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Summary.  Let X be a forward diffusion and Y a backward  diffusion, bo th  
defined on [-0, 1], X t and yt being respectively adapted  to the past  of  a 
Wiener  process W(.), and to its future increments. We construct  a " two-  
sided" stochastic integral of the form. 

t 

q~(u, X,, Y") dW(u) 
0 

which generalizes the backward  and forward It6 integrals simultaneously. 
Our  construct ion is quite intuitive, and leads to a generalized stochastic 
calculus. It is also shown that  for each fixed t, our  integral coincides with 
that  defined by S k o r o h o d  in [18]. 

1. Introduction 

The It6 integral defines a process 

t 

0 

t__>O 

where {W~} is a s tandard  real valued Wiener process defined on a probabi l i ty  
space with filtration (f2, F, Ft, P), and {~0t} satisfies 

(i) q~. is a measurable  process and opt is an Fcmeasurable  r andom variable, 
Vt>O. 

T 

(ii) ~o~dt<oe a.s., V T > O .  
0 
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Clearly, the second part of condition (i), which means that the process is 
"HI:.}" "adapted to ( t or in other words "non  anticipative" (i.e. ~o t is independent 

of future increments of {W.} after time t), is by far the most restrictive one. 
It has been a challenging problem, and has become important for appli- 

cations, to be able to relax condition (i), i.e. to define stochastic integrals with 
anticipative integrands. There have been several important results in that 
direction, using at least three different kinds of methods. The first method 
consists of replacing {Ft} by a larger filtration {Gt} , with respect to which {Wt} 
is no longer a Wiener process, but might still be a semi-martingale, i.e. in this 
case the sum of a Wiener process and a process with bounded variation, which 
still is a possible integrator. This idea was proposed by K. It6 himself in [-6], 
and it led to the theory of "grossissement d'une filtration", of which a rather 
complete account may be found in [7]. The second method allows the integra- 
tion of a process of the type (Pt(X), where ~ot(x ) is an adapted random field, and 
X is an anticipative random vector. The idea is to consider the stochastic 

t 

integral ~os(x)dW~, which depends on the parameter x. Provided one can show 
0 

that it has a modification which is an a.s. continuous function of x, one can 
then "evaluate it at x = X " .  This kind of technique has been used in connection 
with the theory of flows by Bismut [1]. The third method consists in expand- 
ing the integrand into a series of multiple It6-Wiener integrals, and then 
defining the integral through its series expansion. This last method has been 
used by Skorohod [-18], Berger-Mizel [-2], Kuo-Russek [9], Rosinski [-17]. 
A related approach is used by Ogawa [14]. For  an account of Skorohod's 
integral and its relation to the Malliavin Calculus, we refer to Nualart-Zakai 
[13]. The last method seems to be the most general, but apparently little is 
known about the resulting integral. 

The aim of the present paper is to construct via an elementary and very 
intuitive method (i.e. a variation of ItO's original construction of the stochastic 
integral) the integral of a particular class of anticipative integrands. 

Suppose {Xt, te l0 ,  1]} and {yt, te l0 ,  1]} are real valued processes, which 
solve respectively the following forward and backward stochastic differential 
equations : 

t t 

Xt=f f  + Sb(Xs) ds+ fa(X~)dW(s), 
0 0 

J. 1 

r t = j +  ~c(Y~)ds+ f ~(ys)dW(s) 
t t 

where the last integral is a backward It6 integral (see the definition below in 
w It then follows that at each instant t, X t is a(W(s), O<_s<=t) measurable, 
and Y* is a(W(s)-W(1) ,  t<=s <= 1) measurable, and we want to integrate with 
respect to dW(t) a function of both X t and yt, say ~(Xt, yt). Our aim is in fact 
to get a stochastic calculus for C 2 functions of both X t and yr. Our chief 
motivation was the pair of forward and backward stochastic PDEs that arise 
in nonlinear filtering theory, see Pardoux [15]. Nevertheless, we will treat here 
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only the case of a pair of finite dimensional SDEs, and we will give some 
simple applications of our results in w 6. 

The paper  is organized as follows. Section 2 is concerned with prelimi- 
naries, notations and a technical Lemma  which will be very useful later. In 
Sect. 3, we construct our two sided It6 integral as a limit of sums. In Sect. 4, we 
prove the path continuity of our integral, and compute its quadratic variation. 
In Sect. 5, we study the continuity of the integral with respect to the integrand. 
In Sect. 6, we prove a chain rule of It6 type, define a two sided Stratonovich 
integral and prove a Stratonovich version of the chain rule. In Sect. 7, we 
compare our results with the other approaches described above. In particular, 
we check that our integral is a particular case of Skorohod's  integral as was 
indicated to us by Nualar t  [12]. We also discuss possible extensions. 

The authors wish to thank J. Jacod for indicating an error in the first version of this article, as 
well as an anonymous referee for useful suggestions. 

2. Notation and Preliminaries 

2.1. Preliminaries 

Let {W(t), teE0,1]} be a D-dimensional standard Wiener process satisfying 
W(o) = 0, defined on a probabili ty space (f2, F, P); i.e. W(t) 
=(w1(t), w2(t) ,  . . . ,  w~(t))'.  

To each t6EO, 1], we now associate two a-algebras 

F~ = o-(W(s),  O < s < t )  

and 
F t = ~ ( W ( s )  - W(1) ;  t__< s < 1). 

Then {Ft} is a forward filtration (i.e. Ftl" as tT), and {U} is a backward 
filtration (i.e. Ui" as t$). We will use the notation with subscript {X,} to denote 
an Fcadapted process, and the notation with superscript {yt} to denote an U-  
adapted process. The reason for the notation {W(t)} is that {W(t), tT} is an F, 
Wiener process, and {W(t) -W(1) ,  t,~} is an F t Wiener process, both having the 
same differential dW(t). 

Let us now recall the definitions of forward and backward stochastic 
integrals. Below, w(t) stands for any of the W~(t) l<_i<_D. Let {Xt, t~[0, 1]} be 
an Fradapted continuous process (i.e. with a.s. continuous paths) with values in 
IR N, and ~ C(IRN). Let {n", nEN} denote any sequence of partitions: 

7c"= { 0 = t ~ < t  7 < . . .  < t ~ =  1}. 

n n _ .~  Such that [~"]:= sup (tk+ 1 - t k )  0 as n~oo .  We will in fact write t k instead 
O < k < n - - 1  

of t~,, for notational convenience. Then the forward It6 integral of ~(Xt) with 
respect to dw(t) can be defined as 

t n - 1  

q~(X~) dw(s): = P-lira ~, ~(Xtk) (w(tk+ 1 /x t) -- w(t  /X t)) 
0 n ~  k = O  
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and it is well known (see, e.g., [11]) that the resulting process is a continuous 
forward F t local martingale. 

Let now {yt, t~[O, 1]} be an U-adapted continuous process with values in 
~M, and O~C(NM). Then the backward It6 integral of O(V) with respect to 
dw(t) can be defined as: 

1 n - -1  

S ~(YS) dw(s):= P-lim ~, ~(ytk+~) (w(tk+ 1 v t) - w(t k v t)) 
t n ~ o r  k = 0  

and the resulting process is a continuous backward U local martingale, as is 
readily checked by reversing the usual construction and properties of the 
forward integral Note that the operation of backward It6 integration does 
definitely differ from that of forward It6 integration, as well as their associated 
chain rules (see Sect. 6). In fact, the backward It6 integral of ~h(Y s) with respect 
to W(s) may be understood as the forward integral of ~b(Y 1-~) with respect to 
W(1 - s )  - W(1). 

We nevertheless avoid any specific distinct notation in order to avoid 
complications, since we are using different notation for F t and U adapted 
processes. 

Suppose now that {Xt} is a forward continuous F~ semi-martingale, and 
{Yt} is a backward continuous U semi-martingale. We moreover assume that 
4~eCX(P,N), and ~ s  CI(RM). We can define the forward Stratonovich integral of 
�9 (Xt) with respect to dw(t) as: 

S q)(Xs)odw(s)= q)(Xs)dw(s)+�89 q/(X~).d(X, w)s 
0 0 0 

t N t 

note that ~ ' (Xs ) . d (X ,w)s : - - -  ~ ~'~,(Xs) d(Xz, w)~, the . denoting scalar 
0 i = 1 0  

product) or also as: 
\ 

i n - - I  4)(Xs)odw(s)= P-lim ~ 4)(Xt~) + ~(Xt~+ ~) (W(tk + 1/X t) -- W(t k/X O) 
o i=o 2 

n - -  1 t k + t k +  1 

= P - l i m ~  q)(X 2 )(W(tk+lAt)__W(tk^t)) 
k = O  

see [11]. Note that the validity of the second definition is restricted to integra- 
tion with respect to a Wiener process. Similarly, we can define the backward 
Stratonovich integral of 7'(Y t) with respect to dw(t) as 

1 1 1 

~(Y')odw(s) = ~ 7 ' (yS)dw(s)- l  ~ 7"(Y'). d(Y, w>~ 
t t t 

where - as usual - (Y,w>t denotes the joint quadratic variation of Y and w 
over the interval [0, t]. 
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Again, we also have: 

1 , -1  g~(y,k)+ ~(yt~+l) 
S ~(YS)~ = P-lira ~ 2 (W(tk+ 1V t) --w(t k V t)) 
t n ~ c ~ )  k = O  

n - - 1  t k + t k + l  

= e - l i m ~ T ( Y  2 )(W(tk+l Vt)--W(tk vt)). 
n ~  k = O  

Clearly, there is no need for a distinction between forward and backward 
Stratonovich integration, and both associated chain rules coincide with the 
usual one (see Sect. 6). 

Let us introduce now some notation that we will be using constantly below. 
If x is a vector, x i will denote its i-th component. If a is a matrix, al will denote 
its i-th row. Let f be a real-valued function, f j  means the (partial) derivative of 
f with respect to x whenever x is a real variable, or the gradient of f with 
respect to x if x is a vector. If x varies in IR a, and f takes values in R k, f~ 

denotes the k x d matrix \3xj ]" 

Let us finally indicate that h~ will stand for the Dirac measure at t, and 
. f0  if i + j  
O~j~ ~ l i f i = j .  

2.2. Our Framework and First Assumptions 

Suppose we are given functions" 

b: [0, 1] • ~t.M-.R ~, 

a: [0, 1] • M• 

c: [0, 1] x N N ~ I R  N, 

7: [0, 1] x l R N ~ R  s•176 

We assume that each of these functions is measurable in (t, x) [resp. in 
(t,y)]; that b(t,o), a(t,o), c(t,o) and 7(t,o) are bounded functions of t, te[0,  1]; 
and that Vte[0,1] ,  x--,(b(t,x),a(t,x)) and y--*(c(t,y),7(t,y)) are functions of 
class C l, each first order partial derivative being a bounded function of (t, x) 
[resp. of (t, y)]. 

Given ~ N  M and ] e N  N, we define {Xt, te[0,  1]} as the unique solution of 
the It6 forward stochastic differential equation 

t t 

Xt = x + S b (s, Xs) d s + ~ a(s, X,) dW(s) 
0 0 

as the unique solution of the It6 backward stochastic and {yt, t e l0 ,1]}  
differential equation 

1 1 

Y'=;+ Sc(s, Y')ds+ ~(s, YOdW(s). 
t t 
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Note that both E(IXt[ p) and E(IYt] v) are bounded functions of t~[0, 1], for 
any peN. 

Associated with the above SDEs are two stochastic flows, one running 
forward and the other backward. More precisely, for s___< t, we denote by 

(2.2.1) x-~o(t ;  s, x) 

the mapping from R M into the set of M dimensional random vectors, which is 
specified by the fact that for fixed s~[0, 1], {~o(t; s, x), sNt<= 1} solves the SDE: 

t t 

X, = x + ~ b(u, Xu) du + S a(u, Xu) dW(u). 
S $ 

We will also use the notation X~ 'x for q)(t; s, x). 
Again for s < t, we denote by 

(2.2.2) y-+~,(s; t, y) 

the mapping from ]R N into the set of N dimensional random vectors, which is 
specified by the fact that for fixed re[0, 1], {0(s; t, y), 0__< s =< t} solves the SDE 

t t 

y s = y +  yc(u, Y~)du+ Sy(u, r~)dW(u). 
s x 

We will also use the notation Ys for 0(s; t, y). 
We are not going to use any of the recently discovered properties of 

stochastic flows, and we do not make the corresponding hypotheses. 
We will only use the following result: 

Lemma 2.1. For any O<_s<-t<_ 1, the mappings 

x~q) ( t ; s , x )  and y-~O(s;t ,y)  

are mean-square differentiable and for any F~ measurable M-dim random vector 
[resp. for any F t measurable N-dim random vector tl] the norm of the M x M 

! , matrix valued process q~x(t,s,~) [resp. the N x N  matrix valued process 
O'y(s;t,t/)] has a moment of  order p which is bounded for O<_s<_t<_l, Vp~N. 
Finally, the processes q~'~(t;s,X~) and O'y(s; t, yt) are a.s. continuous in (s,t) on 
O<_s<_t<_l. 

Proof. The mean-square differentiability is proved in Gihman-Skorohod ([4], 
p. 59). 

Let us write X7 '~ for q)~(t; s, 4), and Zi,,, for rp' (t; s, 4). Then {Z~,t, t>s}  
solves 

t D t 

Z',,t = e, + ~ b'~ (u, X~" r Z's, ~ du + • I (aj)'x (u, X~' r Z~,, d Wj(u). 
s j = l s  

Where e~ denotes the vector in F, M whose i-th component is one, and the 
~b, 

others zero; b'~ is the matrix - - ,  and similarly for (ai) ~. The fact that all 
~x~ 



A Two-Sided Stochastic Integral and its Calculus 21 

moments of Z~, t are bounded follows from the boundedness of the derivative of 
t , b and a. The existence of a modification cpx(t, s, Xs) which is a.s. jointly 

continuous in (s, t) follows from Kolmogorov's and Gronwall 's Lemmas. [] 

We let 
,/~: [0, 1] xRMx]RN- '*R  

be a measurable mapping such that V(t, y)e[0, 13 x IR N, x ~ ( t ,  x, y) is of class 
C 1, and V(t, x)e[0, 1] x R M, y ~ ( t ,  x, y) is of class C 1, and moreover 

t (HI) 45, ~'x, ~y are continuous with 

respect to (x, y), uniformly in t~[0, 1] 

and either 

3 K > 0  and d e n  such that: 

(H2) I~(t,x,y)l+l~'x(t,x,y)l+l~'y(t,x,y)l<=g(l+lx[d+lyl a) 

V(t, x, y)e [0, 1] x R M x ]RY 
or 

VC, 9K c s.t.: 

(H3) Ir 

V(X, y ) e R  M+N s.t. Ixl_-< c,  lY[ < C. 

Our first goal is to define a "two sided It6 stochastic integral". 

t 

x~ r ~ dW(u) 
s 

such that, when �9 does not depend on y, we get the usual forward It6 integral, 
and when ~P does not depend on x, we get the backward It6 integral. We will 
then study the properties of the above process, as a function of s and t, define 
a two-sided Stratonovich integral, and establish chain rules. But before doing 
that, let us establish a lemma, which will be a useful and practical tool in much 
of what follows. 

2.3. A F61lmer-Type Lemma 

The main step in the classical proof of It6's formula consists in showing that if 
{Zt} is an adapted continuous and bounded process, then we have the follow- 
ing convergence in L2(O)" 

n - - 1  1 

Z 0 - [. dr. 
k = O  0 

While the classical arguments use in a crucial way the adaptedness of {Zt} , 
F611mer [3] has remarked that the above convergence holds a.s., for any 
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continuous process {Zt}, since the random measures: 

n - - 1  

~. = Y~ (w( tL  1) -w(t~)) 2 ,~,~ 
k = 0  

converge a.s. weakly to Lebesgue measure on [0, 1]. The latter follows easily 
from the a.s. convergence:/~,([0, t])--+t, Vt~[0, 1]. 

Let us now generalise Fiillmer's idea. We will consider random signed 
measures on [0, 1] k, with k = l  or 2. For t=( t l ,  ..., tk)~[0, 1] k, we denote by 
[0, t] the set {s=(sl,  ...,s,); O<s~<ti, i=1  . . . .  , k}. In the sequel, for any signed 
measure #, I#[ will denote the total variation of #. 

Lemma ZZ Let {#", neN} and # be random signed measures on ([0, 1] k, 
B([0, 1]k)), such that 

(i) #"([0, t])--+#([0, t]) in probability, Vts[0,  1] k, 
(ii) supP(]#"[ ([0, 1]k)>m)-+0, as m--+ + c~. 

n 

Then for any continuous process Z=(Z(t))t~to.11k , I~"(Z)--+p(Z) in probability, 
as n--+oo; where #(Z). '= ~ Z(t)l~(dt). 

[0,1] k 

Proof Each partition rt" (as defined in Sect. 2.1) induces the following partition 
of [0, 1]: 

[0, tT] w i t " l ,  t"2] w . . .  u ] t " , _  i ,  1]; 

which in turn induces a partition ~" of [0, 1] k. 

We again assume that I~'1--+0, as n--+~. Let e > 0  be arbitrary. First choose 
K > 0  s.t. 

Sup P(I#"I ([0, 1] k) + [#1 ([0, 1] k) > K) < e/2. 
n 

There exists p~N and a random field (ZP(t))t~to, l~k such that 

(a) Z~(t, co) remains constant, as t remains in a partition element of #P. 

(b) P ( Sup ]ZP(t, co) - Z ( t ,  oo)[ 
\te[O, 1] k 2K ] = 2" 

Clearly I,"(ZP)~I~(Z p) in probability as n--+oo, as a consequence of (i) and 
(a). Moreover: 

I~(z) -~"(z) l  < I~(z) -#(Z~)l + I~(Z0 -~"(Z~)l + I~"(z0 - ~"(Z)l 
< I,a(Z p) -#"(ZP)[ +( Sup IZ(t) - Z"(t)l) (1#1 ([0, 13 k) + [~t"l frO, 1]k)), 

tE[O, 1] k 

P @ ( Z ) -  ~" (Z)l >__e)__< P(l#(Z p) - / #  (Z")l >8/2) 

p g 
+P(I,ul ([0, 1]k)+ I~"1 ([0, 1]k)>K)+P ( Sup, IZ ( t ) - z ( t ) l > ~ - ) ,  

\ t ~ [ O ,  1] .z. ~t~ / 

lim P@(Z)  - #"(Z)I > ~) < ~. 
n ~ c ~  

And this last inequality holds Ve>O. [] 
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Lemma 2.3. Let {2", neN;  2}, {#", meN;  /~} be random signed measures on 
[0, 1]; {7.", heN;  2}, {if", meN;  fi} be random finite measures on [0, 1], such 
that each of these four sets satisfy the hypotheses of Lemma 2.2 and moreover 
12"l<~." a.s., I#"[<~ -~ a.s. I f  ~.xfi(A)=0 a.s., where A denotes the diagonal of 
[0, 1] 2, then for any random field (Z(t))t~[o,l]2 which is a.s. bounded and con- 
tinuous on [0, 1] 2 - A ,  2" x/~"(Z)--*2 x/~(Z) in probability as n, m-~oo. 

Proof We first show that 12[<2; a similar proof shows that I#[=<fi. Let 
denote the Borel a-field over [0,1]. It suffices to show that ~={AeO);  
i2(A)J<2(A)} equals r It follows from the hypotheses that (g contains all in- 
tervals of the form Is, t]; then it contains all finite unions of disjoint sub- 
intervals of [0, 1]. But cg is a monotone class. Then cg=~.  Let now h be any  
smooth function from F, 2 into [0, 1], which is zero on a neighborhood of A. 

P (12m x #m (Z) --  ~ x ~ (Z)[ > 8) 5 P (I An x ~m (Z  (1 - h))l > 8/3) 

+ P(I2" • ~t'(Z h ) -  2 • #(Z h)i> e/3)+ P(I2 x NZ(1 -h) ) l>  e/3). 

By Lemma 2.2 the middle term on the right side of the above inequality 
tends to zero. We obtain 

Jim P(J2" x/~" ( Z ) -  2 x #(Z)J > e)____lim P([sup J/(t)J] 2" x ~"(1 - h ) >  e/3) 
n , m  n , m  t 

+ P([sup IZ(t)l] 2 x/~(1 - h) > e/3) < 2P([sup IZ(t)[] 2 x/~(1 - h) > 8/3). 
t t 

But since ~.x/Y(A)=0 a.s., we can choose h such that the last term is as 
small as we want. [] 

3. Definition of the Two-Sided Integral 

We first construct and characterize our two-sided It6 integral on the fixed 
interval [0, 1]. For clarity, we first state and prove our result in the case D-- 1, 
and then in the case D > 1. 

Our first class of integrands, which we will denote by 2 ,~ is the set of 
processes {O(t, X ,  yt), tel0,  1]}, where X and Y are given as in Sect. 2.2, and ~b 
satisfies assumptions (H1) and (H2). 

Lemma 3.1. ~,~2 is a vector space, and for peL~(O, 1), /f 

t t 

Proof Let ~b(X, Y) and cb(X, Y)eSe z. Then, if we define X=(X)() ' ,  ~'=(YI?)', 
clearly O(X,Y)+O(X,  y)=~5(y~, fz), with O(X, ~-)eL, e 2. J ~ p e ~  2 follows from 
the fact that )(t is the solution of the stochastic differential equation 

Xt = 1 + i Xs P (s) d W(s). [] 
0 
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Proposition 3.2. Suppose D= 1; {Xt} , {yt} and 4 are defined as in Sect. 2.2, and 
4 satisfies assumptions (H1) and (H2). 

Suppose moreover 

(H4) 4, 4' x and 4' r are jointly continuous in(t, x, y). 

Let {r:, hEN} be any refining sequence of partitions of the interval E0, 1], 
such that Innl-~0, as n ~  + co. For any nelN, define: 

n--1  

~(4 )  = ~ 4(t~, Xt? , yt%l)(W(tT+l) _ W(tT))" 
i=O 

Then {~n(4), heN} is a Cauchy sequence in L2(E2). 

Remark. Note that in case 4 does not depend on Y, ~,(4) converges to the 
forward It6 integral; and in case 4 does not depend on X, ~n(4) converges to 
the backward It6 integral. [] 

Before proceeding to the proof of Proposition 3.2 let us state its main 
consequence. 

We will use below the notations defined in (2.2.1) and (2.2.2). In the 
following statement, as well as in all similar expressions below 4'x and 4'y are 
understood as row vectors. 

Theorem 3.3. There exists a unique linear mapping 4(X ,  Y ) ~ [ 4 ( X ,  Y)] from 
~ 2  into L2(O, F1, P) such that 

(i) E[~(4)] =0,  
1 

(ii) E[~2(4)] = E  S 42(t, Xt, YZ)dt 
0 

1 t 

+ 2E (4;(s, x , ,  v ')  O',(s; t, v') v(t, Y')) 
O 0  

(4'x(t, X~, g') ~o;(t; s, X~) ~(s, X~)) ds dt. 

Moreover, if 4 satisfies (H4), ~(4) is the L2(O)-limit of the sequence {~n(4), 
neN} defined in Proposition 3.1. 

Proof of Proposition 3.2. We write d i W  for W(tT+l)- W(t~), so that 

n - - 1  

i=O 

The proposition will follow from 

(*) tim E(~, ~,,) = Z 
n , m ~  ~3 

where Z is the right side of (ii). 

Let us suppose without loss of generality that n<=m; i.e. n"~ in a refinement 
of r:. Note that the hypothesis that {r:} be a refining sequence is not essential, 
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but does simplify the proof. We will write t i for t 7 and tj for t]'. 

n- - i  m - 1  

~, ~ = Y~ y~ ~ ( ~ ,  m); 
where i= o j= 0 

~,j(~, m)= ~(t,, x,,, r'~+') ~(tj, x,,, Y "  ~) A ~ W~J W 

{ , g , , = A , , , + B . m + C , m ,  
where 

A,~=  Y~ %(n,m), 
{ i , j ; t j  + , ~ti} 

B,,. = ~ ohj(n, m), 
{ i , j ; t i < t j < t j + l  <=ti+l} 

Cnm = Y~ ~ij(~, m). 
{i , j ; t i  + l ~tj} 

Let us first compute the limit of E(B,,,). Conditioning upon F~jvF tj+', one 
easily checks that 

E(B,m)= ~ E[~(t i ,  Xt, , Yt'+~)~(tj, Xtj, YtJ+')(tj+ 1 -t j)] .  
{ t i ~ t j < t j + l  <ti+l} 

It easily follows from the continuity of cb that 

1 

E ( B . ~ ) ~  E ~ q~2(t, X,, Y') dt. 
0 

Let us next compute the limit of E(C,m ). 
Consider E(~ij), for t i+l~t j .  With the notation introduced in Sect. 2.2, we 

can rewrite Xtj .as q)(tj;ti+l,Xti+,) a n d  yti+, as @(ti+l;tj, ytj). Suppose we 
replace Xtj by X * :=cp(tj; ti+ X** ) [resp. yt,+~ by Yff+~: =O(ti+l;  tj, YZJ+ql" then �9 t j  1~  ] 3 '  

A~W [resp. A J W] becomes independent of all other terms in the such modified 
o~ij. 

It then follows that 

E ( .  0 = E {[~(t , ,  X,,, Y" +') - ~(tl, x, , ,  ~,, + 1)] 
• [~(tj, x,,, Y',+,)-~(tj, x[,, r',+l)l A i WAJW}. 

Applying the mean value theorem twice, we obtain 

E(o@= E { qS,y(ti, Xt,, ~zt,+ ~) . (y, . . . .  yjt,+ ~) 

• ~'x(tj,R,,, Y'~+I).(X,,-X[)A i WaJW} 

where Yt'+'(a~) lies on the segment joining Y"+~(co) and yjt'+'(o~) in ~u .  It 
follows from our hypotheses and the proof of the mean value theorem that one 
can choose {:Yt'+~(o~)} in such a way that ~-,,+, is an F , , v F  t'+~ measurable 
random vector. We could also argue exactly as we do below with the in- 
troduction of the function f Similarly, -~tj is an F~j v F tj+~ measurable random 
vector, s.t. )(tj(o~) lies on the segment joining Xt,(~o ) and X[~(co) in ]R M. 
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We would like next  to apply again the mean value theorem to 

y t ,+ ,_  yjt, +, = ~( t t+ , ;  tj, yt,)_~r(tt+ 1; tj, yt,+,) 
and 

X,, -X~, = ~0 (tj; h+,,  X,,+ ,) - ~p (ti; tt+ 1 '  X t i ) .  

Unfortunately ,  under  our  standing assumptions,  the flows are only mean- 
square differentiable, so that  the mean-value theorem cannot  be applied di- 
rectly. Fo r  s, t e [0 ,  1], define 

f (t, s)=E{tTI)'y(ti, Xti , ~ti+ 1). ~/ ( t t+  1 ; tj, ytj + t(yt,+ l _ yto) 

x ~'x(tj, Xt,, Yt'+a)'rP(tj; tt+,,  Xt, +s(Xn+, - X t ) )  At WAJ W}. 
Clearly 

E(cqj) =f(O,  1) - f ( 1 ,  1) - f (O ,  O) + f ( 1 ,  O) 

and f is C 1 in t and f,' is C ~ in s. 
Therefore,  ~(u, v)~]O, 1 [X]  O, 1[ such that  

E(%) = - f d ( u ,  v) 

= -E[(~ 'y( t i ,  Xt, , ~t,+~) ~j,(tt+l ; tj, YJ) A j Y) A j W 

x (tP'x (ty , Xt, , Y"+ ') r (t3; tt+ 1, ~ )  AtX)  At W)] 

y j =  y t s+u(y t j+*-  yts), A i y =  y t , + , -  ytq 

=xt,+v(X,,+,-x,), AtX=X,,+~-X,. 

where 

Now define 

(**) ~o(n ,m)=- ( r  Xt,, t, , . ' �9 Y ) ~ r ( t l ,  tj, Yt 0 d j Y )  A ~ W 

. . . .  h, Xt)  A X) A W. x (~x(tj, Xt, , yt,) (px(ti ' t t 

It is easily seen that  as n and m--+oo, 

E l%(n, m) - ~u(n, m)l -- o ([ tn+ 1 - -  t n] [ t j +  t - -  g ] ) .  

On the other  hand, it follows from L e m m a  3.4 below that  

1 t 
t r s  ! C,,=--+y 5(~r(S,X, ,  )~r(s ;  t, yt) y(yt)) 

O 0  

x (~'x(t, Xt,  Yt) (p'x(t; s, Xs) a(Xs) ) ds dt 

in probabil i ty,  as n and m--+oo. Uni form integrability, and hence the con- 
vergence of E(C,,m), follows from hypothesis  (ii) on �9 and L e m m a  2.1. Since 
the fact that  n<=m has not  been used in the computa t ion  of l imE(C,, , . ) ,  clearly 

lim E(A,m )= lim E(Cnm ) and (.) is proved. [ ]  
n, m--+ oo n~ n l ~  oo 

L e m m a  3.4. For 0 < s < t <_ 1, 1 < k <__ M and 1 <_ l < N define 

, . y s  , . y t  , t , . Zkt(S, t )=(~r(s ,  Xs, ) ~r(s, t, ))t(~x(t, Xt, Y )  C~x(t , s, Xs))k. 
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Then 
i t 

Z go(n, m)~  Z (. ~ Zk,(S, t) ak(X~) 7,(V') ds dt 
{i,j;t~+l<=t~} k , l  0 0 

in probability, as n and m ~ o e ;  where gij(n,m) has been defined by (**) in the 
preceding proof 

Proof Define ~'(n, m)= --Zkl(ti, t~) i i " A XkA WA~Y~AJWand the signed measures 

n - - 1  

~ ' k - - Z  i i " - -  A X k A W a r p  , 
i = o  

m - 1  

#r~= _ Z A J Y t A J W a t 7  '' 
j=0  

Note that 
~_.!(n m) Z 2 , , , ,  

(i, j ;  tp+ 1 < t~'} {i, j ;  t n < t ~  < tp+ 1} 

1 1 

+ (. S Z( s, t) Zk,(S , t) d2~(s) d#7(t ) 
O0 

with Z(s, t) = 1 if s < t, and 0 otherwise. 
It is easily seen that the first term in the right side of the last equality tends 

to zero in Ll(~?). 
Define 2 k (ds) = a k(s, X~) ds, & (dt) = 7l(t, Yt) dt, 

n--1 

#" =�89 Y, [(A'X0 z +(A i W) 23 6, e, 
i = 0  

m - 1  
- n  1 #, - 3  F~ E(# D 2 + ( #  w) 2] a, r, 

j = 0  

-~(d~)=�89 +o~(~,X))ds, ~(dt)=~(l + ~(t, r'))dt. 

It is easily seen that we can apply Lemma 2.3, which yields 

;~, x ~" (z  z) -~& x ~,(z z) 

in probability, as n, m ~  oo. [] 

Proof of Theorem 3.3 

(a) Existence. Suppose first that (H4) holds. Using Proposition 3.1, we then 
define 

~(~) = L 2 - l imi t  ~.(~). 
n ~ c o  

But obviously E~, (~)=0,  Vn, and we have shown in the proof of Proposition 
3.1 that E[~z(~) ]~Z where Z denotes the right side of (ii). It then follows that 
~(~) satisfies (i) and (ii). 
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Suppose now # satisfies (H1) and (H2), but not (H4). All we need to do is 
find a sequence of #'.'s satisfying (H4), s.t. 

(a) {~(~.), neN} is Cauchy in U({2), 
(fl) the right side of (ii). converges to the right side of (ii). 
(a) being checked by applying (ii) to ~(~ . -~b , . )=~(r  only (fl) 

needs to be proved. 
Let {p., heN} be a sequence of smooth functions from ~. into F., such that 

~. ( t ,  x, y) = ( p . .  ~(-, ~, y)) (t) 

for (t, x, y)~[0, 1] x IR u x 1~ N, where: 

[ q~(t, x, y) if t s [0, 1] 

$(t, x, y) = / ~(0, x, y) if t < 0 

(# (1 ,  x, y) if t > l .  

It is easy to check that ~ ,  is jointly continuous, and to verify (fl) with this 
sequence. 

We note that tlie linearity of r follows immediately from the construction. 

(b) Uniqueness. Choose p~L~176 1), {2t, 0_=t_< 1} solution of the SDE 

"2, = 1 + i Y'~ p(s) dw(s), 
0 

~ - 0 ,  and ~( t , x , y ) :p ( t ) x .  Then ~ ( X , Y ) 6 2 f  2 - see Lemma 3.1. 
I 

~Xsp(s)dW(s), which is a forward It6 integral, coincides with ~(q~(X, Y)), and 
0 

E(~(~(x, Y)) 2,) = E(~(~)) + E[r ~($)]. 

But E(~(~))=0 and 

E [~ ( , )  ~(6)] --- �89 [ E ( ~  (r + 6)) - E(~(a~)) - E (~($ ) ) ] .  

Using (ii), we obtain 

1 

E(~(~,(x, Y)), :r = E ~ q,(t, x , ,  Y~) p(t) "2, d t 
0 

1 t 

+ E ~ ~ (~'y(s, Xs, Y~) 0~(s; t, yt) ~(t, yt)) 2t  p (t) p(s) ds dt. 
O 0  

Thus E(r Y))J(1) is completely determined, Vp~L ~ (0, 1). But as p varies in 
L~(0, 1), Xt describes a total set in U(fLF1,P). [] 

We have already proved a particular case of the following immediate. 
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Corollary 3.5. Let D = 1; ~(X,  Y), 4~(X, Y)EAr 2. Then 

1 

E [3 (~(X, r))  ~ (~#(x, Y))] = e S ~b(t, Xt, Y~) q~(t, Xt, Y') dt 
0 

1 t 

+E[[(q),..(s, Xs, y ) ~ y ( s , t ,  y t ) ? ( t , ~ ,  y- - - -  - - t -, t -, . " ' �9 Y )) (~y(t, Xt, Y ) CPx(t , s, X~) ~(s, 2~)1 ds dt 
O 0  

1 t 
+E f - '  ' �9 - ,  - '  , ' ((#,,(s, X~, Y~) r t, ~t) ~(t, Y )) (~'~ (t, Xt, Y ) (p~(t, s, X~) a(s, X~))ds dt. [] 

* I V  

O 0  

We now generalize the above results in the case D >  1. We only state the 
results, since the proofs are obvious variations of the above ones. 

Theorem 3.6. There exists a unique linear mapping ~(X,  Y)--,~[qo(X, Y)] from 
~ 2  into L2(Q, F1, P; l{ D) such that 

(i) E[~(~)] =0, 
1 

(ii) E [ ~ ( ~ )  ~j(~)] = 6ijE f ~ 2 ( t ,  Xt, Y~) dt 
0 

1 t 

+ e I I (~;(s, Xs, r ~) O',(s ;t, r')~, (t, Yg) 
O 0  

x ( a , ; ( t , x , ,  ' ' �9 ' Y)(p~(t ,s ,X,)aj(s ,X~))dsdt  
1 t 

t r s  t . +E I i(~y(s, Xs, )t~y(s, t, Ytl?)(t, yt)) 
O 0  

, y t  , x(q~'~(t,X,, )q)x(t; s,X~)ai(S, Xs))dsdt. 

Moreover ,  if 4~ satisfies (H4). {n"} is a refining sequence of parti t ions of [0, 1] 
such that  1~"[--*0 as n ~ c o ,  and if 

n - - 1  

~,(~) = ~, ~(tT, X,7, Y'~+,)(W(tT+~)- W(tT)) 
i = 0  

then ~({0)--* ~((0) in L2(O, F1, P; [{'), as n--* co. 

Corollary 3.7. Let cb(X, Y), q~(X, Y)E..s p2. Then 

1 

E[~,(~)  ~j(&)] = bilE ~ qS(t, Xt; yt) ~(t, Xt ' yt) dt 
0 

1 t 

+ e I ~ (c#'y(s, Xs, Y~) r t, Yt) yj(t, Y')) -' ' (~'~(t, Xt, yt) ~5~(t; s, X~) ~i(s, Xs)) ds dt 
O 0  

1 t 

+ e l f  - '  " - '  ' (@'y(s, X,, Y ) t~y(s; �9 t, 2 t) 71(t, Y )) (~'~(t, X,, Y') (p~(t; " s, X~) aj(s, X~)) ds dr. [] 
*I d 

O 0  

Let  us finally construct  the integral in case �9 satisfies (H1) and (H3). We 
denote  by s the set of processes {~(t, Xt, yt), tE[0, 1]}, where X and Y are 
given as in Sect. 2.2, and ~ satisfies (H1) and (H3). 

Let  f E C ~ 1 7 6  M+N) have compact  support ,  and satisfy f ( x , y ) = l  on the set 

{(x,y); I x ] < l  and ly ]< l} .  For  any k e N * ,  we define f k (x ,y ) ' .=f  ~, . If 
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~(X, Y)~Lf, we define for each k~N* Cbk(X, y ) ~ , ~ ( , 2  by: 

q~k(t, X,, y, ) :=  q~(t, X,, Y') fk(Xt, yt). 

Finally, we denote 

Ok: = {m; sup IX,(co)l _-< k, sup IY'(~)I <k}. 
rE[0, 1] t~[0,  11 

Theorem 3.8. There exists a unique linear mapping: ~(X, Y ) ~ ( ~ )  from ~ into 
the set of classes of a.s. equal Fl-measurable random vectors s.t. Vk~]N* r 
= ~ ( ~ 0  a.s. on O k. 

Proof Since ~ Ok=f2 a.s., it suffices to check that for l>k, ~(~t) coincides a.s. 
k 

with ~(r on Ok, which follows easily from the constructions of ~(~k) and 
r [] 

It is worthwhile to verify the following uniqueness result. 

Proposition 3.9. Suppose ~(X, Y ) ~ ,  and moreover 

q~(t, Xt, Yt)=O d t x d P  a.e. 
1 

Then ~ q~(t, Xt, Yt)dW(t)=O a.s. 
o 

Proof In view of Theorem 3.6(ii), it suffices to show that V i__< D, either 
t y $  t qYy(s,X~, )~y(s; t, Yt)7,(t, Yt)=0 l{~<t}dsdtdP a.e. (,) 

or else 

(**) r t, Yt)qr s,X,)ai(s,X~)=O l{s<=,}dsdtdP a.e. 

Let us for instance establish (**). The proof of (*) would be analogous. Let 
{Xt ~, O<t=<l} be the solution of 

t t 

x~ = x + ~ [b(u, x~.) + i t . . . . .  ](u) ~,(u, x~.)] du + ~ G(u, X~.) dW(u). 
0 0 

It follows from Girsanov's Lemma that the laws of X t~ and X t are equiva- 
lent. Since each of these random vectors is independent of yt, it follows from 
the hypothesis that 

�9 (t,X~, Y')=O dtdP a.e. 

Moreover, Xt=~o(t;s,X~), and X~=X~+ i ai(u,X,)du+qe with ~/g given 
by {s - ~) + 

,,= i [b(u,X~,)+G,(u, X2)--b(u,X.)--,~Au, X.)3du 
( s - O  + 

+ i D(u, x~)-~(u, x.)] dW(u). 
(s - e) + 
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It is easy to show that -1 Jl~lrL2(~)--'0. We then have 
8 

8 ( s _ O +  

l(~<_tidsdtdP a.e. 

(**) then follows by taking the limit in probability along a particular sequence 
~,--,0, provided we show that for almost all s~[0, 1], 

1 i a,(u,X,)du~a,(s,X,) 
~n s--  8n 

in probability, for a certain sequence e ,~0 .  This will follow if we show that 

1 I1 s du-6i(S, Xs) 

But 

i l ' X,) ~,! ai(u,X,)du-ai(s , ds~O a.s. 
0 

and this last sequence is uniformly integrable with respect to dP. [] 

Remark 3.10. It is easily seen that the converse of Proposition 3.9 is not true. 
Choose 

Xt=exp (W(t)-2), yt =exp (W(1) -W( t ) -~ f - ) .  

X - Y 6 ~  2, from Lemma 3.1; and Xt-yt4:0 dPxdt a.e. But, from both the 
forward and the backward It6 calculus, we have 

1 

~(Xt-Y')dW(t)=O a.s. [] 
0 

4. The Two-Sided Integral as a Process 

Let now 0 < s < t < l .  If O(X, Y ) ~ ,  we can define 

~(#)t: = ~ (11,,,1 eb) = i cI)(u, X,, Y") dW(u). 
s 

Proposition 4.1. Let (X, Y) and (X, y ) ~ 2 .  

We then have 
(i) E~sV~'[~ ~ s  ( ),] =o, 
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t 

s _A EF, vF t~'dStu Y (ii) FFs v e t r ~  (d)]s ~ j ( ~ ) t  ] - L . ~ , - , ,  - ~ i j  j _ ,  , . . , , ,  Y") ~(u, X,, Y") du 
s 

t u  

+ e ~ ~ ~'~ S (~;(~, x~, Y o) ~,;(~; u, r") 7j(u, r"))($;(u, xo, r") ,~'~ (u; v, 2 .)  
S S 

• 6i(v, X,)dvdu 
t u 

+ e~s ~ ,~  ~ (~;(~, xo, r ~) 0',(~; u, ~") ~,(u, ~"))(~'.(~, x . ,  Y") z'.(u; ~, x~) 
$ s 

• aj(v,X,)dvdu. [] 

Remark 4.2. Under additional regularity assumptions on ~ and the coefficients 
b, a, c, 7, it is possible to obtain an estimate of the form 

E( ! ~(U, Xu, Y~)dW(u) 4) <=c(t-s) 2. 

Then from Kolmogorov ' s  Lemma the process ~dW; 0____s<t____l possesses a 
continuous modification. 

We will now prove, however, this result in greater generality with a less 
tedious method. 

T h e o r e m  4.3. Let q~(X, Y)~5~. Then the process {~(~)~, 0_<s_<t~l} possesses a 
modification which is almost surely continuous. 

Proof In order to simplify the notation, we restrict ourself to the case D = 1. 
From the argument in Theorem 3.8, it is enough to prove the theorem in case 
tb(X, y)r which we now assume. On the other hand, it suffices to show 
that {~(t).'=~(q~) ~ 0~ t_< l}  has an a.s. continuous modification. This will 
follow if we show that 

~ c, ~>0,  ~ > 0  such that V0<s____t_<l, 
(*) , < - J  ,1+~ ( P(i~(t)-~(s)l>(t-s) ) =  C(t--s] . 

Indeed, one way of proving Kolmogorov 's  Lemma  consists in first establishing 
(,) and then showing that the existence of an a.s. continuous modification 
follows from (*) (see, e.g., Lo6ve [10]). 

We now prove (,) 

~(t)-~(s)=O+rl, 
where 

t 

0 =  S [O(u, X,, Y")-q~(u, Xs,yt)] dW(u) 
s 

-i - ~(u, xs ,  Y') dW(u). 
s 

Since (X s, yt) is independent of {W(v)-W(u); s<=u, v<t} ~ is in fact a usual 
It6-Wiener integral. It then follows from (H2) and the bounds on all moments  
of [X~I and ]Yt I that 3e 1 s.t. 

E(,r <= c l ( t - s )  2 
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One easily sees that (ii) of Proposition 4.1 makes it possible to compute 
E(02), yielding 

E(02) = E  i [-q~(u, X,, Y") - ~ ( u ,  Xs, yt)]2 du 
s 

t u  

+ 2E j ~ (~',(v, X~, yo) O'y(v, u, r") y(u, Y~)) 
s s 

x (~'x(u, X,, Y") q/x(u ; v, Xv) a(v, Xv))dvdu. 

Clearly, the second term on the right side is bounded by c2(t-s)  2. On the 
other hand from the mean value theorem, 

E i [~,(u, x,,, Y") - ~(u, xs,  Yg] ~ du 
s 

t 

= E ~ [q)':,(u, X~,, yu). (X,, - X s ) +  cb'y(u, X,,, Y"). (Y" - yt)]z du 
s 

< c3 i [(E IX,, - X~]'*) 1/2 + (ELY" - y,[4)1/2] du 
s 

<= c3 (t  --  s) 2. 

Finally, for ye(O, 1/4), 

2 z 24 <-_~ E(O2) + ~  E(tff) 

<=c(t-s) 2-4~ 

where c does not depend on s, t, and (,) follows. [] 

Henceforth, {~(~)~, 0 <s  < t_< 1} stands for its a.s. continuous modification. 
It follows readily from the continuity and Proposition 4.1. 

Proposition 4.4. Let ~ satisfy (H1) and (H2). 
Then {~(r 0 < s < t _ l }  is the unique continuous process such that 

Vp~L2(O, 1; ]RD), VO<s<t_<l ,  Vi<D, 

[i ~[~,(q,)~2~]=E X~ ,~(u,X.,V p,(u .du --t  u 

s 

D y _ t u  ] 

+ ~ E |X~ ~ ~ ~'y(O, Xo, yo) @'y(0; u, Y") Zi(u, Y") pj(u) X,, p,(O) dO du 
j = l  L s s  

where )(~=exp p(u).dW(u)-�89 [p(u)[2du , X t=X~ [] 
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We could have given another  formula in Proposit ion 4.4, had we consid- 
ered J~  as a backward diffusion. 

We now compute the quadrat ic  variation of the process ~(t). 

Theorem 4.5. V0<s<t__< 1, let {re", heN} be a sequence of partitions of [s, t], of 
the form 

rP= {s=t"o <t~ <. . .  <t~,=t} 

where [~z"[= max (t~+t-t~)--+O, as n-+oo. Then, if q)(X, y)~zZ, 
O<k<_n-1 

n--1 t 
. . . . 2 Y " )  du E [~i (tk +1) -- ~i (tk)] [~j (tk +1) -- ~j (tk)] -+ •ij S r (u, Xu, 

k=O s 

in probability, as n--* oQ. 
In other words, we can associate to {~(t); 0__<t=<l} its quadratic variation as 

a d x d matrix valued process {((~))(t), 0<__t__< 1} which is given by 

t 

Proof. Again, it suffices to establish the result in case r satisfies (H1) and (H2), 
which we suppose from now on. The proof  is split into two steps. 

(a )  First suppose that r satisfies (H4). It follows from L e m m a  2.2 that  

n--1  t 

E ~ 2 ( t k '  X t k '  y t k + l )  A k Wi A k Wj___>blj S ~ 2 ( U  ' X u  ' y u ) d u  
k = O  s 

in probability, as n ~  oe. 
It then suffices to show that  

t k + l  tk+l 
a . " = E  f ~(u)dWi(u) ~ ~(u)dWj(ul--ZcI)~AkW~AkWj -*0 

k tk tk k 

in probability, as n ~  0o ; where 

e(u)." = qb(u, X,,  Y"), 

~k: = ~(tk, X,k, Y*k § 9, 

tk+l tk+l 
E ( (u)-eOdW  ( (u)+ OdWj 
k t~ tk 

tk+ l t k + l  

+2 S S 
k tk tk 

Using Schwarz's inequality, we then get 

\ Ik tk 

'il 
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It then suffices to show 

(i) ~E I (~(u)-~)dW~ - ,0 ,  as n-~oo, 
L \  tk 

(ii) 3c s.t. ~ E (~(u)+q~k)dW i <=c, Vn. 

Let us prove (i), (ii) being proved exactly in the same way. By the formula 
already used to compute E(02) in the proof of Theorem 4.3, we obtain 

F~E (q~(u)-q~k)dW ~ = E ~ [q~(u)--q)k[2du 
k \ tk tk 

t t t  

! ~P V" t . + 2 • E ~ ~ gk(V, U) q)'y(v) ( , U, Y") yi(Y") qYx(U) q~x(u, v, X,) a~(Xv) dv du 
Y k s s  

where 
gk(V,U)={1 if tk <=V<--u<--tk+ 1 

0 otherwise. 

Boths terms of the above right side tend to zero as n--+oo: for the first term, 
use the continuity of ~; for the second, use the fact that 

n - 1  

Y~ gk(~, ~ ) - ~ ~  
k = O  

dr. du a.e. 

(b) We now suppose that go satisfies only (HI)  and (H2). We associate to �9 the 
sequence {4~p, peN} defined in the proof of Theorem 3.3 (where the index n 
was used instead of p). Define 

/~" = ~(s)  d ~ ( s  - (s (s 
k = O \  tk tk tk tk 

It follows from arguments very similar to those used in the proof of E[G[-+0 
that 

E[fl~[--+0, as p--+oo, uniformly in n. 

On the other hand, r e > 0 ,  

tk tk 8 

<=P ~ y ep(UldW~ y q~p(u)dWj-6 u q~(uldu >e/3 
\ l  k tk tk 

Let us fix p such that each of the two last terms in the above right hand 
side is less than e/3, Vn~N. We can then find, using the result of Part (a), G s.t. 
Vn>__ G, the first term of the right hand side is less than e/3. 
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We have shown that Ve, ~n~ s.t. Vn>n~, 

( N  ) P ~(u)dWi ~ cb(u)dWj-6ij cI)2(u)du >e <e. 
k tk tk 

The result follows. [] 

Corollary 4.6. Let {A(t), te[0, 1]} be a process of bounded variation, and suppose 

t 
Vte[0, 1], A(t)+ ScI)(s,X,,ys)dWi(s)=O a.s. 

0 

Then A(t)=0 a.s., Vt~[0, 1], and 

( ' t P 3te[0,1] ,  s.t. S~(s, Xs, YS)dW~(s).O =0. 
0 

Proof It follows from the assumed identity that {A(t)} possess an a.s. con- 
tinuous modification. Since it is of bounded variation, its quadratic variation is 
zero, as well as the joint quadratic variation of A(.) and 5cb(s, Xs, YgdWi(s ). 

0 

We then infer from the assumed identity and Theorem 4.5 

1 

S ~ 2 ( t ,  X t ,  y t ) d t = O  a . s .  

o 

Thet result then follows from Proposition 3.9 (whose conclusion holds as well 

for ~ ( u ,  X u, yu)dW(u)) and Theorem 4.3. [] 
$ 

5. Continuity of the Two-Sided Integral with Respect to its Integrand 

We have already established a convergence result of the type ~(~b,)-~(~) in 
the proof of Theorem 3.3. Here we want to have the coefficients b, a, c, 7 of 
Sect. 2.2 varying as well, which of course means the forward and backward 
diffusion X and Y will vary also. We will restrict ourselves to establishing a 
convergence result in L2(~?). However, this result can clearly be "localized". 

Let {~, 7 ;  n~N} be a sequence of initial conditions, and {"b, "a, "c, "7; n~ 
N} sequences of coefficients, while all possess the same regularity properties as 
b, ~r, c, 7. We assume 

(H5) ~"~22 and ~ ,  

(H6) sup {]"b'(t, 0)1 + ["b'x(t, x)[ + ["~(t, 0)[ + [~a'(t, x)[ 
n,t,x,y 

+ ]"c(t, 0)1 + ["c;(t, y)] + ]"7(t, 0)1 + ]"7;(t, Y)]} < oo. 
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For  almost all t~[0, 1], and all K > 0 ,  

(H7) 

sup {l"b(t, x) -b( t ,  x)l + ["b'x(t, x) -b'~(t, x)l 
Ixl=<K 

+ ["a(t, x) -~ ( t ,  x)t + I"o-'x(t, x) -a'x(t, x)]} ~ 0  

sup {l"c(t, y) -c( t ,  y)l + I"c',(t, y) -c'y(t, y)l 
lyl < K 

+ I"~,(t, x) --~(t, x)l + I%(t, x) --Vet, Y)I} ~ 0  

Let {"Xt} and {.yt} be the solutions of 

t t 

"x, = x" + ~ "b(s, '%) ds + ~ " ,~(s, "Xs) dW(s), 
0 0 

1 1 

, r t  = y + ~ "c (s, "ys) ds + ~"7 (s," Y') d W(s). 
t t 

as n--, oe 

as n~oQ. 

We then have 

Lemma 5.1. Under (H5), (H6) and (H7), Vp~N, as n--,oe 

sup E ["X, -XtIP---,O, 
t e [ 0 ,  11 

sup EI"Y~- ~l'--'O, 
t ~ [ 0 , 1 ]  

Vs~[0, lJ, sup El"CP'x(t; s, "X~)-q0~(t; s, Xs)lV--+O, 
t~[s ,  1 t  

Vt~[0,1] ,  sup El Oy(s, " t , . Vt)lP~0 " ' ' t ,  V ) - 0 , ( s , t ,  
s ~ [ 0 ,  t] 

where q~ and ~ are the flows defined by (2.2.1) and (2.2.2). 

Proof We only prove the result concerning {"X} and {"~0'x}, the other proofs 
being similar. It suffices to prove the result for p > 2. 

(a) Convergence of{"X}. Using the decompositions 

b( X) - ' b ("X)  = b( X) - "b(  X) + "b( X) - "b("X), 

(x)  -"~("x) = G ( x ) - " o ( x )  + "G(x)-"~("x) 

and (H5), it is easy to establish 
t 

E( IX , -  "X,I 2) <= Cp O, + Cp y E(IX s -  "Xsl 2) ds 
0 

with 
t t 

O, = E ~ Ib(s, X,) - "b(s, X)lP ds + E ~ la(s, X s) - "~(s, X~)lP ds. 
0 0 

0,--+0. The result then follows using It follows from (H6) that 
Lemma. 

Gronwall's 
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(b) 

We have 

(,) 

where 

from 

Convergence of{"~o'x}. We fix se[0, 1], and define 

z i :  ' t z , . =  ~Ox,(t, s, "x~). =~o~,( ;s, X3, " ~ . . . .  

t 

n , n i n i Z I - "Z~ = 4"t + ~ b,(u, X,) (Z, - Z,) du 
$ 

D t 

+ Z In '~  (Zu-- Z.)dWj(u) t j)~tu,"X,) i . i 
j = l s  

t 

t n n ! n 4"= I [b~(u, X , ) -  b~(u, X.)] i Z,  du t 

s 

D t 

+ y__, j ' E % ) ; ( u , x . , )  . ' " ' - (  Gj)x(u, x.)] Z.dWj(u) 
j = l s  

1 n ! n t r n t n 11 t n Ibx(u,X.)-  bx(u, X.)l<lbx(u,X.)-b~(u,  X.)l+lbx(u, X~) -  bx(u, X.)[ 

and a similar decomposition for (aj)'~, one gets, using (H7) and the first part of 
the proof 

sup E(I~,-4~'IP)~0, as n--*oo. 
t ~ [ O ,  1 ]  

The result then follows from (.), using (H6) and Gronwall's Lemma. [] 

Let now {"~; neN} be a sequence of mappings from [0, 1] x NMx I/N into 
N, each one having the same regularity as �9 and satisfying (H1). We suppose 
moreover 

3 K > 0  and d~N such that: 

/ ["~(t, x, Y)I + I"~'x( t, x, Y)I + I"~r (t, x, y)[ ___< K(1 + Ixf + lyl a) 
(H8) ( g(t,x,y)s[O, 1 - ]x lRMxR N, Vn~N. 

For all t~[0, 1], and all K > 0 ,  as n--,oo 

( U 9 ) {  I~I,supI,I=<K {["~(t,x,y)-~(t,x,y)l+l"~'~(t,x,y)-cI)'~(t,x,y)[ 

+ I"rb;(t, x, y) - q~'y(t, x, Y)I} -,0. 

We finally define 
t 

s 

t 

~ " ~  ~"~(u, "Y") ( ),= "x. ,  dW(u). 
s 

Theorem 5.2. Suppose ~b(X, Y)E ~( '2, and moreover that (H5), (H6), (H7), (H8) 
and (H9) hold. Then 

sup E(lr as n-*oo. 
O < s < t < l  
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Proof To simplify the notation, we suppose that D = t. Considering that �9 and 

"~ are functions of both the 2M dimensional forward diffusion "'~(2 t I and the 
\ X /  

2N dimensional backward diffusion ~ y t ,  the expression for E(l~(~)~ 

- ~ ( ~ ) t l  2) is given by Proposition 4.1, and all we have to show is that the 
following goes to zero as n ~ o e  

1 
E ~ I~(t,X,, Y')-"q)(t, nXt, ~ Y 2 dt 

0 

1 t 

+ 2 E  f ~ Ig);( s, X~, Y~) ~'y(s; t, g*) y(t, r ' )  
0 0  

n : n n y s ~ n . l . , :  . 
- %(s, Xs, ) ~/rts, t,"Yt)nT(t,"Y')I 

x I~'x(t, S, ,  Y') q/~(t; s, S,) a(s, S~) 

-~,P',,(t, ~X "Y' . . . .  t t, ) q ~ t  , s, ~X~) 'a ( s ,  "X~)[ ds  d t .  

In other words, we need only check 

(*) nq~(t, nXt, nYt)--+q~(t, Xt, Y~) in IZ2(dtdP), 

(**) n~(s, nXs, ~ys)~'y(s; t, ~Y*)~7(t, nY*)-+ qYy(s,X~, Ys) ~,'y(s; t, yt) y(t, yt) 

in L2(l~s<=r~dsdtdP), 

(***) ,+,x(t, ~Xt ' ~yt) "~o~,(t; s, "X~)na(s, "X~)-~+" (t, Xt, yt) (p'=(t; s, X~) a(s, Xs) 

in L2(ll~<=tldsdtdP). 

These follow easily from Lemma 5.1, (H8) and (Hg). Note that we use 
Lemma 5.3 below to take the limit in probability of ~ ( . ) ,  "~'x(') and "~'y(.); 
and (H8) plus Lemma 5.1 to get the uniform integrability. [] 

Lemma 5.3. Let {Z~, n~N; Z} be k-dimensional random variables, and {f~, n~ 
IN; f}  ~ C(~k). I f  Z~-+Z in probability, and fn--+f uniformly on compact sets, 
then f~(Z~)-+f(Z) in probability. 

Proof. Since convergence in probability of a sequence of r.v. is equivalent to 
the fact that from any subsequence one can extract a further subsequence 
which converges a.s., it is in fact sufficient to show that Z~-+Z a.s. 
~f~(Zn)-+f(Z) a.s. This follow from the decomposition 

f(Z) - f~(Zn)= f(Z) -f(Z~) + f(Z~) -s 

and the fact that 

{Zn(o))} converges ~ {Z,(co) remains in a compact subset of Rk}. [] 
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6. Di f f erent ia l  Calcu lus  

6.1. A Chain Rule of lt6 Type 

T h e o r e m  6.1. Let O: [0,1] x ~ M x R N - - ~ R  be once continuously differentiable 
with respect to t, and twice continuously differentiable with respect both to x and 

t to y, O, O't, O'x, O's'x, Oy and O"yy being jointly continuous in (t, x, y). We then have 

V0<=s<t=<l, 

t t 

@(t, Xt, yt) = O(s, X~, Y~) + ~ O'.(u, X. ,  Y") du + ~ O'(u, X. ,  Y") b(u, X.) du 
$ s 

t t 

, u U X W u  1 ,, + S O'x(U' Xu, Y ) a( , ,) d ( ) +2 S Tr [Oxx(u, Xu, ru) aa* (u, X,)] d u 
s s 

t t 

- y O'y(u, Xu, r") c(u, Y") du - ~ O'y(U, X, ,  eu) y(u, Y") dW(u) 
8 S 

t 

1 ,, y,,) - ~ T r [ O y y ( u , X , ,  yy*(u, Y")]du a.s. 
s 

which we also write in more concise form as 

t t 

#(t, X,, Y') = O(s, Xs, Y') + ~ #',(u, Xu, vu) du + ~ O'x(u , X, ,  Y") dX,  
$ s 

t t 

1 i t  u t + ~  Tr I~Ox~(u, X. ,  Y ) o G*(u, X.)I du + S %(u, X., ~") d r  ~ 
s s 

t 

-g~Tr[Or,(u,  X,, Y") yy*(u, Y")] du a.s. 
s 

Proof We first remark that the formula makes sense, in particular since the 
coefficients of the two-sided stochastic integrals belong zo 5q. 

Since it suffices to show the formula on each f2 , :={o;  IX,(o)l<n, 
lYe(o)] <n,  Vt~[0, 1]}, we assume without loss of generality that O, O;, O~,, O2~, 

t !  ~'y and Oyy are bounded. 
Since by Theorem 5.2 we can approximate a and 7 by sequences of jointly 

continuous coefficients in such a way that we can take the limits in all the 
! terms of the formula to be proved, we further assume that a, y, a'~ and ~ are 

jointly continuous in (t, x) [resp. (t, y)]. Also, we will prove the case N = M  = D 
= 1, its multidimensional version being exactly the same, except for vector and 
matrix notation. 

Let {Tr", n~N} be a refining sequence of partitions of [s, t], of the form 

~"= (s=t~ <t7 <. . .  <t."=t} 

and such that I~"1 = s u p  ( t ~ + ~ - t ~ ' ) - , 0 ,  as n--,oe. As usual, we write t i instead 
of t~. o=<i__<n-t 



A Two-Sided Stochastic Integral and its Calculus 41 

n - 1  

qb(t, Xt, Yt)-qb(s, X., ys)= ~, [-~(t,+l ' Xt,+l, y t , + l ) _ q b ( t i  ' X t , ,  y t o ]  
i = o  

n-1 
"= E [r  r t ~ + O - - ~ ( t i , X t i + p  yt~+,)] 

i = o  

n - 1  

+ ~, [~ ( t , ,  X,~+,, yt,+,) _ qO(t~, Xt, , Y'~+*)] 
i = 0  

n - 1  

+ 2 [# ( t i ,X t , ,  Yt'+~)-cI)(ti, Xt,, Y t g ] = A ~ + B ~ + C ~ "  
i=O  

N o w  
R - - 1  t i + l  

A. = ~, ~ q~t,(s, X t . . . .  rt~+~) ds, 
i= 0 ti 

and it fo l lows  easily from the cont inuity  of  ~; with respect to x and y and from 
the cont inui ty  of  the paths of  {Xt} and {y t }  that' 

t 

A,---,5~b'~(u,X~, Y")du a.s., as n--,oe. 
s 

n - 1  n - 1  

B. = 2 #'x(t,, X,,, Yt'+ 9 (Xt. + -X,.)+�89 2 " - ' , , ~x~(t,, X,,  Y"+~) (Xt,+, - X t )  2 
i = 0  i = 0  

where )~i is a r a n d o m  intermediate  point  be tween  Xt~ and X t +1 

B. = B~ B 2 1 3 + n +~Bn,  
with 

n--1 ti+l 
Bt = E e',,(t~, X,,, yt~+,) 5 b(u, X.)  du, 

i= 0 ti 
n--i  t i + l  

2 _ , , yt, +,) B. - Z ~b~(ti, X t ,  5 a(u, X. )  dW(u), 
i= 0 ti 
n--1 

3 It B. - Z #~ ( t , ,  Xi, Yt'+*)(Xt,+, - - X t i )  2. 
i = o  

One easily checks  that 
t 

t u B~ S(cb'~(u,X,,Y )b(u,X,)du a.s., 
s 

On the other hand, if we define 

n - - 1  

]~n = E (Xti+l - X t i  )2 (~ti 
i = o  

it fo l lows  easily from L e m m a  2.2 

a s  n - +  o o .  

o-1 i 9~:= y~ ~'x'x(t,, x,,, Y',) ( x , , + ,  - x,,) 2-+ ~,'2x(U, xu, w) r xo  du 
i = 0  s 



42 E. Pardoux and P. Protter 

in probability, as n ~  oe. But, from uniform continuity, 

[B2-B2l<=sup[~'~'~(ti, Xi, Yt~+l)-~'~'~(ti, Xt,, Y'gl [X~,+~-X, 12 
i i =  i 

and the latter tends to zero a.s., as n~oo .  
From Proposition 3.2, we know that 

n - - 1  t 
! __+ t ~, qY~(ti,Xt~ , Yt'+l)cr(ti, Xt,)(Wt,+ - Wt) J q)'~(u,X,, Y")a(u,X,)dW(u) 

i = 0  s 

in probability, as n ~  oe. 
To establish the desired convergence of the sequence B,, it remains t o  show 

that 

n t i + l  

Y'. e;(tl, x,,, r',+l) S xo] dW(u)-.O 
i =  0 ti 

in probability, as n ~  oe. We use again Lemma 2.2. Indeed, let 

# . : =  ~ er(u,X,)-a(ti,Xt)]dW(u 6t, 
i = 0  

{#,, nEN} satisfies the hypotheses of Lemma 2.2, with 0 as its limit. 
The sequence C, is treated in exactly the same way as B,. [] 

Example 6.2. We suppose here that M = N. Let A, B1, ..., B D be M x M matrices 
(which might as well depend on t), and let {Xt}, {yt} be the solutions of: 

t D t 

Xt=~Y+ ~AX~ds+ ~, ~BiX~dWi(s), 
0 i = 1 0  

1 D 1 

yt=y+ ~A.r~ds+ ~ ~S. YSdW~(s). 
t i = l t  

It is known (for the corresponding 
[15], Krylov and Rozovskii [8]) 
t~[0, 1]} is a.s. 
directly. 

result for stochastic PDES, see Pardoux 
that the scalar valued process {(X,, Y'), 

constant. With the aid of our It6 formula, we can prove it 

t t 

(Xt, Yt)=(Xs, Ys)+ ~(AX,, Y")du+ ~S(B, Xu, Y")dW~(u) 
s i S 

t t 

- ~ (X. ,  A* yu) d u - ~, ~ (X. ,  B* Y") d W~ (u) = (X~, Y~). 
S i S 

We have used the linearity of the two-sided stochastic.integral. [] 



A Two-Sided Stochastic Integral and its Calculus 43 

6.2. A Chain Rule of Stratonovich Type 

We begin by defining the two-sided Stratonovich integral. 
Let first ~ denote a functional which satisfies (H1) and (H3), and does not 

depend on t. {n"} again denotes a refining sequence of partitions of [0, 1]. 
Consider the sequence 

~.,= y, }[e(x,,, Y'9+ ~(x,,+l, r',+,)] A~W, 
i = 0  

n - 1  n - 1  

tin= E ~(Xt~, Y t ' + ' ) A I W +  I E [ ~ ( X t ~ + l ,  Y t ' + ~ ) - # ( X t , ,  rt~+l) A i W  
i=O i=0 

. - - 1  

+�89 E [~(X,,, Yt')-q~(X,,, Y"+SI A iW. 
i = 0  

Using again the mean value theorem and Lemma 2.2, we obtain 

1 1 
t/,--, S #(X,, ys) dW(s) + �89 (q~'~(s, Xs, Y5 a(s, X,))* ds 

0 0 
1 

1 + ~ (q~;(s, X,, Y5 ?(s, Y'))* ds 
o 

in probability, as n ~  oo; where �9 denotes transpose. Note that the sequence 

rl " : = l E = ' A i w 

also converges to the same limit as {r/,}. 
Motivated by these considerations, we give the following 

Definition 6.3. Let @ satisfy (HI) and (H3), and O<s<t<l.  We define the two- 
sided Stratonovich stochastic integral of @(u,X~, Y~) with respect to dW(u) 
over the interval [s, t] as 

i ' q~(u, X,, Y")odW(u): = I qb(u, Xu, Y") dW(u) 
s $ 

t t 

+~y(q~'~(U, Xu, Y")a(u,X,))* du+ }y(~'y(u,X,, Y")y(u, Y"))* du. [] 
s s 

Using the connection between the It6 forward [resp. backward] and the 
Stratonovich forward [resp. backward] integrals, we can rewrite the equations 
for {Xt} and {Y*} in Stratonovich form as follows 

t 

x, = x+ ~ ~(s, x )  ds + i ~r(s, X)odW(s) 
0 0 
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D 

where/)(s, x) = b(s, x) - � 89  ~ [(ai)' x o-i] (s, x), (a~)'x denoting the N x N matrix whose 
i = l  

element of the j-th row and k-th column is 0au 
~ X  k " 

1 1 

Y*=;+  I~(s, yS)ds+ ~(s,  Y~)odW(s) 
t t 

D 

where ~(s, y) = c(s, y) -�89 ~ [ ( T i ) ' y  7 i ]  ( S ,  y). 
i = 1  

Theorem 6.4. Let ~: [0, 1] x lRMxlRN~R be once continuously differentiable 
with respect to t, twice continuously differentiable with respect to (x, y), q), q~, 

t t! tt  ~'~, q~'~, q~y, q~yy and q~xy being jointly continuous with respect to (t, x, y). We then 
have 

VO<s<t__<l, 

g s  t ! e(t,x,, Y')=~(s,X~, )+fe.(u,X, ,  r"ldu+ e;(u,X,, r"l.~(u,X, ldu 
s x 

t t 

+ I q~'~(u, X~, Y~) a(u, X,)odW(u) - ~ e',(u, X~, Y~). ~(u, Y") du 
s s 

t 

-yq~',(u,X,, Y")7(u, Y"lodW(u) a.s. 
s 

which we also write in more concise form as 

t t 

~(t, x,, Y') = e(s, x~, gs) + ~ ~'.(u, x. ,  g") du + ~ ~'x(u, x. ,  Y")odX. 
$ 8 

t 
t + ~q~y(u,X,, YU)odY" a.s. 

s 

Proof From Theorem 6.1, it suffices t o s how that' 

t D t 

(e'x(U, x.,  g")~(u, x.)o d W(u))- ~ y~ I e;(u, X., g"). [(~'i)x ~il (u, x.)du 
s i = l s  

t D t 

- ~  (q~'y(U, X, ,  Y~)7(u, Y~)o dW(u))+ �89 ~ ~ q~'y(u, X, ,  Y")' [(7~)'y 7~] (u, Y~)du 
s i = l s  

t t 

r u 1 t t  = ~ (qY~(u, X~, Y ) a(u, X~) d W(u)) + g~ Tr [~x(U, X~, Y") a a* (u, X,)] du 
s s 

t t 

, 1 ,, g*(u, Y")] du. - ~ (~'y (u, Xu, Y") 7 (u, Y") d W(u)) - ~ ~ Tr [~)yy (u, Xu, Y") y 
s $ 

But this equality follows from Definition 6.3. [] 

Example 6.5. Let A(t), Bl( t ) , . . . ,Bo(t  ) again denote M x M  matrix valued 
bounded and measurable functions of t. We consider the following stochastic 
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differential equation written in Stratonovich form 

D 

dXt=A(t)X,  dt + ~, Bi(t)XtodWi(t). 
i = i  

We associate to this equation its fundamental solution, i.e. the process ~(t,s) 
which takes values in the set of M x M matrices, and solves, Vs fixed 

D 

(*) dq~(t, s) = A(t) ~(t, s) d t + ~ B i(t) ~(t, s) o dW i(t) 
i = 1  

together with the boundary condition ~(s, s )= 1. We can consider (,) either as a 
forward SDE for t>=s, or as a backward SDE for t<s, so that ~(t,s) is defined 
for all s, t eN.  We want to prove that 

q~(t,S)=~-l(s,t) a.s., Vs, t~lR 

which is in fact a particular case of general results on stochastic flows, and a 
generalization of a well-known fact on O.D.E.s. Let us choose s<t,  and 
consider the following process 

{r 0 -1 r s), ue[s, t]}. 

It is a function of both the forward diffusion 

u u 

q~(u, s) = I + S A( O) q~( O, s) dO + ~ ~ Bi( O ) 4(0, s)o dW~( O), 
s i s 

(s<=u<=t) 

and the backward diffusion 

~ - l ( u ,  t ) = I +  i ~-1(0,  t) A(O)dO + ~ i q~- l(O, t) Si(O)odWi(O), 
u i u 

(s<=u<=t). 

It now follows from Theorem 6.4 that 

d u [ ~ ( u  , t) -1 ~(u,  s)] = 0 .  

Hence ~ f - J ( t , S ) = C ~ ( S , t )  - 1  a . s .  [] 

7. Comparison with Other Approaches and Possible Extensions 

7.1. Comparison with the Filtration Enlargment Approach 

It is not hard to show that yt is F~v a (Y~ Therefore we now 
define: Gt=Ftva(Y~ The filtration {Gt} is obtained from {Ft} by an initial 
enlargment, i.e. we enlarge F o to G o : F  o v a(Y~ and then define Gt=F~v G o. 
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The question now is whether or not W(t) is a Gt-semi-martingale. It follows 
from the result in Pardoux [16] that, provided in addition to the hypotheses in 
Sect. 2.2 

(i) Vt< 1, the law of yt has a density p(t, .) and there exists 
(H10) k e n  s.t. p(t, ")EL2(RN; (l+lxlk)-ldx), 

2 * 

[(ii) ~z~(Y Y~*~)iJ E L~176 (]0, 1 [ x N~) 
UX i tTXj 

then {W(t), te[O, 1[} is a G, semi-martingale. It then follows that Vte]0, 1[, we 
can define the forward It6 integral of the process {~(t,X,, Y')}, which is G,- 
adapted, with respect to the semi-martingale W(t) 

t 

@(s, Xs, ys). dW(s). 
0 

If in addition �9 satisfies (H4), then the above integral is the limit of 

n--1 

�9 (tT, X,~, Yr if zc"=0=t~<t~ < . . .  <t~=t, 
i = 0  

and Irc"]--*0. It follows that 

t t t 

q)(s, X~, Y~). dW(s) = ~ q~(s, X~, Y~) dW(s) + ~ qY,(s, Xs, ys) 7(s, y~) ds. 
0 0 0 

Clearly, the filtration enlargment approach is feasible only under additional 
restrictions. Of course, we could interchange the roles of X and Y In any case, 
the symmetry of the two-sided integral is lost. 

7.2. Comparison with the "Random Field Approach" 

Suppose the coefficients c and ~ are continuous in (t,y). Then ~(s; t,y) has a 
modification which is a.s. continuous in (s, t, y), and such that moreover 

y--,O(s; t, y) 

is a.s. an onto homeomorphism. Denote by ~,,.~ its inverse. The process to be 
integrated can be written as 

~(t, Xt, -1 o O,,o(Y )). 

Let y~RM, then the process ~(t, Xt, l~tlo(y)) is Fcadapted , and we can define 
the forward It6 integral 

1 

I(y) = S qb(t, Xt, q/t~to (y))dW(t). 
0 
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Let p > 0. It follows from Burkholder-Davis-Gundy's inequality (see Ikeda and 
Watanabe [5]) that 

1 

E(lI(y) - I(z) f)  __< C v ~ E(lO(t, X t, O[ lo (y)) - q~(t, Xt, ~,_1 o (z))l v) dr. 
0 

The existence of an a.s. continuous modification of {I(y), y~lR u} will follow 
from Kolmogorov's Lemma if we can estimate the above quantity by C l x - y f ,  
provided that p > M .  Such an estimate can be obtained under slightly more 
restrictive conditions than our conditions in Sect. 2.2. Provided I(y) is a.s. 
continuous, we can define I(Y~ and we have again 

1 1 

I(Y ~ = j cb(t, Xt, yt) dW(t) + j cb'y(t, Xt, Yt) 7(t, Yt) dt. 
0 0 

In addition to the fact that it does break the symmetry with respect to time 
reversal, the present approach is not extendable to infinite dimensional si- 
tuations. Indeed Kolmogorov's  Lemma would not apply. Moreover if we 
replace the SDEs for X and Y by stochastic partial differential equations of 
parabolic type, then the associated flows do not possess smooth inverses. 

7.3. Comparison with Skorohod's Integral 

In [18] Skorohod defined a stochastic integral of a large class of anticipative 
integrands with respect to a Wiener process, over a fixed time-interval. Unfor- 
tunately, this work seems not be well known. Only at the very end of our 
research did we learn about it. We would like to thank D. Nualart  and M. 
Zakai as well as E. Wong, who drew our attention to Skorohod's integral. We 
now prove a result, which was first suggested to us by E. Wong, and elab- 
orated upon by D. Nualart  [12] (we restrict ourself for simplicity to the case D 
=1). 

Theorem 7.1. Suppose that the hypotheses of Sect. 2.2 are in force, and in 
particular that q~ satisfies (H1) and (H2). Then the Skorohod integral of 
q)(t, Xt, yt) over the interval [0, 1] exists and coincides with the two-sided in- 
tegral 

1 

e(t, Y9 dW(t). 
0 

Proof. The result is a direct consequence of Proposition 3.1 in Nualart  and 
Zaka'i [13]. Indeed, from Theorem 3.3, all we need to show is that any element 
in ~ 2  is integrable in the sense of Skorohod, and that the Skorohod integral is 
linear and satisfies (i) and (ii) in Theorem 3.3. 

On the other hand, Proposition 3.1 in [13] says that any measurable 
process u such that 

1 1 1  

u2(t) dt+ f SID u(t)f2 dsdt< 
0 0 0  
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is S k o r o h o d  in tegrable ,  its S k o r o h o d  integral  has  m e a n  zero and  var iance  
equal  to 

1 1 1 

e[u2(t)dt+E~ ~Dsu(t)Dtu(s)dsdt 
0 O 0  

where {Dsu(t), O<=s<= 1} denotes  the  Ma l l i av in  der iva t ive  of  the r a n d o m  vari-  
able  u(t). Let  us compu te  the  la t te r  in our  case. W e  use we l l -known facts a b o u t  
Mal l i av in  der ivat ives ,  which can be found  e.g. in [13]. 

U~O(t, Xt, yt)= ~b'~(t, Xt, yt) UsXt+ ~',(t, Xt, Yt) D~ yt, 

D ~X t = l~_<t)qo'(t; s, X~) a(s, Xs), 

Ds yt= l~t_<~,y(t; s, Y~) 7(s, Y~). 

The  resul t  fol lows immedia te ly .  [ ]  

The  same resul t  wou ld  be t rue  for in tegrals  over  the in terval  [s,t], 
VO<_s<_t<_ 1. N o t e  tha t  there  exists up to now no resul t  concern ing  the general  
S k o r o h o d  in tegra l  as a process.  

7.4. Possible Extensions 

Clearly,  ou r  a p p r o a c h  cou ld  be  a d a p t e d  to the case of  a pa i r  of  diffusion 
processes  with values  in an infinite d imens iona l  space, e.g. to the case of  a pa i r  

of s tochas t ic  pa r t i a l  differential  equat ions .  I t  cou ld  also be a d a p t e d  to the case 
of "diffusions with j umps" .  

In  fact, the  c o m p a r i s o n  with  S k o r o h o d ' s  in tegra l  suggest  tha t  it might  be 
poss ib le  to a d a p t  our  results  to a pa i r  of fo rward  and  b a c k w a r d  semi-mar -  
t ingales,  which wou ld  no t  necessar i ly  be M a r k o v  processes.  
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