Backward doubly stochastic differential equations and systems of quasilinear SPDEs

Etienne Pardoux^{1,*}, Shige Peng^{2,**}

¹ Laboratoire APT, URA 225, Université de Provence, F-13331 Marseille Cedex 3, France ² Institute of Mathematics, Shandong University, Jinan, People's Republic of China

Received: 30 December 1992 / In revised form: 6 October 1993

Summary. We introduce a new class of backward stochastic differential equations, which allows us to produce a probabilistic representation of certain quasilinear stochastic partial differential equations, thus extending the Feynman-Kac formula for linear SPDE's.

Mathematics Subject Classification: 60H10, 60H15, 60H30

Introduction

A new kind of backward stochastic differential equations (in short BSDE), where the solution is a pair of processes adapted to the past of the driving Brownian motion, has been introduced by the authors in [6]. It was then shown in a series of papers by the second and both authors (see [8, 7, 9, 10]), that this kind of backward SDEs gives a probabilistic representation for the solution of a large class of systems of quasi-linear parabolic PDEs, which generalizes the classical Feynman-Kac formula for linear parabolic PDEs.

On the other hand, the classical Feynman-Kac formula has been generalized by the first author in [4, 5] to provide a probabilistic representation for solutions of linear parabolic stochastic partial differential equations; see also Krylov and Rozovskii [1], Rozovskii [11] and Ocone and Pardoux [3] for further extensions. The aim of this paper is to combine the two above types of results, and relate a new class of backward stochastic differential equations, which we call "doubly stochastic" for reasons which will become clear below, to a class of systems of quasilinear parabolic SPDEs. Hence we shall give a probabilistic representation of solutions of such systems of quasilinear SPDEs, and use it to prove an existence and uniqueness result of such SPDEs.

 $[\]star$ The research of this author was partially supported by DRET under contract 901636/A000/ DRET/DS/SR

^{**} The research of this author was supported by a grant from the French "Ministère de la Recherche et de la Technologie", which is gratefully acknowledged

Let us be more specific. Let $\{W_t, t \ge 0\}$ and $\{B_t, t \ge 0\}$ be two mutually independent standard Brownian motions, with values respectively in \mathbb{R}^d and \mathbb{R}^l . For each $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$, let $\{X_s^{t,x}; t \le s \le T\}$ be the solution of the SDE:

$$X_{s}^{t,x} = x + \int_{t}^{s} b(X_{r}^{t,x}) dr + \int_{t}^{s} \sigma(X_{r}^{t,x}) dW_{r}, \quad t \leq s \leq T.$$

We next want to find a pair of processes $\{(Y_s^{t,x}, Z_s^{t,x}); t \leq s \leq T\}$ with values in $\mathbb{R}^k \times \mathbb{R}^{k \times l}$ such that for each $s \in [t, T]$ $(Y_s^{t,x}, Z_s^{t,x})$ is $\sigma(W_r; t \leq r \leq s) \vee \sigma(B_r - B_s; s \leq r \leq T)$ measurable and

$$Y_{s}^{t,x} = h(X_{T}^{t,x}) + \int_{s}^{T} f(X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) dr$$
$$+ \int_{s}^{T} g(X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) dB_{r} - \int_{s}^{T} Z_{r}^{t,x} dW_{r}, \quad t \leq s \leq T$$

where the dW integral is a forward Itô integral and the dB integral is a backward Itô integral. We shall show that, under appropriate conditions on f and g, the above "backward doubly stochastic differential equation" has a unique solution.

We finally will show that under rather strong smoothness conditions on b, σ, f and $g, \{Y_t^{t,x}; (t, x) \in [0, T] \times \mathbb{R}^d\}$ is the unique solution of the following system of backward stochastic partial differential equations:

$$u(t, x) = h(x) + \int_{s}^{T} \left[\mathscr{L}_{s} u(s, x) + f(x, u(s, x), (\nabla u \sigma)(s, x)) \right] ds$$
$$+ \int_{t}^{T} g(x, u(s, x), (\nabla u \sigma)(s, x)) dB_{s}, \quad 0 \leq t \leq T$$

where u takes values in \mathbb{R}^k ,

$$(\mathscr{L} u)_i(t, x) = (Lu_i)(t, x), \quad 1 \le i \le k$$

and

$$L = \frac{1}{2} \sum_{i,j=1}^{d} (\sigma \sigma^*)_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i \frac{\partial}{\partial x_i}.$$

The paper is organised as follows. In Sect. 1, we study existence and uniqueness of the solution to a backward doubly stochastic differential equation, and estimate the moments of the solution. In Sect. 2, we consider both a forward and a backward SDE, as introduced above, and study the regularity of the solution of the latter with respect to x, the initial condition of the former. Finally in Sect. 3 we relate our BSDE to a system of quasilinear stochastic partial differential equations.

Notation. The Euclidean norm of a vector $x \in \mathbb{R}^k$ will be denoted by |x|, and for a $d \times d$ matrix A, we define $||A|| = \sqrt{\operatorname{Tr} A A^*}$.

1 Backward doubly stochastic differential equations

Let (Ω, \mathcal{F}, P) be a probability space, and T > 0 be fixed throughout this paper. Let $\{W_t, 0 \le t \le T\}$ and $\{B_t, 0 \le t \le T\}$ be two mutually independent standard Brownian motion processes, with values respectively in \mathbb{R}^d and in \mathbb{R}^l , defined on (Ω, \mathcal{F}, P) . Let \mathcal{N} denote the class of P-null sets of \mathcal{F} . For each $t \in [0, T]$, we define

$$\mathscr{F}_t \triangleq \mathscr{F}_t^W \vee \mathscr{F}_{t,T}^B$$

where for any process $\{\eta_t\}$, $\mathscr{F}_{s,t}^{\eta} = \sigma\{\eta_r - \eta_s; s \leq r \leq t\} \lor \mathscr{N}, \mathscr{F}_t^{\eta} = \mathscr{F}_{0,t}^{\eta}$. Note that the collection $\{\mathscr{F}_t, t \in [0, T]\}$ is neither increasing nor decreasing, and it does not constitute a filtration.

For any $n \in \mathbb{N}$, let $M^2(0, T; \mathbb{R}^n)$ denote the set of (classes of $dP \times dt$ a.e. equal) *n* dimensional jointly measurable random processes $\{\varphi_t; t \in [0, T]\}$ which satisfy:

- (i) $E\int_{0}^{T} |\varphi_t|^2 dt < \infty$
- (ii) φ_t is \mathscr{F}_t measurable, for a.e. $t \in [0, T]$.

We denote similarly by $S^2([0, T]; \mathbb{R}^n)$ the set of continuous *n* dimensional random processes which satisfy:

(i) $E(\sup_{0 \le t \le T} |\varphi_t|^2) < \infty$

(ii) φ_t is \mathscr{F}_t measurable, for any $t \in [0, T]$.

Let

$$f: \ \Omega \times [0, T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^k$$
$$g: \ \Omega \times [0, T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^{k \times l}$$

be jointly measurable and such that for any $(v, z) \in \mathbb{R}^k \times \mathbb{R}^{k \times d}$,

$$f(\cdot, y, z) \in M^2(0, T; \mathbb{R}^k)$$
$$g(\cdot, y, z) \in M^2(0, T; \mathbb{R}^{k \times l}).$$

We assume moreover that there exist constants c > 0 and $0 < \alpha < 1$ such that for any $(\omega, t) \in \Omega \times [0, T]$, $(y_1, z_1), (y_2, z_2) \in \mathbb{R}^k \times \mathbb{R}^{k \times l}$,

(H.1)
$$|f(t, y_1, z_1) - f(t, y_2, z_2)|^2 \leq c(|y_1 - y_2|^2 + ||z_1 - z_2||^2)$$
$$||g(t, y_1, z_1) - g(t, y_2, z_2)||^2 \leq c |y_1 - y_2|^2 + \alpha ||z_1 - z_2||^2.$$

Given $\xi \in L^2(\Omega, \mathscr{F}_T, P; \mathbb{R}^k)$, we consider the following backward doubly stochastic differential equation:

(1.1)
$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) \, ds + \int_t^T g(s, Y_s, Z_s) \, dB_s - \int_t^T Z_s \, dW_s, \quad 0 \le t \le T.$$

We note that the integral with respect to $\{B_t\}$ is a "backward Itô integral" and the integral with respect to $\{W_t\}$ is a standard forward Itô integral. These two types of integrals are particular cases of the Itô-Skorohod integral, see Nualart and Pardoux [2].

The main objective of this section is to prove the:

Theorem 1.1 Under the above conditions, in particular (H.1), Eq. (1.1) has unique solution

$$(Y, Z) \in S^2([0, T]; \mathbb{R}^k) \times M^2(0, T; \mathbb{R}^{k \times d}).$$

Before we start proving the theorem, let us establish the same result in case f and g do not depend on Y and Z. Given $f \in M^2(0, T; \mathbb{R}^k)$ and $g \in M^2(0, T; \mathbb{R}^{k \times l})$ and ξ as above, consider the SDE:

(1.2)
$$Y_t = \xi + \int_t^T f(s) \, ds + \int_t^T g(s) \, dB_s - \int_t^T Z_s \, dW_s, \quad 0 \le t \le T.$$

Proposition 1.2 There exists a unique pair

 $(Y, Z) \in S^2([0, T]; \mathbb{R}^k) \times M^2(0, T; \mathbb{R}^{k \times d})$

which solves Eq. (1.2).

Proof. Uniqueness is immediate, since if $(\overline{Y}, \overline{Z})$ is the difference of two solutions,

$$\bar{Y}_t + \int_t^T \bar{Z}_s \, d \, W_s = 0, \qquad 0 \le t \le T.$$

Hence by orthogonality

$$E(|\bar{Y}_t|^2) + E\int_t^T T_r[\bar{Z}_s\bar{Z}_s^*] ds = 0,$$

and $\overline{Y}_t \equiv 0 P$ a.s., $\overline{Z}_t = 0 dt dP$ a.e.

We now prove existence. We define the filtration $(\mathcal{G}_t)_{0 \le t \le T}$ by

$$\mathcal{G}_t = \mathcal{F}_t^W \vee \mathcal{F}_T^B$$

and the G-square integrable martingale

$$M_{t} = E^{\mathscr{G}_{t}} \left[\xi + \int_{0}^{T} f(s) \, ds + \int_{0}^{T} g(s) \, dB_{s} \right], \qquad 0 \le t \le T.$$

An obvious extension of Itô's martingale representation theorem yields the existence of \mathscr{G}_t -progressively measurable process $\{Z_t\}$ with values in $\mathbb{R}^{k \times d}$ such that

$$E \int_{0}^{T} |Z_t|^2 dt < \infty$$
$$M_t = M_0 + \int_{0}^{t} Z_s dW_s, \quad 0 \le t \le T.$$

Hence

$$M_T = M_t + \int_0^T Z_s \, d \, W_s \, .$$

Replacing M_T and M_t by their defining formulas and subtracting $\int f(s) ds$ $+\int_{\Omega} g(s) dB_s$ from both sides of the equality yields

$$Y_{t} = \xi + \int_{t}^{T} f(s) \, ds + \int_{t}^{T} g(s) \, dB_{s} - \int_{t}^{T} Z_{s} \, dW_{s},$$

where

$$Y_t \triangleq E^{\mathscr{G}_t} \left(\xi + \int_t^T f(s) \, ds + \int_t^T g(s) \, dB_s \right).$$

It remains to show that $\{Y_t\}$ and $\{Z_t\}$ are in fact \mathscr{F}_t -adapted. For Y_t , this is obvious since for each t,

$$Y_t = E(\Theta/\mathscr{F}_t \vee \mathscr{F}_t^B)$$

where Θ is $\mathscr{F}_T^W \vee \mathscr{F}_{t,T}^B$ measurable. Hence \mathscr{F}_t^B is independent of $\mathscr{F}_t \vee \sigma(\Theta)$, and

Now

$$\int_{0}^{T} Z_{s} dW_{s} = \xi + \int_{0}^{T} f(s) ds + \int_{0}^{T} g(s) dB_{s} - Y_{t},$$

 $Y_t = E(\Theta/\mathscr{F}_t).$

and the right side is $\mathscr{F}_T^W \vee \mathscr{F}_{t,T}^B$ measurable. Hence, from Itô's martingale representation theorem, $\{Z_s, t < s < T\}$ is $\mathscr{F}_s^W \vee \mathscr{F}_{t,T}^B$ adapted. Consequently Z_s is $\mathscr{F}_s^W \vee \mathscr{F}_{t,T}^B$ measurable, for any t < s, so it is $\mathscr{F}_s^W \vee \mathscr{F}_{s,T}^B$ measurable. \square

We shall need the following extension of the well-known Itô formula.

Lemma 1.3 Let $\alpha \in S^2([0, T]; \mathbb{R}^k)$, $\beta \in M^2(0, T; \mathbb{R}^k)$, $\gamma \in M^2(0, T; \mathbb{R}^{k \times l})$, $\delta \in M^2(0, T; \mathbb{R}^{k \times d})$ be such that:

$$\alpha_t = \alpha_0 + \int_0^t \beta_s \, ds + \int_0^t \gamma_s \, dB_s + \int_0^t \delta_s \, dW_s, \qquad 0 \leq t \leq T.$$

Then

$$|\alpha_{t}|^{2} = |\alpha_{0}|^{2} + 2\int_{0}^{t} (\alpha_{s}, \beta_{s}) ds + 2\int_{0}^{t} (\alpha_{s}, \gamma_{s} dB_{s})$$

+ $2\int_{0}^{t} (\alpha_{s}, \delta_{s} dW_{s}) - \int_{0}^{t} ||\gamma_{s}||^{2} ds + \int_{0}^{t} ||\delta_{s}||^{2} ds$
 $E |\alpha_{t}|^{2} = E |\alpha_{0}|^{2} + 2E\int_{0}^{t} (\alpha_{s}, \beta_{s}) ds - E\int_{0}^{t} ||\gamma_{s}||^{2} ds + E\int_{0}^{t} ||\delta_{s}||^{2} ds$

More generally, if $\phi \in C^2(\mathbb{R}^k)$,

$$\phi(\alpha_t) = \phi(\alpha_0) + \int_0^t (\phi'(\alpha_s), \beta_s) \, ds + \int_0^t (\phi'(\alpha_s), \gamma_s \, dB_s) + \int_0^t (\phi'(\alpha_s), \delta_s \, dW_s)$$
$$- \frac{1}{2} \int_0^t \operatorname{Tr} \left[\phi''(\alpha_s) \gamma_s \gamma_s^* \right] \, ds + \frac{1}{2} \int_0^t \operatorname{Tr} \left[\phi''(\alpha_s) \delta_s \, \delta_s^* \right] \, ds.$$

Proof. The first identity is a combination of Itô's forward and backward formulae, applied to the process $\{a_t\}$ and the function $x \to |x|^2$. We only sketch the proof. Let $0=t_0 < t_1 < ... < t_n = t$.

$$\begin{aligned} |\alpha_{t_{i+1}}|^2 - |\alpha_{t_i}|^2 &= 2(\alpha_{t_{i+1}} - \alpha_{t_i}, \alpha_{t_i}) + |\alpha_{t_{i+1}} - \alpha_{t_i}|^2 \\ &= 2\left(\int_{t_i}^{t_{i+1}} \beta_s \, ds, \, \alpha_{t_i}\right) + 2\left(\int_{t_i}^{t_{i+1}} \gamma_s \, dB_s, \, \alpha_{t_{i+1}}\right) + 2\left(\int_{t_i}^{t_{i+1}} \delta_s \, dW_s, \, \alpha_{t_i}\right) \\ &- 2\left(\int_{t_i}^{t_{i+1}} \gamma_s \, dB_s, \, \alpha_{t_{i+1}} - \alpha_{t_i}\right) + |\alpha_{t_{i+1}} - \alpha_{t_i}|^2 \\ &= 2\int_{t_i}^{t_{i+1}} (\alpha_{t_i}, \beta_s) \, ds + 2\int_{t_i}^{t_{i+1}} (\alpha_{t_{i+1}}, \gamma_s \, dB_s) + 2\int_{t_i}^{t_{i+1}} (\alpha_{t_i}, \delta_s \, dW_s) \\ &- \left|\int_{t_i}^{t_{i+1}} \gamma_s \, dB_s\right|^2 + \left|\int_{t_i}^{t_{i+1}} \delta_s \, dW_s\right|^2 + \rho_i, \end{aligned}$$

where $\sum_{i=0}^{n-1} \rho_i \to 0$ in probability, as $\sup_i t_{i+1} - t_i \to 0$. The rest of the proof is standard.

The second identity follows from the first, provided the stochastic integrals have zero expectation. This will follow from

$$E\left(\sup_{0\leq t\leq T}\left|\int_{t}^{T} (\alpha_{s}, \gamma_{s} dB_{s})\right| + \sup_{0\leq t\leq T}\left|\int_{0}^{t} (\alpha_{s}, \delta_{s} dW_{s})\right|\right) < \infty,$$

which is a consequence of Burkholder-Davis-Gundy's inequality and the assumptions made on α , γ and δ . Indeed, considering e.g. the forward integral, we have:

$$E\left(\sup_{0 \le t \le T} \left| \int_{0}^{t} (\alpha_{s}, \delta_{s} dW_{s}) \right| \right) \le c E \left| \sqrt{\int_{0}^{T} |\alpha_{t}|^{2} \|\delta_{t}\|^{2} dt} \right|$$
$$\le \frac{c}{2} \left(E\left(\sup_{0 \le t \le T} |\alpha_{t}|^{2} \right) + E \int_{0}^{T} \|\delta_{t}\|^{2} dt \right).$$

The last identity is proved in a way very similar to the first one. \Box We can now turn to the *Proof of Theorem 1.1 Uniqueness.* Let $\{(Y_t^1, Z_t^1)\}$ and $\{(Y_t^2, Z_t^2)\}$ be two solutions. Define

$$\overline{Y}_t = Y_t^1 - Y_t^2, \quad \overline{Z}_t = Z_t^1 - Z_t^2, \quad 0 \leq t \leq T.$$

Then

$$\overline{Y}_{t} = \int_{t}^{T} \left[f(s, Y_{s}^{1}, Z_{s}^{1}) - f(s, Y_{s}^{2}, Z_{s}^{2}) \right] ds + \int_{t}^{T} \left[g(s, Y_{s}^{1}, Z_{s}^{1}) - g(s, Y_{s}^{2}, Z_{s}^{2}) \right] dB_{s}$$
$$- \int_{t}^{T} \overline{Z}_{s} dW_{s}.$$

Applying Lemma 1.3 to \overline{Y} yields:

$$E(|\bar{Y}_t|^2) + E \int_t^T \|\bar{Z}_s\|^2 \, ds = 2E \int_t^T (f(s, Y_s^1, Z_s) - f(s, Y_s^2, Z_s^2), \bar{Y}_s) \, ds \\ + E \int_t^T \|g(s, Y_s^1, Z_s^1) - g(s, Y_s^2, Z_s^2)\|^2 \, ds.$$

Hence from (H.1) and the inequality $ab \leq \frac{1}{2(1-\alpha)} a^2 + \frac{1-\alpha}{2} b^2$,

$$E(|\bar{Y}_t|^2) + E\int_t^T \|\bar{Z}_s\|^2 \, ds \leq c(\alpha) E\int_t^T |\bar{Y}_t|^2 \, ds + \frac{1-\alpha}{2} E\int_t^T \|\bar{Z}_s\|^2 \, ds + \alpha E\int_t^T \|\bar{Z}_s\|^2 \, ds,$$

where $0 < \alpha < 1$ is the constant appearing in (H.1). Consequently

$$E(|\overline{Y}_t|^2) + \frac{1-\alpha}{2} E \int_t^T ||\overline{Z}_s||^2 ds \leq c(\alpha) E \int_t^T ||\overline{Y}_s||^2 ds.$$

From Gronwall's lemma, $E(|\bar{Y}_t|^2) = 0, 0 \le t \le T$, and hence $E \int_0^T ||\bar{Z}_t||^2 ds = 0$.

Existence. We define recursively a sequence $\{(Y_t^i, Z_t^i)\}_{i=0,1,...}$ as follows. Let $Y_t^0 \equiv 0$, $Z_t^0 \equiv 0$. Given $\{(Y_t^i, Z_t^i)\}$, $\{(Y_t^{i+1}, Z_t^{i+1})\}$ is the unique solution, constructed as in Proposition 1.2, of the following equation:

$$Y_t^{i+1} = \xi + \int_t^T f(s, Y_s^i, Z_s^i) \, ds + \int_t^T g(s, Y_s^i, Z_s^i) \, dB_s - \int_t^T Z_s^{i+1} \, dW_s$$

Let $\overline{Y}_{t}^{i+1} \triangleq Y_{t}^{i+1} - Y_{t}^{i}$, $\overline{Z}_{t}^{i+1} \triangleq Z_{t}^{i+1} - Z_{t}^{i}$, $0 \le t \le T$. The same computations as in the proof of uniqueness yield:

$$E(|\bar{Y}_{t}^{i+1}|^{2}) + E \int_{t}^{T} ||\bar{Z}_{t}^{i+1}||^{2} ds = 2E \int_{t}^{T} (f(s, Y_{s}^{i}, Z_{s}^{i}) - f(s, Y_{s}^{i-1}, Z_{s}^{i-1}), \bar{Y}_{s}^{i+1}) ds$$

+ $E \int_{t}^{T} ||g(s, Y_{s}^{i}, Z_{s}^{i}) - g(s, Y_{s}^{i-1}, Z_{s}^{i-1})||^{2} ds.$

Let $\beta \in \mathbb{R}$. By integration by parts, we deduce

$$E(|\bar{Y}_{t}^{i+1}|^{2}) e^{\beta t} + \beta E \int_{t}^{T} |\bar{Y}_{s}^{i+1}|^{2} e^{\beta s} ds + E \int_{t}^{T} ||\bar{Z}_{s}^{i+1}||^{2} e^{\beta s} ds$$

$$= 2E \int_{t}^{T} (f(s, Y_{s}^{i}, Z_{s}^{i}) - f(s, Y_{s}^{i-1}, Z_{s}^{i-1}), \bar{Y}_{s}^{i+1}) e^{\beta s} ds$$

$$+ E \int_{t}^{T} ||g(s, Y_{s}^{i}, Z_{s}^{i}) - g(s, Y_{s}^{i-1}, Z_{s}^{i-1})||^{2} e^{\beta s} ds.$$

There exists $c, \gamma > 0$ such that

$$E(|\bar{Y}_{t}^{i+1}|^{2}) e^{\beta s} + (\beta - \gamma) E \int_{t}^{T} |\bar{Y}_{s}^{i+1}|^{2} e^{\beta s} ds + E \int_{t}^{T} ||\bar{Z}_{s}^{i+1}||^{2} e^{\beta s} ds$$
$$\leq E \int_{t}^{T} \left(c ||\bar{Y}_{s}^{i}|^{2} + \frac{1 + \alpha}{2} ||\bar{Z}_{s}^{i}||^{2} \right) e^{\beta s} ds.$$

Now choose $\beta = \gamma + \frac{2c}{1+\alpha}$, and define $\bar{c} = \frac{2c}{1+\alpha}$.

$$E(|\bar{Y}_{t}^{i+1}|^{2}) e^{\beta t} + E \int_{t}^{T} (\bar{c} |\bar{Y}_{s}^{i+1}|^{2} + ||\bar{Z}_{s}^{i+1}||^{2}) e^{\beta s} ds \leq \frac{1+\alpha}{2} E \int_{t}^{T} (c |\bar{Y}_{s}^{i}|^{2} + ||\bar{Z}_{s}^{i}||^{2}) e^{\beta s} ds.$$

It follows immediately that

$$E\int_{t}^{T} (\bar{c} |\bar{Y}_{s}^{i+1}|^{2} + \|\bar{Z}_{s}^{i+1}\|^{2}) e^{\beta s} ds \leq \left(\frac{1+\alpha}{2}\right)^{i} E\int_{t}^{T} (\bar{c} |Y_{s}^{1}|^{2} + \|Z_{s}^{1}\|^{2}) e^{\beta s} ds$$

and, since $\frac{1+\alpha}{2} < 1$, $\{(Y_t^i, Z_t^i)\}_{i=0,1,2,...}$ is a Cauchy sequence in $M^2(0, T; \mathbb{R}^k) \times M^2(0, T; \mathbb{R}^{k \times d})$. It is then easy to conclude that $\{Y_t^i\}_{i=0,1,2,...}$ is also Cauchy in $S^2([0, T]; \mathbb{R}^k)$, and that

$$\{(Y_t, Z_t)\} = \lim_{i \to \infty} \{(Y_t^i, Z_t^i)\}$$

solves Eq. (1.1).

We next establish higher order moment estimates for the solution of Eq. (1.1). For that sake, we need an additional assumption on g.

(H.2)
$$\begin{cases} \text{There exists } c \text{ such that for all } (t, y, z) \in [0, T] \times \mathbb{R}^k \times \mathbb{R}^{k \times d}, g g^*(t, y, z) \\ \leq z z^* + c (\|g(t, 0, 0)\|^2 + \|y\|^2) I. \end{cases}$$

Theorem 1.4 Assume, in addition to the conditions of Theorem 1.1, that (H.2) holds and for some p > 2, $\xi \in L^p(\Omega, \mathscr{F}_T, P; \mathbb{R}^k)$ and

$$E\int_{0}^{T} (|f(t, 0, 0)|^{p} + ||g(t, 0, 0)||^{p}) dt < \infty.$$

Then

$$E\left(\sup_{0\leq t\leq T}|Y_t|^p+\left(\int_0^T\|Z_t\|^2\,d\,t\right)^{p/2}\right)<\infty.$$

Proof. We apply Lemma 1.3 with $\varphi(x) = |x|^p$, yielding

$$\begin{aligned} |Y_t|^p + \frac{p}{2} \int_{t}^{T} |Y_s|^{p-2} ||Z_s||^2 ds + \frac{p}{2} (p-2) \int_{t}^{T} |Y_s|^{p-4} (Z_s Z_s^* Y_s, Y_s) ds \\ &= |\xi|^p + p \int_{t}^{T} |Y_s|^{p-2} (f(s, Y_s, Z_s), Y_s) ds + p \int_{t}^{T} |Y_s|^{p-2} (Y_s, g(s, Y_s, Z_s) dB_s) \\ &+ \frac{p}{2} \int_{t}^{T} |Y_s|^{p-2} ||g(s, Y_s, Z_s)||^2 ds \\ &+ \frac{p}{2} (p-2) \int_{t}^{T} |Y_s|^{p-4} (g g^*(s, Y_s, Z_s) Y_s, Y_s) ds - p \int_{t}^{T} |Y_s|^{p-2} (Y_s, Z_s dW_s). \end{aligned}$$

Also we do not know a priori that the above stochastic integrals have zero expectation, arguing as in the proof of Lemma 2.1 in Pardoux and Peng [7], we obtain that

$$E(|Y_t|^p) + \frac{p}{2} E \int_t^T |Y_s|^{p-2} ||Z_s||^2 ds + \frac{p}{2} (p-2) E \int_t^T |Y_s|^{p-4} (Z_s Z_s^* Y_s, Y_s) ds$$

$$\leq E(|\zeta|^p) + p E \int_t^T |Y_s|^{p-2} (f(s, Y_s, Z_s), Y_s) ds + \frac{p}{2} E \int_t^T |Y_s|^{p-2} ||g(s, Y_s, Z_s)||^2 ds$$

$$+ \frac{p}{2} (p-2) E \int_t^T |Y_s|^{p-4} (g g^*(s, Y_s, Z_s) Y_s, Y_s) ds.$$

Note that we can conclude from (H.1) that for any $\alpha < \alpha' < 1$, there exists $c(\alpha')$ such that

$$\|g(t, y, z)\|^{2} \leq c(\alpha')(|y|^{2} + \|g(t, 0, 0)\|^{2}) + \alpha' \|z\|^{2}.$$

From the last two inequalities, (H.1) and (H.2), and using Hölder's and Young's inequalities, we deduce that there exists $\theta > 0$ and c such that for $0 \le t \le T$,

$$E(|Y_t|^p) + \theta E \int_t^T |Y_s|^{p-2} ||Z_s||^2 ds$$

$$\leq E(|\xi|^p) + c E \int_t^T (|Y_t|^p) + |f(s, 0, 0)|^p + ||g(s, 0, 0)|^p) ds.$$

It then follows, using Gronwall's lemma, that

$$\sup_{0 \leq t \leq T} E(|Y_t|^p) + E \int_0^T |Y_t|^{p-2} \|Z_t\|^2 dt < \infty.$$

Applying the same inequalities we have already used to the first identity of this proof, we deduce that

$$|Y_t|^p \leq |\xi|^p + c \int_t^T (|Y_s|^p) + |f(s, 0, 0)|^p + ||g(s, 0, 0)||^p) ds$$

+ $p \int_t^T |Y_s|^{p-2} (Y_s, g(s, Y_s, Z_s) dB_s) - p \int_t^T |Y_s|^{p-2} (Y_s, Z_s dW_s).$

Hence, from Burkholder-Davis-Gundy's inequality,

$$E(\sup_{0 \le t \le T} |Y_t|^p) \le E(|\xi|^p) + c E \int_0^T (|Y_t|^p + |f(t, 0, 0)|^p + ||g(t, 0, 0)||^p) dt$$

+ $c E \sqrt{\int_0^T |Y_t|^{2p-4} (g g^*(t, Y_t, Z_t) Y_t, Y_t) dt}$
+ $c E \sqrt{\int_0^T |Y_t|^{2p-4} (Z_t Z_t^* Y_t, Y_t) dt}.$

We estimate the last term as follows:

$$E \sqrt{\int_{0}^{T} |Y_{t}|^{2p-4} (Z_{t} Z_{t}^{*} Y_{t}, Y_{t}) dt} \leq E \left(Y_{t}^{p/2} \sqrt{\int_{0}^{T} |Y_{t}|^{p-2} \|Z_{t}\|^{2} dt} \right)$$
$$\leq \frac{1}{3} E (\sup_{0 \leq t \leq T} |Y_{t}|^{p}) + \frac{1}{4} E \int_{0}^{T} |Y_{t}|^{p-2} \|Z_{t}\|^{2} dt.$$

The next to last term of the above inequality can be treated analogously, and we deduce that

$$E(\sup_{0\leq t\leq T}|Y_t|^p)<\infty.$$

Now we have

$$\int_{0}^{T} ||Z_{t}||^{2} dt = |\zeta|^{2} - |Y_{0}|^{2} + 2 \int_{0}^{T} (f(t, Y_{t}, Z_{t}), Y_{t}) dt + 2 \int_{0}^{T} (Y_{t}, g(t, Y_{t}, Z_{t}) dB_{t}) + \int_{0}^{T} ||g(t, Y_{t}, Z_{t})||^{2} dt - 2 \int_{0}^{T} (Y_{t}, Z_{t} dW_{t}).$$

Hence for any $\delta > 0$,

$$\begin{split} \left(\int_{0}^{T} \|Z_{t}\|^{2} dt\right)^{p/2} &\leq (1+\delta) \left(\int_{0}^{T} \|g(t, Y_{t}, Z_{t})\|^{2} dt\right)^{p/2} \\ &+ c(\delta, p) \left[|\xi|^{p} + |Y_{0}|^{p} + \left|\int_{0}^{T} (f(t, Y_{t}, Z_{t}), Y_{t}) dt\right|^{p/2} \\ &+ \left|\int_{0}^{T} (Y_{t}, g(t, Y_{t}, Z_{t}) dB_{t})\right|^{p/2} + \left|\int_{0}^{T} (Y_{t}, Z_{t} dW_{t})\right|^{p/2} \right] \\ &\leq (1+\delta)^{2} \alpha E \left[\left(\int_{0}^{T} \|Z_{t}\|^{2} dt\right)^{p/2} \right] + c'(\delta, p) \\ &+ c(\delta, p) E \left[\left(\int_{0}^{T} \|Y_{t}\| \|Z_{t}\| dt\right)^{p/2} \right] + c(\delta, p) E \left[\left(\int_{0}^{T} \|Y_{t}\|^{2} \|Z_{t}\|^{2} dt\right)^{p/4} \right] \\ &\leq (1+\delta)^{2} \alpha E \left[\left(\int_{0}^{T} \|Z_{t}\|^{2} dt\right)^{p/2} \right] + c'(\delta, p) \\ &+ c(\delta, p) E \left\{ \left(\sup_{0 \leq t \leq T} |Y_{t}|^{p/2}\right) \left[\left(\int_{0}^{T} \|Z_{t}\| dt\right)^{p/2} + \left(\int_{0}^{T} \|Z_{t}\|^{2} dt\right)^{p/4} \right] \right\} \\ &\leq [(1+\delta)^{2} \alpha + (1+\delta)] E \left[\left(\int_{0}^{T} \|Z_{t}\|^{2} dt\right)^{p/2} \right] + c''(\delta, p). \end{split}$$

The second part of the result now follows, if we choose $\delta > 0$ small enough such that

$$(1+\delta)^2 \alpha + (1+\delta) < 1$$

(recall that $\alpha < 1$). \square

2 Regularity of the solution of the BDSDE

Let us first repeat some notations from Pardoux and Peng [7].

 $C^{k}(\mathbb{R}^{p}; \mathbb{R}^{q}), C_{l,b}^{k}(\mathbb{R}^{p}; \mathbb{R}^{q}), C_{p}^{k}(\mathbb{R}^{p}; \mathbb{R}^{q})$ will denote respectively the set of functions of class C^{k} from \mathbb{R}^{p} into \mathbb{R}^{q} , the set of those functions of class C^{k} whose partial derivatives of order less than or equal to k are bounded (and hence the function itself grows at most linearly at infinity), and the set of those functions of class C^{k} which, together with all their partial derivatives of order less than or equal to k, grow at most like a polynomial function of the variable x at infinity. We are given $b \in C^3_{l,b}(\mathbb{R}^d, \mathbb{R}^d)$ and $\sigma \in C^3_{l,b}(\mathbb{R}^d, \mathbb{R}^{d \times d})$, and for each $t \in [0, T)$, $x \in \mathbb{R}^d$, we denote by $\{X^{t,x}_s, t \leq s \leq T\}$ the unique strong solution of the following SDE:

(2.1)
$$dX_s^{t,x} = b(X_s^{t,x}) ds + \sigma(X_s^{t,x}) dW_s, \quad t \le s \le T$$
$$X_s^{t,x} = x.$$

It is well known that the random field $\{X_s^{t,x}; 0 \le t \le s \le T, x \in \mathbb{R}^d\}$ has a version which is a.s. of class C^2 in x, the function and its derivatives being a.s. continuous with respect to (t, s, x).

Moreover, for each (t, x),

$$\sup_{t \le s \le T} (|X_s^{t,x}| + |\nabla X_s^{t,x}| + |D^2 X_s^{t,x}|) \in \bigcap_{p \ge 1} L^p(\Omega),$$

where $\nabla X_s^{t,x}$ denotes the matrix of first order derivatives of $X_s^{t,x}$ with respect to x and $D^2 X_s^{t,x}$ the tensor of second order derivatives.

Now the coefficients of the BDSDE will be of the form (with an obvious abuse of notations):

$$f(s, y, z) = f(s, X_s^{t, x}, y, z)$$
$$g(s, y, z) = g(s, X_s^{t, x}, y, z)$$

where

$$f: [0, T] \times \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^k$$

g:
$$[0, T] \times \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{k \times d} \to \mathbb{R}^{k \times l}$$
.

We assume that for any $s \in [0, T]$, $(x, y, z) \rightarrow (f(s, x, y, z), g(s, x, y, z))$ is of class C^3 , and all derivatives are bounded on $[0, T] \times \mathbb{R}^d \times \mathbb{R}^k \times \mathbb{R}^{k \times d}$.

We assume again that (H.1) and (H.2) hold, together with

(H.3)

$$g'_z(t, x, y, z) \,\theta \,\theta^* \,g'_z(t, x, y, z)^* \leq \theta \,\theta^*, \quad \forall \, t \in [0, T], \ x \in \mathbb{R}^d, \ y \in \mathbb{R}^k, \ z, \, \theta \in \mathbb{R}^{k \times d}$$

Let $h \in C_p^3(\mathbb{R}^d; \mathbb{R}^k)$. For any $t \in [0, T]$, $x \in \mathbb{R}^d$, let $\{(Y_s^{t,x}, Z_s^{t,x}); t \leq s \leq T\}$ denote the unique solution of the BDSDE:

(2.2)
$$Y_{s}^{t,x} = h(X_{T}^{t,x}) + \int_{s}^{T} f(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) dr + \int_{s}^{T} g(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) dB_{r} - \int_{s}^{T} Z_{r}^{t,x} dW_{r}, \quad t \leq s \leq T.$$

We shall define $X_s^{t,x}$, $Y_s^{t,x}$ and $Z_s^{t,x}$ for all $(s, t) \in [0, T]^2$ by letting $X_s^{t,x} = X_{s \lor t}^{t,x}$, $Y_s^{t,x} = Y_{s \lor t}^{t,x}$, and $Z_s^{t,x} = 0$ for s < t.

Theorem 2.1 $\{Y_s^{t,x}; (s,t) \in [0,T]^2, x \in \mathbb{R}^d\}$ has a version whose trajectories belong to $C^{0,0,2}([0,T]^2 \times \mathbb{R}^d)$.

Before proceeding to the proof of this theorem, let us state an immediate corollary: **Corollary 2.2** There exists a continuous version of the random field $\{Y_t^{t,x}; t \in [0, T], x \in \mathbb{R}^d\}$ such that for any $t \in [0, T], x \to Y_t^{t,x}$, is of class C^2 a.s., the derivatives being a.s. continuous in (t, x).

Proof of Theorem 2.1 We first note that we can deduce from Theorem 1.4 applied to the present situation that, for each $p \ge 2$, there exist c_p and q such that

$$E\left(\sup_{t\leq s\leq T}|Y_{s}^{t,x}|^{p}+\left(\int_{t}^{T}\|Z_{s}^{t,x}\|^{2} d s\right)^{p/2}\right)\leq c_{p}(1+|x|^{q}).$$

Next for $t \lor t' \leq s \leq T$,

$$\begin{split} Y_{s}^{t,x} - Y_{s}^{t',x'} = & \left[\int_{0}^{1} h'(X_{T}^{t',x'} + \lambda(X_{T}^{t,x} - X_{T}^{t',x'})) \, d\,\lambda \right] (X_{T}^{t,x} - X_{T}^{t',x'}) \\ &+ \int_{s}^{T} (\varphi_{r}(t,x;t',x') [X_{r}^{t,x} - X_{r}^{t',x'}] + \psi_{r}(t,x;t',x') [Y_{r}^{t,x} - Y_{r}^{t',x'}] \\ &+ \chi_{r}(t,x;t',x') [Z_{r}^{t,x} - Z_{r}^{t',x'}]) \, d\,r + \int_{s}^{T} (\tilde{\varphi}_{r}(t,x;t',x') [X_{r}^{t,x} - X_{r}^{t',x'}] \\ &+ \tilde{\psi}_{r}(t,x;t',x') [Y_{r}^{t,x} - Y_{r}^{t',x'}] + \tilde{\chi}_{r}(t,x;t',x') [Z_{r}^{t,x} - Z_{r}^{t',x'}]) \, d\,B_{r} \\ &- \int_{s}^{T} (Z_{r}^{t,x} - Z_{r}^{t',x'}) \, d\,W_{r} \end{split}$$

where

$$\varphi_r(t, x; t', x') = \int_0^1 f'_x(\Sigma_{r,\lambda}^{t,x;t',x'}) d\lambda$$
$$\psi_r(t, x; t', x') = \int_0^1 f'_y(\Sigma_{r,\lambda}^{t,x;t',x'}) d\lambda$$
$$\chi_r(t, x; t', x') = \int_0^1 f'_z(\Sigma_{r,\lambda}^{t,x;t',x'}) d\lambda$$

 $\bar{\varphi}_r, \bar{\psi}_r$ and $\bar{\chi}_r$ are defined analogously, with f replaced by g, and $\Sigma_{r,\lambda}^{t,xt',x'} = (r, X_r^{t',x'} + \lambda(X_r^{t,x} - X_r^{t',x'}), Y_r^{t',x'} + \lambda(Y_r^{t,x} - Y_r^{t',x'}), Z_r^{t',x'} + \lambda(Z_r^{t,x} - Z_r^{t',x'})).$ Combining the argument of Theorem 1.4 with the estimate:

$$E(\sup_{0 \le s \le T} |X_s^{t,x} - X_s^{t',x'}|^p) \le c_p(1 + |x|^p + |x'|^p)(|x - x'|^p + |t - t'|^{p/2}),$$

we deduce that for all $p \ge 2$, there exists c_p and q such that

$$E\left(\sup_{0 \le s \le T} |Y_s^{t,x} - Y_s^{t',x'}|^p + \left(\int_t^T ||Z_s^{t,x} - Z_s^{t',x'}||^2 ds\right)^{p/2}\right)$$

$$\leq c_p (1 + |x|^q + |x'|^q) (|x - x'|^p + |t - t'|^{p/2}).$$

Note that (H.3) is used in the proof; it plays the same role as (H.2) in the proof of Theorem 1.4. Note also that (H.1) implies that $\|\bar{\chi}_r\| \leq \alpha < 1$. We conclude from the last estimate, using Kolmogorov's lemma, that $\{Y_s^{t,x}; s, t \in [0, T], x \in \mathbb{R}^d\}$ has an a.s. continuous version.

Next we define

$$\Delta_h^i X_s^{t,x} \triangleq (X_s^{t,x+h_{e_i}} - X_s^{t,x})/h,$$

where $h \in \mathbb{R} \setminus \{0\}$, $\{e_1, ..., e_d\}$ is an orthonormal basis of \mathbb{R}^d . $\Delta_h^i Y_s^{t,x}$ and $\Delta_h^i Z_s^{t,x}$ are defined analogously. We have

$$\begin{split} \mathcal{A}_{h}^{i} Y_{s}^{t,x} &= \int_{0}^{t} h'(X_{T}^{t,x} + \lambda h \, \mathcal{A}_{h}^{i} X_{T}^{t,x}) \, \mathcal{A}_{h}^{i} X_{T}^{t,x} \, d \, \lambda \\ &+ \int_{s}^{T} \int_{0}^{1} \left[f'_{x}(\Xi_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} X_{r}^{t,x} + f'_{y}(\Xi_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Y_{r}^{t,x} + f'_{z}(\Xi_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Z_{r}^{t,x} \right] \, d \, \lambda \, d \, r \\ &+ \int_{s}^{T} \int_{0}^{1} \left[g'_{x}(\Xi_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} X_{r}^{t,x} \, g'_{y}(\Xi_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Y_{r}^{t,x} + g'_{z}(\Xi_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Z_{r}^{t,x} \right] \, d \, \lambda \, d \, B_{r} \\ &- \int_{s}^{T} \mathcal{A}_{h}^{i} Z_{r}^{t,x} \, d \, W_{r} \,, \end{split}$$

where $\Xi_{r,\lambda}^{t,x,h} = (r, X_r^{t,x} + \lambda h \Delta_h^i X_r^{t,x}, Y_r^{t,x} + \lambda h \Delta_h^i Y_r^{t,x}, Z_r^{t,x} + \lambda h \Delta_h^i Z_r^{t,x})$. We note that for each $p \ge 2$, there exists c_p such that

$$E(\sup_{0\leq s\leq T}|\Delta_h^i X_s^{t,x}|^p)\leq c_p.$$

The same estimates as above yields

$$E\left(\sup_{t\leq s\leq T} |\Delta_h^i Y_s^{t,x}|^p + \left(\int_t^T \|\Delta_h^i Z_s^{t,x}\|^2 ds\right)^{p/2}\right) \leq c_p(1+|x|^q+|h|^q).$$

Finally, we consider

$$\begin{split} \mathcal{A}_{h}^{i} Y_{s}^{t,x} - \mathcal{A}_{h'}^{i} Y_{s}^{t',x'} &= \int_{0}^{1} h' (X_{T}^{t,x} + \lambda h \, \mathcal{A}_{h}^{i} X_{T}^{t,x'}) \, \mathcal{A}_{h}^{i} X_{T}^{t,x'} \, d\,\lambda \\ &- \int_{0}^{1} h' (X_{T}^{t',x'} + \lambda h' \, \mathcal{A}_{h}^{i} X_{T}^{t',x'}) \, \mathcal{A}_{h'}^{i} X_{T}^{t',x'} \, d\,\lambda \\ &+ \int_{s}^{T} \int_{0}^{1} \left[f_{x}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} X_{r}^{t,x} - f_{x}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} X_{r}^{t',x'} \right] \, d\,\lambda \, dr \\ &+ \int_{s}^{T} \int_{0}^{1} \left[f_{y}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Y_{r}^{t,x} - f_{y}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} Y_{r}^{t',x'} \right] \, d\,\lambda \, dr \\ &+ \int_{s}^{T} \int_{0}^{1} \left[f_{x}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Y_{r}^{t,x} - f_{y}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} Z_{r}^{t',x'} \right] \, d\,\lambda \, dr \\ &+ \int_{s}^{T} \int_{0}^{1} \left[g_{x}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Z_{r}^{t,x} - f_{x}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} Z_{r}^{t',x'} \right] \, d\,\lambda \, dR_{r} \\ &+ \int_{s}^{T} \int_{0}^{1} \left[g_{x}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} X_{r}^{t,x} - g_{y}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} Y_{r}^{t',x'} \right] \, d\,\lambda \, dB_{r} \\ &+ \int_{s}^{T} \int_{0}^{1} \left[g_{y}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Z_{r}^{t,x} - g_{y}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} Y_{r}^{t',x'} \right] \, d\,\lambda \, dB_{r} \\ &+ \int_{s}^{T} \int_{0}^{1} \left[g_{x}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Z_{r}^{t,x} - g_{y}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} Y_{r}^{t',x'} \right] \, d\,\lambda \, dB_{r} \\ &+ \int_{s}^{T} \int_{0}^{1} \left[g_{x}' (\mathcal{E}_{r,\lambda}^{t,x,h}) \, \mathcal{A}_{h}^{i} Z_{r}^{t,x} - g_{y}' (\mathcal{E}_{r,\lambda}^{t',x',h'}) \, \mathcal{A}_{h'}^{i} Z_{r}^{t',x'} \right] \, d\,\lambda \, dB_{r} \\ &- \int_{s}^{T} \left[\mathcal{A}_{h}^{i} Z_{r}^{t,x} - \mathcal{A}_{h'}^{i} Z_{r}^{t',x'} \right] \, dW_{r} \, . \end{split}$$

We note that

$$E(\sup_{0 \le s \le T} |\Delta_h^i X_s^{t,x} - \Delta_{h'}^i X_s^{t',x'}|^p) \le c_p(1+|x|^p)(|x-x'|^p+|h-h'|^p+|t-t'|^{p/2})$$

and

$$\begin{split} |\Xi_{r,\lambda}^{t,x,h} - \Xi_{r,\lambda}^{t',x',h'}| &\leq (|X_r^{t,x} - X_r^{t',x'}| + |X_r^{t,x+h_{e_i}} - X_r^{t',x'+h'_{e_i}}| \\ &+ |Y_r^{t,x} - Y_r^{t',x'}| + |Y_r^{t,x+h_{e_i}} - Y_r^{t',x'+h'_{e_i}}| \\ &+ \|Z_r^{t,x} - Z_r^{t',x'}\| + \|Z_r^{t,x+h_{e_i}} - Z_r^{t',x'+h'_{e_i}}\|). \end{split}$$

Using similar arguments as those in Theorem 1.4, combined with those of Theorem 2.9 in Pardoux and Peng [7], we show that

$$\begin{split} E & \left(\sup_{0 \le s \le T} |\Delta_h^i Y_s^{t,x} - \Delta_{h'}^i Y_s^{t',x'}|^p + \left(\int_{t \land t'}^T ||\Delta_h^i Z_s^{t,x} - \Delta_{h'}^i Z_s^{t',x'}||^2 ds \right)^{p/2} \right) \\ & \le c_p (1 + |x|^q + |x'|^q + |h|^q + |h'|^q) \times (|x - x'|^p + |h - h'|^p + |t - t'|^{p/2}). \end{split}$$

The existence of a continuous derivative of $Y_s^{t,x}$ with respect to x follows easily from the above estimate, as well as the existence of a mean-square derivative of $Z_s^{t,x}$ with respect to x, which is mean square continuous in (s, t, x). The existence of a continuous second derivative of $Y_s^{t,x}$ with respect to x is proved in a similar fashion. \Box

It is easy to deduce, as in Pardoux and Peng [7], that $\left\{ \left(\nabla Y_s^{t,x} = \frac{\partial Y_s^{t,x}}{\partial x}, \nabla Z_s^{t,x} = \frac{\partial Z_s^{t,x}}{\partial x} \right) \right\}$ is the unique solution of the BDSDE:

$$\nabla Y_{s}^{t,x} = h'(X_{T}^{t,x}) \nabla X_{T}^{t,x} + \int_{s}^{T} [f'_{x}(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) \nabla X_{r}^{t,x} + f'_{y}(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) \nabla Y_{r}^{t,x} + f'_{z}(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) \nabla Z_{r}^{t,x}] dr$$

$$+ \int_{s}^{T} [g'_{x}(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) \nabla X_{r}^{t,x} + g'_{y}(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) \nabla Y_{r}^{t,x} + g'_{z}(r, X_{r}^{t,x}, Y_{r}^{t,x}, Z_{r}^{t,x}) \nabla Y_{r}^{t,x}] dB_{r} - \int_{s}^{T} \nabla Z_{r}^{t,x} dW_{r}.$$

We shall need below a formula relating Z with the gradients of Y and X:

Proposition 2.3 The random field $\{Z_s^{t,x}; 0 \leq t \leq s \leq T, x \in \mathbb{R}^d\}$ has an a.s. continuous version which is given by:

and in particular

$$Z_s^{t,x} = \nabla Y_s^{t,x} (\nabla X_s^{t,x})^{-1} \sigma(X_s^{t,x})$$
$$Z_t^{t,x} = \nabla Y_t^{t,x} \sigma(x).$$

Proof. We only indicate the main ideas, the details being obvious adaptations of those leading to Lemma 2.5 in Pardoux and Peng [7].

For any random variable F of the form $F = f(W(h_1), \ldots, W(h_n); B(k_1), \ldots, B(k_p))$ with $f \in C_b^{\infty}(\mathbb{R}^{n+p}), h_1, \ldots, h_n \in L^2([0, T], \mathbb{R}^d), k_1, \ldots, k_p \in L^2([0, T], \mathbb{R}^l)$, where

$$W(h_i) \triangleq \int_0^T (h_i(t), dW_i), \quad B(k_j) \triangleq \int_0^T (k_j(t), dB_i),$$

we let

$$D_t F \triangleq \sum_{i=1}^n f'_i(W(h_1), \dots, W(h_n); B(k_1), \dots, B(k_p)) h_i(t), \quad 0 \le t \le T.$$

For such an F, we define its 1, 2-norm as:

$$||F||_{1,2} = \left(E \left[F^2 + \int_0^T |D_t F|^2 dt \right] \right)^{1/2}.$$

S denoting the set of random variables of the above form, we define the Sobolev space:

$$\mathbb{D}^{1,2} \triangleq \mathbb{\tilde{S}}^{\|\cdot\|_{1,2}}.$$

The "derivation operator" D. extends as an operator from $\mathbb{D}^{1,2}$ into $L^2(\Omega; L^2([0, T], \mathbb{R}^d))$. It turns out that under the assumptions of Theorem 2.1, the components of $X_s^{t,x}$, $Y_s^{t,x}$ and $Z_s^{t,x}$ take values in $\mathbb{D}^{1,2}$, and the pair $\{(D_\theta Y_s^{t,x}, D_\theta Z_s^{t,x}; t \leq \theta \leq s \leq T\}$ satisfies for each fixed θ the same equation as $\{(\nabla Y_s^{t,x}, \nabla Z_s^{t,x})\}$, but where $\nabla X_s^{t,x}$ has been replaced by $D_\theta X_s^{t,x}$. Now since for $t \leq \theta < s$,

$$D_{\theta} X_s^{t,x} = \nabla X_s^{t,x} (\nabla X_{\theta}^{t,x})^{-1} \sigma(X_{\theta}^{t,x})$$

and moreover the mapping

$$D_{\theta} X^{t,x}_{\cdot} \to (D_{\theta} Y^{t,x}_{\cdot}, D_{\theta} Z^{t,x}_{\cdot})$$

is the same linear mapping as

$$\nabla X^{t,x}_{\bullet} \to (\nabla Y^{t,x}_{\bullet}, \nabla Z^{t,x}_{\bullet}),$$

it follows that

$$D_{\theta} Y_s^{t,x} = \nabla Y_s^{t,x} (\nabla X_{\theta}^{t,x})^{-1} \sigma(X_{\theta}^{t,x}).$$

Now $D_{\theta} Y_s^{t,x} = 0$ for $\theta > s$, and

$$D_{\theta} Y_{\theta}^{t,x} \triangleq \lim_{s \downarrow \downarrow \theta} D_{\theta} Y_{s}^{t,x}$$
$$= Z_{\theta}^{t,x}, \ \theta \text{ a.e.}$$

This gives the first part of the proposition. The second part follows. \Box

3 BDSDEs and systems of quasilinear SPDEs

We now relate our BDSDE to the following system of quasilinear backward stochastic partial differential equations:

(3.1)
$$u(t, x) = h(x) + \int_{t}^{T} \left[\mathscr{L} u(s, x) + f(s, x, u(s, x), (\nabla u \sigma)(s, x)) \right] ds$$
$$+ \int_{t}^{T} g(s, x, u(s, x), (\nabla u \sigma)(s, x)) dB_{s}, \quad 0 \leq t \leq T;$$

where $u: \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^k$,

$$\mathscr{L} u = \begin{pmatrix} L u_1 \\ \vdots \\ L u_k \end{pmatrix},$$

with $L = \frac{1}{2} \sum_{i,j=1}^{d} (\sigma \sigma^*)_{ij}(t, x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i(t, x) \frac{\partial}{\partial x_i}.$

Theorem 3.1 Let f and g satisfy the assumptions of Sect. 1 and h be of class C^2 . Let $\{u(t, x); 0 \leq t \leq T, x \in \mathbb{R}^d\}$ be a random field such that u(t, x) is $\mathcal{F}_{t,T}^B$ -measurable for each $(t, x), u \in C^{0,2}([0, T] \times \mathbb{R}^d; \mathbb{R}^k)$ a.s., and u satisfies Eq. (3.1).

Then $u(t, x) = Y_t^{t,x}$, where $\{(Y_s^{t,x}, Z_s^{t,x}); t \leq s \leq T\}_{t \geq 0, x \in \mathbb{R}^d}$ is the unique solution of the BDSDE (2.2).

Proof. It suffices to show that $\{(u(t, X_s^{t,x}), (\nabla u \sigma)(s, X_s^{t,x}); 0 \le s \le t\}$ solves the BDSDE (2.2).

Let $t = t_0 < t_1 < t_2 < \ldots < t_n = T$

$$\sum_{i=0}^{n-1} \left[u(t_{i}, X_{t_{i}}^{t,x}) - u(t_{i+1}, X_{t_{i+1}}^{t,x}) \right]$$

$$= \sum_{i} \left[u(t_{i}, X_{t_{i}}^{t,x}) - u(t_{i}, X_{t_{i+1}}^{t,x}) \right] + \sum_{i} \left[u(t_{i}, X_{t_{i+1}}^{t,x}) - u(t_{i+1}, X_{t_{i+1}}^{t,x}) \right]$$

$$= -\int_{t_{i}}^{t_{i+1}} \mathscr{L} u(t_{i}, X_{s}^{t,x}) ds - \int_{t_{i}}^{t_{i+1}} (\nabla u \sigma)(t_{i}, X_{s}^{t,x}) dW_{s}$$

$$+ \int_{t_{i}}^{t_{i+1}} \left[\mathscr{L} (u(s, X_{t_{i+1}}^{t,x})) + f(s, X_{t_{i+1}}^{t,x}, u(s, X_{t_{i+1}}^{t,x})), (\nabla u \sigma)(s, X_{t_{i+1}}^{t,x})) \right] ds$$

$$+ \int_{t_{i}}^{t_{i+1}} g(s, X_{t_{i+1}}^{t,x}, u(s, X_{t_{i+1}}^{t,x}), (\nabla u \sigma)(s, X_{t_{i+1}}^{t,x})) dB_{s},$$

where we have used the Itô formula and the equation satisfied by u. It finally suffices to let the mesh size go to zero in order to conclude. \Box

We have also a converse to Theorem 3.1:

Theorem 3.2 Let f, g and h satisfy the assumptions of Sects. 1 and 2. Then $\{u(t, x) \triangleq Y_t^{t,x}; 0 \le t \le T, x \in \mathbb{R}^d\}$ is the unique classical solution of the system of backward SPDEs (3.1).

Proof. We prove that $\{Y_t^{t,x}\}$ is a solution. Uniqueness will then follow from Theorem 3.2. We first note that $Y_{t+h}^{t,x} = Y_{t+h}^{t+h, X_t^{t,x_h}}$. Hence

$$u(t+h, x) - u(t, x) = u(t+h, x) - u(t+h, X_{t+h}^{t,x}) + u(t+h, X_{t+h}^{t,x}) - u(t, x)$$

= $-\int_{t}^{t+h} \mathscr{L} u(t+h, X_{s}^{t,x}) ds - \int_{t}^{t+h} (\nabla u \sigma)(t+h, X_{s}^{t,x}) dW_{s}$
 $-\int_{t}^{t+h} f(s, X_{s}^{t,x}, Y_{s}^{t,x}, Z_{s}^{t,x}) ds - \int_{t}^{t+h} g(s, X_{s}^{t,x}, Y_{s}^{t,x}, Z_{s}^{t,x}) dB_{s}$
 $+ \int_{t}^{t+h} Z_{s}^{t,x} dW_{s}.$

We can then finish the proof exactly as in Theorem 3.2 of Pardoux and Peng [7]. \Box

Remark 3.3 Condition (H.1), with $\alpha < 1$, is a very natural condition for (3.1) to be well posed. Indeed, in the case where g is linear with respect to its last argument, and does not depend on y, g is of the form:

$$g(s, x, z) = c(s, x) z$$

i.e. the stochastic integral term in (3.1) reads:

$$\int_{t}^{T} c(s, x) (\nabla u \sigma)(s, x) \, dB_s \, .$$

Condition (H.1) for g, in this case, reduces to $|c(s, x)| \le \alpha < 1$. This is a well known condition (see e.g. Pardoux [5]) for the SPDE (3.1) to be a well-posed stochastic parabolic equation.

Remark 3.4 Our result generalizes the stochastic Feynman-Kac formula of Pardoux [4] for linear SPDEs. Indeed, if k=1, f and g are linear in y and do not depend on z, the BDSDE becomes

$$Y_{s}^{t,x} = h(X_{T}^{t,x}) + \int_{s}^{T} a(r, X_{r}^{t,x}) Y_{r}^{t,x} dr + \int_{s}^{T} b(r, X_{r}^{t,x}) Y_{r}^{t,x} dB_{r} - \int_{s}^{T} Z_{r}^{t,x} dW_{r}$$

and it has an explicit solution given by:

$$Y_{s}^{t,x} = \exp\left(\int_{s}^{T} a(r, X_{r}^{t,x}) dr + \int_{s}^{T} b(r, X_{r}^{t,x}) dB_{r} - \frac{1}{2} \int_{s}^{T} |b(r, X_{r}^{t,x})|^{2} dr\right) h(X_{T}^{t,x})$$
$$- \int_{s}^{T} \exp\left(\int_{s}^{r} a(\theta, X_{\theta}^{t,x}) d\theta + \int_{s}^{r} b(\theta, X_{\theta}^{t,x}) dB_{\theta} - \frac{1}{2} \int_{s}^{r} |b^{2}(\theta, X_{\theta}^{t,x})|^{2} d\theta\right) Z_{r}^{t,x} dW_{r}$$

and because $Y_t^{t,x}$ is $\mathscr{F}_{t,T}^B$ measurable,

$$Y_{t}^{t,x} = E\left[h(X_{T}^{t,x})\exp\left(\int_{t}^{T}a(r, X_{r}^{t,x})\,dr + \int_{t}^{T}b(r, X_{r}^{t,x})\,dB_{r}\right.\right.$$
$$\left. -\frac{1}{2}\int_{t}^{T}|b(r, X_{r}^{t,x})|^{2}\,dr\right) \middle| \mathscr{F}_{t,T}^{B} \right],$$

which is the formula in Pardoux [4] (where only the case $a \equiv 0$ is considered). Note however that in [4] B and W are allowed to be correlated. This does not seem possible here, unless we allow the stochastic integrals in the BDSDE to be of a non adapted nature. \Box

References

- 1. Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations. J. Sov. Math. 16, 1233-1277 (1981)
- 2. Nualart, D., Pardoux, E.: Stochastic calculus with anticipating integrands. Probab. Theory Relat. Fields **78**, 535–581 (1988)
- 3. Ocone, D., Pardoux, E.: A stochastic Feynman-Kac formula for anticipating SPDEs, and application to nonlinear smoothing. Stochastics 45, 79–126 (1993)
- Pardoux, E.: Un résultat sur les équations aux dérivés partielles stochastiques et filtrage des processus de diffusion. Note C.R. Acad. Sci., Paris Sér. A 287, 1065–1068 (1978)
- 5. Pardoux, E.: Stochastic PDEs, and filtering of diffusion processes. Stochastics 3, 127-167 (1979)
- 6. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14, 55-61 (1990)
- Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Rozuvskii, B.L., Sowers, R.B. (eds.) Stochastic partial differential equations and their applications. (Lect. Notes Control Inf. Sci., vol. 176, pp. 200–217) Berlin Heidelberg New York: Springer 1992
- 8. Peng, S.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics **37**, 61–74 (1991)
- 9. Peng, S.: A generalized dynamic programming principle and Hamilton-Jacobi-Bellmann equation. Stochastics **38**, 119–134 (1992)
- Peng, S.: A non linear Feynman-Kac formula and applications. In: Chen, S.P., Yong, J.M. (eds.) Proc. of Symposium on system science and control theory, pp. 173–184. Singapore: World Scientific 1992
- 11. Rozovskii, B.: Stochastic evolution systems. Dordrecht: Reidel 1991