·)) j∈Z). However, in the special case
that λ j (t) = λ̃(t)1t≤η j for a deterministic function λ̃(t), one can show that (μN

t )t≥0
is Markov.

2.2 A linear first-order PDE

The PDE which follows will play a central role in this paper. Suppose we have a
continuous function ut (a) = u(t, a) on R

2+ which satisfies the following: for any
smooth function ϕ ∈ C1

c (R+),

⎧
⎨

⎩

d

dt
〈ut , ϕ〉 = 〈ut , ϕ′ − hϕ〉 + ϕ(0)k(t)+ 〈gt , ϕ〉 ,
u(0, a) = u0(a),

(2.12)

where gt (a) = g(t, a) is measurable and bounded.
We claim that such a function u satisfies the following PDE

{
∂t u + ∂au = −hu + g,

u(0, a) = u0(a), u(t, 0) = k(t).
(2.13)

Moreover, the unique solution of this linear equation is given explicitly as

u(t, a) = 1t<a
Fc(a)

Fc(a− t)
u0(a− t)+ 1a≤t Fc(a)k(t − a)

+
∫ t

(t−a)+
Fc(a)

Fc(a− t + s)
g(s, a− t + s)ds .

(2.14)

To go from (2.12) to (2.13), we can argue as follows: first chooseϕn(a) = (1−na)+,
and letn →∞, which yields the boundary conditionu(t, 0) = k(t). Next,we integrate
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(2.12) on the interval [0, t], with ϕ satisfying ϕ(0) = 0, and deduce the first line of
(2.13). A similar argument allows to go from (2.13) to (2.12). Uniqueness is proved
using the formulation (2.12) and a duality argument, whichwill be given below.Hence,
in order to show that the above explicit formula is correct, it suffices to show that it
satisfies the equation, which is not so hard. We also deduce from the formula (2.14)
the following formula, valid for any ϕ ∈ Cc(R+):

〈ut , ϕ〉 =
∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
u0(a)da+

∫ t

0
ϕ(t − a)Fc(t − a)k(a)da

+
∫ t

0

∫ ∞

0
ϕ(t − s + r)

Fc(t − s + r)

Fc(r)
g(s, r)drds .

(2.15)

Note that it is easy to recover (2.12) from (2.15). Indeed, ifϕ ∈ C1
c (R+), differentiating

the right hand side of (2.15) w.r.t. t produces ut (ϕ′ − hϕ), plus the derivative w.r.t. the
upper bound of the two integrals

∫ t
0 , which produces the last two terms on the right

hand side of the first line of (2.12).
The FLLN limit will solve a PDE of the above type, with g = 0, and u0 being an

arbitrary measure, see (2.23).
The FCLT limit will be a PDE of the same type, but with u0, k and g being Gaussian

random distributions, see (2.39).

2.3 FLLN

We give ourselves three numbers 0 < Ī (0), S̄(0) < 1 and 0 ≤ R̄(0) < 1 such that
Ī (0) = 〈μ̄0,1〉 and Ī (0) + S̄(0) + R̄(0) = 1. Moreover, we assume that SN (0) =
[N S̄(0)], I N (0) = [N Ī (0)] and RN (0) = [N R̄(0)] (taking integer parts, or more
precisely, setting SN (0) = �N S̄(0)�, I N (0) = �N Ī (0)� and RN (0) = �N R̄(0)�) are
such that SN (0)+ I N (0)+ RN (0) = N .

Define the LLN-scaled processes X̄ N = N−1XN for any processes XN . It is clear
that Ī N (0) → Ī (0), S̄N (0) → S̄(0) and R̄N (0) → R̄(0), as N →∞. Moreover, by
the strong law of large numbers (SLLN), μ̄N

0 ⇒ μ̄0 a.s. as N →∞. The notation⇒
refers to the fact that the convergence is in the sense of weak convergence of measures,
while as random elements, the convergence is in the a.s. sense.

It follows from (2.11) that, Qin f (resp. Qrec) denoting the compensated measure
associated to Qin f (resp. Qrec), we have for ϕ ∈ Cb(R+),

μ̄N
t (ϕ) = μ̄N

0 (ϕ(t + ·)+
∫ t

0
ϕ(t − s)ϒ

N
(s)ds −

∫ t

0
μ̄N
s (ϕ(t − s + ·)h)ds

+ μ̄
in f ,N
t (ϕ)− μ̄

rec,N
t (ϕ) ,

(2.16)

where

μ̄
in f ,N
t (ϕ) = 1

N

∫ t

0

∫ ∞

0
ϕ(t − s)1v≤ϒN (s−)Qin f (ds, dv) , (2.17)
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μ̄
rec,N
t (ϕ) = 1

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μN

s− , w))1v≤μN
s− (h)Qrec(ds, dv, dw) ,

(2.18)

and we have used the following formula: for any ψ ∈ Cb(R+),

∫ 1

0
ψ(H(ν,w))dw = ν(ψh)

ν(h)
,

which follows from the definition of H in (2.10).
We first prove the following FLLN. It recovers Theorem 3.1 in [23]. Its proof is

given in Section 3.

Theorem 2.1 Assume that the initial law μ̄0 satisfies Assumption 2.1 and that the
hazard rate function h is locally bounded. Then, as N →∞,

(
S̄N ,F

N )→ (
S̄,F

)
in D2 (2.19)

in probability, where
(
S̄,F

) ∈ C × D is the unique solution to the following set of
integral equations,

S̄(t) = S̄(0)− Ā(t) = S̄(0)−
∫ t

0
ϒ(s)ds , (2.20)

F(t) =
∫ ∞

0
λ̄(a+ t)μ̄0(da)+

∫ t

0
λ̄(t − s)ϒ(s)ds , (2.21)

with

ϒ(t) = S̄(t)F(t) . (2.22)

If λ̄(·) ∈ C, then F(t) and ϒ(t) are continuous. Given
(
S̄,F

)
, we have

{μ̄N
t }t≥0 ⇒ {μ̄t }t≥0 in D(R+,MF (R+)) as N →∞,

where the limit solves the PDE: for ϕ ∈ C1
c (R+),

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
μ̄t (ϕ) = ϕ(0)ϒ(t)+ μ̄t (ϕ

′ − hϕ), t ≥ 0 ,

μ̄0(ϕ) =
∫ ∞

0
ϕ(a)μ̄0(da) ,

(2.23)

whose unique solution is given as

μ̄(t, da) = 1a<t F
c(a)ϒ(t − a)da+ 1a≥t

Fc(a)

Fc(a− t)
μ̄0(da− t) , (2.24)
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or equivalently, for ϕ ∈ Cb(R+),

〈μ̄t , ϕ〉 =
∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
μ̄0(a)da+

∫ t

0
ϕ(t − a)Fc(t − a)ϒ(a)da .

(2.25)

As a consequence, we obtain ( Ī N , R̄N ) → ( Ī , R̄) in D2 in probability as N → ∞,
where

Ī (t) =
∫ ∞

0

Fc(t + a)

Fc(a)
μ̄0(da)+

∫ t

0
Fc(t − s)ϒ(s)ds , (2.26)

and

R̄(t) = R̄(0)+
∫ ∞

0

(

1− Fc(t + a)

Fc(a)

)

μ̄0(da)+
∫ t

0
F(t − s)ϒ(s)ds . (2.27)

Since F is continuous, Ī and R̄ are continuous.

Note that the argument which leads from (2.12) to (2.13) allows us to deduce from
(2.23) the following (at least formally):

{
∂t μ̄(t, ·)+ ∂aμ̄(t, ·) = −h(·)μ̄(t, ·),

μ̄(0, da) = μ̄0(da), μ̄(t, 0) = ϒ(t).

By (2.16) and Theorem 2.1, we also obtain the following expression for the LLN
limit: for ϕ ∈ Cb(R+),

μ̄t (ϕ) = μ̄0(ϕ(t + ·)+
∫ t

0
ϕ(t − s)ϒ(s)ds −

∫ t

0
μ̄s(ϕ(t − s + ·)h)ds . (2.28)

Remark 2.1 Let λ− j (t) = λ̃(t)1t≤η0j
and λi (t) = λ̃(t)1t≤ηi , where λ̃(t) is a determin-

istic function. We obtain the limit

F(t) =
∫ ∞

0
λ̃(a+ t)

Fc(a+ t)

Fc(a)
μ̄0(da)+

∫ t

0
λ̃(t − s)Fc(t − s)ϒ(s)ds

=
∫ ∞

0
λ̃(a)μ̄t (da) .

where μ̄t (a) is given in (2.24). This secondexpressionhas avery intuitive interpretation
that the aggregate infectivity is equal to the infectivity function with respect to the
distribution of the infection ages of the infectious individuals. This is often assumed
in the study of epidemic PDE models (see, e.g., [11, 13, 17]).
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2.4 FCLT

Define the CLT-scaled process: for ϕ ∈ Cb(R+),

μ̂N
t (ϕ) = √

N (μ̄N
t (ϕ)− μ̄t (ϕ)), (2.29)

and similarly for any other process XN , X̂ N = √
N (X̄ N − X̄) where X̄ is the FLLN

limit of X̄ N . We make the following assumptions on the CLT-scaled initial quantities.
Recall that μN

0 (da) is given by (2.7) and that μ̄0 satisfies μ̄0(1) ∈ (0, 1). We
introduce the notation ¯̄μ0 = μ̄0(1)−1μ̄0, and define

μ̂N
0 (·) = 1√

N

I N (0)∑

j=1

(
δτ̃ j,0 − ¯̄μ0(·)

)
. (2.30)

We have the following result, which is a direct consequence of [1, Theorem 14.3].

Proposition 2.1 Under Assumption 2.1, as N →∞,

μ̂N
0 ([0, ·]) ⇒ μ̂0([0, ·]) in D([0, ā],R),

where

μ̂0([0, ·]) := μ̄0(1)1/2W 0 ( ¯̄μ0([0, ·])
)

and {W 0(s), 0 ≤ s ≤ t} is a Brownian bridge, i.e., a centered Gaussian process
whose covariance is given as E[W 0(s)W 0(s′)] = s(1− s′) for any 0 ≤ s ≤ s′ ≤ 1.

Note that our choices for I N (0), SN (0) and RN (0) imply readily that Î (0) =
Ŝ(0) = R̂(0) = 0. This is consistent with the fact that Î (0) = μ̂0(1) = 0, since
W 0(1) = 0.

Remark 2.2 Since the mapping a → W 0( ¯̄μ0([0, a])) is not of bounded varia-
tion, μ̂0, which we define as the distributional derivative of the function a →
μ̄0(1)1/2W 0( ¯̄μ0([0, a])) is not a signedmeasure. However, if the distribution function
of μ̄0 is Höder continuous with exponent α > 0, then a→ W 0( ¯̄μ0([0, a])) is an ele-
ment of Hs

loc(R+) for any s < α/2, see, e.g., formula (2.1) from [6], and its derivative

belongs to H−s′(R+), for any s′ > 1 − α/2. As a matter of fact, the distribution
d
daW

0
( ¯̄μ0([0, ·])

)
belongs to (H1(R+))′, since for any ϕ ∈ H1(R+), μ̂0(ϕ) can be

defined by integration by parts.

Remark 2.3 Since W 0(t) can be written as W 0(t) = W (t) − tW (1) for a Wiener
process W , if the distribution ¯̄μ0(·) has a density function g0 on [0, ā], that is,
d ¯̄μ0(da) = g0(a)da, then we can write

μ̂0([0, a]) = μ̄0(1)1/2W 0
(∫ a

0
g0(a)da

)
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= μ̄0(1)1/2
(

W

(∫ a

0
g0(a)da

)

−
∫ a

0
g0(a)daW (1)

)

.

If W̃ is another standard Brownian motion, we have that the pair
(
W
(∫ a

0 g0(a)da
)
,

∫ a
0 g0(a)daW (1)

)
has the same law as

( ∫ a
0

√
g0(a)dW̃ (a),

∫ a
0 g0(a)da

∫∞
0√

g0(a)dW̃ (a)
)
. Thus, μ̂0([0, a]) is equal in distribution to the following expression,

where W is a standard Wiener process:

μ̂0([0, a]) = μ̄0(1)1/2
(∫ a

0

√
g0(a)dW (a)−

∫ a

0
g0(a)da

∫ ∞

0

√
g0(a)dW (a)

)

.

(2.31)

We next give a heuristic derivation of the SPDE; the formal proof will be given in
Section 4.We first deduce from (2.16) and (2.28) that μ̂N

t has the following expression:
for any ϕ ∈ Cb(R+),

μ̂N
t (ϕ) = μ̂N

0 (ϕ(t + ·))+
∫ t

0
ϕ(t − s)ϒ̂N

s ds −
∫ t

0
μ̂N
s (ϕ(t − s + ·)h)ds

+ μ̂
in f ,N
t (ϕ)− μ̂

rec,N
t (ϕ) ,

(2.32)

where

μ̂
in f ,N
t (ϕ) = 1√

N

∫ t

0

∫ ∞

0
ϕ(t − s)1v≤ϒN (s−)Qin f (ds, dv) , (2.33)

μ̂
rec,N
t (ϕ) = 1√

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μN

s− , w))1v≤μN
s− (h)Qrec(ds, dv, dw) .

(2.34)

We expect that, Win f denoting a standard Gaussian white noise on R+, and Wrec a
centered Gaussian white noise process on R

2+ such that

E

[(∫ ∞

0

∫ ∞

0
g(s, a)Wrec(ds, da)

)2
]

=
∫ ∞

0

∫ ∞

0
g2(s, a)h(a)μ̄s(da)ds,

(2.35)

if we define for ϕ ∈ H1(R+),

μ̂
in f
t (ϕ) =

∫ t

0
ϕ(t − s)

√
ϒ(s)Win f (ds), (2.36)

μ̂rec
t (ϕ) =

∫ t

0

∫ ∞

0
ϕ(t − s + a)Wrec(ds, da) , (2.37)
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then for any ϕ ∈ H1(R+), μ̂N
t (ϕ) ⇒ μ̂t (ϕ) in D, where

μ̂t (ϕ) = μ̂0(ϕ(t + ·))+
∫ t

0
ϕ(t − s)ϒ̂sds −

∫ t

0
μ̂s(ϕ(t − s + ·)h)ds + μ̂

in f
t (ϕ)

+ μ̂rec
t (ϕ) , (2.38)

where ϒ̂s will be defined in (2.55).
We differentiate this equation w.r.t. t , yielding (explanation: when we differentiate

the right-hand side of the above equation w.r.t. t , we get μ̂t (ϕ
′), plus the result of

differentiatingw.r.t. the upper bounds of the integrals), hence integrating that derivative
on the interval [0, t], we obtain that for any ϕ ∈ H2

c (R+),

μ̂t (ϕ) = μ̂0(ϕ)+
∫ t

0
μ̂s(ϕ

′ − hϕ)ds + ϕ(0)
∫ t

0

[

ϒ̂sds +
√

ϒ(s)Win f (ds)

]

+
∫ t

0

∫ ∞
0

ϕ(a)Wrec(ds, da) .

(2.39)

Recall the formula (2.15) for the solution of the PDE (2.13). We hence conjecture
that the SPDE (2.39) has the unique solution: for ϕ ∈ H1(R+),

μ̂t (ϕ) =
∫ ∞
0

ϕ(t + a)
Fc(t + a)

Fc(a)
μ̂0(da)+

∫ t

0
ϕ(t − a)Fc(t − a)

[

ϒ̂(a)da+
√

ϒ(a)Win f (da)

]

+
∫ t

0

∫ ∞
0

ϕ(t − s + a)
Fc(t − s + a)

Fc(a)
Wrec(ds, da) . (2.40)

In order to check that this expression for μ̂t (ϕ) satisfies equation (2.39), we differ-
entiate the right hand side of (2.40) w.r.t. t , and then integrate on the interval [0, t]. The
differentiation gives three types of terms. The terms involving the derivative of ϕ give
μ̂t (ϕ

′), the differentiation of Fc produces−μ̂t (hϕ), and finally we differentiate w.r.t.
the upper bounds of the three integrals, and this produces exactly what is expected,
hence the result. The informal “strong” formulation of this SPDE reads:

∂t μ̂t + ∂aμ̂t = −hμ̂t + ∂2

∂t∂a
Wrec(t, ·) ,

μ̂0 given by Proposition 2.1, μ̂(t, 0) = ϒ̂(t)+
√

ϒ(t)
dWin f (t)

dt
.

(2.41)

This means that μ̂ is a distribution on R2+, which satisfies the first line of (2.41) in the
sense of distributions in (0,+∞)2, and has traces on the boundaries t = 0 and a = 0
specified by the second line of (2.41). The rigorous meaning of this is formulated in
(2.39).

Note that (μ̂0, ϒ̂,Win f ,Wrec) are jointly Gaussian and (μ̂0,Win f ,Wrec) are mutu-
ally independent (ϒ̂ is given in Theorem 2.3 below).
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We state the following theorem on the convergence of μ̂N
t , given the convergence

of ϒ̂N ⇒ ϒ̂ in D, since the latter has been proved in [22] (under a slightly different
initial condition). We will state the convergence of the processes (ŜN , F̂N , ϒ̂N ) in
Theorem 2.3 below and that of ( Î N , R̂N ) as a corollary. The proof of the following
theorem is given in Section 4.

Theorem 2.2 Given the convergence of ϒ̂N ⇒ ϒ̂ in D, under Assumption 2.1, if
F ∈ C1 and F(a) > 0 for all a > 0, then

{ ˆμN
t }t≥0 ⇒ {μ̂t }t≥0 in D(R+, (H1(R+)′) as N →∞ , (2.42)

where μ̂t is specified by (2.40), and μ̂ ∈ C(R+, (H1(R+)′) a.s. If, moreover, F has
two derivatives f and f ′ which are locally bounded, then μ̂t given by (2.40) is the
unique solution of the SPDE (2.39) satisfying μ̂ ∈ C(R+, (H1(R+)′) a.s.

Remark 2.4 The convergence ϒ̂N ⇒ ϒ̂ in D will be established below in Section 5.
That proof will rely upon Assumption 2.2, which is stated below. Hence it turns out
that the above theorem is in fact proved under that additional assumption.

Remark 2.5 In the solution to the SPDE in (2.40), we define the process μ̂0
t (ϕ): for

t ≥ 0 and ϕ ∈ L2(R+),

μ̂0
t (ϕ) =

∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
μ̂0(da) . (2.43)

By the representation of μ̂0 using the Wiener process W in (2.31), we obtain

μ̂0
t (ϕ) = μ̄0(1)1/2

(∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)

√
g0(a)dW (a)

−
∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
g0(a)da

∫ ∞

0

√
g0(a)dW (a)

)

.

By well–known properties of the Wiener integral, the process {μ̂0
t (ϕ), t ≥ 0, ϕ ∈

L2(R+)} is a generalized Gaussian process, with mean zero, and covariance function:
for t, t ′ ≥ 0 and ϕ,ψ ∈ L2(R+),

Cov(μ̂0
t (ϕ), μ̂0

t ′(ϕ)) = μ̄0(1)

(∫ ∞

0
ϕ(a+ t)ψ(a+ t ′) F

c(t + a)

Fc(a)

Fc(t ′ + a)

Fc(a)
g0(a)da

−
∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
g0(a)da

∫ ∞

0
ψ(a+ t ′) F

c(t ′ + a)

Fc(a)
g0(a)da

)

.

In particular, the variance of the process is given by

Var(μ̂0
t (ϕ)) = μ̄0(1)

(∫ ∞

0
ϕ(a+ t)2

( Fc(t + a)

Fc(a)

)2
g0(a)da
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−
( ∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
g0(a)da

)2)

.

Remark 2.6 Denote the last two terms of the SPDE solution μ̂t (ϕ) in (2.40):

μ̌
in f
t (ϕ) =

∫ t

0
ϕ(t − a)Fc(t − a)

√
ϒ(a)Win f (da) , (2.44)

μ̌rec
t (ϕ) =

∫ t

0

∫ ∞

0
ϕ(t − s + a)

Fc(t − s + a)

Fc(a)
Wrec(ds, da) . (2.45)

Note that they are different from μ̂
in f
t (ϕ) and μ̂rec

t (ϕ) in (2.36) and (2.37) in the
SPDE (2.38). It is easy to calculate the covariances of these two terms: for t, t ′ ≥ 0
and ϕ,ψ ∈ L2(R+),

Cov
(
μ̌
in f
t (ϕ), μ̌

in f
t ′ (ψ)

) =
∫ t∧t ′

0
ϕ(t − a)ψ(t ′ − a)Fc(t − a)Fc(t ′ − a)ϒ(a)da ,

and

Cov
(
μ̌rec
t (ϕ), μ̌rec

t ′ (ψ)
) =

∫ t∧t ′

0

∫ ∞

0
ϕ(t − s + a)ψ(t ′ − s + a)

× Fc(t − s + a)

Fc(a)

Fc(t ′ − s + a)

Fc(a)
h(a)μ̄s(da)ds .

In particular,

Var
(
μ̌
in f
t (ϕ)

) =
∫ t

0
ϕ(t − a)2(Fc(t − a))2ϒ(a)da , (2.46)

and

Var
(
μ̌rec
t (ϕ)

) =
∫ t

0

∫ ∞

0
ϕ(t − s + a)2

( Fc(t − s + a)

Fc(a)

)2
h(a)μ̄s(da)ds . (2.47)

Before proceeding to specify the limits (Ŝ, F̂, ϒ̂), we give the following definitions
of the driving Gaussian processes.

Definition 2.1 We define the following process F̂0,1(t):

F̂0,1(t) :=
∫ ∞

0
λ̄(a+ t)dμ̂0(a) .

By well–known properties of the Wiener integral, the process F̂0,1(t) is a Gaussian
process (continuous in probability) withmean zero and covariance function: for t, t ′ ≥
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0,

Cov
(
F̂0,1(t), F̂0,1(t

′)
) =

∫ ∞

0
λ̄(a+ t)λ̄(a+ t ′)μ̄0(da)

−
∫ ∞

0
λ̄(a+ t)μ̄0(da)

∫ ∞

0
λ̄(a+ t ′)μ̄0(da) .

Definition 2.2 Define the following centered Gaussian processes:

Ŝ1(t) :=
∫ t

0
ϒ(s)1/2Win f (ds) ,

F̂1(t) =
∫ t

0
λ̄(t − s)ϒ(s)1/2Win f (ds) .

Definition 2.3 We define the continuous Gaussian process F̂0,2, (independent of the
Gaussian random field Win f ), with mean zero and covariance function: for t, t ′ ≥ 0,

Cov
(
F̂0,2(t), F̂0,2(t)

) =
∫ ∞

0
v(a+ t, a+ t ′)μ̄0(da) .

We define another continuous Gaussian process F̂2, independent of μ̂0(·) (hence, F̂0,1)
and of F̂0,2, as well as ofWin f andWrec, with mean zero and covariance function: for
t, t ′ ≥ 0,

Cov
(
F̂2(t), F̂2(t

′)
) =

∫ t∧t ′

0
v(t − s, t ′ − s)ϒ(s)ds .

Observe that the PRMs Qinf and Qrec in (2.11) by construction are independent of
the random infectivity functions {λi (·)}i∈Z\{0} and hence the infection durations ηi
(see the expressions of the corresponding scaled processes F̂N

0,2 and F̂N
2 in (5.1) and

(5.2)). Therefore we have the independence of their corresponding limits Win f and
Wrec from the limits F̂0,2 and F̂2, which capture the randomness of {λi (·)}.
Remark 2.7 We discuss the correlations between μ̂0 and the processes F̂0,1 and F̂0,2
associated with the initially infected individuals. Recall that τ̃ j,0 = Ujη

0
j ∧ ā, where

η0j = G(λ− j ), for a certain mesurable function G : D 
→ R+, and Uj � U(0, 1) is
independent of λ− j . This specifies completely the joint law of λ− j and τ̃ j,0.

First, μ̂0 and F̂0,1 have the following covariance function: for t, t ′ ≥ 0,

Cov(μ̂0(0, t], F̂0,1(t ′)) = Ī (0)Cov(1(0,t](̃τ j,0), λ̄(̃τ j,0 + t ′)),

= Ī (0)

(∫ t

0
λ̄(t ′ + a) ¯̄μ0(da)− ¯̄μ0((0, t])

∫ ā

0
λ̄(t ′ + a) ¯̄μ0(da)

)

.

Next, μ̂0 and F̂0,2 have the following covariance function: for t, t ′ ≥ 0,

Cov
(
μ̂0(ϕ), F̂0,2(t)

) = Ī (0)Cov(1(0,t](̃τ j,0), λ− j (̃τ j,0 + t ′)) ,
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and F̂0,1 and F̂0,2 have the following covariance function: for t, t ′ ≥ 0,

Cov(̂F0,1(t), F̂0,2(t
′)) = Ī (0)Cov(λ̄(̃τ j,0 + t), λ− j (̃τ j,0 + t ′)) .

Given the joint law of λ− j and τ̃ j,0, the above two covariances are well defined,
although they are not easily calculated explicitly. We do not go further into their
computation here.

Remark 2.8 We next characterize the covariances between Wrec and μ̂0, F̂0,1(t),
F̂0,2(t), F̂1, F̂2. Observe that Wϕ

rec(t) :=
∫ t
0

∫∞
0 ϕ(a)Wrec(ds, da) is the limit of

the scaled process which is the last term in the expression of μ̂N
t (ϕ) in (4.15). Recall

the covariance function of Wϕ
rec(t) is given in (2.35). It is easy to check that

1√
N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(H(μN

s− , w))1v≤μN
s− (h)Qrec(ds, dv, dw)

= 1√
N

⎛

⎝
I N (0)∑

j=1
ϕ(τ̃ j,0 + η0j )1η0j≤t +

AN (t)∑

i=1
ϕ(ηi )1τ N

i +ηi≤t −
∫ t

0
μN
s (hϕ)ds

⎞

⎠ .

One can then derive the following covariance functions: for t, a ≥ 0,

Cov(Wϕ
rec(t), μ̂0(0, a])

= Ī (0)Cov
(
1(0,a](τ̃ j,0), ϕ(η− j )1η0j≤t −

∫ η0j∧t

0
ϕ(τ̃ j,0 + s)h(τ̃ j,0 + s)ds

)
,

and for t, t ′ ≥ 0,

Cov(Wϕ
rec(t), Ŝ1(t

′)) = 0 ,

Cov(Wϕ
rec(t), F̂

N
0,1(t

′)) = Ī (0)Cov
(
ϕ(η− j )1η0j≤t −

∫ η0j∧t

0
ϕ(τ̃ j,0 + s)h(τ̃ j,0 + s)ds, λ̄(τ̃ j,0 + t ′)

)
,

Cov(Wϕ
rec(t), F̂

N
0,2(t

′)) = Ī (0)Cov
(
ϕ(η− j )1η0j≤t

−
∫ η0j∧t

0
ϕ(τ̃ j,0 + s)h(τ̃ j,0 + s)ds, (λ− j − λ̄)(τ̃ j,0 + t ′)

)
,

Cov(Wϕ
rec(t), F̂

N
1 (t ′)) = 0 ,

Cov(Wϕ
rec(t), F̂

N
2 (t ′)) =

∫ t

0
ϒ(s)Cov

(
ϕ(ηi )1s+ηi≤t −

∫ (s+ηi )∧t

0
ϕ(r − s)h(r − s)dr , λi (t

′ − s)
)
ds .

Assumption 2.2 Let λ(·) be a process having the same law of {λ− j (·)} j=1,...,I N (0) and
{λi (·)}i∈N. Assume that there exists a constant λ∗ such that for each 0 < T < ∞,
supt∈[0,T ] λ(t) ≤ λ∗ almost surely. Assume that there exist an integer k, a ran-
dom sequence 0 = ζ 0 ≤ ζ 1 ≤ · · · ≤ ζ k and associated random functions
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λ� ∈ C(R+; [0, λ∗]), 1 ≤ � ≤ k, such that

λ(t) =
k∑

�=1
λ�(t)1[ζ �−1,ζ �)(t). (2.48)

We assume moreover that there exists a deterministic nondecreasing function φ ∈
C(R+;R+) with φ(0) = 0 such that |λ�(t)− λ�(s)| ≤ φ(t − s) almost surely for all
t, s ≥ 0 and for all � ≥ 1.

In addition to the conditions on λ(t) above, the function φ satisfies that for some
α > 1/4,

φ(t) ≤ Ctα . (2.49)

Also, if F� denotes the c.d.f. of the r.v. ζ �, there exist C ′ and ρ > 0 such that for any
1 ≤ � ≤ k − 1, 0 ≤ s < t ,

F�(t)− F�(s) ≤ C ′(t − s)ρ , (2.50)

and in addition, for any 1 ≤ � ≤ l − 1, r > 0,

P(ζ � − ζ �−1 ≤ r |ζ �−1) ≤ C ′rρ . (2.51)

Theorem 2.3 Under Assumptions 2.1 and 2.2,

(ŜN , F̂N ) ⇒ (Ŝ, F̂) in D2 as N →∞, (2.52)

where the limit processes (Ŝ, F̂) are the unique solution to the following stochastic
integral equations driven by the continuous Gaussian processes μ̂0, F̂0,1, F̂0,2, F̂1 and
F̂2:

Ŝ(t) = −Ŝ1(t)−
∫ t

0
ϒ̂(s)ds, (2.53)

F̂(t) =
∫ t

0
λ̄(t − s)ϒ̂(s)ds + F̂0,1(t)+ F̂0,2(t)+ F̂1(t)+ F̂2(t) , (2.54)

ϒ̂(t) = Ŝ(t)F(t)+ S̄(t )̂F(t) , (2.55)

where S̄ and F are the limits in (2.20) and (2.21), respectively. The limit processes
(Ŝ, F̂) are Gaussian, and continuous almost surely.

Corollary 2.1 Under Assumptions 2.1 and 2.2, and assuming that R̂N (0) ⇒ R̂(0) as
N →∞, we have

(
Î N , R̂N )→ (

Î , R̂
)

in D2 as N →∞, (2.56)
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jointly with the convergence of the processes
(
ŜN , F̂N

)
in (2.52) and μ̂N

t in (2.42),
where

Î (t) =
∫ ∞
0

Fc(t + a)

Fc(a)
dμ̂0(a)+

∫ t

0
Fc(t − s)ϒ̂(s)ds + Îin f (t)+ Îrec(t) , (2.57)

R̂(t) = R̂(0)+
∫ ∞
0

(
1− Fc(t + a)

Fc(a)

)
dμ̂0(a)+

∫ t

0
F(t − s)ϒ̂(s)ds + R̂0(t)+ R̂1(t) .

(2.58)

Here Îin f (t) = μ̌
in f
t (1) and Îrec(t) = μ̌rec

t (1) are independent continuous Gaussian
processes, which have covariance functions: for t, t ′ ≥ 0,

Cov
(
Îin f (t), Îin f (t

′)
) =

∫ t∧t ′

0
Fc(t − a)Fc(t ′ − a)ϒ(a)da ,

and

Cov
(
Îrec(t), Îrec(t

′)
) =

∫ t∧t ′

0

∫ ∞

0

Fc(t − s + a)

Fc(a)

Fc(t ′ − s + a)

Fc(a)
h(a)μ̄s(da)ds ,

where μ̄s(da) is the LLN limit appearing in Theorem 2.1. R̂0(t) and R̂1(t) are inde-
pendent Gaussian processes with covariance functions: for t, t ′ ≥ 0,

Cov
(
R̂0(t), R̂0(t

′)
)

=
∫ ∞

0

(
F(t ∧ t ′ + a)− F(a)

Fc(a)
− F(t + a)− F(a)

Fc(a)

F(t ′ + a)− F(a)

Fc(a)

)

μ̄0(da) ,

(2.59)

and

Cov
(
R̂1(t), R̂1(t

′)
) =

∫ t∧t ′

0
F(t ∧ t ′ − s)ϒ(s)ds . (2.60)

Remark 2.9 We remark that we have taken a different approach from the previous
work [22] to derive the limit Î (t), by exploiting the measure-valued process μ̂t in
(2.40). However, by extending the analysis in [22, Theorem 2.4] to take into account
the different initial conditions, we obtain the following representation for the limit
Î (t):

Î (t) =
∫ ∞

0

Fc(t + a)

Fc(a)
dμ̂0(a)+

∫ t

0
Fc(t − s)ϒ̂(s)ds + Î0(t)+ Î1(t) , (2.61)
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where Î0(t) and Î1(t) are independent continuous Gaussian processes with covariance
functions: for t, t ′ ≥ 0,

Cov
(
Î0(t), Î0(t

′)
) =

∫ ∞

0

( Fc(t ∨ t ′ + a)

Fc(a)
− Fc(t + a)

Fc(a)

Fc(t ′ + a)

Fc(a)

)
μ̄0(da) ,

(2.62)

and

Cov
(
Î1(t), Î1(t

′)
) =

∫ t∧t ′

0
Fc(t ∨ t ′ − s)ϒ(s)ds . (2.63)

It can shown that the driving Gaussian processes Îin f (t) + Îrec(t) and Î0(t) + Î1(t)
have the same law. See the relevant discussions in Section 6.

Remark 2.10 We remark that the stochastic epidemicmodel has essentially threemutu-
ally independent sources of randomness: (i) the generation process of new infections,
embedded in the Gaussian white noise Win f , and also Ŝ1 and F̂1; (ii) the randomness
from the random varying infectivity functions {λi (·)}i∈N for the newly infected indi-
viduals (embedded in F̂2); and (iii) the randomness from the randomvarying infectivity
functions {λ− j (·)} j∈N for the initially infected individuals (embedded in F̂0,2) and the
infection ages of the initially infected individuals (embedded in μ̂0(·)). However, we
stress that the generalized Gaussian random field Wrec contains both the randomness
from (ii) and (iii), particularly, the infection duration variables {ηi }i∈N and {η0j } j∈N
(see the covariances in Remarks 2.7 and 2.8).

3 Proof of Theorem 2.1

In this section we prove the FLLN in Theorem 2.1 using the new representation of
μ̄N in (2.16), and provide a new proof for the uniqueness of the solution to the PDE
in (2.23).

Proof of Theorem 2.1 Most of the Theorem is contained in Theorem 2.1 from [23]. The
convergence

(
S̄N ,F

N )→ (
S̄,F

)
is proved under the condition that λ(t) ≤ λ∗ in [9]

without requiring any regularity conditions in Assumption 2.2. We take that as given.
Thus, we also have the convergence

ϒ
N → ϒ in D (3.1)

in probability as N →∞, where ϒ(t) = S̄(t)F(t), t ≥ 0.
We only need to prove the convergence of the measure-valued process μ̄N , and the

statement concerning equation (2.23).
To prove the convergence of μ̄N in D(R+,MF (R+)), it suffices to show the con-

vergence of μ̄N (ϕ), for any ϕ ∈ Cb(R+), by [19, Theorem 5.2] (in fact, only invoking
tightness criterion in [19, Theorem 4.1]).
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We have noted above that the solution of the PDE (2.12) is given by the formula
(2.15). We first derive an analogous formula for μ̄N

t (ϕ). Differentiating (2.16) with
respect to t , we obtain for ϕ ∈ Cb(R+),

d

dt
μ̄N
t (ϕ) = μ̄N

t (ϕ′ − hϕ)+ ϕ(0)

[

ϒ̄N (t)+ 1

N

d

dt

∫ t

0

∫ ∞
0

1v≤ϒN (s−) Q̄in f (ds, dv)

]

− 1

N

d

dt

∫ t

0

∫ ∞
0

∫ 1

0
ϕ(H(μN

s− , w))1
v≤μN

s− (h)
Q̄rec(ds, dv, dw) .

We see that μ̄ satisfies an equation of the type (2.12), but with u0(a)da replaced by
μ̄N
0 (da), and also

the function k(t) replaced by ϒ̄N (t)+ 1

N

d

dt

∫ t

0

∫ ∞
0

1
v≤ϒN (s−)

Q̄in f (ds, dv),

and the function g(t, a) replaced by − 1

N

d

dt

∫ t

0

∫ ∞
0

∫ 1

0
δH(μN

s− ,w)
(da)1

v≤μN
s− (h)

Q̄rec(ds, dv, dw) .

Hence it is not hard to show that for ϕ ∈ Cb(R+),

μ̄N
t (ϕ) =

∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
μ̄N
0 (da)+

∫ t

0
ϕ(t − a)Fc(t − a)ϒ̄N (a)da

+ 1

N

∫ t

0

∫ ∞

0
ϕ(t − a)Fc(t − a)1v≤ϒN (a+) Q̄in f (da, dv)

− 1

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μN

s− , v))
Fc(t − s + H(μN

s− , v))

Fc(H(μN
s− , w))

× 1v≤μN
s− (h) Q̄rec(ds, dv, dw) . (3.2)

Theorem 2.1 will follow from the two next Lemmas, the first one says that for any
ϕ ∈ Cb(R+), μ̄N

t (ϕ) → μ̄t (ϕ) in probability as N → ∞, for each fixed t ≥ 0, and
the second one that μ̄N (ϕ) is tight in D(R+), again for any ϕ ∈ Cb(R+). Both proofs
exploit the formula (3.2). ��
Lemma 3.1 Assume that the hazard function h is bounded. Then, as N → ∞,
μ̄N
t (ϕ) → μ̄t (ϕ) in probability, for each t ≥ 0 and ϕ ∈ Cb(R+), where

μ̄t (ϕ) =
∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
μ̄0(da)+

∫ t

0
ϕ(t − a)Fc(t − a)ϒ̄(a)da . (3.3)

Proof For that sake, we consider each term of the right hand side of (3.2). The con-
vergence of the first term follows readily from the fact that a.s. μ̄N

0 ⇒ μ̄0 weakly, and
for each t ≥ 0,

a 
→ ϕ(a+ t)
Fc(t + a)

Fc(a)

123



Stochastics and Partial Differential Equations: Analysis and Computations

is continuous, and bounded by ‖ϕ‖∞. The convergence of the second term in proba-
bility follows from that of ϒ̄N to ϒ̄ in D. Finally, the last two terms tend to 0 in mean
square. Indeed, we have

E

(∣
∣
∣
∣
1

N

∫ t

0

∫ ∞

0
ϕ(t − a)Fc(t − a)1v≤ϒN (a+) Q̄in f (da, dv)

∣
∣
∣
∣

2
)

= 1

N
E

∫ t

0

∣
∣ϕ(t − a)Fc(t − a)

∣
∣2 ϒ̄N (a)da

≤ t‖ϕ‖2λ∗
N

,

which tends to 0 as N →∞. Finally, we have

E

(∣
∣
∣
∣
∣
1

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μN

s− , w))
Fc(t − s + H(μN

s− , w))

Fc(H(μN
s− , w))

1v≤μN
s− (h) Q̄rec(ds, dv, dw)

∣
∣
∣
2
)

= 1

N
E

∫ t

0
μ̄N
s

(

hϕ(t − s + ·) F
c(t − s + ·)
Fc(·)

)

ds

≤ t‖h‖∞‖ϕ‖∞
N

,

which tends to 0 as N →∞. ��
We next establish the following tightness result.

Lemma 3.2 Assume that h is bounded, and that the measure μ̄0 has compact sup-
port, and that Fc(a) > 0 for all a > 0. Then for each ϕ ∈ Cb(R+), the sequence
{μ̄N

t (ϕ), t ≥ 0}N≥1 is tight in D.

Proof Wewill in fact show that the sequence {μ̄N (ϕ)}N≥1 isC–tight. This will follow
from the fact that for any T > 0, we have the following property: For any ε, η > 0,
there exists δ ∈ (0, 1) and N0 such that

P

(

sup
0≤t<t ′≤T , t ′−t≤δ

∣
∣
∣μ̄N

t ′ (ϕ)− μ̄N
t (ϕ)

∣
∣
∣ ≥ ε

)

≤ η, ∀N ≥ N0 . (3.4)

We first rewrite (3.2) as follows: for ϕ ∈ Cb(R+),

μ̄N
t (ϕ) =

∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
μ̄N
0 (da)

+ 1

N

∫ t

0

∫ ∞

0
ϕ(t − a)Fc(t − a)1v≤ϒN (a+)Qin f (da, dv)
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− 1

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μN

s− , w))
Fc(t − s + H(μN

s− , w))

Fc(H(μN
s− , w))

× 1v≤μN
s− (h) Q̄rec(ds, dv, dw) . (3.5)

We will show that each term on the right of the identity (3.5) satisfies the property
(3.4). We start with the first term. Recall that [0, ā] is the support of μ̄0. We note that

sup
0≤t<t ′≤T , t ′−t≤δ

∣
∣
∣
∣
∣

∫ ā

0
ϕ(a+ t ′) F

c(t ′ + a)

Fc(a)
μ̄N
0 (da)−

∫ ā

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
μ̄N
0 (da)

∣
∣
∣
∣
∣

≤ 1

Fc(ā)
sup

0≤t<t ′≤T+ā, t ′−t≤δ

|ϕ(t ′)Fc(t ′)− ϕ(t)Fc(t)|,

which tends to 0 as δ → 0, since both ϕ and Fc are continuous.
We next consider the second term:

∣
∣
∣
∣
1

N

∫ t ′

0

∫ ∞

0
ϕ(t ′ − a)Fc(t ′ − a)1v≤ϒN (a+)Qin f (da, dv)

− 1

N

∫ t

0

∫ ∞

0
ϕ(t − a)Fc(t − a)1v≤ϒN (a+)Qin f (da, dv)

∣
∣
∣
∣

≤ 1

N

∫ t ′

t

∫ ∞

0
ϕ(t ′ − a)Fc(t ′ − a)1v≤ϒN (a+)Qin f (da, dv)

+ 1

N

∫ t

0

∫ ∞

0

∣
∣ϕ(t ′ − a)Fc(t ′ − a)− ϕ(t − a)Fc(t − a)

∣
∣ 1v≤ϒN (a+)Qin f (da, dv) .

The first term on the last right hand side is bounded by ‖ϕ‖∞ multiplied by

1

N

∫ t ′

t

∫ Nλ∗

0
Qin f (da, dv) .

Note that, as N →∞,

1

N

∫ t

0

∫ Nλ∗

0
Qin f (da, dv) → λ∗t,

in probability, for any t ≥ 0. Moreover, for any N , t 
→ 1
N

∫ t
0

∫ Nλ∗
0 Qin f (da, dv)

is increasing, and the limit is continuous. Hence from the second Dini theorem, the
convergence is locally uniform in t . Now we obtain

P

(

sup
0≤t<t ′≤T , t ′−t≤δ

1

N

∫ t ′

t

∫ Nλ∗

0
Qin f (da, dv) > ε

)

≤ P

(

2 sup
0≤t≤T

∣
∣
∣
∣
∣
1

N

∫ t

0

∫ Nλ∗

0
Qin f (da, dv)− λ∗t

∣
∣
∣
∣
∣
> ε/2

)

+ 1λ∗(t ′−t)≥ε/2 .
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We choose δ < ε/2λ∗, and deduce from the above that

P

(

sup
0≤t<t ′≤T , t ′−t≤δ

1

N

∫ t ′

t

∫ Nλ∗

0
Qin f (da, dv) > ε

)

→ 0,

as N →∞.
We next consider the term

1

N

∫ t

0

∫ ∞

0

∣
∣ϕ(t ′ − a)Fc(t ′ − a)− ϕ(t − a)Fc(t − a)

∣
∣ 1u≤ϒN (a+)Qin f (da, dv) .

(3.6)

Define

ωϕFc(δ, T ) = sup
0≤t<t ′≤T , t ′−t≤δ

|ϕ(t ′)Fc(t ′)− ϕ(t)Fc(t)| .

We have

sup
0≤t<t ′≤T , t ′−t≤δ

1

N

∫ t

0

∫ ∞

0

∣
∣ϕ(t ′ − a)Fc(t ′ − a)− ϕ(t − a)Fc(t − a)

∣
∣

× 1u≤ϒN (a+)Qin f (da, dv)

≤ ωϕFc(δ, T )
Qin f ([0, T ] × [0, Nλ∗])

N
.

On the last right hand side, the first factor tends to 0 as δ → 0, while the second factor
tends to Tλ∗ a.s., as N →∞. Hence the term in (3.6) also satisfies (3.4).

We finally consider the last term in (3.5). In other words, we need to establish the
C-tightness of

νN
t (ϕ) :=

∫ t

0
μ̄N
s

(

hϕ(t − s + ·) F
c(t − s + ·)
Fc(·)

)

ds

− 1

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μN

s− , w))
Fc(t − s + H(μN

s− , w))

Fc(H(μN
s− , w))

× 1v≤μN
s− (h)Qrec(ds, dv, dw)

= ν
N ,1
t (ϕ)+ ν

N ,2
t (ϕ) . (3.7)

We first note that, if t < t ′,

ν
N ,1
t ′ (ϕ)− ν

N ,1
t (ϕ) =

∫ t ′

t
μ̄N
s

(

hϕ(t ′ − s + ·) F
c(t ′ − s + ·)

Fc(·)
)

ds

+
∫ t

0
μ̄N
s

(

h
ϕ(t ′ − s + ·)Fc(t ′ − s + ·)− ϕ(t − s + ·)Fc(t − s + ·)

Fc(·)
)

ds,
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hence, provided t ′ − t ≤ δ,

∣
∣νN ,1

t ′ (ϕ)− ν
N ,1
t (ϕ)

∣
∣ ≤ ‖h‖∞‖ϕ‖∞δ + ‖h‖∞

Fc(t + K )
ωϕFc(δ, T + K ) .

Hence clearly ν
N ,1
t (ϕ) satisfies (3.4).

We finally consider ν
N ,2
t (ϕ):

∣
∣νN ,2
t ′ (ϕ)− ν

N ,2
t (ϕ)

∣
∣

≤ 1

N

∫ t ′

t

∫ ∞
0

∫ 1

0
ϕ(t ′ − s + H(μN

s− , w))
Fc(t ′ − s + H(μN

s− , w))

Fc(H(μN
s− , w))

1
v≤μN

s− (h)
Qrec(ds, dv, dw)

+ 1

N

∫ t

0

∫ ∞
0

∫ 1

0

|ϕ(t ′−s+H(μN
s− , v))Fc(t ′−s+H(μN

s− , v))− ϕ(t−s+H(μN
s− , w))Fc(t−s+H(μN

s− , w))|
Fc(H(μN

s− , w))

× 1
v≤μN

s− (h)
Qrec(ds, dv, dw)

≤ ‖ϕ‖∞ 1

N
Qrec([t, t ′] × [0, N‖h‖∞] × [0, 1])

+ ωϕFc (t ′ − t, T + ā)

Fc(t + ā)

1

N
Qrec([0, t] × [0, N‖h‖∞] × [0, 1])

= (t ′ − t)‖ϕ‖∞‖h‖∞ + ωϕFc (t ′ − t, T )
t‖h‖∞

Fc(t + ā)

+ ‖ϕ‖∞ 1

N
Q̄rec([t, t ′] × [0, N‖h‖∞] × [0, 1])

+ ωϕFc (t ′ − t, T + ā)

Fc(t + ā)

1

N
Q̄rec([0, t] × [0, N‖h‖∞] × [0, 1]) .

The sup over 0 ≤ t < t ′ ≤ T , t ′ − t ≤ δ of the first line on the right hand side tends
to 0 as δ → 0, while the term on the second line tends to 0 in probability as N →∞,
uniformly over 0 ≤ t < t ′ ≤ T , as explained above. This proves that νN ,2

t (ϕ) satisfies
(3.4). The Lemma is established. ��

We finally establish uniqueness of the solution of the LLN limiting PDE.

Proposition 3.1 Assume that F ∈ C1 and F(a) > 0 for all a > 0. Then the PDE
(2.23) has at most one solution in the space C(R+;MF (R+)).

Proof We use a duality argument. Note that if μ ∈ C(R+;MF (R+)) solves the PDE
(2.23), then for any ϕ ∈ C1

b(R+), the mapping t 
→ μt (ϕ) = ∫∞
0 ϕ(a)μ(t, da) is

differentiable, and

d

dt
μt (ϕ) = ϕ(0)ϒ(t)+ μt (ϕ

′ − hϕ), t ≥ 0 . (3.8)
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Moreover, if {μt , t ≥ 0} solves the PDE (2.23) and (t, a) 
→ ϕ(t, a) = ϕt (a) is an
element of C1

c (R
2+), then

d

dt
μt (ϕt ) = ϕt (0)ϒ(t)+ μt (∂tϕt + ∂aϕt − hϕt ), t ≥ 0 . (3.9)

Suppose now that we have two solutions μt and νt of the PDE (2.23) with the same
initial condition. Then the difference �μt := μt − νt satisfies �μ0 = 0 and for any
ϕ ∈ C1

c (R
2+),

d

dt
�μt (ϕt ) = �μt (∂tϕt + ∂aϕt − hϕt ), t ≥ 0 . (3.10)

Now consider the following backward PDE: for T > 0 and g ∈ C1
c (R+) arbitrary,

∂tvt + ∂avt = hvt , 0 ≤ t ≤ T , v(T , a) = g(a) . (3.11)

This last equation has the following explicit solution:

v(t, a) = Fc(a+ T − t)

Fc(a)
g(a+ T − t) .

Indeed, this function v satisfies v(T , a) = g(a). Moreover, ∂t + ∂a of the factor
Fc(a+ T − t)g(a+ T − t) vanishes, since it is a function of a− t , while

(∂t + ∂a)
1

Fc(a)
= ∂a

1

Fc(a)
= f (a)

(Fc(a))2
= h(a)

Fc(a)
.

Hence this function v satisfies (3.11). Moreover, since in particular F ∈ C1, v ∈
C1
c (R

2+). Combining (3.10) and (3.11), we deduce that d
dt �μt (vt ) = 0, for all t ∈

[0, T ]. Consequently, �μT (vT ) = �μ0(v0) = 0, i.e. �μT (g) = 0, for any g ∈
C1
c (R+). Therefore, �μT = 0. But this true for any T > 0. Uniqueness of the

solution of the PDE (2.23) has been established. ��

4 Proof of Theorem 2.2

Recall the expressions of μ̂N
t (ϕ) in (2.32), with μ̂

in f ,N
t (ϕ) in (2.33) and μ̂

rec,N
t (ϕ)

in (2.34). Here we apply the tightness criterion in [19] for stochastic processes in
D(R+; (H1(R+))′).

Lemma 4.1 Under Assumption 2.1, for any ϕ ∈ H1(R+),

{μ̂N
0 (ϕ(t + ·)), t ≥ 0} ⇒ {μ̂0(ϕ(t + ·)), t ≥ 0} in D

as N →∞, where {μ̂0} is given in Proposition 2.1.
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Proof Recall the expression of μ̂N
0 in (2.30). In particular, given that d ¯̄μ0(da) =

g0(a)da, we have

μ̂N
0 ([0, a]) = 1√

N

I N (0)∑

j=1

(
1τ̃ j,0≤a − ¯̄μ0([0, a])

)
.

Thus we can write

μ̂N
0 (ϕ(t + ·)) =

∫ ∞

0
ϕ(t + a)μ̂N

0 (da)

= 1√
N

I N (0)∑

j=1

(
ϕ(τ̃ j,0 + t) −

∫ ∞

0
ϕ(a+ t) ¯̄μ0(da)

)
.

Observe that the summation is over a sequence of i.i.d. random variables. Thus, by
the CLT, we immediately obtain the convergence of finite dimensional distributions.

To prove tightness, we apply Theorem 13.5 in [1], which says in particular that it
suffices to show that for any T > 0, any t1 < t < t2 ≤ T , ϕ ∈ H1(R+), and N ≥ 1,

E
[∣∣μ̂N

0 (ϕ(t + ·))− μ̂N
0 (ϕ(t1 + ·))

∣
∣2
∣
∣μ̂N

0 (ϕ(t2 + ·))− μ̂N
0 (ϕ(t + ·))∣∣2]

≤ (G(t2)− G(t1))
α (4.1)

for some α > 1 and some nondecreasing nonnegative continuous function G. From
now on, T will be arbitrarily fixed.

We have

μ̂N
0 (ϕ(t + ·))− μ̂N

0 (ϕ(t1 + ·)) = 1√
N

I N (0)∑

j=1

[
(Z j,t − E[Z j,t ])− (Z j,t1 − E[Z j,t1])

]
,

and

μ̂N
0 (ϕ(t2 + ·))− μ̂N

0 (ϕ(t + ·)) = 1√
N

I N (0)∑

j=1

[
(Z j,t2 − E[Z j,t2 ])− (Z j,t − E[Z j,t ])

]
,

with

Z j,t := ϕ(τ̃ j,0 + t), E[Z j,t ] =
∫ ∞

0
ϕ(a+ t) ¯̄μ0(da) .

Also, for notational convenience, we write Z̄ j,t = Z j,t − E[Z j,t ]. Note that the
stochastic processes Z̄ j,· are mutually independent and centered. Then, we have

E
[∣∣μ̂N

0 (ϕ(t + ·))− μ̂N
0 (ϕ(t1 + ·))

∣
∣2
∣
∣μ̂N

0 (ϕ(t2 + ·))− μ̂N
0 (ϕ(t + ·))∣∣2]
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= 1

N 2E

[( I N (0)∑

j=1
(Z̄ j,t − Z̄ j,t1)

)2( I N (0)∑

j=1
(Z̄ j,t2 − Z̄ j,t )

)2]

= 1

N 2E

[( I N (0)∑

j=1
(Z̄ j,t − Z̄ j,t1)

2 +
I N (0)∑

j, j ′=1, j ′ �= j

(Z̄ j,t − Z̄ j,t1)(Z̄ j ′,t − Z̄ j ′,t1)

)

×
( I N (0)∑

j=1
(Z̄ j,t2 − Z̄ j,t )

2 +
I N (0)∑

j, j ′=1, j ′ �= j

(Z̄ j,t2 − Z̄ j,t )(Z̄ j ′,t2 − Z̄ j ′,t )

)]

= 1

N 2

( I N (0)∑

j=1
E
[
(Z̄ j,t − Z̄ j,t1)

2(Z̄ j,t2 − Z̄ j,t )
2]

+
I N (0)∑

j, j ′=1, j ′ �= j

E
[
(Z̄ j,t − Z̄ j,t1)

2]
E
[
(Z̄ j ′,t2 − Z̄ j ′,t )

2]

+
I N (0)∑

j, j ′=1, j ′ �= j

E
[
(Z̄ j,t − Z̄ j,t1)(Z̄ j,t2 − Z̄ j,t )

]
E
[
(Z̄ j ′,t − Z̄ j ′,t1)(Z̄ j ′,t2 − Z̄ j ′,t )

]
)

.

We next calculate each of these terms. We write

�1(a) := ϕ(a+ t)− ϕ(a+ t1) and �2(a) := ϕ(a+ t2)− ϕ(a+ t) ,

and observe that for Cauchy–Schwartz’s inequality, we deduce that

|�1(a)| = |ϕ(a+ t)− ϕ(a+ t1)|

≤
√

|t − t1|
∫ t+a

t1+a
|ϕ′(r)|2dr

≤ cϕ

√
t − t1,

|�2(a)| ≤ cϕ

√
t2 − t ,

(4.2)

where cϕ :=
√∫∞

0 |ϕ′(r)|2dr . We have

E
[
(Z̄ j,t − Z̄ j,t1)

2] =
∫ ∞

0
�2

1 (a) ¯̄μ0(da)−
(∫ ∞

0
�1(a) ¯̄μ0(da)

)2

≤
∫ ∞

0
�2

1 (a) ¯̄μ0(da) ≤ 2c2ϕ |t − t1|.

Similarly, the same bound holds for E
[
(Z̄ j ′,t2 − Z̄ j ′,t )2

]
. So we get

E
[
(Z̄ j,t − Z̄ j,t1)

2]
E
[
(Z̄ j ′,t2 − Z̄ j ′,t )

2] ≤ 4c4ϕ |t2 − t1|2 .
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Next, we have

E
[
(Z̄ j,t − Z̄ j,t1)(Z̄ j,t2 − Z̄ j,t )

] =
∫ ∞

0
�1(a)�2(a) ¯̄μ0(da)

−
∫ ∞

0
�1(a) ¯̄μ0(da)

∫ ∞

0
�2(a) ¯̄μ0(da) .

By (4.2), we obtain that its absolute value is bounded by 2c2ϕ |t − t1|. Similarly we can
bound E

[
(Z̄ j ′,t − Z̄ j ′,t1)(Z̄ j ′,t2 − Z̄ j ′,t )

]
. So we have that for j �= j ′,

E
[
(Z̄ j,t − Z̄ j,t1)(Z̄ j,t2 − Z̄ j,t )

]
E
[
(Z̄ j ′,t − Z̄ j ′,t1)(Z̄ j ′,t2 − Z̄ j ′,t )

] ≤ 4c4ϕ |t2 − t1|2 .

Now we calculate

E
[
(Z̄ j,t − Z̄ j,t1 )

2(Z̄ j ,t2 − Z̄ j ,t )
2] = E

[(
�̃1 −

∫ ∞
0

�1 ¯̄μ0(da)
)2(

�̃2 −
∫ ∞
0

�2 ¯̄μ0(da)
)2
]

,

with �̃1 = Z j,t − Z j,t1 and �̃2 = Z j,t2 − Z j,t . It is equal to (dropping a in �1 and
�2 in the integrands below for brevity)

∫ ∞

0
�2

1�2
2
¯̄μ0(da)+

∫ ∞

0
�2

1
¯̄μ0(da)

( ∫ ∞

0
�2 ¯̄μ0(da)

)2 +
∫ ∞

0
�2

2
¯̄μ0(da)

( ∫ ∞

0
�1 ¯̄μ0(da)

)2

+
∫ ∞

0
�1�2 ¯̄μ0(da)

∫ ∞

0
�1 ¯̄μ0(da)

∫ ∞

0
�2 ¯̄μ0(da)

− 2
∫ ∞

0
�1�

2
2
¯̄μ0(da)

∫ ∞

0
�1 ¯̄μ0(da)− 2

∫ ∞

0
�2

1�2 ¯̄μ0(da)
∫ ∞

0
�2 ¯̄μ0(da)

− 3
( ∫ ∞

0
�1 ¯̄μ0(da)

)2( ∫ ∞

0
�2 ¯̄μ0(da)

)2
.

By the bounds of |�1| and |�2| in (4.2), the absolute value of each term is bounded
by 4c4ϕ |t2 − t1|2.

Combining the above estimates, we obtain (4.1) holds with G(t) = Ct , C being
equal to some finite factor times c4ϕ , and α = 2, and then applying Theorem 13.5 in

[1], we conclude the convergence μ̂N
0 (ϕ(t + ·)) ⇒ μ̂0(ϕ(t + ·)) in D. ��

Lemma 4.2 For any ϕ ∈ Cb(R),

{ ∫ t

0
ϕ(t − s)ϒ̂N (s)ds, t ≥ 0

}
⇒
{ ∫ t

0
ϕ(t − s)ϒ̂(s)ds, t ≥ 0

}

in C as N →∞.

Proof By Theorem 2.3, we have ϒ̂N (·) ⇒ ϒ̂(·) in D where ϒ̂(t) is given in (2.55),
and has paths in C almost surely. Applying the continuous mapping theorem to the
mapping x ∈ D → {∫ t

0 ϕ(t − s)x(s)ds , t ≥ 0} ∈ C , we obtain the convergence as
claimed. ��
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Lemma 4.3 For any ϕ ∈ H1(R+), μ̂in f ,N (ϕ) ⇒ μ̂in f (ϕ) in D as N →∞.

Proof We define

μ̃
in f ,N
t (ϕ) = 1√

N

∫ t

0

∫ ∞

0
ϕ(t − s)1v≤Nϒ(s) Q̄in f (ds, dv) .

We first note that

E

[(
μ̂
in f ,N
t (ϕ)− μ̃

in f ,N
t (ϕ)

)2] = E

∫ t

0
ϕ2(t − s)|ϒ(s)− ϒ

N
(s)|ds,

which tends to 0 as N →∞.
Next it follows from Corollary 2.9 in [27] that the joint cumulants of the random

variables (μ̃
in f ,N
t1 (ϕ1), . . . , μ̃

in f ,N
tm (ϕm)) equals 0 for m = 1, and otherwise is given

as

κm(μ̃
in f ,N
t1 (ϕ1), . . . , μ̃

in f ,N
tm (ϕm))

= N 1−m/2
∫ t1∧···∧tm

0
ϕ1(t1 − s)× · · · × ϕm(tm − s)ϒ(s)ds .

The cumulants of order 1 are 0, all cumulants of order m ≥ 3 tend to 0, while for
m = 2,

κ2(μ̃
in f ,N
t1 (ϕ1), μ̃

in f ,N
t2 (ϕ2)) =

∫ t1∧t2

0
ϕ1(t1 − s)ϕ2(t2 − s)ϒ(s)ds .

The above arguments allow us to conclude that the finite dimensional distributions of
the generalized random field μ̂

in f ,N
t (ϕ) converge towards those of μ̂in f

t (ϕ). If remains
to establish tightness in D of the sequence μ̂in f ,N (ϕ), which will be a consequence
of the next two lemmas. ��
Lemma 4.4 For any ϕ ∈ H1(R+), the sequence {μ̃in f ,N (ϕ)} is tight in D.

Proof For the sake of simplifying our notations, we define, with ϕ ∈ C1
b(R+) being

fixed, ξ N
t := μ̃

in f ,N
t (ϕ). We will again exploit Theorem 13.5 in Billingsley, more

precisely Billingsley’s condition (13.14) in the following special form. For any T > 0,
there exists a nondecreasing continuous function G and a real α > 1 such that for any
t1 < t < t2 ≤ T , N ≥ 1,

E

[
(ξ N

t − ξ N
t1 )2(ξ N

t2 − ξ N
t )2

]
≤ (G(t2)− G(t1))

α . (4.3)

For that sake, we will make use of the following formula from Exercise 2.21 in [27].
Let Q be a Poisson Random measure on the measurable space (E, E) with mean
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measure μ, and Q = Q − μ its associated compensated measure. Then for any
f1, f2 ∈ L1(E, E, μ) ∩ L4(E, E, μ),

E

[
Q( f1)

2Q( f2)
2
]
= μ( f 21 f 22 )+ μ( f 21 )μ( f 22 )+ 2[μ( f1 f2)]2 . (4.4)

We shall apply this formula after having identified f1 and f2 such that

ξ N
t − ξ N

t1 = Q( f1) and ξ N
t2 − ξ N

t = Q( f2) ,

in the case E = R
2+, μ(ds, du) = dsdu.

We have

ξ N
t − ξ N

t1 =
1√
N

∫ t

0

∫ ∞

0
1u<Nϒ(s)ϕ(t − s)Q(ds, du)

− 1√
N

∫ t1

0

∫ ∞

0
1u<Nϒ(s)ϕ(t1 − s)Q(ds, du)

= Q( f1),

where

f1(s, u) = 1√
N
1(t1,t](s)ϕ(t − s)1u<Nϒ(s)

+ 1√
N
1[0,t1](s)

(
ϕ(t − s)− ϕ(t1 − s)

)
1u<Nϒ(s) .

Similarly,

ξ N
t2 − ξ N

t = Q( f2),

with

f2(s, u) = 1√
N
1(t,t2](s)ϕ(t2 − s)1u<Nϒ(s)

+ 1√
N
1[0,t](s)

(
ϕ(t2 − s)− ϕ(t − s)

)
1u<Nϒ(s) .

Now we have

f1(s, u) f2(s, u) = 1

N
1(t1,t](s)ϕ(t − s)

(
ϕ(t2 − s)− ϕ(t − s)

)
1u<Nϒ(s)

+ 1

N
1[0,t1](s)

(
ϕ(t − s)− ϕ(t1 − s)

)(
ϕ(t2 − s)− ϕ(t − s)

)
1u<Nϒ(s) .
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Hence, with cϕ denoting the norm of ϕ in H1(0, T + K ), by the same computation as
done in the proof of Lemma 4.1,

μ( f 21 ) =
∫ t

t1
ϕ2(t − s)ϒ(s)ds +

∫ t1

0

(
ϕ(t − s)− ϕ(t1 − s)

)2
ϒ(s)ds

≤ λ∗‖ϕ‖2∞(t − t1)+ λ∗t1c2ϕ(t − t1)

≤ C(t2 − t1), (4.5)

where the constant C depends upon t2, λ∗ ‖ϕ‖∞ and cϕ . We also obtain

μ( f 22 ) ≤ C(t2 − t1) . (4.6)

We next compute

μ( f1 f2) =
∫ t

t1
ϕ(t − s)

(
ϕ(t2 − s)− ϕ(t − s)

)
ϒ(s)ds

+
∫ t1

0

(
ϕ(t − s)− ϕ(t1 − s)

)(
ϕ(t2 − s)− ϕ(t − s)

)
ϒ(s)ds .

Thus, we have

|μ( f1 f2)| ≤ λ∗‖ϕ‖∞cϕ(t2 − t1)
3/2 + λ∗c2ϕ(t2 − t1) . (4.7)

Finally, we obtain

μ( f 21 f 22 ) = 1

N

∫ t

t1
ϕ2(t − s)

(
ϕ(t2 − s)− ϕ(t − s)

)2
ϒ(s)ds

+ 1

N

∫ t1

0

(
ϕ(t − s)− ϕ(t1 − s)

)2(
ϕ(t2 − s)− ϕ(t − s)

)2
ϒ(s)ds

≤ ‖ϕ‖2∞c2ϕλ∗

N
(t2 − t1)

2 + c4ϕλ∗t1
N

(t2 − t1)
2 . (4.8)

Putting together (4.4), (4.5), (4.6), (4.7) and (4.8), there exists a constant CT such that
for any 0 ≤ t1 < t < t2 ≤ T , N ≥ 1,

E

[
(ξ N

t − ξ N
t1 )2(ξ N

t2 − ξ N
t )2

]
≤ CT (t2 − t1)

2 . (4.9)

Applying Theorem 13.5 in [1], we obtain the desired result. ��

Lemma 4.5 For any ϕ ∈ H1(R+), the sequence {μ̂in f ,N· (ϕ)− μ̃
in f ,N· (ϕ), N ≥ 1} is

tight in D.
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Proof For the sake of simplifying our notations, we define

�N
t := μ̂

in f ,N
t (ϕ)− μ̃

in f ,N
t (ϕ) .

We shall exploit the Corollary page 83 of Billingsley [1]. More precisely, a conse-
quence of that Corollary is that, since �N

0 = 0 for all N ≥ 1, taking into account the
inequality (12.7) in Billingsley [1], the statement of the lemma will follow from the
following fact: for any t > 0, ε > 0, as δ → 0,

lim sup
N→∞

1

δ
P

(

sup
0≤r≤δ

|�N
t+r −�N

t | ≥ ε

)

→ 0 . (4.10)

In order to simplify our notations below, we define

DN (s, u) := 1u≤ϒN (s−) − 1u≤Nϒ(s) ,

and we note that

|DN (s, u)| = 1ϒN (s−)∧Nϒ(s)<u≤ϒN (s−)∨Nϒ(s),
∫ ∞

0
|DN (s, u)|du = |ϒN (s−)− Nϒ(s)|,

1√
N

∫ ∞

0
|DN (s, u)|du = |ϒ̂N (s−)|,

1

N

∫ ∞

0
|DN (s, u)|du = |ϒN

(s−)− ϒ(s)| .

We have

�N
t = 1√

N

∫ t

0

∫ ∞

0
ϕ(t − s)DN (s, u)Q(ds, du),

�N
t+r −�N

t = 1√
N

∫ t+r

t

∫ ∞

0
ϕ(t + r − s)DN (s, u)Q(ds, du)

+ 1√
N

∫ t

0

∫ ∞

0

(
ϕ(t + r − s)− ϕ(t − s)

)
DN (s, u)Q(ds, dη, du) .

Next, we obtain

|�N
t+r −�N

t | ≤
1√
N
‖ϕ‖∞

∫ t+r
t

∫ ∞
0

|DN (s, u)|Q(ds, du)+ ‖ϕ‖∞
∫ t+r
t

|ϒ̂N (s)|ds

+ cϕ
√
r√

N

∫ t

0

∫ ∞
0

|DN (s, u)|Q(ds, du)+ cϕ
√
r
∫ t

0
|ϒ̂N (s)|ds .
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As a consequence,

sup
0≤r≤δ

|�N
t+r −�N

t | ≤
1√
N
‖ϕ‖∞

∫ t+δ

t

∫ ∞
0

|DN (s, u)|Q(ds, du)+ ‖ϕ‖∞
∫ t+δ

t
|ϒ̂N (s)|ds

+ cϕ
√

δ√
N

∫ t

0

∫ ∞
0

|DN (s, u)|Q(ds, du)+ cϕ
√

δ

∫ t

0
|ϒ̂N (s)|ds

= 1√
N
‖ϕ‖∞

∫ t+δ

t

∫ ∞
0

|DN (s, u)|Q(ds, du)+ 2‖ϕ‖∞
∫ t+δ

t
|ϒ̂N (s)|ds

+ cϕ
√

δ√
N

∫ t

0

∫ ∞
0

|DN (s, u)|Q(ds, du)+ 2cϕ
√

δ

∫ t

0
|ϒ̂N (s)|ds .

We have proved that

sup
0≤r≤δ

|�N
t+r −�N

t | ≤ AN
t,δ + 2BN

t,δ ,

where

AN
t,δ =

1√
N
‖ϕ‖∞

∫ t+δ

t

∫ ∞

0
|DN (s, u)|Q(ds, du)

+ cϕ

√
δ√

N

∫ t

0

∫ ∞

0
|DN (s, u)|Q(ds, du),

BN
t,δ = ‖ϕ‖∞

∫ t+δ

t
|ϒ̂N (s)|ds + cϕ

√
δ

∫ t

0
|ϒ̂N (s)|ds .

Clearly, in order to establish (4.10), it suffices to establish the following two facts: for
any t > 0, ε > 0, as δ → 0,

lim sup
N→∞

1

δ
P(AN

t,δ > ε) → 0, (4.11)

lim sup
N→∞

1

δ
P(BN

t,δ > ε) → 0 . (4.12)

We first establish (4.12). We note that

(BN
t,δ)

2 ≤ C(‖ϕ‖2∞ + c2ϕ)δ ×
∫ t+δ

0
|ϒ̂N (s)|2ds .

So we have

lim sup
N→∞

1

δ
P(BN

t,δ > ε) ≤ 1

δ
P

(∫ t+δ

0
|ϒ̂(s)|2ds ≥ ε

C(‖ϕ‖2∞ + c2ϕ)δ

)

≤ C2(‖ϕ‖2∞ + c2ϕ)2δ

ε2
E

[(∫ t+1

0
|ϒ̂(s)|2ds

)2
]

,
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which goes to 0 as δ → 0. Hence, (4.12) follows.
We finally establish (4.11). For that sake, we first estimate the second moment of

AN
t,δ:

E[(AN
t,δ)

2] = E

[
‖ϕ‖2∞

∫ t+δ

t
|ϒN

(s)− ϒ(s)|ds + c2ϕδ

∫ t

0
|ϒN

(s)−ϒ(s)|ds
]

≤ E

[
sup

0≤s≤t+δ

|ϒN
(s)−ϒ(s)|

]
(‖ϕ‖2∞ + tc2ϕ)δ .

Finally, we obtain

1

δ
P(AN

t,δ > ε) ≤ E[(AN
t,δ)

2]
δε2

≤ C

ε2
E

[
sup

0≤s≤t+δ

|ϒN
(s)− ϒ(s)|

]
.

Weknow thatϒ
N
(s) → ϒ(s) in probability locally uniformly in s, and |ϒN

(s)| ≤ λ∗,
hence the lim sup as N →∞ of the above right hand side is 0 for any δ > 0. (4.11)
has been established. ��

We next prove that μ̂rec,N (ϕ) ⇒ μ̂rec(ϕ) in D. We shall treat μ̂rec,N similarly as
μ̂in f ,N . Our aim is to establish the following lemma.

Lemma 4.6 For any ϕ ∈ H1(R+), μ̂rec,N (ϕ) ⇒ μ̂rec(ϕ) in D as N →∞.

Let us first establish the convergence of finite-dimensional distributions, and then
tightness in D.

Lemma 4.7 For any ϕ ∈ H1(R+) and any 0 ≤ t1 < t2 < · · · < tk , as N →∞,

(μ̂
rec,N
t1 (ϕ), . . . , μ̂

rec,N
tk (ϕ)) ⇒ (μ̂rec

t1 (ϕ), . . . , μ̂rec
tk (ϕ)) .

Proof We define

μ̃
rec,N
t (ϕ) = 1√

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μ̄s, w))1v≤N μ̄s (h)Qrec(ds, dv, dw) .

The proof will be divided in two steps.
Step 1 We first want to show that for any t > 0, μ̂rec,N

t (ϕ) − μ̃
rec,N
t (ϕ) → 0 in

mean square, as N →∞. We have

μ̂
rec,N
t (ϕ)− μ̃

rec,N
t (ϕ)

= 1√
N

∫ t

0

∫ ∞
0

∫ 1

0

[
ϕ(t − s + H(μ̄N

s− , v))− ϕ(t − s + H(μ̄s , v))
]
1u≤N μ̄s (h)Q(ds, du, dv)

+ 1√
N

∫ t

0

∫ ∞
0

∫ 1

0
ϕ(t − s + H(μ̄N

s− , v))

[

1u≤N μ̄N
s− (h)

− 1u≤N μ̄s (h)

]

Q(ds, du, dv) ,
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and

E

[
|μ̂rec,N

t (ϕ)− μ̃
rec,N
t (ϕ)|2

]

≤ 2E
∫ t

0

∫ 1

0

[
ϕ(t − s + H(μ̄N

s , v))− ϕ(t − s + H(μ̄s, v))
]2

μ̄s(h)dvds

+ 2E
∫ t

0

∫ ∞

0
ϕ2(t − s + r)h(r)μ̄N

s (dr)
|μ̄N

s (h)− μ̄s(h)|
μ̄N
s (h)

ds .

It is plain that the second term in the last right hand side is bounded by

2‖ϕ‖2∞E

∫ t

0
|μ̄N

s (h)− μ̄s(h)|ds ,

which tends to 0, as N →∞.
We now consider the first term of the above right hand side. We have

E

∫ t

0

∫ 1

0

[
ϕ(t − s + H(μ̄N

s , v))− ϕ(t − s + H(μ̄s, v))
]2

μ̄s(h)dvds

= E

∫ t

0

∫ 1

0
ϕ2(t − s + H(μ̄N

s , v))μ̄s(h)dvds

+
∫ t

0

∫ 1

0
ϕ2(t − s + H(μ̄s, v))μ̄s(h)dvds

− 2E
∫ t

0

∫ 1

0
ϕ(t − s + H(μ̄N

s , v))ϕ(t − s + H(μ̄s, v))μ̄s(h)dvds

= E

∫ t

0

∫ ∞

0
ϕ2(t − s + r)h(r)μ̄N

s (dr)
μ̄s(h)

μ̄N
s (h)

ds

+
∫ t

0

∫ ∞

0
ϕ2(t − s + r)h(r)μ̄s(dr)ds

− 2E
∫ t

0

∫ ∞

0
ϕ(t − s + H(μ̄N

s ,Gs(r))ϕ(t − s + r)h(r)μ̄s(dr),

(4.13)

where we have used Gs(a) = μ̄s (h1[0,a])
μ̄s (h)

, hence H(μ̄s, v) = G−1
s (v) and

H(μ̄s,Gs(r)) = r , and we have done the change of variables v = Gs(r), hence
dv = h(r)

μ̄s (h)
μ̄s(dr). It remains to show that, as N →∞,

E

∫ t

0

∫ ∞

0
ϕ2(t − s + r)h(r)μ̄N

s (dr)
μ̄s(h)

μ̄N
s (h)

ds

→
∫ t

0

∫ ∞

0
ϕ2(t − s + r)h(r)μ̄s(dr)ds,

E

∫ t

0

∫ ∞

0
ϕ(t − s + H(μ̄N

s ,Gs(r))ϕ(t − s + r)h(r)μ̄s(dr)
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→
∫ t

0

∫ ∞

0
ϕ2(t − s + r)h(r)μ̄s(dr)ds .

Since

μ̄s(h)

μ̄N
s (h)

∫ ∞

0
ϕ2(t − s + r)h(r)μ̄N

s (dr) ≤ ‖ϕ‖2∞μ̄s(h)

for all s ∈ [0, t] and h is bounded, the first convergence follows from Lebesgue’s
dominated convergence theorem and the facts that μ̄N

s ⇒ μ̄s for each s, and h ∈
Cb(R+).

The secondconvergencewill follow from the fact that, as N →∞,H(μ̄N
s ,Gs(r)) →

r , μ̄s almost a.e., which follows from the fact that, given that h ∈ Cb(R+),
μ̄N
s (h1[0,r ]) → μ̄s(h1[0,r ]) for μ̄s almost every r .
Step 2Weprove that for each k ≥ 1, 0 ≤ t1 < · · · < tk , and ϕ1, . . . , ϕk ∈ H1(R+),

(μ̃
rec,N
t1 (ϕ1), . . . , μ̃

rec,N
tk (ϕk)) ⇒ (μ̂rec

t1 (ϕ1), . . . , μ̂
rec
tk (ϕk)), in R

k .

Applying Corollary 2.9 in [27], we obtain that the joint cumulant of the variables
(μ̃

rec,N
t1 (ϕ1), . . . , μ̃

rec,N
tk (ϕk)) equals 0 for k = 1, and otherwise is given as

κk(μ̃
rec,N
t1 (ϕ1), . . . , μ̃

rec,N
tk (ϕk))

= N 1−k/2
∫ t1∧···∧tk

0

∫ ∞

0
ϕ1(t1 − s + r)× · · · × ϕk(tk − s + r)h(r)μ̄s(dr)ds .

The cumulants of order 1 are 0, all cumulants of order k ≥ 3 tend to 0, while for k = 2,

κ2(μ̃
rec,N
t1 (ϕ1), μ̃

rec,N
t2 (ϕ2)) =

∫ t1∧t2

0

∫ ∞

0
ϕ1(t1 − s + r)ϕ2(t2 − s + r)h(r)μ̄s(dr)ds .

Thus, we can conclude that the finite dimensional distributions of μ̂
rec,N
t (ϕ) converge

towards those of μ̂rec
t (ϕ). ��

Wewill next prove tightness in D of the sequence {μ̂rec,N· (ϕ)}, N ≥ 1}. But before
doing so, let us establish a useful estimate of the fourth moment of our integrals w.r.t.
Qrec.

Lemma 4.8 Let the integrand g(s, v, w) be Fs–predictable and such that for some
T > 0,

E

∫ T

0

∫ ∞

0

∫ 1

0
g4(s, v, w)dsdvdw < ∞ .
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Then for any 0 ≤ t ≤ T ,

E

[(∫ t

0

∫ ∞

0

∫ 1

0
g(s, v, w)Qrec(ds, dv, dw)

)4
]

≤ 7e4tE
∫ t

0

∫ ∞

0

∫ 1

0
g4(s, v, w)dsdvdw . (4.14)

Remark 4.1 We could prove the Lemma under the weaker assumption

∫ T

0

∫ ∞

0

∫ 1

0
g4(s, v, w)dsdvdw < ∞ a.s.

However, the result is useful only in the case where the right hand side of (4.14) is
finite, hence also the left hand side, in which case the second moment of the stochastic
integral of g w.r.t. Qrec is finite, which implies our assumption.

We shall apply this lemma with some g’s which satisfy

|g(s, v, w] ≤ C1v≤Zs ,

where C is a constant, and Zt is predictable and satisfies E
∫ T
0 Zsds < ∞ a.s., for all

T > 0, which implies the assumption of the lemma.

Proof For any n ≥ 1, let

gn(s, v, w) = g(s, v, w) ∧ n ∨ (−n)1v≤n ,

Xn(t) =
∫ t

0

∫ ∞

0

∫ 1

0
gn(s, v, w)Qrec(ds, dv, dw),

X(t) =
∫ t

0

∫ ∞

0

∫ 1

0
g(s, v, w)Qrec(ds, dv, dw) .

t 
→ Xn(t) has bounded variations and Xn(t) has finite moments of any order. It
follows from elementary computations that

|Xn(t)|4 = 4
∫ t

0

∫ ∞
0

∫ 1

0
X3
n(s

−)gn(s, v, w)Qrec(ds, dv, dw)

+
∫ t

0

∫ ∞
0

∫ 1

0

[
(Xn(s

−)+ gn(s, v, w))4 − X4
n(s

−)− 4X3
n(s

−)gn(s, v, w)
]

× Qrec(ds, dv, dw) .

We then deduce that

E(|Xn(t)|4) = E

∫ t∧τn

0

∫ ∞

0

∫ 1

0
[6X2

n(s)g
2
n(s, v, w)

+ 4Xn(s)g
3
n(s, v, w)+ g4n(s, v, w)]dsdvdw
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≤ 4E
∫ t

0
|Xn(s)|4ds + 7E

∫ t

0

∫ ∞

0

∫ 1

0
g4n(s, v, w)dsdvdw,

where we have used the two Young’s inequalities 6X2
n(s)g

2
n(s, v, w) ≤ 3X4

n(s) +
3g4n(s, v, w) and 4Xn(s)g3n(s, v, w) ≤ X4

n(s) + 3g4n(s, v, w). Now we deduce from
Gronwall’s Lemma that

E(|Xn(t)|4) ≤ 7e4tE
∫ t

0

∫ ∞

0

∫ 1

0
g4n(s, v, w)dsdvdw

≤ 7e4tE
∫ t

0

∫ ∞

0

∫ 1

0
g4(s, v, w)dsdvdw .

The result follows from Fatou’s Lemma, since Xn(t) → X(t) in mean square, as
n →∞. ��

We now establish the tightness result.

Lemma 4.9 For any ϕ ∈ H1(R+), the sequence {μ̂rec,N· (ϕ)} is tight in D.

Proof Wewill apply the tightness criterion (4.3) to μ̂
rec,N
t (ϕ)with the help of Lemma

4.8. For any t1 ≤ t ≤ t2 ≤ T , we can write

μ̂
rec,N
t (ϕ)− μ̂

rec,N
t1 (ϕ) = Qrec( f1), and μ̂

rec,N
t2 (ϕ)− μ̂

rec,N
t (ϕ) = Qrec( f2),

where

f1(s, v, w) = 1√
N
1(t1,t](s)ϕ(t − s + H(μ̄N

s− , w))1v≤μN
s− (h)

+ 1√
N
1[0,t1](s)

(
ϕ(t − s + H(μ̄N

s− , w))− ϕ(t1 − s + H(μ̄N
s− , w))

)
1v≤μN

s− (h)

= f1,1(s, v, w)+ f1,2(s, v, w),

and

f2(s, v, w) = 1√
N
1(t,t2](s)ϕ(t2 − s + H(μ̄N

s− , w))1v≤μN
s− (h)

+ 1√
N
1[0,t](s)

(
ϕ(t2 − s + H(μ̄N

s− , w))− ϕ(t − s + H(μ̄N
s− , w))

)
1v≤μN

s− (h)

= f2,1(s, v, w)+ f2,2(s, v, w) .

Below we shall apply Lemma 4.8 for estimating the 4th moment of the four random
variables Qrec( f1,1), Qrec( f1,2), Qrec( f2,1) and Qrec( f2,2). Clearly f ◦1,1, f1,2, f2,1
and f2,2 satisfy the assumption in Remark 4.1. Note that in those integrals the same
time t (or t1, or t2) appears both as the upper bound of the integral, and in the integrand.
This does not prevent us from using Lemma 4.8. Indeed, consider e.g. the term

Qrec( f1,1) =
∫ t

t1

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μ̄N

s− , w))1v≤μN
s− (h)Qrec(ds, dv, dw) .
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We consider the process

∫ r

0

∫ ∞

0

∫ 1

0
1s>t1ϕ(t − s + H(μ̄N

s− , w))1v≤μN
s− (h)Qrec(ds, dv, dw), r ∈ [0, t] .

This is really of the form

∫ r

0

∫ ∞

0

∫ 1

0
g(s, v, w)Qrec(ds, dv, dw),

to which we can apply Itô’s formula and the arguments in Lemma 4.8, which allows
us to conclude the result at r = t .

We want to estimate

E

[
Qrec( f1)

2Qrec( f2)
2
]
≤ 2E

[
Qrec( f1)

2Qrec( f2,1)
2
]

+ 4E
[
Qrec( f1,1)

2Qrec( f2,2)
2
]

+ 4E
[
Qrec( f1,2)

2Qrec( f2,2)
2
]

.

We first estimate the first term on the last right–hand side:

E

[
Qrec( f1)

2Qrec( f2,1)
2
]
= E

[
Qrec( f1)

2
E
Ft
{
Qrec( f2,1)

2
}]

≤ ‖ϕ‖2∞E

[

Qrec( f1)
2
∫ t2

t
μ̄N
s (h)ds

]

≤ ‖ϕ‖2∞‖h‖∞(t2 − t)E
[
Qrec( f1)

2
]

,

where we have used the fact that μ̄N
s (1) ≤ 1 a.s. Now

E

[
Qrec( f1)

2
]
= E

[
Qrec( f1,1)

2
]
+ E

[
Qrec( f1,2)

2
]

≤ ‖ϕ‖2∞‖h‖∞(t − t1)

+
∫ t1

0

∫

R+
|ϕ(t − s + r − ϕ(t1 − s + r)|2h(r)μ̄N

s (dr)ds

≤ [‖ϕ‖2∞ + t1c
2
ϕ]‖h‖∞(t − t1) .

We have shown that

E

[
Qrec( f1)

2Qrec( f2,1)
2
]
≤ C(t2 − t1)

2 .

Consider now the second term:

E

[
Qrec( f1,1)

2Qrec( f2,2)
2
]
≤
√
E
[
Qrec( f1,1)4

]√
E
[
Qrec( f2,2)4

]
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≤ CT ‖h‖∞
c2ϕ‖ϕ‖2∞

N
(t2 − t1)

3/2 .

Finally the third term is bounded as follows:

E

[
Qrec( f1,2)

2Qrec( f2,2)
2
]
≤ CT ‖h‖∞

c4ϕ
N

(t2 − t1)
2 .

We now conclude the proof exactly as that of Lemma 4.4, in the sense that we verify
Billingsley’s condition (13.14) with again G(t) = t and this time α = 3/2. ��

Proof (Completing the proof for the convergence of μ̂N
t in Theorem 2.2) We start

with (2.32), and by taking the derivative with respect to t , we obtain

∂t μ̂
N
t (ϕ) = μ̂N

t (ϕ′ − hϕ)+ ϕ(0)

[

ϒ̂N
t + 1√

N

d

dt

∫ t

0

∫ ∞
0

1
v≤Nϒ

N
(s−)

Qin f (ds, dv)

]

− 1√
N

d

dt

∫ t

0

∫ ∞
0

∫ 1

0
ϕ(H(μ̄N

s− , w))1
v≤N μ̄N

s− (h)
Qrec(ds, dv, dw) .

(4.15)

Similar to (2.40), we obtain that the solution to (4.15) can be written as

μ̂N
t (ϕ) =

∫ ∞

0
ϕ(t + a)

Fc(t + a)

Fc(a)
μ̂N
0 (da)+

∫ t

0
ϕ(t − a)Fc(t − a)ϒ̂N (a)da

+
∫ t

0
ϕ(t − a)Fc(t − a)

1√
N

∫ ∞

0
1v≤N ϒ̄N (a−)Qin f (da, dv)

− 1√
N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μ̄N

s− , w))
Fc(t − s + H(μ̄N

s− , w))

Fc(H(μ̄N
s− , w))

× 1v≤N μ̄N
s− (h)Qrec(ds, dv, dw) . (4.16)

The first, third and fourth terms on the right hand side correspond to the limits μ̂0
t (ϕ),

μ̌
in f
t (ϕ) and μ̌rec

t (ϕ) defined in (2.43), (2.44), (2.45) respectively. For convenience, we

denote these terms as μ̂
0,N
t (ϕ), μ̌in f ,N

t (ϕ) and μ̌
rec,N
t (ϕ). To prove the convergence

μ̂N
t (ϕ) ⇒ μ̂t (ϕ) in D for the expression of μ̂t (ϕ) in (2.40),weproceed in the following

two steps:
Step (i): define the processes

ˇ̌μin f ,N
t (ϕ) =

∫ t

0
ϕ(t − a)Fc(t − a)

1√
N

∫ ∞

0
1v≤N ϒ̄(a−)Qin f (da, dv) , (4.17)

ˇ̌μrec,N
t (ϕ) = 1√

N

∫ t

0

∫ ∞

0

∫ 1

0
ϕ(t − s + H(μ̄s− , w))

× Fc(t − s + H(μ̄s− , w))

Fc(H(μ̄s− , w))
1v≤N μ̄s− (h)Qrec(ds, dv, dw) , (4.18)
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and show the joint convergence of

(
μ̂
0,N
t (ϕ),

∫ t

0
ϕ(t − a)Fc(t − a)ϒ̂N (a)da, ˇ̌μin f ,N

t (ϕ), ˇ̌μrec,N
t (ϕ)

)

to

(
μ̂0
t (ϕ),

∫ t

0
ϕ(t − a)Fc(t − a)ϒ̂(a)da, μ̌in f

t (ϕ), μ̌rec
t (ϕ)

)

in D4 as N →∞, and
Step (ii): show that in probability,

μ̌
in f ,N
t (ϕ)− ˇ̌μin f ,N

t (ϕ) → 0 in D , (4.19)

and

μ̌
rec,N
t (ϕ)− ˇ̌μrec,N

t (ϕ) → 0 in D . (4.20)

We prove the claim in the first step now. By a similar argument of Lemma 4.1, we
obtain μ̂

0,N
t (ϕ) → μ̂0

t (ϕ) in D. Given the convergence of ϒ̂N ⇒ ϒ̂ in D, by the
continuous mapping theorem, we obtain the convergence

∫ t

0
ϕ(t − a)Fc(t − a)ϒ̂N (a)da⇒

∫ t

0
ϕ(t − a)Fc(t − a)ϒ̂(a)da in D .

By a similar argument to that in Lemma 4.3, we obtain ˇ̌μin f ,N
t (ϕ) ⇒ μ̌

in f
t (ϕ) in

D. By modifying the arguments for the proof of the convergence of μ̃
rec,N
t (ϕ) in the

proof of Lemma 4.7 and 4.9, we obtain ˇ̌μrec,N
t (ϕ) ⇒ μ̌rec

t (ϕ) in D. Then the joint
convergence follows from the independence of the driving random quantities μ̂N

0 (da),
Qin f and Qrec in the three terms, given the convergence of ϒ̂N ⇒ ϒ̂ in D.

We move to prove the claim in the second step. The claim in (4.19) follows from a
similar argument as in Lemma 4.5 and that in (4.20) follows from slightly modifying
the arguments in the proofs of Lemmas 4.7 and 4.9.

Hence we have shown that μ̂N
t (ϕ) ⇒ μ̂t (ϕ) in D, where μ̂t (ϕ) is given by (2.40).

It remains to show uniqueness of the solution of the SPDE (2.39), in order to conclude
that the formula (2.40) can be identified with the solution of (2.39). ��
Proof (Proof for the uniqueness of the SPDE solution to μ̂t in Theorem 2.2) We
will use the same argument as at the end of section 3, exploiting duality with the same
backward PDE. However, the regularities of both the forward and the backward PDE
are different.

We have that μ̂ ∈ L2
loc(R+; (H(R+))′). Suppose that equation (2.39) has more

than one solution with that regularity. Then the difference of two solutions solves the
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PDE:

〈ut , ϕ〉 =
∫ t

0
〈us, ϕ′ − hϕ〉ds , (4.21)

for any ϕ ∈ H2
c (R+).

Suppose now that T > 0 and ϕ is a function of t and a such that

ϕ, ∂tϕ, ∂aϕ ∈ L∞([0, T ]; H1
c (R+)) . (4.22)

Then it is not hard to see that (4.21) becomes

〈ut , ϕt 〉 =
∫ t

0
〈us, ∂tϕs + ∂aϕs − hϕs〉ds , 0 < t < T . (4.23)

Consider again the adjoint backward PDE (3.11), whose solution is still

v(t, a) = Fc(a+ T − t)

Fc(a)
g(a+ T − t) .

Assuming that g ∈ C2
c (R+) and F has two derivatives f and f ′ which are locally

bounded, that Fc(a) > 0 for all a > 0, we have that a 
→ v(t, a) has compact
support for all t ∈ [0, T ] and satisfies v, ∂av, ∂tv, hv ∈ L2([0, T ]; H1

c (R+)), and
∂tv + ∂av − hv = 0, hence from (4.23), recalling v(T , a) = g(a) in (3.11), we have
〈uT , vT 〉 = 〈uT , g〉 = 0, and this holds true for any g ∈ C2

c (R+), hence uT = 0, for
all T ≥ 0, from which the claimed uniqueness follows. ��

5 On the convergence of (̂SN,̂FN)

The proof for the convergence of (ŜN , F̂N ) has been established in [22], with a dif-
ferent initial condition (without tracking the infection age of of the initially infected
individuals). Here we only provide a sketch and highlight the differences.

We first write ŜN and F̂N as the following:

ŜN (t) = − Î N (0)− ŜN1 (t)−
∫ t

0
ϒ̂N (s)ds,

F̂N (t) =
∫ ∞

0
λ̄(a+ t)dμ̂N

0 (a)+
∫ t

0
λ̄(t − s)ϒ̂N (s)ds

+ F̂N
0,1(t)+ F̂N

0,2(t)+ F̂N
1 (t)+ F̂N

2 (t) ,

ϒ̂N (t) = ŜN (s)F
N
(s)+ S̄N (s )̂FN (s)
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where

ŜN1 (t) := 1√
N

∫ t

0

∫ ∞

0
1v≤ϒN (s−)Qin f (ds, dv),

F̂N
0,1(t) :=

∫ ∞

0
λ̄(a+ t)μ̂N

0 (da)

= 1√
N

I N (0)∑

j=1

(
λ̄(τ̃ j,0 + t) −

∫ ∞

0
λ̄(a+ t) ¯̄μ0(da)

)
,

F̂N
0,2(t) :=

1√
N

I N (0)∑

j=1

(
λ− j (τ̃ j,0 + t)− λ̄(τ̃ j,0 + t)

)
, (5.1)

F̂N
1 (t) := 1√

N

( AN (t)∑

i=1
λ̄(t − τ N

i )−
∫ t

0
λ̄(t − s)ϒN (s)ds

)

=
∫ t

0
λ̄(t − s)d ŜN1 (s),

F̂N
2 (t) := 1√

N

AN (t)∑

i=1

(
λi (t − τ N

i )− λ̄(t − τ N
i )
)

. (5.2)

Observe that ŜN1 (t) is a square-integrable martingale with respect to the filtration
FN = {FN (t) : t ≥ 0} where FN (t) := σ

{
SN (0), I N (0), τ̃ j , j = 1, . . . , I N (0)

} ∨
{
λi (·)i∈Z\{0}

} ∨ {Qin f (s, v), s ≤ t, v ∈ R+
}
with the quadratic variation 〈ŜN1 〉(t) =∫ t

0 ϒ
N
(s)ds for t ≥ 0. Given the convergence of ϒ

N → ϒ in D in probability as

N →∞, we obtain ŜN1 ⇒ Ŝ1 in D, where Ŝ1(t) is given in Definition 2.2. This can
be done by establishing the convergence of finite-dimensional distributions using the
cumulants formula as in the proof of Lemma 4.3 and then a similar tightness argument
in the proof of Lemma 4.4. It can be also proved as done in Section 3.6 of [22].

The convergence of F̂N
0,1 ⇒ F̂0,1 in D can be proved in the same way as in Lemma

4.1. Note that this requires that condition (2.49) in Assumption 2.2, that is, the function
λ̄ is Hölder with coefficient α > 1/4. The convergences of F̂N

1 (t) and F̂N
2 (t) follow

from the same arguments as in Lemmas 3.5 and 3.6 of [22]. It only remains to prove
the convergence of F̂N

0,2.
We will need the following bounds on the increments of the infectivity functions

(which is Lemma 3.4 in [22]).

Lemma 5.1 For t ≥ s ≥ 0,

∣
∣λi (t)− λi (s)

∣
∣ ≤ φ(t − s)+ λ∗

k∑

�=1
1s<ζ�

i ≤t , and
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|λ̄(t)− λ̄(s)| ≤ φ(t − s)+ λ∗
k∑

�=1
(F�(t)− F�(s)) .

Lemma 5.2 Under Assumptions 2.1 and 2.2,

F̂N
0,2 ⇒ F̂0,2 in D as N →∞, (5.3)

where the limit F̂0,2 is a continuous Gaussian process as given in Definition 2.3.

Proof We first prove the convergence of finite-dimensional distributions, that is, for
any l ≥ 1,

F̂N
0,2(t1), . . . , F̂

N
0,2(tl)) ⇒ (̂F0,2(t1), . . . , F̂0,2(tl)) in R

l as N →∞. (5.4)

We start with l = 1, and consider the convergence of F̂N
0,2(t) ⇒ F̂0,2(t)) in R as

N →∞. By the continuity theorem, it suffices to show the characteristic function of
F̂N
0,2(t) converges to that of F̂0,2(t), denoted by ϕ

F,N
0,2 (θ) and ϕ

F
0,2(θ), respectively. Let

GN
0 = σ

(
τ̃ j,0, j = 1, . . . , I N (0)

)
. We have

ϕ
F,N
0,2 (θ) = E

[
exp

(
iθ F̂N

0,2(t)
)] = E

[
E
[
exp

(
iθ F̂N

0,2(t)
)|GN

0

]]

= E

[

E

[ I N (0)∏

j=1
exp

(

iθ
1√
N

(
λ− j (τ̃ j,0 + t)− λ̄(τ̃ j,0 + t)

)
)∣
∣
∣
∣GN

0

]]

= E

[ I N (0)∏

j=1

(

1− θ2

2N
v(τ̃ j,0 + t)+ o(N−1)

)]

,

and

ϕ
F
0,2(θ) = E

[
exp

(
iθ F̂0,2(t)

)] = exp

(

− θ2

2

∫ ∞

0
v(a+ t)μ̄0(da)

)

.

Thus,

∣
∣ϕF,N

0,2 (θ)− ϕ
F
0,2(θ)

∣
∣

≤ E

[∣∣
∣
∣

I N (0)∏

j=1

(

1− θ2

2N
v(τ̃ j,0 + t)+ o(N−1)

)

−
I N (0)∏

j=1
exp

(

− θ2

2N
v(τ̃ j,0 + t)

)∣∣
∣
∣

]

+
∣
∣
∣
∣E

[

exp

(

− θ2

2

∫ ∞
0

v(a+ t)dμ̄N
0 (da)

)]

− exp

(

− θ2

2

∫ ∞
0

v(a+ t)dμ̄0(da)

)∣∣
∣
∣.
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We have

I N (0)∏

j=1

(

1− θ2

2N
v(τ̃ j,0 + t)+ o(N−1)

)

=
I N (0)∏

j=1
exp

(

− θ2

2N
v(τ̃ j,0 + t)+ o(N−1)

)

= exp

(

−
I N (0)∑

j=1

θ2

2N
v(τ̃ j,0 + t)+ o(1)

)

,

hence the first term tends to 0, as N →∞.
The second term convergence to zero by the convergence μ̄N

0 (·) → μ̄0(·) in prob-
ability as N →∞ and the boundedness of the variance function v(·). Thus we have
shown that

∣
∣ϕF,N

0,2 (θ)− ϕ
F
0,2(θ)

∣
∣→ 0 as N →∞, (5.5)

and thus, F̂N
0,2(t) ⇒ F̂0,2(t) as N →∞.

A straightforward generalization implies the convergence of finite dimensional
distributions in (5.4). For instance, for l = 2, we have

E
[
exp

(
iθ1F̂

N
0,2(t1)+ iθ2F̂

N
0,2(t2)

)]

= E

[ I N (0)∏

j=1

(

1− 1

2N

(
θ21 v(τ̃ j,0 + t1)+ θ22 v(τ̃ j,0 + t2)+ 2θ1θ2v(τ̃ j,0 + t1, τ̃ j,0 + t2)

)

+ o(N−1)
)]

,

and

E
[
exp

(
iθ1F̂0,2(t1)+ iθ2F̂0,2(t2)

)]

= exp

(

− 1

2

∫ ∞

0

(
θ21 v(y + t1)+ θ22 v(y + t2)+ 2θ1θ2v(y + t1, y + t2)

)
μ̄0(dy)

)

.

Then the claim follows similarly.
We next prove that for 0 < r < s < t ,

P

(∣
∣̂FN

0,2(r)− F̂N
0,2(s)

∣
∣ ∧ ∣∣̂FN

0,2(s)− F̂N
0,2(t)

∣
∣ ≥ ε

)
≤ 1

ε4
(G(t)− G(r))2

for some nondecreasing and continuous function G. It suffices to show that

E

[∣
∣̂FN

0,2(t)− F̂N
0,2(s)

∣
∣4
]
≤ (G(t)− G(s))2. (5.6)
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Let λ̃− j (t) := λ− j (t)− λ̄(t). We have

E

[∣
∣̂FN

0,2(t)− F̂N
0,2(s)

∣
∣4
]

= E

[∣∣
∣
∣

1√
N

I N (0)∑

j=1

(
λ̃− j (τ̃ j ,0 + t)− λ̃− j (τ̃ j ,0 + s)

) ∣∣
∣
∣

4]

≤ E

[
1

N2

I N (0)∑

j=1

(
λ̃− j (τ̃ j ,0 + t)− λ̃− j (τ̃ j ,0 + s)

)4
]

+ E

[
6

N2

I N (0)∑

j, j ′=1, j �= j ′

(
λ̃− j (τ̃ j ,0 + t)− λ̃− j (τ̃ j ,0 + s)

)2 (
λ̃− j ′ (τ̃ j ′,0 + t)− λ̃− j ′ (τ̃ j ′,0 + s)

)2
]

≤ E

[
3

N2

( I N (0)∑

j=1

(
λ̃− j (τ̃ j ,0 + t)− λ̃− j (τ̃ j ,0 + s)

)2
)2]

. (5.7)

By Lemma 5.1, we have

|λ̃− j (t)− λ̃− j (s)|2 ≤ 2|λ− j (t)− λ− j (s)|2 + 2|λ̄(t)− λ̄(s)|2

≤ 8φ(t − s)2 + 4(λ∗)2
( k∑

�=1
1s<ζ�− j≤t

)2

+ 4(λ∗)2
( k∑

�=1
(F�(t)− F�(s))

)2

.

Thus,

1

N2 E

[( I N (0)∑

j=1

(
λ̃− j (τ̃ j,0 + t)− λ̃− j (τ̃ j ,0 + s)

)2
)2]

≤ 1

N2 E

[(

8φ(t − s)2 I N (0)+
I N (0)∑

j=1

(

4(λ∗)2
( k∑

�=1
1
τ̃ j,0+s<ζ�− j≤τ̃ j,0+t

)2

+ 4(λ∗)2
( k∑

�=1
(F�(τ̃ j ,0 + t)− F�(τ̃ j + s))

)2))2]

≤ 128

N2 φ(t − s)4 I N (0)2

+ 32(λ∗)4
N2 E

[( I N (0)∑

j=1

(( k∑

�=1
1
τ̃ j,0+s<ζ�− j≤τ̃ j,0+t

)2
+
( k∑

�=1
(F�(τ̃ j,0 + t)− F�(τ̃ j + s))

)2))2]

≤ 128φ(t − s)4 Ī N (0)2

+ 64(λ∗)4
N2 E

[

I N (0)
I N (0)∑

j=1

(( k∑

�=1
1
τ̃ j,0+s<ζ�− j≤τ̃ j,0+t

)4
+
( k∑

�=1
(F�(τ̃ j,0 + t)− F�(τ̃ j + s))

)4)]
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≤ 128φ(t − s)4 + 64(λ∗)4E
[
1

N

I N (0)∑

j=1

( k∑

�=1
1
τ̃ j,0+s<ζ�− j≤τ̃ j,0+t

)4]

+ 64(λ∗)4E
[ ∫ ∞

0

( k∑

�=1
(F�(y + t)− F�(y + s))

)4
μ̄N
0 (dy)

]

.

Here the first expectation is bounded by

E

[
1

N

I N (0)∑

j=1

( k∑

�=1
1τ̃ j,0+s<ζ�− j≤τ̃ j,0+t + 14

∑

� �=�′
1τ̃ j,0+s<ζ�− j≤τ̃ j,0+t1τ̃ j,0+s<ζ�′− j≤τ̃ j,0+t

)]

= E

[
1

N

I N (0)∑

j=1

( k∑

�=1
(F�(τ̃ j,0 + t)− F�(τ̃ j,0 + s)

+ 14
∑

� �=�′
(F�(τ̃ j,0 + t)− F�(τ̃ j,0 + s)(F�′(τ̃ j,0 + t)− F�′(τ̃ j,0 + s)

)]

= E

[ ∫ ∞

0

( k∑

�=1
(F�(y + t)− F�(y + s)

+ 14
∑

� �=�′
(F�(y + t)− F�(y + s)(F�′(y + t)− F�′(y + s)

)

μ̄N
0 (dy)

]

.

Thus, combining the above, we obtain that there exist some C ′,C ′′ such that

E

[∣
∣̂FN

0,2(t)− F̂N
0,2(s)

∣
∣4
]

≤ C ′ 1
N

φ(t − s)4 + C ′ 1
N
E

[ ∫ ∞

0

( k∑

�=1
(F�(y + t)− F�(y + s))

)

μ̄N
0 (dy)

]

+ C ′′φ(t − s)4 + C ′′E
[ ∫ ∞

0

( k∑

�=1
(F�(y + t)− F�(y + s))

)

μ̄N
0 (dy)

]

. (5.8)

Under Assumptions 2.2, we have φ(t−s)4 ≤ C4|t−s|4α and if F� satisfies the Hölder
continuity condition,

E

[ ∫ ∞

0
(F�(y + t)− F�(y + s))μ̄N

0 (dy)

]

≤ C(t − s)1/2+θ
E[μ̄N

0 (1)] ≤ C(t − s)1/2+θ ,

and if F� satisfies the discrete condition, say F� = ∑
i a

�
i 1t≥t�i for

∑
i a

�
i = 1 and

t�i < t�i+1, then

E

[ ∫ ∞

0
(F�(y + t)− F�(y + s))μ̄N

0 (dy)

]

= E

[ ∫ ∞

0

∑

i

a�
i 1s+y<t�i ≤t+yμ̄

N
0 (dy)

]
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≤ C(t − s)E[μ̄N
0 (1)] ≤ C(t − s)

for some constant C > 0. Thus, using the above estimates, by Theorem 4.1 in [22],
we can conclude that (5.6) holds. ��

6 On the convergence of (̂IN,̂RN)

By the first expression in (2.8), the convergence of Î Nt follows from directly from that

of μ̂N
t and hence the expression of the limit Ît in (2.57) from the limit μ̂t in (2.40). As

discussed in Remark 2.9, the limit Ît has an equivalent in distribution expression as
given in (2.61). It can be derived from an alternative decomposition from the second
expression of μ̂N

t (ϕ) in (2.29) and hence, an analogous decomposition for I Nt in (2.8).
The CLT-scaled process μ̂N

t (ϕ) in (2.29) can be written as

μ̂N
t (ϕ) =

∫ ∞

0
ϕ(a+ t)

Fc(t + a)

Fc(a)
μ̂N
0 (da)

+
∫ t

0
ϕ(t − s)Fc(t − s)ϒ̂N (s)ds + μ̂

N ,0
t (ϕ)+ μ̂

N ,1
t (ϕ) , (6.1)

where

μ̂
N ,0
t (ϕ) = 1√

N

I N (0)∑

j=1

(
1η0j>t −

Fc(t + τ̃ j,0)

Fc(τ̃ j,0)

)
ϕ(τ̃ j,0 + t) , (6.2)

and

μ̂
N ,1
t (ϕ) = 1√

N

∫ t

0

∫ ∞

0

∫ ∞

0
1η>t−s1u<ϒN (s−)ϕ(t − s)Q(ds, dη, du) . (6.3)

Using the fact that Î N (t) = μ̂N
t (1), we obtain

Î Nt =
∫ ∞

0

Fc(t + a)

Fc(a)
μ̂N
0 (da)+

∫ t

0
Fc(t − s)ϒ̂N (s)ds + Î N ,0

t + Î N ,1
t , (6.4)

where

Î N ,0
t = 1√

N

I N (0)∑

j=1

(
1η0j>t −

Fc(t + τ̃ j,0)

Fc(τ̃ j,0)

)
, (6.5)

and

Î N ,1
t = 1√

N

∫ t

0

∫ ∞

0

∫ ∞

0
1η>t−s1u<ϒN (s−)Q(ds, dη, du) . (6.6)
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It is an easy extension to the proof of [22, Theorem 2.4] in order to prove the weak
convergence of Î Nt to Ît in (2.61). More generally, it can be also shown that for any
ϕ ∈ H1(R+), μ̂N

t (ϕ) ⇒ μ̂t (ϕ) in D where

μ̂t (ϕ) =
∫ ∞
0

ϕ(a+ t)
Fc(t + a)

Fc(a)
μ̂0(da)+

∫ t

0
ϕ(t − s)Fc(t − s)ϒ̂(s)ds + μ̂0

t (ϕ)+ μ̂1
t (ϕ) ,

(6.7)

with μ̂0
t (ϕ) and μ̂1

t (ϕ) being independent and continuous centered Gaussian processes
whose covariance functions are given as follows: for t, t ′ ≥ 0 and ϕ,ψ ∈ H1(R+),

Cov(μ̂0
t (ϕ), μ̂0

t ′(ψ)) =
∫ ∞

0

( Fc(t ∨ t ′ + a)

Fc(a)
− Fc(t + a)

Fc(a)

Fc(t ′ + a)

Fc(a)

)

×ϕ(a+ t)ψ(a+ t ′)μ̄0(da) , (6.8)

and

Cov(μ̂1
t (ϕ), μ̂1

t ′(ψ)) =
∫ t∧t ′

0
Fc(t ∨ t ′ − s)ϒ(s)ϕ(t − s)ψ(t ′ − s)ds . (6.9)

It turns out that the last two terms μ̌
in f
t (ϕ)+ μ̌rec

t (ϕ) of μ̂t in (2.40) and μ̂0
t (ϕ)+

μ̂1
t (ϕ) in (6.7) have the same law. We verify that the variances of these expressions

are equal (the covariance functions can be also easily checked), and hence provide
a justification for the claim in Remark 2.9. Recall the variance formulas for μ̌

in f
t (ϕ)

and μ̌rec
t (ϕ) in (2.46) and (2.47), respectively and the expression of μ̄t (da) in (2.24).

Then we can write

Var(μ̌rec
t (ϕ)) =

∫ t

0

∫ ∞
0

ϕ(t − s + a)2
( Fc(t − s + a)

Fc(a)

)2
h(a)

(
1a<s F

c(a)ϒ(s − a)da

+ 1a≥s
Fc(a)

Fc(a− s)
μ̄0(da− s)

)
ds .

Then the first term is equal to

∫ t

0

∫ s

0
ϕ(t − s + a)2

( Fc(t − s + a)

Fc(a)

)2
f (a)ϒ(s − a)dads

=
∫ t

0

∫ t

a
ϕ(t − s + a)2

( Fc(t − s + a)

Fc(a)

)2
f (a)ϒ(s − a)dsda

=
∫ t

0

∫ t

a
ϕ(t − s + a)2Fc(t − s + a)2ϒ(s − a)ds

( 1

Fc(a)

)′
da

=
∫ t

0

∫ t−a

0
ϕ(t − v)2Fc(t − v)2ϒ(v)dv

( 1

Fc(a)

)′
da

=
∫ t−a

0
ϕ(t − v)2Fc(t − v)2ϒ(v)dv

( 1

Fc(a)

)∣
∣
∣
t

a=0
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−
∫ t

0

( 1

Fc(a)

)
da

∫ t−a

0
ϕ(t − v)2Fc(t − v)2ϒ(v)dv

= −
∫ t

0
ϕ(t − v)2Fc(t − v)2ϒ(v)dv +

∫ t

0
ϕ(a)2Fc(a)ϒ(t − a)da .

So summing this with μ̌
in f
t (ϕ) in (2.46) will give us Var(μ̂1

t (ϕ)) = ∫ t
0 ϕ(t−s)2Fc(t−

s)ϒ(s)ds. Next, the second term in the expression above for Var(μ̌rec
t (ϕ)) is equal to

∫ t

0

∫ ∞

s
ϕ(t − s + a)2

( Fc(t − s + a)

Fc(a)

)2 f (a)

Fc(a− s)
μ̄0(da− s)ds

=
∫ t

0

∫ ∞

0
ϕ(t + v)2

( Fc(t + v)

Fc(v + s)

)2 f (v + s)

Fc(v)
μ̄0(dv)ds

=
∫ ∞

0

∫ t

0
ϕ(t + v)2

Fc(t + v)2

Fc(v)

f (v + s)

Fc(v + s)2
dsμ̄0(dv)

=
∫ ∞

0
ϕ(t + v)2

Fc(t + v)2

Fc(v)

∫ t

0

f (v + s)

Fc(v + s)2
dsμ̄0(dv)

=
∫ ∞

0
ϕ(t + v)2

Fc(t + v)2

Fc(v)

∫ t

0

( 1

Fc(v + s)

)′
s
dsμ̄0(dv)

=
∫ ∞

0
ϕ(t + v)2

Fc(t + v)2

Fc(v)

( 1

Fc(v + t)
− 1

Fc(v)

)
μ̄0(dv)

=
∫ ∞

0
ϕ(t + v)2

Fc(t + v)

Fc(v)

(
1− Fc(t + v)

Fc(v)

)
μ̄0(dv)

which is exactly the expression of Var(μ̂0
t (ϕ)). This proves the claim above.

Now for the process R̂N (t), from (2.9), we obtain

R̂N
t = R̂N

0 +
∫ ∞

0

(
1− Fc(t + a)

Fc(a)

)
μ̂N
0 (da)+

∫ t

0
F(t − s)ϒ̂N (s)ds + R̂N ,0

t + R̂N ,1
t ,

where

R̂N ,0
t = 1√

N

I N (0)∑

j=1

(
1η0j≤t −

(
1− Fc(t + τ̃ j,0)

Fc(τ̃ j,0)

))

and

R̂N ,1
t = 1√

N

∫ t

0

∫ ∞

0

∫ ∞

0
1η≤t−s1u<ϒN (s−)Q(ds, dη, du).

Then a slight modification of the proof of [22, Theorem 2.4] shows the weak conver-
gence of R̂N

t to R̂t in (2.58).
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