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Abstract

The aim of this work is to show how to homogenize a semilinear parabolic second-order
partial di$erential equation, whose coe6cients are periodic functions of the space variable, and
are perturbed by an ergodic di$usion process, the nonlinear term being highly oscillatory. Our
homogenized equation is a parabolic stochastic partial di$erential equation.
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1. Introduction

The aim of this work is to study the limit as � → 0 of the solution u� of the
second-order semilinear parabolic PDE

@u�

@t
(t; x) =

@
@xi

aij

(x
�
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t=�2

) @u�

@xj
(t; x) +

1
�
g
(x
�
; 
t=�2 ; u

�(t; x)
)
;

(t; x)∈ (0; T )× Rn; u�(0; x) = u0(x):

The main assumptions are the periodicity (of period one in each direction) of aij

and g with respect to their >rst variable, the fact that {
t ; t¿ 0} is a d-dimensional
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ergodic di$usion process with a unique invariant measure �, and the following centering
condition for g:∫

Tn

∫
Rd

g(z; y; u) dz�(dy) = 0 ∀u∈R:

Here and further below, Tn denotes the n-dimensional torus, Tn = Rn=Zn. We shall
identify periodic functions with functions de>ned on Tn.
Our equation is a particular model of random homogenization, where the stochastic

perturbation Fuctuates as time evolves, in contradiction with the more traditional model
where the coe6cients are time invariant stationary random >elds. Note also that the
equation is nonlinear and that the nonlinear term is highly oscillating. For the basic
results on homogenization of periodic and random equations, we refer, respectively, to
Bensoussan et al. (1978), and Jikov et al. (1994).
The same problem, with g linear, has been considered by Campillo et al. (2001).

Note also that the same problem, without the appearance of the process {
t}, has
been studied by Pardoux (1999), and without the dependance upon x=�, by Bouc and
Pardoux (1984). It follows clearly from the last quoted work that the limit of u� as
� → 0 should satisfy a stochastic partial di$erential equation. This is our main result.
Note, however, that our approach is not just a combination of the techniques in Pardoux
(1999) and Bouc and Pardoux (1984). We need to introduce correctors of a new type,
which depend on the whole trajectory of the process {
t} after time t=�2. The method of
proofs in Pardoux (1999) is purely probabilistic, and makes use of backward stochastic
di$erential equations, while here our tools are PDE and SPDE techniques.

2. Setup, assumptions, and statement of the main result

This work is aimed at >nding the limit as � → 0 of the solution of the following
Cauchy problem:

@u�

@t
(t; x) =

@
@xi

aij

(x
�
; 
t=�2

) @u�

@xj
(t; x) +

1
�
g
(x
�
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t=�2 ; u

�(t; x)
)
;

(t; x)∈ (0; T )× Rn; u�(0; x) = u0(x); (1)

where u0 ∈L2(Rn). �¿ 0 is a small parameter, {
t ; t ¿ 0} a stationary di$usion process
with values in Rd. We denote by L the in>nitesimal generator of 
,

L=
1
2
qij(y)

@2

@yi@yj
+ bi(y)

@
@yi

;

and impose the following conditions on the coe6cients of (1) and on the generator of
the process 
:

C1. The functions aij(z; y) and g(z; y; u) are periodic in z of period 1 in all the
coordinate directions; the matrix {aij(z; y)} is uniformly positive de>nite:

0¡c−1I6 a(z; y)6 cI;
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moreover, the gradient of aij both with respect to y and z exists and is uniformly
bounded:

|∇zaij(z; y)|+ |∇yaij(z; y)|6 c: (2)

C2. The following bounds hold for some c, �1 ¿ 0:

0¡c−1I6 q(y)6 cI;

|∇qij(y)|6 c; |b(y)|+ |∇b(y)|6 c(1 + |y|)�1 ;
and there exist M;C ¿ 0, �¿− 1 such that whenever |y|¿M ,

(b(y) · y)
|y| 6− C|y|�; (3)

here (b(y) · y) stands for the inner product in Rd.
It follows from these assumptions that the process 
 possesses a unique invariant

probability measure �(dy) = p(y) dy whose density decays at in>nity faster than any
negative power of |y| (see Pardoux and Veretennikov, 2001).
C3. g(z; y; u) satis>es the estimates

|g(z; y; u)|6 c|u|; (4)

|g′u(z; y; u)|6 c; (5)

(1 + |u|)|g′′uu(z; y; u)|6 c; (6)

and g, g′u, g
′′
uu are jointly continuous.

C4. The relation∫
Tn

∫
Rd

g(z; y; u)p(y) dz dy = 0 (7)

holds for any u∈R.

Remark 1. If {
t} is a di$usion on a compact manifold, only nondegeneracy and some
regularity are required, instead of C2.

By our assumptions the di$usion process {
t} is a solution of the stochastic equation

d
t =  (
t) dWt + b(
t) dt; (8)

where  (y) = q1=2(y), and {Wt} is a standard d-dimensional Wiener processes.
It is convenient to decompose g(z; y; u) as follows:

g(z; y; u) = g̃(z; y; u) + Kg(y; u);

where

Kg(y; u) =
∫
Tn

g(z; y; u) dz;
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so that∫
Tn

g̃(z; y; u) dz = 0; ∀y∈Rd; u∈R;
∫
Rd

Kg(y; u)p(y) dy = 0 ∀u∈R: (9)

The >rst relation here implies in a standard way the existence of a vector function
G̃(z; y; u) such that

g̃(z; y; u) = divz G̃(z; y; u): (10)

Indeed, we choose G̃ = ∇v, where for each (y; u)∈Rd+1, v(·; y; u) solves the PDE
Lv = g̃ on Tn. Then the function G̃(z; y; u) satis>es estimates (4) and (5). For any
u(x; t) we have now

divx G̃
(x
�
; y; u(t; x)

)
=

1
�
g̃
(x
�
; y; u(t; x)

)
+ G̃′

u

(x
�
; y; u(t; x)

)
∇xu(t; x): (11)

According to Pardoux and Veretennikov (2001), under assumptions C2 and C4 the
second relation in (9) ensures the solvability of the Poisson equation

L KG(y; u) + Kg(y; u) = 0 ∀u∈R (12)

in the space W 2;p
loc (Rd). Moreover, the solution G(·; u) has polynomial growth in |y|

for all u∈R. The solution is unique up to an additive constant, for de>niteness we
assume that it has zero mean w.r.t. the invariant measure �(dy) = p(y) dy.
We de>ne VT := L2(0; T ;H 1(Rn)) ∩ C([0; T ];L2(Rn)), and let Ṽ T denote the space

VT , equipped with the sup of the weak topology of L2(0; T ;H 1(Rn)), and the topol-
ogy of the space C([0; T ];L2

w(Rn)), where L2
w(Rn) denotes the corresponding L2 space

equipped with its weak topology.
Moreover, 'k , k = 1; : : : ; d, and ) are de>ned as stationary solutions of(

@
@*

+
@
@zi

aij(z; 
*)
@
@zj

)
'k(z; *) =− @

@zi
aik(z; 
*); (z; *)∈Tn × [0;+∞);

and (
@
@*

+
@
@zi

aij(z; 
*)
@
@zj

)
)(z; *; u) =−g̃(z; 
*; u); (z; *)∈Tn × [0;+∞);

where u is a real parameter, see Lemma 1 below in Section 4.
This paper is devoted to the proof of

Theorem 1. Under the above assumptions, the family of laws of the solutions {u�}
to problem (1) converges weakly, as � → 0, in the space Ṽ T , for all T ¿ 0, to the
unique solution of the martingale problem with the drift Â(u(s)), where

Â(u) =∇x · 〈a(I +∇z')〉∇xu−∇x · 〈'g〉(u)−∇x · 〈a∇x)〉(u)
+〈)ug〉(u) + 〈 KGug〉(u);
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and the covariance R(u(s)), where

(R(u)’; ’) =
∫
Rd
(q(y)(∇y KG(y; u); ’); (∇y KG(y; u); ’))p(y) dy:

In the above statement, the notation 〈a(I +∇z')〉 stands for

E
∫
Tn

a(z; 
t)(I +∇z'(z; t)) dz;

which does not depend on t, since (
; ') is stationary. The other uses of the notation
〈·〉 in the formula for Â(u) can be made precise in a similar way.
In order to avoid any confusion, we shall use below in Section 4 the notation

{〈〈M 〉〉(t); 06 t6T} to denote the increasing process associated to the continuous
martingale {Mt ; 06 t6T}, i.e. t → 〈〈M 〉〉(t) is continuous and increasing, and M 2

t −
〈〈M 〉〉(t) is a continuous martingale.

3. A priori estimates and tightness

In this section we obtain uniform a priori estimates for the solution u� and then use
them in order to show tightness of the distributions of u�.
First, considering (9) and (11) one can rewrite the term g( x� ; 
t=�2 ; u�(t; x)) on the

right-hand side of (1) in the form

1
�
g
(x
�
; 
t=�2 ; u

�(t; x)
)
= divx G̃

(x
�
; 
t=�2 ; u

�(x; t)
)

− G̃′
u

(x
�
; 
t=�2 ; u

�(x; t)
)
∇xu�(t; x) +

1
�
Kg(
t=�2 ; u

�(x; t)): (13)

For u∈L2(Rn) and y∈Rd denote

)�(u; y) =
1
2
‖u‖2L2 + �(u; KG(y; u)):

From Itô–Krylov’s formula (see Pardoux and Veretennikov, 2001, for justi>cations),
using (1) and (13), we get

d)�(u�(t); 
t=�2 )

= (A�u�(t); u�(t)) dt −
(
∇xu�(t); G̃

( ·
�
; 
t=�2 ; u

�(t)
))

dt

−
(
G̃′

u

( ·
�
; 
t=�2 ; u

�(t)
)
∇xu�(t); u�(t)

)
dt +

1
�
(u�(t); Kg(
t=�2 ; u

�(t))) dt

+
1
�
(u�(t); L KG(
t=�2 ; u

�(t))) dt + (u�(t);∇y KG(
t=�2 ; u
�(t))) (
t=�2 ) dW

�
t

+ �(A�u�(t); KG(
t=�2 ; u
�(t))) dt +

(
g
( ·
�
; 
t=�2 ; u

�(t)
)
; KG(
t=�2 ; u

�(t))
)
dt
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+ �(A�u�(t); KG′
u(
t=�2 ; u

�(t))u�(t)) dt

+
(
g
( ·
�
; 
t=�2 ; u

�(t)
)
; KG′

u(
t=�2 ; u
�(t))u�(t)

)
dt; (14)

where A� stands for (@=@xi)aij(x=�; 
t=�2 )@=@xj and W�
t is the Wiener process �Wt=�2 .

Remark 2. Here and in what follows we use the notation ∇yf(x=�; 
t=�2 ; u�(t)) and
∇zf(x=�; 
t=�2 ; u�(t)) for ∇yf(x=�; y; u�(t))|y=
t=�2 and ∇zf(z; 
t=�2 ; u�(t))|z=x=�, respectively.
Also, if it does not lead to ambiguity, we omit the arguments x and ! of the
solution u�.

We >rst prove the

Proposition 1. Under our standing assumptions, if moreover �¿ 0 (where � is the
exponent in (3)), there exists a constant C such that for all �¿ 0,

E
(

sup
06t6T

‖u�(t)‖2 +
∫ T

0
‖∇xu�(t)‖2 dt

)
6C:

Proof. It is not hard to see, using standard estimates, that for >xed �¿ 0,

E
(

sup
06t6T

‖u�(t)‖2 +
∫ T

0
‖∇xu�(t)‖2 dt

)
¡∞:

Hence, we can take the expectation in (14) integrated from 0 to t. Considering (12)
and integrating by parts, one gets

E)�(u�(t); 
t=�2 ) + E
∫ t

0

(
a
( ·
�
; 
s=�2

)
∇xu�(s);∇xu�(s)

)
ds

=E)�(u0(x); 
0)− E
∫ t

0

(
∇xu�(s); G̃

( ·
�
; 
s=�2 ; u

�(s)
))

ds

−E
∫ t

0

(
G̃′

u

( ·
�
; 
s=�2 ; u

�(s)
)
∇xu�(s); u�(s)

)
ds

− 2�E
∫ t

0

(
a
( ·
�
; 
s=�2

)
∇xu�(s); KG′

u(
s=�2 ; u
�(s))∇xu�(s)

)
ds

+E
∫ t

0

(
g
( ·
�
; 
s=�2 ; u

�(s)
)
; KG(
s=�2 ; u

�(s)) + KG′
u(
t=�2 ; u

�(s))u�(s)
)
ds

− �E
∫ t

0

(
a
( ·
�
; 
s=�2

)
∇xu�(s); u�(s) KG′′

uu(
s=�2 ; u
�(s))∇xu�(s)

)
ds: (15)



E. Pardoux, A.L. Piatnitski / Stochastic Processes and their Applications 104 (2003) 1–27 7

According to Theorem 2 in Pardoux and Veretennikov (2001), under condition C3 the
functions KG(y; u), ∇y KG(y; u), KG′

u(y; u) and KG′′
uu(y; u) admit the following bounds:

| KG(y; u)|6 c(1 + |y|)�|u|; |∇y KG(y; u)|6 c(1 + |y|)�|u|;

| KG′
u(y; u)|6 c(1 + |y|)�;

(1 + |u|)| KG′′
uu(y; u)|6 c(1 + |y|)�;

where �=�(�) is equal to 0 or strictly positive depending on whether �¿ 0 or �6 0,
respectively.
The >rst two integrals on the r.h.s. of (15) can be estimated as follows:∣∣∣∣E

∫ t

0

(
∇xu�(s); G̃

( ·
�
; 
s=�2 ; u

�(s)
))

ds

+E
∫ t

0

(
G̃′

u

( ·
�
; 
s=�2 ; u

�(s)
)
∇xu�(s); u�(s)

)
ds
∣∣∣∣

6 2cE
∫ t

0
‖u�(s)‖ ‖∇xu�(s)‖ ds

6
c
0
E
∫ t

0
‖u�(s)‖2 ds+ c0E

∫ t

0
‖∇xu�(s)‖2 ds:

If �¿ 0 and thus �=0, then the two terms involving the factor � in (15) are dominated
by the corresponding terms on the l.h.s., and taking su6ciently small 0, we have by
the Gronwall lemma

E‖u�(t)‖2 + E
∫ t

0
‖∇xu�(s)‖2 ds6C; t6T: (16)

We then deduce from the Davis–Burkholder–Gundy inequality that

E sup
06t6T

∣∣∣∣
∫ t

0
(u�(s);∇y KG(
s=�2 ; u

�(s)) dW�
s

∣∣∣∣
6CE

[(∫ T

0
‖u�(t)‖4 dt

)1=2]

6
1
4
E
(

sup
06t6T

‖u�(t)‖2
)
+ C2E

∫ T

0
‖u�(t)‖2 dt:

The proposition is now easy to deduce from (14) and (16).

If �6 0 then the function KG(y; u) admits polynomial growth in y and, as a result,
the above method fails to work. In this case the expectation of ‖u�‖ might explode, as
� → 0, but we shall control the moments of a slightly di$erent sequence {ũ �}.
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Let 1¿ 0 be a constant to be chosen below. For each �¿ 0, let

*� = inf

{
06 t6T ; |
t=�2 |¿

(
1
�

)1=�
}

;

and de>ne {ũ �(t); 06 t6T} as the solution of the PDE

@ũ �

@t
(t; x) =

@
@xi

aij

(x
�
; 
t=�2

) @ũ �

@xj
(t; x) + 1[0; *�](t)

1
�
g
(x
�
; 
t=�2 ; ũ

�(t; x)
)
;

(t; x)∈ (0; T )× Rn; ũ �(0; x) = u0(x): (17)

It follows from Corollary 1 in Pardoux and Veretennikov (2001) that

� sup
06t6T

|
t=�2 |� → 0 (18)

in probability, as � → 0. Hence, as � → 0,

P(*� = T ) → 1;

and consequently

P(u�(t) = ũ �(t); 06 t6T ) → 1:

Hence, tightness (resp. weak convergence to a limit u) of the sequence u� is equivalent
to tightness (resp. weak convergence to the same limit u) of the sequence ũ �, for any
topology.
We now prove the

Proposition 2. Under our standing assumptions, if 1¿ 0 is small enough, then there
exists another sequence of stopping times {S�; �¿ 0}, satisfying P(S� = T ) → 1, as
� → 0, and a constant C such that for all �¿ 0,

E

(
sup

06t6S�
‖ũ �(t)‖2 +

∫ S�

0
‖∇xũ �(t)‖2 dt

)
6C;

and also

E
(

sup
06t6S�

‖ũ �(t)‖4
)
6C:

Proof. We repeat the argument of the previous proposition, except that we develop by
the Itô–Krylov formula the expression

)�(t) :=
1
2
‖ũ �(t)‖2 + �( KG(
t∧*�=�2 ; ũ

�(t ∧ *�)); ũ �(t ∧ *�))

We obtain the identity

)�(t) +
∫ t

0

(
a
( ·
�
; 
s=�2

)
∇xũ �(s);∇xũ �(s)

)
ds

=)�(0) + A�(t ∧ *�) + B�(t ∧ *�) +M�(t ∧ *�) + �C�(t ∧ *�);
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where

A�(t) =−
∫ t

0

(
∇xũ �(s); G̃

( ·
�
; 
s=�2 ; ũ

�(s)
))

ds

−
∫ t

0

(
G̃′

u

( ·
�
; 
s=�2 ; ũ

�(s)
)
∇xũ �(s); ũ �(s)

)
ds;

B�(t) =
∫ t

0

(
g
( ·
�
; 
s=�2 ; ũ

�(s)
)
; KG(
s=�2 ; ũ

�(s)) + KG′
u(
s=�2 ; ũ

�(s))ũ �(s)
)
ds;

M�(t) =
∫ t

0
(ũ �(s);∇y KG�(s)) (
s=�2 ) dW

�
s ;

and

C�(t) =−
∫ t

0

(
a
( ·
�
; 
s=�2

)
∇xũ �(s); [2 KG′

u(
s=�2 ; ũ
�(s))

+ ũ �(s) KG′′
uu(
s=�2 ; ũ

�(s))]∇xũ �(s)
)
ds:

We now choose 1. There exists c¿ 0 such that the two following estimates hold:

�( KG(
�
t∧*� ; ũ

�(t ∧ *�)); ũ �(t ∧ *�))6 �c
(
1 + sup

06s6t∧*�
|
s=�2 |�

)
sup

06s6t
‖ũ �(s)‖2

6 c(�+ 1) sup
06s6t

‖ũ �(t)‖2;

�C�(t ∧ *�)6 �c
∫ t∧*�

0
(1 + |
s=�2 |�)‖∇xũ �(s)‖2 ds

6 c(�+ 1)
∫ t

0
‖∇xũ �(s)‖2 ds:

We choose 1 such that

2c1= inf
X∈Rn; z∈Tn;y∈R

(a(z; y)X; X )
|X |2 ∧ 1

2
:

It then follows, using Schwarz’s inequality, that

1
4

sup
06s6t

‖ũ �(s)‖2 + 1
3

∫ t

0
(a�(s)∇ũ �(s);∇ũ �(s)) ds

6 ‖u0‖2 + c
∫ t

0
‖ũ �(s)‖2 ds

+ c
∫ t

0
|
s=�2 |�‖ũ �(s)‖2 ds+ sup

06s6t
|M�(s)|;
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hence, if 5 is a stopping time such that 56T ,
1
4
E sup
06s65

‖ũ �(s)‖2 + 1
3
E
∫ 5

0
(a�(s)∇ũ �(s);∇ũ �(s)) ds

6 ‖u0‖2 + cE
∫ 5

0
‖ũ �(s)‖2 ds

+ cE
∫ 5

0
|
s=�2 |�‖ũ �(s)‖2 ds

+ cE

[(∫ 5

0
(1 + |
s=�2 |)2�‖ũ �(s)‖4 ds

)1=2
]

6 ‖u0‖2 + cE
∫ 5

0
‖ũ �(s)‖2 ds

+ cE

[
sup

06s65
‖ũ �(s)‖2

(∫ 5

0
|
s=�2 |� ds+

√∫ 5

0
(1 + |
s=�2 |)2� ds

)]
:

As � → 0,
∫ t
0 |
s=�2 |� ds → at,

∫ t
0 (1 + |
s=�2 |)2� ds → bt a.s. We choose r ¿ 0 such

that ar +
√
br¡ 1=8c. Let p be the smallest integer such that pr¿T , and de>ne the

stopping times

S1
� = inf


t6 r;

∫ t

0
|
s=�2 |� ds+

√∫ t

0
(1 + |
s=�2 |)2� ds¿

1
8c


 ;

S3
� = inf


r6 t6 2r;

∫ t

r
|
s=�2 |� ds+

√∫ t

r
(1 + |
s=�2 |)2� ds¿

1
8c


 ;

...

Sp
� = inf

{
(p− 1)r6 t6T ;

∫ t

(p−1)r
|
s=�2 |� ds

+

√∫ t

(p−1)r
(1 + |
s=�2 |)2� ds¿

1
8c

}
;

S� = S1
� 1{S1

� ¡r} + S2
� 1{S1

� =r;S2
� ¡2r} + · · ·+ Sp

� 1{S1
� =r; S2

� =2r; :::; Sp−1
� = (p−1)r}:

It follows from Birkho$’s ergodic theorem and the choice of r that

P(S� = T ) → 1 as � → 0:
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We have, choosing 5= t ∧ S1
� ,

1
8
E

(
sup

s6t∧S1
�

‖ũ �(s)‖2
)

+
1
3
E
∫ t∧S1

�

0
(a�(s)∇ũ �(s);∇ũ �(s)) ds

6 ‖u0‖2 + cE
∫ t∧S1

�

0
‖ũ �(s)‖2 ds;

hence

E

(
sup
s6S1

�

‖ũ �(s)‖2
)

+ E
∫ S1

�

0
(a�(s)∇ũ �(s);∇ũ �(s)) ds6C:

Moreover, for all r ¡ t6 2r, using the notation

E(X ;A) := E(X 1A);

1
4
E

(
sup

r6s6t∧S2
�

‖ũ �(s)‖2; S1
� = r

)
+ E

(∫ t∧S2
�

r
(a�(s)∇ũ �(s);∇ũ �(s)) ds; S1

� = r

)

6E
(‖ũ �(r)‖2; S1

� = r
)
+ cE

(∫ t∧S2
�

r
‖ũ �(s)‖2 ds; S1

� = r

)

+ cE


 sup
r6s6t∧S2

�

‖ũ �(s)‖2

∫ t

r
|
s=�2 |� ds+

√∫ t

r
(1 + |
s=�2 |)2� ds


; S1

� = r


 ;

and we deduce by the same arguments as above that

E

(
sup

r6t6S2
�

‖ũ �(t)‖2; S1
� = r

)
+ E

(∫ S2
�

r
‖∇ũ �(s)‖2 ds; S1

� = r

)

6CE(‖ũ �(r)‖2; S1
� = r):

Repeating the same argument with S1
� ; S

2
� replaced by S2

� ; S
3
� , etc., and combining all

those estimates, we conclude that there exists a constant C such that

E

(
sup

06t6S�
‖ũ �(t)‖2 +

∫ S�

0
‖∇xũ �(s)‖2 ds

)
6C:

The second result is proved quite similarly, with the same sequence of stopping times
S�, starting with the quantity

1
4
‖ũ �(t)‖4 + �( KG(
t∧*�=�2 ; ũ

�(t ∧ *�)); ũ �(t ∧ *�))‖ũ �(t ∧ *�)‖2;

instead of )�(ũ �; t).
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From now on, 1 will be chosen as indicated in the above proof. Note that, for the
same reasons as above, tightness (resp. convergence) of the sequence {ũ �(· ∧ S�)} is
equivalent to tightness (resp. convergence) of the sequence {ũ �} (resp. of the sequence
{u�}).
We next establish the (here and in the rest of the paper C∞

0 (Rn) denotes the class
of mappings from Rn into R, which are of class C∞, and have compact support)
following proposition:

Proposition 3. For any ’∈C∞
0 (Rn), the collection of processes {(u�; ’); �¿ 0} is

tight in C([0; T ]).

Proof. Fix ’∈C∞
0 (Rn). We consider the random process

7�;’(t) = (u�(t); ’) + �( KG(
t=�2 ; u
�(t)); ’):

Applying the Itô–Krylov formula to develop 7�;’(t), we deduce that

(u�(t); ’) = (u0; ’) + I �(t) + J �
1(t) + J �

2(t) + J �
3(t);

where

I �(t) =
∫ t

0
(’;∇y KG(
s=�2 ; u

�(s))) (
s=�2 ) dW
�
s ;

J �
1(t) =−

∫ t

0

[(
a
( ·
�
; 
s=�2

)
∇xu�(s);∇x’

)
+

(
G̃′

u

( ·
�
; 
s=�2 ; u

�(s)
)
∇xu�(t); ’

)]
ds;

J �
2(t)=

∫ t

0

[(
g
( ·
�
; 
s=�2 ; u

�(s)
)
; KG′

u(
s=�2 ; u
�(s))’

)
−
(
∇x’; G̃

( ·
�
; 
s=�2 ; u

�(s)
))]

ds;

and

J �
3(t) = �[( KG(
0; u�(0)); ’)− ( KG(
t=�2 ; u

�(t)); ’)]

− �
∫ t

0

[(
a
( ·
�
; 
s=�2

)
∇x’; KG′

u(
s=�2 ; u
�(s))∇xu�(s)

)

+
(
a
( ·
�
; 
s=�2

)
∇xu�(s); ’ KG′′

uu(
s=�2 ; u
�(s))∇xu�(s)

)]
ds:

We >rst note that

|J �
3(t)|6C�

[
1 + (1 + |
t=�2 |)�‖u�(t)‖+ (1 + |
0|)�‖u0‖

+
∫ t

0
(1 + |
s=�2 |)�(‖∇xu�(s)‖+ ‖∇xu�(s)‖2) ds

]

6C� sup
06s6T

(1 + |
s=�2 |)�
(

sup
06s6T

‖u�(s)‖+
∫ T

0
(1 + ‖∇xu�(s)‖2) ds

)
:

It then follows from (18) and Proposition 2 that

sup
06s6T

|J �
3(s)| → 0 in probability; as � → 0:
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We note that for 06 s6 t6T ,

|J �
1(t)− J �

1(s)|26 c|t − s|
∫ T

0
‖∇xu�(r)‖2 dr:

But from Proposition 2, for any :; ;¿ 0, one can choose 1¿ 0 such that for all �¿ 0,

P
(∫ T

0
‖∇xu�(r)‖2 dr ¿:2=c1

)
6 ;;

hence for all �¿ 0,

P

(
sup

|t−s|61
|J �

1(t)− J �
1(s)|¿:

)
6 ;;

and the collection of continuous processes {J �
1 ; �¿ 0} is tight.

Next we have

|J �
2(t)− J �

2(s)|6 c sup
06r6T

‖u�(r)‖
∫ t

s
(1 + |
r=�2 |)� dr:

The tightness of the collection {J �
2 ; �¿ 0} now follows from Proposition 2 and the

following estimate, for p¿ 1:

E
(∣∣∣∣

∫ t

s
(1 + |
r=�2 |)� dr

∣∣∣∣
p)
6 |t − s|p−1C(T; p; �);

where C(T; p; �) =
∫ T
0 E[(1 + |
r=�2 |)p�] dr is >nite and independent of �, by the

stationarity of 
.
It remains to consider the stochastic integral term. For each N ¿ 0, de>ne

*�N := inf{t ¿ 0; ‖u�(t)‖¿N}, u�
N := u�(t ∧ *�N ), and

I �N (t) =
∫ t∧*�N

0
(’;∇y KG(
s=�2 ; u

�(s))) (
s=�2 ) dW
�
s :

We have for p¿ 2

E
(

sup
t06t6t0+0

|I �N (t)− I �N (t0)|p
)
6CNpE

(∣∣∣∣
∫ t0+0

t0
(1 + |
r=�2 |)2� dr

∣∣∣∣
p=2

)

6C(T; p; �)Np0p=2−1;

hence for any ;¿ 0 we >rst choose N large enough such that for all �¿ 0

P
(

sup
06t6T

|I �(t)− I �N (t)|¿ 0
)
6 ;=2;

and note that

P
(

sup
t06t6t0+0

|I �N (t)− I �N (t0)|¿ ;
)
6CNp 0p=2−1

;p

6 0;=2;
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for p = 6 and 0 = inf (1; ;7=2CN 6). The tightness of the collection {I �; �¿ 0} then
follows from Theorem 8.3 in Billingsley (1968). The Proposition is established.

Recall that VT := L2(0; T ;H 1(Rn)) ∩ C([0; T ];L2(Rn)), and Ṽ T denotes the space
VT , equipped with the sup of the weak topology of L2(0; T ;H 1(Rn)), and the topology
of the space C([0; T ];L2

w(Rn)). It follows from the results in Viot (1976), Propositions
2 and 3 the

Proposition 4. The collection {u�; �¿ 0} of elements of VT is tight in Ṽ T .

4. Passage to the limit

The aim of this section is to pass to the limit, as � → 0, in the family of laws of {u�}
and to determine the limit problem. In view of the tightness result of the preceding
section it is su6cient to >nd the limit distributions of the inner products (’; u�) with
’∈C∞

0 (Rn), see Viot (1976). To this end we introduce the following two auxiliary
parabolic equations:(

@
@*

+
@
@zi

aij(z; 
*)
@
@zj

)
'k(z; *) =− @

@zi
aik(z; 
*); (z; *)∈Tn × [0;+∞); (19)

and (
@
@*

+
@
@zi

aij(z; 
*)
@
@zj

)
)(z; *; u) =−g̃(z; 
*; u); (z; *)∈Tn × [0;+∞); (20)

where u is a real parameter. The functions 'k(z; *) and )(z; *; u) are now de>ned as
stationary solutions to these equations.

Lemma 1. There exist solutions to (19) and (20) such that both pairs ('(·; *); 
*)
and ()(·; *; ·); 
*) are stationary processes, these solutions are ergodic and unique
up to an additive constant. Moreover, under the normalization

∫
Tn '(z; *) dz = 0 and∫

Tn )(z; *; u) dz = 0 the following estimates hold:

‖'‖L∞ +
∫ t+1

t
‖'(·; s)‖2H 1(Tn) ds6C; (21)

‖)‖L∞ +

(∫ t+1

t
‖)(·; s; u)‖2H 1(Tn) ds

)1=2

6C|u|; (22)

‖)′
u‖L∞ +

(∫ t+1

t
‖)′

u(·; s; u)‖2H 1(Tn) ds

)1=2

6C; (23)

‖)′′
uu‖L∞ +

(∫ t+1

t
‖)′′

uu(·; s; u)‖2H 1(Tn) ds

)1=2

6C=(1 + |u|): (24)
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Proof. The existence and uniqueness of a stationary ergodic solution can be established
in the same way as in Lemma 3.5 in Kleptsyna and Piatnitski (2000). Indeed, consider
the following family of Cauchy problems:

@
@*

)N (z; *; u) +
@
@zi

aij(z; 
*)
@
@zj

)N (z; *; u)

= − 1{N6*6N+1}g̃(z; 
*; u); (z; *)∈Tn × (−∞; N + 1);

)N |*=N+1 = 0:

By the standard Nash estimate and energy estimate we have

‖)N‖L∞(Tn×(N;N+1)) +

(∫ N+1

N
‖)N (·; s; u)‖2H 1(Tn) ds

)1=2

6 c1‖g̃‖L∞ 6 c2|u|; (25)

where the constant c1 only depends on the ellipticity constant in C1 and the dimension
n. Due to the assumption C3 the constant c2 is nonrandom and independent of N .

Now, in the same way as in the proof of Lemma 3.3 in Kleptsyna and Piatnitski
(2000) one can show by virtue of the Harnack inequality and maximum principle that

‖)N (·; s; u)‖L∞(Tn)6 c3 exp(−c0(N − s))‖)N (·; N; u)‖L∞(Tn)

6 c4|u| exp(−c0(N − s)); s6N;

with nonrandom constants c4 ¿ 0 and c0 ¿ 0 which are independent of N . In fact, c0
only depends on the ellipticity constant in C1 and the dimension n. Summing up the
functions )N over all integer N , we obtain a stationary ergodic solution to problem
(20), which is jointly stationary with 
, and satis>es moreover

‖)‖L∞ 6C|u|:
Estimate (22) is now straightforward. Other estimates of the lemma can be justi>ed by
the same arguments. Note in particular that estimate (21) can be obtained similarly, also
@a=@z is not an element of L∞(Tn), but of W−1;∞(Tn), see Kleptsyna and Piatnitski
(2000).

Remark 3. In contrast with KG(
t ; u), the functions '(z; *) and )(z; *; u) not only depend
on the value of 
 at a given time * but on the whole half-trajectory {
s; s¿ *}.

Having de>ned KG(y; u), '(z; *) and )(z; *; u), for any arbitrary ’∈C∞
0 (Rn), we

consider the real valued stochastic process {7�(t); 06 t6T} de>ned as

7�(t) = (ũ �(t); ’) + �('�(t)ũ �(t);∇x’) + �()�(t ∧ *�; ũ �(t ∧ *�)); ’)

+ �( KG(
�
t∧*� ; ũ

�(t ∧ *�)); ’);
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where '�(t), )�(t; u) and 
�
t stand for '(·=�; t=�2), )(·=�; t=�2; u) and 
t=�2 , respectively.

Let ��(t) := 1[0; *�](t).
By the Itô formula

d7�(t) =
{(

@ũ �

@t
(t); ’

)
+ �−1

(
@'�

@*
(t)ũ �(t);∇x’

)
+ �

(
'�(t)

@ũ �

@t
(t);∇x’

)

+ �−1��(t)
(
@)�

@*
(t; ũ �(t)); ’

)
+ ���(t)

(
@)�

@u
(t; ũ �(t))ũ�

t(t); ’
)

+ �−1��(t)(L KG(
�
t ; ũ

�(t)); ’) + ���(t)( KG′
u(


�
t ; ũ

�(t))ũ�
t(t); ’)

}
dt

+ ��(t)(∇y KG(
�
t ; ũ

�(t)) (
�
t ); ’) dW

�
t :

Considering (17), after multiple integration by parts and simple rearrangements, we
obtain

d7�(t) =
{
(ũ �(t); a�∇x∇x’) + �−1(ũ �(t);∇za�∇x’) + �−1��(t)( Kg(
�

t ; ũ
�(t)); ’)

+ �−1��(t)(g̃(
�
t ; ũ

�(t)); ’) + �−1
(
@'�

@*
(t)ũ �(t);∇x’

)

+ �−1(∇z(a�∇z'�)(t)ũ �(t);∇x’) + (a�∇z'�(t); ũ �(t)∇x∇x’)

− �(a�∇xũ �(t); '�(t)∇x∇x’) + ��(t)('�(t)g�(t; ũ �(t));∇x’)

+ �−1��(t)
(
@)�

@*
(t; ũ �(t)); ’

)
− ��(t)(∇z)�

u(t; ũ
�(t))a�∇xũ �(t); ’)

− ���(t)()�
uua

�∇xũ �(t);∇xũ �(t)’)− ���(t)()�
ua

�∇xũ �(t);∇x’)

+ ��(t)()�
ug

�; ’) + �−1��(t)(L KG�; ’)
}
dt + ��(t)(∇y KG� (
�

t ); ’) dW
�
t

+ ��(t){−�( KG�
uua

�∇xũ �(t);∇xũ �(t)’)− �( KG�
ua

�∇xũ �(t);∇x’)

+ ( KG�
ug

�; ’)} dt:

In view of (12), (19), (20) and the relation

(a�∇z)�
u∇xũ �; ’) =−(a�∇z)�;∇x’)− �−1(∇z · (a�∇z)�); ’);

the above expression can be simpli>ed further as follows:

d7�(t) = {(ũ �(t)); a�(I +∇z'�(t))∇x∇x’)

+ ��(t)('�(t)g�(t; ũ �(t));∇x’) + ��(t)(a�∇z)�;∇x’)
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+ ��(t)()�
ug

�; ’) + ��(t)( KG�
ug

�; ’)} dt + ��(t)(∇y KG (
�
t ); ’) dW

�
t

− �{(a�∇xũ �(t); '�(t)∇x∇x’) + ��(t)()�
uua

�∇xũ �(t);∇xũ �(t)’)

+ ��(t)()�
ua

�∇xũ �(t);∇x’) + ��(t)( KG�
ua

�∇xũ �(t);∇x’)

+ ��(t)( KG�
uua

�∇xũ �(t);∇xũ �(t)’)} dt: (26)

The following statements will allow us to pass to the limit, as � → 0, in the laws of
7� and thus to obtain the desired limiting distribution of (u�; ’).

Proposition 5. Let v�(x; t) converge to v0(x; t) in Ṽ T . Then v�(x; t) converges
towards v0(x; t) in L2

loc(Rn× (0; T )). In other words Ṽ T is continuously embedded into
L2
loc(Rn × (0; T )).

The proof of this and the following four statements will be given in the next and
last section.

Proposition 6. Assume that u� converges in law towards some u in the space Ṽ T , and
that = :R→ R is a continuous mapping such that |=(u)|6 c(1+ |u|) for some c¿ 0.
Then for any ’∈C∞

0 (Rn) the family {∫ t
0 (=(u�(s)); ’) ds; 06 t6T} converges in

law towards {∫ t
0 (=(u(s)); ’) ds; 06 t6T} in C([0; T ]).

Proposition 7. Suppose that for each u∈R, the random >eld 1(z; *; u) is periodic in
z, stationary and ergodic in *. Assume, furthermore, that the following bounds hold:

‖1(·; *; u)‖C(Tn)6 c:(*)(1 + |u|); (27)

‖1(·; *; u1)− 1(·; *; u2)‖C(Tn)6 c:(*)|u1 − u2|; (28)

with a stationary process :(*) subject to the estimate E|:(*)|p6 c(p) for each p¿ 1.
Then for any ’∈C∞

0 one has

sup
06t6T

∣∣∣∣∣
∫ t∧S�

0

(
1
( ·
�
;
s
�2

; ũ �(s)
)
− 〈1〉(ũ �(s)); ’

)
ds

∣∣∣∣∣ → 0; in L1(>); as � → 0;

where

〈1〉(u) = E
∫
Tn

1(z; *; u) dz; u∈R:

The following two statements will allow us to deal with the stochastic integral term,
through its quadratic variation.

Proposition 8. Let G :Rd × R→ Rd be continuous and satisfy the estimates

|G(y; u)|6 c(1 + |y|)�(1 + |u|); |G(y; u1)− G(y; u2)|6 c(1 + |y|)�|u1 − u2|;
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then for any ’∈C∞
0 (Rn)

sup
t6T

∣∣∣∣∣
∫ t∧S�

0
(q(
s=�2 )(G(
s=�2 ; ũ

�(s)); ’)(G(
s=�2 ; ũ
�(s)); ’)

− (R(ũ �(s))’; ’)) ds| → 0 in L1(>);

where

(R(u)’; ’) =
∫
Rd
(q(y)(G(y; u); ’); (G(y; u); ’))p(y) dy:

Proposition 9. Assume that u� converges in law towards some u in the space Ṽ T ,
then ∫ ·

0
(R(u�(s))’; ’) ds →

∫ ·

0
(R(u(s))’; ’) ds

in law, in the space C([0; T ]), and moreover for some C ¿ 0, all t ∈ [0; T ],

E


(∫ t∧S�

0
(R(ũ �(s))’; ’) ds

)2

6C:

We will need to combine the above propositions with the following result. Recall that
��(t) = 1[0; *�](t).

Lemma 2. Suppose we have elements ?� (�¿ 0) and ? of the space L1(> × (0; T );
dP× dt) which satisfy

sup
06t6T

∣∣∣∣
∫ t

0
[?�(s)− ?(s)] ds

∣∣∣∣ → 0

in L1(>), as � → 0. Then

sup
06t6T

∣∣∣∣
∫ t

0
[��(s)?�(s)− ?(s)] ds

∣∣∣∣ → 0

in L1(>), as � → 0.

Proof. It su6ces to note that

sup
06t6T

∣∣∣∣
∫ t

0
[��(s)?�(s)− ?(s)] ds

∣∣∣∣
6 sup

06t6T

∣∣∣∣
∫ t

0
��(s)[?�(s)− ?(s)] ds

∣∣∣∣+
∫ T

0
|1− ��(s)| × |?(s)| ds

6 sup
06t6T

∣∣∣∣
∫ t

0
[?�(s)− ?(s)] ds

∣∣∣∣+
∫ T

0
|1− ��(s)| × |?(s)| ds;

and that 1¿ 1− ��(s) ↓ 0 a.s., for all s.
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Now it is natural to rewrite (26) as follows:

(ũ �(t); ’) = (u0; ’) +
∫ t

0
(ũ �(s); 〈a(I +∇z')〉∇x∇x’) ds

+
∫ t

0
{(〈'g〉(ũ �(s));∇x’) + (〈a∇x)〉(ũ �(s));∇x’)} ds

+
∫ t

0
{(〈)′

ug〉(ũ �(s)); ’) + (〈 KG′
ug〉(ũ �(s)); ’)} ds

+
∫ t

0
(∇y KG (
�

t ); ’) dW
�
s + K�(t); (29)

where

K�(t) =−�{('�(t)ũ �(t);∇x’) + ()�(t ∧ *�; ũ �(t ∧ *�)); ’)

+ ( KG(
�
t∧*� ; ũ

�(t ∧ *�)); ’)}

+ �{('�(0)u0;∇x’) + ()�(0; u0); ’) + ( KG(
�
0; u0); ’)}

+
∫ t

0
(ũ �(s); [a�(I +∇z'�(s))− 〈a(I +∇z')〉]∇x∇x’) ds

+
∫ t

0
{��(s)('�(s)g�(s; ũ �(s))− 〈'g〉(ũ �(s));∇x’)

+ ��(s)(a�∇z)�(s; ũ �(s))− 〈a∇z)�〉(ũ �(s));∇x’)} ds

+
∫ t

0
{(��(s))�

u(s; ũ
�(s))g�(s; ũ �(s))− 〈)′

ug〉(ũ �(s)); ’)

+ (��(s) KG�
ug

� − 〈 KG′
ug〉(ũ �(s)); ’)} ds

− �
∫ t

0
{(a�∇xũ �(s); '�(s)∇x∇x’) + ��(s)()�

uua
�∇xũ �(s);∇xũ �(s)’)

+ ��(s)()�
ua

�∇xũ �(s);∇x’) + ��(s)( KG�
ua

�∇xũ �(s);∇x’)

+ ��(s)( KG�
uua

�∇xũ �(s);∇xũ �(s)’)} ds:
We rewrite (29) as

F’(t; ũ �) =
∫ t

0
��(s)(∇y KG(
�

s; ũ
�(s)) (
�

s); ’) dW
�
s + K�(t)

=M�
’(t) + K�(t);



20 E. Pardoux, A.L. Piatnitski / Stochastic Processes and their Applications 104 (2003) 1–27

where, for u∈VT ,

F’(t; u) := (u(t); ’)− (u0; ’)−
∫ t

0
(u(s); 〈a(I +∇z')〉∇x∇x’) ds

−
∫ t

0
{(〈'g〉(u(s));∇x’) + (〈a∇x)〉(u(s));∇x’)} ds

−
∫ t

0
{(〈)ug〉(u(s)); ’) + (〈 KGug〉(u(s)); ’)} ds;

and the quadratic variation of the martingale M�
’ is given by

〈〈M�
’〉〉(t) =

∫ t

0
��(s)(∇y KG (
�

s); ’)
2 ds:

By C3, Proposition 7 and Lemma 1, K�(t ∧ S�) tends to zero uniformly in t, in L1(>),
as � → 0.
Let 06 s¡ t, and =�

s be any continuous (in the sense of the topology of Ṽ T ) and
bounded functional of {ũ �(r); 06 r6 s}.
We have that

E[(F’(t ∧ S�; ũ �)− F’(s ∧ S�; ũ �))=�
s] = E[(K�(t ∧ S�)− K�(s ∧ S�))=�

s];

E[(M�
’(t ∧ S�)−M�

’(s ∧ S�))2=�
s] = E[(〈〈M�

’〉〉(t ∧ S�)− 〈〈M�
’〉〉(s ∧ S�))=�

s]:

Let u∈ Ṽ T a.s. be any accumulation point of the sequence ũ �, as � → 0. Taking
the limit along the corresponding subsequence in the two last identities, using weak
convergence and uniform integrability, see Proposition 2, we conclude with the help
of Propositions 6, 8 and 9 that {F’(t; u); 06 t6T} is a square integrable martingale
with respect to the natural >ltration of u, with the associated quadratic variation process
given by∫ t

0
(R(u(s))’; ’) ds;

where

(R(u)’; ’) =
∫
Rd
((q(y)(∇y KG(y; u); ’); (∇y KG(y; u); ’))p(y)) dy:

We have shown that the law Q0 of any accumulation point of the sequence u� solves the
following martingale problem, which we shall denote problem (MP). For all
’∈C∞

0 (Rn),

F’(t; u) := (u(t); ’)− (u0; ’)−
∫ t

0
(Â(u(s)); ’) ds; t¿ 0;

where

Â(v) =∇x · 〈a(I +∇z')〉∇xv−∇x · 〈'g〉(v)
−∇x · 〈a∇x)〉(v) + 〈)ug〉(v) + 〈 KGug〉(v)
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is a martingale with the associated quadratic variation process

〈〈F’(·; u)〉〉(t) =
∫ t

0
(R(u(s))’; ’) ds:

We have already used the following statement, which is a consequence of Proposition
2 and Fatou’s lemma:

Lemma 3.

E
(

sup
06t6T

‖u(t)‖2 +
∫ T

0
‖∇xu(t)‖2 dt

)
¡∞:

We >nally establish

Lemma 4. The martingale problem (MP) has a unique solution.

Proof. The usual argument of Yamada–Watanabe establishes that uniqueness of the
martingale problem is a consequence of pathwise uniqueness for a corresponding SDE
(see Viot (1976) for the adaptation of that argument to SPDEs). Now we state our
SPDE. There is a certain freedom in de>ning such a SPDE, our choice is as fol-
lows. Let Bt be a standard cylindrical Brownian motion in (L2(Rd))d, i.e. for any
C∈ (L2(Rd))d, (Bt; C) is a real valued Brownian motion with covariance t‖C‖(L2(Rd))d .
For each v∈L2(Rn), denote by H (v) the operator H (v) : (L2(Rd))d → L2(Rn) given by

[H (v) (·)](x) =
∫
Rd
(E(y)∇y KG(y; v(x));  (y)) dy;

where E(y) stands for the symmetric square root of the matrix p(y)q(y). Consider
the SPDE in L2(Rn)

du(t) = Â(u(t)) dt + H (u(t)) dBt; u(0) = u0; (30)

or, in the weak form,

(u(t); ’) = (u0; ’) +
∫ t

0
(Â(u(s)); ’) ds

+
∫ t

0
(E(·)(∇y KG(·; u(s)); ’)L2(Rn); dBt)(L2(Rd))d ; ∀’∈C∞

0 (Rn):

According to Pardoux and Veretennikov (2001) (see also Campillo et al., 2001), under
assumptions (4) and (5) the gradient in y of the function KG(u; y) de>ned by (12),
admits the bound

|∇y KG(u; y)|6C(1 + |y|)�|u|; |∇y KG′
u(u; y)|6C(1 + |y|)�: (31)

Taking into account the fast decay of E(y) at in>nity, we conclude that all the terms
in the above SPDE make sense. Moreover, as by Da Prato and Zabczyk (1992) this
equation does have a solution in the space V :=

⋃
T¿0 VT , such that for all T ¿ 0,

E
(

sup
06t6T

‖u(t)‖2 +
∫ T

0
‖∇xu(t)‖2 dt

)
¡∞: (32)
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We introduce the following notation for the coe6cients of the operator Â(u):

Â(u) =∇x · Ka∇xu+∇x · KF1(u) + KF0(u);

with Ka= { Kaij} and KF1(u) = ( KF1
1; : : : ; KF

1
n).

We now establish uniqueness. Assume that there are two solutions v1(t) and v2(t)
with the same initial condition. It follows from the argument in Lemma 3 that both
satisfy estimate (32). Apply Itô’s formula to the expression ‖v1 − v2‖2, where ‖ · ‖
stands for the norm in L2(Rn). This gives

‖v1(t)− v2(t)‖2 =−2
∫ t

0
Ka∇x(v1(s)− v2(s)) · ∇x(v1(s)− v2(s)) ds

− 2
∫ t

0
(F1(v1(s))− F1(v2(s));∇x(v1(s)− v2(s))) ds

+2
∫ t

0
(F0(v1(s))− F0(v2(s)); v1(s)− v2(s)) ds+Mt

+
∫ t

0

∫
Rd

p(y)q(y)(∇y KG(y; v1(s))−∇y KG(y; v2(s)))

×(∇y KG(y; v1(s))−∇y KG(y; v2(s))) dy ds;

where Mt is a martingale. Taking the expectation on both sides of this identity, making
use of the inequality

|(F1(v1(s))− F1(v2(s));∇x(v1(s)− v2(s)))|
6C‖v1(s)− v2(s)‖ ‖∇x(v1(s)− v2(s))‖

6C
(
1
0
‖v1(s)− v2(s)‖2 + 0‖∇x(v1(s)− v2(s))‖2

)

and considering the Lipschitz properties in v of all the functions involved, we obtain
after simple rearrangements

E‖v1(t)− v2(t)‖2 + 2E
∫ t

0
( Ka− 0I)∇x(v1(s)− v2(s)) · ∇x(v1(s)− v2(s)) ds

6C(0)E
∫ t

0
‖v1(s)− v2(s)‖2 ds:

For su6ciently small 0 by the Gronwall lemma then implies

E‖v1(t)− v2(t)‖2 = 0

for any t¿ 0. This completes the proof of uniqueness.
The proof of Theorem 1 is now complete.
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5. Proof of the technical statements

Here we prove the technical propositions formulated in the preceding section.

Proof of Proposition 5. It su6ces to show that for any r ¿ 0 the sequence v� converges
to v0 in L2((0; T )×Br) with Br=[−r;+r]n. Let C(x) be a cuto$ function such that C=1
in Br and C=0 in Rn\Br+1, and denote by {ei(x)}∞i=1 an orthonormal basis in H 1

0 (Br+1)
that consists of orthogonal in L2(Br+1) functions. If we de>ne ;N =supi¿N+1 |ei|L2(Br+1),
then ;N → 0 as N → ∞ due to the compactness of the embedding of H 1

0 (Br+1) into
L2(Br+1). Writing down the >rst N coe6cients of v�(t)C in the basis {ei} for each
t6T , we get

v�(t; x)C(x) =
N∑
i=1

y�
i (t)ei(x) + ṽ�;N (t; x); y�

i (t) =
(v�(t)C; ei)L2(Br+1)

|ei|2L2(Br+1)

:

Considering the uniform boundedness of v�C in L2(0; T ;H 1
0 (Br+1)) one easily shows

that

|ṽ�;N |L2((0;T )×Br+1)6C;N ;

with C independent of �¿ 0. Moreover, for every i6N one has

y�
i (t) →

(v0(t)C; ei)L2(Br+1)

|ei|2L2(Br+1)

as � → 0 in the metric of uniform convergence. It remains to pass to the limit >rst as
� → 0 and then as N → ∞ and the desired assertion follows.

Proof of Proposition 6. For any u∈VT , let

7’(u)(t) :=
∫ t

0
(=(u(s)); ’) ds:

In view of Proposition 5, it su6ces to show that whenever un → u in L2((0; T )×G(’)),
7’(un) → 7’(u) in C([0; T ]). But

sup
06t6T

|7’(un)(t)− 7’(u)(t)|6
√
T‖’‖L2(Rn)‖=(un)−=(u)‖L2((0;T )×G(’));

and the convergence in L2((0; T )×G(’)) of =(un) to =(u) follows from convergence
in measure (since = is continuous), and uniform integrability of =(un)2, which follows
from the L2 convergence of the sequence {un}, and the linear growth of =. The
proposition is established.

Proof of Proposition 7. Let us note that under the assumptions of Proposition 7 we
have

|〈1(u)〉|6 c(1 + |u|); |〈1(u1)〉 − 〈1(u2)〉|6 c|u1 − u2|: (33)
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Denote G=supp(’). By Proposition 5 the family {u�} is tight in L2((0; T )×G) and thus
by the Prokhorov theorem for any ;¿ 0 there is a compact subset K; ⊂ L2((0; T ) ×
G) such that P{u�1G �∈ K;}¡;. Since K; is a compact set, for any ;1 ¿ 0 there
exists a >nite ;1-net q1(t; x); : : : ; qN (t; x), qi ∈L2((0; T )×G). Without loss of generality
we assume that all the functions qi are piecewise constant and moreover that the
corresponding values are supported by a >nite number of rectangular parallelepipeds.
One can represent the space V as the union of disjoint sets H0;H1; : : : ;HN with
H0 = {u∈V : 1Gu �∈ K;} and Hj ⊂ {u∈V : ‖1Gu − qj‖6 ;1}, j = 1; 2; : : : ; N , and
introduce the events >�

j = {u� ∈Hj}, j = 0; 1; : : : ; N . By the de>nition of K;, the
probability of >�

0 is not greater than ;; furthermore we have∫ t

0

(
1
( ·
�
;
s
�2

; u�
)
− 〈1〉(u�); ’

)
ds= Aj(�; t) + Bj(�; t);

where

Aj(�; t) =
∫ t

0

(
1
( ·
�
;
s
�2

; u�
)
− 1

( ·
�
;
s
�2

; qj

)
; ’

)
ds+

∫ t

0
(〈1〉(u�)− 〈1〉(qj); ’) ds;

Bj(�; t) =
∫ t

0

(
1
( ·
�
;
s
�2

; qj

)
− 〈1〉(qj); ’

)
ds:

By (28), (33) and the Schwartz inequality, we have

|Aj(�; t)|6 c
∫ t

0
‖u�(s)− qj(s)‖L2(G)

(
1 + :

( s
�2

))
ds:

Therefore

E
(
1>�

j
sup
t6T

|Aj(�; t)|
)
6 cT;1;

and for any �¿ 0,

P
(
max
t6T

∣∣∣∣
∫ t

0

(
1
( ·
�
;
s
�2

; u�
)
− 〈1〉(u�); ’

)
ds
∣∣∣∣¿�

)

6P(>�
0) +

N∑
j=1

P
(
>�

j ∩
{
sup
t6T

|Aj(�; t)|¿�=2
})

+
N∑

j=1

P
(
>�

j ∩
{
sup
t6T

|Bj(�; t)|¿�=2
})

6 ;+ 2cT;1=�+
N∑

j=1

P
(
sup
t6T

|Bj(�; t)|¿�=2
)

:

Since ; and ;1 can be made arbitrarily small, convergence in probability will follow
from the fact that the last term on the right tends to 0, as � → 0. Convergence
to 0 in probability of Bj(�; t) as � → 0 for each j and each >xed t follows from
the Birkho$ ergodic theorem. Hence, convergence of the supt6T follows from the
tightness in C([0; T ]) of the collection of random processes {Bj(�; ·); �¿ 0}, which is
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a consequence of Theorem 8.3 in Billingsley (1968) like in the proof of Proposition
3, and the estimate (for 06 s6 t6T , p¿ 1):

E(|Bj(�; t)− Bj(�; s)|p)6 c(p)|t − s|p;
where we have used condition (27), and the assumption on the moments of :.
Convergence to 0 in L1(>) of

max
t6T

∣∣∣∣∣
∫ t∧S�

0

(
1
( ·
�
;
s
�2

; ũ �
)
− 〈1〉(ũ �); ’

)
ds

∣∣∣∣∣
then follows from uniform integrability, which is a consequence of Proposition 2.

Proof of Proposition 8. For u; v∈R, let us denote by R(u; v) the quantity

R(u; v) =
∫
Rd
(q(y)G(y; u);G(y; v))p(y) dy:

The assumptions of Proposition 8 imply the bounds

R(u; v)6C(1 + |u|)(1 + |v|);

|R(u′; v)−R(u′′; v)|6C|u′ − u′′|(1 + |v|);

|R(u; v′)−R(u; v′′)|6C|v′ − v′′|(1 + |u|):
Then we follow the same scheme as in the proof of Proposition 7: we introduce G, a
compact subset K; of L2((0; T )×G) and a >nite ;1-net q1; : : : ; qN in the same way as
above. According to Proposition 2 we can also assume without loss of generality that
for all u� ∈K; and all qj, j = 1; : : : ; N (;1), the following bounds hold:

sup
06t6T

‖u�(t)‖L2(G)6 k; sup
06t6T

‖qj(t)‖L2(G)6 k

with a constant k = k(;) which does not depend on � and ;1. Now one can construct
disjoint sets Hj, j = 0; 1; : : : ; N , such that VT =

⋃N
j=0 Hj and

H0 = {u∈VT : 1Gu �∈ K;}; Hj ⊂ {u∈VT : ‖1Gu− qj‖6 ;1}:
For u� ∈Hj we have

|J �(t)| =
∣∣∣∣
∫
Rn

∫
Rn

q(
�
t ){G(
�

t ; u
�(t; x′))G(
�

t ; u
�(t; x′′))

−G(
�
t ; qj(t; x′))G(
�

t ; qj(t; x′′))}’(x′)’(x′′) dx′ dx′′|

6
∣∣∣∣
∫
Rn

∫
Rn

q(
�
t ){G(
�

t ; u
�(t; x′))G(
�

t ; u
�(t; x′′))

−G(
�
t ; qj(t; x′))G(
�

t ; u
�(t; x′′))}’(x′)’(x′′) dx′ dx′′|

+
∣∣∣∣
∫
Rn

∫
Rn

q(
�
t ){G(
�

t ; qj(t; x′))G(
�
t ; u

�(t; x′′))
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−G(
�
t ; qj(t; x′))G(
�

t ; qj(t; x′′))}’(x′)’(x′′) dx′ dx′′|
6C(1 + |
�

t |)2�|u�(t)− qj(t)|L2(G)(1 + |u�(t)|L2(G) + |qj(t)|L2(G)):

Therefore,

sup
06t6T

∣∣∣∣
∫ t

0
J �(s) ds

∣∣∣∣
6C

∫ T

0
(1 + |
�

s|)2�|u�(s)− qj(s)|L2(G)(1 + |u�(s)|L2(G) + |qj(s)|L2(G)) ds

6 ‖u� − qj‖L2((0;T )×G)

(∫ T

0
(1 + |
�

s|)4�(1 + |u�(s)|2L2(G) + |qj(s)|2L2(G)) ds
)1=2

6C;1
√
1 + 2k2

(∫ T

0
(1 + |
�

s|)4� ds
)1=2

:

By the Birkho$ theorem the integral on the r.h.s. converges a.s., as � → 0, to the
constant TE(1 + |
0|)4�. Similarly, whenever u� ∈Hj,∣∣∣∣

∫ t

0

∫
Rn

∫
Rn
{R(u�(s; x′); u�(s; x′′))

−R(qj(s; x′); qj(s; x′′))}’(x′)’(x′′) dx′ dx′′ ds|6C
√
1 + 2k2;1:

To complete the proof it su6ces to use the same arguments as those in the proof
of Proposition 7.

Proof of Proposition 9. As in the proof of Proposition 6, the >rst statement follows
from the fact that whenever un → u in ṼT , then∫ ·

0
(R(un(s))’; ’) ds →

∫ ·

0
(R(u(s))’; ’) ds;

in C([0; T ]). But this follows from the fact that

(R(un(s))’; ’) → (R(u(s))’; ’)

in ds measure, since u → (R(u)’; ’) is continuous from L2(G) into R, and is uniformly
integrable on [0; T ]. Indeed, for some c¿ 0,

|(R(un(s))’; ’)|6 c‖un(s)‖2;
and the right-hand side of the last inequality in uniformly integrable, since it converges
in L1(0; T ).
The second statement is an immediate consequence of the second estimate in

Proposition 2.
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