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Summary. We study a new class of backward stochastic differential
equations, which involves the integral with respect to a continuous
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solutions of semilinear partial differential equations with Neumann
boundary condition, where the boundary condition itself is nonlinear.
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Introduction

Backward stochastic differential equations — in short BSDEs — have
been first introduced by Pardoux, Peng [7]. They provide probabilistic
formulas for solutions of systems of semilinear partial differential
equations, both of parabolic and elliptic type, see among others Peng
[9], Pardoux, Peng [7], Hu [5], Pardoux, Pradeilles, Rao [8] and
Darling, Pardoux [4]. Most of these papers treat the case of parabolic
equations (or systems of equations in [0,7] x IRY), also elliptic
equations with Dirichlet boundary condition have been treated in
Darling, Pardoux [4], and with a homogeneous Neumann boundary
condition in Hu [5]. The aim of the present paper is to treat the case
of a nonlinear Neumann boundary condition, i.e. to give a proba-
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bilistic formula for the solution of a system of elliptic PDEs of the
form:

Lu;(x) + fi(x,u(x), (Vuo)(x)) =0, 1<i<kxeG

gm(x) +gi(xu(x) =0, 1<i<kxedG,
n
as well as for a similar parabolic system.

This requires the presence of a new term in the BSDE, namely an
integral with respect to a continuous increasing process, the local time
of the diffusion on the boundary.

In section 1, we study the BSDE

T T T
Yt - é + /f(&YYaZs) ds—l—/g(s, YY) dA? - /ZS‘ dBv s
t t t

where {4,, 0 < ¢ < T} is a continuous real valued increasing pro-
cess. In section 2, we study the same BSDE, in the case where 7' = +oco
and & = 0. In section 3, we introduce a class of reflected diffusion
processes, and study some of its properties. In section 4, we combine
the results in sections 1 and 3 and prove that a certain function of
(t,x), defined through the solution of a system of forward-backward
SDE, is a viscosity solution of a certain system of parabolic PDEs. In
section 5, we prove the same kind of result for an elliptic PDE, by
combining the results of sections 2 and 3. Throughout this paper,
{By,t > 0} will denote a d-dimensional Brownian motion, defined on a
probability space (Q,#,P). For t >0, let #, denote the g-algebra
o(Bys; 0 < s <), augmented with the P-null sets of #.{4,,¢t > 0} will
denote a continuous one-dimensional increasing % ,-progressively
measurable process satisfying 49 = 0.

1. Generalized BSDEs on a finite time interval

We are given a final time 7 > 0, a final condition
e l*(Q,7r,P;RY)
such that E(e™7|¢|*) < oo, for all x> 0, and two coefficients:
f:Qx[0,7] x R¥ x R*Y — R* and
g: Qx[0,T] x R — RF |

satisfying, for some constants o, § € R, K > 0, some adapted processes
{0, ¥,; 0 <t < T} with values in [1,400), and all (¢,y,z) € [0, T]x
RY x R, >0,
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(1) f(,»z) and g(-,y) are progressively measurable;

(i) E([] em2dt+ [] emy?dd,) < oo;

i) =, f(6.2) = f(1,V,2)) < oly =%

V) (v —=,9(ty) —a(6.5)) < By =%

v fty2) = [ty 2) <Kz —-2;

o) (2] < o+ Kyl + llzl), [9(6,0)| < v + K(Ivl =+ [I2]):
(vii) y — (f(¢,y,2),9(t,»)) is continuous for all z, (¢, w) a.e.

A solution of the BSDE is a pair {(Y;,7;);0 < ¢ < T} of progressively
measurable processes with values in R¥ x R**“ such that

() E(supocer [GI* + Jo 121> dt) < o0

() Y=+ [T f(s, Y0 Z)ds+ [ g(s, ) ddy— [[ Z,dB,0<t<T
We shall assume from now on that:

(viii) <0

Remark 1 Whenever (Y;,Z,) satisfies (jj), (¥, Z;) = (e"Y;, e Z,) sat-
isfies an analogous BSDE, with f'and g replaced by

f(tvya Z) = eﬂA/f (tu e_#A’)/a e_HAlZ)
g(t,y) = e"g(t,e " y) — uy

Hence, if g satisfies (iv) with a possibly non negative f, we can always
choose p such that g satisfies (iv) with a strictly negative . Conse-
quently, (viii) is not a severe restriction. However, in case it is violated,
the estimates below do not hold for the solution {(Y;,Z;)} of the
original equation, but for the solution {(Y;,Z,)} of a transformed
equation.

Remark 2 Condition (j) implies that { [ (¥, Z dB,);0 <t < T} is a
uniformly integrable martingale, which in particular has zero expec-
tation, a fact which will be used repeatedly below.

Remark 3 In case the r.v. A7 is bounded, the condition

E( sup |Y,|2> < o0
0<i<T

can be deduced from (jj) and EfOT 1Z:|)? dt < .

We first establish an priori estimate on the solution.
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Proposition 1.1 Under the conditions (i) . .. (viii), if {(¥;,Z,); 0 <t< T}
is a solution of (j), (jj), then there exists a constant C, which depends
only on o, f, K and T, such that:

T T
E<Sup P [+ uztuzdr)
0<t<T 0 0

T T
SCE<|<\2+ | reooras | |g<t,o>|2dA,)

Moreover, if {A~,;O <t < T} is any continuous, increasing and pro-
gressively measurable R -valued stochastic process such that

Ay = 0; E(e“A}) <oo,Vu>0;
then for any u > 0, there exists a constant
C=C(u,o,p,K,T)
such that

) T . T
E(sup ey [ e ad v [ eﬂAfnzznzdt)
0 0

0<t<T
~ T - T B
<cu(eief+ [ etlrnoofa [ etlow o an,)
0 0

Proof: From It6’s formula,

2 r 2 2 r
WP+ [ 2P ds e 2 [ (s Kz ds

t t

+2/T<Ys,g(s, Y,)) dd, — 2/T<Ys,zs dB,)
But from (iii), (iv), and (v),
. (5,9,2)) < aly* + ] % (1 (5, 0,0] + K |=]),

(1,95, 3)) < B + vl x 1g(s,0)] -
Consequently

2 1 r 2 r 2
Py [ zlas 1 [ I aa,
0 t
T T T
§|é|2+c/ |Ys|2ds+c/ |f<s,o,o>|2ds+c/ 1905, 0)* dA,
t t t

—2/tr<}’s,Zs dBy) . (1)
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From (j), the stochastic integral term has zero expectation. Hence,
taking the expectation in (1), we deduce from Gronwall’s lemma that

T T
sup E<]Y,\2 —i—/ HZSHst—i-/ \K\2 dAS>
0<t<T 0 0

T T
ScE(rérz+ [ irsoopass | |g<s,o>rszs)

The first result follows from this, (1) and the Davis—Burkholder—
Gundy inequality. .

The second result is proved with similar arguments in case Ay is a
bounded r.v. The general case then follows from Fatou’s lemma. <

Let now (&, f,9,4) and (&,f,g',A") be two sets of data, each
satisfying the above assumptions (i), . . ., (viii). Let (¥, Z) (resp.(Y’, Z"))
denote a solution of the BSDE (j), (jj) with data (&, f,g,4) (resp.
& 1", g,A4)). We shall need below the following

Proposition 1.2 Define (Y,Z,¢ f,5,4) =Y ~-Y', Z-7', ¢-¢&,
f—f'yg9—4¢,4—A4"). Then, for any u> 0, there exists a constant C
such that

T
E( sup |5+ [ ewfnz,nzdr)
0

0<t<T

T

< CE(G“”!&V +/ S (8, Y Z) = (8, Y, Z) e
0

T

T
+ / lg(t, X)) — g (1, Y dd, + /
0 0

where 1, := ||A||, + A4}, ||A||, denoting the total variation of the process A
on the interval [0, ¢].

g n)ﬁdH/fH,) |

Proof: 1t suffices to prove the result in the case where x7 is a bounded
random variable, and then apply Fatou’s lemma. From It6’s formula,

T T
T + / | Yy|* die, + / | Z| ds
t t
— T —_
=" |¢P 42 / e (Yo, f (s, Y, Zo) — f'(5, !, Z2)) dis
t
T —_
b2 [ 5, gt ) - (o) d
t

T T
+ 2/C”KS (Y, g(s, Ys)) dAg — 2/ e (Y, Zs dBy)
t t
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Exploiting the assumptions and using Schwarz’s inequality, we deduce
that

_ 1 [T _
e#K,‘Y[F_i_E/euKYHZSWdS
t

T T
swﬂw+m/w%mfw+/e%ﬂanzo—f@nxm%k
t t
T

T
+c/e“"‘ g(s, Yy) — ¢/ (s, K)|2 dA., —i—/e‘”‘"
t

t

g(s, ) 4],

T
_Z/GNM<Y7S,Z§ dBv> .
t

The result, without the sup, inside the expectation, follows by taking
the expectation and using Gronwall’s lemma. The result then follows
from the Burkholder—Davis—Gundy inequality. &

We deduce immediately from the last proposition the

Corollary 1.3 Under the above assumptions, the BSDE (j), (jj) has at
most one solution.

We next prove a comparison theorem in one dimension. Suppose
we are in the situation of proposition 1.2, in the particular case 4 = A'.

Theorem 1.4 We suppose now that k =1, ¢ < &, f(t,y,2) < f'(t,y,2),
g(t,y) < g (t,y), for all (y,z) € RF x R dP x dt, a.s. Then Y, < Y/,
0<¢t<T, as..

Moreover, if Yo = Y§, then Y, = Y/, 0 <t < T, a.s. In particular, if in
addition either P(¢ < &) >0 or f(t,y,z) < f'(t,y,2), (y,z) € R x IR?,
on a set of positive dt x dP measure, or ¢(t,y) < ¢'(t,v),y € R, on a set
of positive dA, x dP measure, then Yy < Yj.

Proof: Define

b= L (V=0 (S 0Y.2) — f(.%.2)) Y £,
0 if Y, =/ ;

the R?-valued process {B,; 0 <t < T} as follows. For 1 <i<d, let
Zt(') denote the d-dimensional vector whose i first components are
equal to those of Z/, and whose d — i last components are equal to
those of Z,. With this notation, we define for each 1 <i <d,

gl @-2z)" ((00.27) = (e 02V)) itz 2 27
t 0 if Zi = 70",
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and

(=0 e ) — g ) iy AT
0 ify, =Y.

We note that {o,; 0 <t < T} {f; 0<¢t<T}and{y; 0<t<T}are
progressively measurable, o, < a, [f| < K and y, < f.
For0<s<t<T,let

F=exp| [ =120+ [aacs [(ga8)]

Define (Y,,Z) = (Y - Y,Z - 2), ¢=&-¢& U=/[f(t,Y,Z)-
f(Y,Z), V=g (t.Y]) —g(t,Y]).
Then

T T
Y, =¢+ / (asYs + (B, Zs)) ds + / .Y dAg
t t

T T
t t
It is not hard to see that for 0 <s<¢< T,

t t
To=T¥it [ ToUdrsviat) - [ T (Z+7.5,) b,

t
K:EO@E+/nAum+nmmf0.

The result follows from this formula and the positivity of &, U and V.
Remark 1.5 Suppose that

T T T
Yt:'5"’_//{(37stz)st—f—/g(SaYS)dAS_/stBs
t t t

Y =&+ Vst [ 7
= ds+ | Vidd,— | Z.dB, |
t t t

and ¢ < &, f(1,Y),Z)) < U, g(t,Y]) < V.. Then we can apply theorem
1.4. Indeed, we can define

f’(t,y,z) :f(f,y,Z) + (Uf _f/(t7 Ytl7Zl/))
g/(t’y) = g(tay) + (Vt - g(tv Ytl)) .

If moreover either f(z,Y/,Z]) < U, on a set of dt x dP positive mea-

sure, or ¢(¢,Y/) <V, on a set of d4, x dP positive measure, then
Y < Y. ¢
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We now prove a first existence and uniqueness theorem, under an
additional assumption. Namely, we assume that f and g are Lipschitz
in y, i.e. there exists a constant K such that

(ix) |f(t,y,2) — f(t,¥,2)| + |g(t,y) — g(t,)] < K|y =], t >0, ,
Ve IRk, z € IRkXd, a.s.

Theorem 1.6 Under the assumptions (i), (i), (v), (vi), (ix), the BSDE
(), (i) has a unique solution (Y,Z).

Proof: For u > 0, let M 5 (A4) denote the set of progressively measurable
processes {X;,0 < ¢ < T}, which are such that

T T
E</ e"A’|X,|2dt+/e”A’]X}\2dAt> < oo,

0 0
and M ﬁ the same space without the second term. We define

22 () < (1)

Let ® be the mapping from ,%i into itself, which is defined as follows.
Given (U, V) € ,@i, (Y,Z) =®(U,V) where

T T
ZZEF+/f@UM®$+/g@UQMMﬁ+OSt§T7
t t

and {Z,;0 <t < T} is given by It6’s representation theorem applied to
the square integrable r.v.
T

T
n /0 1, UL V) di + /0 o(1,Uy) dd, |

1.€.
T

T
ty V't 9 t At
5+/0f(t,U V)dt+/0g(t U) d

T T T
:E[f—{—/f(t,Ut,V,)dt—i-/g(t,U,) dA,] +/Z,dBt .
0 0 0

Taking E(- /%) of the last identity yields

T T T
= [ re v [ g v)da- [z,
t t t

The fact that (Y,Z) € ,%‘i follows from computations similar to those
in the proof of proposition 1.1, and we have that (Y,Z) € ,@i solves
(jj) iff it is a fixed point of ®. We note also that whenever (U, V) € %i
and (Y,2) =®(U,V),
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E( sup e"A‘\Yt]z> <00,
0<t<T

and { fé e (Y, Zs dBs), 0 < t < T} is a uniformly integrable martin-
gale. Let (U, V), (U, V') € 932, (Y,z) =0(U,V), (Y,Z') =0, V"),
u, V) =Uu-u,v-v",Y,Zy=(Y-Y,Z—-27). Foreachy € R,
we have from It6’s formula that

T
E(eE) + £ [ & [IEP ds+ TP, + |2 d
t

T
= 2KE/ AT, x (|0 + 175l ds + | %] x 4] dd]
t

T
<E / e/t |, P (4K ds + 2K dA,)
t

Lo s ]
458 [ (10 4+ 1707 ds + 0 da]
t
We choose y = 1 +4K?, u =1+ 2K?, and deduce
T
£ [ et (15 +120P) de+ T da,
0

U (T i oo ]
gEE/ e[|, + |77 di + |7 da]
0

from which it follows that ® is a strict contraction on @i equipped
with the norm

1

T 3
0201, = (& [ e[ (f + 1207) ar+ s )
0
provided y > 1 +4K?, u > 1 + 2K*. Hence @ has a unique fixed point.

&

We next prove existence and uniqueness for the BSDE (j), (jj),
under the conditions (i), (ii), (i), (iv), (v), (vi), (vii), (viii).

Theorem 1.7 Under the conditions (i), (i1), (iii), (iv), (v), (vi), (vii), the
BSDE (j), (4j) has a unique solution.

Proof: Uniqueness has been established in corollary 1.4. Fgr the proof
of existence, let us first admit the (with the notation M? = M).

Proposition 1.8 Given V € (M 2)kxal, there exists a unique pair of pro-
gressively measurable processes {(Y;,Z;); 0 < t < T} such that
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. T
() E(suposier [%1° + Jy 121> dr) < oo;
) Y, é+fstS,Vsds+fngdA deBS,0<t<T
We shall use the notation 4> = (M?)* x (M?%)**¢. With the help of
proposition 1.8, we construct a mapping ® from %2 into itself, which
o (U, V) € #* associates (Y,Z) = ®(U, V), the solution of (j), (jj).
Although the first component U of the pair (U, V) is not needed in
order to construct (Y,Z), it is convenient to consider the mapping
(U,V) — (Y,Z) in making a fixed point argument. Let (U,V),
(U, v') e #°,
(Y,Z)=0(U,V), (Y Z)=0U V"),
o,N=Uu-u,yv-v,Y,2)=(YY-Y,Z2-7) .

It follows from It0’s formula that
>12 r o 12 Z 112
¢"E|Y,| +E/e””(V|Ys\ + 1Z|l )ds
t
T _ _ _
<28 [ & (alR P+ KIT] < |72]) s
t

1 r _ _
< 5E/efs(zt(ac+1<2)|ys|2 +7I) ds
t

Choosing 7 = 1 + 2(a + K?), we deduce that

T T
1o - 1 . _
£ (0P 120) de<5E [ e (108 + 177
0 t

and we have proved that @ has a unique fixed point, which satisfies (j),
@i

Proof of proposition 1.8 We shall write f(s, y) for f(s,y, V;). Note that
f(s,y) satisfies

(ii') EfOT\f t,0) dt < oo

i) (7~ 1/, /() = [(0.5)) < oy = VI
() 1f(6,)] < @+ Kly|, where E [ e (¢)) dt < o0
(vii') y — f(¢,y) is continuous, dP X dta e.

We define
F9) £ (g x FLNG), au(t,) 2 (00 %9t )B)

where p, : R — R is a sequence of smooth functions which ap-
proximates the Dirac measure at 0 and satisfies
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/pn(z) dz=1, sup/ |z|p,(z) dz < o0 .
f» satisfies again (iii’), (vi’), and g, satisfies (iv), (vi), with the same
constants o, ff and K and possibly larger (but uniform in n) ¢/ and y,.
For each n, f, and g, are Lipschitz in y, uniformly with respect to
(t,w), hence from Theorem 1.6 the BSDE
T T
_§+/fn ds—f—/gn(s,YS”)dAS—/Z:st,OgtST,
t
has a unique solution which satisfies

<sup hads +/ ][Z;’H2dt> <o,
0<t<

from theorem 1.6. Moreover
2 T 2 2
|W|+/n4nw=m+4/<sm$Ym
t t
T
2 [ oo 1) da,
t
T
2 [z as)
t
T
EIP+E [ I ds =
t
T T
BIEP +28 [ (Ao 10 do+ 28 [ (Y2, g(s, 1)) i,
t t

T T
SE\§\2+2°<E/ \Y:rzdsuE/ 177 x 1f(s,0)] ds
t t

T T
+26 [ |¥7dd, +2E / Y71 % |ga(s, 0)] dA, |
t t

hence

T T T
BlP+e [ 1z a1 \n”\szsscr(HE/ \Y:rzds),
t t t

and from this, Gronwall’s lemma and the Burkholder inequality we
have that

T T
supt(sup (5P 4 [Pk [P <o
n 0<t<T 0 0
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Moreover, if we define

t

U S (6 Y)), V20,70
we have that

T T
supE(/ |U[’|2dt+/ v dAt> < o0 .
n 0 0

Consequently, after extraction of a subsequence, we have that
(y",z",u")y — (Y, Z,U)
weakly in
L*(Qx (0,T),dP x dt, R¥ x R*“ x RF)
and also
Vvt — vV

weakly in L*(Q x (0,T), P(dw) x A(w,dt), R). It is then easy to
deduce that

T T T
Yz—é+/ Usds+/ VsdAS—/ Z,dB,, 0<t<T.
t t t

It remains to show that U, = f(¢,Y;) and V; = ¢(¢,Y;). Foreachn € N,
X, X' progressively measurable k~dimensional processes such that

T T
E/ X, dt < oo, E/ |Xt/|2 dA; < oo
0 0

E/Te“%Yt" — X, fo (6, Y1) = fult, Xo) — oY) — X)) dt
0

T
B [ - X000, Y7) — gn(1. X)) dd <0
0
Since, as n — oo,

T T
E( / ot 5) — f(6, X)) di + / 0n(t,X!) — g(1,.X') dA,) ~0,
0 0

T
fimsup [ €18~ X, £, (1, 37) — £(1.X) = 2(3, — X))
0

n—oo

T
E [ X1 27) — gl0,X)) dd, <0
0
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Moreover

T T
2E/e“’<Y,”,fn(t, Y") — ocY,”)dt—l—ZE/e“’(Yt”,g,,(t, Y")) dA,
0 0

T
— RGP - TEP 4 E [ ezar

0

Yy — Yy in R, and the mapping

T
7 — E/ N7 de
0

being convex and continuous for the strong topology of (Mz)kXd, it is
weakly l.s.c., hence

n— oo

T T
lim inf 2E/ (Y, fult, Y] —a};”>dt+2E/ (Y, ga (1, Y]")) dA,
0 0
T
> |%ol? = TE|E] +E/ |z dr
0

T T
_E/e“’<Y[,U,—ozY,>dt+E/ (Y, V;) d4, .
0 0

Combining this with weak convergence and the above inequality, we
deduce that

T
B [0 = 26,V = 11020 + 200, ) d
0

r
+E/61[<Yt _‘thv V, — g(t,)(t/» d4; <0 .
0

We finally choose X; = Y, — ¢(U, — f(t, 1)), X/ = Y, — &(V; — g(t, ¥7)),
¢ > 0, divide by ¢ the resulting inequality, and let ¢ — 0, yielding

T T
E/e“’|U,—f(t, Y,)|2dt+E/e°“|V,—g(t, Y| dd, <0 .
0 0

The result follows.

2. Infinite horizon generalized BSDEs

In this section, we want to solve the BSDE
Gi) Y= [T f(s, Y, Z) ds+ [ g(s, Ys) dAs — [ Z dBs,
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where essentially {Y;} starts from 0 at time + co. We shall assume that
f and g satisfy (i), (iii), (iv), (v), (vi) and (vii), and moreover that there
exists

(viii) 2> 204+ K%, u> 2,

such that

) E [;° Mt (@2 dt + 1} dA;) < oc.
We have the

Theorem 2.1 Under conditions (i), (ii”), (iii), (iv), (v), (vi), and (vii),
there exists a unique progressively measurable process {(Y;,Z;);t > 0}
with values in R¥ x R such that

E<supeﬂ+wmyz+/ it (1% + 1)) dr -+ ¥ dAtD <oo
t 0

(2)
and for any 0 < t <T,

T T T
Yt: YT+/ f(S,YS,ZS)dS+/ g(S7Ys;) dAs_/ Zs st . (3)
t t t

Proof: Proof of uniqueness: Let (Y;,Z;) and (Y/,Z]) be two solutions of

t) 't

(), 3), and (¥;,Z;) = (Y, — Y/, Z, — Z]). It follows from Itd’s formula,
the assumptions (iii), (iv) and (v) that

T
e,lt+MA,‘Yt|2+/eis—&-uAs(}v‘YSFdS_i_u‘}_/S’szs-|-||ZsH2dS)
t

T
§62T+#A,|YT’2+2/em+uAS(a“—/S’2 +K|Y,| x HZSH) ds
t
T

+2/3/Te"~s+ﬂf4s|17s|2 dA, — 2/e"~5+ﬂAs<f@,Zs dBy) .
t t
Hence, with p < 1, A=1—20—p K> >0, u=pu—24>0,
EeM || +E/2“+“A" PIYslzdS + B L[ ddg+ (1 = p)||Z||* ds
t
§E61T+HAT’YT|2 ’

and consequently

E(ezt+uA,|)7t|2) SE(eAT+uAT|YT’2) .
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The same result holds true with /4 replaced by A’ such that 2o + K? <
/' < J. Hence, from (2),

E(e“*““lf\mz) < ce?-AT ’

and this tends to zero as T — oo.
Proof of existence: For eachn € N, let {(¥",Z]'); t > 0} denote
the solution of
n n n
Ytn :/ f(s7 YS"l’Zg) dS+/ g(s, st) dA, —/ Zf dB;, 0 <t <n,
t t t
Y'=0,7'=0,t>n,

given by theorem 1.7.
We first prove that there exists a constant C such that for all s > 0,

(o)
B(super P+ [ e (1 4 120+ 37 ]

t>s s
< CE/ et tud: “f(t,0,0)]zdt—i— 19(2,0,0) dAt} . (4)

We shall use the fact that for any arbitrarily small ¢ > 0 and any p < 1
arbitrarily close to one, there exists a constant C such that for all
t>0,yeRF ze R,

200, f(t,3,2)) < 20+ p' K2 + &) y* + pllz]|* + ¢/ (¢,0,0) %,
20y, g(t,3,2)) < (2B + &)y* + clg(t,0)

From these and It6’s formula, we deduce that

g [ (2 o+ 22 ) ds + P,

t

o0
Sc/ eis+uAs|:
t

2 / &Y ZdB) |
t

£(5,0,0) ds -+ [g(s, 0, 0) a4,

where Al=1—20—p 'K?—¢, p=1—pand p=pu—2f — e We as-
sume that ¢ and p have been chosen in such a way that >0, p>0
and g > 0. (4) then follows from Burkholder’s inequality. Let now
m > n. We have that

E (ei”“‘A"

Y,;"|2) < CE/ e*'+ﬂAf(|f(t,o,0)|2dt+ |g(t,0,0)\2dA,) .
(5)
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We next define AY, = Y" = Y, AZ, = Z" — Z]', and note that
n
A =1 [z - (.2 ds
t
+ [ ot — gy da~ [ azeas o <e<n.
t t

We deduce from It6’s formula and a by now standard procedure that

AT / et | (AN + plIAZ”) ds + RIAY. d,
t

< ein—&-uAn

YR -2 / ™t (AY,, AZydBy) .
t

From this and (5), we deduce that

E<sup e/ A, +/ efs i [(\Amz + HAZS||2> ds + |AYS|2dASD
t 0

< CE / 14 (1£(2,0,0)Pde + g1, 0)dA, )
n

Taking into account the assumption (ii), we deduce from this in-

equality that (¥Y”,Z") is a Cauchy sequence for the norm whose square

appears in (2). Hence it converges to a limit (Y, Z), which clearly

satisfies (2) and (3).

3. A class of reflected diffusion process

We now introduce a class of reflected diffusion processes. Let G be an
open connected bounded subset of R, which is such that for a
function ¢ € C3(RY), G = {¢ > 0}, 9G = {¢ = 0}, and |V¢(x)| = 1,
x € 0G. Note that at any boundary point x € G, V¢(x) is a unit
normal vector to the boundary, pointing towards the interior of G.
Leth: RY — R? ¢: RY — R be coefficients satisfying for some
K >0, all x,y € R%:

b(x) =bW)| + llo(x) —a()]| < Klx — |
It follows from the results in Lions, Sznitman [6] (see also Saisho [10])
that for each x € G there exists a unique pair of progressively mea-

surable continuous processes {(X;',K}); t > 0}, with values in
G x IR, such that
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t t t
X;=x+ [bods s [ oty dsor [ Vot ak oo,
0 0 0
t
Kf:/ Iixreacy dK, KT is increasing. (6)
0

It is not hard to see that the above assumptions imply that there exists
a constant a > 0 such that for any x € 9G,x' € G,

o= 2P+l —x, $(x)) 2 0 . (7)
We have the

Proposition 3.1 For each T > 0, there exists a constant Cr such that
for all x,x' € G,

e i) <ot

0<t<T

Proof: As in Lions, Sznitman [6] page 524, we develop using Itd’s
formula the semimartingale:

1 / /
exp | (9087) + $0)) | x i - X
and exploit the inequality (7). We end up with

t
E(sup yx;-xﬂ“) < C(\x—x’|4+E/ X — x¥
0

0<s<t

4ds> .

The result then follows from Gronwall’s lemma. &

It follows from I1t0’s formula that

K = 06— 9 - [ L) ds - / H(X)o(XY) dB, |

where L is the second order partial differential operator

L1 o), () 2+ S
T 227 o, T 24" oy,

From this identity and proposition 3.1, we deduce easily the

Proposition 3.2 For each T > 0, there exists a constant Cy such that
for all x,x' € G,

E( sup |K; — K

0<t<T

4) < Crlx—x|*
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Moreover, for all p > 1, there exists a constant C, such that for all
(t,x) € Ry x G,
E(IK[)’) < G(1+#)
and for each p, t > 0, there exists C(u,t) such that for all x € G,
E(e"™) < C(u,t) . O

Finally, for (z,x) € R, x R?,we define {(X/*K"*;s>0} as the
unique solution of:

tVs tVs tVs
)('Sf~x:x—|—/ b(X}™) ds—l—/ J(Xr”x)dBr—i—/ Vo (X!¥)dK* s > 0;
t t t
tVs
K™ = / Liyescpgy dK*, K s increasing . (8)
t

The two above propositions extend trivially to this case.

4. Probabilistic formula for the solution of a system
of parabolic PDEs with nonlinear Neumann boundary condition

We fix 7 > 0. For each (¢,x) € [0, 7] x G, let {(X'*,K"*);s > 0} de-
note the solution of the reflected SDE (8). Let % € C(G;RF),
£ €C(0,T] x G x RY x R¥*4 RY), g € C([0,T] x G x R¥; R¥) satis-
fy the assumptions

(4111) (y—y’,f(t,x,y,z) _f(t>x7y Z)> < OC|y y|

(41V) U_yl’g(taxay)_g(t’xayl» <ﬁ|y y|

@A) [f(tx,p,2) = f(t,x,,2)| < K|z = 7|

@) [f(6,x,,2)| + g9(2,y)] < K(1 + |y[ +[=]),

and for each (t,x) € [0,7] x G, let {(Y!*,Z");t <<s < T} be the
unique solution of the BSDE

(49) E(supcr [V + [ 127 ds) < o0

(4JJ) th —h ,x +frf ,,. th th th dr—i—f g r, th th) thx
—ffzfde,, t<s<T.

Existence and uniqueness follow from theorem 1.7. We define

u(t,x) 2 Y™ (t,x) €0,T] x G | 9)

which is clearly a deterministic quantity, since Y/* is measurable with
respect to the g-algebra o{B, — B;,t < r < s}. Tedious but standard
estimates permit to deduce from proposition 1.1 and 1.2, 3.1 and 3.2 the
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Proposition 4.1

ue C([0,7] x G;RF)

Let us now introduce the system of parabolic PDEs, of which u will be
a solution. First of all, we shall make one restriction, which is due to
the fact that we want to consider viscosity solutions of our system of
PDEs. We assume that for each 1 < i <k, f;, the i-th coordinate of f,
depends only on the i-th row of the matrix z, and not on the other
rows of z. Consider the system of semi-linear PDE:

‘95;’ (t,%) + Lui(t, %) + fi(t, x, u(t,x), (Vo) (£, x)) = 0,
1<i<k, 0<t<T, xeG;
8u,

on

(t,x) + gi(t,x,u(t,x)) = 0, (10)

1<i<k, 0<t<T, x€dG;
u(T,x) = h(x), x € G,

where at a point x € 9G

We now explain what we mean by a viscosity solution of (10).

Definition 4.2 (a) u € C([0,T] x G,R*) is called a viscosity subsolution
of (10) if wi(T,x) < hi(x), x € G, 1 <i<k, and moreover for any
1<i<k, ¢eC"%?0,T] xR), whenever (t,x) € [0,T] x G is a local
maximum of u; — @, then

9o

- E(t,x) — Lo(t,x) — fi(t,x,u(t,x), (Veo)(t,x)) <0, if x€ G

min <—88—(tp(t,x) — Lo(t,x) — fi(t,x,u(t,x), Voa(t,x)),
—g—g:(t,x) - gl-(t,x,u(t,x))> <0, if x€0G .

(b) u € C([0,T] x G,RY) is called a viscosity supersolution of (10) if
ui(T,x) > hi(x), x € G, 1 <i<k, and moreover for any 1<i<k,
@ € C'2(]0, T] x RY), whenever (t,x) € [0, T] x G is a local minimum of
u; — @, then
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_ %_(tp(t,x) — Lo(t,x) — fi(t,x,u(t,x),(Voo)(t,x)) >0, if x € G,
max (—aa—(tp(t,x) — Lo(t,x) — fi(t,x,u(t,x), (Voo)(t,x)),

_g_q)(t?x) - gi(t7x7u(t7x))> Z O, lfx € 0G.
n

(¢) u e C([0,T] x G,IRY) is called a viscosity solution of (10) if it is
both a viscosity sub- and supersolution.

It can be deduced from the uniqueness theorem for BSDEs that

t+h X

tx ;
Yon="Yqn ™ h>0.

This implies that Y = u(s, X), t <s < T.
We can now prove the

Theorem 4.3 u, defined by (9), is a viscosity solution of the system of
parabolic PDEs (10).

Proof: We note that clearly u(7,x) = h(x). We shall prove that u is a
viscosity subsolution. The property of being a supersolution can be
proved similarly. Take any 1<i<k, ¢ < C"([0,T] x RY), and
(t,x) € [0,T] x G such that (¢,x) is a local maximum of u; — ¢, and
ui(t’x) = (p(t,x).

We first consider the case x € G. We suppose that

dp

(E —i—L(p) (t,x) + fi(t,x,u(t,x),(Veoao)(t,x)) <0 ,

and we will find a contradiction.
Let 0 < o < T — ¢ be such that {y; [y —x| <a} CG,

sup (a_<p + Lw) (s,) + fi(s,y,u(s,»), (Vo) (s,y)) <0

1<s<ttaly—x|<a \ O
ui(s,y) < @(s,y), t <s<t+oly—x[ <o
and define
t=inf{s > ¢ | X" —x| > a} A(t+0a) .
Let now
(7 Z)) = (X2) Mo (0) (), e <s <o

(Y,Z) solves the one-dimensional BSDE
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. t+o _
Yy = u;(1, X) —|—/ Lo.q(r)fi (r, X% u(r, X2), Z,) dr
t+a_
—/ Z,dB,, t<s<t+oa .
S

On the other hand, from It6’s formula,
(70.2.) = (0ls, X332, 1o ()(V90) (5, X1)), 1 <5 < 1+
solves the BSDE

5% tx e 8@ tx
Vo=o(nX) = [ 1og()( 5, +Le ) (nx?) dr
tHo
_/ ZrdBr;tSSSt—i‘OC.

From u; < ¢, and the choice of o and 7, we deduce with the help of the
comparison theorem 1.4 that Yy < Yy, i.e. u;(x) < ¢(x), which is a
contradiction.

We now consider the case x € 0G. We suppose that

max ((%—? —|—qu> (t,x) + fi(t,x,u(t,x), (Voo)(t,x)),

Do
%(t,x) + g,(t,x,u(t,x))) <0,

and we will find a contradiction.
Let 0 < oo < T — ¢ be such that

sup  max ((%—(f +L<p) (s,) + fi(s, v, u(s,»), (Voa)(s, ),

t<s<t+ao,|y—x|<a

Z—Z (s,¥) + gi(s,», u(s,y))> <0,
and define
t=inf{s > #; | X" —x| > o} A(t+a) .
Let now

(Vo Z)) = (V53 o)) )t S s <1+ .

(Y,Z) solves the one-dimensional BSDE
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t+o
YS B ui(T’XTl,X) * / I[O’T] (V)f, (F’Xrt’x7 u(}",X}f’x),Zr) dr
o ’
" / Lo.(r)gi (r, X, u(r, X;7)) dK;*

t+1_
—/ Z.dB,, t<s<t+uo.

On the other hand, from It6’s formula,
(70.2.) = (0. X5 100 (5) (Vo) (5. X)), 1 <5<+

solves the BSDE
v o_ tx e aq) tx
Y, = q)(r,XT ) — I[OJ](;’) EJquo (r,Xr )dr

t+o a(p to
+ / 1yo.(r) o (r, X)) dK* — / Z.dB.t <s<t+o .
S N

From u; < ¢, and the choice of o and T, We deduce with the help of the
comparison theorem 1.4 that Y, < Yy, i.e. u;(x) < ¢(x), which is a
contradiction. &

We have proved that a certain function of (¢,x), defined through
the solution of a probabilistic problem, is the solution of a system of
backward parabolic partial differential equations. Suppose that f and
g do not depend on ¢, and let

v(t,x) = u(T — t,x), (t,x) € [0,T] x G
The v solves the system of forward parabolic PDEs:

O 00) = Lo(1.3) + £ (5,0, (.9), (Veo) (1,), 1> 0% € G
%(t,X)ng(x,v(t,x)) =0, t>0, xedG;

v(0,x) =h(x), x€G .
On the other hand, we have that
v(t,x) = YTT__f’x =Y,

where {(¥/*,Z1);0 < s < t}, solves the BSDE

t
re =)+ [ 0GR 2
t

t
+/ g(Xf,Yr”x)dKf—/ ZYdB,, 0<s<t.
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So we have a probabilistic representation for a system of forward
parabolic PDEs, which is valid on R, x G.

5. Probabilistic interpretation of the solution of a system
of elliptic PDEs with nonlinear Neumann boundary condition

Let {(X,K') ; t > 0} be the solution of the reflected BSDE (6), and
h € C(G; ]Ri‘) f € Cy(G x RF x RF4, RY), g € C(G x RF; R¥) satisfy
(4.111), (4.1v), (4.v) and (4.vi), with 2« +K2 <0,p<0. Assume that for
all x € G, some / usuchthat2oc+K2<A<0 2B <u<0,

E / (X7, 0,0) dr + |g(X;', 0) PdKT) < o
0

Consequently, from theorem 2.1, there exists a unique pair {(Y*, Z)),
t > 0}, progressively mesurable and RF x ]RkXd valued, such that
(5.j) E(sup, ek IYXI + [0 ey +||K’“|| )di + |V dK7]) < oo,
Gi) Y= Y5+ [T vz ds + [ g(xE, YY) dkr — [T ZxdB,, 0
<i<T

We define

u(x)éYg . (11)

One can prove the:
Theorem 5.1 u € C(G;R").

We again assume that for each 1 <i <k, f;, the i-th coordinate of
f, depends only on the i-th row of the matrix z, and not on the other
rows of z.

Consider the system of semi-linear elliptic PDEs:

Lu;(x) + fi(x,u(x), (Vuo)(x)) =0, 1<i<k, x€G

)+ lu() =0, 1Si<k x€0G (12

We will not prove that u, defined by (11), is a viscosity solution of (12).
The notion of viscosity solution of (12) is analogous to that for the
parabolic case. Let us just state the

Definition 5.2 u € C(G;R") is called a viscosity subsolution of (12) if
for all 1 <i <k, ¢ € C*(RY), whenever x € G is a local maximum of
u—o,
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= Lo(x) — fi(x,u(x), (Vo) (x)) <0, if x€G,
min(~L(x) — (5.0, (Vo)) 52.6) ~ st
<0 ifx € 0G. &

The following theorem is proved exactly as in the parabolic case.

Theorem 5.3 u, given by the formula (11), is a viscosity solution of the
system of elliptic PDEs (12).

Remark 4 Uniqueness results of viscosity solutions of elliptic equa-
tions with nonlinear Neumann boundary condition can be found in
Barles [1] and in Crandall, Ishii, Lions [3], section 7B. Uniqueness
results for viscosity solutions of systems of parabolic PDEs in the
whole space can be found in Barles, Buckdahn, Pardoux [2].
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