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We establish basic results on existence and uniqueness for the solution of stochastic PDE's. 
We express the solution of a backward linear stochastic PDE In terms of the conditional law 
of a partially observed Markov diffusion process. It then follows that the adjoint forward 
stochastic PDE governs the evolution of the "unnormalized conditional density". 

INTRODUCTION 

Let X, be a hlarkov diffusion process with generator L,  and whose initial 
law has the density Po. Suppose we observe the process: 

where @ is a standard Brownian rqotion, independent of X. Zakai [17] 
has shown, under rather strong conditions, that the so-called "un- 
normalized conditional density7' of X,, given (Y,, s 5 t ) ,  satisfies the follow- 
ing stochastic partial differential equation: 

du ( t )  = L*u ( t )d t  + hu ( t )d  I: 
u ( o ) = P o  

(0.1) 

The aim of' this paper is twofold. First to present some results on 
stochastic PDE's, which enable us to study existence and uniqueness of 
the solution of' (0.1). This is what Part I is about. 

?This work was done while the author was with the Centre National de la Recherche 
Scientifique (France). 
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128 E. PARDOUX 

Second, to relate the unique solution of (0.1) to the filtering problem, 
under rather mild hypotheses-in particular we allow correlation between 
the signal and the observation noise. 

The idea is to associate to (0.1) a backward stochastic PDE: 

The solution of (0.2) is expressible in terms of the conditional law of X, 
in a way that generalizes the classical Feynman-Kac formula for second- 
order parabolic (deterministic!) PDE's. Besides, (0.1) and (0.2) are adjoint 
one to the other, in the sense that the trajectories of (u(t),v(t)) are 
constants. The fact that u is the "unnormalized conditional density" then 
follows immediately. 

Similar results on Eq. (0.1) have been obtained by Krylov-Rosovskii 
[ 6 ] ,  with different methods. Our exposition is self-contained, and does not 
use previous results in filtering theory. 
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STOCHASTIC PDEs AND FILTERING 129 

PART I: SOME RESULTS ON STOCHASTIC PARTIAL 
DIFFERENTIAL EQUATIONS 

50. ORIENTATION 

We present some results of Pardoux [ll] on stochastic PDE's, restricting 
our attention to  the type of equations that will be useful in Part 11. In 
particular, we limit ourself to equations with linear operators. 

Our method consists in extending the variational method of Lions [ 9 ]  
to stochastic  equations of Ito type. We first recall a few results from the 
theories of (deterministic) parabolic PDE's and Hilbert space valued 
stochastic integrals. We then establish an Ito formula which is necessary 
for our particular purpose, and finally prove existence and uniqueness for 
a class of stochastic PDE's. Our existence proof uses a Galerkin approxi- 
mation scheme. 

Similar results have been obtained on the same type of equations, 
mostly using semi-group theory, by several authors, among others 
Balakrishnan 123, Curtain [3], Dawson [4], Ichikawa [5] and Krylov- 
Rosovskii [7]. 

We then present in an appendix, without proofs, more general results 
from Pardoux [ll] on non-linear stochastic PDE's. 

51. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF 
STOCHASTIC PDE's 

51 . I .  Notations and hypotheses 

Let (R, F, P, F,, v) be a Rd valued standard Wiener process. [ . , . 1 will 
denote the scalar product in R ~ .  We want to study equations of the type: 

where A and B are partial differential operators. In this first paragraph, 
we will consider A and B as unbounded operators in a Hilbert Space. 

More precisely, let V and H be two separable Hilbert spaces, such that: 
V is included and dense in H, the injection being continuous. We identify 
H with its dual space, and denote by V' the dual of K We have then: 
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130 E. PARDOUX 

We will denote by I 1 . 1 1 ,  I .  I and / 1 . 1  I* the norms in T/, H and V '  
respectively; by (.  , .) the duality product between V and V ' ,  and by (. , . )  
the scalar product in H. Let us fix T>O. 

We are given two families of linear operators A ( t ) ,  B ( t ) ,  t E [0, T I ,  
satisfying 

A ( .  )€L f f i (O ,  T ;  Y(V, V ' ) )  (1.2) 

and we will make the following coercivity hypothesis: 

As an abuse of notation, we also use ( / for the following norm in Hd: 

51.2. T w o  basic results for PDE's 

The following two Lemmas are proved in Lions [9]: 

LEMMA 1.1 Let u be absolutely continuousfrom [0, T I ,  with values in V'.  
Suppose moreover that: 

then 

LEMMA 1.2 Suppose (1.2) and (1.4) are satisfied (with B=O). Let U , E  H 
and f E L2 (0,  T ;  V ' ) .  Then the equation: 

tFor simplicity we will always use the notation C(0,  T ; X )  for C([O, TI ;  X). 
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STOCHASTIC PDEs AND FILTERING 131 

has a unique solution. Moreover the function f+u is continuous fionz 
~ ' ( 0 ,  T ;  V'), with values in L2(0, T ;  V ) .  

51.3 Hilbert space valued stochastic integrals 

The theory of stochastic integrals in Hilbert space is well understood, cf. 
Metivier [ l o ] ,  Pardoux [12], and the bibliographies therein. Here we will 
use it only in a very particular case, where it can be built very easily from 
the real case. 

Let M 2 ( 0 , ' T ;  H )  denote the space of H-valued measurable processes 
which satisfy: 

i) q ( t )  is 9, measurable, a.e. in t 

ii) EJ,T1q(t)12dt< + G O .  

We define similarly M 2  (0, T ;  X ) ,  for X = Rd, Hd, Vd, V and V'. It is easy 
to check that M 2 ( 0 ,  T ;  X )  is a closed subspace of L 2 ( R x ] o ,  T [ , d P @ d t ;  
X). . 

If q E M 2  (0: T ;  Hd)  and h E H, 

is a linear map from H into L2(CL). It follows that we can define the H- 
valued random variable So [q (s ) ,  dK] by 

It is easy to check using a basis of H, and taking the limit on the finite 
dimensional results, that 

M ,  = r, [q ( s ) ,  d W,] is a continuous H-valued martingale, which satisfies: 

We will make use of the following Burkholder-Gundy inequality, in the 
case r p ~  M 2 ( 0 ,  T ;  Rd): 

If u ( t )  and du/dt ( t )  are continuous H-valued processes, adapted to F,, 
then : 
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132 E. PARDOUX 

If u(t) is a s .  absolutely continuous with values in V', and u E M2 (0, T ;  
V)du/dt E M 2  (0, T; V'), it follows from Lemma 1.1 that u E C(0, T; H )  a.s. 
If moreover cp E M2(0, T ;  Vd), then one easily proves from (1.8): 

Let $ :H+R be twice differentiable. The first derivative, evaluated at a 
point v, $'(zj), is an element of H1=H.  $ " ( v )  is a bilinear continuous form 
on H, which we can identify with an element of 9 ( H ) .  We denote by 
Lfl(H) the Banach space of ,trace-class operators, and by Tr Q the trace of 
cp E Y1(H) .  We then have the following Ito formula (cf. Pardoux [12]). 

LEMMA 1.3 Let $ be a functional on H, which i s  twice diferentiable at 
each point, nrd satisfies: 

i )  I), $' and $" are locally bounded. 

i i )  $ and I)' are continuous on H. 

iii) V Q E 9' (H), Tr[Qo$"] is a continuous functional on H. 
Then if is an H-valued adapted process with bounded variation, and 

Remark 1.1 Lemma 1.3 is proved in [I21 for more general functions $, 
and with M, a general sample continuous H-valued local martingale. 

Remark 1.2 Ito formula is of course an essential tool in the study of 
stochastic PDE's, mainly for the particular case $ ( u ) = l ~ / ~ .  But Lemma 
1.3 will not be applicable to the solution of Eq. (1.1). In view of Lemma 
1.2, we will look for a solution u of (1.1) in the space M2(0, T ;  V). u will 
then be the sum of a process with bounded variations in V' (and not H !), 
and an H-valued martingale. We then need to adapt Lemma 1.3 to this 
class of processes. This will be done in the next section, by studying a first 
class of stochastic PDE's. 
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STOCHASTIC PDEs AND FILTERING 

51.4. An Ito formula 

We first study the following equation: 

where A satisfies (1.2) and (1.4), uo E H. 

LEMMA 1.4 Let (?eM2(0 ,  T; v d ) .  Then (1.10) has a unique solution u, 
which belongs moreover to L2(Q; C(0,  T ;  H ) ) ,  and satisfies: 

Proof Define M ,  = Sb [q ( s ) ,  d W,]. Then M E  M 2  (0, T ;  V ) .  
Consider: 

For each w, (1.12) has a unique solution in ~ ' ( 0 ,  T; V ) ,  and the 
operator which maps the right-hand side to the solution is continuous (see 
Lemma 1.2). So (1.12) has a solution u as random element of L' (0, T; V ) .  
Moreover, by Lemma 1.1 : 

Using (1.4), we get from (1.13) and Gronwall's inequality: 

(the adaptedness is easy to check). 
Define u ( t )=  t .(t)+ M,; then u e  M2(0,  T; V )  n L2(R;  C(0 ,  T ;  H) ) ,  and 

satisfies Eq. (1.1 0).  (1.1 1 )  is an easy consequence of (1.13), (1.5) and (1.9). 
It remains to prove uniqueness. Let u be a solution of (1.10). Then: 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

19
 1

0 
A

pr
il 

20
13

 



134 E. PARDOUX 

From (1.14), Lemma 1.1, (1.4) and Gronwall's inequality, we conclude 
that: 

We can now prove: 

THEOREM 1.1 Let cp E M 2  (0, T; Hd). Then (1.10) has a  unique solution u, 
which belongs to L2 (R ;  C (0, T; H ) ) ,  and satisfies (1.1 1 ). 

Proof Uniqueness is proved exactly as in Lemma 1.4. It remains to  
prove existence. 

Let qne M2(0, T;  V d ) ,  such that: 

And let un E M~ (0, T; V )  be the solution of: 

dun ( t )  + A ( t  )un(t)dt = [qn(t), dm;]  (I. 16) 

un(o)=u0 

and urn be the solution corresponding to cprn. It follows from (1.11) that 

Making use of (1.7), we get: 
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STOCHASTIC PDEs AND FILTERING 

It then follclws from (1.4) that: 

We first deduce from (1.17): 

which implies, by Gronwall's inequality: 

It follows from (1.15), (1.17) and (1.18) that u" forms a Cauchy sequence 
in M2(0, T; V )  n L2(C2; C(0, T ;  H ) ) .  The existence follows by taking the 
limit in (1.16), and u satisfies (1.1 1) because un does, and we can take the 
limit as n+ + x. 

Remark 1.3 The same method gives a similar result for the equation: 

where f is given in M2(0, T ;  V'). 0 
A solution of Eq. (1.1) can be viewed as a solution of equation (1.10). 

Then we have proved an Ito formula for our class of processes, and the 
functional IC/ (u:~ = I u 12. Let us prove a more general Ito formula: 

THEOREM 1.2 Suppose: 

Let I) be a twice differentiable functional on H, which satisfies assump- 
tions (i), (ii) and (iii) of Lemma 1.3 and moreover: 
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136 E. PARDOUX 

iv) If U E  $ ' (u)E V; u-+$'(u) is continuous form V (with the strong 
topology), into Vendowed with the weak topology. 

v)  3 k s.t. / I $ ' ( u ) l ( ~ k ( l + / l u l / ) ,  V U E K  

Then : 

Proof (a) Consider first the case where q~ M2(0, T;  Vd). Define once 
again 

Then MEM'(O,T; V), and if C = u - M ,  BEM'(O,T; V )  

du" 
-=LIE M2(0, T;  V') 
dt 

Let t2" be a sequence in M2(0, T;  V), such that f in€ C1 (0, T;  H)  a.s., 
and : 

dlz" 
vn=--tv in M2(0, T;  V' ) .  

dt 

It follows from Lemma 1.3: 

d 

+ f C Sb ($"(cn + M)qi, ~ i ) d s  (1 .lgn) 
i =  1 

It follows from Lemma 1.1 and the above convergences that: 

U""-+B in L2(R; C(0, T ;  H)). 

It is then easy to see that we can take the limit in (1.19)", yielding (1.19). 
b) Let q n + q  in M2 (0, T;  Hd)  with q n  E M2 (0, T ;  Vd). Define un by: 
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STOCHASTIC PDEs AND FILTERING 137 

This equation has a unique solution in M 2  (0,  T; V )  n C ( 0 ,  T ;  H ) ) ,  from 
the result in Remark 1.3. 

Exactly as in the Proof of Theorem 1.1, we get: 

u,+u in M 2 ( 0 ,  T ;  V )  n L2(!2; C ( 0 ,  T ;  H ) )  

and consequently Au,+Au in M 2  (0,  T ;  V ) .  
This permits us to take the limit on the result obtained in (a) yielding 

(1.19). 0 

§I .5. Existence and uniqueness 

We consider finally the equation 

-/ du ( t )  + A ( t ) ~  ( t )d i  = [ B  ( t ) ~  ( I ) ,  dw 

where A and 13 are supposed throughout this section to satisfy (1.2), (1.3) 
and (1.4), and 11, E H .  

Because B maps V (and not H) into Hd,  it is not possible to get our 
existence result from Theorem 1.1 by a Picard type iterative scheme. 
Therefore we will use a Galerkine finite dimensional approximation. One 
can also use a time discretisation, as indicated in the Proof of Theorem 3.1 
of Part 11. 

Let us prove: 

THEOREM 1.3 Equation (1.20) has a unique solution u,  which satisfies 
moreover: 

i) u e L 2 ( Q ;  C(0 ,  T ;  H ) )  

Proof Proof of (i) and (ii) 
Let u be a solution of (1.20). Then Bu E M' (0, T ;  Hd) .  And from 

Theorem 1.1 there exists a unique v E M 2  (0, T ;  V ) ,  solution of 

But u is such a solution, then u = u  and (i) and (ii) follow from Theorem 
1.1. 
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138 E .  PARDOUX 

Uniqueness 
Let u and v be two solutions of (1.20). Then u - v  is a solution of (1.20), 
with u ,  =o. But we may now use (ii), yielding: 

From (1.4), we get : 

It follows from Gronwall's inequality that 

Existence 

Let v,, v,, . . ., v,. . . be a Hilbert basis of I/; which is orthonormal as a basis 
of H. 

Define T/, = S,{v,, v,, . . ., v,}, choose for each n u,, E V,, such that: 

Define ~ , ( t ) = C ; = ~ g , ~ ( t ) v , ,  where gn(t)=(g,,(t)gn2(t)...g,,(t)) is the 
solution of the following Ito equation in R n :  

It follows from Ito formula: 

Using (1.4) and Gronwall's inequality in the same way as above, we get: 

It follows that there exists a subsequence u, such that: 

up-u in ~ ' ( 0 ,  T ;  V )  weakly. 

Let cp be an absolutely continuous function from [O, TI into R, with 
cp' E L2 (0,  T ) ,  and cp(T) = o. Define cp,(t) = cp ( t )v i .  
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STOCHASTIC PDEs AND FILTERING 139 

Multiplying (1.22) by cpi(t), and using Ito formula, we get: 

We can take the limit in LZ(Q) weakly in each term of the preceding 
equality. Indeed, the mapping: 

is linear and continuous from M ~ ( o , T ;  R ~ )  into L'(Q); it is then 
continuous for the weak topologies. 

It follows that 

It follows from a well-known Theorem of Lebesgue that we can take the 
limit in the first term of (1.23), for almost all t €10, T [ .  Then: 

( ~ ( t ) ,  t;) +& (Au ,  v ) d s  = (u,, G )  

+ Jh [(Bu, v), dW,]  a.e. in t ,  Q t. E I.: 

Using the separability of T/; we get: 

u ( t )  + ro Au ds = uo + Jh [Bu, d  W,], a.e. int. 
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140 E. PARDOUX 

Then u is a.e. equal to a continuous process with values in V', which we 
define to be u, and which satisfies Eq. (1.20). 

We will need a slight generalization of Theorem 1.3. Define: 

f E M~ (0, T ;  V ' )  (1.24) 

g ~ ~ 2 ( ~ , ~ ;  H * )  (1 .25) 

where uo is given in H. 

THEOREM 1.4 Equation (1.26) has a unique solution, which satisfies 
moreover: 

The proof follows the same lines as that of Theorem 1.3, using the 
generalization of Theorem 1.1-see Remark 1.3. 

92. EXAMPLES OF STOCHASTIC PDE's 

We will restrict ourselves to stochastic PDE's in Rn, as we will in the 
second part of this paper restrict our attention to filtering of diffusion 
processes without boundaries. For the case of boundary conditions, see 
Pardoux [13] and [14]. 

52.1. Application of the abstract results 

We will, for short, write H' for H' (Rn)= { u  E L' ( R n ) ;  &/ax E L2 (Rn j ,  
i=1  ... N ) .  
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STOCHASTIC PDEs AND FILTERING 

Define : 

a, j ,a i , ck i ,dk~LCC(]O,T[xRn);  i:j=1 . . .  N ;  k = l  ... d (2.1) 

and, for u, u E H1 : 

A and B satisfy (1.2) and (1.3), from (2.1). 
We suppose moreover that 3 a > o such that: 

V 5 € R N ,  a.e. in (t: x). (2.2) 

The coercikity condition (1.4) is easy to check from (2.2). In this 
example, Eq. (1.20) has a unique solution in M 2  (0, T;  H l ) n L2 (Q; C(0, T ;  
L2 (RN) ) ) .  

Equation (1.20) can be interpreted in the following way: 

N a~ + ai(t, x ) -  ( t ,  x)dt 
i =  1 axi 

Remark 2.1 One can easily check that the same result holds if we 
replace A ( t )  by its adjoint A*(t) ,  or if we add in the expression of 
(A ( t )u ,  t.) a zero order term 
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142 E. PARDOUX 

52.2. A regularity result 

We now prove a regularity result, which will be useful in the seque!. We 
will denote 

Let us consider Eq. (1.26) with g = o. 

THEOREM 2.1 Let n be any integer2 1. Suppose, in addition to (2.1) and 
- (2.2), that all coefficients aij, ai, cki and d, have bounded partial derivatives 

in x up to order n, and that moreover: 

Then u, solution of Eq. (1.26) (where g=o)  belongs to M 2  (0, T ;  
H n i l ) n  L'(R; C(0, T;  Hn)). 

Proof It suffices to prove that all partial derivatives of u in x, up to 
order n, belong to M~ (0, T ;  H1 ) n L' (R; C(0, T ;  L2 (RN))). 

Let us give the proof for du/2xl. If p (x)  = p (xi, x2,.  . ., x,), call: 
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STOCHASTIC PDEs AND FILTERING 143 

We conclude that zhu satisfies the following equation: 

where: 

It follows from the hypotheses we made that f, is bounded in M 2 ( 0 ,  T ;  
H - ' ) , t  gh is bounded in M 2 ( 0 ,  T ;  L 2 ( R N ) ) ,  and zhu, is bounded in L2(RN) .  
We can conclude from Theorem 1.4, using standard estimates, that zhu 
remains in a bounded subset of M 2  (0,  T ;  H 1 ) .  There exists a subsequence 
z p  such that: 

sill---/ in M 2 ( 0 ,  T ;  H 1  ) weakly. 

But r,u-+du/i.xl as .  in the sense of distributions. I t  follows that 
~ = d u / d x , ,  and taking the limit in Eq. (2.4), and using Theorem 1.4, we 
conclude that &/ax ,  E M 2 ( 0 ,  T ;  H I )  n L2 (R; C ( 0 ,  T ;  L ' ( R ~ ) ) ) .  

Remark 2.1 Similar results, with H" replaced by w n , ~ ( R " )  [the 
Sobolev space defined as Hn, where p ( R N )  replaces L?(RN)] ,  and V p >  1, 
are given for the same type of equation in ~ry lov-~osovski i  [?I. 

Following an idea in Bensoussan-Lions [I], we now deduce from 
Theorem 2.1 : 

THEOREM 2.2 Let u be the solution of Eq. (1.20), with initial condition 
u, E L2 ( R N ) .  

We suppose, as in Theorem 2.1, that (2.1) and (2.2) hold, and all 
coefficierzts a i j ,  q, cki and d,  have bounded partial derizjatives up to  order 
2k. D
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144 E. PARDOUX 

TI~eiz there exists u constant r ,  i~zdepeiidrnt of uo, such that: 

Proof Define u ,  =tu.  It is easy to verify that: 

Then ul is the solution of: 

By recurrence, it is easy to check that tku E L2(R; C(0, T ;  HZ')), and it is 
easy to verify that, V ~ E [ O ,  T I ,  uo-+tLu is a continuous linear mapping 
from L ' ( R ~ )  into C(0 ,  T ;  ~ ~ ( 0 ;  H~')). 

32.3. Remark on the coercivity condition 

We want to show here why the coercivjty condition (2.2) is crucial. 
Therefore, we will give an explicit solution in the case where the 
coefficients are functions o f t  only, and satisfy, contrary to (2.2): 

d 

2a i j ( t ) -  C c k i ( t ) c k j ( t ) = o  a.e. in ]0 ,T[ ,  Q i , j = l , .  .., N. (2.5) 
k = l  

We suppose: 
u o = ~ ~ ~ ' ( R N ) n  H1. (2.6) 

Define : 
d 

Once again, we choose V =  Hi, and A, B are given as in Section 2.1. We 
have the following. 
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STOCHASTIC PDEs AND FILTERING 145 

THEOREM 2.3 Under the hypotheses (2.5), (2.6) and (2.7), 4, defined by 
(2.8) and (2.9) ;s the uuique solution of (1.20). 

Proof It is easy to check, using (2.6), that 4~ ~ ' ( 0 ,  T; H ' ) .  The fact 
that 4 satisfies (1.20) is a consequence of Ito formula. 

It remains to show that if u is a solution of (1.20) with u,=o, then 
u = o. Let us apply Theorem 1.2 to such a u :  

Using (2.5), we deduce: 

E I u ( t ) I 2 + 2 I  f d s ( a i - I d k c k i )  
i 0 k 

But it is easy to check that any c in H' satisfies: 

The result then follows from (2.10) and Gronwall's Lemma. 
Theorem 2.3 shows that when the coercivity condition is no longer 

valid, Eq. (1.20) degenerates exactly in the same way as a parabolic PDE 
degenerates to a first-order hyperbolic PDE, whose solution is given by a 
method of characteristics. In particular, the solution given by Theorem 2.3 
has the property that the regularity in x is the same for all times t ,  
whereas the coexivity has a regularizing effect. 

Remark 2.2 The question of what happens to the solution when the 
left-hand side of (2.5) is negative is, as far as we know, an open 
problem. 

53. APPENDIX: NON LINEAR STOCHASTIC PDE's 

Our method applies to the more general case where the operators A and 
B are non-linear, satisfying a condition of monotonicity. We present here 
some results of Pardoux [ l l ] ,  without proofs. 

We use the same triple as above (with the same notations for the 
norms): 

where here Vis supposed only to be a reflexive Banach space. 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

19
 1

0 
A

pr
il 

20
13

 



146 E. PARDOUX 

Let A (t, . ) be a family of operators from V into V' and p > 1, such that: 

B+(A(t, u + Bv), w)  is continuous, Vu, v ,  w, E a.e.t. (3.2) 

t -t A (t, u) is Lebesgue measurable from 10, T [  into V', V u 6 l/. (3.3) 

Let K  be a Hilbert space, and (R, 8, F,, P, W,) be a K-valued Wiener 
process, such that 

EC(T.t;, h)(M/;, k) l=  (Qh, k), V h, k EK, 

where Q is a given nuclear operator on K. 
Let B ( t , . )  be a family of opkrators from Vinto Y(K, H )  such that 

t+B(t,u) is Lebesgue measurable from 10, T [  into Y(K;  H), V U G  T.! 
(3.5) 

We suppose moreover: 

Coercivity 3a>o ,A  and y s.t. V U E ~  a.e.t., 

2(A(t,u),~)+;ilu~~+y~aIlull~+l)~(t,u)~'~~/~$. (3.6) 

Monotonicity V u, u E a.e.t., 

where / I .  / I 2  denotes the norm In z 2 ( K ;  H )  the space of Hilbert-Schmidt 
operators from K into H. 

Define : 
u,tL2(n,r ,p;  H )  

M, a continuous square integrable H-valued martingale. 

t M q ( O ,  T; X )  is defined in a similar way as M2 (0, T; X), with the condition 
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STOCHASTIC PDEs AND FILTERING 

Now consider the equation: 

u € M P ( O ,  T ;  V )  

alu(t)+ ( A ( t , u ( t ) ) + f  ( t ) ) d t = B ( t , u ( t ) ) d Y + d M ,  

u ( 0 )  = uo. (3.8) 

THEOREM 3.1 Under the above hypotheses, Eq. (3.8) has a unique 
solution, which satisfies moreouer: 

One has an Ito formula for the solution of (3.8). 
Suppose: 

V and V'  are uniformly convex. (3.9) 

Let $ be a functional on H, which satisfies the hypotheses of Theorem 
1.2. 

Let U E  MP(o.  T; V ) ,  L2(!2,Fo, P ;  H ) ,  G E  MP' (o ,  T ;  V ' ) ,  and M ,  be a 
continuous square integrable H-valued martingale, such that: 

Then the following holds: 

THEOREM 3.2 

where ( (M)) ,  is the unique continuous increasing process with values in the 
space of nuclear operators on H ,  such that (M,, h ) (M, ,  k )  - ( ( (M)) ,h ,  k )  is a 
martingale, V h, k E H ,  cf: [lo], 1121. 

Remark 3.1 In the case $(u)= luI2, we need only to assume, instead of 
(3.9), that V' is strictly convex. This is always true (perhaps after an 
equivalent change of norms) because V'  is reflexive. 

PART Al. FILTERING OF DIFFUSION PROCESSES 

50. ORIENTATION 

In this section, we will see that the stochastic PDE's we have defined in 
the first section are closely related to the non-linear filtering problem. We 
will associate to a non-linear filtering problem two stochastic PDE's which 
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148 E. PARDOUX 

play the role of the backward and forward Kolmogrov equations as- 
sociated with unconditioned diffusions. 

Our main result is a kind of Feynman-Kac formula for a backward 
stochastic PDE (Theorem 2.1 below)?. Our formula expresses the solution 
of the stochastic PDE in terms of the conditional law of a Markov- 
diffusion process, given observations corrupted by noise; whereas the 
Feynman-Kac formula expresses the solution of a (deterministic) PDE in 
terms of the unconditioned law of a Markov-diffusion process. 

The next step is then to express the relation between the two stochastic 
PDE's we consider: the backward and the forward one. 

The difficulty in proving these two results is that they involve differen- 
tial calculus with both processes adapted to the past, and to the future 
increments of a Wiener process. There is no differential rule in this 
context, and we have to discretize time, and to "kill" (before passing to the 
limit) the terms which would not make sense in the limit. 

Our technique can be applied to other filtering problems, where the 
signal is a Markov process, and where a Girsanov transformation can be 
applied to the observation process. It has already been done in Pardoux 
[I41 in the case where the signal is a diffusion with boundary condition, 
and the observation noise is independent of the signal; and in Pardoux 
[15] in the case where the signal is a diffusion, and the observation is a 
Poisson process whose intensity is a given function of the signal. 

§ I .  THE FILTERING PROBLEM-NOTATION AND 
HYPOTHESES 

Define : 

s i j ( t ,  x ) ,  continuous and bounded on [o, T ]  x RN, V T >  o ;  i, j= 1 . . . N. 

bi ( t ,  x ) ,  h, ( t ,  x )  Bore1 measurable and bounded on [o, T ]  x RN, V T > o ; i 
= I  ,..., N ,  k = l ,  ..., d. 

g,,(t), g,, ( t )  continuous on R,; k, 1 = 1.. . d, i =  1,. . ., N. 

We assume the following: 

tAfter having proved the result, we discovered that, in the case of state-independent 
observation noise, it had been stated formally by Kushner in [8 bisl-and in an earlier paper 
referenced therein. : * denotes the transpose. 
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STOCHASTIC PDEs AND FILTERING 149 

3 / ? > o  s.t. (g( t )g*( t ) ( , t )&bl(12,  v ( € R d ,  V t z o .  (1.2) 

where a = oo*. We define c = gg*. 

Following the work of Stroock-Varadhan [16], we consider the mar- 
tingale problems associated with the following systems of stochastic 
differential equations : 

where and 1% are two independent standard Wiener processes, with 
values in R N  and Rd respectively. 

Remark 1.1 (1.4) is our filtering problem, where X, is the signal 
process, and I: the observation process. The system (1.5) will be used for 
technical reason:<. 

Remark 1.2 Hypothesis (1.1) is a normalisation hypothesis. If g ( t ) g v ( t )  
+ g(t)g* ( t )  = M (t), where o < T I  5 M ( t )  5 GI, it is always possible to refor- 
mulate the problem, choosing a new observation process 

such that (1.1) is satisfied. 
Define R = C (R + ; R'+d ); 

= w (I), 9: = O(W ( B ) ,  s < B j i), 8' = V B;, 
t s s  

We write 9, for 9: and 9 for go. 
According to Stroock-Varadhan [16], V s 2 o, x E R", there exists a 

unique probability measure P , , [ r e ~ p . ~ ~ , ]  on (R,9"), solution of the 
martingale problem associated with (1.4) [resp. (IS)], and such that - 
P,,(X,=x, Y , = o ) = l  [resp. P,,(X,=x, Y,=o)=l].  

This means that V ~ E C ; , ~ ( R + X R * ' + ~ )  the following process is a P,, 
martingale : 
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150 E. PARDOUX 

where L, and M ,  are the following operators: 

And there is a similar formulation for Psx. 
Let p, E L2(RN) be the initial density of X ,  [then p , ( x ) L o  a.e. and 

S R N P ~  (XVX = 11. 
We define the probability measures P and P on (R,B) by: 

V B Bore1 subset of RN'd, V t 2 0, 

and write Z, for Zp. 
We deduce from the well-known Cameron-Martin formula (see [16]): 

We will write E [resp. E,,,l?,&] for the expectation with respect to P  
[resp. P,,, P,Psx ] .  We will write C l  for (R, 9, P )  and fi for (Q, Y,P). 

Define 9: = g{ Y,  - Y,; s 2 0 5 t } ,  and write 9, for F:. 

The aim of filtering theory is to characterize at each time t the law of 
the signal X,, conditioned on the observation o-field F,, i.e. quantities of 
the form E[f (x,)IF,]. 

We will prove in the rest of this section that this law has a density with 
respect to Lebesgue measure in RN, which, up to a normalizing factor, is 
the solution of a stochastic PDE of the kind we studied in the first 
section. 

We will make use of the following formula, which is well known and 
easy to verify: 

where f is any bounded measurable function 
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STOCH,ASTTC PDEs AND FILTERING 

Finally let us make the following hypothesis: 

52. STUDY OF A BACKWARD STOCHASTIC PDE 

Let L, be the infinitesimal generator of the X, process, i.e.: 

Using the hypotheses introduced in Section 1, we can consider L, as a 
family of elements of 9 ( ~ ' ,  H - I ) ,  defined in the following way: 

where 

Let T >  o. Consider the following stochastic PDE 

Where f is a given Bore1 measurable function from R" into R satisfying: 

We have to consider (2.1) as a backward equation because -L,  (and 
not L,!) is coercive. Our probability space in this and the next sections 
will be ~ ~ L ( s ~ , s , P ) .  We remark that is a 9 , - P  standard Wiener 
process with values in Rd. 

Define yo = YT - YT - ,. 
is 8 T - e  . -P Wiener process, and setting v ' ( B )  =v(T  -8 ) ,  we see that 

Eq. (2.1) is equivalent to: 
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152 E .  PARDOUX 

It follows from (1.1), (1.2), (1.3) and the fact gg* and g*g have the same 
largest eigenvalue: 

? y > o  s.t. ( [ a ( t , x ) - c * c ( t , x ) ~ < , < ) ~ ; l / < / ~  

v ( t , x ) ~ R + x R ~ , v t ~ R ~ .  (2.3) 

Define : 
~ ( t ) u = h ( t ) u + c ( t ) . V ~ , ~ ~ : H ~ .  

It follows from (2.3) that the pair of operators (-L, ,B,)  satisfy the 
coercivity condition, and all the conditions of Section 2.1 of Part I ,  
yielding a unique solution c(9)  of the last equation, F;-e-adapted. 

Then Eq. (2.1) has a unique solution: 

where v is 9-k adapted. 
The rest of this section will be devoted to the proof of the following 

theorem, which gives a sort of Feynman-Kac formula for the stochastic 
PDE (2.1): - 

THEOREM 2.1 V t E [o, TI ,  the following equality holds dP x ds a.e. : 

Remark 2.1 The right-hand side term of (2.4) can be also written: 

It then follows that-t being fixed-it is a measurable function defined 
on (R x R", F>@BN). [? 

We will actually prove the result under additional regularity 
assumptions : 

L E M M A  2.1 Suppose in addition to the above hypotheses, that bi, aij, h,, g,, 
(i,j = 1 . . . N ;  k = 1 . . . d) ,  have continuous und bounded partial derivatives in 
t and x of any order, and f~ n, Hn. 

Then equality (2.3) holds V ( t ,  x ) ,  a s .  
We first assume Lemma 2.1 is true, and proceed to: 

Proof of Theorem 2.1 Let us first suppose that f is continuous, with 
compact, support. Let b:, a:, j ,  h:, f" be a sequence of smooth coefficients 
and final conditions, such that: 

i) 1 by\, /oyj/, Jaayj/axjl, \h,"l and If,/ are all uniformly bounded by a 
constant independent of n, and an satisfies (1.3) with y. independent of n. 
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STOCHASTIC PDEs AND FILTERING 153 

ii) ayj+aij and f n + f  uniformly on each compact set of [o, T] x RN 
(resp. of RN). 

iii) d ~ ; ~ / d x ~ . + a u ~ ~ / E x ~ ,  bf+bi and h;+h, in measure on each compact set 
of [o, TI x Rh7. 

Denote by P:x, unit, x )  and "Z; the corresponding objects associated 
with bn, Tn, hQnd f n  instead of b, 7; h a n d c  It follows from Lemma 2.1: 

v n  (t, x )  =Ex( f "  (x,)"z;./~;.). 

Let 
u E C i  (RN),t s.t. : 

Denote by c, the solution of the martingale problem associated with 
(1.5)", satisfyicg the initial condition at time t: 

We define similarly P:,, replacing (1.5)" by (1.4)", and also PC, and P,,. 

It follows from (2.5): 

Let cp be a continuous and bounded application from !2 into R, which is 
9; measurabie. It follows from (2.6): 

But c p .  (u, v n ( t ) )  is 9; measurable, and the restriction of e, to 9; does 
not depend or] n: 

Let us now take the limit for n+cc in (2.7). From the results of 
Stroock-Varadhan [16], P:,+P,, weakly, uniformly on each compact set. 
The support of u being compact, P:,+P,, weakly. The limit in the right- 
hand side then follows from (ii). 

tCk(RN) is the space of C' functions having compact support. 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

19
 1

0 
A

pr
il 

20
13

 



154 E. PARDOUX 

It follows easily from (i) that v n ( t )  is bounded in LZ(Q x R N ) ,  and vn is 
bounded in L2@ x l t ,  T [ ;  H 1 ( R N ) ) .  Then there exists a subsequence vw, 
such that: 

v"(t)-5 in L Z ( Q  x R N )  weakly 

vb-x in L2 (a x ] t, T [ ] H ;  ( R ~ ) )  weakly. 

It remains to show that ~ = v ,  and ( = v ( t ) .  This will prove that the 
whole sequence v n ( t )  converges to v ( t )  in L ~ ( Q  x R N )  weakly, and (2.4) will 
follow from the limit in (2.7), and the freedom of choice of cp and u. 

Let 19 E C1 ( [ t ,  T I ) .  It follows from (2.1)': 

Using (ii), (iii), and the fact that u has a compact support, it is easy to 
check that the following convergences hold in LZ ( I t ,  T [  x R " )  strongly: 

au au . 
ap,+a7, 1 = 1  . . .  N ;  

axi ox, 

We then can take the weak limit in L2 (fi) of (2.8), yielding: 

t = (5 ,  u)O(t)+Sf 8 ' ( ~ ,  u)ds,  V 6  E C' ( [ t ,  T I ) ,  V u E C i  ( R N )  

It is then easy to conclude from the uniqueness of the solution of (2.1) 
that x = v, and ( = c ( t ) .  

Finally, it is easy to generalize (2.4) to any bounded and Borel 
measurable f ,  s.t. f~ L2 ( R N ) .  0 

We now prove Lemma 2.1 in the particular case where the observation 
noise is independent of the signal: 

LEMMA 2.2 Suppose that all the hypotheses of Lemma 2.1 are satisfied, 
and in addition g ( t )  = o. 

Then (2.4) is satisfied. 

Proof I t  follows from the hypotheses and Theorem 2.1 of Section I 
that each trajectory of v belongs to n n C ( o ,  T; Hn), so that 
V t,  v ( t ,  . ) E Cp ( R N )  a s .  
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STOCHASTIC PDEs AND FILTERING 155 

In order to simplify the notations, let us prove (2.3) for t=o ,  write 
E:(o ) for Eo, ( . I F T )  and Z T  for z:. We will suppose that d = 1. The 
more general case is handled exactly in the same way. 

Let o = t , < t l < t , <  . . .  t n=Tbe  amesh with t i+ , - t i=T / .  k. 
Define : 

In order to prove (2.4), it suffices to show that: 

when n+ + x. 

We express the first term in Ai by means of Ito formula, applied to 
ZSu(ti+ l ,Xs).  Because g=o,  and are P,-independent, and 
Ef S: Y,dW, = o, as soon as Y E L2 (R x lo ,  T[), and Y ,  is independent of 
a{ w, - w,, sS0 5 b). We express the second term in Ai using Eq. (2.1) at 
x = X,, which makes sense because of the regularity of the solution. 

It follows: 

The first stochastic integral in (2.9) is forward, the integral being 
adapted to 9, v F;1+1. The second one is backward, where the inte- 
grand is adapted to F,, v FS,. 

It is easy to show, by Lebesgue dominated convergence theorem, that: 

.. - 
= lim 1 ~,TS:;*lZtiL,~(s,X,,)ds=S~Z,L,~(s,  X,)ds. 

n-+m i = o  

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

19
 1

0 
A

pr
il 

20
13

 



156 E. PARDOUX 

It is not possible to take the limit in the same way in the stochastic 
integrals, because what should be the common limit do not make sense. 

Again, ai is a forward stochastic integral, and Pi is a backward one. 
c and ah/& being bounded, 

It follows that, as n+ + COC;Z; E:Yi-+o in L1(n,Fx).  
It remains to show that E,Txr:d ai and ,f?,Tx;ZJ pi converge to 0 in 

L1 (R; px). Let us first consider Ef xi cc,. It  follows from Ito formula: 

=E,T ~ s ~ z , P ~ ( ~ , x , ) ~ B  +E,T {sizevi(~, ~ , ) d  Y,. 
It follows: 

ETai =E",Taj') +E,TCrj2); 
with ,. 

D
ow

nl
oa

de
d 

by
 [

A
ix

-M
ar

se
ill

e 
U

ni
ve

rs
ité

] 
at

 0
2:

19
 1

0 
A

pr
il 

20
13

 



STOCHASTIC PDEs AND FILTERING 

with 

We then deduce, using the Ito formula applied to Z,qi(%,X,) and the 
classical inequalities for martingales: 

Ex] aj'j 5 ck312. 

It follows from (2.10) and (2.11): 

And the desired convergence follows from the fact that: 

Consider now xipi Here we use Eq. (2.1), instead of Ito formula, and 
we get : 

Using Eq. (2.1), we get: 

where 
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158 E. PARDOUX 

It is easy to see from (2.12), using the regularity of h and Eq. (2.1), that: 

Let us finally proceed to: 

Proof of Lemma 2.1 We will show how one can adapt the idea of the 
proof of Lemma 2.2 to this more general case, where g $ o. Once again, we 
suppose for simplicity that d = 1. 

Using again Ito formula, we get: 

On the other hand, it follows from Eq. (2.1): 

Z r p ( t l + l > X r , ) - Z 1 , v ( t , , X r , ) =  -S::+'Zr,Lv(~,Xr,)ds 

- ~ ~ : + l ~ r , ( h v + ~ . V c ) ( s , ~ , , ) d Y , .  

of the stochastic integral with respect to & is no longer zero, but we 
have : 

V cp measurable, bounded and F r v  Fy+ adapted. 
And this suffices to show that: 

It follows that: 
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STOCHASTIC PDEs AND FILTERING 159 

The end of the proof is then similar to that of Lemma 2.2, where here 
we apply Ito formula to Vv( t ,+ , ,  X , )  as well as to ~ ( t , + ~ ,  X, ) ,  and we use 
Eq. (2.1) differentiated once or twice in x. 

53. EQUATION FOR THE UNNORMALIZED CONDITIONAL 
DENSITY 

Let us now consider the following forward stochastic PDE: 

where A, = -L:, p, has been defined in Section 1 as the density of the law 
of X,, and h ( r )  is given by: 

Again we can apply the results of Section I to Eq. (3.1), yielding the 
existence of a unique solution u~  L Z ( a  x l o ,  T [ ,  H I )  n L2 (fi; C ( [ o ,  T I ,  
L'(R"))) where u ( t )  is adapted to 9,. 

Indeed (3.1) is adjoint to (2.1): 

THEOREM 3.1 Almost all trajectories of the process R, = ( u ( t ) ,  v ( t ) ) ,  
t  E [o, T I ,  are  constant. 

Proof Recall that (. , .) denotes the scalar product in L ~ ( R ' ) .  AS R, has 
a s .  continuou:~ paths, it suffices to show that V s, t  E] o, T [ ,  R, = R, a s .  

Again, as in the proof of Lemma 2.2, we cannot differentiate R,, because 
its differential would involve terms which do not make sense. 

Let o < s < r t 7 ;  and s = t o < t , <  ... <t,=t be a mesh, with t i + , - t i  
= t - s/n = k .  We suppose that k < s A ( T  - t ) .  Define: 

and consider .the following time discretized approximations of (2.1) and 
(3.1): 

v i+  1 - vi  + k ~ ~ ~ i  = - [hiu'+ 1 + c i .  vUi+ 1 , Ai Y 1  

i = n - 1 , n - 2  ,..., o (3.5) 

ui+' - u i + k ~ i + l u i i ' = [ ~ u i -  c i .Vui ,AiY]  

i = O l . .  - 1  (3.6) 
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1 60 E. PARDOUX 

where L,, A,, hi, i?? and ci are the mean values of L, A,  11, h and c. 
respectively on [ t i ,  ti + , ]  ; Ai Y= y,+ - x,. 

It is easy to check that when k is small enough such that (I + k A , )  
satisfies : 

( ( l + k ~ i ) u , u ) ~ ~ l l u l l ~  

for some y >o ,  V i, Q U E  H 1 ,  then (3.3), (3.5) [resp. (3.4), (3.6)] define a 
unique sequence 1: ' ;  i=n, .  . ., o [resp. ui;  i=o , .  . ., n] in L~ (a; H 1 ) ,  where vi 
is 9; measurable and u' is YrC measurable; i=o , .  . ., n. 

Moreover, if we multiply (3 .5 )  by ui, and (3 .6 )  by v i t l ,  sum the two 
relations from i  = o to i = n - 1, we get: 

Define u, ( t  ) and u,  ( t )  by : 

~ , ( e ) = d ,  for 8 ~ [ t ~ , t ~ + ~ [ ;  i=O,I ,..., n 

u,(9)=ui,  for f l ~ [ t ~ , t ~ + ~ [ ;  i = O , l ,  ..., n 

where t ,  + , = t ,  + k .  

L E M M A  3.1 u, [resp. v,] remains in u bounded subset of L~ (a x IS, t [ ;  H I ) ;  
u , ( t )  [resp. c, ( s ) ]  remains in a bounded subset of L2 (a; L2 ( R N ) ) .  

Proof Let us indicate the proof for u,. Take the square in (3.6), and 
then multiply (3.6)  by 2ui:  

I u ' + l  - U i 1 2 + 2 k ( ~ i + 1 U i + 1 , u ' + 1 - U i )  

~ / R U ~ - C ~ . V U ~ ( ~ . / A , Y ( ~ .  (3 .8 )  - 

Taking the sum of (3.8) and (3.9), and the expectation yields: 

E / U ' + ' / ~ - E J U ~ J ~  + 2 k ~ { ~ , + ~ u ~ + ' , u ' ~ ~ ) ~  k E \ r ; ' u ' - c ' . ~ u ~ / ~  

E IunI2 - E luO 1' + 2E jl:; ( A ,  (O)u,(O), U ,  (%))dB 

5 E j ~ I ~ , ( 8 ) u , ( 8 ) l ~ d b ,  (3.10) 

where A,(B)=Ai  and B,(o)=RI-c ' .v ,  for O ~ [ t ~ , t ~ + ~ [ .  
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STOCHASTIC PDEs AND FILTERING 

It follows from A EL'  (0 .  T ;  Y ( H 1 ,  H - '  ) ) ;  

It then follows from (1.1), (1.2), (1.3):  

The result follows from (3.11) by standard estimates. 
Let us go back to (3.7). 

It then follows from Lemma 3.1 that k (A0u0 ,  uO)-+o in L 1 ( f i ) ,  as k-+o. 
The same holds for k (Anun ,  vn) .  Moreover, again from Lemma 3.1, there 
exists a subsequence n' such that: vn ( s ) - ( ,  and un t ( t ) - (  in L' (a; L 2 ( R ) )  
weakly. 

The theorem will then follow from (3.7), if we prove that  = u ( t )  and [ 
= r ( 5 ) .  Let us indlcate the proof for u. 

Suppose that the subsequence has been chosen such that moreover: 
u,,-% in L~ (6 x I S ,  t [ ;  H ' )  weakly. 

But u n € M 2 ( s , t ;  H 1 ) .  Then X E  M 2 ( s ,  t ;  H i ) .  Let 

p s C 1  ( R ) ,  pi  = k  p ( s )d s ;  
J::+l 
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162 E .  PARDOUX 

and B E H I .  It follows from (3.6): 

=pi[(u i ,  hi@ + ci.V8), Ai Y]. 

n-  1 

+ k = o  1 pi[(ui ,  hid + ci . TO), Ai Y ] .  

Taking the weak limit in (3.12) yields: 

It is easy to prove from (3.13) that ( ~ ( v ) ,  8) is (almost everywhere equal 
to) a continuous function, that is the restriction to [ s , t ]  of .the unique 
solution of Eq. (3.1), and that ~ ( t )  = 5. It then follows that (= u ( t ) .  

Remark 3.1 The above proof contains an alternate proof of existence 
in Theorem 1.3 of Part I. 0 

It follows from Theorems 2.1 and 3.1: 

Proof Apply Theorem 2.1, and then Theorem 3.1: 

Let cp be any bounded 9, measurable random variable. 

It then follows from the fact that PXIFT=P/,, and definition of P: 

But Tin Corollary 3.1 is arbitrary. It then follows: 

COROLLARY 3.2 (i) V t l o , u ( t , x ) ~ o  a.e., a s .  D
ow
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STOCHASTIC PDEs AND FILTERING 163 

Proof ( i )  follows from the fact that (u ( t ) ,  f ) 2 o, V f  E Lw (R" )  n L~ ( R N ) ,  
f 2 o .  

Let f  be a bounded Borel measurable and positive function defined on 
RN. Let f,e L"(RN) n P(R");  f n , , ( x ) l f n ( x ) 2 0 ,  and f , ( x ) t  f  ( x )  as 
n+ + x, V X E  RN. We then can take the limit in: 

and the limit is a s .  finite. Then i f f  is bounded and Borel measurable, we 
defined : 

But iff and g  coincide dx a.e., (u ( t ) ,  f ) = (u  ( t  ), g )  a.s. 
In particular, 

(u ( t ) ,  1 ) =E(Z, /F, ) .  
But: 

It follows from (3.14) and the properties of Z, that ( u ( t ) ,  1 )  is a 
continuous process which does not reach o nor + co in finite time. We 
then can define: 

p ( t , x ) =  ( u ( t ) ,  l ) - l u ( L x ) .  (3 .15)  

COROLLARY 3.3 v f  E L" (R")  n L' ( R N ) ,  (p ( t ) ,  f ), t  2 o  is a continuous 
version of E ( f  ( X , ) / F , ) .  

Proof It follows from (1.6) and Corollary 3.2 

But if fe,L2 ( R N ) ,  (u ( t ) ,  f )  is a continuous process, as well as 
, .  0 

We can now derive the classical Kushner-Statonovitch equation for 
p (t, x k s e e  Kushner [8]. 

Let v E H1. 
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164 E. PARDOUX 

It then follows from Ito formula: 

Remark 3.2 p(t ,  x )  could be chara .erized as the solution of (3.16), But 
the equation for u is both easier to study theoretically, and easier to 
approximate numerically. 

54. REMARK ON THE COERClVlTY CONDITION 

The coercivity is implied by (1.3) and (1.2)-(1.1). The later means that the 
"proportion" of the noise independent of the signal, in the observation 
noise, is uniformly positive. It is well known that this is a crucial 
regularity assumption in filtering, even for the linear Kalman-Bucy theory. 

In order to understand what happens when g ( t ) e o ,  let us choose a 
"singular" filtering problem, which will lead to stochastic PDE's of the 
type considered in Section 2.2 of Part I. 

Assume: 

b, a and h are bounded functions of t only. (4.2) 

Then (1.4) reduces to : 

It follows : 

where Xs  is 9: measurable. 
It is easy to check: 
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STOCHASTIC PDEs AND FILTERING 165 

Suppose that p,  E C2 ( R A ' )  n H 1 .  Then, according to Theorem 2.3 of Part 
I ,  Eq. (3.1) has a unique solution. The solution is given by (4.3), as can be 
verified by Ito formula. 

The backward Eq. (2.1) must also have a unique solution, provided that 
f~ c2 ( R ~ )  n H1. Let us guess this solution, with the help of (2.4). 

Once again, using Ito (backward!) calculus, we can check that (4.4) is 
the unique solution of (2.1). 

It is here clear why the parabolic equation (3.1) degenerates: the 
dynamics of X, is completely observed. The only unknown is X,. In 
particular, if the law of X, is a Dirac measure, there is no density at any 
time for the conditional law. 

Let us now see that the contrary holds in the coercive case. Let 
no = [N,!2] + 1 .  Then 6, E H-"0.  Suppose that all coefficients aij ,  b,, 

daijl'?xj, h, and c,, have bounded partial derivatives up  to  order no and 
that (1.1), (1.2) and (1.3) hold. Let t E R+,  f E L2 ( R N ) ,  and consider: 

Let ko be an integer s.t. 2k0 Zn,. It follows from Theorem 2.2 of Part I 
that: 

Fix X E  RAT. There exists a constant c' (depending possibly on x, but not 
on f )  such that: 

Then : 

or alternatively 
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166 E. PARDOUX 

But if 6, is the law of X,, 

Then, if t > o, f+E ( f  (X,)/P,) is a linear continuous mapping from 
L' (RN) into L1 (Q, B,, Po,). There exists a Linear Random Functional p ( t )  
on L~ ( R ~ ) ,  such that: 

Here we have a density for t > o, which is a L.R.F. on L2(RN). We were 
not able to prove that it is a L2(RN)-valued process. 
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