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We establish basic results on existence and uniqueness for the solution of stochastic PDE’s.
We express the solution of a backward linear stochastic PDE in terms of the conditional law
of a partially observed Markov diffusion process. It then follows that the adjoint forward
stochastic PDE governs the evolution of the “unnormalized conditional density”.

INTRODUCTION

Let X, be a Markov diffusion process with generator L, and whose initial
law has the density Po. Suppose we observe the process:

Y=o h(X,)ds+ W,

where W, is a standard Brownian motion, independent of X. Zakai [17]
has shown, under rather strong conditions, that the so-called “un-
normalized conditional density” of X,, given (¥, s=t), satisfies the follow-

ing stochastic partial differential equation:

du(t) =L*u(t)dt+hu(t)dyr} (0.1)

u(o)="Po

The aim of this paper is twofold. First to present some results on
stochastic PDE’s, which enable us to study existence and uniqueness of
the solution of (0.1). This is what Part I is about.

+This work was done while the author was with the Centre National de la Recherche
Scientifique (France).
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Second, to relate the unique solution of (0.1) to the filtering problem,
under rather mild hypotheses—in particular we allow correlation between
the signal and the observation noise.

The idea is to associate to (0.1) a backward stochastic PDE:

{du(t)+Lv(t)dl+hv(t)dY,=0,0gth 02)

v(T)=f

The solution of (0.2) is expressible in terms of the conditional law of X,
in a way that generalizes the classical Feynman-Kac formula for second-
order parabolic (deterministic!) PDE’s. Besides, {0.1) and (0.2) are adjoint
one to the other, in the sense that the trajectories of (u(t),v(t)) are
constants. The fact that u is the “unnormalized conditional density” then
follows immediately.

Similar results on Eq. (0.1) have been obtained by Krylov—Rosovskii
[61, with different methods. Our exposition is self-contained, and does not
use previous results in filtering theory.

TABLE OF CONTENTS
PART 1: Some results on stochastic partial differential equations

§0. Orientation
§1. Existence and uniqueness of solutions of stochastic PDE’s
§1.1. Notations and hypotheses
§1.2. Two basic results for PDE’s
§1.3. Hilbert space valued stochastic integrals
§1.4. An Ito formula
§1.5. Existence and uniqueness
§2. Example of a stochastic PDE
§2.1. Application of the abstract results
§2.2. A regularity result
§2.3. Remark on the coercivity condition
§3. Appendix: Stochastic PDE with non-linear monotone operators

PART 1II: Filtering of diffusion processes

§0. Orientation

§1. The filtering problem-—notations and hypotheses
§2. Study of a backward stochastic PDE

§3. Equation for the unnormalized conditional density
§4. Remark on the coercivity condition.



Downloaded by [Aix-Marseille Université] at 02:19 10 April 2013

STOCHASTIC PDEs AND FILTERING 129

PART I: SOME RESULTS ON STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

§0. ORIENTATION

We present some results of Pardoux [11] on stochastic PDE’s, restricting
our attention to the type of equations that will be useful in Part II. In
particular, we limit ourself to equations with linear operators.

Our method consists in extending the variational method of Lions [9]
to stochastic equations of Ito type. We first recall a few results from the
theories of (deterministic) parabolic PDE’s and Hilbert space valued
stochastic integrals. We then establish an Ito formula which is necessary
for our particalar purpose, and finally prove existence and uniqueness for
a class of stochastic PDE’s. Our existence proof uses a Galerkin approxi-
mation scheme,

Similar results have been obtained on the same type of equations,
mostly using semi-group theory, by several authors, among others
Balakrishnan [2], Curtain [3], Dawson [4], Ichikawa [5] and Krylov—
Rosovskii [7].

We then present in an appendix, without proofs, more general results
from Pardoux [11] on non-linear stochastic PDE’s.

§1. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF
STOCHASTIC PDE’s

§1.1. Notations and hypotheses

Let (Q, #,P,#,W,) be a R* valued standard Wiener process. [.,.] will
denote the scalar product in R%. We want to study equations of the type:

{du(t) + Au(t)dt =[Bu(t), dW]

w0t (1.1)

where 4 and B are partial differential operators. In this first paragraph,
we will consider 4 and B as unbounded operators in a Hilbert Space.

More precisely, let ¥ and H be two separable Hilbert spaces, such that:
Vis included and dense in H, the injection being continuous. We identify
H with its dual space, and denote by V' the dual of V. We have then:

VeHcV'.
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We will denote by ||.]|, || and ||.||* the norms in ¥, H and V'
respectively; by <.,.> the duality product between ¥V and V', and by (.,.)
the scalar product in H. Let us fix T>0.

We are given two families of linear operators A(r), B(t), te{0,T],
satisfying

A()eLl” (O, T; £V, V') (1.2)
B(.)eL®(0,T; £(V; H%)) (1.3)

and we will make the following coercivity hypothesis:

is.t. .p.t:
3a>0 and Ast. YueV, ppt } (1.4)

2CA (Y uy + Alu|* Zal|u||* +|B(t)u|?

As an abuse of notation, we also use | | for the following norm in H*:

(3 )

§1.2. Two basic results for PDE’s
The following two Lemmas are proved in Lions [9]:

LEMMA 1.1 Let u be absolutely continuous from [0, T, with values in V".
Suppose moreover that:
uel*(0,T; V)
du
—eI*0,T; V'
TR )
then

1) ueC(O, T; H)t

i1) %]u(t)|2=2<u,%> a.e. int.

LEMMA 1.2 Suppose (1.2) and (1.4) are satisfied (with B=0). Let uoe H
and fe L*(0, T; V'). Then the equation:

uel2(0,T; V)

) +For simplicity we will always use the notation C(0,T; X ) for C([0,T]; X}.
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has a unique solution. Moreover the function f—u is continuous from
I2(0, T; V'), with values in (0, T; V).

§1.3 Hilbert space valued stochastic integrals

The theory of stochastic integrals in Hilbert space is well understood, cf.
Metivier [10], Pardoux [12], and the bibliographies therein. Here we will
use it only in a very particular case, where it can be built very easily from
the real case.

Let M2(0,T; H) denote the space of H-valued measurable processes
which satisfy:

1) of{t)is &, measurable, a.e. in ¢
ii) Eff|e@)|*dt< + 0.

We define similarly M?(0, T; X ), for X =R H% V9, Vand V' It is easy
to check that M2(0,T; X) is a closed subspace of L?(Qx]o, T[,dP®dt;
X). -

If e M?(0,T; H*) and heH,

h={oL(h @(s)).dW]

is a linear map from H into L?*(Q). It follows that we can define the H-
valued random variable {4 [¢(s),dW,] by

(h, o Lo (s).dW.])= [, [(h, @ (5)),dW,].V he H.

It is easy to check using a basis of H, and taking the limit on the finite
dimensional results, that

M,=[y[¢(s),dW,] is a continuous H-valued martingale, which satisfies:
IM, 2 =25 [(M0(s)).dWI+ 5 |o(s)|2ds (1.5)
E[M[*=EJo[o(s)[*ds (L6)

We will make use of the following Burkholder—-Gundy inequality, in the
case p e M?(0,T; RY):

E<sur>1M,!>§3E(f€[w(t)lzdt)”2 (1.7)
t<T

If u(t) and du/dt(r) are continuous H-valued processes, adapted to %
then:

>

du(t), M,>=(% () Mt)dr+[<u(r),<p(r>),dm. (18)
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If u(t) is a.s. absolutely continuous with values in ¥, and ue M2, T;
V)du/dte M*(0, T; V'), it follows from Lemma 1.1 that ueC(0,T; H) as.
If moreover ¢ € M2(0, T; V%), then one easily proves from (1.8):

du(t), M,)=<2—l:, M,>dt+[(u(t),q0(t)),d"‘/}]- (1.9)

Let :H—R be twice differentiable. The first derivative, evaluated at a
point v, ¥'(v), is an element of H'=H. y"(v) is a bilinear continuous form
on H, which we can identify with an element of &% (H). We denote by
%1(H) the Banach space of {race-class operators, and by Tr Q the trace of
@€ %' (H). We then have the following Ito formula (cf. Pardoux [12]).

LEMMA 1.3 Let  be a functional on H, which is twice differentiable at

each point, and satisfies:

i) ¥, ¢ and " are locally bounded.
ii) ¢ and y’ are continuous on H.

iil) YQe L (H), Tr[Qoy"] is a continuous functional on H.
Then if ¥, is an H-valued adapted process with bounded variation, and

M, =[5 [o(s),dW,],
' W (V,+M,) =¥ (Vo) + [5 (W (Ve+ M,), dV,)
+ (5L (Vo+ M), 0(s)); dW,]

d
+3 2 fo (0" (Ve+ M)ei(s) i(s))ds O

Remark 1.1 Lemma 1.3 is proved in [12] for more general functions y,
and with M, a general sample continuous H-valued local martingale. [J

Remark 1.2 Tto formula is of course an essential tool in the study of
stochastic PDE’s, mainly for the particular case ¥ (u)=|u|?>. But Lemma
1.3 will not be applicable to the solution of Eq. (1.1). In view of Lemma
1.2, we will look for a solution u of (1.1) in the space M?(0,T; V). u will
then be the sum of a process with bounded variations in ¥’ (and not H!),
and an H-valued martingale. We then need to adapt Lemma 1.3 to this
class of processes. This will be done in the next section, by studying a first
class of stochastic PDE’s. [
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§1.4. An Ito formula
We first study the following equation:
. ue M*(0,T; V)
du(t)y+ A (Qu(t)dt=[e(t),dW,] (1.10)
u(o)=u
where A satisfies (1.2) and (1.4), u, € H.

LEMMA 1.4 Let ¢ eM?*(0,T; V*). Then (1.10) has a unique solution u,
which belongs moreover to L?(Q; C(0, T; H)), and satisfies:

lu(@)|* +2 [, CAu,upds=u|* +2 f5 [, ), dW]+ 5 |o (s)|?ds.  (L.11)

Proof Define M,={{[¢(s),dW,]. Then Me M?(0,T; V).
Consider:

d
O+ AWp(0)= ~A()M,
v(0)=1uq (1.12)
For each o, (1.12) has a unique solution in L?(0,T; V), and the
operator which maps the right-hand side to the solution is continuous (see

Lemma 1.2). So (1.12) has a solution v as random element of I*(0, T; V).
Moreover, by LLemma 1.1:

v +2(5 {Av,v)ds=|uy|? =2 ff, CLAM, v)ds (1.13)
Using (1.4), we get from (1.13) and Gronwall’s inequality:
ve M2, T; V)nL*(Q; C(0,T; H))

(the adaptedness is easy to check).
Define u(t)=v(t)+M,; then ueM?(0,T; V)~ L*(Q; C(0, T; H)), and
satisfies Eq. (1.10). (1.11) is an easy consequence of (1.13), (1.5) and (1.9).
It remains to prove uniqueness. Let v be a solution of (1.10). Then:

'd—t(u—v)+A(u—v)=0 a.e. int

u(o)—v(o)=o (1.14)
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From (1.14), Lemma 1.1, (1.4) and Gronwall’s inequality, we conclude
that:

§llu—vl|jPdt=0 as. O
We can now prove:

THEOREM 1.1 Let o e M?(0, T; H?). Then (1.10) has a unique solution u,
which belongs to L*(Q; C(0, T; H)), and satisfies (1.11).

Proof Uniqueness is proved exactly as in Lemma 1.4. It remains to

prove existence.
Let ¢"e M2(0, T; V9), such that:

@"—¢ in M2(0,T; H). (1.15)
And let u"e M?(0, T; V) be the solution of:
| dur (1) + A" (t)dt =[ " (t), dW,] (1.16)
{ w(o)=u,
and u™ be the solution corresponding to ¢™. It follows from (1.11) that
lur (1) =™ ()2 +2 {5 CA@W" —u™), u" —u™ds
=2 fo [ —u" @"~ ™). dW]+ [o|@" — ¢ |*ds

E(suplu"(s)—u”‘ (s)l2>+2E [5CAW —u™), u"—um>ds

sE

<4E <suptj%[(u"—um,w"—qo”),d%]o
st
+2E [ |@"— @™ |?ds
Making use of (1.7), we get:
E<sup[u"(S)—u’"(s)|2)+2Ejro (AW —u™),u" —u™yds

< 12E[(§B ’ (u"_u’"’ (p"__(Pm)}st)l/Z]
+2E!6?w”—w"’)zdsé%E(S“plu"(s)*um(s)l2>

+CE [o|@"— o™ |*ds
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It then follows from (1.4) that:

)
E(suplurts)-w 0 )

s<t
+20E [y ||u" —um||2ds S 24E [ |u" —um|ds
+2cE [y |@"— o™ |?ds (1.17)
We first deduce from (1.17):
E(jur(t)—um (1)) )¢, E fo |@"— @™ |*ds + ¢, E f§ |u" —um |?ds
which implies, by Gronwall’s inequality:
E|lu(t)—um(t)|* S, E [y |o"— @™|?e2 ™ Ids (1.18)

It follows from (1.15), (1.17) and (1.18) that u" forms a Cauchy sequence
in M>(0,T; V)~ L*(Q; C(0, T; H)). The existence follows by taking the
limit in (1.16), and u satisfies (1.11) because u” does, and we can take the
limit as n— +oc. [

Remark 1.3 The same method gives a similar result for the equation:
ue M2(0,T; V)
du(t)+ (AOu)+f(t)dt=Le(t),dW]
u(o)=uy

where fis given in M2(0, T; V'). O

A solution of Eq. (1.1) can be viewed as a solution of equation (1.10).
Then we have proved an Ito formula for our class of processes, and the
functional  (u)=|u|*. Let us prove a more general Ito formula:

THEOREM 1.2 Suppose:
ue M*(0,T; V)
u,eH
ve M2(0,T; V")
¢eM?(0, T; HY), with:
u(t)=uo + {5 vis)ds + 6 Lo (s), dW,].

Let y be a twice differentiable functional on H, which satisfies assump-
tions (1), (i) and (iii) of Lemma 1.3 and moreover:
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iv) If ueV, ¢ (w)eV; u—y’'(u) is continuous form V (with the strong
topology), into Vendowed with the weak topology.
v) 3k st (¥ @)|| k(1 +]|[u]), VueV.

Then:

Y () =y (uo)+fo v,y W)>ds+ Jo LY (u), @), dW]
d
+3 2, §6 (0" (w)es @;)ds (1.19)
i=1

Proof (a) Consider first the case where peM 20, T; V%. Define once
again

M, =, [p(s),dW,].
Then MeM?(0,T; V), and if i=u—M, ie M*(0,T; V)

dii 2
i T, V'
T veM*(0,T; V")

Let ¢ be a sequence in M?(0,T; V), such that #"eC'(0,T; H) as.,
and:

a"(0)=u,

#"—i in M*(0,T; V)

N

n__u___) : 2 . ’
v—dt vin M“(0,T; V')

It follows from Lemma 1.3:
Y (6)+ M) =y (uo) + fo (W' (@ + M), vpds + o LW (@ + M), @), dW]
+%i§1 §o (0" @+ M)y, ¢;)ds (1.19%)
1t follows from Lemma 1.1 and the above convergences that:
a"—d in L2(Q; C(O,T; H)).

It is then easy to see that we can take the limit in (1.19)", yielding (1.19).
b) Let ¢"—¢ in M?(0, T; HY) with ¢"e M?(0, T; V9). Define u, by:

du, + Au,dt = (v+ Au)dt + [@,dW]
u,(0)=1ug
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This equation has a unique solution in M2(0,T; V)~ C(0, T; H)), from
the result in Remark 1.3.
Exactly as in the Proof of Theorem 1.1, we get:
u,~u in M*(0, T; V)~ L*(Q; C(0,T; H))

and consequently Au, —Au in M2(0,T; V).
This permits us to take the limit on the result obtained in (a) yielding
(1.19). O

§1.5. Existence and uniqueness
We consider finally the equation:
ueM*0,T; V)
du(t)+A@u(t)de=[B(t)u(t), dW]
u(0)=u, ' (1.20)

- where A and B are supposed throughout this section to satisfy (1.2), (1.3)

and (1.4), and u,e H.

Because B maps V (and not H) into HY it is not possible to get our
existence result from Theorem 1.1 by a Picard type iterative scheme.
Therefore we will use a Galerkine finite dimensional approximation. One
can also use a time discretisation, as indicated in the Proof of Theorem 3.1
of Part II.

Let us prove:

THEOREM 1.3 Eguation (1.20) has a unique solution u, which satisfies
moreover:

D uel?(Q; C(O,T; H))

i) Ju()]?+2 5 CAu,upds=ug|* + 2 [5 [(Bu,u), dW,]
+ 5| Bu|?ds, as.

Proof Proof of (1) and (ii)

Let u be a solution of (1.20), Then BueM?(0,T; H%. And from
Theorem 1.1 there exists a unique ve M2(0, T'; V), solution of

{du(t)—i—A (t)o(t)dr=[B(t)u(t),dW,]

u(o)=uq,

But u is such a solution, then u=v and (i) and (ii) follow from Theorem
1.1.




Downloaded by [Aix-Marseille Université] at 02:19 10 April 2013

138 E. PARDOUX

Uniqueness
Let u and v be two solutions of (1.20). Then u—v is a solution of (1.20),
with ug=o0. But we may now use (ii), ylelding:

E(|u(t)=v()|2 +2E [y (A(u~v), u~vpds=E [ | Bu—Bv| ds
From (1.4), we get:
E(u(t) =v(0)]? S AE [ [u(s) — v(s)|*ds
It follows from Gronwall’s inequality that
E(u(t)~v(t)[*)=0,VtZL0

Existence

Let vy, 0,,...,0,... be a Hilbert basis of V, which is orthonormal as a basis
of H.
Define V,=S,{v;, 05, ..., v,}, choose for each n uy, € V,, such that:

Uy, —Ug In H (1.21)

Deﬁne un(t) =Z'r}=1 gni(t)vi’ Where gn(t)= (gnl (t)gn2 (t) v gnn (t)) iS the
solution of the following Ito equation in R":

{d(un(t),v,-)+<Au,,(t),vi>dt=[(Bun(t),vi),dW,], i=1...n

4, (0)=tio, (1.22)

It follows from Ito formula:
Elu,(2)|* +2E[} { Au, u,yds=ug,|* +Ef ¥ |(Buy,v,)|%ds
i=1

£|uon|* + E[5 | Bu,| ds

Using (1.4) and Gronwall’s inequality in the same way as above, we get:
Efyl|u,0)|dr e
It follows that there exists a subsequence u, such that:
u,~u in M*(0,T; V) weakly.

Let ¢ be an absolutely continuous function from [0, T] into R, with
@' €L*(0,T), and ¢(T)=o0. Define ¢,(t)= ¢ (t)v,
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Multiplying (1.22) by ¢,(z), and using Ito formula, we get:
§6 A (1), @i(0)pdr = (ug,, 0, (0)) + [T (u, (1), @i (1))t
+J3 [(Bu, (1), ¢;(t)), dW,].

We can take the limit in L?(Q) weakly in each term of the preceding

equality. Indeed, the mapping:
Y=o [¥(s),dW,]

is linear and continuous from M?Z(o, T; R?) into L?(Q); it is then
continuous for the weak topologies.

It Tollows that

[ CAu(t), @; (1)) de = (ug, @;(0)) + [T (w(1), i (1)) dt
+ [T L(Bu(t), @; (1)), dW].
The last equality is true Vi, then:
{8 (Au@), vy (t)dr = (uo, v)@ (0) + [§ (u(r), v)@' (t)dt
+ {3 o (O[(Bu(t),v),dW], Vve V.
Choose ¢, defined by:

1if s

IIA

t—1in
Pn(s)=< T+n(t—s), if t=In<s<t+4in

o if s=t+3n

{nj'iiﬂ%ﬁ (u(s), v)ds+ [ CAu(s), D, (s)ds = (uo, v)
+ (T @, () (Bu(t), v),dW,]. (1.23)

It follows from a well-known Theorem of Lebesgue that we can take the
limit in the first term of (1.23), for almost all t€]0, T[. Then:

(u(t),v)+ b {Au, v)yds = (uo,v)
+ [ [(Bu,v),dW,] ae. in t,yveV.

Using the separability of V, we get:

u(t)+ b Auds=uq + [, [Bu,dW,], a.e. int.
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Then u is a.e. equal to a continuous process with values in V', which we
define to be u, and which satisfies Eq. (1.20). [

We will need a slight generalization of Theorem 1.3. Define:

feM*0,T; V') (1.24)
ge M2(0,T; HY) | (1.25)
and consider the equation:
ue M2, T; V)
du(t)+ (A@)u (1) + f())de=[B()u(t)+gt),dW] (1.26)

u(o)= =u.

where ug is given in H.

THEOREM 1.4 Equation (1.26) has a unique solution, which satisfies
moreover:

1) 'ueLz(Q; CO,T; H)).
i) )u(t)'2+2jt0 <Au+f,u>ds=‘u0‘2+j'0 [(Bu+g,u),dW,]
+ {5 |Bu+gl?ds. [J

The proof follows the same lines as that of Theorem 1.3, using the
generalization of Theorem 1.1-—see Remark 1.3,

§2. EXAMPLES OF STOCHASTIC PDE's

We will restrict ourselves to stochastic PDE’s in R", as we will in the
second part of this paper restrict our attention to filtering of diffusion
processes without boundaries. For the case of boundary conditions, see
Pardoux [13] and [14].

§2.1. Application of the abstract results

We will, for short, write H* for H'(R")={ueL*(R"); du/oxe L*(R"),
i=1...N.
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Define:

Oijs Ay Cpi € L7 (J0, T[xR"); i,j=1...N; k=1...d (2.1)
and, for u, ve H*:

v

Ou
X JRNGij(l,X)éx—i (X)adx

J

A, vy =

S

+ i J a;{t, x) (x)v(x)dx
. &Y xl

(x)+d (¢, x)u{x).

A and B satisfy (1.2) and (1.3), from (2.1).
We suppose moreover that o> o such that:

d

N
2 Qayinx)= ¥ eult, x)ey(t x))éE 2 ¢

i, j=1 k=1

.

vEéeRN ae in (¢, x). (2.2)

The coercivity condition (1.4) is easy to check from (2.2). In this
example, Eq. (1.20) has a unique solution in M*(0, T; H )~ L2(Q; C(0, T;
L2(RM))).

Equation (1.20) can be interpreted in the following way:

i < (t x))dt

(t,x)dt

i

+Za(txax

<i cui(t, x)jx (t,x)+dult, x)>de a.e.

i=1 i

u(o,x)=ug(x) (2.3)

Remark 2.1 One can easily check that the same result holds if we
replace A(t) by its adjoint A*(t), or if we add in the expression of
(At)u,v> a zero order term

Jao(t,x)u(x)v(x)dx. O
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§2.2. A regularity resuit

We now prove a regularity result, which will be useful in the sequel. We
will denote

ak
H"———H"(RN):{ueLZ(RN); 57~L;—EL2(RN), Vk§n}
Let us consider Eq. (1.26) with g=o.

THEOREM 2.1 Let n be any integer z1. Suppose, in addition to (2.1) and

- (2.2), that all coefficients a;;, a;, ¢;; and d, have bounded partial derivatives

in x up to order n, and that moreover:
upe H" fe M*(0, T; H*™ ). (2.3)
Then u, solution of Eq. (1.26) (where g=o0) belongs to M?*(0,T;
H Y)Y AL (Q; CO, T; H")).

Proof 1t suffices to prove that all partial derivatives of u in x, up to
order n, belong to M2(0, T; H') n L2(Q; C(0, T; L*(RY))).
Let us give the proof for du/éx,. If p(x)=p(xy,Xs,..., X,), call:

pr(x)=p(x; +hxg...%,)
10 =1/h(p"~p).
Choose ve H!, and multiply Eq. (1.26) by 7_,0:
((t),t_yv)+Jo CA(s)u(s) + 1 (s), T - oo ds = (ug, T 4v)

+fo [(B(s)uls) —ypv). dW,]

ou O(t- 0
(Au, T wy=Y, J aijru— (Th v)dx+z J ai#r_hvdx
ij JRY j RN O0X

Ry 0% OX; ;

i

: 0 v 6]
= ——Z J;{ 'aijaﬂx— (Thu)axj dX‘Z J‘RNaiZ;':x—i (Thu)bdx

{hrowo) ={t [0

(Ug, Ty} = (Tylio, V)
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(Byth, T_,0)= Zj

a h
- f T4Cpi au vdx — J thdku"vdx
T JRY R

We conclude that z,u satisfies the following equation:

udx - J- d,t,uvdx
RN

d(tpu)+ (A (t,u)+ fi)dt =[B(r,u) + g5, dW]]
(tyu)(0)=1,u,

(2.4)

where:

o> = ZJ @ cu@vd

) 0x; 0x;

+y ( o’ d
| rhai)a—Xiv x4+, f,v)

h

Ju
gf =Z (Theui) 5—

: o) + (t,dy )u”

It follows from the hypotheses we made that f, is bounded in M?(0, T;
H™ ')t g, is bounded in M2(0, T; L?(R")), and 7,u, is bounded in L?(R").
We can conclude from Theorem 1.4, using standard estimates, that 7,u
remains in a bounded subset of M*(0, T; H!). There exists a subsequence
7,u such that:

Tu—y in M*(0,T; H') weakly.

But fu—0u/Cx, as. in the sense of distributions. It follows that
¥ =0u/0x,, and taking the limit in Eq. (2.4), and using Theorem 1.4, we
conclude that du/dx, e M*(0, T; H*) nL*(Q; C(0,T; I2(R™))). [

Remark 2.1 Similar results, with H" replaced by Wm™P(R¥) [the
Sobolev space defined as H", where I7(R") replaces IZ(R™)], and Vp>1,
are given for the same type of equation in Krylov-Rosovskii [7]. [I]

Following an idea in Bensoussan-Lions [1], we now deduce from
Theorem 2.1:

THEOREM 2.2 Let u be the solution of Eq. (1.20), with initial condition
uoe L*(RM).

We suppose, as in Theorem 2.1, that (2.1) and (2.2) hold, and all
coefficients a;;, a;, ¢,; and d, have bounded partial derivatives up to order
2k.

tH™ &2 H-U(RY = (H' (RY)).
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Then there exists a constant ¢, independent of u,, such that:

2 Vrelo, T
Proof Define u; =tuw. It is easy to verify that:

du, (t)=tdu{t)+u(t)dt
Then u, is the solution of:

{dul(rmA(r)u L) —u(0))de=[B(t)uy (t),dW]]

u(o)=o
But ue M?(0, T; H'). It then follows from Theorem 2.1:
u, e M0, T; H3) n 12(Q; C(O, T; H?)).

By recurrence, it is easy to check that t‘ue L*(Q; C(0, T; H**)), and it is
easy to verify that, Vte[Q,T], ug—t*u is a continuous linear mapping
from L2(R¥)into C(0, T; L*(Q; H*Y). O

§2.3. Remark on the coercivity condition

We want to show here why the coercivity condition (2.2) is crucial.
Therefore, we will give an explicit solution in the case where the
coeflicients are functions of ¢ only, and safisfy, contrary to (2.2):

d

2a;;(t)— ), cult)e, (t)=0ae in JO,TL Vi j=1,..,N. (2.5)
k=1
We suppose: ;
ug=@eC*(RV)~nH. (2.6)
a;j, i O dy € L7 (10, T1): 1..N:k=1...4.

Define:

d

b(t)= —a;(t)— Z (t)yd (1), i=1...N.

X, =[5 b(s)ds + [, ¢* (s)dW, (2.8)
@(t,x)=q(x+ X )exp{{, [d(s), dWI—4[; |d(s)|*ds}. (29)

Once again, we choose V=H"', and A, B are given as in Section 2.1. We
have the following.
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THEOREM 2.3  Under the hypotheses (2.5), (2.6) and (2.7), ¢, defined by
(2.8) and (2.9} is the unique solution of (1.20).

Proof It is easy to check, using (2.6), that ¢ M?(0,T; H'). The fact
that ¢ satisfies (1.20) is a consequence of Ito formula.

It remains to show that if u is a solution of (1.20) with ug=o0, then
u=o0. Let us apply Theorem 1.2 to such a u:

E|u(t)]*+2E [, (Au,upds=E [ | Bu|*ds.
Using (2.5), we deduce:

E‘“([)‘2+ZZ Jl dS(ai_deCki)
: Jo K

xj u udx:ZEj dsd,fj WPdx.  (2.10)
rRY k RrRY

NOX; 0

But it is easy to check that any v in H' satisfies:

v
J v—dx=o.
RY CX;

The result then follows from (2.10) and Gronwall’s Lemma. [

Theorem 2.3 shows that when the coercivity condition is no longer
valid, Eq. (1.20) degenerates exactly in the same way as a parabolic PDE
degenerates to a first-order hyperbolic PDE, whose solution is given by a
method of characteristics. In particular, the solution given by Theorem 2.3
has the property that the regularity in x is the same for all times ¢,
whereas the coercivity has a regularizing effect.

Remark 2.2 The question of what happens to the solution when the
left-hand side of (2.5) is negative is, as far as we know, an open
problem. [J]

§3. APPENDIX: NON LINEAR STOCHASTIC PDE’s

Our method applies to the more general case where the operators 4 and
B are non-linear, satisfying a condition of monotonicity. We present here
some results of Pardoux [11], without proofs.

We use the same triple as above {with the same notations for the
norms):

VecH<V’

where here Vis supposed only to be a reflexive Banach space.
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Let A(t,.) be a family of operators from Vinto V' and p> 1, such that:
IBst||Au)| ZBlullP™h Vuel, aet. (3.1)
| 80— {A(t,u+0v),w) is continuous, Vu,v,w,€ ¥, a.c.t. {3.2)
t—A(t,u) is Lebesgue measurable from ]0, T[ into V', Vue V. (3.3)

Let K be a Hilbert space, and (Q, %, %,,P,W,) be a K-valued Wiener
process, such that

E[(W.h)(W, k)]=(Qh, k), Vh keK,

where @ is a given nuclear operator on K.
Let B(t,.) be a family of operators from Vinto (K, H) such that:

VheH, keK, NeR,, 3L s.t.
[(h, B(t,u)k)— (h, B(t,v)k| < L|lu—vl]

VurveV st |lul|,|[o]|EN. (3.4)

t—B(t,u) is Lebesgue measurable from ]0,T[ into ¥(K; H), VueV
(3.9)
We suppose moreover:

Coercivity Ja>0,4 and y s.t. Yuel, ae.t,
2{A(Lu),u) +A|ul2 +yzaljul|P+]|Bw)Q' 23 (3.6)

Monotonicity Yu,velV, aedt.,

2CAMu)~ Al o) u—vy+Alu—v]* Z || (B(t,u)— B(t,0))Q*?||3
' (3.7) -

where ||.||, denotes the norm in ¥?(K; H) the space of Hilbert-Schmidt
operators from K into H.

Define:
uoeLz(Q,Of,P; H)

, e
feMPO,T; V') <F+F‘1>

M, a continuous square integrable H-valued martingale.

TM9(0, T; X) is defined in a similar way as M2(0, T; X), with the condition

T T
E'[ [| /|4 dr+ oo instead of E [ 1113 de < 0.
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Now consider the equation:
ue M?(0,T; V)

du(t)+ (A@u@E)+f(e)dt=B(t,u(t))dW,+dM,
uf{o)=uq. (3.8)

THEOREM 3.1 Under the above hypotheses, Eq. (3.8) has a unique
solution, which satisfies moreover:

uel?(Q; C(O,T; H). [

One has an Ito formula for the solution of (3.8).
Suppose:

Vand V' are uniformly convex. (3.9)

Let ¢ be a functional on H, which satisfies the hypotheses of Theorem
1.2,

Let ueM?(0,T; V), ueL*(Q,%,, P; H), veMP (o, T; V'), and M, be a
continuous square integrable H-valued martingale, such that:

u(t)=uqg+[bv(s)ds+M,tefo, T].
Then the following holds:
THEOREM 3.2
Veelo, T (u(t)) =y (ug)+[o (' (u(t)), v(s)>ds
+Jo (' (u(s)), dM) +3T, fo U (u(s))d KM,

where (M), is the unique continuous increasing process with values in the
space of nuclear operators on H, such that (M, h)Y (M, k)— (LM h k) is a
martingale, Vh, ke H, ¢f. [10], [12]. [

Remark 3.1 In the case w(u)zlu 2, we need only to assume, instead of
(3.9), that V' is strictly convex. This is always true (perhaps after an
equivalent change of norms) because V' is reflexive. ([J]

PART il. FILTERING OF DIFFUSION PROCESSES

§0. ORIENTATION

In this section, we will see that the stochastic PDE’s we have defined in

the first section are closely related to the non-linear filtering problem. We

will associate to a non-linear filtering problem two stochastic PDE’s which
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play the role of the backward and forward Kolmogrov equations as-
sociated with unconditioned diffusions.

Our main result is a kind of Feynman-Kac formula for a backward
stochastic PDE (Theorem 2.1 below)f. Our formula expresses the solution
of the stochastic PDE in terms of the conditional law of a Markov-
diffusion process, given observations corrupted by noise; whereas the
Feynman-Kac formula expresses the solution of a (deterministic) PDE in
terms of the unconditioned law of a Markov-diffusion process.

The next step is then to express the relation between the two stochastic
PDE’s we consider: the backward and the forward one.

The difficulty in proving these two results is that they involve differen-
tial calculus with both processes adapted to the past, and to the future
increments of a Wiener process. There is no differential rule in this
context, and we have to discretize time, and to “kill” (before passing to the
limit) the terms which would not make sense in the limit.

Our technique can be applied to other filtering problems, where the
signal is a Markov process, and where a Girsanov transformation can be
applied to the observation process. It has already been done in Pardoux
[14] in the case where the signal is a diffusion with boundary condition,
and the observation noise is independent of the signal; and in Pardoux
[15] in the case where the signal is a diffusion, and the observation is a
Poisson process whose intensity is a given function of the signal.

§1. THE FILTERING PROBLEM-—NOTATION AND
HYPOTHESES

Define:

;;(t, x), continuous and bounded on [0, T]x RN, VT>0;ij=1...N.

b;(t, x), h, (t,x) Borel measurable and bounded on [o, T] xR¥, ¥ T>o0;1
=1,..,N, k=1,...,d

2,;(0), &, (t) continuous on R, ; k,1=1...d,i=1,..,N.
We assume the following:

g()g*(t)+g2(n)g*()=11L. (1.1)

tAfter having proved the result, we discovered that, in the case of state-independent
observation noise, it had been stated formally by Kushner in [8 bis]—and in an earlier paper

referenced therein.
I * denotes the transpose.
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If>0 st (F(0EH1)E E)ZP|E[A VEER, Y120 (1.2)

Ja>ost (a(t,x)E &) zalE)?, VEERN, V(t,x)eR, xRY (1.3)

where a=g¢* We define c=go*.

Following the work of Stroock-Varadhan [16], we consider the mar-
tingale problems associated with the following systems of stochastic
differential equations:

dX,=b(t,X,)dt + o (t,X,)dW, 4
dy, =h(t, X,)dt + g (t)dW, + Z(1)dW, '
{dX,=[b(z,X,)—c*(t,X,)h(t,X,)]dt+a(t,X,)dW, (L5)
dY, =g()dW,+ g(1)dw, '

where W, and ¥, are two independent standard Wiener processes, with
values in RY and R? respectively.

Remark 1.1 (1.4) is our filtering problem, where X, is the signal
process, and Y, the observation process. The system (1.5) will be used for
technical reasons. [

Remark 1.2 Hypothesis (1.1) is a normalisation hypothesis. If g(1)g*(t)
+g()g*(t)=Mt), where o<y I<M (1)< 41, it is always possible to refor-
mulate the problem, choosing a new observation process

yi=[o M~ (s)dy,,

such that (1.1) is satisfied. [
Define Q=C(R,; R¥"%);

<X'(w)>=w(t), G =0{w(l),s<0Zt}, ¥°= V @
Y;{C{)) tzs
We write 4, for 40 and ¢ for °.

According to Stroock-Varadhan [16], Ys=o, xeR¥, there exists a
unique probability measure P [resp.P,] on (Q,%°), solution of the
martingale problem associated with (1.4) [resp. (1.5)], and such that
P, (X,=x, Y,=0)=1[resp. P (X ,=x, Y,=0)=1].

This means that VfeC; *(R.xR""?) the following process is a P,
martingale:

FX )= o'+ Lo f + Mo f)(6, X, Yy)db
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where L, and M, are the following operators:

2 0

Ly=%Y a,; + Y b; (6, .
0 Zéau(eax)axiaxj Z 1( x)éxi
io 67 2 3]
M,=3) —5+) (0, + > h (8, x)—.
? 2;0)'1% ik l X)aykaxi ; «l )a)’k

And there is a similar formulation for P.,.
Let poeL*(RY) be the initial density of X, [then py(x)Zo ae. and

§r¥po(x)dx=1].
We define the probability measures P and P on (Q,%) by:

¥ B Borel subset of R¥ "4, Vi =0,
P[(X,, Y,)€B] =g p,(x)Po,[ (X, ¥,) € Bldx

PL(X., Y,)e B1=Ja~po (x)Po,[(X,, ;) € B]dx.
Define: ’
Zf:exp{j; [h(@, Xe)deOJ _'%_’-ls “’1(6, Xe)‘zde}

and write Z, for Z.
We deduce from the well-known Cameron-Martin formula (see [16]):

ap
dP

_z, Pu
gl_ v dﬁsx

5

g~

We will write E [resp. E,, E, E,.] for the expectation with respect to P
[resp. P, P, P.]. We will write Q for (,%,P) and Q for (Q, %, P).

Define F5=0¢{Y,—Y,s<0=t}, and write &, for #.

The aim of filtering theory is to characterize at each time ¢ the law of
the signal X,, conditioned on the observation o-field %, i.e. quantities of
the form E[f(X,)| #.].

We will prove in the rest of this section that this law has a density with
respect to Lebesgue measure in RY, which, up to a normalizing factor, is
the solution of a stochastic PDE of the kind we studied in the first
section.

We will make use of the following formula, which is well known and
easy to verify:

_Eux)z|#)

where f'is any bounded measurable function.
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Finally let us make the following hypothesis:

0 .
EaijeLw(]o,T[xR“);VT>o;i,j=1...N. (1.7

§2. STUDY OF A BACKWARD STOCHASTIC PDE

Let L, be the infinitesimal generator of the X, process, i.e.:

N @2 N K
=1 : -
2 Z=:1 cx,-('ﬂxj +i=zl b ([’X)é’xi

Using the hypotheses introduced in Section 1, we can consider L, as a
family of elements of ¥ (H',H™ '), defined in the following way:

du ov
< ,U,U> 2; RNaU( ,X)axi axj dx
N ou
+ (LX) —v
i:zl tha,( x)aXibdx
where
Y day

= ox;

Let T> 0. Consider the following stochastic PDE:

{dv(t)+L,v{t)dt+[h(t)v(l)+c(t).Vu(t),dY,]zo,0§t§ T 2.1)

v(T)=f
Where fis a given Borel measurable function from R¥ into R satisfying:
feL®(RN)~ L*(RY). (2.2)

We have to consider (2.1) as a backward equation because —L, (and
not L,!) is coercive. Our probability space in this and the next sections
will be O=2(Q, %, P). We remark that Y, is a &#,~P standard Wiener
process with values in R%

Define ¥,=Y;— Y;_,.

Y, is #17¢—P Wiener process, and setting #(0)=v(T —0), we see that
Eq. (2.1) is equivalent to:

{ 5(0) = Ly 3(8)d0=[h(T—0)5(8)+c(T—6).V&(0),d¥,],0<8<T
v(0)=f
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1t follows from (1.1}, (1.2), (1.3) and the fact gg* and g*g have the same
largest eigenvalue:
Fy>o0 st ({all,x)—c* c(tx]fé v|¢]?
‘ " V(t,x)eR, xRN, VEeRN (2.3)
Define:
B(t)u=h(t)u+c(t).Vu,ueH'.
It follows from (2.3) that the pair of operators (—L,B,) satisfy the
coercivity condition, and all the conditions of Section 2.1 of Part I,

yielding a unique solution #(8) of the last equation, &} ~*—adapted.
Then Eq. (2.1) has a unique solution:

ve L2(QxJo, T[; H) A L*(Q; C(o, T; L*(R™)))

where v is F4 adapted.
The rest of this section will be devoted to the proof of the following
theorem, which gives a sort of Feynman-Kac formula for the stochastic

'PDE (2.1):

THEOREM 2.1 Vrte[o, T], the followiﬂg equality holds dP x ds a.e.:
v(t,x)=E (f (X1)Z%|F (2.4)
Remark 2.1 The right-hand side term of (2.4) can be also written:
f(X)Z% | F4, X, =x).

It then follows that—r being fixed—it is a measurable function defined
on (QxRY, FL%%). O

We will actually prove the result under additional regularity
assumptions:

LEMMA 2.1 Suppose in addition to the above hypotheses, that b, a;;, hy, g
(i,j=1...N; k=1...d), have continuous and bounded partial derivatives in
t and x of any order, and fe n, H".

Then equality (2.3) holds V (¢, x), a.s.

We first assume Lemma 2.1 is true, and proceed to:

Proof of Theorem 2.1 Let us first suppose that f is continuous, with
compact, support. Let b7,07 ;,h, /" be a sequence of smooth coefficients
and final conditions, such that:

iy [by, |ot), i |hs| and |f,| are all uniformly bounded by a
constant independent of n, and a" satisfies (1.3) with  independent of n.
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ii) of;~0; and f"—f uniformly on each compact set of [o, T] xR
(resp. of RY).

ii) daf;/éx;—0da;;/Cx;, bf—b; and hj—h, in measure on each compact set
of [0, T] x R¥.

Denote by P",v,(t,x) and "Z the corresponding objects associated
with b", T", h" and f" instead of b, T, h and f. It follows from Lemma 2.1:

o (8, x)=E5 (/" (X,)" 25/ F). (2.5)

Let
ue CL(RM),T s.t.:

u(x)Zo, [gru(x)dx=1.

Denote by P the solution of the martingale problem associated with
(1.5)", satisfying the initial condition at time ¢:

E;'u[g(Xt)] =§RN g(x)u (X)dS.

We define similarly P, replacing (1.5)" by (1.4)", and also P,, and P,

tu?

ﬁ ="z
aP, @~ CT,
It follows from (2.5): '
(w, 0" (1) = EL, (fM (X )" 27/ F ). (2.6)

Let ¢ be a continuous and bounded application from Q into R, which is
F'r measurabie. It follows from (2.6): :

ELlewv)]=ELlof" (X))

But ¢.(u,v"(t)) is F% measurable, and the restriction of P to #% does
not depend on n:

Enlow v ))]=E,le (1)
Eulow v )]=ELlof"(X1)].

Let us now take the limit for n—oc in (2.7). From the results of
Stroock-Varadhan [16], P%.—P,, weakly, uniformly on each compact set.

The support of u being compact, Pf,—P,, weakly. The limit in the right-
hand side ther: follows from ({ii).

2.7)

+CL(RY) is the space of C! functions having compact support.
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It follows easily from (i) that ¢"(¢) is bounded in L2(Q x RY), and v" is
bounded in L2(Q x1t, T[; H'(R")). Then there exists a subsequence v*,
such that:

v*(1)=¢ in L2(Q x RY) weakly
vy in L2(Qx]t, TL]JHS (RY)) weakly.

It remains to show that y=wv, and &=w(t). This will prove that the
whole sequence v"(t) converges to v(t) in L? (€ x RY) weakly, and (2.4) will
follow from the limit in (2.7), and the freedom of choice of ¢ and w.

Let 6 C*([t, T]). It follows from (2.1)*:

{(f“, u)0(T)+ [T 6L v*, uyds+ [T O[h*v* +c* . v*,u), dy,]
= (0 (), w)0 () + [T 0 (0 u)ds. : (2.8)

Using (ii), (iii), and the fact that u has a compact support, it is easy to
check that the following convergences hold in L*(Jt, T[ x RY) strongly:

0 5,
u—»a#, i=1...N;

0x;  0x;

all
bru—bu; h*u—hu; c*u—cu.
We then can take the weak limit in L? (ﬁ) of (2.8), yielding:

{(f, w)0(T)+ [ 0Ly, upds+ [ 0L (hy+c.yxu),dy,]
= (&u)0(t)+ [T 0 (ru)ds, YO C ([1, T]), Vue Cx(RY)
It is then easy to conclude from the uniqueness of the solution of (2.1)

that y=v, and &é=u(f).
Finally, it is easy to generalize (2.4) to any bounded and Borel

‘measurable £, s.t. fe *(RY). [

We now prove Lemma 2.1 in the particular case where the observation
noise is independent of the signal:

LEMMA 2.2 Suppose that all the hypotheses of Lemma 2.1 are satisfied,
and in addition g(t)=o.
Then (2.4) is satisfied.

Proof 1t follows from the hypotheses and Theorem 2.1 of Section I
that each trajectory of v belongs to n,C(o,T; H"), so that
Y, v{t,.)e C®(RY) as.
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In order to simplify the notations, let us prove (2.3) for t=o0, write
EI(c) for Eo (.|Fr) and Z; for Z%. We will suppose that d=1. The
more general case is handled exactly in the same way.

Let o=ty<t; <t,<...t,=Tbe a mesh with ¢, , —t,=T/. k.

Define:

A=E][Z, vty X, )~ Zp(t, X,)]

n—1

EX(f(X1)Zg)—v(o.x)= Y A,

i=1

In order to prove (2.4), it suffices to show that:
n—1 o
A;—o in LY (Q,P,)

i=0

when n— + oc.

Ai=Ez[Zz,+lv(ti+1aXziH)_Zin(tH 1 X))
+E:{[Ztiv(ti+ 1 Xzi)_Ztiv(th Xt,-)]'

We express the first term in A; by means of Ito formula, applied to
Zw(t;11,X,). Because g=o0, Y, and W, are P, -independent, and
ET[®W.dW,=o0, as soon as ¥eL*(QxJo, T[), and ¥, is independent of
6lwg—w, s<O<b}. We express the second term in A; using Eq. (2.1) at
x=X,, which makes sense because of the regularity of the solution.

It follows:

A=ETfir Zw(t,, 1, Xhs, X)AY,+EL [+ Z Lo(t,,, X,)ds
—ET i1 Z, ho(s, X, )Y, —ET i+ Z, Lov(s, X, )ds
(2.9)

The first stochastic integral in (2.9) is forward, the integral being
adapted to & v F'4*:. The second one is backward, where the inte-
grand is adapted to #, v F%.

It is easy to show, by Lebesgue dominated convergence theorem, that:

n~1
lim Y ET [ Z,Lo(t;s 1, X,)ds

n—oc j=0Q

n—1
=lim Y ET[4Z Lou(s, X, )ds= [ Z,Lv(s, X,)ds.

n=ro0 [=0
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It 1s not possible to take‘ the limit in the same way in the stochastic

integrals, because what should be the common limit do not make sense.

Ji Zoo(te 1, XD (s, X )AY = 171 Zho(s, X Jd Y, =ou+ Byt 9,
where: .
=20 o X R X ) — Z ot 1 X DB (2 X, )]AY,

Bi={i1 Z, [ho(t 41, X, ) — ho(s, X, )]dY, '
Ve=Zp(te 1 X O X, ) =B, X)L — Xy

)

Again, ; is a forward stochastic integral, and f§; is a backward one.
v and ¢h/0t being bounded,

n—1 n—1
E‘ 5 wftg A
i=0 i=0

SckY B (Z,[Y,., ~ X))

it1

§Ck3/2 Z (Exzrzi)uz

T ‘
g\/—;.cT. sup (E.Z2)'2.

It follows that, as n— + c0Y 724 ETy,—o in L' (Q, P,).

It remains to show that EI 7.4 o, and ET Y725 B, converge to O in
L(Q; P.). Let us first consider ET Y, o It follows from Ito formula:
EI[st(ti+ 1 Xs)h(sv Xs)—Zr,-U(tH— 1s Xti)h (tia Xzi):l
=Efffize{hé(€, Xo) U (tis 1> Xo)+ Le[R(B, . Ju(tiy 1, )1(X,)(dE
+ET (S Zoh2 (0, X g)v (141, Xp)d Yy
=EI (£ Zy0,(0, X )d0 + ET (5. Zon; (6, X4)d X
It follows:
: EToy=EToaV + ETo(®);
with v
E |aP|=E,|fi"1dY, i Zop:(6, X 4)d0)|
1/2 k3/2

Ex\ocs“\éHpr(Ex{OggTZ§}> 7 (2.10)

AP =[Gy, 5 Zyn, (0, Xo)dYy=3Z, 1, (6, X, )(Y;,,, — %) = k]
+j‘;::+l d){sﬁl [Zerli(es XB)_Ztir]i(tis Xt,)]dY;? = azf +ai”
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with

EJo

3 vz g
§<Ex{ sup [Zeni(evXe)_Zziﬂi([iaX:i)]2}> ;7'2_

<0<
LEOS L,

We then deduce, using the Ito formula applied to Zy»,;(6, X,) and the
classical inequalities for martingales:

E lof|SCK"2. (2.11)

It follows from (2.10) and (2.11):
Ex‘Zoci|§Ex|Za”+c’\/1_c.
And the desired convergence follows from the fact that:

Y ai—o0 in L*(Q,P)).

Consider now ) ; ;. Here we use Eq. (2.1), instead of Ito formula, and
we get:

Bi=p"+ B,
where
PO ={11Z,0(s, X, ) (h(t 1, X)) — h(s. X, )))dY,
PR = [ Z, (h(ts 1, X, ) (0(t 1, X, )= 0(s, X, ))dY,
E|pO|SCE(Z, )2 k2,

Using Eqg. (2.1), we get:

BP =~ Bi— B+ B,

where

Bi=Z.h(tisy, X,) [0 dY, [+ Lo(8, X, )d6

Bi=Z,h (e, X o (te 1 X 50Y,, ~ )P K]

V=2 X ) U AY 8 The (b1, X ) — ho (6, X, )]dY,
E|B| Sc(E(Z, ) kP
Zﬁ{.’qo in LMNQ,P))
E|B/"|Sck(E{ sup [ho(tsy, X, )—ho(s, X, )]* 1)V (2.12)

Es <
LESSl4y
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It is easy to see from (2.12), using the regularity of h and Eq. (2.1), that:
Elfy| ek O
Let us finally proceed to:
Proof of Lemma 2.1 We will show how one can adapt the idea of the
proof of Lemma 2.2 to this more general case, where g 0. Once again, we

suppose for simplicity that d=1.
Using again Ito formula, we get:

Z 0t Xy )= Zop (e X )= i Z Lo (4 1, X )ds
—{i Zohe(s, X,) Vo, X )ds

+ [ Z (0, X Dh(s, X )Y,

+ [ Z Vo lts 1, X o (s, X )AW,]

+ {001 Z ohe (s, X,) . Vo(t - 1, X, )ds.

Tit1 titl

On the other hand, it follows from Eq. (2.1):
Z ot X, )= Z, 0 X, )= — [ Z, Lu(s, X, )ds
=i Z, (ho+c.Vo)(s, X, )dY,.

ET of the stochastic integral with respect to W, is no longer zero, but we
have:

E Al Z[Vo(tis 1, X,)o (s, X )AW,] {5 o, d Y}
=E'x{§§i“ Z.psc(s, X).Vult;eq, X, )ds}
=E [l Ze(s, X,) . Voltye 1, X)AY, 52 0,dY,}

Y ¢ measurable, bounded and # v #57** adapted.
And this suffices to show that:

ELfim 2 [Votis 1 X))o (s X )AWI=EL 177 Z,e (5, X,) Volti+ 1, X )Y,
It follows that:
A=El [\ Z Lo(tiey, X )ds+EL i Z (s, X v (tie 15 X,)
+c(s, X,). Vo(t4 1, X,)1dY,
—EIfinz Lou(s, X, )ds—ET {11 Z, [ho(s, X, )
+c.Vu(s, X,,)1dY,.
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The end of the proof is then similar to that of Lemma 2.2, where here
we apply Ito formula to Vu(t,,,, X,) as well as to v(t;,,, X,), and we use
Eq. (2.1) differentiated once or twice in x. []

§3. EQUATION FOR THE UNNORMALIZED CONDITIONAL
DENSITY

Let us now consider the following forward stochastic PDE:

{' du(t)+ Au@)dt=[E@)u() - c(t).Vu(t),d¥] 1)

u{o)=po

where A, = — L¥*, p, has been defined in Section 1 as the density of the law
of Xy, and k(r) is given by:
X Beii(t)

h_k([):hk(t)—i;l?- (3.2)

i

Again we can apply the results of Section I to Eq. (3.1), yielding the
existence of a unique solution ueL?*(Q xJo, T[,H)YANI*(Q; C([o, T],
L?(R"))) where u(t) is adapted to .

Indeed (3.1) is adjoint to (2.1):

THEOREM 3.1  Almost all trajectories of the process R,=(u(t), v(t)),
telo, T], are constant.

Proof Recall that (.,.) denotes the scalar product in L*(R¥). As R, has
a.s. continuous paths, it suffices to show that Vs,1e€]o, T[, R,=R, as.

Again, as in the proof of Lemma 2.2, we cannot differentiate R,, because
its differential would involve terms which do not make sense.

Let o<s<i<T, and s=t,<t,;<...<t,=t be a mesh, with ¢,,,—¢,
=t—s/n=k We suppose that k <sA(T —t). Define:

v"=%f§“‘v(8)d9 (3.3)

1
U= fi-xu(6)d (3.4)

and consider the following time discretized approximations of (2.1) and
(3.1):
VT i+ kL = R + LV, A Y]
i=n—1,n-2,...,0 (3.5)
Uty kA T =R - ¢ VUL A Y]
Ci=0,1,..,n—1 (3.6)
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where L;, A, k', I' and ¢ are the mean values of L, A, h, I and ¢
respectively on [t ,]; A, Y= -Y.
It is easy to check that when k is small enough such that (I +kA4,;)
satisfies:
U+ kA 2| |ul?

for some y>o, Vz YueH!, then (3. 3) (3.5) [resp. (3.4), (3.6)] define a
unique sequence 1'; i=n,...,0 [resp. u'; i=o,..,n] in L*(Q; H'), where t'
is #' measurable and u' is f/’",i measurable; i— 0,..uN

Moreover, if we multiply (3.5) by «', and (3.6) by v'
relations from i=o0 to i=n—1, we get:

*1 sum the two

W% 1)+ k(Au®, 00> = (u*; ")+ k(A u", v (3.7)
Define v,(t) and u,(t) by:
v, (0)=1', for Belt,t;o;[;i=01,..,n
u, () =1u', for Gelt,t;,[:i=01,..,n
where z,,;l =t,+k.

LEMMA 3.1 wu, [resp. v,] remains in a bounded subset of L*(Q x Js,t[;H');
u,(t) [resp. v,(s)] remains in a bounded subset of L*(Q; L*(R™)).

Proof Let us indicate the proof for u, Take the square in (3.6), and
then multiply (3.6) by 2u':

luH—l_ui‘2+2k<Ai+lui+ljui+1_ui>
<|Fu = Vi AY R (38)
20 —ul Uy + 2kCA L u TR U
=2 = Vi, u'). A Y. (3.9)
Taking the sum of (3.8) and (3.9), and the expectation yields:
E|u*![?—E|ull> + 2kE( A2 w7, 0™ 1) S KE| Rl — ¢ V|2
E|uw|> —E[u®|? +2E [£35 (A, (0)u,(0), u,(0)>d0
<E[|B,(0)u,(6)°d60  (3.10)
where 4,(0)=A, and B,(0)=h1-c".V, for 8e[t,t;[.
E| | +2E [ (A, (0)u,(6), 4, (6))df <E[u°?
+2E [$75 (A, 0)u,8), u,(6)>d0 +E | ‘B,,(G)u,, (6)!2d6.
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It follows from Ae L’ (o, T; L(H, H™));
2E {35 (AL (0)u,(8),u,(0)>d0 S c. klju®|®

so( [ Jwias)
<c f |u@)][2de.

It then follows from (1.1), (1.2), (1.3):

Efuy (1) +E f{gun(a)y;meg%Ef 14(6)|2d6

s
s—k

+cE j ||u(0)||2d0+ AiE jt]un(ﬁ){zde.
-k s

s

The result follows from (3.11) by standard estimates. [
Let us go back to (3.7).

KE|Aqu®, vy < ekE{[[u’]].[|o°[]}

s s+k
é%EH Hu(@)”d@.f an(e)HdQ}
s—k N
s 1/2 stk 1/2
§C<Ef Hu(0)|[2d6> <Ef ||u,,(6)|[2d0> .
s—k N

It then follows from Lemma 3.1 that k(Ayu® v°>—0 in L'(Q), as k—o.
The same holds for k{A4,u",v">. Moreover, again from Lemma 3.1, there
exists a subsequence n’ such that: v, (s)—{, and u, (t)—¢ in L2(Q; L*(R))
weakly.

The theorem will then follow from (3.7), if we prove that é=u(t) and {
=1(s). Let us indicate the proof for w.

Suppose that the subsequence has been chosen such that moreover:
u,—7in L*(Q xJs,t[; H') weakly.

But u,e M?(s,t; H'). Then ye M?(s,t; H'). Let

i+l

1
peCl(R),p‘=; J p(s)ds;

t
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and fe H'. It follows from (3.6):
pr T 0)—pl(, 0)+ kp'u T, A% 6)
=p'[ (U, h'0+c".VO),A Y]

1

pn—l(un,g)_vg (pi—pi+l)(ui,9)

1
n—1
+kY piu T A% 0> =p° P, 0)
i=0
n—1 ) ] .
+ Y P, Ho+ . V), A Y]

k=0

Taking the weak limit in (3.12) yields:

P (I)(f, g)— f; (s 9)p’(v)dv =p(s)(u(5), 8)
+ [ p()[hy—c. Vg dW].

It is easy to prove from (3.13) that (x(v),6) is (almost everywhere

(3.12)

(3.13)

equal

to) a continuous function, that y is the restriction to {s,t] of the unique

solution of Eq. (3.1), and that y(t)=¢. It then follows that & =u(z).

O

Remark 3.1 The above proof contains an alternate proof of existence

in Theorem 1.3 of Part I. [
It follows from Theorems 2.1 and 3.1:

COROLLARY 3.1 (u(T), f1=E(f(X7)Z¢/F ;)VfeL®(R")~ L*(R").

Proof Apply Theorem 2.1, and then Theorem 3.1:
W(T),v(T))=(u(0),v(0))
(“(T)»f)=J.R”P0 (x)Ex(f(XT)ZT/gT)dx'

Let ¢ be any bounded # ; measurable random variable.

E.[(T), f)pl=[rrpo()E.Lf (X 1)Z1@]dx.

It then follows from the fact that P,/z =P/, , and definition of P:

EL(T),f)pl=ELf (X1)Zr0] O
But Tin Corollary 3.1 is arbitrary. It then follows:
COROLLARY 3.2 (i) Vi=o,u(t,x)Zo0 ae., as.

(i) (W), f)=E(f (X)Z/F )¥feL”(R").
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Proof (i) follows from the fact that (u(t), f)=o, VfeL*(RY)~ L? (R"),
fzo.

Let f be a bounded Borel measurable and positive function defined on
RV Let f,e*(R")nI*(R");, f,.,(x)=f{x)=0, and f,(x)} f(x) as
n—+ o, ¥xeRY. We then can take the limit in:

(u(t)’j;)=g(fn(Xr)Zz/°/xx)

and the limit is a.s. finite. Then if /' is bounded and Borel measurable, we
defined:

W), f)= @), f)= W), /")
But if f and g coincide dx a.e., (u(t), f)=((t),g)as. [
In particular,
(u([),l):—E(ZI//?,).
But:
Z, =1+ Z[h(X,),dY]
E@Z/F)=1+ [ [E(Zh(X,)/F,).dY]
W) D=1+[5[(u(s)h(s))d¥]  (3.14)

It follows from (3.14) and the properties of Z, that (u(r),1) is a
continuous process which does not reach o nor + o in finite time. We
then can define:

p(t,x)=(u(r), 1)” "ult, x). (3.15)

COROLLARY 3.3 VfeL®™(R¥)~L*(RY), (p(t),f), t=o0 is a continuous
version of E(f (X,)/F,).

Proof 1t follows from (1.6) and Corollary 3.2

(u(t), f)
@,y o

But if fel?(R"), (u(t),f) is a continuous process, as well as
((r),1). O

We can now derive the classical Kushner-Statonovitch equation for
p(t,xy—see Kushner [8].

Let ve H'.

Vt_Z_o,E(f(Xr)/g‘_:)—’:

d(u(t), v)+ (Au(t), vydt =[(hu(t)—c.Vu(t),v),dY;]
d(u(t), 1)=[(u(x).h), d¥].
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It then follows from Ito formula:
d(p(t),v)+{Ap(t),vyde=[(hp(t)—c.Vp(t},v)
— (p(t), h)(p(t),v).dY,~ (p(t) h)dt] Y e H'.
dp(t)+ Ap(t)dt=[(h—~ (p(t),h))p(t) —c.Vp(1).dY,— (p(t), h)dt]
{ p(o) =po (3.16)

Remark 3.2 p(t,x) could be characterized as the solution of (3.16), But
the equation for u is both easier to study theoretically, and easier to
approximate numerically. [

§4. REMARK ON THE COERCIVITY CONDITION

The coercivity is implied by (1.3) and (1.2)~(1.1). The Jater means that the
“proportion” of the noise independent of the signal, in the observation
noise, is uniformly positive. It is well known that this is a crucial
regularity assumption in filtering, even for the linear Kalman-Bucy theory.

In order to understand what happens when g(t)=o, let us choose a
“singular” filtering problem, which will lead to stochastic PDE’s of the
type considered in Section 2.2 of Part I.

Assume:

gt)=o,g(t)=L (4.1)
b, ¢ and h are bounded functions of t only. 4.2)
Then (1.4) reduces to:

{X,=X0+[g b(s)ds + [ o (s)dW,
Y, = (o h(s)ds+ W,

It follows:
XI=XS+j§ [b(@)—a(@)h(@)]d@—kf’oo(G)dY;=X3+Xf

where X7 is % ¢ measurable.
It is easy to check:

plt,x)=po(x—X7)
u(t,x)=po(x~X?)exp ({4 [h(s),dY,] —4 5 |n(s)|?ds}. (4.3)
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Suppose that p,e C?*(RY)~ H!. Then, according to Theorem 2.3 of Part
I, Eq. (3.1) has a unique solution. The solution is given by (4.3), as can be
verified by Ito formula.

The backward Eq. (2.1) must also have a unique solution, provided that
fe C*(RY)~ H'. Let us guess this solution, with the help of (2.4).

U(lvx):Erx(f (XT)ZIT/gﬂT -
=f(x+[T (b—ch)ds+ [T cdY,)eexp{[] [h.dY]—3[] |h|?ds}. (4.4)

Once again, using Ito (backward!) calculus, we can check that (4.4) is
the unique solution of (2.1). _

It is here clear why the parabolic equation (3.1) degenerates: the
dynamics of X, is completely observed. The only unknown is X, In
particular, if the law of X, 1s a Dirac measure, there is no density at any
time for the conditional law.

Let us now see that the contrary holds in the coercive case. Let
no=[N/2]+1 Then §.eH "o. Suppose that all coefficients a;, by
Y ;0aij/éxj, h, and c¢;; have bounded partial derivatives up to order n, and
that (1.1), (1.2) and (1.3) hold. Let te R, fe L>*(R¥), and consider:

{a’v(s)-‘rst(s)ds-% (h(s)v(s)+c(s).Vo(s),dY.] =0
vit)=f

Let k, be an integer s.t. 2k, 2 ng. It follows from Theorem 2.2 of Part I
that:

£ (B [|v(0)| o) Sel f

Z(RY)
Fix xe R¥. There exists a constant ¢’ (depending possibly on x, but not
on f) such that:
lu(o, x)| = ¢'||v(0)]|gno-
Then:

(Eoiv(o,X))z)"2§ct£§) 1fle

or alternatively:

(EOX‘EOX(f (Xz)Zt/yz)Iz)l"z§C”(fax)|flL2
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But if §, is the law of X,

E|E(f (X)/F )| = Eox| Eox (f (X)/F )|

e v(o,x)[
‘E°"<Z' on<z,/ff,>)

g (EOx‘v(o:x)lz)”Z

<€ s

Then, if t>o0, f—E (f(X,)/#,) is a linear continuous mapping from
L*(RY) into L'(Q, #,, P,,). There exists a Linear Random Functional p(t)
on L?(R"), such that:

(p@), f)=E(f (X)/F ).

Here we have a density for t>o0, which is a LR.F. on L*(R"). We were
not able to prove that it is a L*(R")-valued process.
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