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Introduction 

A new kind of backward stochastic differential equations (in short BSDE), where 
the solution is a pair of processes adapted to the past of the driving Brownian 
motion, has been introduced by the authors in [63. It was then shown in a 
series of papers by the second and both authors (see [8, 7, 9, 103), that this 
kind of backward SDEs gives a probabilistic representation for the solution 
of a large class of systems of quasi-linear parabolic PDEs, which generalizes 
the classical Feynman-Kac formula for linear parabolic PDEs. 

On the other hand, the classical Feynman-Kac formula has been generalized 
by the first author in [-4, 5] to provide a probabilistic representation for solutions 
of linear parabolic stochastic partial differential equations; see also Krylov and 
Rozovskii [-1], Rozovskii [-11] and Ocone and Pardoux [-3] for further exten- 
sions. The aim of this paper is to combine the two above types of results, 
and relate a new class of backward stochastic differential equations, which we 
call "doubly stochastic" for reasons which will become clear below, to a class 
of systems of quasilinear parabolic SPDEs. Hence we shall give a probabilistic 
representation of solutions of such systems of quasilinear SPDEs, and use it 
to prove an existence and uniqueness result of such SPDEs. 

* The research of this author was partially supported by DRET under contract 901636/A000/ 
DRET/DS/SR 
** The research of this author was supported by a grant from the French "Minist6re de 
la Recherche et de la Technologie", which is gratefully acknowledged 
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Let us be more specific. Let {Wt, t>0} and {Bt, t>0} be two mutually inde- 
pendent standard Brownian motions, with values respectively in IRd and IRt. 
For each (t, x)~IR+ x IRd, let {X~'~; t<s< T} be the solution of the SDE" 

x : , ' = x  + ib(X'mdr+ i < x ' ; ' )  d w, -, 
t t 

t<_s<_T. 

We next want to find a pair of processes {(Ys t'~, Z~s'x); t<s<T} with values 
in lRkxiR T M  such that for each se[t,T](Y~t'~,Z~s'x ) is a(W~;t<r<s)va(Br 
-Bs ;  s < r __< T) measurable and 

T 

Y~"~= h(X~,X)+ f f iX  t'x Y}':', Z'; ~) dr 
J J \  r ' 

S 

T T 

+fg(X:'x,Y~"x,z:'~)dB~-~Z:'XdW~, t<_s<_Y 
$ 8 

where the d W integral is a forward It6 integral and the dB integral is a backward 
It6 integral. We shall show that, under appropriate conditions on f and g, 
the above "backward doubly stochastic differential equation" has a unique solu- 
tion. 

We finally will show that under rather strong smoothness conditions on 
b, a, f and g, {Yt~'~; (t, x)e[0, T] xIR d} is the unique solution of the following 
system of backward stochastic partial differential equations: 

T 

u(t, x)=h(x)+ ~ [~u(s, x)+f(x, u(s, x), (Vua)(s, x))] ds 
s 

T 

+ S g(x,u(s,x),(Vua)(s,x))dB~, O<_t<-T 
t 

where u takes values in IR k, 

(Squ)i(t, x)=(Lui)(t, x), 1 <_iNk 
and 

1 a 02 a 0 
L = ~ .  7_, (aa*)ij OxiOxj ~- ~ b z - - .  

z , j = l  i = 1  ~ X i  

The paper is organised as follows. In Sect. 1, we study existence and uniqueness 
of the solution to a backward doubly stochastic differential equation, and esti- 
mate the moments of the solution. In Sect. 2, we consider both a forward and 
a backward SDE, as introduced above, and study the regularity of the solution 
of the latter with respect to x, the initial condition of the former. Finally in 
Sect. 3 we relate our BSDE to a system of quasilinear stochastic partial differen- 
tial equations. 

Notation.  The Euclidean norm of a vector xeiR k will be denoted by Ixl, and 
for a d x d matrix A, we define I[A]I = ~ T r  AA*. 
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1 Backward doubly stochastic differential equations 

Let (f2, Y,, P) be a probability space, and T > 0  be fixed throughout this paper. 
Let {Wt, O<_t<_r} and {B, O<t<_r} be two mutually independent standard 
Brownian motion processes, with values respectively in IR d and in IR ~, defined 
on (~2, ~,  P). Let ~A/" denote the class of P-null sets of ~ For each t e [0, T], 
we define 

~ w  v ~B ~t,T 

where for any process {th}, ~Tt = o-{t/,-t/s; s<r<t} v ~,, ~"=Y~t .  
Note that the collection { 4 ,  te[0 ,  T]} is neither increasing nor decreasing, 

and it does not constitute a filtration. 
For any heN,  let M2(0, T;IR ") denote the set of (classes of d P x d t  a.e. 

equal) n dimensional jointly measurable random processes {oPt; re[0, T]} which 
satisfy: 

T 
(i) E~ Iq)tl2dt<oo 

0 

(ii) q)~ is ~ measurable, for a.e. t~[0, T]. 

We denote similarly by $2([0, T];  IR") the set of continuous n dimensional ran- 
dom processes which satisfy: 
(i) E( sup l(p,12)<ov 

O<_t<~T 

(& is ~ measurable, for any re[-0, T]. (ii) 

Let 
f :  Q x  [0, T] xlR k xlRk• k 

g: ~2• [O, Z] •215 TM 

be jointly measurable and such that for any (y, z)~lR k x N k • 

f ( ' ,  y, z)eM2(0, T; IR k) 

g(-, y, z)~M2(O, T; IR k• ~). 

We assume moreover that there exist constants c > 0  and 0 < e <  1 such that 
for any (co, t)~f2 x [0, r ] ,  (Yl, Zl), (Y2, z2)e lRk x lRk • 

(U.1) If(t, Yl, zl)--f(t, Y2, za)] 2 <c(]Yl--Y212 + Ilzl--z2[I 2) 

Ilg(t, Yl, zl)--g(t,  Y2, Z2)112 ~ c [ Y l - - Y 2 [  2-1-~ []Z1--22112. 

Given ~ e L 2 (s ~ r ,  P; Rk), we consider the following backward doubly stochas- 
tic differential equation: 

T T T 

(1.1) Yt=~+if(s,Y~,Z~)ds+Ig(s,Y~,Z~)dB~-IZ~dW~, O<_t<T. 
t t t 

We note that the integral with respect to {Bt} is a "backward It6 integral" 
and the integral with respect to { W~} is a standard forward It6 integral. These 
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two types of integrals are particular cases of the It6-Skorohod integral, see 
Nualart and Pardoux [2]. 

The main objective of this section is to prove the: 

Theorem 1.1 Under the above conditions, in particular (H.1), Eq. (1.1) has unique 
solution 

(Y, Z)~S2([0, r ] ;  IR k) x M2(0, T; IRkxd). 

Before we start proving the theorem, let us establish the same result in case 
f a n d  g do not depend on Yand Z. Given feM2(0,  T; IRk) and geM2(0, T; IRk• 
and ~ as above, consider the SDE: 

T T T 

( 1 . 2 )  Y~=~+Sf ( s )d s+Sg( s )dB , -SZ ,  dWs, O<t<_T. 
t t t 

Proposition 1.2 There exists a unique pair 

(Y, Z)~S2([-0, T]; IR k) x M2(0, T; IR k• 

which solves Eq. (1.2). 

Proof Uniqueness is immediate, since if (Y, Z) is the difference of two solutions, 

T 

ZsdW =O, o_<t_ T. 
t 

Hence by orthogonality 
T 

E(I  I2)+E S T CZsZ* ] ds=O, 
t 

and ~ - 0 P  a.s., Zt=OdtdP a.e. 
We now prove existence. We define the filtration (N)o_<t< r by 

and the N-square integrable martingale 

; ] Mt=E ~ + ~ f(s)ds+ g(s)dBs , O<_t<_T. 
�9 0 0 

An obvious extension of It6's martingale representation theorem yields the 
existence of N-progressively measurable process {Zt} with values in N k • a such 
that 

T 

E ~ [Ztl2dt<oo 
0 

t 

Mt=Mo + ~ Z~ d VV~, O_<t_< T. 
0 

Hence 
T 

Mr=Mr+ ~ Z, dW~. 
0 
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Replacing Mr  and M, by their defining formulas and subtracting 
t 

+ ~ g(s) dBs from both sides of the equality yields 
0 

t 

f (s) d s 
0 

where 

T T T 

Y~=~+ ~ f(s) ds+ ~ g(s)dB,- ~ ZsdW~, 
t t t 

T 

t 

It remains to show that {Y t} and {Zt} are in fact g-adapted.  For Y~, this is 
obvious since for each t, 

Y, = E(O/~% v.,%B) 

where 0 is f f w  v ~ B  measurable. Hence ~ s  is independent of ~t v a(O), and t ,  T 

Now 
Y, = E ( 0 / 4 ) .  

T T T 

Z, dW,=~ + 5 f(s)ds+ ~ g(s)dB~- Yt, 
t t t 

and the right side is ~-w v ~B measurable. t ,  T 

Hence, from It6's martingale representation theorem, {Z~, t<s<T} is 
~B ~ W v  ~B T adapted. Consequently Z, is ~Wv~' , ,T measurable, for any t<s, 

so it is ~ w  v ~B measurable. [] s , T  

We shall need the following extension of the well-known It6 formula. 

Lemma 1.3 Let o~(~S2([-O, T]; IRk), fl~M2(0, 7"; ~k), 7~M2(0, T; ]t~ t~ x t), 
~6M2(0, T; IR k • be such that: 

Then 

i t t 
c q = % +  fl, ds+iy,  dB,+~c~dW~, 

0 0 0 

O<_tK_T. 

t 

[c~t] 2= 1~o12-t-2 i ( ~ ,  ~Ads+ 2 ~ (as, 7sdBs) 
0 0 

t 

+2 i(O:s,,Ssdl/V~)-f 117~]12 d s+  5[16~[[2ds 
0 0 0 

EI~tI2=E[%[2+2E~(~,,fi,)ds-E ][~][2ds+E ][6sl[2ds. 
0 0 0 
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More generally, if ~ ~ C 2 (lRk), 

t t t 

O (at) = (o (ao) + ~ (O'(c%), fis) d s + ~ (O'(a~), Ys d Bs) + ~ (dp'(a,), 6~ d W~) 
0 0 0 

t! t! 

0 0 

Proof The first identity is a combination of It6's forward and backward formu- 
lae, applied to the process {at} and the function x-+Ix] 2. We only sketch the 
proof. 

Let O=to <t l  <.. .  <tn=t. 

1~ 12 - I at, [ 2 = 2 (at, +, - at,, cq~) + I at, +, - at~ 12 

=2 f ~ds ,  at, +2  f ~dBs, a.+l +2  f 6sdW~,a,, 
t i  t i  t i  

--2 ~ 7sdBs, at~+~-at~ +la~,+,-a~, l  2 
t i  

t i+  I t i +  1 t i+  1 

=2 ~ (at,,fl~lds+2 ~ (a, . . . .  ~sdBs)+2 S (a~,,6sdW./ 
t i  t i  t i  

t,+~ 12 t~+~ dW~ 2 
-- ~ 7sdB~ + ~ 6~ +Pi, 

t i  t i  

n - 1  

where ~, Pi-+0 in probability, as sup h+ 1 -  ti-+0. The rest of the proof is stan- 
dard. i=o i 

The second identity follows from the first, provided the stochastic integrals 
have zero expectation. This will follow from 

r t ) 
E(sUP\o__<t_<T ! (aS'7~dBS)+ supo_<r_<T o~(es'8~dVV*)<0% 

which is a consequence of Burkholder-Davis-Gundy's inequality and the 
assumptions made on a, 7 and 6. Indeed, considering e.g. the forward integral, 
we have: 

t ) 
E(\o<t<Tsup o~(a~,6sdW,) < = c E  latl2118tEl2dt 

-< o, ll ,ll ,  
The last identity is proved in a way very similar to the first one. []  

We can now turn to the 
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Proof of Theorem 1.1 Uniqueness. Let {(Yt 1, ztl)} and {(Yt 2, Z2)} be two solutions. 
Define 

Y,= V -  g~, g , = z ~ - z L  O<_t<_T. 
Then 

T T 
~= ~ [f(s, y t Z~)- f ( s ,  y2, Z~)] ds+ ~ [g(s, Y~, Z~)--g(s, y2, Z~)] dB~ 

t t 

T 
-~LdW~. 

t 

Applying Lemma 1.3 to Y yields: 

T T 

r~, z~), ~ )ds  E(I~I2)+ES I]ZsllNds=2E S(f(s, y e, Zs)_f(s, 2 2 
t t 

T 

+ e  S IIg(s, V ,  Z'~)-g(s, ~ ,  Z~)II ~ ds. 
t 

1 2 1-c~ 
- - a  + T b  2, Hence from (H.1) and the inequality a b < 2 ( 1 -  ~) 

r r [_  2 1 - ~  
E(I~I2) + E  i IlZsll2 ds<--c(~) E f g[ d s + ~  E [" llZsll2 ds+~E f llZ~ll2 ds, 

t t t t 

where 0 < ~ < 1 is the constant appearing in (H.1). Consequently 

1 - - ~  T T 

g ( l ~ 1 2 ) + ~ g  j' [IZ,  ll2 ds<__c(c~)E [. 1 1 ~ l l 2 d s .  

t t 

T 

From Gronwall's lemma, E(I ~12)=0, 0 ~ t <  T, and hence E S IIZ, II 2 ds=O. 
o 

Existence. We define recursively a sequence {(Yt/, Z~)}i=o.1 .... as follows. Let Yt ~ 
- 0 ,  Z ~  Given {(Yt~,Z~)}, {(Yt i+1, Z~+I)} is the unique solution, constructed 
as in Proposition 1.2, of the following equation: 

T T T 

Y,'+~ = ~ +  j" f(s, Y~', Z~)ds+ ~ g(s, Ys', Z~)dBs- ~ Z~ +' dVr 
t t t 

Let ~i+1 A_ y t i + l  yti, Zj+I_AZti+I_Zt,, O<t<_ T. The same computations as 
in the proof of uniqueness yield: 

T T 

E(I ~ +  112)+E ~ IIZ~+ 1112 ds=RE ~ (f(s, Ys ~, Z~)-f(s, Y~z-1, Z~-t), g,+ 1)ds 
t t 

T 

+ g  j Jig(s, ~', Z~)-g(s,  ~ i - ,  Z,-b[12ds. 
t 
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Let fiEIR. By integration by parts, we deduce 

T T 

E(I~*+ ll2) J*-I-~E y 1~i+~12 e~ ds-t- E y 1[2F~ilZ ea~ ds 
t t 

T 

= 2 E  ~ (f(s, l~ i, Z~)-f(s, yj-t, Z~ 1), ~i+l)e~ds 
t 

T 

+ g  ~ IIg(s, ~,  Z~)-g(s, Ys i-~, ZFa)II z e~Sds. 
t 

There exists c, 7 > 0 such that 

T T 

E(I~i+'I2) eP~-t-(/3-7)E [. 1~+l[2en~ds+E ~ IIZF~ll2e~Sds 
t t 

~,i,2 l + e  llZill2) e~Sds. <E ~ (clg~l + T  
t 

2c 2c 
Now choose fi = 7 + ~ ,  and define g -  1 + ~" 

r ee, ds< l+~z r E(l~i+ll2)ea'+E ~ (el~s'+'12+ilZ~+~ll 2) = T E S ( c ] ~ ' I 2  
t t 

+ [[Z~[[ 2) e~ds. 

It follows immediately that 

E S (KI~+~I 2+ IIZ~+lll2)e~Sds< E ~ (~l~IZ+ IlZ~llR)eeSds 
t t 

1+~  
and, since ~ < 1 ,  {(Yr ZI)}i=o,1,2 .... is a Cauchy sequence in M2(0, T; IR k) 

x M2(0, T; Nk• It is then easy to conclude that {YJ}~=0,1,2 .... is also Cauchy 
in S 2 ([0, T] ; IRk), and that 

{(Y~, ZO} = lim {(Y/, Z~)} 
i ~ o o  

solves Eq. (1.1). []  

We next establish higher order moment estimates for the solution of Eq. (1.1). 
For that sake, we need an additional assumption on g. 

(H.2) fThere  exists c such that for all (t, y, z)e[0, T] x IRk x IRk • gg*(t, y, z) 
[.<zz*+c(llg(t, O, 0)112 + lYl2)/. 
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Theorem 1.4 Assume, in addition to the conditions of Theorem 1.1, 
holds and for some p>2,  ~ ~ LV ((2, ~T, P; Nk) and 

Then 

T 

E ~ (If(t, 0, 0)Iv+ jig(t, 0, 0)11 p) dt< co. 
0 

0:) E( sup IY~V+ ~ II/~llZd <oo. 
\ O < - t < - T  \ 0  

that (H.2) 

Proof We apply Lemma 1.3 with (p(x)= Ix f,  yielding 

T T 

T T 

= ]4 ]P-l-p ~ I~1 p- 2(f(s, ~, NO, D ds+p ~ ] Y~IP- 2(y~, g(s, Y~, Z,) dBs) 
t t 

T 
P + ~  ! I Ys[ v-2 IIg(s, Y~,/~)ll 2 ds 

T T 

+ 2  (p -2 )  ! [ Y~ f-4(gg*(s ,  Y~, Zs) Y~, Y~)ds-p ~ [ y~ f -  2(y~, Z~ d W~). 

Also we do not know a priori that the above stochastic integrals have zero 
expectation, arguing as in the proof of Lemma 2.1 in Pardoux and Peng [7], 
we obtain that 

T T 
P P E(I Yt f) +~- E ~ I Y~f -2 IIZs]l 2 d s + ~  ( p - 2 ) E  ~ I Y~ f - 4 ( Z s Z  * ~,  Y~) ds 

t t 

T T 

~ E(I~IP)+ P g fo I Yslp-2(/( s, Y-Zs), YO ds + 2 E ~ Igsf -2 Ilg(s, g~, Z0ll2 ds 
t t 

T 
P + 2  (p--2)E j I Y~lP-4(gg*(s, Y~, Zs)Ys, Y~)ds. 

t 

Note that we can conclude from (H.1) that for any e < ~ ' <  1, there exists c(e') 
such that 

]lg(t, y, z)lle<c(cQ(lYlZ+ [Ig(t, 0, 0)112)+cr Ilzll 2. 

From the last two inequalities, (H.1) and (H.2), and using H61der's and Young's 
inequalities, we deduce that there exists 0 > 0 and c such that for 0_< t_< T, 

T 

E(IY~Io)+OE ~ IY~I v-2 II/sll 2 ds 
t 

T 

< E(l r f) + c E ~ (I YdV) + [f (s, O, 0)IP+ Ilg(s, O, 0)11 p) d s. 
f 
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It then follows, using Gronwall's 1emma, that 

T 

sup E(IY, F)+E j" lYe] p-2 IIZ, ll2dt<oo. 
O<_t<_T 0 

Applying the same inequalities we have already used to the first identity of 
this proof, we deduce that 

T 

I Y~Ip~ I~lP+c j" (I Y~IP)+ If(s, O, O)F+ IIg(s, O, O)IIP) ds 
t 

T T 

+p f I Y~F-2(~, g(s, gs, z3  dBs)-p ~ I Y~F-Z(Ys, Zs d W~). 
t t 

Hence, from Burkholder-Davis-Gundy's inequality, 

T 

E( sup IY~F)~E(I~F)+cE f~ (I Y,F+lf(t, O, O)F+ IIg(t, O, O)[IP)dt 
O<=t<_T 0 

+cE .[ I yt[2p-4(gg*(t, Yt, Zt) Yt, YOdt 
~ 0  

+cE [Y, I2p-4(Z, Z* Yt, Y~)dt. 
~ 0  

We estimate the last term as follows' 

E IY,12P-~(Z,Z*~,~)dt<-E V '/= IY~IP-2I[Z, II2dt 

T 

<�89 sup IYt[P)+�88 j" [Yt[ p-2 I[ztHedt. 
O<t<-T 0 

The next to last term of the above inequality can be treated analogously, and 
we deduce that 

E( sup I~lP)<oo. 
O<_t<_T 

Now we have 

T T T 

[. IlZ, II=dt=lr j" (f(t, Y~, z,), Yt ldt+2 j" (Yt, g(t, Yt, Zt) dBt) 
o o o 

T T 

+ j" IIg(t, Y, ZDII2dt-2 j" (~,  Z~dW,). 
0 0 
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Hence for any ~ > 0, 

( i  [[gtll2 dt)P/2~(l +(})(f Ilg(t, Yt, Zt)H2 dt) p/2 

r d p/2 
+c(&p) [~l~+lgolP+ ! ( f ( t ,  Yt, Zt), Y~) t 

l r r lp/2] + ] 

El( i I[ZtH2 dt) p/2] 

<(l+a)2c~g ( IkZ,[[2d +c'(6, p) 

2 \p/4] -}-C((~, p) E [(i [~tl Hgt]l d ,)p/2]_}_ c({5, p) e [(i l ~ 12 Hath d t) ] 

~(1 +6)2c~E IbZtll2 dt +c'(c~,p) 

<[(1 +a)2 ~+(1 +a)]  E [IZtll2dt) ] + c " ( &  p). 

The second part of the result now follows, if we choose ~ > 0  small enough 
such that 

(1+~)2~+(1  + ~ ) <  1 

(recall that e < 1). []  

2 Regularity of the solution of the BDSDE 

Let us first repeat some notations from Pardoux and Peng [7]. 
Ck(IRP; ]Rq), C~,b(]RP; ~q), C~(~P; ~:{q) will denote respectively the set of func- 

tions of class C k from IR p into IR q, the set of those functions of class C k whose 
partial derivatives of order less than or equal to k are bounded (and hence 
the function itself grows at most linearly at infinity), and the set of those functions 
of class C k which, together with all their partial derivatives of order less than 
or equal to k, grow at most like a polynomial function of the variable x at 
infinity. 
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C 3 ~iRd IRe We are given b~C~,bOR d, ]Re) and a~ 1.b~ , xe), and for each re[0,  T), 
x~iR e, we denote by {Xt; x, t < s < T} the unique strong solution of the following 
SDE: 

(2.1) t ~ t d X ;  =b(X," )ds+a(Xt2X)dW~, t<_s<_T 
t x  X s" =x.  

It is well known that the random field tr, Xt'X's , 0 < t < s < _  _ _ T, xEIR e} has a version 
which is a.s. of class C 2 in x, the function and its derivatives being a.s. continuous 
with respect to (t, s, x). 

Moreover,  for each (t, x), 

sup ([Xts'"l+lV Xt;X[+lD2 Xt;Xl)~ ~ LP(f2), 
t <_s<_ T p>= l 

where V X~; ~ denotes the matrix of first order derivatives of X~; ~ with respect 
to x and D 2 Xt2 ~ the tensor of second order derivatives. 

Now the coefficients of the BDSDE will be of the form (with an obvious 
abuse of notations): 

f (s ,  y, z )=f (s ,  Xt; ~, y, z) 

g(s ,y ,z)=g(s ,  ~'x X, , y, z) 
where 

f :  [0, T] XIRdXIRk XIRk• k 

g: [0, T]  xiRa xiRk x lRk•  TM. 

We assume that for any se[0,  r],  (x, y, z)--*(f(s, x, y, z), g(s, x, y, z)) is of class 
C 3, and all derivatives are bounded on [0, T] x IRe x IR k x IRk x e. 

We assume again that (H.1) and (H.2) hold, together with 

(H.3) 
g'~(t,x,y,z)OO*g'~(t,x,y,z)*<O0*, Vt~[0, T], x~IR d, yeIRk, z,O~IRk• 

Let h~C~(iRd;lRk), For  any te l0 ,  T], x~iR e, let {(Y~'~, t,~. Z~ ), t < s < T} denote 
the unique solution of the BDSDE: 

T 
X,. , Yr t'~, Zt/~) d r (2.2) Y~',~=h(X)~)+ f f ( r ,  ~'~ 

T T 

+~g(r ,  Xt;~,Y,.t '~,Z';X)dB~-~Zt;~dW~, t<_s<T. 
* $ 

W e  shall  define t , x  r s t , x  t , x  t , x _  t , x  X~ , and Z, for all (s, t)E[0, T]  2 by letting X~ - X ,  vt, 
r s t , x  t , x  t , x  = Y~vt, and Z~ = 0  for s<t .  

Theorem 2.1 {yt,~; (s, t)~[0, T] 2, xc iR e} has a version whose trajectories belong 
to C o, o. 2 ([0, T] 2 x IRe). 

Before proceeding to the proof  of this theorem, let us state an immediate corol- 
lary: 
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Corollary2.2 There exists a continuous version of the random field 
{Y~"~; re[0, r ] ,  xelR d} such that for any te l0 ,  r], x ~ Yt t'~, is of class C 2 a.s., 
the derivatives being a.s. continuous in (t, x). 
Proof of Theorem 2.1 We first note that we can deduce from Theorem 1.4 applied 
to the present situation that, for each p > 2, there exist % and q such that 

T \ p / 2 \  E( sup IY~t'xlv+(j" [IZ';Xll2ds) )<%(l+lxlq). 
\ t<_s<_ T \ t  

Next for t v t' < s < T, 

I' d y],x_ yf,~'= ~ h,(X~,.'+ 2 (X~  X~,X'))d (X)x X),X') 
kO 

T 

+ j (~or(t, x; c, x') [ x ' # - x f  ,x'] +O~(t, x; c, x')Eg ' ,~ -  g",~'] 
s 

T 
t ! t , x  t ' , x '  t ! t , x  t ' , x '  + Z r ( t , x ; t , x ) [ Z r - - Z r  ] ) d r + ~ ( ( o r ( t , x ; t , x ) [ X r - X r  ] 

s 

t ! t , x  t ' . x "  t t , x  t ' , x "  + ~ ( t ,  x; t ,  x ) [ ~  - y; ] + 5 ( t ,  x; t ,  x')[zr - z ~  ])d/3r 
T 

- ( z r - z r  )dW~ 
s 

where 
1 

~or(t, x; c, x ' )=  I f/(sr,,: '  ,,x.,,.,)d,~ 
0 

1 

0 

1 

zr(t, x; t', x ' )=  f f;(zr,; "x;'"X')d~ 
0 

0r, Cr and )~r are defined analogously, with f replaced by g, and 
z'r;~;'"x'=(r, ,,,x, ,,x ,,,~, ,,x ,,,x, Jr + ~ ( x r - x r  ) ,Yf 'X'+~(~' ,~-g~"~') ,z '5.x '+x(zr-z,  )). 

Combining the argument of Theorem 1.4 with the estimate: 

E( sup IX2X-Xts"~'lP)<%(l+lxlP+lx'lP)(Ix-x'lP+lt-t'F/2), 
O < _ s < T  

we dedu.ce that for all p > 2, there exists cp and q such that 

IlZs - z s  II 2ds  E sup I y] ,x_ yf,x' ip + ~ t,x ,',~' 
",O <_s<_ T ~ t  

<c~(l +[xlq +lx'l~)(Ix- x'lP +lt-t'V/2). 
Note that (H.3) is used in the proof; it plays the same role as (H.2) in the 
proof of Theorem 1.4. Note also that (H.1) implies that [1LII < ~ < 1. We conclude 
from the last estimate, using Kolmogorov's lemma, that {yt,x; s, re[0, T], xeN. e} 
has an a.s. continuous version. 

Next we define 
A i  y t , x Z x t y t , x + h ~ ,  y t , x , , / ~ ,  
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where h6lR\{0} ,  { e , , . . . ,  ee} is an orthonormal basis of IR d. A~ Ys t'~ and Ahi Z~ ''~ 
are defined analogously. We have 

A~ y t,~= i h'(X~X+ 2h A~X~ ~) A~X~ ~ d2 
0 

T 1 
+ ~ f FC',=t.x.h, AiVt.~.C' , '~ ' .x.h,  Ai vt.x• ] d 2 d r  LdxL~r ,2  ) ~ h l J .  r ~ d y L ~ r , ) .  ) J h ~ t r  ~ d z l . ~ r ,  2 ) 

s 0 

T 1 
+ f ~ r ' [~,t,x,h~ A i ~ t  . . . .  ,~t,x.h, k g x t ~ r , z  ) J h X X r  gyb"r , ; .  )d~ Vtx• "gz~.~r,2Z['~t'x'h]AiTt'xqlz~h~'r jd2dBr 

s 0 

T 
- -  ~ i t ,x  A h Z  r dWr ,  

s 

where .~t,~,h_. Xt/X + 2 i t ~ ~,~ i t,x ~ , ~  _ t r ,  h A h X  / , y~ ,x+)ohA~ y~,x, Z~ + 2 h A h Z  ~ ). 
We note that for each p => 2, there exists cp such that 

E( sup IA~X~;~I~)<=c~. 
O < _ s < T  

The same estimates as above yields 
T 

E (  sup IA~Ys~'~I;+(~ \v/2\ \ t<-sNT \ t  ][dihZts'Xll2ds) ) <=cp(l§247 

Finally, we consider 
1 

i t ,x  i ~ t ' , x '  

0 

h,(X~ff §163 t,x i t,~ XT )AhXT d2 

+ 

+ 

§ 

T 

I 
s 

§ 

§ 

1 

h A h X  T ) A h ,  X T d2 y h,(X~,X'+2 , i c,x' i t',x' 
0 

T 1 
~ Fd ' t [ '~ ' t , x , h '~A iv t ,  x g t g ~ r ' , x ' , h ' ] A i  vC,x'qd}~d r 

k J x ~ r , 2  l Z a h ~ r  - - J x [ ~ r , 2  )Zah'"CXr _1 
s 0 

T 1 
~ r ~ e t [ ~ t , x , h ~ A i  y t , x  Ftd '~ t ' , x ' ,h '~Ai  LJyt~r,z IJh~r -Jr~r,;~ J~h'--"~'~ d 2 d r  Y.: l 

s 0 

T 1 
~ r~e , [=t ,x ,h ' lA i  7 t ,  x ~c,(,ff,t',x',h']Ai 7c,x'1 , t ~ d r  

L d z t ~ r , 2  l J h L ,  r - - j z ~ r , ) .  } J h , ~ r  d u,~ 
s 0 

1 

S 
0 

T 

s 

T 

s 

T 

s 

t r t , x , h x . i  -~rt, x t z~t ' ,x ' ,h 'x  i t',x" 
gx~r,2 ) / I h l i - r  - - g x t ~ r , 2  ) A h ,  X r  ] d2dB~ 

1 
~ r- r z~t ,x,h~ ~ i  v t ,  x l l'~tr,x',h"~ i 

k g y t ~ r , 2  )Zlh l r  - - g y t ~ r , ) ~  ) d h ,  Y f ' X ' ] d . ~ d B r  
o 

1 
~ V . '  ('~t,x,h] Aih T t ,  X ' {~t ' ,x ' ,h '~ i t ' ,x' 

LlSx'~r,A t ~r - - g ~ t ~ , a  fAh'Z~ ] d 2 d B ~  
0 

i t ,x  i t ' ,x'  [ A h Z  ~ - A h ,  Z ~ ] d W ~ .  
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We note that 

and 

E( sup -h~sA~ ~ ' , ,=_~h,~,  ~ v,'.=' ~ < % ( l + l x l g ( I x _ x , l , + l h _ h , l , + l t _ t , I , / 2 ) ~ =  
O N S E T  

~,.,.,. -~,.,a , X,. I + l X r  ,--X,. '1 
+ i r / , x_  r,:',~' i § i r/,~+~o,_ y/',~' +~;, I 

t , x  t ' , x "  t , x  + h~.  t ' , x "  + h'e. + ll2, - z ,  II + Ill,  ~ - z ,  4). 

Using similar arguments as those in Theorem 1.4, combined with those of Theo- 
rem 2.9 in Pardoux and Peng [7], we show that 

( [ l&Z~ - & , &  II ds  
\ O _ s _ T  t t" 

__<cp(1 + Ixl~+ Ix' Iq + ] hlq + Ih'l ~) x ( Ix-x ' lP + I h - h '  IP+lt-t'lV/2). 

The existence of a continuous derivative of y],x with respect to x follows easily 
from the above estimate, as well as the existence of a mean-square derivative 
of Z~s '~ with respect to x, which is mean square continuous in (s, t, x). The 
existence of a continuous second derivative of Ys ~'x with respect to x is proved 
in a similar fashion. []  

It is easy to deduce, as in Pardoux and Peng [7], that ~(VY~ t'~ 

0z:,3l ( \  
- 8 x ' V Zts "~- 0 x ]J is the unique solution of the BDSDE: 

T 

V y t,~ = h' (X) x ) V X )  ~ + j" Ef" (r, x,t' ~ ,y , t  x ,z/r ~ )VX,t' 
s 

+ f ;' (r, X'/~, 11,t,~, Z,"~) V Y,"~ + f ;  (r, Xt/x, y t, ~, Zt/x) V Zt/~] d r 

T 

+ j [gx(r,' x :  "x, r/,~, z:.,') ',~ ' x,',~, v x ,  + g,(r, Y/'~, z';~) v g',~ 
s 

T 

+ g,(r, ,,~ ' X ,  , Y , %  ',~' , .x  Z, ) V Z ,  ] dB, - -  f V Z ' / ' d W ~ .  
s 

We shall need below a formula relating Z with the gradients of Y and X: 

t , X .  __ __  - -  Proposition 2.3 The random field {Z~ , 0 < t < s < T, x elR d} has an a.s. continuous 
version which is given by: 

and in particular 

t x z ;  = v ~',~ (v x 2  x)- i ~ (x'; x) 

t X  z~" = V V '~ ~(x). 

Proof. We only indicate the main ideas, the details being obvious adaptations 
of those leading to Lemma 2.5 in Pardoux and Peng [7]. 
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For any random variable F of the form F = f ( W ( h O , . . .  , W(h,); B(kl), ... , B(kv) ) 
wi th f~C~OR"+P) ,  h~ . . . .  , h,~L2([-0, T], lRd), ka, ..., kv~L2([0, T], IW), where 

we let 

T T 

W(h,) ~ ~ (h,(t), d Wt), B(kj) A_ ~ (kj(t), dBt), 
0 0 

n 

D , F ~  F, f / (W(hO, ..., W(h~ B(k0 . . . . .  B(G)) h,(t), 
i = 1  

O<_t<_T 

For such an F, we define its l, 2-norm as: 

[ r ]\1/2 
IIFII1,2-- E r e +  ~ IDtF] 2 dtJ) . 

0 

S denoting the set of random variables of the above form, we define the Sobolev 
space: 

Dl,2 ~ll.]la.2. 

The "derivation operator" D. extends as an operator from D 1'2 into 
Lz(f2; U([0, T], Na)). It turns out that under the assumptions of Theorem 2.1, 
the components of t,x t , x  D1,2 Xs , y t,~ and Zs take values in and the pair {(Do y,,x, 
DoZ's'~; t<O<_s<_T} satisfies for each fixed 0 the same equation as 
{(V y~,x, V Z's'x)}, but where V X's 'x has been replaced by Do Xt;L Now since for 
t<=O<s, 

t , x  t~X t , x  -- 1 DoX,  = V X s  (VXo ) a(Xto 'x) 

and moreover the mapping 

Do X[ 'x ~ (Do y.t,~, Do Z~. "~) 

is the same linear mapping as 

it follows that 

v x~,x--+(v y..~,x, vz:,x), 

Do Yst'X=V yst'X(V Xto'X)- I (Y(Xto'X). 

Now D o Y~t'x= 0 for O>s, and 

Do y~,x A= lim D o y t, x 
sl,  J,O 

= Zto 'x, 0 a.e. 

This gives the first part of the proposition. The second part follows. [] 
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3 BDSDEs and systems of quasilinear SPDEs 

We now relate our BDSDE to the following system of quasilinear backward 
stochastic partial differential equations: 

(3.1) 
T 

U(t, x)=h(x)q- I [~U(S, x)+f(s ,  X, U(S, X), (Vua)(s, x))] ds 
t 

T 

+ ~ g (s, x, u (s, x), (V u a) (s, x)) d B,, 0 _< t _< T; 
t 

where u: N+ x IR a --,IR k, 

L u l )  
~ u =  : , 

\ L ; ~ /  

o2 
with L = ~ (a a*)i j(t, x) 

i,i=1 O x ~ x y  

d 0 
~ b~(t, x) . 

i = 1  ~ Xi  

Theorem 3.1 Let f and g satisfy the assumptions of Sect. 1 and h be of class 
C 2. Let {u(t,x); O<_t<_T, xe lR d} be a random field such that u(t,x) is 
~tter-measurable for each (t,x), u~C~ k) a.s., and u satisfies 
Eq. (3.i). 

Then u(t, x)= Y/'~, where {(yt,~, g,ff); t<=s< T } t ~ 0 , ~  is the unique solution 
of the BDSDE (2.2). 

Proof It suffices to show that {(u(t,X~i~),(Vua)(s,X*ff);O<s<t} solves the 
BDSDE (2.2). 

Let t=to <t l  < t2<. . .  <tn= T 

n - 1  

S [ u ( t i ,  t ,x  t ,x  x,, ) -u( t ,+l ,  x,,+,)] 
i = 0  

= ~ [u (ti, X't' ,x) _ u (ti, Xtt'i~,)] + 2 [u (ti, Xt~ ',x ) _ u (t i +,, t, x,,~ , ) ]  
i i 

t i+l t i+l 

= - ~ se  u ( t .  x';x) d s -  ~ (V u (~)(t,, X's'x) d W~ 
tl ti 

t i + l  
U t~X t,); + f [S(u(s ,  Xtt;~,))+f(s, Xtt',~,, (s, Xt,+,), (Vua)(s, X,,+,))] ds 

ti 

ti+ 1 

+ [. g(s, ',~ u(s, ',~ ~)(s, x,,~,)) dBs, x,,+~, x,,+,), (v u ',~ 
ti 

where we have used the It6 formula and the equation satisfied by u. It finally 
suffices to let the mesh size go to zero in order to conclude. [] 

We have also a converse to Theorem 3.1 : 
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Theorem 3.2 Let f, g and h satisfy the assumptions of Sects. 1 and 2. Then 
{u(t, x) A= y t,x; O<t <= T, x6]R d} is the unique classical solution of the system of 
backward SPDEs (3.1). 

Proof We prove that {Y/'~} is a solution. Uniqueness will then follow from 
Theorem 3.2. We first note that Y~*;~ = Ytt++h h'x~'z~. Hence 

u ( t + h , x ) - u ( t , x ) = u ( t + h , x ) - u ( t + h ,  t,~ ~,~ Xt+h)+u(t +h, X,+h)--u(t, x) 
t + h  t + h  

= -  ~ ~ u ( t + h ,  Xtd~)ds - ~ (Vua)(t+h,  Xts'~)dW~ 
t t 

~ + h  t + h  

- ~ f ( s ,  , ,x  X~ , y t,~, Zt; ~)d B~ x ,  , ~' ,~,  z';.~) d s -  ~ g(s,  ', ~ 
t t 

t + h  

Zd dW~. 

We can then finish the proof exactly as in Theorem 3.2 of Pardoux and Peng 
[7]. [] 

Remark3.3 Condition (H.1), with c~<l, is a very natural condition for (3.1) 
to be well posed. Indeed, in the case where g is linear with respect to its last 
argument, and does not depend on y, g is of the form: 

g(s ,  x ,  z)  = c (s, x )  z 

i.e. the stochastic integral term in (3.1) reads: 

T 

c (s, x) (V u a) (s, x) d B~. 
t 

Condition (H.1) for g, in this case, reduces to [c(s,x)]~c~<l. This is a well 
known condition (see e.g. Pardoux I-5]) for the SPDE (3.1) to be a well-posed 
stochastic parabolic equation. [] 

Remark 3.4 Our result generalizes the stochastic Feynman-Kac formula of Par- 
doux [4] for linear SPDEs. Indeed, if k =  1, f and g are linear in y and do 
not depend on z, the BDSDE becomes 

T T T 

Ys~'~=h(X)X)+ ~ a(r, t,~ X~ ) Y/ '~dr+ ~ b(r, X;. '~) gt'~dB~ - ~ Z'/xdW~ 
8 s s 

and it has an explicit solution given by: 

(! T t Y~t'X=exp a(r, Xt;X) dr + ~ b(r, Xtr'X) dBr--�89 ~ Ib(r, X~.'x)I 2 d, h (X)  x) 
s s 

- ~ e x p  a(O,X~o'X)dO+ b(O,X~oX)dBo-�89 Z~r'~dVV~ 
$ ~ s 



Backward doubly stochastic DE's and SPDE's 227 

and because y/,x is -Y~,~r measurable, 

[ (f T 
Y/'X=E h(X}X) exp a(r, Xt/X) dr+ S b(r, X~r'~)dBr 

t 

t x 2 o '~ 'B  -~ ~ lb(r ,X;  )l dr a*,, , 
t 

which is the formula in Pardoux [4] (where only the case a - 0  is considered). 
Note however that in [41 B and W are allowed to be correlated. This does 
not seem possible here, unless we allow the stochastic integrals in the BDSDE 
to be of a non adapted nature. [] 
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