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Abstract. This paper studies, under some natural monotonicity conditions,
the theory (existence and uniqueness, a priori estimate, continuous depen-
dence on a parameter) of forward–backward stochastic differential equa-
tions and their connection with quasilinear parabolic partial differential
equations. We use a purely probabilistic approach, and allow the forward
equation to be degenerate.
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1. Introduction

Let (�,F, P ) be a probability space, T > 0, and {B(t), 0 ≤ t ≤ T } a
d-dimensional Brownian motion, whose natural filtration, completed with
the class of P -null sets of F, is denoted by {Ft}.

Consider the following forward–backward stochastic differential equa-
tion (in short FBSDE)
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


X(t) = x + ∫ t

0 f (s, X(s), Y (s), Z(s)) ds

+ ∫ t

0 σ(s, X(s), Y (s), Z(s)) dB(s),

Y (t) = h(X(T )) + ∫ T

t
g(s, X(s), Y (s), Z(s)) ds

− ∫ T

t
Z(s) dB(s), t ∈ [0, T ] ,

(1.1)

for which we are seeking an Ft -adapted solution {(X(t), Y (t), Z(t)), 0 ≤
t ≤ T } with values in IRn × IRm × IRm×d , satisfying

E

∫ T

0
‖Z(t)‖2 dt < ∞ .

Here, the functions f : � × [0, T ] × IRn × IRm × IRm×d → IRn, g :
� × [0, T ] × IRn × IRm × IRm×d → IRm, σ: � × [0, T ] × IRn × IRm ×
IRm×d → IRm×d and h: � × IRn → IRm are continuous with respect to
(x, y, z) ∈ IRn × IRm × IRm×d , and satisfy the following properties:

(A1) There exist λ1, λ2 ∈ IR such that for all t, x, x1, x2, y, y1, y2, z, and
a.s.,

〈f (t, x1, y, z) − f (t, x2, y, z), x1 − x2〉 ≤ λ1|x1 − x2|2,

〈g(t, x, y1, z) − g(t, x, y2, z), y1 − y2〉 ≤ λ2|y1 − y2|2 .

(A2) The functionf is uniformly Lipschitz continuous with respect to (y, z),
at most linearly growing in x, and g is uniformly Lipschitz continuous with
respect to (x, z), at most linearly growing in y. In other wor ds, there exist
k, ki > 0, i = 1, 2, 3, 4, such that for all t, x, x1, x2, y, y1, y2, z, z1, z2, and
a.s.,

|f (t, x, y1, z1) − f (t, x, y2, z2)| ≤ k1|y1 − y2| + k2‖z1 − z2‖,
|f (t, x, y, z)| ≤ |f (t, 0, y, z)| + k(1 + |x|),
|g(t, x1, y, z1) − g(t, x2, y, z2)| ≤ k3|x1 − x2| + k4‖z1 − z2‖,
|g(t, x, y, z)| ≤ |g(t, x, 0, z)| + k(1 + |y|) .

(A3) The function σ is uniformly Lipschitz continuous with respect to
(x, y, z). That is, there exist ki , i = 5, 6, 7, such that for all t, x1, x2, y1, y2,

z1, z2, and a.s.,

‖σ(t, x1, y1, z1) − σ(t, x2, y2, z2)‖2 ≤ k2
5 |x1 − x2|2 + k2

6 |y1 − y2|2

+ k2
7‖z1 − z2‖2 .

(A4) The function h is uniformly Lipschitz continuous in x. That is, there
exists k8 such that for all x1, x2, and a.s.,
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|h(x1) − h(x2)| ≤ k8|x1 − x2| .

(A5) The processes f (·, x, y, z), g(·, x, y, z) and σ(·, x, y, z) are Ft -
adapted, and the random variable h(x) is FT -measurable, for all (x, y, z).
Moreover, the following holds:

E

∫ T

0
|f (s, 0, 0, 0)|2 ds + E

∫ T

0
|g(s, 0, 0, 0)|2 ds

+ E

∫ T

0
‖σ(s, 0, 0, 0)‖2 ds + E|h(0)|2 < ∞ .

In the above, we have used –and shall use in the following– the notations | · |
and ‖ · ‖ to denote the square-root of the sum of squares of the components
of a vector and a matrix, respectively, when the underlying content in both
notations is a vector and a matrix, respectively.

Equations such as (1.1) are used in mathematical economics (see An-
tonelli [1], Duffie and Epstein [6], for example), and in mathematical finance
(see El Karoui, Peng and Quenez [7]). When the coefficients involved are
deterministic and the coefficient σ is independent of z, it is closely related
with the following system of quasilinear parabolic partial differential equa-
tions (in short PDEs):


∂uk

∂t
+ 1

2

n∑
i,j=1

aij (t, x, u)
∂2uk

∂xi∂xj

+ 〈f (t, x, u,∇uσ(t, x, u)),∇uk〉

+ gk(t, x, u,∇uσ(t, x, u)) = 0, k = 1, . . . , m, t ∈ (0, T ), x ∈ IRn,

uk(T , x) = hk(x), k = 1, . . . , m, x ∈ IRn . (1.2)

with aij (t, x, u) = (σσ ∗(t, x, u))ij , 1 ≤ i, j ≤ n. Knowing properties of
the system of PDEs (1.2), we can derive some results on the FBSDE (1.1);
on the other hand, from the knowledge of the FBSDE (1.1), we can derive
some results on the system of PDEs (1.2). Our main interest is to study
the PDEs with the help of the FBSDE (1.1). So we are concerned with
a probabilistic method for studying the FBSDE (1.1), rather than a PDE
approach as exploited in Ma, Yong [12] and Ma, Protter and Yong [11].

When the forward equation does not depend on the backward component
(Y (·), Z(·)), or the backward equation does not depend on the forward
component X(·), the FBSDE (1.1) can be solved rather easily. That is,
e.g. for the former case, we can first solve the forward equation, which
determines the process X(·), and then solve the backward equation, with
the process X(·) known.

The general theory of backward stochastic differential equations was
first established by Pardoux and Peng [14], and is by now well known. The
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reader is referred to Pardoux and Peng [14], [15] and the expository paper
Pardoux [13] for the theory and the application of the FBSDE (1.1), when the
forward equation is completely decoupled from the backward equation. The
difficulty of solving the general FBSDE (1.1) lies in the coupling between
the forward and backward equations, which leads to a circular dependence
in the solution of the forward and backward equations. In order to attack this
difficulty, we construct mappings, which are based on the circle, consider
the circular relation as a result of a fixed point of those mappings, and we use
a monotonicity assumption as a technical condition to ensure the existence
of a fixed point.

What we mean here by coupling is the fact that both the solution of the
forward and backward equation appear in the coefficients (including the
terminal condition) of the backward and forward equation.

The proof of existence and uniqueness of a forward (resp. backward)
stochastic differential equation can be based on the fixed point theorem,
by using a change of norm which consists in multiplying the solution by
exp(λt), |λ| large enough, with λ < 0 (resp. λ > 0), see Feyel [8] in the
forward case. This change of norm is equivalent to adding λI to the drift of
the equation. Our proof of existence and uniqueness of the FBSDE (1.1) is
based on the same idea. Our monotonicity assumption (A1), together with
the lower bound (3.7) or (3.15) on the quantity λ1 + λ2, is necessary to
resolve the contradiction between the necessity of choosing a negatively
large λ ∈ IR for the forward component, and a positively large λ ∈ IR for
the backward component. Note that the drift in the backward equation is in
fact −g.

FBSDEs like (1.1) were first considered by Antonelli [1]. In this work,
the coefficients f, σ, g are independent of the variable z and satisfy Lipschitz
type conditions, and he could obtain only a local existence and uniqueness
result for the FBSDE (1.1). To the authors’ knowledge, there are two classes
of global existence and uniqueness results for the FBSDE (1.1). One is given
by Ma and Yong [12], Ma, Protter and Yong [11], via a PDE approach, under
an assumption of nondegeneracy of the forward equation. The other is given
by Hu and Peng [10], Peng and Wu [19], based on stochastic Hamiltonian
systems, under a monotonicity condition which is different from ours.

While a first version of the present paper had already been circulated,
the authors received a preprint from Yong [22], who generalizes the results
of [10] and [19], by introducing a more flexible (but rather complicated)
type of monotonicity condition.

We feel that our monotonicity condition is both simple and very natural.
It appears to be similar, also not identical, to one version of Yong’s condition,
but our conditions are very simple to check, and our method of proof is quite
different from those in the papers Hu and Peng [10], Peng and Wu [19], and
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Yong [22]. Also, our way of connecting FBSDEs with quasilinear PDEs is
new, as far as we know.

The paper is organized as follows. Section 2 is devoted to the proof
of some essential estimates, which are gathered in four lemmas, and the
construction of two mappings. Existence and uniqueness of a solution to
the FBSDE (1.1) is proved in Section 3 under three sets of assumptions.
Section 4 is devoted to the continuous dependence of the solution upon a
parameter. Finally, the connection with quasilinear PDEs is established in
Section 5.

2. Preliminary: fundamental estimates

In this section, we shall present four lemmas, which will be frequently used
in later analysis. The proof of them involves only a combination of Itô’s
formula, Gronwall’s inequality, classical martingale inequalities, as well as
some elementary algebraic inequalities, and is left to the reader.

Let lH be an Euclidean space. We denote by M2(0, T ; lH) the set of those
lH-valued Ft -progressively measurable processes {u(t), 0 ≤ t ≤ T } which
are such that

‖u(·)‖ :=
(

E

∫ T

0
|u(s)|2 ds

)1/2

< ∞ .

For ∀λ ∈ IR, let

|u(·)‖λ :=
(

E

∫ T

0
exp(−λs)|u(s)|2 ds

)1/2

< ∞ .

Obviously, the two norms ‖ · ‖λ and ‖ · ‖ are equivalent.
Before stating and proving our lemmas, let us first make a simple but

important remark. Whenever (X, Y, Z) solves the FBSDE (1.1),


X(t) = x + ∫ t

0 f (s, X(s), Y (s), Z(s)) ds

+ ∫ t

0 σ(s, X(s), Y (s), Z(s)) dB(s),

Y (t) = Y (0) − ∫ t

0 g(s, X(s), Y (s), Z(s)) ds

+ ∫ t

0 Z(s) dB(s), t ∈ [0, T ] ,

It then follows easily from the facts that Y (0) is deterministic (since it is
F0-measurable) hence square integrable and E

∫ T

0 ‖Z(t)‖2 dt < ∞, and
the assumptions (A2), (A5), using standard estimates, including Schwarz’s
and Burkholder–Davis–Gundy’s inequalities, that
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E

(
sup

0≤t≤T

|X(t)|2 + sup
0≤t≤T

|Y (t)|2
)

< ∞ .

In particular, any solution (X, Y, Z) of the FBSDE (1.1) belongs to the space
M2(0, T ; IRn × IRm × IRm×d).

Lemma 2.1. Let the assumptions(A1)–(A3) and (A5) be satisfied. Let
(X(·), Y (·), Z(·)) ∈ M2(0, T ; IRn) ×M2(0, T ; IRm) × M2(0, T ; IRm×d)

satisfy the forward equation in(1.1). Then, for all λ ∈ IR, ε, C1, C2 > 0,

exp(−λt)E|X(t)|2 + λ̄1

∫ t

0
exp(−λs)E|X(s)|2 ds

≤ (k1C1 + k2
6(1 + ε))

∫ t

0
exp(−λs)E|Y (s)|2 ds

+ (k2C2 + k2
7(1 + ε))

∫ t

0
exp(−λs)E|Z(s)|2 ds

+ |x|2 + 1

ε

∫ t

0
exp(−λs)E|f (s, 0, 0, 0)|2 ds

+
(

1 + 1

ε

) ∫ t

0
exp(−λs)E‖σ(s, 0, 0, 0)‖2 ds , (2.1)

whereλ̄1 := λ − 2λ1 − k1C
−1
1 − k2C

−1
2 − k2

5(1 + ε) − ε. Furthermore, we
have

exp(−λt)E|X(t)|2

≤ (k1C1 + k2
6(1 + ε))

∫ t

0
exp(−λ̄1(t − s)) exp(−λs)E|Y (s)|2 ds

+ (k2C2 + k2
7(1 + ε))

∫ t

0
exp(−λ̄1(t − s)) exp(−λs)E|Z(s)|2 ds

+ exp(−λ̄1t)|x|2

+ 1

ε

∫ t

0
exp(−λ̄1(t − s)) exp(−λs)E|f (s, 0, 0, 0)|2 ds

+
(

1 + 1

ε

) ∫ t

0
exp(−λ̄1(t − s)) exp(−λs)E‖σ(s, 0, 0, 0)‖2 ds .

(2.2)
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Remark 2.1.We can deduce from (2.2) the following inequality

‖X(·)‖2
λ ≤ 1 − exp(−λ̄1T )

λ̄1

[
(k1C1 + k2

6(1 + ε))‖Y (·)‖2
λ

+ (k2C2 + k2
7(1 + ε))‖Z(·)‖2

λ

+ |x|2 + 1

ε
‖f (·, 0, 0, 0)‖2

λ +
(

1 + 1

ε

)
‖σ(·, 0, 0, 0)‖2

λ

]
.

(2.3)

Moreover, if λ̄1 ≥ 0, we deduce from (2.1) that

exp(−λT )E|X(T )|2

≤
[
(k1C1 + k2

6(1 + ε))‖Y (·)‖2
λ + (k2C2 + k2

7(1 + ε))‖Z(·)‖2
λ

+ |x|2 + 1

ε
‖f (·, 0, 0, 0)‖2

λ +
(

1 + 1

ε

)
‖σ(·, 0, 0, 0)‖2

λ

]
.

(2.4)

Lemma 2.2. Assume that(A1), (A2) and(A4), (A5) are satisfied. Let(X(·),
Y (·), Z(·)) ∈ M2(0, T ; IRn) × M2(0, T ; IRm) × M2(0, T ; IRm×d) satisfy
the backward equation in(1.1).
Then, for allλ ∈ IR, ε, C3, C4 > 0,

exp(−λt)E|Y (t)|2 + λ̄2

∫ T

t

exp(−λs)E|Y (s)|2 ds + (1 − k4C4)

×
∫ T

t

exp(−λs)E|Z(s)|2 ds

≤ k2
8(1 + ε) exp(−λT )E|X(T )|2

+ k3C3

∫ T

t

exp(−λs)E|X(s)|2 ds +
(

1 + 1

ε

)
exp(−λT )E|h(0)|2

+1

ε

∫ T

t

exp(−λs)E|g(s, 0, 0, 0)|2 ds , (2.5)

whereλ̄2 := −λ − 2λ2 − k3C
−1
3 − k4C

−1
4 − ε. Furthermore, we have

exp(−λt)E|Y (t)|2

+ (1 − k4C4)

∫ T

t

exp(−λ̄2(s − t)) exp(−λs)E|Z(s)|2 ds
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≤ k2
8(1 + ε) exp(−λ̄2(T − t)) exp(−λT )E|X(T )|2

+ k3C3

∫ T

t

exp(−λ̄2(s − t)) exp(−λs)E|X(s)|2 ds

+
(

1 + 1

ε

)
exp(−λ̄2(T − t)) exp(−λT )E|h(0)|2

+ 1

ε

∫ T

t

exp(−λ̄2(s − t)) exp(−λs)E|g(s, 0, 0, 0)|2 ds .

(2.6)

Remark 2.2.We can deduce from (2.6) that whenever 0 < C4 < k−1
4 ,

‖Y (·)‖2
λ

≤ 1 − exp(−λ̄2T )

λ̄2

[
k2

8(1 + ε) exp(−λT )E|X(T )|2 + k3C3‖X(·)‖2
λ

+
(

1 + 1

ε

)
exp(−λT )E|h(0)|2 + 1

ε
‖g(·, 0, 0, 0)‖2

λ

]
. (2.7)

Furthermore, if λ̄2 ≥ 0, we deduce from (2.5) that

E‖Z(·)‖2
λ

≤ 1

1 − k4C4

[
k2

8(1 + ε) exp(−λT )E|X(T )|2 + k3C3‖X(·)‖2
λ

+
(

1 + 1

ε

)
exp(−λT )E|h(0)|2 + 1

ε
‖g(·, 0, 0, 0)‖2

λ

]
.

(2.8)

Lemma 2.3. Let the assumptions(A1)–(A3) and (A5) be satisfied. Let
Xi(·) be the solution of the forward equation in(1.1), corresponding to
(Y (·), Z(·)) = (Yi(·), Zi(·)) ∈ M2(0, T ; IRm) × M2(0, T ; IRm×d), i =
1, 2. Then, for all λ ∈ IR, C1, C2 > 0,

exp(−λt)E|X1(t) − X2(t)|2 + λ̄1

∫ t

0
exp(−λs)E|X1(s) − X2(s)|2 ds

≤ (k1C1 + k2
6)

∫ t

0
exp(−λs)E|Y1(s) − Y2(s)|2 ds

+ (k2C2 + k2
7)

∫ t

0
exp(−λs)E|Z1(s) − Z2(s)|2 ds , (2.9)
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whereλ̄1 := λ − 2λ1 − k1C
−1
1 − k2C

−1
2 − k2

5 . Moreover,

exp(−λt)E|X1(t) − X2(t)|2

≤ (k1C1 + k2
6)

∫ t

0
exp(−λ̄1(t − s)) exp(−λs)E|Y1(s) − Y2(s)|2 ds

+ (k2C2 + k2
7)

∫ t

0
exp(−λ̄1(t − s)) exp(−λs)E|Z1(s) − Z2(s)|2 ds .

(2.10)

Remark 2.3.We can deduce from (2.10) the following inequality

‖X1(·) − X2(·)‖2
λ

≤ 1 − exp(−λ̄1T )

λ̄1
[(k1C1 + k2

6)‖Y1(·) − Y2(·)‖2
λ

+ (k2C2 + k2
7)‖Z1(·) − Z2(·)‖2

λ] . (2.11)

Furthermore, if λ̄1 ≥ 0, we deduce from (2.1) that

exp(−λT )E|X1(T ) − X2(T )|2

≤ (k1C1 + k2
6)‖Y1(·) − Y2(·)‖2

λ

+(k2C2 + k2
7)‖Z1(·) − Z2(·)‖2

λ . (2.12)

Lemma 2.4. Assume that(A1), (A2) and (A4), (A5) are satisfied. Let
(Yi(·), Zi(·)) be the solution of the backward equation in(1.1), correspond-
ing to X(·) = Xi(·) ∈ M2(0, T ; IRn), i = 1, 2. Then, for all λ ∈ IR, C3,
C4 > 0,

exp(−λt)E|Y1(t) − Y2(t)|2 + λ̄2

∫ T

t

exp(−λs)E|Y1(s) − Y2(s)|2 ds

+ (1 − k4C4)

∫ T

t

exp(−λs)E|Z1(s) − Z2(s)|2 ds

≤ k2
8 exp(−λT )E|X1(T ) − X2(T )|2

+ k3C3

∫ T

t

exp(−λs)E|X1(s) − X2(s)|2 ds , (2.13)
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whereλ̄2 := −λ − 2λ2 − k3C
−1
3 − k4C

−1
4 . Moreover,

exp(−λt)E|Y1(t) − Y2(t)|2

+(1 − k4C4)

∫ T

t

exp(−λ̄2(s − t)) exp(−λs)E|Z1(s) − Z2(s)|2 ds

≤ k2
8 exp(−λ̄2(T − t)) exp(−λT )E|X1(T ) − X2(T )|2

+ k3C3

∫ T

t

exp(−λ̄2(s − t)) exp(−λs)E|X1(s) − X2(s)|2 ds .

(2.14)

Remark 2.4.Suppose moreover that 0 < C4 < k−1
4 . Then, we can deduce

from (2.14) the following inequality

‖Y1(·) − Y2(·)‖2
λ

≤ 1 − exp(−λ̄2T )

λ̄2
[k2

8 exp(−λT )E|X1(T ) − X2(T )|2

+ k3C3‖X1(·) − X2(·)‖2
λ] . (2.15)

If moreover λ̄2 ≥ 0, then we deduce from (2.13) that

‖Z1(·) − Z2(·)‖2
λ

≤ 1

1 − k4C4
[k2

8 exp(−λT )E|X1(T ) − X2(T )|2

+ k3C3‖X1(·) − X2(·)‖2
λ] . (2.16)

From now on, C4 will always be assumed to satisfy 0 < C4 < k−1
4 .

Finally, before closing this section, let us introduce two maps 01 and 02.
Note that the forward equation in the FBSDE (1.1) induces in a natural way
a map M1 : M2(0, T ; IRm)×M2(0, T ; IRm×d) → M2(0, T ; IRn), which to
each

(Y (·), Z(·)) ∈ M2(0, T ; IRm) × M2(0, T ; IRm×d)

associates M1(Y (·), Z(·)), the unique solution of the forward equation:

X(t) = x +
∫ t

0
f (s, X(s), Y (s), Z(s)) ds

+
∫ t

0
σ(s, X(s), Y (s), Z(s)) dB(s), t ∈ [0, T ] . (2.17)
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Similarly, the backward equation in the FBSDE (1.1) also induces in a nat-
ural way a map M2 (see Darling and Pardoux [5]) from M2(0, T ; IRn) into
M2(0, T ; IRm)×M2(0, T ; IRm×d), which to each X(·) ∈ M2(0, T ; IRn) as-
sociates M2(X(·)), the unique adapted solution (Ȳ (·), Z̄(·)) of the backward
equation:

Ȳ (t) = h(X(T )) +
∫ T

t

g(s, X(s), Ȳ (s), Z̄(s)) ds

−
∫ T

t

Z̄(s) dB(s), t ∈ [0, T ] . (2.18)

Define the map 01 as the composition 01 := M2 ◦M1, and the map 02 as the
composition 02 := M1◦M2. It can be proved that 01 maps M2(0, T ; IRm)×
M2(0, T ; IRm×d) into itself, and 02 maps M2(0, T ; IRn) into itself.

For (Yi(·), Zi(·)) ∈ M2(0, T ; IRm) × M2(0, T ; IRm×d), let Xi(·) :=
M1(Yi(·), Zi(·)) and (Ȳi(·), Z̄i(·)) := 01((Yi(·), Zi(·))), i = 1, 2.

Set

a := ‖X1 − X2‖2
λ, A := exp(−λT )E|X1(T ) − X2(T )|2,

b := ‖Y1 − Y2‖2
λ, c := ‖Z1 − Z2‖2

λ,

b̄ := ‖Ȳ1 − Ȳ2‖2
λ, c̄ := ‖Z̄1 − Z̄2‖2

λ .

(2.19)

Then, from Lemmas 2.3 and 2.4, we have

a ≤ 1 − exp(−λ̄1T )

λ̄1
[(k1C1 + k2

6)b + (k2C2 + k2
7)c],

A ≤ [1 ∨ exp(−λ̄1T )][(k1C1 + k2
6)b + (k2C2 + k2

7)c],

b̄ ≤ 1 − exp(−λ̄2T )

λ̄2
[k2

8A + k3C3a],

c̄ ≤ k2
8 exp(−λ̄2T )A + k3C3[1 ∨ exp(−λ̄2T )]a

(1 − k4C4)[1 ∧ exp(−λ̄2T )]
.

(2.20)

Further, when λ̄1 > 0 and λ̄2 > 0, we have from (2.20) and (2.16) that

A ≤ [(k1C1 + k2
6)b + (k2C2 + k2

7)c],

c̄ ≤ k2
8A + k3C3a

1 − k4C4
.

(2.21)
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Remark2.5. The use of the techniques of equivalent norms and the contrac-
tion mapping theorem for the existence and uniqueness proof of ordinary
and stochastic differential equations seems to be first due to Feyel [8]. The
application of these techniques to the backward equations appears in Tang
[21], Tang and Li [20], El Karoui, Peng and Quenez [7], Barles, Buckdahn
and Pardoux [2]. In the next section, the reader will see that the equiva-
lent norm technique plays an elegant role of exploiting our monotonicity
conditions to establish existence and uniqueness for the FBSDE.

3. Existence and uniqueness results

We are going to give three results of existence and uniqueness. Each result
will require an upper bound on the quantity λ1 +λ2 in terms of the ki’s. The
first result assumes in addition that the coupling between the forward and
backward components of the FBSDE (1.1) is weak (relative to the lengh T

of the time interval [0, T ]). The second assumes that the final condition for
the backward equation is a (possibly random) constant, and the third one
that the diffusion coefficient of the forward equation does not depend on
Z(·).

In this section, λ̄1 and λ̄2 denote the quantities defined in Lemma 2.3
and Lemma 2.4.

3.1. The case of the forward equation being weakly coupled
with the backward equation

The difficulty of solving the FBSDE (1.1) lies in the coupling between
the forward and backward equations. It is natural to think that when the
coupling is sufficiently weak, the FBSDE (1.1) should be solvable. The
following assertion gives a precise statement corresponding to the above
guess.

Theorem 3.1. Let the conditions(A1)–(A5) be satisfied. Then there ex-
ists anε0 > 0, which depends onk3, k4, k5, k8, λ1, λ2, T , such that when
k1, k2, k6, k7 ∈ [0, ε0), there exists a unique adapted solution(X, Y, Z)

to the FBSDE (1.1). Further, if λ1 + λ2 < −(k2
5 + k2

4)/2, there is an
ε1 > 0, which depends onk3, k4, k5, k8, λ1, λ2 and is independent ofT ,
such that whenk1, k2, k6, k7 ∈ [0, ε1), there exists a unique adapted solu-
tion (X, Y, Z) to theFBSDE (1.1).

Proof of Theorem 3.1.Consider the map 01. It is enough to show that the
map 01 is a contraction for some equivalence norm ‖ · ‖λ. We have
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b̄ + c̄

≤ k2
8

(
1 − exp(−λ̄2T )

λ̄2
+ exp(−λ̄2T )

(1 − k4C4)(1 ∧ exp(−λ̄2T ))

)
A

+k3C3

(
1 − exp(−λ̄2T )

λ̄2
+ 1 ∨ exp(−1λ̄2T )

(1 − k4C4)(1 ∧ exp(−λ̄2T ))

)
a

≤
(

1 − exp(−λ̄2T )

λ̄2
+ 1 ∨ exp(−λ̄2T )

(1 − k4C4)(1 ∧ exp(−λ̄2T ))

)
×(k2

8A + k3C3a)

≤
(

1 − exp(−λ̄2T )

λ̄2
+ 1 ∨ exp(−λ̄2T )

(1 − k4C4)(1 ∧ exp(−λ̄2T ))

)
×[(k1C1 + k2

6)b + (k2C2 + k2
7)c]

×
(

k2
8[1 ∨ exp(−λ̄1T )] + k3C3

1 − exp(−λ̄1T )

λ̄1

)
. (3.1)

Now the first assertion is immediate.
Note that

λ̄1 = λ − 2λ1 − k1C
−1
1 − k2C

−1
2 − k2

5,

λ̄2 = −λ − 2λ2 − k3C
−1
3 − k4C

−1
4 .

(3.2)

If

2λ1 + 2λ2 < −k2
4 − k2

5 , (3.3)

we can choose λ ∈ IR, C̃i = Ci/ki, i = 1, 2, 3, 4, such that

λ̄1 > 0, λ̄2 > 0, 1 − k2
4C̃4 > 0 . (3.4)

Then, we have

b̄ ≤ k2
8A + k2

3C̃3a

λ̄2
,

c̄ ≤ k2
8A + k2

3C̃3a

1 − k2
4C̃4

, (3.5)

b̄ + c̄ ≤
[

1

λ̄2
+ 1

1 − k2
4C̃4

]
[(k2

1C̃1 + k2
6)b + (k2

2C̃2 + k2
7)c]

[
k2

8 + k2
3C̃3

λ̄1

]
,
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and

λ̄1 = λ − 2λ1 − C̃−1
1 − C̃−1

2 − k2
5,

λ̄2 = −λ − 2λ2 − C̃−1
3 − C̃−1

4 .
(3.6)

This completes the second assertion. ut
Remark3.1. If k8 = 0, we consider the map 02 and the proof simplifies
(see the proof of Theorem 3.2 below). Further, when k2 = k4 = k7 = 0,
this is essentially the very case considered by Antonelli [1].

3.2. The case whereh is a constant

When the backward equation of the FBSDE (1.1) does not couple with the
forward part in the terminal condition, that is k8 = 0, the problem turns out
to be simpler.

Theorem 3.2. Let the conditions(A1)–(A5) be satisfied. Assume thatk8 =
0 and that there existCi > 0, i = 1, 2, 3, 4, C4 < k−1

4 , θ > 0 such that

λ1 + λ2 < −1

2

{
k3C3

[
k2C2 + k2

7

1 − k4C4
+ k1C1 + k2

6

θ

]

+ k1C
−1
1 + k2C

−1
2 + k3C

−1
3 + k4C

−1
4 + k2

5 + θ

}
. (3.7)

Then there exists a unique adapted solution to theFBSDE (1.1).

Proof of Theorem 3.2.First, choose

λ = −(2λ2 + k3C
−1
3 + k4C

−1
4 + θ) . (3.8)

Then

λ̄2 = θ > 0,

λ̄1 = −(2λ1 + 2λ2 + k1C
−1
1 + k2C

−1
2 + k3C

−1
3 + k4C

−1
4 + k2

5 + θ) .
(3.9)

Consider the map 02. For X(·) ∈ M2(0, T ; IRn), 02(X(·)) is the solution
X̄(·) of

X̄(t) = x +
∫ t

0
f (s, X̄(s), Ȳ (s), Z̄(s)) ds

+
∫ t

0
σ(s, X̄(s), Ȳ (s), Z̄(s)) dB(s), t ∈ [0, T ] (3.10)
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where (Ȳ (·), Z̄(·)) is the solution of

Ȳ (t) = h(X(T )) +
∫ T

t

g(s, X(s), Ȳ (s), Z̄(s)) ds

−
∫ T

t

Z̄(s) dB(s), t ∈ [0, T ] . (3.11)

Note that 02 maps M2(0, T ; IRn) into itself.
Set

a := ‖X1 − X2‖2
λ, ā := ‖X̄1 − X̄2‖2

λ,

b̄ := ‖Ȳ1 − Ȳ2‖2
λ, (3.12)

c̄ := ‖Z̄1 − Z̄2‖2
λ .

Then, from Lemmas 2.3 and 2.4, we have

ā ≤ 1 − exp(−λ̄1T )

λ̄1
[(k1C1 + k2

6)b̄ + (k2C2 + k2
7)c̄],

b̄ ≤ 1 − exp(−λ̄2T )

λ̄2
k3C3a, (3.13)

c̄ ≤ k3C3

(1 − k4C4)
a .

Hence, recalling the first equality of (3.9), we have

ā ≤ 1 − exp(−λ̄1T )

λ̄1
k3C3

(
k1C1 + k2

6

θ
+ k2C2 + k2

7

1 − k4C4

)
a . (3.14)

Since (3.7) holds, then λ̄1 > 0 and moreover the map 02 is a contraction
and thus possesses a unique fixed point. ut

3.3. The case of the diffusion coefficientσ being independent of
its third argumentz

Theorem 3.3. Let the conditions(A1)–(A5) be satisfied. Assume thatk7 =
0 and that there existCi > 0, i = 1, 3, 4, C4 < k−1

4 , θ > 0, α > 0 such
that
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λ1 + λ2

< −1

2

{
(1 + α)

[
k1C1 + k2

6 + k2
2

α(1 − k4C4)

] (
k2

8 + k3C3

θ

)

+ k1C
−1
1 + k3C

−1
3 + k4C

−1
4 + k2

5 + θ

}
. (3.15)

Then there exists a unique adapted solution to theFBSDE (1.1).

Proof of Theorem 3.3.Choose

λ = 2λ1 + k1C
−1
1 + k2C

−1
2 + k2

5 + θ . (3.16)

Then

λ̄1 = θ > 0,

λ̄2 = −2λ1 − 2λ2 − k1C
−1
1 − k2C

−1
2 − k3C

−1
3 − k4C

−1
4 − k2

5 − θ .
(3.17)

Consider the map 01. It is enough to prove that 01 is a contraction.
Since k7 = 0, we have from (2.20) and (2.21) that

a ≤ 1 − exp(−λ̄1T )

λ̄1
[(k1C1 + k2

6)b + k2C2c],

A ≤ (k1C1 + k2
6)b + k2C2c,

b̄ ≤ 1 − exp(−λ̄2T )

λ̄2
(k2

8A + k3C3a),

c̄ ≤ 1

1 − k4C4
(k2

8A + k3C3a) ,

(3.18)

where λ̄2 > 0. Therefore,

b̄ ≤ 1

λ̄2

(
k2

8 + k3C3
1 − exp(−λ̄1T )

λ̄1

) [
(k1C1 + k2

6)b + k2C2c
]
,

c̄ ≤ 1

1 − k4C4

(
k2

8 + k3C3
1 − exp(−λ̄1T )

λ̄1

) [
(k1C1 + k2

6)b + k2C2c
]

.

(3.19)
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Set

γ := α
1 − k4C4

λ̄2
. (3.20)

We have

b̄ + γ c̄ ≤ 1 + α

λ̄2

(
k2

8 + k3C3
1 − exp(−λ̄1T )

λ̄1

)

× (k1C1 + k2
6)

[
b + k2C2

α(1 − k4C4)(k1C1 + k2
6)

λ̄2γ c

]
. (3.21)

Choose

C−1
2 = k2λ̄2

α(1 − k4C4)(k1C1 + k2
6)

. (3.22)

Combining first (3.17) and (3.22), then (3.21) and (3.22), we deduce

λ̄2

(
1 + k2

2

α(1 − k4C4)(k1C1 + k2
6)

)
= −2λ1 − 2λ2 − k1C

−1
1

−k3C
−1
3 − k4C

−1
4 − k2

5 − θ,

b̄ + γ c̄ ≤ (b + γ c)
1 + α

λ̄2

(
k2

8 + k3C3
1 − exp(−θT )

θ

)
(k1C1 + k2

6) .

(3.23)

Since (3.15) holds, the mapping 01 is a contraction under some appropriate
norm, and thus it has a unique fixed point. ut

4. Continuous dependence of the solution on a parameter

4.1. A priori estimates

Theorem 4.1. Assume that(A1)–(A5) be satisfied. Further, assume that
one of the following two sets of conditions hold:

1) k7 = 0 and the inequality(3.15) holds;
2) k8 = 0 and the inequality(3.7) holds.
Then, if (X(·), Y (·), Z(·)) solves theFBSDE (1.1), then there is a con-

stantC, which depends onki, i = 1, ..., 8, andλ1, λ2, T , such that
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E sup
0≤t≤T

|X(t)|2 + E sup
0≤t≤T

|Y (t)|2 + ‖Z(·)‖2

≤ C

(
|x|2 + E|h(0)|2 + E

∫ T

0
|f (t, 0, 0, 0)|2 dt

+ E

∫ T

0
|g(t, 0, 0, 0)|2 dt + E

∫ T

0
‖σ(t, 0, 0, 0)‖2 dt

)
.

(4.1)

Proof of Theorem 4.1.We shall prove that for some λ ∈ IR,

‖X(·)‖2
λ + ‖Y (·)‖2

λ + ‖Z(·)‖2
λ

≤ C
(
exp(−λT )(|x|2 + E|h(0)|2) + ‖f (·, 0, 0, 0)‖2

λ

+ ‖g(·, 0, 0, 0)‖2
λ + ‖σ(·, 0, 0, 0)‖2

λ

)
. (4.2)

The result will then follow from Burkholder’s inequality.
We prove (4.2) under the first set of conditions only; the proof of (4.2)

under the other set of conditions is similar.
Let λ̄1 and λ̄2 be defined as in Lemma 2.1 and Lemma 2.2, respectively.

Choose

λ = 2λ1 + k1C
−1
1 + k2C

−1
2 + k2

5(1 + ε) + ε + θ . (4.3)

Then

λ̄1 = θ > 0,

λ̄2 = −2λ1 − 2λ2 − k1C
−1
1 − k2C

−1
2 − k3C

−1
3

−k4C
−1
4 − k2

5(1 + ε) − 2ε − θ .

(4.4)

Write

a := ‖X(·)‖2
λ, A := exp(−λT )E|X(T )|2, b := ‖Y (·)‖2

λ,

c := ‖Z(·)‖2
λ (4.5)

and

a0 := |x|2 + 1

ε
‖f (·, 0, 0, 0)‖2

λ +
(

1 + 1

ε

)
‖σ(·, 0, 0, 0)‖2

λ,

b0 :=
(

1 + 1

ε

)
exp(−λT )E|h(0)|2 + 1

ε
‖g(·, 0, 0, 0)‖2 .

(4.6)
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From Remarks 2.1 and 2.2, we have

a ≤ 1 − exp(−λ̄1T )

λ̄1
[(k1C1 + k2

6(1 + ε))b + k2C2c + a0],

A ≤ (k1C1 + k2
6(1 + ε))b + k2C2c + a0,

b ≤ 1 − exp(−λ̄2T )

λ̄2
[k2

8(1 + ε)A + k3C3a + b0],

c ≤ 1

1 − k4C4
[k2

8(1 + ε)A + k3C3a + b0] ,

(4.7)

provided λ̄2 ≥ 0. Therefore,

b ≤ 1

λ̄2

(
k2

8(1 + ε) + k3C3
1 − exp(−λ̄1T )

λ̄1

)

× [
(k1C1 + k2

6(1 + ε))b + k2C2c
]
,

+ 1

λ̄2

(
k2

8(1 + ε)a0 + k3C3

λ̄1
a0 + b0

)
,

c ≤ 1

1 − k4C4

(
k2

8(1 + ε) + k3C3
1 − exp(−λ̄1T )

λ̄1

)

(4.8)

× [
(k1C1 + k2

6(1 + ε))b + k2C2c
]

+ 1

1 − k4C4

(
k2

8(1 + ε)a0 + k3C3

λ̄1
a0 + b0

)
.

Set

γ := α
1 − k4C4

λ̄2
. (4.9)

We have (noting the first equality of (3.5))

b + γ c ≤ 1 + α

λ̄2

(
k2

8(1 + ε) + k3C3
1 − exp(−λ̄1T )

λ̄1

)

× (k1C1 + k2
6(1 + ε))

[
b + k2C2

α(1 − k4C4)(k1C1 + k2
6(1 + ε))

λ̄2γ c

]
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+ 1 + α

λ̄2

(
k2

8(1 + ε)a0 + k3C3

λ̄1
a0 + b0

)
. (4.10)

Choose

C−1
2 = k2λ̄2

α(1 − k4C4)[k1C1 + k2
6(1 + ε)]

. (4.11)

We have

λ̄2

(
1 + k2

2

α(1 − K4C4)[k1C1 + k2
6(1 + ε)]

)

= −2λ1 − 2λ2 − k1C
−1
1 − k3C

−1
3

−k4C
−1
4 − k2

5(1 + ε) − 2ε − θ,

b + γ c ≤ (b + γ c)
1 + α

λ̄2

(
k2

8(1 + ε) + k3C3
1 − exp(−θT )

θ

)

× [k1C1 + k2
6(1 + ε)]

+ 1 + α

λ̄2

(
k2

8(1 + ε)a0 + k3C3

θ
a0 + b0

)
,

(4.12)

Since (3.15) holds, we can choose a sufficiently small ε > 0 such that
λ̄2 > 0 and

µ := 1 + α

λ̄2

(
k2

8(1 + ε) + k3C3
1 − exp(−θT )

θ

)
[k1C1 + k2

6(1 + ε)] < 1 .

(4.13)
Hence,

b + γ c ≤ 1 + α

λ̄2(1 − µ)

(
k2

8(1 + ε)a0 + k3C3

θ
a0 + b0

)
, (4.14)

which, together with the first inequality of (4.7), immediately gives (4.2). ut

4.2. A continuous dependence theorem

Let {x(α), f (α, ·), g(α, ·), σ (α, ·), h(α, ·), α ∈ IR} be a family of boundary
conditions and coefficients of FBSDEs (1.1), which satisfy, uniformly in the
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parameter α, the assumptions (A1)–(A5) and one of the following two sets
of conditions: 1) k7 = 0 and the inequality (3.15) holds; 2) k8 = 0 and the
inequality (3.7) holds. According to Theorems 3.2 and 3.3, the solutions
of the corresponding FBSDEs exist uniquely. We denote the solution by
(Xα, Y α, Zα).

Theorem 4.2. Assume that the family of boundary conditions and coeffi-
cients is continuous atα = 0 in the following sense:

lim
α→0

|x(α) − x| = 0,

lim
α→0

E|h(α, X0(T )) − h(0, X0(T ))|2 = 0,

lim
α→0

‖f (α, ·, X0(·), Y 0(·), Z0(·))
−f (0, ·, X0(·), Y 0(·), Z0(·))‖ = 0,

lim
α→0

‖σ(α, ·, X0(·), Y 0(·), Z0(·))
−σ(0, ·, X0(·), Y 0(·), Z0(·))‖ = 0,

lim
α→0

‖g(α, ·, X0(·), Y 0(·), Z0(·))
−g(0, ·, X0(·), Y 0(·), Z0(·))‖ = 0 .

(4.15)

Then,

lim
α→0

E sup0≤t≤T |Xα(t) − X0(t)|2 = 0,

lim
α→0

E sup0≤t≤T |Yα(t) − Y 0(t)|2 = 0,

lim
α→0

‖Zα(·) − Z0(·)‖ = 0 .

(4.16)

Further, if the coefficients are Lipschitz in the parameterα in the following
sense:

|x(α1) − x(α2)| ≤ C|α1 − α2|,
E|h(α1, X

α2(T )) − h(α2, X
α2(T ))|2 ≤ C|α1 − α2|2,

‖f (α1, ·, Xα2(·), Y α2, Zα2(·))
−f (α2, ·, Xα2(·), Y α2(·), Zα2(·))‖ ≤ C|α1 − α2|,

‖σ(α1, ·, Xα2(·), Y α2(·), Zα2(·))
−σ(α2, ·, Xα2(·), Y α2(·), Zα2(·))‖ ≤ C|α1 − α2|,

‖g(α1, ·, Xα2(·), Y α2(·), Zα2(·))
−g(α2, ·, Xα2(·), Y α2(·), Zα2(·))‖ ≤ C|α1 − α2| .

(4.17)
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Then,

E sup
0≤t≤T

|Xα1(t) − Xα2(t)|2 ≤ C|α1 − α2|2,
E sup

0≤t≤T

|Yα1(t) − Yα2(t)|2 ≤ C|α1 − α2|2,
‖Zα1(·) − Zα2(·)‖ ≤ C|α1 − α2| .

(4.18)

Proof of Theorem 4.2.Write

δXα = Xα − X0, δY α = Yα − Y 0, δZα = Zα − Z0 , (4.19)

and

Fα(r, x, y, z) = f (α, r, x + X0(r), y + Y 0(r), z + Z0(r))

− f (0, r, X0(r), Y 0(r), Z0(r)),

Gα(r, x, y, z) = g(α, r, x + X0(r), y + Y 0(r), z + Z0(r))

− g(0, r, X0(r), Y 0(r), Z0(r)),

6α(r, x, y, z) = σ(α, r, x + X0(r), y + Y 0(r), z + Z0(r))

− σ(0, r, X0(r), Y 0(r), Z0(r)),

Hα(x) = h(α, x + X0(T )) − h(0, X0(T )), δxα = x(α) − x .

(4.20)

Then, (δXα, δY α, δZα) solves the following FBSDE:




X(t) = δxα + ∫ t

0 Fα(r, X(r), Y (r), Z(r)) dr

+ ∫ t

0 6α(r, X(r), Y (r), Z(r)) dB(r),

Y (t) = Hα(X(T )) + ∫ T

t
Gα(r, X(r), Y (r), Z(r)) dr

− ∫ T

t
Z(r) dB(r), t ∈ [0, T ] .

(4.21)

The first assertion of the theorem is an immediate result of Theorem 4.1.
The second assertion is proved similarly. ut

From this theorem, we immediately deduce the

Corollary 4.1. Let the assumptions ofTheorem 4.1 hold. If (Xti ,xi , Y ti ,xi ,

Zti ,xi ) is the adapted solution of(1.1) corresponding to the initial point
(ti, xi), i = 1, 2, then we have
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E sup
t1∨t2≤s≤T

|Xt1,x1(s) − Xt2,x2(s)|2

≤ C
(|x1 − x2|2 + (1 + |x1|2 ∨ |x2|2)|t1 − t2|

)
,

E sup
t1∨t2≤s≤T

|Y t1,x1(s) − Y t2,x2(s)|2

≤ C
(|x1 − x2|2 + (1 + |x1|2 ∨ |x2|2)|t1 − t2|

)
,

∫ T

t1∨t2
E|Zt1,x1(s) − Zt2,x2(s)|2 ds

≤ C
(|x1 − x2|2 + (1 + |x1|2 ∨ |x2|2)|t1 − t2|

)
.

(4.22)

5. Connection with quasilinear parabolic PDEs

It is classical that a system of first order semilinear PDEs can be solved via
the method of characteristic curves (see Courant and Hilbert [3]). The well
known Feynman-Kac formula gives a probabilistic interpretation for linear
second order PDEs of elliptic or parabolic types, and has been generalized
to the case of systems of semilinear second order PDEs by Peng [17], [18],
Pardoux and Peng [15], Barles, Buckdahn and Pardoux [2], Darling and
Pardoux [5] and Pardoux, Pradeilles, Rao [16], see also Pardoux [13], with
the help of the theory of BSDEs. This section can be viewed as a continuation
of such a theme, and will exploit the above theory of FBSDEs in order to
provide a probabilistic formula for the solution of a quasilinear PDE of
parabolic type. Our approach to this topic seems to be new.

We assume that the functions f, g, σ, h are deterministic, k7 = 0 and
the inequality (3.15) holds. We first consider the case m = 1.

For ϕ ∈ C1,2([0, T ) × IRn), s ∈ [0, T ], x̃ ∈ IRn, y ∈ IR, z ∈ IRd , we
define

(Lϕ)(s, x̃, y, z) := 1

2

n∑
i,j=1

ai,j (s, x̃, y)
∂2ϕ

∂xi∂xj

(s, x̃)

+〈f (s, x̃, y, z),∇ϕ(s, x̃)〉

with aij (s, x̃, y) = (σσ ∗(s, x̃, y))ij , 1 ≤ i, j ≤ n.
For each (t, x) ∈ [0, T ] × IRn, let {(Xt,x(s), Y t,x(s), Zt,x(s)), t ≤ s ≤

T } denote the unique solution, given by Theorem 3.3, of the FBSDE (below,
s runs from t to T ):
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


Xt,x(s) = x + ∫ s

t
f (r, Xt,x(r), Y t,x(r), Zt,x(r)) dr

+ ∫ s

t
σ (r, Xt,x(r), Y t,x(r)) dB(r),

Y t,x(s) = h(Xt,x(T )) + ∫ T

s
g(r, Xt,x(r), Y t,x(r), Zt,x(r)) dr

− ∫ T

s
Zt,x(r) dB(r) .

(5.1)

We shall prove in this section that the function u(t, x) := Y t,x(t), (t, x) ∈
[0, T ] × IRn, is a viscosity solution of the following backward quasilinear
second-order parabolic PDE:




∂u

∂t
(t, x) + (Lu)(t, x, u(t, x),∇u(t, x)σ (t, x, u(t, x)))

+g(t, x, u(t, x),∇u(t, x)σ (t, x, u(t, x))) = 0, t ∈ [0, T ), x ∈ IRn,

u(T , x) = h(x), x ∈ IRn .
(5.2)

Let us recall the definition of a viscosity solution for the PDE (5.2) (see
Crandall, Ishii, Lions [4], Fleming and Soner [9]).

Definition 5.1. Let u ∈ C([0, T ] × IRn) satisfyu(T , x) = h(x), x ∈ IRn.

u is called a viscosity subsolution(resp. supersolution) of thePDE (5.2)
if, wheneverϕ ∈ C1,2([0, T ) × IRn), and (t, x) ∈ [0, T ) × IRn is a local
minimum(resp. maximum) of ϕ − u, we have

∂ϕ

∂t
(t, x) + (Lϕ)(t, x, u(t, x),∇ϕ(t, x)σ (t, x, u(t, x)))

+ g(t, x, u(t, x),∇ϕ(t, x)σ (t, x, u(t, x))) ≥ 0

(resp.

∂ϕ

∂t
(t, x) + (Lϕ)(t, x, u(t, x),∇ϕ(t, x)σ (t, x, u(t, x)))

+g(t, x, u(t, x),∇ϕ(t, x)σ (t, x, u(t, x))) ≤ 0.

u is called a viscosity solution of thePDE (5.2) if it is both a viscosity sub-
and super-solution.

We now prove the

Theorem 5.1. Assume that the functionsf, σ , g, h are deterministic, glob-
ally continuous, and that they satisfy(A1)–(A4) with k7 = 0, and (3.15).

Then, the functionu defined byu(t, x) := Y t,x(t), (t, x) ∈ [0, T ] × IRn, is
continuous and it is a viscosity solution of thePDE (5.2).
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Proof of Theorem 5.1.The continuity of u is a consequence of Corollary 4.1.
We only show that u is a viscosity subsolution of the PDE (5.2). A similar
argument would show that it is a viscosity supersolution.

We first note that from the uniqueness result for the FBSDE (5.1), we
can infer that for any t ≤ s ≤ T ,

Y t,x(s) = Y s,Xt,x (s)(s) = u(s, Xt,x(s)) .

Let ϕ ∈ C1,2([0, T ) × IRn), and (t, x) ∈ [0, T ) × IRn be a local minimum
of ϕ − u. We assume w.l.o.g. that ϕ(t, x) = u(t, x).

We now assume that

∂ϕ

∂t
(t, x) + (Lϕ)(t, x, u(t, x),∇ϕ(t, x)σ (t, x, u(t, x)))

+ g(t, x, u(t, x),∇ϕ(t, x)σ (t, x, u(t, x))) < 0 ,

and we will obtain a contradiction.
It follows from the above that there exists 0 < α < T − t such that for

all (s, y) ∈ [t, T ] × IRn satisfying t ≤ s ≤ t + α, |x − y| ≤ α,

u(s, y) ≤ ϕ(s, y),

∂ϕ

∂s
(s, y) + (Lϕ)(s, y, u(s, y),∇ϕ(s, y)σ (s, y, u(s, y)))

+g (s, y, u(s, y),∇ϕ(s, y)σ (s, y, u(s, y))) < 0 .

Let now τ denote the stopping time

τ
4= inf{s > t : |Xt,x(s) − x| ≥ α} ∧ (t + α) .

We first note that the pair of processes

(Ȳ (s), Z̄(s)) := (Y t,x(s ∧ τ), 1[t,τ ](s)Z
t,x(s)), t ≤ s ≤ t + α

is the solution of the BSDE

Ȳ (s) = u(τ, Xt,x(τ )) +
∫ τ

s∧τ

g(r, Xt,x(r), u(r, Xt,x(r)), Z̄(r)) dr

−
∫ t+α

s

Z̄(r) dB(r) .

Next, it follows from Itô’s formula that the pair of processes

(Ŷ (s), Ẑ(s)) := (ϕ(s ∧ τ, Xt,x(s ∧ τ)), 1[t,τ ](s)∇ϕ(s, Xt,x(s))

σ (s, Xt,x(s), u(s, Xt,x(s)))), t ≤ s ≤ t + α
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is the solution of the BSDE

Ŷ (s) = ϕ(τ, Xt,x(τ )) −
∫ τ

s∧τ

[
∂ϕ

∂t
(r, Xt,x(r))

+ (Lϕ)(r, Xt,x(r), u(r, Xt,x(r)), Z̄(r))

]
dr

−
∫ t+α

s

Ẑ(r) dB(r), t ≤ s ≤ t + α .

Define

β̂(r) := −
[

∂ϕ

∂t
(r, Xt,x(r)) + (Lϕ)(r, Xt,x(r), u(r, Xt,x(r)), Ẑ(r))

+g(r, Xt,x(r), u(r, Xt,x(r)), Ẑ(r))

]
,

β̄(r) = −
[

∂ϕ

∂t
(r, Xt,x(r)) + (Lϕ)(r, Xt,x(r), u(r, Xt,x(r)), Z̄(r))

+ g(r, Xt,x(r), u(r, Xt,x(r)), Z̄(r))

]
.

We note that for some c > 0,

|β̄(r) − β̂(r)| ≤ c‖Z̄(r) − Ẑ(r)‖ .

Hence there exists a bounded Ft -adapted process {γ (r)} with values in IRd

such that

β̄(r) − β̂(r) = 〈γ (r), Z̄(r) − Ẑ(r)〉 .

Define (Ỹ (s), Z̃(s)) = (Ŷ (s) − Ȳ (s), Ẑ(s) − Z̄(s)). We have

Ỹ (s) = ϕ(τ, Xt,x(τ )) − u(τ, Xt,x(τ ))

+
∫ τ

s∧τ

[β̂(r) + 〈γ (r), Z̃(r)〉] dr −
∫ τ

s∧τ

Z̃(r) dB(r) .

Hence (see the proof of Theorem 1.6 in Pardoux [13])

Ỹ (t) = E

[
0t,τ Ỹ (τ ) +

∫ τ

t

0t,s β̂(s) ds

]
,
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where

0t,s = exp

(∫ s

t

〈γ (r), dB(r)〉 − 1

2

∫ s

t

|γ (r)|2 dr

)
.

Now from the choice of α and τ , a.s.

u(τ, Xt,x(τ )) ≤ ϕ(τ, Xt,x(τ )), 0 < β̂(r) on the interval [t, τ ], τ > t .

Consequently Ỹ (t) > 0, i.e. u(t, x) < ϕ(t, x), which contradicts an earlier
assumption.

The same proof which we gave extends easily to systems of quasilinear
second order PDEs of parabolic type. However, for the notion of viscosity
solution to make sense, we need to make two restrictions on the dependence
of the coefficients f and g upon the variable z:

(a) f does not depend on z.
(b) ∀1 ≤ k ≤ m, the k-th coordinate gk of g depends only on the k-th

row of the matrix z.
Hence the system of quasilinear parabolic PDEs takes the form:



∂uk
∂t

+ 1
2

n∑
i,j=1

aij (t, x, u)
∂2uk
∂xi∂xj

+ 〈f (t, x, u),∇uk〉

+ gk(t, x, u,∇ukσ (t, x, u)) = 0, k = 1, . . . , m, t ∈ (0, T ), x ∈ IRn,

uk(T , x) = hk(x), k = 1, . . . , m, x ∈ IRn .
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Laboratoire d’Analyse, Topologie, Probabilités for their hospitality during the conduct of
this research.

References

[1] Antonelli, F.: Backward-forward stochastic differential equations, Ann. Appl. Probab.
3, pp. 777–793 (1993)

[2] Barles, G., Buckdahn, R., Pardoux, E.: BSDE’s and integral–partial differential equa-
tions, Stochastics & Stochastic Reports 60, pp. 57–83 (1997)

[3] Courant, R., Hilbert, D.: Methods of Mathematical Physics, II, Interscience, New York,
1962

[4] Crandall, M., Ishii, H., Lions, P.L.: User’s guide to viscosity solution of second order
partial differential equations, Bull. Amer. Math. Soc. 27, 1–67 (1992)

[5] Darling, R.W.R., Pardoux, E.: Backwards SDE with Random Terminal Time, and
Applications to Semilinear Elliptic PDE, Ann. Probab. 25, 1135–1159 (1997)



150 E. Pardoux, S. Tang

[6] Duffie, D., Epstein, L.: Stochastic differential utility, Econometrica 60, pp. 353–394
(1992)

[7] El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in
finance, Math. Finance, 7, pp. 1–71 (1997)
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