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Additive traits in haploids (no mutation)

Nt = population size in generation t; M = number of (unlinked)
loci.

◮ Trait value in individual j:

Zj = z̄0 +

M∑

l=1

1√
M

ηjl,

where z̄0 = average value in ancestral population. Scaled
allelic effects satisfy |ηjl| ≤ B (uniformly in j, l).
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1√
M

ηjl,

where z̄0 = average value in ancestral population. Scaled
allelic effects satisfy |ηjl| ≤ B (uniformly in j, l).

◮ Ancestral population. η̂jl i.i.d (for different j). E[η̂l] = 0 for
all l.



Reproduction

[1] and [2] refer to the first and second parents of an individual.

◮ ηjl[1] is the scaled allelic effect at locus l in the first parent of
the jth individual. Similarly, Zj [1] will denote the trait value
of the first parent of individual j.

◮ Write Xjl = 1 if the allelic type at locus l in the jth individual
is inherited from the ‘first parent’ of that individual; otherwise
it is zero. P[Xjl = 1] = 1/2 = P[Xjl = 0].

Zj = z̄0 +
1√
M

M∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]} .



Conditioning

Let

◮ P(t) denote the pedigree relationships between all individuals
up to and including generation t;

◮ Z(t) denote the traits of all individuals in the pedigree up to
and including the tth generation.

We would like to derive the distribution of trait values in
generation t conditional on knowing P(t) and Z(t−1).



Warmup: the ancestral population

For β = (β1, . . . , βN0
) ∈ R

N0 ,

N0∑

j=1

βjZj = z̄0

N0∑

j=1

βj +
1√
M

N0∑

j=1

M∑

l=1

βj η̂jl

= z̄0

N0∑

j=1

βj +
1√
M

M∑

l=1





N0∑

j=1

βj η̂jl



 .

CLT implies convergence of distribution function to that of Normal,
mean = z̄0

∑N0

j=1 βj , variance = Σ̂
∑N0

j=1 β
2
j . Error order 1/

√
M .

( 1
M

∑M
l=1 Var(η̂l) → Σ̂ as M → ∞.)



Continuing the argument

Ancestral population:
(Z1, . . . , ZN0

) → multivariate normal with mean vector
(z̄0, . . . , z̄0) and covariance matrix Σ̂ Id

What about later generations?

Zj = z̄0 +
1√
M

M∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]} .

Key: Need to be able to calculate the distribution of ηjl[1]
conditional on Z(t−1) (and show that it is almost unaffected by the
conditioning).



A toy example

Suppose ηl are i.i.d. with ηl = ±1 with equal probability, z̄0 = 0.

P[η1 = 1|Z = k/
√
M ] =

P

[
∑M

l=1 ηl = k
∣
∣
∣ η1 = 1

]

P

[
∑M

l=1 ηl = k
] P [η1 = 1]

=
P

[
∑M

l=2 ηl = (k − 1)
]

P

[
∑M

l=1 ηl = k
] P [η1 = 1]

=
1

2M−1

1
2M

( M−1
(M+k−2)/2

)

( M
(M+k)/2

) P [η1 = 1]

=

(

1 +
k

M

)

P [η1 = 1] .



Toy example continued

If scaled allelic effects are i.i.d. Bernoulli,

P

[

η1 = 1
∣
∣
∣Z =

k√
M

]

=

(

1 +
k

M

)

P [η1 = 1] .

For a ‘typical’ trait value, k/M = O(1/
√
M).

For extreme values (k = ±M), the trait gives complete
information about the allelic effect at each locus.

For ‘typical’ k, the distribution of η1 is almost unchanged because
there are so many different configurations of allelic effects that
correspond to the same trait value.



Strategy for a recursion

Want to show that at any generation, conditional on P(t) and
Z(t−1), as M → ∞, (Zj)j=1,...,Nt converges to a multivariate
normal random variable for which the variance-covariance matrix is
conditionally independent of Z(t−1) given P(t).

Key step: show that the variance-covariance matrix is independent
of Z(t−1), for which we need conditional distribution of
(ηjl[1], ηjl[2]).

Mathematical obstruction: CLT gives convergence of distribution
function of each trait value, but for conditional probabilities would
need convergence of the corresponding density functions. Not in
general available.



Conditioning on approximate trait values

Write Z(t) ≈ z for |Z(t)
j − zj | ≤ ǫM , ∀j.

Conditional on P(t) and Z(t−1) ≈ z,

(

Zj −
Zj [1] + Zj[2]

2

)

j=1,...,Nt

converges (in distribution) to mean zero multivariate normal with
diagonal covariance matrix Σt.

(Σt)jj = segregation variance among offspring of the parents of
individual j.



Generation one

Bayes’ rule again

P

[

ηjl[1] = x| P(1), Z(0) ≈ z
]

=

P[ηjl[1] = x]
P[Zj[1]− 1√

M
ηjl[1] ≈ z1 − x√

M
]

P[Zj [1] ≈ z1]
,

We have
∣
∣
∣
∣
∣
P

[

(Zj [1]− z̄0)

(Σ̂M )1/2
≤ z

]

−Φ(z)

∣
∣
∣
∣
∣
≤ C
√

MΣ̂M

(

1 +
1

Σ̂M

)

.



P[Zj[1] ≈ z1] =

(

φ(y) +
C

2ǫM
√
M

(

1 +
1

Σ̂M

))
2ǫM
√

Σ̂M
,

for some y with

y ∈
(

z1 − z0
√

Σ̂M
− ǫM
√

Σ̂M
,
z1 − z0
√

Σ̂M
+

ǫM
√

Σ̂M

)

.

P

[

Zj [1]−
1√
M

ηjl[1] ≈ z1 −
1√
M

x

]

=

(

φ(y(l)) +
C ′

2ǫM
√
M

(

1 +
1

Σ̂M

))
2ǫM
√

Σ̂M
,

for some y(l) with

y(l) ∈
(

z1 − z0 − x/
√
M

√

Σ̂M
− ǫM
√

Σ̂M
,
z1 − z0 − x/

√
M

√

Σ̂M
+

ǫM
√

Σ̂M

)

.



Taylor expansion of φ about y and using that

|y(l) − y| ≤ |x|√
M

+
ǫM
√

Σ̂M

❀ errors order ǫM +
1

ǫM
√
M

.

Choose ǫM = 1/M1/4

P[Zj [1]− 1√
M
ηjl[1] ≈ z1 − 1√

M
]

P[Zj[1] ≈ z1]
= 1+

C

M1/4

(

1 +
1 +∆(|z1 − z̄0|)

Σ̂M

)

.

As with toy model, require that the trait we condition upon is not
‘too extreme’.



Generation t

Aim: conditional on P(t) and Z(t−1) ≈ z,

(

Zj −
Zj[1] + Zj[2]

2

)

j∈{1,...,Nt}

converges in distribution to mean zero, normally distributed
random variable with diagonal variance-covariance matrix, Σt,
which is conditionally independent of Z(t−1) given P(t).

Zj = z̄0 +
1√
M

M∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]}

=
Zj [1] + Zj [2]

2
+Rj.



The limiting variance

Rj =
1√
M

M∑

l=1

(

Xjl −
1

2

)

ηjl[1]+
1√
M

M∑

l=1

(

(1−Xjl)−
1

2

)

ηjl[2].

E[Rj |P(t), Z(t−1)] = 0. Limiting variance:

lim
M→∞

1

M

M∑

l=1

(

E[η̂2l ]

2
− E[ηjl[1]ηjl[2]| P(t)]

2

)

.

This is just Σ̂(1− Fj)/2 where Fj is the probability of identity of
the two parents of the jth individual, i.e. we recover the
segregation variance among offspring of the parents of the jth
individual.



What have we proved?

Convergence of distribution of traits conditional on P(t) and Z(t−1)

to multivariate normal whose variance-covariance matrix is
conditionally independent of Z(t−1) given P (t), with error order
1/M1/4 provided that

◮ Traits in pedigree not too extreme: i.e. |Zj − Zj [1]+Zj [2]
2 | not

too big;

◮ Probability of identity not too close to one.

So under these conditions, infinitesimal model valid for O(M1/4)
generations.



What have we proved?

Convergence of distribution of traits conditional on P(t) and Z(t−1)

to multivariate normal whose variance-covariance matrix is
conditionally independent of Z(t−1) given P (t), with error order
1/M1/4 provided that

◮ Traits in pedigree not too extreme: i.e. |Zj − Zj [1]+Zj [2]
2 | not

too big;

◮ Probability of identity not too close to one.

So under these conditions, infinitesimal model valid for O(M1/4)
generations.

BUT M1/4 is not very big.
Toy example tells us that sometimes can do better (M1/2).



Local Limit Theorem (David McDonald 1979)

ξn1, ξn2, . . . , ξnn be independent, integer-valued.

pn(x) = P[ξn1 + · · ·+ ξnn = x],

µnm = E[ξnm], B2
n =

n∑

m=1

Var(ξnm), An =

n∑

m=1

µnm.

(I) lim sup
n→∞

1

n

n∑

m=1

E[exp(aξnm)] < ∞ for some a > 0;

(II) lim inf
n→∞

B2
n/n ≥ c > 0;

(III) lim inf
n→∞

1

n

n∑

m=1

( ∞∑

k=−∞
min{P[ξnm = k],P[ξnm = k + 1]}

)

> 0.

Then pn(x) =
1√

2πBn

exp

(

−(x−An)
2

2B2
n

)(

1 +
C√
n

)

uniformly in |x−An| ≤
√
n.



Why does this work?

Convergence was fast for our toy model because when the trait
value is a sum of independent Bernoulli random variables, many
different combinations of allelic effects lead to the same trait value.

Condition (III) guarantees that we can ‘find’ O(n) independent
Bernoulli random variables lurking inside the sequence ξn1, . . . , ξnn.



The Bernoulli part of a random variable

X random variable with mass function f .

α(k) := f(k) ∧ f(k + 1), q =
∑∞

k=−∞ α(k).

Define T , U , ǫ, L by

fT (k) =
α(k)

q
, fU (k) =

1

1− q

(

f(k)− α(k − 1) + α(k)

2

)

,

fǫ(0) = 1− q, fǫ(1) = q, fL(0) =
1

2
, fL(1) =

1

2
.

X ∼ (1− ǫ)U + ǫT + ǫL.



Applying this to our sum of independent variables

For variables ξn1, ξn2, . . . , ξnn,

Sn := Σn
m=1ξm =

n∑

m=1

[Vm + ǫmLm] .

Set Mn =
∑n

m=1 ǫm,

Sn
d
= Zn +

Mn∑

m=1

L∗
m,

where L∗
m i.i.d. Bernoulli. Mn = O(n).

(III) lim inf
n→∞

1

n

n∑

m=1









∞∑

k=−∞
min{P[ξnm = k],P[ξnm = k + 1]}

︸ ︷︷ ︸

qm









> 0.



Beyond the additive

House of cards mutation

Mutation probability per locus per generation µ. Scaled allelic
effect mutant at locus l, η̃l.

Environmental noise

Trait value of offspring

Zj = z̄0 +
1√
M

M∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]} + Ej,

Ej Gaussian ‘environmental noise’.



Beyond the additive

House of cards mutation

Mutation probability per locus per generation µ. Scaled allelic
effect mutant at locus l, η̃l.

Environmental noise

Trait value of offspring

Zj = z̄0 +
1√
M

M∑

l=1

{Xjlηjl[1] + (1−Xjl)ηjl[2]} + Ej,

Ej Gaussian ‘environmental noise’.
. . . and then life much easier.



Epistasis

For a set U ⊆ {1, 2, . . . ,M} of loci, write χU for the allelic states

and fU (χU ) for the corresponding scaled epistatic effects.

Z = z̄0 +
∑

U

aUfU (χU ).

Expected offspring trait no longer simply the mean of the parental
values.



Epistasis

For a set U ⊆ {1, 2, . . . ,M} of loci, write χU for the allelic states

and fU (χU ) for the corresponding scaled epistatic effects.

Z = z̄0 +
∑

U

aUfU (χU ).

Expected offspring trait no longer simply the mean of the parental
values.

However, provided that fU = 0 for |U | > D and

∑

U∩U ′ 6=∅
aUaU ′ < ∞,

offspring traits still follow a normal distribution with variance
conditionally independent of Z(t−1) given P(t).


