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Phylogenetic trees

A phylogenetic tree is just a tree with weights / lengths on the edges and labels on the
leaves.
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Phylogenetic diversity

The phylogenetic diversity of a collection of taxa (= leaves) is the total length of the
subtree they span.

This quantity is important in ecology and conservation.

Steven N. Evans Tree reconstruction June, 2015 4 / 35



Some notation

Consider a tree T with
vertex set V(T),
edge set E(T),
leaf set L(T),
edge-lengths (edge-weights) WT : E(T)→ R++.

For x, y ∈ V(T) let rT(x, y) := length of the the (unique) path between x and y
(= sum of the lengths of the edges on the path).

Given K ⊆ L(T), write WT(K) for the length of the subtree spanned by K (= the
phylogenetic diversity of K).
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How do we compute phylogenetic diversities easily?

Write dT(v) for the degree of v ∈ V(T).

For distinct x, y ∈ L(T),
IT(x, y) := the set of interior vertices on the (unique) path in T between x and y,
hT(x, y) :=

∏
v∈IT(x,y)((dT(v)− 1)!)−1,

rT(x, y) := length of the the path between x and y as above.

Then (Semple & Steel `04 extending Pauplin `00), the total length of T is

WT(L(T)) =
∑

{x,y}⊆L(T),x 6=y

hT(x, y)rT(x, y).

A similar formula holds for general WT(K).
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The main question

WHAT DO WE LEARN
ABOUT A TREE

FROM THE PHYLOGENETIC DIVERSITIES
OF RANDOMLY SAMPLED SUBSETS OF TAXA???
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Recognizing/reconstructing trees in general

In general, what information do we need to reconstruct an edge-weighted tree?

What information do we need to determine whether two edge-weighted trees are the
same?

The answer depends on what we mean by the term tree.
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Leaf-labeled trees: leaf-to-leaf distances

A leaf-labeled, edge-weighted tree can be reconstructed from its matrix of leaf-to-leaf
distances (Zaretskii `65, Simões Peraira `69, Buneman `71, Buneman `74).

We will recall WHY on the next two slides.
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Leaf-labeled trees: why are leaf-to-leaf distances enough?

In this four-taxon tree we can tell that A,B and C,D are siblings because

rT(A,B) + rT(C,D) ≤ rT(A,C) + rT(B,D) = rT(A,D) + rT(C,D).

A 

C 
D 

B 

a 
b 

c 
d 

e 

We can recover the edge-lengths by solving six linear equations in �ve unknowns:

rT(A,B) = a+ b, rT(A,C) = a+ e+ c, . . . , rT(C,D) = c+ d.
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Leaf-labeled trees: why are leaf-to-leaf distances enough?

Lastly, knowing the subtree spanned by every four taxa (= quartet) su�ces to
determine the whole tree (�quartet puzzling�).
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Leaf-labeled trees: lengths of subtrees spanned by m leaves

A leaf-labeled, edge-weighted tree with n leaves can be reconstructed from the
collection of total lengths of subtrees spanned by all subsets of m leaves provided
n ≥ 2m− 1 (Pachter & Speyer `04).
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Unlabeled trees: leaf-to-leaf distances are NOT enough

The multiset of leaf-to-leaf distances does not determine an unlabeled tree up to
isomorphism. An example follows.
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Caterpillars

A tree is a caterpillar if the deletion of the leaves along with the edges adjacent to
them results in a path.

Figure: A caterpillar. Removing the leaves (white vertices) results in a path of length 5
(black vertices).
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Unlabeled trees: leaf-to-leaf distance counterexample

Consider the two caterpillars T′ and T′′ with 25 leaves each, where
T′ has 3 internal vertices in order along a path that are adjacent respectively to
2, 11, 12 leaves,
T′′ has 3 internal vertices in order along a path that are adjacent respectively to
3, 14, 8 leaves,
all edges have length 1.

Taking the
(
25
2

)
pairs of distinct leaves in each tree,

the distance 2 appears
(2
2

)
+
(11
2

)
+
(12
2

)
= 122 times in T′ and(3

2

)
+
(14
2

)
+
(8
2

)
= 122 times in T′′,

the distance 3 appears 2× 11 + 11× 12 = 154 times in T′ and 3× 14 + 14× 8 = 154
times in T′′,
the distance 4 appears 2× 12 = 24 times in T′ and 3× 18 = 24 times in T′′.

Probabilistically, if we pick two distinct leaves uniformly at random from T′ and T′′,
then the two random leaf-to-leaf distances have the same probability distribution.
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Rooted unlabeled trees with equal edge lengths

Consider two rooted trees T′ and T′′ with all edge lengths 1.

There is an isomorphism that preserves roots if and only if
the two roots have the same number of children,
there is an ordering of these children for each tree such that the subtree below the ith

child of the root of T′ is isomorphic (as a rooted tree) to the subtree below the ith

child of the root of T′′.

This observation can be turned into a linear time algorithm for determining whether
T′ and T′′ are isomorphic.

An extension of this algorithm works for general rooted trees.
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Unrooted unlabeled trees with equal edge lengths

Two unrooted trees with equal edge lengths are isomorphic if and only if there is
some choice of roots such the resulting rooted trees are isomorphic.

The center of a tree with equal edge lengths is a vertex with minimal greatest distance
to a leaf.
A tree with equal edge lengths has either one or two centers (Jordan 1869).
Rooting each tree at one of its centers followed by a determination of whether the
resulting two rooted trees are isomorphic requires linear time to detect isomorphism.
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Summary statistics

Are there �statistics� of a more numerical character that can be used to decide
isomorphism of unlabeled trees?

Such statistics may be constructed using a labeling of the tree, but they must be
invariant under relabeling.
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Spectral statistics

The multiset of eigenvalues of the adjacency matrix fails in a very strong sense for
trees with unit edge lengths (Schwenk `73, Botti & Merris `93, Steyaert & Flajolet
`83, Flajolet, Gourdon & Martínez `97, Matsen & Evans `11, Bhamidi, Evans & Sen
`12).

The same is true for the eigenvalues of the matrix of leaf-to-leaf distances and the
matrix of vertex-to-vertex distances.

Indeed, the proportion of trees of various types with n leaves that share a spectrum
with another tree of the same type converges to 1 as n→∞.
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Symmetric polynomials

Gordon, McDonnell, Orlo� & Yung `95 conjectured that the greedoid Tutte
polynomial determines the isomorphism type of a tree with unit edge lengths.

Eisenstat & Gordon `06 produced an in�nite family of counterexamples.

Stanley `95 conjectured that the chromatic symmetric function determines the
isomorphism type of a tree with unit edge lengths.

There have been some positive results and no counterexamples.

Steven N. Evans Tree reconstruction June, 2015 20 / 35



Symmetric polynomials

Gordon, McDonnell, Orlo� & Yung `95 conjectured that the greedoid Tutte
polynomial determines the isomorphism type of a tree with unit edge lengths.

Eisenstat & Gordon `06 produced an in�nite family of counterexamples.

Stanley `95 conjectured that the chromatic symmetric function determines the
isomorphism type of a tree with unit edge lengths.

There have been some positive results and no counterexamples.

Steven N. Evans Tree reconstruction June, 2015 20 / 35



Symmetric polynomials

Gordon, McDonnell, Orlo� & Yung `95 conjectured that the greedoid Tutte
polynomial determines the isomorphism type of a tree with unit edge lengths.

Eisenstat & Gordon `06 produced an in�nite family of counterexamples.

Stanley `95 conjectured that the chromatic symmetric function determines the
isomorphism type of a tree with unit edge lengths.

There have been some positive results and no counterexamples.

Steven N. Evans Tree reconstruction June, 2015 20 / 35



Symmetric polynomials

Gordon, McDonnell, Orlo� & Yung `95 conjectured that the greedoid Tutte
polynomial determines the isomorphism type of a tree with unit edge lengths.

Eisenstat & Gordon `06 produced an in�nite family of counterexamples.

Stanley `95 conjectured that the chromatic symmetric function determines the
isomorphism type of a tree with unit edge lengths.

There have been some positive results and no counterexamples.

Steven N. Evans Tree reconstruction June, 2015 20 / 35



Random length sequences

Suppose that #L(T) = n and Y1, . . . , Yn is the result of sampling the leaves of T
uniformly at random without replacement.

The random variable Wk := WT({Y1, . . . , Yk}) is the length of the subtree spanned
by the �rst k randomly chosen leaves.

The (n− 1)-dimensional random vector WT := (W2, . . . ,Wn) is the random length
sequence of T.

Is it possible to reconstruct the edge-weighted tree T up to isomorphism from the
joint probability distribution of the random length sequence WT?

NB: Clearly, we must restrict to trees where no vertex has degree 2 (=: simple trees).
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Trees with four leaves can be reconstructed

Theorem 1

The isomorphism class of a simple, edge-weighted tree T with 4 leaves is uniquely

determined by the joint probability distribution of its random length sequence.
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Proof of the result for trees with four leaves

The total length of T is W4.

The multiset of lengths of the pendent edges (= edges adjacent to leaves) can be
determined from the distribution of W4 −W3; e.g. the pendent edges are a,a,b,c if
and only if W4 −W3 takes the values a, b, c with probabilities 1

2
, 1
4
, 1
4
.

If the lengths of the pendent edges sum to the total length of T, then T is a star
and its isomorphism class is determined.

Otherwise, T has two degree 3 internal vertices and we can determine the length e
of the single internal edge.
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Proof of the result for trees with four leaves � continued

Suppose T has two degree 3 internal vertices and a single internal edge of length e.

If the multiset of pendent edge lengths is of the form {a, a, a, a} or {a, a, a, b}, then
T is determined.

Suppose the pendent edge lengths are of the form {a, a, b, b}.
If the possible values of W2 are (a+ a), (b+ b), (a+ b+ e) with probabilities 1

6
, 1
6
, 2
3
,

then the leaves with pendent edges of length a (resp. b) are siblings.
If the possible values of W2 are (a+ b), (a+ b+ e), (a+ a+ e), (b+ b+ e) with

probabilities 1
3
, 1
3
, 1
6
, 1
6
, then the two pairs of sibling leaves each have one pendent

edge of length a and one of length b.

Steven N. Evans Tree reconstruction June, 2015 24 / 35



Proof of the result for trees with four leaves � continued

Suppose T has two degree 3 internal vertices and a single internal edge of length e.

If the multiset of pendent edge lengths is of the form {a, a, a, a} or {a, a, a, b}, then
T is determined.

Suppose the pendent edge lengths are of the form {a, a, b, b}.
If the possible values of W2 are (a+ a), (b+ b), (a+ b+ e) with probabilities 1

6
, 1
6
, 2
3
,

then the leaves with pendent edges of length a (resp. b) are siblings.
If the possible values of W2 are (a+ b), (a+ b+ e), (a+ a+ e), (b+ b+ e) with

probabilities 1
3
, 1
3
, 1
6
, 1
6
, then the two pairs of sibling leaves each have one pendent

edge of length a and one of length b.

Steven N. Evans Tree reconstruction June, 2015 24 / 35



Proof of the result for trees with four leaves � continued

Suppose T has two degree 3 internal vertices and a single internal edge of length e.

If the multiset of pendent edge lengths is of the form {a, a, a, a} or {a, a, a, b}, then
T is determined.

Suppose the pendent edge lengths are of the form {a, a, b, b}.
If the possible values of W2 are (a+ a), (b+ b), (a+ b+ e) with probabilities 1

6
, 1
6
, 2
3
,

then the leaves with pendent edges of length a (resp. b) are siblings.
If the possible values of W2 are (a+ b), (a+ b+ e), (a+ a+ e), (b+ b+ e) with

probabilities 1
3
, 1
3
, 1
6
, 1
6
, then the two pairs of sibling leaves each have one pendent

edge of length a and one of length b.

Steven N. Evans Tree reconstruction June, 2015 24 / 35



Proof of the result for trees with four leaves � continued

Suppose T has two degree 3 internal vertices and a single internal edge of length e,
and the multiset of pendent edge lengths is of the form {a, a, b, c}.
The leaves with pendent edge lengths a are siblings if and only if (2a, 2a+ e+ b)
occurs as a value of (W2,W3) with positive probability.
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�Generic� trees can be reconstructed

The edge weights of an edge-weighted tree T are in general position if the sums of
the lengths of any two distinct subset of edges of T are not equal.

Theorem 2

The isomorphism class of a simple, edge-weighted tree with edge weights in general

position is uniquely determined by the joint probability distribution of its random length

sequence.

The proof uses the result for trees with 4 leaves.
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Ultrametric trees

Recall that for i, j ∈ L(T), rT(i, j) is the sum of the lengths of the edges on the
path between i and j.

An edge-weighted tree T is ultrametric if for any i, j, k ∈ L(T) we have

rT(i, k) ≤ rT(i, j) ∨ rT(j, k),

from which it follows that at least two of rT(i, j), rT(i, k), and rT(j, k) are equal
while the third is no greater than that common value.

Alternatively, T is ultrametric if, when it is thought of as a real tree (that is, a
metric space where the edges are treated as real intervals), then there is a (unique)
point ρ (which may be in the interior of an edge) such that the distance from ρ to a
leaf is the same for all leaves.
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Ultrametric trees can be reconstructed

Theorem 3

The isomorphism class of an ultrametric, simple, edge-weighted tree is uniquely

determined by the joint probability distribution of its random length sequence.

Indeed, it su�ces to know the (n− 1)-tuple in the support of (W2, . . . ,Wn) that is
minimal in the lexicographic order.
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Caterpillars can be reconstructed

Recall that a tree is a caterpillar if the deletion of the leaves along with the edges
adjacent to them results in a path.

Theorem 4

The isomorphism class of a caterpillar with all edges of weight 1 is uniquely determined

by the joint probability distribution of its random length sequence.
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Caterpillars: what goes into the proof

Suppose that the caterpillar has `+ 1 internal vertices with respective numbers of
leaves n0, . . . , n`. Write (W2, . . . ,Wn) for the random subtree length sequences.

Consider a box with n tickets. Each ticket has a label belonging to {0, 1, . . . , `} and
there are ni tickets with label i for 0 ≤ i ≤ `.
Let X1, X2, . . . , Xn be the result of drawing tickets uniformly at random from the
box without replacement and noting their labels.

Set

Kr := max
1≤j≤r

Xj − min
1≤j≤r

Xj

= di�erence between the largest and smallest labels seen in �rst r draws.

Note that (W2,W3, . . . ,Wn) has the same distribution as
(K2 + 3,K3 + 3, . . . ,Kn + n). It su�ces to show that it is possible to determine
{(n0, n1, . . . , n`−1, n`), (n`, n`−1, . . . , n1, n0)} from the distribution of
K := (K2, . . . ,Kn).

The proof uses some Fourier analysis similar to that used in crystallography to
recover molecular structures from distances between atoms and some commutative
algebra.
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k + 1-valent trees can be reconstructed

For k ≥ 2, a (k + 1)-valent tree is a tree for which all internal vertices have degree
k + 1.

Theorem 5

The isomorphism class of a (k + 1)-valent tree with all edges of length 1 is uniquely

determined by the joint distribution of its random length sequence.
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k + 1-valent trees: idea of proof

If we know the leaves are visited in a traversal, then the sequence of subtree lengths
determines the tree.
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k + 1-valent trees: more idea of proof

A subtree S of a (k + 1)-valent tree T has all vertices of degree k + 1 or 1 except
for a single vertex of degree k if and only if

#E(S) =
k

k − 1
(#L(S)− 1).

Figure: Here k = 3. The red subtree S has #E(S) = 6 and #L(S) = 5. Note that

6 = 3
2
(5− 1).

There is a total order on the set of possible length sequences for a (k + 1)-valent
tree with unit edge lengths such that the minimal sequence is guaranteed to come
from a traversal.
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Open questions

Is it possible to reconstruct a general simple, edge-weighted tree up to isomorphism
from the joint probability distribution of its random length sequence?

For the purposes of simulations studies in phylogenetics, we would like to have
generative models for random trees that produce trees which are �like� biological
trees. Are there features of the joint distribution of the random length sequence that
are common to many biological trees and can be used to determine which generative
models capture features of biological trees?
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