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The aim of this paper is to show that our earlier results in [9] can be extended to Hilbert spaces. 
We then give examples of backward stochastic partial differential equations which can be solved 
with our results. 
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1. INTRODUCTION 

A new class of stochastic differential equations - called "backward stochastic 
differential equations", and which consist in fact in solving a certain inverse 
problem for a forward stochastic differential equation - has become recently 
the subject of intense study, see in particular Pardoux, Peng [8], Pardoux [7] 
and the references therein. The motivation from mathematical finance, as well 
as the connections with stochastic control and nonlinear partial differential 
equations, are largely responsible for the interest in BSDEs. 

Recently, the authors have solved in [9] BSDEs involving the sub- 
differential of a convex function in their coefficient. The aim of this note is to 
show that those results can be readily extended to a Hilbert space setting, 
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thus providing existence and uniqueness results for large classes of back- 
ward stochastic partial differential equations. We illustrate the width of our 
result by giving several examples of such BSPDEs. 

Note that Ma, Yong [4, 51 have recently studied certain classes of BSPDEs 
where the underlying Brownian motion is finite dimensional, while our is in- 
finite dimensional. 

A natural conjecture is that BSPDEs should be connected with infinite 
dimensional PDEs, and stochastic control for SPDEs, hence probably with 
partially observed stochastic control problems. 

The paper is organized as follows. The problem and preliminary results 
are formulated in Section 1. The existence and uniqueness result is stated at 
the end of Section 1. Since the proof is identical to that in finite dimension 
(see the proof of Theorem 1.1 in Pardoux, Rascanu [9]), we do not repeat it. 
Finally, we give in Section 3 examples of BSPDEs which are covered by our 
result. 

2. FORMULATION OF THE PROBLEM 
AND STATEMENT OF THE RESULT 

Let H and K be two real separable Hilbert spaces, and ( R , 3 :  P, (.Ft)t >o)  a 
probability space equipped with a filtration, such that: 

where ( B  :, t 2 O)i=1,2,. . are mutually independent standard Brownian 
motions, and N is the class of P-null sets of 3 .  T will be throughout a 
fixed positive real. For any Hilbert space 'Ft, let S2('FI) denote the space 
of continuous and Ft-progressively measurable 'FI-valued processes, 
{ X I  ; 0 5 t 5 TI, satisfying 

M ~ ( ' F ~ )  denote the space of 3,-progressively measurable 'FI-valued 
processes { X I  ; 0 I t < T}, satisfying 
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BSPDEs 161 

{ei ; i = 1,2, . . .) being an arbitrary orthonormal basis of K, let {B,, t 2 0) 
be defined formally as: 

It is well known that this series does not converge in K, but rather in any 
larger space K,K c K ,  which is such that the injection from K into K is 
Hilbert-Schmidt. We will however not be concerned with K any further. 
Rather, we introduce a class of processes with values in the space C  ' ( K ,  H  ) 
of Hilbert-Schmidt operators from K into H, i.e., the space of linear 
operators 11 which are such that 

It is well known (see e.g., MCtivier [6]) that to any element Z E M 2  
( C ' ( K ,  H ) )  one can associate an H-valued stochastic integral 

which is in particular the mean square limit as n -+ x of the approximating 
sequence: 

This stochastic integral is a continuous 3,-martingale, and the process 
Jot z ~ ~ B ,  ( SofZsd~ , )  * - Jot Z,~,*ds, t 2 0 is also a martingale (with values in 
,L ' ( H ) ,  the space of nuclear operators on H). 

The particular choice of our filtration (3 , )  implies the following re- 
presentation theorem, which extends to Hilbert spaces a well-known result 
of Ito. We do  not give the proof, since it is a word-to-word copy of the well 
known finite dimensional analogous proof, see e.g., Revuz-Yor [lo], proof 
of Proposition 3.2. 

THEOREM 2.1 Let [ E L~ (0, .FT. P; H ) .  Then there exists a unique Z E M 
(C ' ( K ;  H ) )  such that 
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The second ingredient of the proofs of existence-uniqueness for BSDEs is 
Ito's formula. We recall a version of that formula in Hilbert space, following 
Mttivier [6]. 

PROPOSITION 2.2 Let {Y,, t E [0, T I }  be an H-valued semimartingale which 
is such that for some F E  M ~ ( H ) , z  E M ~ ( L ~ ( K ; H ) ) ,  

Then for any $ E c ~ ( H ) ,  

2 In particular, in the case $ ( Y )  = I/y//,, we have 

where 1.1 = II.IIH~ I /  . 112 = I 1  . IIL2(K H). 

We need to introduce one last object, which is the subdifferential of a 
convex k c .  function from H into R. More precisely, let 

be a proper (i.e., $ -t oo) 1.s.c. convex function. d p  is a multivalued function 
from H into itself (i.e., it maps H into subsets of H) which is defined as 
follows. 

For any u E H, 

we define Dom(dp)  as the set of u E H such that dp(u) is not empty. We shall 
write (u,  v) E dp* to mean that u E Dom(dp)  and v E dp(u).  

In addition to the above we are given: 

- a final condition [ E ~ ~ ( 0 ,  FT ,  P; H ) ,  s.t. Ep([ )  < oo. 
- a coefficient F : R x [0, T ]  x H  x L 2 ( ~ ;  H )  i H ,  which is such that there 

exist a E R, p, 7 > 0 and {v,, t E [0, T I )  a progressively measurable process 
 satisfying^ J~~ rl :dt < m, and such that for ally, y ' E H,  z ,  z' E L 2 ( ~ :  H ) ,  
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(i) F(. ,  y ,  2) is F,-progressively measurable; 
(ii) y i F(t,  y, z) is continuous, dP  x dt a.e.; 

(iii) ( F ( t , y , z ) - F ( t , y ' , ~ ) , y - y ' ) 5 o l l ~ - ~ ' 1 ~ ;  

(iv) l F ( t , y , ~ )  -F(t,4',z1)/ <Pllz- z1Il2; 
( 4  IF@, y2 011 I rlt + Y 14'1. 

Formally, solving our BSDE in the Hilbert space H consists in finding a 
pair (Y, 2) E s ' (H) x M '(C 2 ( ~ ;  H)) such that 

More precisely, we are looking for a triple ( Y ,  2, U )  E S 2 ( H )  x M 
(C ' (K; H)) x M ' (H) such that: 

(j) Y i + J ~ U U , d s = < + ~ ~ ~ ( s , ~ , , ~ , ) d s - ~ T ~ Z , d ~ , ,  O _ < t < T ;  
(jj) Y, E Dom(dp) and U, E ap(Y,), dP  x dt a.e. 

Our basic result is the following theorem, whose proof is a copy of the 
proof of the same result in finite dimension, see Theorem 1.1 in Pardoux, 
Rascanu [9]. 

THEOREM 2.3 Under the above assumptions, in particular (i), (ii), (iii), (iv) 
and (v), there exists a unique triple (Y, 2, U) E s ~ ( H )  x M 2 ( ~  ' ( K ;  H)) x 
M '(H) wlziclz satis$es (j). (jj). Moreover, E J: p(Y,)dt < oo. 

3. EXAMPLES 

Let D be an open and bounded subset of LQd with a sufficiently smooth 
boundary r. By Hm(D) ,  Hr(D), W:"(D) we will denote the usual Sobolev 
spaces on D. The dual of Hr(D) is HPm(D). The canonical isomorphism 
J : HA(D) -+ HP1(D) is J = - A. The space H-'(D) is a Hilbert space when 
equipped with the inner product. 

where ( ., .) is the usual paring between H : (D)  and H-'(D). 
We note that any Hilbert-Schmidt operator on L ~ ( D )  has a square 

integrable kernel, so that C2(L2(D))  can be identified with L 2 ( 0  x D).  
We shall choose first K = L ~ ( D ) .  This choice implies that dB,/dt is the 

so-called "space-time white noise", i.e., the generalized random field {(h .  B), 
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h E L2(R+ x D)) defined by 

is a zero mean Gaussian random field such that 

Finally, let P c R x R be a maximal monotone operator. One knows (see 
[I], p. 60, or [2] p. 43) that there exists a proper convex lower-semicon- 
tinuous function j : R + ] - m, + m] such that P = dj. 

Example 3.1 Let H = L 2 ( ~  ) and cp : H +] - m, + oo] given by 

JD lgradu(x)12dx + J, j (u)do, if u E H '  (D); j (u) E L1(I'), 
$4~) = { +W, otherwise. 

(3.1) 

Then, from [I], p. 63, it follows that: 

(a) cp is a proper convex 1.s.c. function, 
(b) dcp(u) = -Au, v u E Dom(8cp) 
(c) Dom(dcp) = {u E H ~ ( D )  : - %  E ,O(u)a.e. on r) (3.2) 

(d) liuilffz(D) < C1 / I u  - Au,IIL?(D) + c2> D o m ( d ~ ) '  

where (dldn) is the outward normal derivative and C1, C2 are two constants 
independent of u. 

From Theorem 2.3, we deduce that: 

PROPOSITION 3.2 IfFsatisjies (i)-(v) nlith H = K = L 2 ( 0 ) ,  

then the boundary value backward stochastic problem 

dY(t, x) + AY(t, x)dt + F ( t ,  Y(t),Z(t), .x)dt 
= 1, z(t,  X,  Y ) ~ ( ~ ~ ,  d ~ )  on R x [O,T] x D, 

-- "p E ( Y ( t ,  x)) on R x [0, T ]  x R, (3.3) 

Y(T, x) = o n R x D  

has a unique solution ( Y, 2) E s 2 ( ~  2 ( ~  )) n M 2 ( ~  2 ( ~  )) x M 2 ( ~  2 ( ~  x D )) 
such that - (dY(t, x)/an) E p(Y(t, x)) a.e. on R x]O, T [  x I?. 

Moreover, YE L "(0, T; L 2 ( ~  H1(D)), and j ( Y )  E L "(0, T; L '(0 x I?)). 
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BSPDEs 165 

Example 3.3 Let H = L 2 ( ~ )  and (F: H +] - m; + OC] given by 

Then, from [2], p. 203, it follows: 

( a )  p is a proper convex 1.s.c. function, 
(b) D o m  acp = { u  E H;(D)  ~ H ~ ( D )  : u ( x )  E D o m  ,O a.e. x E D )  
(c )  dp(u) = { U  E L ~ ( D )  : U ( X )  E P(u(x ) )  - A u ( x )  a.e. on  D )  'd u E Dom(dcp), 
(dl I I ~ I I H ~ ( D )  5 ~ I I ~ I I L ~ ~ D ~  y(u: u) E 8 ~ 3  
(e )  D o m ( d p )  = { u  E L ~ ( D )  : u(x )  E D o m p ,  a.e. x E D ) ,  

and by Theorem 2.3, we have: 

PROPOSITION 3.4 Let (i)-(v) be satisJied with H = K = L 2 ( 0 ) .  If 

then the boundary value backward stochastic problem 

d Y ( t , x )  + A Y ( t , x ) d t  + F ( t ,  Y ( t ) , Z ( t ) , x ) d t  E ,O(Y(t ,x))dt 
+ [,z(t, x ,  y ) ~ ( d t ,  dy) on n x [0, T ]  x D, 
Y ( t ,  x) = 0 on R x [0, T ]  x I?, (3.6) 

Y ( T : x )  = < ( x )  on R x D, 

has a unique solution ( Y , Z )  E s ~ ( L ~ ( D ) )  ~ M ~ ( H ; ( D )  n H 2 ( D ) )  x M ~ ( L ~  
(D x D ) )  such that Y ( t )  E H ; ( D )  n H ~ ( D ) ~ P  x dt a.e., Y( t ,  x )  E Dom P, dP x 
dt x dx a.e., and 

j ( Y )  E L"(o ,T;L ' (R  x D ) ) .  

Example 3.5 Let H = L ~ ( D ) ,  r > 2, (F: H-+] - CX), + m] given by 

JD I$ (x ) 'dx ,  i f  u E W ~ . ' ( D ) ,  
d u )  = 

otherwise. 
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and A: W;"(D) i w i ' l r ' ( ~ ) ,  where (llr) + ( l /r l)  = 1, given by 

dx, u, v E w ;"(D). 
i= 1 

Then, from [I], p. 204, it follows : cp is proper convex k c .  function, Dom 
(dp) = {u E w ;lr(D);Au E L2(D)) and dp(u) = Au = - ~ f = ~  ((du/dxi)lrp2 
(aulaxi)), Y u E Dom(dp). 

Now, by Theorem 2.3, we have: 

PROPOSITION 3.6 Let (i)-(v) be satisjied with H = K = ~ ~ ( 0 ) .  If r > 2  
and 

then the BSPDE: 

has a unique solution (Y, Z) E s2(L2(D)) n M '(w i , r ( ~ ) )  x M 2 ( ~ 2 ( ~  x D)). 

In the last example, we shall choose K = R d,  so that {B,, t > 0) is now a 
d-dimensional Brownian motion. 

Example 3.7 Assume j: R 4 R is continuous limi,i,,(j(r)/jrl) = m. Let 
H = H-'(D) and p :  H --+I - cc, + m] be given by 

Then, from [I], p. 67, it follows that: 

(a) p is proper convex 1.s.c. on H -'(D), 
(b) U ~ d p ( u ) e U ~ - A , 6 ( u ) .  

Hence 

PROPOSITION 3.8 Let the assumptions (i)-(v) be satisjied with H = H-' 
(D), K =  LRd. If < E L ~ ( S ~ ~ D ) ~ ~ L ~ ( R , ~ ~ , P ; H ) , ~ ( < ) E L ~ ( R X D ) ,  then 
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BSPDEs 

the BSPDE : 

d Y ( t , x )  + A p ( Y ( t , x ) d t  + F ( t ,  Y ( t ) , Z ( t ) , x ) d t  3 ~ f = , z ' ( t , x ) d ~ f  
o n R  x  [O,T]  x D ,  
Y ( T ,  x )  = [ ( x ) ,  on R x D (3.9) 

,B(Y(t, x)) 3 0 ,  on wx]O,  T [ X I ' .  

has a  unique solution 

Moreover 
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