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Abstract. A family of Feller branching diffusions Zx, x ≥ 0, with nonlinear drift
and initial value x can, with a suitable coupling over the ancestral masses x, be
viewed as a path-valued process indexed by x. For a coupling due to Dawson and Li,
which in case of a linear drift describes the corresponding Feller branching diffusion,
and in our case makes the path-valued process Markovian, we find an SDE solved
by Z, which is driven by a random point measure on excursion space. In this way
we are able to identify the infinitesimal generator of the path-valued process. We
also establish path properties of x 7→ Zx using various couplings of Z with classical
Feller branching diffusions.

1. Introduction

Consider the SDE

Zx
t = x +

∫ t

0

f(Zx
s )ds + 2

∫ t

0

∫ Zx
s

0

W (ds, dξ), t ≥ 0, x ≥ 0 (1.1)

where W (·, ·) denotes a two–dimensional white noise, i.e. a generalized zero mean
Gaussian random field on R2

+, whose covariance operator is the identity operator
on L2(R2

+). Our assumptions on the function f : R+ → R will be specified below.
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For any fixed x > 0, the solution of (1.1) has the same law as the solution of the
simpler SDE

Zx
t = x +

∫ t

0

f(Zx
s )ds + 2

∫ t

0

√

Zx
s dBs,

where B is a standard scalar Brownian motion. However, the formulation (1.1),
which follows Dawson and Li (2012), is the simplest and most natural way to specify
a coupling which in the case of a linear drift renders the branching property of Z,
i.e. the independence of Zx and Zx+y −Zx for all x, y > 0. For a quadratic f , this
same coupling is discussed also in Pardoux and Wakolbinger (2011a) Sec. 2, but
there without appealing to the representation (1.1).

When f is linear, i.e. f(z) = θz, the solution Zx
t , t ≥ 0, is a continuous state

branching process with ancestral mass x. This process models the evolution of
the (continuum scaling limit of the) size of a population when the reproduction
dynamics of the various individuals are mutually independent.

In the terminology of a (pre-limiting) individual-based description, the possible
nonlinearities of f model an impact of the current population size on the individual
reproduction dynamics, and in this way go along with an interaction in the indi-
viduals’ reproductive behavior. If the interaction is of the type of competition for
rare resources, then an increase in the population size decreases the individual birth
rate and/or increases the death rate. This means that f(z)/z should be decreasing,
and f(z) should be negative for z large enough. On the other hand, specifically for
moderate values of z, f(z)/z might be increasing. This is the case in the presence
of the so–called Allee effect, where there is a negative growth rate for small popu-
lation sizes z and a positive growth rate for larger population sizes (as long as the
population size does not exceed a certain carrying capacity).

In previous publications, we obtained several results on the solution of equation
(1.1) (for f of the form f(z) = θz − γz2 or for more general f). In particular we
discussed

(i) its approximation by finite population models (Le et al. (2013), Ba and Par-
doux (2015)),

(ii) the extension of the second Ray–Knight theorem and a description of the
forest of genealogical trees of the population whose total size follows (1.1) (Le et al.
(2013), Ba and Pardoux (2015), Pardoux and Wakolbinger (2011a)),

(iii) the effect of competition on the asymptotic extinction time and total mass
of the forest of trees for large population size (Le and Pardoux (2015)).

In this paper, we study the solution of (1.1) as a path-valued process indexed
by the mass x of the ancestral population.

In the case where f is linear, much is known about the R+–valued process
{Zx

t , x > 0} for any t > 0 fixed, as well as about the C(R+; R+)–valued process
{Zx

· , x > 0}. Those have independent increments, which reflects the independence
of the progenies of various ancestors in a branching process. Moreover, for any
fixed t > 0, x 7→ Zx

t is an increasing process which has a.s. finitely many jumps on
any finite time interval, and is constant between its jumps. On the other hand, the
path-valued process x 7→ Zx

· has infinitely many jumps on any interval of positive
Lebesgue measure. Also, for linear f explicit formulas for the law of the random
variables Zx

t are available.
In the presence of a nonlinear drift f , the situation is more complicated, and our

paper contributes to its investigation. Our first step is to show that x 7→ Zx
t is,
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for fixed t > 0, again an increasing process which increases only by jumps, whose
number is finite on any compact interval. Now the process x 7→ Zx

t in general does
no longer have independent increments. We strongly suspect that (for fixed t) it
is not a Markov process. However, the path-valued process x 7→ Zx

· is Markovian,
and it is the objective of this paper to write an SDE driven by a random point
measure for the process x 7→ Zx

· , and to identify its infinitesimal generator, by
writing a martingale problem formulation of the path–valued SDE which it solves,
see Theorem 4.12 and Corollary 4.13 below.

Let us now specify our standing assumptions on the nonlinear function f . We
assume that f ∈ C(R+; R), f(0) = 0, and f satisfies in addition the following three
assumptions

f(a + b) − f(a) ≤ θb, for some θ ≥ 0 and all a, b > 0 ; (1.2)

f is
1

2
–Hölder continuous, i.e. for all M > 0 there exists a CM < ∞ such that

|f(a + b) − f(a)| ≤ CM

√
b for all a ∈ [0, M ] and b ∈ [0, 1] ;

(1.3)
∫ ∞

1

exp

(

−1

2

∫ u

1

f(r)

r
dr

)

du = +∞. (1.4)

The first assumption is crucial for equation (1.1) to be well–posed, see Ba and Par-
doux (2015). It also implies that f(z) ≤ θz for all z > 0, which will be important in
the next section. The second assumption implies that b−1/2[f(a+b)−f(a)] remains
bounded while b → 0, which will be essential for our Girsanov transformations be-
low. Finally, it is shown in Ba and Pardoux (2015) that the third assumption
implies that, for all x > 0, the random path Zx

· hits zero in finite time a.s., which
will be important in many of our arguments below. For technical as well as for
conceptual reasons we want to study models of populations which go extinct in
finite time. This is why we assume that f(0) = 0, and not just that f(0) ≥ 0. In
particular, we do not consider populations with immigration (except as an auxiliary
construction in some proofs below).

Note that a sufficient condition for (1.4) to hold is that there exists z0 > 0 such
that f(z) ≤ 2, for all z ≥ z0. Clearly, a wide variety of functions f satisfy our
assumptions.

The paper is organized as follows. In section 2, we establish the basic properties
of the solution of (1.1), recalling in particular the existence and uniqueness result
from Dawson and Li (2012).

Section 3 is devoted to comparison with a supercritical Feller diffusion Y , with
supercriticality parameter θ, the same real number which appears in the assump-
tion (1.2). We first prove a basic and easy comparison theorem between Z and
Y . Next we construct another coupling of the two processes, for which a much
stronger comparison holds. This permits us to deduce that Z increases only where
Y increases, in particular x 7→ Zx|[δ,∞) is constant between its jumps for all δ > 0.

Section 4 is devoted to establishing a path–valued SDE satisfied by {Zx
· , x > 0},

and deducing the exact form of the generator of that Markov process. Here again
we shall consider a pair (Y, Z). However the process Y will then be a critical Feller
diffusion, and in this case there will be no comparison between Z and Y . Instead,
we shall exploit Girsanov’s theorem and write the Radon–Nikodym derivative of
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the law of Z with respect to that of Y . This will be our key ingredient for the
identification of the generator of the process Zx

· .

2. Basic results

It follows from Theorem 2.1 in Dawson and Li (2012) that for any x > 0, (1.1) has
a unique continuous non–negative solution. Note in particular that the assumptions
of that theorem are satisfied here, since we can decompose f(a) = θa + [f(a)− θa],
where a 7→ θa is Lipschitz, while a 7→ f(a) − θa is continuous and non increasing.

Since we are interested in the two-parameter process {Zx
t , t ≥ 0, x > 0}, we

need to make sure that we can choose an appropriate version.

Lemma 2.1. The mapping ξ 7→ Zξ
· is continuous in probability.

Proof : Let x, y > 0. Theorem 2.2 in Dawson and Li (2012) implies that

P(Zx+y
s − Zx

s ≥ 0, ∀s ≥ 0) = 1 . (2.1)

Consequently,

Zx+y
t − Zx

t = y +

∫ t

0

[f(Zx+y
s ) − f(Zx

s )]ds + 2

∫ t

0

∫ Zx+y
s

Zx
s

W (ds, dξ). (2.2)

Taking the expectation in this identity, and exploiting (1.2) and Gronwall’s Lemma,
we infer that

E[Zx+y
t − Zx

t ] ≤ y exp(θt). (2.3)

Let Mt denote the last term on the right of (2.2). The quadratic variation of this
martingale is given by

〈M, M〉t = 4

∫ t

0

(Zx+y
s − Zx

s )ds.

A consequence of (2.2) and (1.2) is that for any t > 0 :

sup
0≤s≤t

(Zx+y
s − Zx

s ) ≤ y + θ

∫ t

0

(Zx+y
s − Zx

s )ds + sup
0≤s≤t

|Ms|. (2.4)

Taking the expectation in (2.4), we deduce from the Burkholder–Davis–Gundy and
Schwarz inequalities and (2.3) that there exists a constant c > 0 such that

E

[

sup
0≤s≤t

(Zx+y
s − Zx

s )

]

≤ y(1 + eθt) + c
√

yθ−1eθt,

from which the result follows, again in view of (2.1). ♦

Definition 2.2. We will denote by E the space of continuous functions u from
[0, +∞) into itself, which are such that whenever ζ(u) := inf{t > 0, u(t) = 0} is
finite, then u(t) = 0, for any t ≥ ζ(u). We equip E with the topology of uniform
convergence on compacts.

The following result is similar to Theorem 3.6 in Dawson and Li (2012).

Lemma 2.3. There exists a version of the mapping ξ 7→ Zξ
· which is a.s. increasing

and càdlàg with values in E.



A path–valued Markov process indexed by the ancestral mass 197

Proof : Let {Z̃ξ, ξ > 0} denote an arbitrary collection of processes, such that Z̃ξ

solves the SDE (1.1) for any ξ > 0. The fact that ξ 7→ Z̃ξ
· is a.s. increasing from

Q+ into C([0, +∞)) follows from (2.1). Now for any x > 0 we define

Zx = lim
ξn↓x, ξn∈Q+

Z̃ξn .

By monotonicity, the sequence converges a.s., and it follows from Lemma 2.1 that,
for any x > 0, Zx = Z̃x a.s., hence Zx solves (1.1). The result follows. ♦

As we will see below, the mapping ξ 7→ Zξ
· does have discontinuities with positive

probability.

3. Connection with a supercritical Feller diffusion

In this section, {Y x
t , t ≥ 0, x > 0} stands for a Feller branching diffusion with

supercriticality parameter θ, starting from an ancestral mass x > 0. More precisely,
for a given space–time white noise W , and θ > 0 being the parameter that enters
condition (1.2) on f , we write Y x for the solution of

Y x
t = x + θ

∫ t

0

Y x
s ds + 2

∫ t

0

∫ Y x
s

0

W (ds, dξ). (3.1)

Let Zx be the solution of (1.1), with f satisfying conditions (1.2), (1.3) and (1.4).
The two equations (3.1) and (1.1) with the same W describe one possible coupling
of the two random fields {Y x

t , t ≥ 0, x > 0} and {Zx
t , t ≥ 0, x > 0}.

Proposition 3.1. For each x > 0,

P(Zx
t ≤ Y x

t , ∀t ≥ 0) = 1.

Proof : Since f(x) ≤ θx, this is immediate from the comparison theorem (Theorem
2.2) in Dawson and Li (2012). ♦

We now construct yet another coupling which will allow to derive distributional
properties of Z that are required in the sequel. For each t > 0, x > 0, let

Dt = {ξ > 0; Y ξ
t > Y ξ−

t }, and

Ax
t (Z) = ∪ξ≤x, ξ∈Dt

(Y ξ−
t , Y ξ−

t + Zξ
t − Zξ−

t ].

Note that the random set Ax
t depends upon the copy of Z, in particular upon the

chosen coupling of Y and Z. Note also that the Lebesgue measure of the set Ax
t (Z)

equals Zx
t . We have the

Theorem 3.2. There exists a random field {Z̃x
t , x > 0, t ≥ 0} such that t 7→ Z̃x

t

is continuous, x 7→ Z̃x
t is right–continuous, {Z̃x

t , x > 0, t ≥ 0} has the same law as

{Zx
t , x > 0, t ≥ 0} (the solution of (1.1)), {Z̃x

t , x > 0, t ≥ 0} solves the SDE

Z̃x
t = x +

∫ t

0

f(Z̃x
s )ds + 2

∫ t

0

∫

Ax
s (Z̃)

W (ds, dξ), (3.2)

and moreover for all x, y > 0,

P(Z̃x+y
t − Z̃x

t ≤ Y x+y
t − Y x

t , ∀t ≥ 0) = 1. (3.3)
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Z̃ξ−
t

Y ξ−
t + Z̃ξ

t − Z̃ξ−
t

Y ξ−
t

Y ξ
t

ξ

t

Rξ

Figure 3.1. The region Rξ of the noise W that drives Z̃ξ − Z̃ξ−

(which is shaded in the picture) is contained in the region of the
noise that drives Y ξ − Y ξ− (which is the one between Y ξ− and
Y ξ). In particular, Rξ does not intersect the region to the left of

Y ξ−, which would be the case if Z̃ were replaced by Z.

Proof : For a solution Z̃ of (3.2), the equality in law between {Z̃x
t , x > 0, t ≥ 0}

and {Zx
t , x > 0, t ≥ 0} follows from the fact that the Lebesgue measure of Ax

t (Z̃)

equals Z̃x
t . We now construct a solution of (3.2).

For each k, n ≥ 1, let xk
n := 2−nk. For each n ≥ 1, we now define {Zn,x

t , t ≥ 0}.
For 0 < x ≤ x1

n, we require that {Zn,x
t , t ≥ 0} solves

Zn,x
t = x +

∫ t

0

f(Zn,x
s )ds + 2

∫ t

0

∫ Zn,x
s

0

W (ds, dξ).

And for k ≥ 2, we define recursively {Zn,x
t , t ≥ 0} for xk−1

n < x ≤ xk
n as the

solution of

Zn,x
t − Z

n,xk−1
n

t =x − xk−1
n +

∫ t

0

[

f(Zn,x
s ) − f(Z

n,xk−1
n

s )
]

ds

+ 2

∫ t

0

∫ Y
xk−1

n
s +Zn,x

s −Z
n,xk−1

n
s

Y
x

k−1
n

s

W (ds, dξ).

From (1.2) together with (3.1) and Theorem 2.2 in Dawson and Li (2012) it follows
that for all k ≥ 1 and xk−1

n < x ≤ xk
n,

Zn,x
t − Z

n,xk−1
n

t ≤ Y x
t − Y

xk−1
n

t a.s. for all t ≥ 0 . (3.4)
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Moreover, the law of {Zn,x
t , x > 0, t ≥ 0} is the same as that of {Zx

t , x > 0, t ≥ 0},
the solution of (1.1).

Recall that for each t > 0, x 7→ Y x
t has finitely many jumps on any compact

interval, and is constant between its jumps, and if 0 < s < t,

{x, Y x
t 6= Y x−

t } ⊂ {x, Y x
s 6= Y x−

s }. (3.5)

Let us now fix δ, M > 0. For almost any realization of Y , the mapping x 7→ Y x
δ has

only finitely many jumps on (0, M ]. Let n be so large that there is at most one of
those jumps in each interval (k2−n, (k + 1)2−n], for k ≤ M2n − 1. Then for each x
that belongs to an interval (k2−n, (k + 1)2−n] which contains no jump of x 7→ Y x

δ ,

and for any n′ > n, we have Zn′,x
t = Zn,x

t for any t ≥ δ.
Since δ and M are arbitrary positive reals, we have shown that

Z̃x
t := a.s. lim

n→∞
Zn,x

t (3.6)

exists for all t ≥ 0, x > 0. The thus constructed random field {Z̃x
t , t ≥ 0, x > 0}

has the same law as the solution of the SDE (1.1), and satisfies (3.3) and hence also

{x, Z̃x
t 6= Z̃x−

t } ⊂ {x, Y x
t 6= Y x−

t } (3.7)

for all t > 0. We still have to show that Z̃ satisfies (3.2). It is plain that for any
δ > 0,

Z̃x
t = Z̃x

δ +

∫ t

δ

f(Z̃x
s )ds + 2

∫ t

δ

∫

Ax
s (Z̃)

W (ds, dξ).

In order to deduce that Z̃ satisfies (3.2), it remains to show that Z̃x
δ → x a.s., as

δ → 0, which follows readily from the equality of the laws of Z̃ and Z. ♦

Corollary 3.3. For any t > 0, x 7→ Zx
t has finitely many jumps on any compact

interval, and is constant between these jumps.

Proof : The assertion follows from the fact that Z̃ possesses that property, as a
consequence of (3.3) and the properties of Y . ♦

From the properties of the map x 7→ Zx, we infer that x 7→ ζx := ζ(Zx) (recall
Definition 2.2) is increasing and right continuous, constant between its jumps, with
a.s. finitely many jumps on any compact subinterval of (0, +∞), and a sufficient
condition is given in Le and Pardoux (2015) for the limit ζ∞ to be a.s. finite.

We have moreover

Corollary 3.4. For any s > 0,

P

(

⋃

t>s

{x, Zx
t 6= Zx−

t } ⊂ {x, Zx
s 6= Zx−

s } for all x > 0

)

= 1.

Proof : Let us first fix t > s and x > 0. We have

Zx
t − Zx−

t = Zx
s − Zx−

s +

∫ t

s

[f(Zx
r ) − f(Zx−

r )]dr + 2

∫ t

s

∫ Zx
r

Zx−

r

W (dr, dξ).

Consequently, taking the conditional expectation given Zx
s − Zx−

s , and using both
(1.2) and Gronwall’s Lemma, we obtain

E[Zx
t − Zx−

t |Zx
s − Zx−

s ] ≤ [Zx
s − Zx−

s ] exp(θ(t − s)) a.s.
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This shows that Zx
t = Zx−

t a.s. on the event {Zx
s = Zx−

s }.
For all M > 0 it follows from (3.7) and Theorem 3.2 that {0 < x ≤ M ; Zx

s 6=
Zx−

s } is a.s. a random finite set. Let 0 < V1 < V2 be σ{Zy
r , y > 0, r ≤ s}-

measurable and such that Zx
s − Zx−

s = 0 for all V1 ≤ x < V2. From the above
argument, for any x ∈ [V1, V2), t ≥ s, Zx

t − Zx−
t = 0 a.s. Since, for 0 < y < x,

Zx
t − Zy

t is continuous in t and right continuous both in x and in y,

P(Zx
t − Zx−

t = 0, for all V1 ≤ x < V2, t ≥ s) = 1.

The result follows from the fact that the set {0 < x ≤ M ; Zx
s −Zx−

s = 0} is a.s. a
finite union of intervals of the form [V1, V2), and M > 0 was arbitrary. ♦

Remark 3.5. We believe that the coupling constructed in Theorem 3.2 is interesting
in its own right. In the rest of this paper we shall exploit its Corollary 3.3.

4. An SDE for the path-valued Markov process

Again, let Zx be the solution of (1.1), with f satisfying conditions (1.2), (1.3)
and (1.4). From now on, the process Y x will be the solution of

Y x
t = x + 2

∫ t

0

∫ Y x
s

0

W (ds, dξ). (4.1)

We shall use the notation

F (a, b) = f(a + b) − f(a).

Let x, y > 0, and define

V x,y
t = Zx+y

t − Zx
t , Ux,y

t = Y x+y
t − Y x

t , t ≥ 0. (4.2)

We can couple these stochastic processes, by representing them as solutions of

V x,y
t = y +

∫ t

0

F (Zx
s , V x,y

s )ds + 2

∫ t

0

∫ Y x
s +V x,y

s

Y x
s

W (ds, dξ), (4.3)

Ux,y
t = y + 2

∫ t

0

∫ Y x
s +Ux,y

s

Y x
s

W (ds, dξ), (4.4)

with a W different from (but having the same distribution as) the one appearing in
(1.1) and (4.1), and leading to a pair (U, V ) that has the same marginal distributions
as the ones specified by (4.2).

We now define a Girsanov–Radon–Nikodym derivative, which will play an essen-
tial role in the sequel. For z ∈ E, t > 0 and U as in (4.4) (or, as we will need it
later, also for some other R+–valued continuous semimartingale U with quadratic
variation d〈U〉s = 4Usds), we define

Lt(z, U) = exp

(

1

4

∫ t

0

F (z(s), Us)

Us
dUs −

1

8

∫ t

0

F (z(s), Us)
2

Us
ds

)

, (4.5)

where we use the convention F (z,0)
0 = 0. It follows from (1.3) that for any M < ∞,

a ∈ [0, M ] and b ∈ [0, 1],

|F (a, b)|√
b

≤ CM ; (4.6)
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hence Lt(z, U) is a well–defined random variable. We shall also consider Lt(Z, U),
where z is replaced by the process Z, solution of (1.1) with some initial condition
Z0 = x. Note that whenever we consider Lt(Z, U), the processes Z and U will
always be mutually independent.

Finally L(Z, U) (resp. L(z, U)) will be defined by

L(Z, U) = L∞(Z, U) = Lζ(Z, U) (resp. L(z, U) = L∞(z, U) = Lζ(z, U)), (4.7)

where ζ = ζ(U) = inf{t > 0, Ut = 0}. We shall consider the r.v. L(Z, U) (or
L(z, U)) only when ζ < ∞ a.s., which e.g. is the case if U solves (4.4); hence the
above quantities are well defined.

We have

Proposition 4.1. For V and U as in (4.3), (4.4), the law of {V x,y
t , 0 ≤ t ≤ ζ}

is absolutely continuous with respect to the law of {Ux,y
t , 0 ≤ t ≤ ζ}, and the

Radon–Nikodym derivative is L(Zx, Ux,y).

Proof : For simplicity, we suppress the superindices x and y. We consider the
filtration {Ft, t ≥ 0} defined by Ft := σ((Zs, Us) : 0 ≤ s ≤ t ∧ ζ) and introduce the
local martingale

Lt = exp

(

1

4

∫ t∧ζ

0

F (Zs, Us)

Us
dUs −

1

8

∫ t∧ζ

0

F (Zs, Us)
2

Us
ds

)

,

where again ζ = inf{t > 0, Ut = 0} is the extinction time of U . Define, for each

n ≥ 1, Tn = inf{t > 0,
∫ t

0
U−1

s F 2(Zs, Us)ds > n} ∧ ζ. It is plain that the sequence
of events An = {Tn = ζ} is increasing. Thus from the fact that ζ < ∞ P a.s.
together with the assumption (1.3) it follows that P(

⋃

n An) = 1. Moreover for any
fixed n ≥ 1, (Lt∧Tn

)t≥0 is a uniformly integrable martingale, and if we define Qn

on FTn
by

dQn|FTn

dP|FTn

= LTn
,

we have that the law of (Ut∧Tn
)t≥0 under Qn equals the law of the process

(Vt∧Tn
)t≥0. It follows (see e.g. Proposition 3.5 in Ba and Pardoux (2015)) that

there exists a unique probability measure Q on Fζ = σ(∪nFTn
) such that, for each

n ≥ 1, its restriction to FTn
coincides with Qn. It remains to show that Q ≪ P,

and that
dQ

dP
= Lζ .

For this purpose, let A ∈ Fζ and n ≥ 1. Clearly A ∩ An ∈ FTn
and

Q(A ∩ An) = EP(1A∩An
LTn

)

= EP(1A∩An
Lζ).

We have not only P(
⋃

n An) = 1, but also Q(
⋃

n An) = 1 (indeed condition (1.4)
implies that Zx+y = Zx +V x,y goes extinct in finite time a.s., hence also V = V x,y

has this property). Thus, by letting n → ∞ in the above equality, we deduce from
the monotone convergence theorem that

Q(A) = EP(1ALζ).

Since Lζ = L(Zx, Ux,y), the proposition is proved. ♦
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Let us define for each x > 0 the sigma–field Gx = σ{Zξ
t , 0 < ξ ≤ x, t ≥ 0}. As

a corollary of Proposition 4.1 and of the independence of Zx and Ux we obtain for
an arbitrary t > 0,

E(V x,y
t |Gx) = E(L(Zx, Ux,y)Ux,y

t |Gx). (4.8)

In order to achieve the goal of deriving an SDE for the path-valued process
Zx, x ≥ 0, and in view of Proposition 4.1, we want to take the limit as y → 0 in
the expression

1

y
E(L(Zx, Ux,y)Ux,y

t |Gx).

Note that the law of Ux,y is that of the unique solution of the SDE

Ut = y + 2

∫ t

0

√

Us dBs. (4.9)

In particular that law (which is a probability measure on E) does not depend on
x; we denote it by Py. For any t > 0, A ∈ σ{Ur, r ≥ 0}, y > 0, let

Qy,t(A) = y−1Ey(Ut; A). (4.10)

For t > 0 we now write Ft := σ{Ur, 0 ≤ r ≤ t}. The next result is known,
tracing back to Lamperti and Ney (1968) Theorem 1 (see also Roelly-Coppoletta
and Rouault (1989), Theorem 2, Li (2000) Theorem 4.1 , and Lambert (2007)
Theorem 4.1 for more general versions). We give a proof, which is short, for the
convenience of the reader.

Proposition 4.2. For any fixed t > 0 and y > 0, the process U = {Ur, 0 ≤ r ≤ t}
is, under Qy,t, a Feller process with immigration. More precisely, U solves under
Qy,t the SDE

Ur = y + 4r + 2

∫ r

0

√

UsdB̄s, 0 ≤ r ≤ t, (4.11)

where B̄ is a Qy,t–standard Brownian motion.

Proof : Denoting by ζ the extinction time of U , we have

Ut∧ζ

y
= exp(log Ut∧ζ − log U0),

log Ut∧ζ − log U0 = 2

∫ t∧ζ

0

dBs√
Us

− 2

∫ t∧ζ

0

ds

Us
,

hence

dQy,t|Ft

dPy |Ft

= exp

(

2

∫ t∧ζ

0

dBs√
Us

− 2

∫ t∧ζ

0

ds

Us

)

,

which by Girsanov’s theorem implies the result, if we let B̄r = Br−2
∫ r

0
(Us)

−1/2ds.
Note that we can apply Girsanov’s theorem here, since EPy

Ut = y implies that

EPy

[

exp

(

2

∫ t∧ζ

0

dBs√
Us

− 2

∫ t∧ζ

0

ds

Us

)]

= 1.

♦
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As a corollary to Proposition 4.2 (and the Markov property) we get that for t > 0,
the process {Ur, r ≥ 0} under Qy,t solves the SDE

Ur = y + 4 (r ∧ t) + 2

∫ r

0

√

UsdB̄s, r ≥ 0. (4.12)

It is immediate that the limit of Qy,t exists as y → 0. We will denote this limit by
Q0,t, and note that it is the law of {Ur, r ≥ 0}, the solution of

Ur = 4(r ∧ t) + 2

∫ r

0

√

UsdB̄s, r ≥ 0.

For y ≥ 0, we denote by Qy,∞ the law of the process U = {Ur, r ≥ 0}, that satisfies
(4.12) with t = ∞. It is well known (see e.g. Lambert (2007)) that Qy,∞ is the law
of a critical Feller process conditioned to never die out, hence for y > 0 we have

Qy,∞(Us > 0 ∀s ≥ 0) = 1, (4.13)

whereas for y = 0 we observe that

Q0,∞(Us > 0 ∀s > 0) = 1. (4.14)

For t < ∞, r > 0 and z ∈ E, from Lr(z, U) and L(z, U) defined as in (4.5) and (4.7)
we obtain the Qy,t-a.e. defined measurable functions u 7→ Lr(z, u) and u 7→ L(z, u).
Under Qy,∞, we shall consider only Lr(z, U), since ζ = +∞ Qy,∞ a.s.

For any t > 0 and any partition P = {xk, k = 0, 1, . . .} with 0 = x0 < x1 < · · ·
we have that

Zxℓ

t =
ℓ
∑

k=1

(xk − xk−1)E

(

Zxk

t − Z
xk−1

t

xk − xk−1

∣

∣

∣
Zxk−1

)

+ Mxℓ,P
t

=
ℓ
∑

k=1

(xk − xk−1)

∫

E

L(Zxk−1, u)Qxk−xk−1,t(du) + Mxℓ,P
t ,

where we have used (4.8) and (4.10), and where we define

Mxℓ,P
t =

ℓ
∑

k=1

[

Zxk

t − Z
xk−1

t − E(Zxk

t − Z
xk−1

t |Gxk−1)
]

.

For every n ∈ N, we consider the partition Pn := {xn
k = k2−n, k ≥ 1}. It follows

from the above arguments that if x is a dyadic number and n is large enough, then,
with Mx,n := Mx,Pn,

Zx
t =

x2n

∑

k=1

2−n

∫

E

L(Z(k−1)2−n

, u)Q2−n,t(du) + Mx,n
t . (4.15)

Our aim is to show convergence of the right hand side as n → ∞, leading to

Zx
t =

∫

[0,x]×E

L(Zξ, u)Q0,t(du)dξ + Mx
t , (4.16)

where {Mx
t , x ≥ 0} is a Gx–martingale. To this purpose we start by proving

Lemma 4.3. For any y ≥ 0, t > 0 and z ∈ E,
∫

E

L(z, u)Qy,t(du) =

∫

E

Lt(z, u)Qy,∞(du). (4.17)
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Proof : Since Qy,∞ and Qy,t coincide when restricted to Ft, and since Lt(z, ·) is
Ft-measurable, the right hand side of (4.17) equals

∫

E

Lt(z, u)Qy,t(du). (4.18)

It thus remains to show that this is equal to the left hand side of (4.17). Because
of (4.12), the process (Us)s≥t under Qy,t is a driftless Feller diffusion. Thus the
exponential martingale

(Ms)s≥t := (Ls(z, U)/Lt(z, U))s≥t

constitutes a process of Girsanov densities with respect to Qy,t, with the property
that U under the transformed measure satisfies the SDE

dUs = F (zs, Us)ds + 2
√

UsdB̃s, s ≥ t. (4.19)

for a standard Brownian motion B̃. From this we conclude in precisely the same
manner as in the proof of Proposition 4.1 that EQy,t

[Mζ ] = 1, where ζ denotes
the extinction time of U . This implies that EQy,t

[Mζ |Ft] = 1 a.s., hence
EQy,t

[L(z, U)] = EQy,t
[Lζ(z, U)] = EQy,t

[Lt(z, U)], that is, the l.h.s. of (4.17)
indeed equals (4.18). ♦

For y ≥ 0, z ∈ E and B̃ a standard Brownian motion, consider the SDE

Vr = y + 4r +

∫ r

0

F (zs, Vs)ds + 2

∫ r

0

√

VsdB̃s, r ≥ 0, (4.20)

and denote the law of its solution by Q̃z
y,∞.

Lemma 4.4. For any y ≥ 0, t > 0 and z ∈ E,
∫

E

Lt(z, u)Qy,∞(du) =

∫

E

exp

(
∫ t

0

u−1
s F (zs, us) ds

)

Q̃z
y,∞(du).

Proof : Let y ≥ 0, t > 0 and z ∈ E be fixed throughout the proof. We recall that
Qy,∞ has been defined as the law of the solution U of the SDE

Ur = y + 4r + 2

∫ r

0

√

UsdB̄s, r ≥ 0. (4.21)

We note that

Lt(z, U) = Gt(z, U) e
R

t

0
U−1

s F (zs,Us)ds, (4.22)

with Gt being defined as

Gt = Gt(z, U) = exp

(

1

2

∫ t

0

F (zs, Us)√
Us

dB̄s −
1

8

∫ t

0

F 2(zs, Us)

Us
ds

)

.

It is plain that (Gr, r ≥ 0) is a local martingale under Qy,∞. In order to conclude

that Q̃z
y,∞|Ft has density Gt w.r.to Qy,∞|Ft, and thus to infer the assertion of the

lemma, it will be sufficient to ensure the Girsanov condition

EQy,∞
[Gt] = 1. (4.23)

For this we proceed similarly as in the proof of Proposition 4.1 and define for
n = 0, 1, 2, . . .

Tn := inf{r :

∫ r

0

U−1
s F 2(zs, Us) ds ≥ n} , T∞ := lim

n→∞
Tn.
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Since (Gt∧Tn
, n = 0, 1, 2, . . .) is a martingale, we can define a measure Q̃y on Ft∧T∞

whose restriction to Ft∧Tn
is given by

dQ̃y|Ft∧Tn

dQy,∞|Ft∧Tn

= Gt∧Tn
.

Then for all n ≥ 1, since {Tn ≥ t} ∈ Ft∧Tn
, we have

Q̃y({Tn ≥ t}) = EQy,∞
(1{Tn≥t}Gt∧Tn

) = EQy,∞
(1{Tn≥t}Gt).

Letting n → ∞ we obtain

Q̃y({T∞ ≥ t}) = EQy,∞
(1{T∞≥t}Gt). (4.24)

Because of

{Tn ≥ t} = {Tn ∧ t = t} = {
∫ t

0

U−1
s F 2(zs, Us)ds ≤ n},

we have

{T∞ ≥ t} = {
∫ t

0

U−1
s F 2(zs, Us)ds < ∞}. (4.25)

Under the measure Qy,∞ the process U solves (4.11), hence it does not explode in
finite time. Thus, from (1.3),

Qy,∞(T∞ ≥ t) = 1.

On the other hand, under the measure Q̃y, the process U is the solution of

Ur = y + 4r +

∫ r

0

F (zs, Us)ds + 2

∫ r

0

√

UsdB̃s (4.26)

up to the time T∞ ∧ t. Thanks to (1.2) the solution of (4.26) does not explode in
finite time, consequently we deduce again from (1.3) that

Q̃y(T∞ ≥ t) = 1.

Thus (4.24) simplifies to (4.23). ♦

We now prove the

Proposition 4.5. For all z ∈ E, y ≥ 0, the mapping t 7→ ϕ(t) :=
∫

E Lt(z, u)Qy,∞(du) is continuous on (0,∞), satisfies 0 ≤ ϕ(t) ≤ exp(θt), and
it converges to 1 as t → 0.

Proof : Fix z ∈ E and y ≥ 0. Let U be an E-valued random variable with
distribution Qy,∞. Then, for all z ∈ E, the mapping t → Lt(z, U) is a.s. continuous.
From (4.22) and (1.2), we infer that 0 ≤ Lt(z, U) ≤ Gt(z, U)eθt, hence for any b > 0,
the uniform integrability of the family of random variables {Lt(z, U), 0 ≤ t ≤ b}
follows from that of {Gt(z, U), 0 ≤ t ≤ b}, which in turn follows from its martingale
property established in Lemma 4.4. This implies the claimed continuity. The fact
that the integral equals 1 at t = 0 follows from the fact that L0(z, u) = 1. Finally,
the fact that

∫

E Lt(z, u)Qy,∞(du) ≤ exp(θt) follows readily from Lemma 4.4 and
(1.2). ♦
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Proposition 4.6. For any t, y ≥ 0, the mapping

z 7→
∫

E

Lt(z, u)Qy,∞(du)

is continuous from E into [0, eθt].

Proof : (a) Let us first check that the mappings z 7→ Gt(z, .) and z 7→ Lt(z, .)
and both are continuous in Qy,∞-probability. Clearly, for any s > 0 the mapping

z 7→ (U−1
s F (z(s), Us), U

−1/2
s F (z(s), Us)) is Qy,∞ a.s. continuous from E into R2.

(i) We start by considering the case y > 0, and recall (4.13) as well as (4.6). Hence,
if zn(s) → z(s) uniformly in s ∈ [0, t], then

∫ t

0

∣

∣

∣
U−1/2

s F (z(s), Us) − U−1/2
s F (zn(s), Us)

∣

∣

∣

2

ds → 0 Qy,∞ a.s. (4.27)

and
∫ t

0

U−1
s F (zn(s), Us)ds →

∫ t

0

U−1
s F (z(s), Us)ds Qy,∞ a.s. (4.28)

(Note that (4.28) follows from (4.6) and dominated convergence, since due to (4.13)

we have
∫ t

0
U

−1/2
s ds < ∞ Qy,∞ a.s.) From (4.27) and (4.28) we conclude that

Gt(zn, U) → Gt(z, U) and Lt(zn, U) → Lt(z, U), both in Qy,∞-probability.
(ii) It remains to treat the case y = 0. Then U0 = 0, and (4.14) holds. Let
T = inf{0 ≤ s ≤ 1, Us ≥ 1}. Consider again a sequence zn in E such that
zn(s) → z(s) uniformly in [0, t]. We let M = supn≥1 sup0≤s≤t zn(s), and CM be
the associated constant appearing in (1.3). Then whenever 0 < s ≤ T ∧ t,

|U−1/2
s F (zn(s), Us)1{Us≤1}| ≤ CM ,

hence by bounded convergence
∫ t∧T

0

∣

∣

∣
U−1/2

s F (z(s), Us) − U−1/2
s F (zn(s), Us)

∣

∣

∣

2

ds → 0 Q0,∞ a.s. (4.29)

as n → ∞. The convergence (4.27) for y = 0 now follows from (4.29) and the above
part 1 of the proof, with the strong Markov property applied to the stopping time T
and y = 1. From this we conclude that Gt(zn, U) → Gt(z, U) in Q0,∞-probability.
To obtain (4.28) from (4.6) and dominated convergence also in the case y = 0, we
observe, using (4.11) and Itô’s formula applied to

√
Us, that

∫ t

0

U−1/2
s ds =

2

3
[
√

Ut − Bt] < ∞ Q0,∞ a.s.

On the other hand from (4.6) and (4.14) we have for all s > 0

|F (zn(s), Us)|
Us

1{Us≤1} ≤ CM√
Us

Q0,∞ a.s.,

thus we conclude by Lebesgue’s dominated convergence theorem that
∫ t∧T

0

U−1
s F (zn(s), Us)ds →

∫ t∧T

0

U−1
s F (z(s), Us)ds Q0,∞ a.s.

This together with (4.27) for y = 1 implies (4.27) also for y = 0.
We have thus established (4.27) and (4.28) for y ≥ 0, which yields the claimed

continuity of the mapping z 7→ Lt(z, .) in Qy,∞-probability.
(b) In order to conclude the proof we need uniform integrability of the family
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Lt(zn, .), z ∈ E, with respect to Qy,∞, where zn, z ∈ E and zn → z. This can be
established in the very same manner as we did in the proof of Proposition 4.5, after
observing that 0 ≤ Lt(zn, .) ≤ Gt(zn, .)eθt, and that Gt(zn, .) not only converges in
Qy,∞-probability towards Gt(z, .) due to part (a), but also is uniformly integrable
because of EQy,∞

[Gt(zn, U)] = 1 for all n ≥ 1, and EQy,∞
[Gt(z, U)] = 1. ♦

Combining this result with Lemma 2.3, we deduce

Corollary 4.7. For any t, y ≥ 0, the mapping

x 7→
∫

E

Lt(Z
x, u)Qy,∞(du)

is a.s. càdlàg from R+ into R+.

We are now in a position to establish

Proposition 4.8. For any t, x ≥ 0,

⌊x2n⌋
∑

k=1

2−n

∫

E

Lt(Z
(k−1)2−n

, u)Q2−n,∞(du) →
∫

[0,x]×E

Lt(Z
ξ, u)Q0,∞(du)dξ

in probability, as n → ∞.

Proof : We first show that
⌊x2n⌋
∑

k=1

2−n

∫

E

Lt(Z
(k−1)2−n

, u)
[

Q2−n,∞(du) − Q0,∞(du)
]

→ 0 (4.30)

as n → ∞. To this purpose we define for each n ≥ 1 and z ∈ E

Hn(z) =

∫

E

Lt(z, u)
[

Q2−n,∞(du) − Q0,∞(du)
]

.

It follows from Lemma 4.4 that

Hn(z) = E

[

exp

(
∫ t

0

(V2−n

s (z))−1F (zs,V2−n

s (z))ds

)

− exp

(
∫ t

0

(V0
s (z))−1F (zs,V0

s (z))ds

)]

,

(4.31)

where V2−n

(z) (resp. V0(z)) denotes the solution of the SDE (4.20) with y = 2−n

(resp. with y = 0). For ξ ∈ [0, x] we put

hn(ξ) =

⌊x2n⌋
∑

k=1

Hn(Z(k−1)2−n

)1[(k−1)2−n,k2−n)(ξ).

Whenever ξ ∈ [(k − 1)2−n, k2−n), we briefly write

ξn := ⌊ξ2n⌋2−n = (k − 1)2−n, (4.32)

hence as n → ∞, ξn → ξ and Zξn → Zξ− a.s. Also, hn can be rewritten as

hn(ξ) = Hn(Zξn).

From (1.2), the expression in the expectation on the right hand side of (4.31) is
bounded in absolute value by 2 exp(θt). Hence we infer from Lemma 4.9 below and
Lebesgue’s dominated convergence theorem that for all ξ > 0

Hn(Zξn) → 0 in probability as n → ∞.
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Since the left hand side of (4.30) equals
∫ x

0
hn(ξ)dξ, and since |Hn(z)| ≤ 2 exp(θt),

the assertion (4.30) follows by dominated convergence. It thus remains to show
that

⌊x2n⌋
∑

k=1

2−n

∫

E

Lt(Z
ξn , u)Q0,∞(du) →

∫

[0,x]×E

Lt(Z
ξ, u)Q0,∞(du)dξ

a.s, as n → ∞. This follows readily from Corollary 4.7 together with the elementary
fact that for any right–continuous mapping ξ 7→ A(ξ) from [0, +∞) into [0, 1], and
any dyadic x > 0, as n → ∞, one has

2−n

⌊x2n⌋
∑

k=1

A((k − 1)2−n) →
∫

[0,x]

A(ξ)dξ. ♦

We finally establish the following result

Lemma 4.9. Let ξ > 0 and ξn be as in (4.32), Vn,n := V2−n

(Zξn), Vn := V0(Zξn).
Then

∫ t

0

(Vn,n
s )−1F (Zξn

s ,Vn,n
s )ds −

∫ t

0

(Vn
s )−1F (Zξn

s ,Vn
s )ds → 0

in probability, as n → ∞.

Proof : We first note that Vn,n
s > 0 a.s. for all s ≥ 0, while Vn

s > 0 for all s > 0,
but Vn

0 = 0. These facts follow from our assumption (1.3), which implies that when
those solutions get close to zero, their drift is bigger than 2. Consequently, since
for any s the mapping v 7→ v−1F (Zξn

s , v) is locally bounded and continuous away
from v = 0, we conclude that for any 0 < δ ≤ 1, both

∫ t

δ

(Vn,n
s )−1F (Zξn

s ,Vn,n
s )ds →

∫ t

δ

(Ṽs)
−1F (Zξ−

s , Ṽs)ds, and

∫ t

δ

(Vn
s )−1F (Zξn

s ,Vn
s )ds →

∫ t

δ

(Ṽs)
−1F (Zξ−

s , Ṽs)ds

a.s., where Ṽ denotes the solution of the SDE (4.20) with y = 0 and z = Zξ−. Since
for any ε > 0,

P

(
∣

∣

∣

∣

∫ t

0

(Vn,n
s )−1F (Zξn

s ,Vn,n
s )ds −

∫ t

0

(Vn
s )−1F (Zξn

s ,Vn
s )ds

∣

∣

∣

∣

> 3ε

)

≤ P

(∣

∣

∣

∣

∫ t

δ

(Vn,n
s )−1F (Zξn

s ,Vn,n
s )ds −

∫ t

δ

(Vn
s )−1F (Zξn

s ,Vn
s )ds

∣

∣

∣

∣

> ε

)

+ P

(∣

∣

∣

∣

∣

∫ δ

0

(Vn,n
s )−1F (Zξn

s ,Vn,n
s )ds

∣

∣

∣

∣

∣

> ε

)

+ P

(
∣

∣

∣

∣

∣

∫ δ

0

(Vn
s )−1F (Zξn

s ,Vn
s )ds

∣

∣

∣

∣

∣

> ε

)

,
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the Lemma will follow from the fact that for any ε > 0, η > 0, there exists 0 < δ ≤ 1
small enough such that

P

(∣

∣

∣

∣

∣

∫ δ

0

(Vn,n
s )−1F (Zξn

s ,Vn,n
s )ds

∣

∣

∣

∣

∣

> ε

)

≤ η,

P

(∣

∣

∣

∣

∣

∫ δ

0

(Vn
s )−1F (Zξn

s ,Vn
s )ds

∣

∣

∣

∣

∣

> ε

)

≤ η.

(4.33)

It is plain that Vn
s ≤ Vn,n

s ≤ V s, where V solves the SDE

V t = 1 + (4 + θ)t + 2

∫ t

0

√

V sdBs, t ≥ 0, (4.34)

and for any η > 0, there exists M > 0 such that

P

(

sup
0≤s≤δ

V s > M

)

≤ η

2
.

In order to show (4.33) we consider the events ΩM = {sup0≤s≤1,n≥1 Zξn
s ≤ M}.

From (1.3) we infer sup0≤u≤M ; 0≤z≤M u−1/2|F (z, u)| ≤ cM for some finite constant

cM depending on M . Thus, if we let τM = inf{s > 0, V s > M}, it follows from
Itô’s formula that, writing Vs for either Vn,n

s or Vn
s ,

∫ δ∧τM

0

ds√
Vs

=
2

3

[

√

Vδ∧τM
−
√

V0 −
1

2

∫ δ∧τM

0

F (Zξn
s ,Vs)√
Vs

ds − B̃δ∧τM

]

,

hence we have on ΩM

0 ≤
∫ δ∧τM

0

ds√
Vs

≤ 2

3

[

√

V δ∧τM
+ δ

cM

2
− B̃δ∧τM

]

. (4.35)

Now for both V = Vn,n and V = Vn,

P

(∣

∣

∣

∣

∣

∫ δ

0

V−1
s F (Zξn

s ,Vs)ds

∣

∣

∣

∣

∣

> ε

)

≤ P(ΩM ) + P(τM < δ) + P

(
∣

∣

∣

∣

∣

∫ δ∧τM

0

V−1
s F (Zξn

s ,Vs)ds

∣

∣

∣

∣

∣

> ε; ΩM

)

≤ P(ΩM ) +
η

2
+ P

(

∫ δ∧τM

0

ds√
Vs

> c−1
M ε; ΩM

)

.

Finally, since P(ΩM ) → 0 as M → ∞, by choosing first M sufficiently large and then
δ sufficiently small, (4.33) follows readily from the previous estimate and (4.35). ♦

Guided by (4.16) we now define

Mx
t := Zx

t −
∫

[0,x]×E

Lt(Z
ξ, u)Q0,t(du)dξ, t ≥ 0, x ≥ 0. (4.36)

Remark 4.10. Due to Lemma 4.3 and Proposition 4.5, also the second summand on
the r.h.s. of (4.36) is a.s. continuous in t for all x, hence (4.36) lifts to an identity
for continuous-path valued processes (indexed by x).
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Lemma 4.11. For any fixed t > 0, {Mx
t , x > 0}, defined by (4.36), is a càdlàg

(Gx)-martingale.

Proof : The first term on the right hand side of (4.36) is càdlàg, and the second
is continuous. As for the martingale property, we first note that Mx

t is integrable
(since Zx

t is integrable, and the last term in the right hand side of (4.36) takes
values in [0, xeθt] due to Proposition 4.5) and Gx-measurable for all x > 0. We next
show that if 0 < a < x are two dyadic real numbers, then

E[Mx
t − Ma

t |Gy] = 0. (4.37)

Indeed, there exists m ∈ N such that am and xm are integers. Then for any n ≥ m,
Mx,n

t and Ma,n
t defined by (4.15) satisfy

E[Mx,n
t − Ma,n

t |Gy ] = 0. (4.38)

It follows from the above arguments that Mx,n
t → Mx

t and Ma,n
t → Ma

t a.s. as
n → ∞. Moreover Mx,n

t is the difference of the integrable r.v. Zx
t which does not

depend upon n, and a nonnegative r.v. which depends upon n and is uniformly
bounded by xeθt. Consequently the convergence holds also in L1. The same is true
for the sequence Ma,n

t . Hence (4.37) follows from (4.38).
Suppose now that x and a are arbitrary positive real numbers, satisfying again

0 < a < x. Let xn (resp. an) be a decreasing sequence of dyadic reals, such that
xn → x (resp. an → y), and with an < xn for all n ≥ 1. It is plain that Mxn

t → Mx
t

and Man

t → Ma
t a.s. and in L1. Moreover for each n ≥ 1,

E[Mxn

t − Man

t |Gx] = E {E[Mxn

t − Man

t |Gxn ]|Gx} = 0,

hence taking the limit as n → ∞ in that identity, we deduce that (4.37) holds true
for any 0 < a < x. The result is established. ♦

We now show that for any A ∈ E , the Borel field of E, any t > 0,
∫

A

Q0,t(du) =

∫

A

u(t)Q(du), (4.39)

where the σ–finite measure Q on (E, E) is the excursion measure of Feller’s critical
diffusion (4.9), in the sense of Pitman and Yor, see formula (3a) in Pitman and Yor
(1982), with the scale function s being chosen as s(y) = y. To see (4.39), first note
that for all Φ ∈ Cb(E),

lim
y→0

1

y
Ey[Φ(U)] =

∫

E

Φ(u)Q(du).

Since 1
y Ey[Ut] = 1 for all y > 0, this implies by a uniform integrability argument

that

lim
y→0

1

y
Ey[Φ(U)Ut] =

∫

E

Φ(u)u(t)Q(du).

By the definition of Qy,t the l.h.s is

lim
y→0

∫

E

Φ(u)Qy,t(du),

which is
∫

E
Φ(u)Q0,t(du) in view of (4.11). This proves (4.39).
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The measures Q◦u−1
t , t > 0, constitute an entrance law of of the Feller diffusion

(4.9). This entrance law, which also figures in formula (3.2) of Pitman and Yor
(1982), is given by

Q ◦ u−1
t = (2t)−1Exp((2t)−1), t > 0. (4.40)

Indeed, it is readily checked from formula (4.12) that the distribution of ut under
Qy,t is Gamma(2, 2t), which is the size-biasing of Exp((2t)−1). On the other hand,

it is immediate from (4.39) that Q0,t ◦ ut is the size-biasing of Q ◦ u−1
t . From this

the claim (4.40) is immediate. Let us also note that our probabilities Qy,∞ are the
“upward diffusions” P ↑

y of Pitman and Yor (1982).
Combining (4.36), (4.39) and Remark 4.10, we immediately arrive at our main

result

Theorem 4.12. The path–valued process {Zx
· , x > 0} admits the decomposition

Zx =

∫

[0,x]×E

uL(Zξ, u)Q(du)dξ + Mx, (4.41)

where Mx is a C([0, +∞); R)–valued càdlàg martingale (if C([0, +∞); R) is equipped
with the topology of uniform convergence on compacts).

We know that x 7→ Zx arises as a sum of excursions, as was stated above in
Corollary 3.3. Call NZ(dξ, du) the corresponding point process, which is such that
for all x > 0,

Zx =

∫

[0,x]×E

uNZ(dξ, du).

The above statement shows that the predictable intensity measure of NZ is

L(Zξ, u)Q(du)dξ.

Intuitively (and somewhat informally stated) this means that, given (Zξ)0≤ξ<x,
the predicted increment of Z in the next bit dx of ancestral mass is a Poisson
point process with intensity measure L(Zx−, u)Q(du) dx. This is made precise by
the following statement, which was conjectured in the case of a logistic drift in
Pardoux and Wakolbinger (2011b):

Corollary 4.13. For bounded g : R+ → R+ and z ∈ E, put Φg(z) := e−〈g,z〉.
Then, for this class of functions,

AΦg(z) := Φg(z)

∫

E

(

e−〈g,u〉 − 1
)

L(z, u)Q(du)

gives the generator of Z in the sense that for all g : R+ → R+,

Φg(Z
x) − Φg(Z

0) −
∫

[0,x]×E

AΦg(Z
ξ)dξ, x ≥ 0 is a martingale. (4.42)

Proof : The validity of (4.42) can be seen by writing

Φg(Z
x) − Φg(Z

0) =

∫

[0,x]×E

(Φg(Z
ξ− + u) − Φg(Z

ξ−))N(dξ, du)

=

∫

[0,x]×E

e−〈g,Zξ−〉(e−〈g,u〉 − 1)N(dξ, du).
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The same line of arguments that led to (4.41) now shows that the r.h.s. equals
∫

[0,x]×E

e−〈g,Zξ−〉(e−〈g,u〉 − 1)L(Zξ−, u)Q(du)dξ + Mx
g , x ≥ 0,

for some real-valued càdlàg martingale {Mx
g , x > 0}, which yields (4.42). ♦
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