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Abstract

We consider a population generating a forest of genealogical trees
in continuous time, with m roots (the number of ancestors). In or-
der to model competition within the population, we superimpose to
the traditional Galton-Watson dynamics (births at constant rate µ,
deaths at constant rate λ) a death rate which is γ times the size of
the population alive at time t raised to some power α > 0 (α = 1 is
a case without competition). If we take the number of ancestors at
time 0 to be equal to [xN ], weight each individual by the factor 1/N ,
choose adequately µ, λ and γ as functions of N , then the population
process converges as N goes to infinity to a Feller SDE with a negative
polynomial drift. The genealogy in the continuous limit is described
by a real tree (in the sense of Aldous [1]). In both the discrete and the
continuous case, we study the height and the length of the genealogi-
cal tree, as an (increasing) function of the initial population. We show
that the expectation of the height of the tree remains bounded as the
size of the initial population tends to infinity iff α > 1, while the ex-
pectation of the length of the tree remains bounded as the size of the
initial population tends to infinity iff α > 2.

.
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Introduction

Consider a Galton–Watson binary branching process in continuous time with
m ancestors at time t = 0, in which each individual gives birth to children
at a constant rate µ, and dies after an exponential time with parameter λ.
Suppose we superimpose deaths due to competition. For instance, we might
decide to add to each individual a death rate equal to γ times the number
of presently alive individuals in the population, which amounts to add a
global death rate equal to γ(Xm

t )2, if Xm
t denotes the total number of alive

individuals at time t. It is rather clear that the process which describes the
evolution of the total population, which is not a branching process (due to
the interactions between branches, created by the competition term), goes
extinct in finite tim a. s.

If we consider this population with m = [Nx] ancestors at time t = 0,
weight each individual with the factor 1/N , and choose µN = 2N + θ, λN =
2N and γN = γ/N , then it is shown in Le, Pardoux and Wakolbinger [4] that
the “total population mass process” converges weakly to the solution of the
Feller SDE with logistic drift

dZx
t =

[
θZx

t − γ(Zx
t )2
]
dt+ 2

√
Zx
t dWt, Z

x
0 = x.

This equation has been studied in Lambert [3], who shows in particular that
the population goes extinct in finite time a. s.

There is a natural way of describing the genealogical tree of the discrete
population. The notion of genealogical tree is discussed for this limiting con-
tinuous population as well in [4] and [6], in terms of continuous random trees
in the sense of Aldous [1]. Clearly that forest of trees is finite a.s., and one can
define the height Hm and the length Lm of the discrete forest of genealogical
trees, as well as the height of the continuous “forest of genealogical trees”,
equal to the lifetime T x of the process Zx, and the length of the same forest
of trees, given as Sx :=

∫ Tx
0

Zx
t dt.

Let us now generalize the above models, both in the discrete and in the
continuous case, replacing in the first case the death rate γ(Xm

t )2 by γ(Xm
t )α

and in the second case the drift term −γ(Zx
t )2 by −γ(Zx

t )α, for some α > 0.
In the case α = 1, there is no competition, we are back to branching processes,
both discrete and continuous. The case 0 < α < 1 corresponds to a situation
where an increase of the population size reduces the per capita death rate,
by allowing for an improvement of the living conditions (one can argue that
this a reasonable model, at least for moderate population size compared to
the available resources). The case α > 1 is the case of competition, where an
increase of the population size increases the per capita death rate, because
for instance of the limitation of available resources.
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The main result of this paper is the following

Theorem 0.1 Both E[supmH
m] < ∞ and E[supx T

x] < ∞ if α > 1, while
Hm → ∞ as m → ∞ and T x → ∞ as x → ∞ a. s. if α ≤ 1. Both
E[supm L

m] < ∞ and E[supx S
x] < ∞ if α > 2, while Lm → ∞ as m → ∞

and Sx →∞ as x→∞ a. s. if α ≤ 2.

Note that the monotonicity in α is not a surprise, supmH
m =∞ a. s. when

α = 1 follows rather easily from the branching property, E[supmH
m] < ∞

and E[supm L
m] = ∞ in case α = 2 follow from results in [5], and again in

the case α = 2, supx S
x = ∞ has been established in [4]. The main novelty

of our results concerns the case α > 2, which we discovered while trying to
generalize the quadratic competition term.

Our theorem necessitates to define in a consistent way the population
processes jointly for all initial population sizes, i. e. we will need to define
the two–parameter processes {Xm

t , t ≥ 0,m ≥ 1} and {Zx
t , t ≥ 0, x > 0}.

One of the objectives of this paper is also to prove that the renormalized dis-
crete two–parameter processes converge weakly, for an appropriate topology,
towards {Zx

t , t ≥ 0, x > 0}.
The paper is organized as follows. In the first section we present the

discrete model, which provides the coupling for different values n of the initial
size of the population. We describe in section 2 the renormalized model for
large population sizes. We then construct in section 3 a random field indexed
t and x in the case of the continuous model, for which we precise the laws.
After that we establish the convergence of the renormalized discrete random
field to the continuous random field model in section 4. We finally study the
finiteness of the supremum over the initial population size of the height and
of the length of the forest of genealogical trees in the discrete case in section
5, and in the continuous case in section 6.

1 The discrete model

We first present the discrete model. As declared in the introduction, we
consider a continuous time Z+–valued population process {Xm

t , m ≥ 1},
which starts at time zero from the initial condition Xm

0 = m, i. e. m is the
number of ancestors of the whole population. The process Xm

t evolves as
follows. Each individual, independently of the others, spawns a child at a
constant rate µ, and dies either “from natural death” at constant rate λ, or
from the competition pressure, which results in a total additional death rate
equal at time t to γ(Xm

t )α (in fact it will be a quantity close to that one,
see below). This description is valid for one initial condition m. But it is



1 THE DISCRETE MODEL 4

not sufficiently precise to describe the joint evolution of {(Xm
t , X

n
t ), t ≥ 0},

with say 1 ≤ m < n. We must precise the effect of the competition upon the
death rate of each individual. In order to be consistent, we need to introduce a
non–symmetric picture of the effect of the competition term, exactly as it was
first introduced in [4] in the case α = 2, in order to describe the exploration
process of the genealogical tree. The idea is that the progeny Xm

t of the m
“first” ancestors should not feel the competition due to the progeny Xn

t −Xm
t

of the n −m “additional” ancestors which is present in the population Xn
t .

One way to do so is to model the effect of the competition in the following
asymmetric way. We order the ancestors from left to right, this order being
passed to their progeny. This means that the forest of genealogical trees of
the population is a planar forest of trees, where the ancestor of the population
X1
t is placed on the far left, the ancestor of X2

t −X1
t immediately on his right,

etc... Moreover, we draw the genealogical trees in such a way that distinct
branches never cross. This defines in a non–ambiguous way an order from
left to right within the population alive at each time t. Now we model the
competition as each individual being “under attack” from his contemporaries
located on his left in the planar tree. The “competition death rate” of a given
individual i at time t is defined a γ[Li(t)α − (Li(t) − 1)α], if Li(t) denotes
the number of alive individuals at time t, who are located at his left on
the planar tree. Note that this rate, as a function of Li(t), is decreasing if
0 < α < 1, constant if α = 1, and increasing if α > 1. Of course, conditionally
upon Li(·), the occurence of a “competition death event” for individual i is
independent of the other birth/death events and of what happens to the
other individuals.

The resulting total death rate endured by the population Xm
t at time t

is then

γ

Xm
t∑

k=2

[(k − 1)α − (k − 2)α] = γ(Xm
t − 1)α,

which is a reasonable approximation of γ(Xm
t )α.

As a result, {Xm
t , t ≥ 0} is a continuous time Z+–valued Markov process,

which evolves as follows. If Xm
t = 0, then Xm

s = 0 for all s ≥ t. While at
state k ≥ 1, the process

Xm
t jumps to

{
k + 1, at rate µk;

k − 1, at rate λk + γ(k − 1)α.

The above description specifies the joint evolution of all {Xm
t , t ≥ 0}m≥0, or

in other words of the two–parameter process {Xm
t , t ≥ 0,m ≥ 0}. Let us

rephrase it in more mathematical terms.
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In the case α = 1, for each fixed t > 0, {Xm
t , m ≥ 1} is an independent

increments process. In the case α 6= 1, {Xm
t , m ≥ 1} is not a Markov chain

for fixed t. That is to say, the conditional law of Xn+1
t given Xn

t differs from
its conditional law given (X1

t , X
2
t , . . . , X

n
t ). The intuitive reason for that is

that the additional information carried by (X1
t , X

2
t , . . . , X

n−1
t ) gives us a clue

as to the level of competition which the progeny of the n+ 1st ancestor had
to suffer, between time 0 and time t.

However, {Xm
· , m ≥ 0} is a Markov chain with values in the space

D([0,∞);Z+) of càdlàg functions from [0,∞) into Z+, which starts from 0 at
m = 0. Consequently, in order to describe the law of the whole process, that
is of the two–parameter process {Xm

t , t ≥ 0,m ≥ 0}, it suffices to describe
the conditional law of Xn

· , given {Xn−1
· }. We now describe that conditional

law for arbitrary 0 ≤ m < n. Let V m,n
t := Xn

t − Xm
t , t ≥ 0. Conditionally

upon {X`
· , ` ≤ m}, and given that Xm

t = x(t), t ≥ 0, {V m,n
t , t ≥ 0} is a Z+–

valued time inhomogeneous Markov process starting from V m,n
0 = n − m,

whose time–dependent infinitesimal generator {Qk,`(t), k, ` ∈ Z+} is such
that its off–diagonal terms are given by

Q0,`(t) = 0, ∀` ≥ 1, and for any k ≥ 1,

Qk,k+1(t) = µk,

Qk,k−1(t) = λk + γ(x(t) + k − 1)α,

Qk,`(t) = 0, ∀` 6∈ {k − 1, k, k + 1}.

The reader can easily convince himself that this description of the conditional
law of {Xn

t −Xm
t , t ≥ 0}, given Xm

· is prescribed by what we have said above,
and that {Xm

· , m ≥ 0} is indeed a Markov chain.

2 Renormalized discrete model

We consider a family of models like in the previous section, indexed byN ∈ N.
We choose the number of ancestors to be m = bNxc, for some fixed x > 0,
the birth rate to be µN = 2N + θ, for some θ > 0, the “natural death rate”
to be λN = 2N , and the competition death parameter to be γN = γ/Nα−1.
We now weight each individual by a factor N−1, which means that we want
to study the limit, as N → ∞, of the “reweighted total mass population”
process ZN,x

t := X
bNxc
t /N . The process {ZN,x

t , t ≥ 0} is a Z+/N–valued
continuous time Markov process which starts from ZN,x

0 = bNxc/N , is such
that if ZN,x

t = 0, then ZN,x
s = 0, for all s ≥ t, and while at state k/N , k ≥ 1,

ZN,x jumps to

{
(k + 1)/N, at rate 2Nk + kθ;

(k − 1)/N, at rate 2Nk + γN
(
k−1
N

)α
.
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Clearly there exist three mutually independent standard Poisson pro-
cesses P1, P2 and P3 such that

X
bNxc
t = bNxc+ P1

(∫ t

0

(2N + θ)XbNxcr dr

)
− P2

(
2N

∫ t

0

XbNxcr dr

)
− P3

(
γN

∫ t

0

[
X
bNxc
r − 1

N

]α
dr

)
.

Consequently there exists a martingale MN,x such that

ZN,x
t = ZN,x

0 +

∫ t

0

{
θZN,x

r − γ(ZN,x
r − 1/N)α

}
dr +MN,x

t , with

〈MN,x〉t =

∫ t

0

{
4ZN,x

r +
θ

N
ZN,x
r +

γ

N
(ZN,x

r − 1/N)α
}
dr.

(2.1)

Now for 0 < x < y, let V N,x,y
t := ZN,y

t −ZN,x
t . It it not too hard to show that

there exists tree further standard Poisson processes P4, P5 and P6, such that
the six Poisson processes P1, P2, P3, P4, P5, P6 are mutually independent, and
moreover

V N,x,y
t = V N,x,y

0 +N−1P4

(∫ t

0

(2N2 + θN)V N,x,y
r dr

)
−N−1P5

(
2N2

∫ t

0

V N,x,y
r dr

)
−N−1P6

(
γN

∫ t

0

[
(ZN,x

r + V N,x,y
r − 1/N)α−(ZN,x

r − 1/N)α
]
dr

)
,

from which we deduce that there exists a martingale MN,x,y such that

V N,x,y
t = V N,x,y

0 +

∫ t

0

{
θV N,x,y

r − γ
[
(ZN,x

r + V N,x,y
r − 1/N)α − (ZN,x

r − 1/N)α
]}
dr +MN,x,y

t ,

〈MN,x,y〉t =

∫ t

0

{
4V N,x,y

r +
θ

N
V N,x,y
r +

γ

N

[
(ZN,x

r + V N,x,y
r − 1/N)α − (ZN,x

r − 1/N)α
]}

dr

(2.2)

and moreover
〈MN,x,y,MN,x〉t ≡ 0. (2.3)

The formulas for 〈MN,x〉t and 〈MN,x,y〉t, as well as (2.3), rely on the following
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lemma, for the statement of which we need to introduce some notations. Let

MN,1
t = N−1P1

(
(2N2 + θN)

∫ t

0

ZN,x
r dr

)
−
∫ t

0

(2N + θ)ZN,x
r dr,

MN,2
t = N−1P2

(
2N2

∫ t

0

ZN,x
r dr

)
− 2N

∫ t

0

ZN,x
r dr,

MN,3
t = N−1P3

(
γN

∫ t

0

[
ZN,x
r − 1/N

]α
dr

)
− γ

∫ t

0

[
ZN,x
r − 1/N

]α
dr,

MN,4
t = N−1P4

(∫ t

0

(2N2 + θN)V N,x,y
r dr

)
−
∫ t

0

(2N + θ)V N,x,y
r dr,

MN,5
t = N−1P5

(
2N2

∫ t

0

V N,x,y
r dr

)
− 2N

∫ t

0

V N,x,y
r dr,

MN,6
t = N−1P6

(
γN

∫ t

0

[
(ZN,x

r + V N,x,y
r − 1/N)α−(ZN,x

r − 1/N)α
]
dr

)
− γ

∫ t

0

[
(ZN,x

r + V N,x,y
r − 1/N)α−(ZN,x

r − 1/N)α
]
dr.

Lemma 2.1 For any 1 ≤ i 6= j ≤ 6, the martingales MN,i and MN,j are
orthogonal, in the sense that

〈MN,i,MN,j〉 ≡ 0.

Proof: All we have to show is that MN,i and MN,j have a. s. no common
jump time. In other words we need to show that

Pi

(∫ t

0

ϕi(r)dr

)
and Pj

(∫ t

0

ϕj(r)dr

)
have no common jump time, where

ϕi(r) = fi(Z
N,x
r , V N,x,y

r ) and ϕj(r) = fj(Z
N,x
r , V N,x,y

r ),

for some functions fi and fj from (Z+/N)2 into R+.
Let

Ai(t) =

∫ t

0

ϕi(r)dr, ηi(t) = inf{s > 0, Ai(s) > t},

Aj(t) =

∫ t

0

ϕj(r)dr, ηj(t) = inf{s > 0, Aj(s) > t}.

Suppose the Lemma is not true, i.e. for some jump time T ik of Pi and some
jump time T j` of Pj, ηi(T

i
k) = ηj(T

j
` ). Let S = ηi(T

i
k−1) ∨ ηj(T j`−1). On
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the interval [Ai(S), T ik), ϕi(r) depends upon the jump times T i1, . . . T
i
k−1 of

Pi, the jump times T j1 , . . . , T
j
`−1 of Pj, plus upon some of the jump times

of the other four Poisson processes, which are independent of (Pi, Pj). The
same is true for ϕj(r) on the interval [Aj(S), T j` ). It is now easy to show
that conditionally upon those values of ϕi and ϕj, the two random variables
ηi(T

i
k) − S and ηj(T

j
` ) − S are independent, and their laws are absolutely

continuous. Consequently P(ηi(T
i
k) = ηj(T

j
` )) = 0.

3 The continuous model

We now define an R+–valued two–parameter stochastic process {Zx
t , t ≥ 0,

x ≥ 0} which such that for each fixed x > 0, {Zx
t , t ≥ 0} is continuous

process, solution of the SDE

dZx
t = [θZx

t − γ(Zx
t )α] dt+ 2

√
Zx
t dWt, Z

x
0 = x, (3.1)

where θ ∈ R, γ > 0, α > 0, and {Wt, t ≥ 0} is a standard scalar Brownian
motion. Similarly as in the discrete case, the process {Zx

· , x ≥ 0} is a Markov
process with values in C([0,∞),R+), the space of continuous functions from
[0,∞) into R+, starting from 0 at x = 0. The transition probabilities of
this Markov process are specified as follows. For any 0 < x < y, {V x,y

t :=
Zy
t − Zx

t , t ≥ 0} solves the SDE

dV x,y
t = [θV x,y

t − γ {(Zx
t + V x,y

t )α − (Zx
t )α}] dt+ 2

√
V x,y
t dW ′

t , V
x,y

0 = y − x,
(3.2)

where the standard Brownian motion {W ′
t , t ≥ 0} is independent from the

Brownian motion W which drives the SDE (3.1) for Zx
t . It is an easy exercise

to show that Zy
t = Zx

t + V x,y
t solves the same equation as Zx

t , with the
initial condition Zy

0 = y, and a different driving standard Brownian motion.
Moreover we have that whenever 0 ≤ x < y, Zx

t ≤ Zy
t for all t ≥ 0, a. s., and

in the case α = 1, the increment of the mapping x → Zx
t are in dependent,

for each t > 0. Moreover, the conditional law of Zy
· , given that Zx

t = z(t),
t ≥ 0, is the law of the sum of z plus the solution of (3.2) with Zx

t replaced
by z(t).

4 Convergence as N →∞
The aim of this section is to prove the convergence in law as N →∞ of the
two–parameter process {ZN,x

t , t ≥ 0, x ≥ 0} defined in section 2 towards
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the process {Zx
t , t ≥ 0, x ≥ 0} defined in section 3. We need to make pre-

cise the topology for which this convergence will hold. We note that the
process ZN,x

t (resp. Zx
t ) is a Markov processes indexed by x, with values in

the space of càdlàg (resp. continuous) functions of t D(([0,∞);R+) (resp.
C(([0,∞);R+)) (note that the trajectories have compact support – the pop-
ulation process goes extinct in finite time – except in the cases α < 1, θ > 0
and α = 1, θ > γ). So it will be natural to consider a topology of functions
of x, with values in functions of t.

The second point to notice is that for each fixed x, the process t→ ZN,x
t

is càdlàg, constant between its jumps, with jumps of size ±N−1, while the
limit process t → Zx

t is continuous. On the other hand, both ZN,x
t and Zx

t

are discontinuous as functions of x. x → Zx
· has countably many jumps

on any compact interval, but the mapping x → {Zx
t , t ≥ ε}, where ε >

0 is arbitrary, has finitely many jumps on any compact interval, and it is
constant between its jumps. It will be simpler to discuss the convergence of
the sequence Z̃N,x

t , which is defined as follows : for each fixed x > 0, t→ Z̃N,x
t

is the piecewise linear interpolation of t→ ZN,x
t , which interpolates linearly

the latter between its jumps. From the size of the jumps of ZN,x
t , clearly

supt>0,x>0 |Z̃
N,x
t − ZN,x

t | ≤ 1/N , and essentially the two processes converge
for the same topology, but it will be simpler to state the result for processes
which are continuous in t. We will prove

Theorem 4.1 As N →∞,

{Z̃N,x
t , t ≥ 0, x ≥ 0} ⇒ {Zx

t , t ≥ 0, x ≥ 0}

in D([0,∞);C([0,∞);R+)), equipped with the Skohorod topology of the space
of càdlàg functions of x, with values in the space C([0,∞);R+) equipped with
the topology of locally uniform convergence.

We first establish tightness for fixed x.

4.1 Tightness of ZN,x, x fixed

Let us prove the tightness of the sequence
{
ZN,x, N ≥ 0

}
. For this end, we

first establish some a priori estimates.

Lemma 4.2 ∀ T > 0, there exists a constant C1 > 0 such that :

sup
N≥1

sup
0≤t≤T

E
{
ZN,x
t +

∫ t

0

(ZN,x
r )αdr

}
≤ C1.

It follows from this and the expression for 〈MN,x〉 that the local martingale
MN,x is in fact a square integrable martingale. We then have
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Lemma 4.3 ∀ T > 0, there exists a constant C2 > 0 such that :

sup
N≥1

sup
0≤t≤T

E
{(

ZN,x
t

)2

+

∫ t

0

(
ZN,x

)α+1
dr

}
≤ C2.

The proof of those two lemmas is obtained easily using equation (2.1), ele-
mentary stochastic calculus, Gronwall and Fatou’s lemmas.
We want to check the tightness of the sequence

{
ZN,x, N ≥ 0

}
using the Al-

dous criterion. Let {τN , N ≥ 1} be a sequence of stopping time with values
in [0, T ]. We deduce from Lemma 4.2

Proposition 4.4 For any T > 0 and η, ε > 0, there exists δ > 0 such that

sup
N≥1

sup
0≤a≤δ

P

(∫ (τN+a)∧T

τN

ZN,x
r dr ≥ η

)
≤ ε.

Proof: We have that

sup
0≤a≤δ

P

(∫ (τN+a)∧T

τN

ZN,x
r dr ≥ η

)
≤ sup

0≤a≤δ

1

η
E
∫ (τN+a)∧T

τN

ZN,x
r dr

≤ δ

η
sup

0≤t≤T
E(ZN,x

t )

≤ C1
δ

η
.

Hence the result with δ = εη/C1.

We also deduce from Lemma 4.3

Proposition 4.5 For any T > 0 and η, ε > 0, there exists δ > 0 such that

sup
N≥1

sup
0≤a≤δ

P

(∫ (τN+a)∧T

τN

(ZN,x
r )αdr ≥ η

)
≤ ε.

Proof: For any M > 0, we have∫ (τN+a)∧T

τN

(ZN,x
r )αdr ≤Mαa+M−1

∫ T

0

(ZN,x
r )α+1dr.

This implies that

sup
N≥1

sup
0≤a≤δ

P

(∫ (τN+a)∧T

τN

(ZN,x
r )αdr ≥ η

)
≤ sup

N≥1
sup

0≤a≤δ
η−1E

(∫ (τN+a)∧T

τN

(ZN,x
r )αdr

)
≤ Mαδ

η
+

C2

Mη

The result follows by choosing first M = 2C2/εη, and then δ = εη/2Mα.
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From (2.1), Propositions 4.4 and 4.5, we deduce

Proposition 4.6 For each fixed x > 0, the sequence of processes
{
ZN,x, N ≥ 1

}
is tight in D([0,∞)).

4.2 Proof of Theorem 4.1

Theorem 4.1 will be a consequence of the two next Propositions

Proposition 4.7 For any n ∈ N, 0 ≤ x1 < x2 < · · · < xn,(
ZN,x1 , ZN,x2 , · · · , ZN,xn

)
⇒ (Zx1 , Zx2 , · · · , Zxn)

as N →∞, for the topology of locally uniform convergence in t.

Clearly, the same result holds with Z replaced by Z̃.
Proof: We prove the statement in the case n = 2 only. The general state-
ment can be proved in a very similar way. For 0 ≤ x1 < x2, we consider
the process (ZN,x1 , V N,x1,x2), using the notations from section 2. The process
(ZN,x1 , V N,x1,x2) is tight, as a consequence of Proposition 4.6, and thanks
to (2.1), (2.2) and (2.3), any weak limit (Zx1 , V x1,x2) of a subsequence of{
UN,x1,x2 , N ≥ 1

}
is the unique weak solution of the pair of coupled SDEs

(3.1) and (3.2).

Proposition 4.8 There exists a constant C, which depends only upon θ and
T , such that for any 0 ≤ x < y < z, which are such that y−x ≤ 1, z−y ≤ 1,

E
[

sup
0≤t≤T

|ZN,y
t − ZN,x

t |2 × sup
0≤t≤T

|ZN,z
t − ZN,y

t |2
]
≤ C|z − x|2.

Proof: For any 0 ≤ x < y < z, we have

sup
0≤t≤T

|ZN,y
t − ZN,x

t |2 = sup
0≤t≤T

(V N,x,y
t )2 ≤ sup

0≤t≤T
(UN,y,x

t )2

sup
0≤t≤T

|ZN,z
t − ZN,y

t |2 = sup
0≤t≤T

(V N,z,y
t )2 ≤ sup

0≤t≤T
(UN,z,y

t )2,

where UN,x,y
t and UN,z,y

t are mutually independent branching processes, with
in particular

UN,x,y
t = y − x+ θ

∫ t

0

UN,x,y
r dr + M̃N,x,y

t ,
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with M̃N,x,y a local martingale such that 〈M̃N,x,y〉t = (4 + θ
N

)
∫ t

0
UN,x,y
r dr.

Consequently

E
[

sup
0≤s≤t

(
UN,y,x
t

)2
]
≤ 3|y − x|2 + 3θ2t

∫ t

0

E
[

sup
0≤r≤s

(
UN,y,x
r

)2
]
ds+ 3E

[
sup

0≤s≤t

(
M̃N,x,y

s

)2
]

≤ 3|y − x|2 + 3θ2t

∫ t

0

E
[

sup
0≤r≤s

(
UN,y,x
r

)2
]
ds+ 3CE〈M̃N,x,y〉t

But clearly
E[UN,y,x

s ] = |x− y| exp(θs),

hence
E〈M̃N,x,y〉T ≤ C(θ, T )|x− y|.

Note that since |x − y| ≤ 1, |x − y|2 ≤ |x − y|. The above computations,
combined with Gronwall’s Lemma, lead to

E
[

sup
0≤t≤T

(
UN,y,x
t

)2
]
≤ C ′(θ, T )|x− y|.

We obtain similarly

E
[

sup
0≤t≤T

(
UN,z,y
s

)2
]
≤ C ′(θ, T )|z − y|.

Since moreover the two random processes UN,y,x
t and UN,z,y

t are independent,
the Proposition follows from the above computations.

Proof of Theorem 4.1 We will show that for any T > 0,

{Z̃N,x
t , 0 ≤ t ≤ T, x ≥ 0} ⇒ {Zx

t , 0 ≤ t ≤ T, x ≥ 0}

in D([0,∞);C([0, T ],R+)). From Theorems 13.1 and 16.8 in [2], since from
Proposition 4.7, for all n ≥ 1, 0 < x1 < · · · < xn,

(Z̃N,x1
· , . . . , Z̃N,xn

· )⇒ (Zx1
· , . . . , Z

xn
· )

in C([0, T ];Rn), it suffices to show that for all all x̄ > 0, ε, η > 0, there exists
N0 ≥ 1 and δ > 0 such that for all N ≥ N0,

P(wx̄,δ(Z̃
N) ≥ ε) ≤ η, (4.1)

where for a function (x, t)→ z(x, t), with the notation ‖z(x, ·)‖ = sup0≤t≤T |z(x, t)|,

wx̄,δ(z) = sup
0≤x1≤x≤x2≤x̄,x2−x1≤δ

inf {‖z(x, ·)− z(x1, ·)‖, ‖z(x2, ·)− z(x, ·)‖} .

Since clearly
|wx̄,δ(Z)− wx̄,δ(Z̃)| ≤ 2/N,

it suffices in fact to establish (4.1) with Z̃N replaced by ZN . But from the
proof of Theorem 13.5 in [2], (4.1) for ZN follows from Proposition 4.8.
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5 Height and length of the genealogical tree

in the discrete case

5.1 Height of the discrete tree

We consider the two–parameter Z+–valued stochastic process {Xm
t , t ≥

0,m ≥ 1} defined in section 1, and define the height and length of its ge-
nealogical tree by

Hm = inf{t > 0, Xm
t = 0}, Lm =

∫ Hm

0

Xm
t dt, for m ≥ 1.

We shall occasionally write Xα,m
t when we want to emphasize the dependence

upon the value of α. We first prove the

Proposition 5.1 If 0 < α ≤ 1, then

sup
m≥1

Hm = +∞ a. s.

Proof: Since for any 0 < α < 1, j ≥ 2, (j − 1)α − (j − 2)α < 1, it is
not hard to couple the two–parameter processes {Xα,m

t , t ≥ 0,m ≥ 1} and
{X1,m

t , t ≥ 0,m ≥ 1} in such a way that Xα,m
t ≥ X1,m

t , for all m ≥ 1, t ≥ 0,
a. s.. Consequently it suffices to prove the Proposition in the case α = 1.

But in that case {Xm
t , t ≥ 0} is the sum of m mutually independent

copies of {X1
t , t ≥ 0}. Hence Hm is the sup of m independent copies of H1,

and the result follows from the fact that P(H1 > t) > 0, for all t > 0.

We now prove the

Theorem 5.2 If α > 1, then

E
[

sup
m≥1

Hm

]
<∞.

Proof: Since m → Hm is a. s. increasing, it suffices to prove that there
exists a constant C > 0 such that

E[Hm] ≤ C, for any m ≥ 1.

We first show that limm→∞ E[Hm
1 ] <∞, where

Hm
1 = inf {s ≥ 0;Xm

s = 1} .

It suffices to prove this result in the case λ = 0, which implies the result in
the case λ > 0.
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Proposition 5.3 For α > 1, λ = 0, ∀ m ≥ 1, E (Hm
1 ) is given by

E (Hm
1 ) =

m∑
k=2

1

γ(k − 1)α

∞∑
n=0

µn

γn
1

[k(k + 1) · · · (k + n− 1)]α−1
.

Proof: Define um = E (Hm
1 ). It is clear that u1 = 0. The waiting time

of Xm at state k is an exponential variable with mean
1

µk + γ(k − 1)α
, and

either Xm jumps from k to k − 1 with probability
γ(k − 1)α

µk + γ(k − 1)α
or either

from k to k+1 with probability
µk

µk + γ(k − 1)α
. We then have the recursive

formula for um for any m ≥ 1.

um =
1

µm+ γ(m− 1)α
+

γ(m− 1)α

µm+ γ(m− 1)α
um−1 +

µm

µm+ γmα
um−1.

If we define wm = um−um−1, we obtain, for any n ≥ 0, the following relation.

wm =
[(m− 1)!]α−1

γ(m− 1)α

(
n−1∑
k=0

µk

γk
1

[(m+ k − 1)!]α−1
+
µn

γn
m+ n− 1

[(m+ n− 2)!]α−1
wm+n

)

Define the random variable τm+n by

τm+n = inf
{
t ≥ 0; Xm+n

t = m+ n− 1
}
.

We have that wm+n = E(τm+n). Let Rm+n be the number of births which
occur before Zm+n reaches the value m + n − 1, starting from m + n. For
any k ≥ 0 we have

P (Rm+n = k) ≤ ak

(
µ(m+ n)

γ(m+ n− 1)α

)k
,

where ak is the cardinal of the set of binary trees with k + 1 leaves. It is
called a Catalan number and is given by

ak =
1

k + 1

(
2k
k

)
, ak ∼

4k

k3/2
√
π
.

Moreover we have that

E (τm+n|Rm+n = k) ≤ 2k + 1

γ(m+ n− 1)α
.
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Finally, with c = supk≥1(2k + 1)4−kak/γ,

E (τm+n) ≤ c

(m+ n− 1)α

∞∑
k=1

(
µ

γ

4(m+ n)

(m+ n− 1)α

)k
.

For large n, we have
µ

γ

4(m+ n)

(m+ n− 1)α
<

1

2
. This implies that there exists an-

other constant C such that E (τm+n) ≤ C(m+n−1)−α, and limn→∞wm+n =
0. We then deduce that

wm =
[(m− 1)!]α−1

γ(m− 1)α

(
∞∑
k=0

µk

γk
1

[(m+ k − 1)!]α−1

)

Consequently, for α > 1, we have

um =
m∑
k=1

wk =
m∑
k=2

1

γ(k − 1)α

∞∑
n=0

(
µ

γ

)n
1

[k(k + 1) · · · (k + n− 1)]α−1

End of the proof of Theorem 5.2
Furthermore, for 0 ≤ ` ≤ n− 1, we have

1

[k(k + 1)...(k + n− 1)]α−1
≤ (k + `)`(α−1)

[k(k + 1) · · · (k + `− 1)]α−1

1

(k + `)n(α−1)

Let K = b(2µ/γ)1/(α−1)c. We conclude that

If K ≥ 3, um ≤
2

γ

(
K−1∑
k=2

(
KK

k − 1

)α−1

+
1

(α− 1)(K − 2)α−1

)
,

if K ≤ 2, um ≤
2

γ

α

α− 1
.

In all cases, supm≥1 E[Hm
1 ] <∞.

Finally starting from 1 at time Hm
1 , the probability p that Xm

t hits zero

before hitting 2 is
λ

µ+ λ
. Let G be a random variable defined as follows. Let

X1
t start from 1 at time 0. If X1

t hits zero before hitting 2, then G = 1. If not,
we wait until X1

t goes back to 1. This time is less than T1 +H2
1 , where T1 is

an exponential random variable with mean 1/(λ+ µ), which is independent
of G. If starting again from 1 at that time, if X1

t reaches 0 before 2, we
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stop and G = 2. If not, we continue and so on. The random variable G is
geometric with parameter p and independent of Hm

1 . Clearly we have that

Hm ≤ Hm
1 +GH2

1 +
G∑
i=1

Ti,

We conclude that supm≥1 E[Hm] <∞.

We have proved in particular that (in the terminology used in coalescent
theory) the population process comes down from infinity if α > 1. This
means that if the population starts with an infinite number of individuals
at time t = 0, instantaneously the population becomes finite, that is for all
t > 0, X∞t <∞.

5.2 Length of the discrete tree

Define now

Amt :=

∫ t

0

Xm
r dr, ηmt = inf {s > 0; Ams > t} .

We consider the process Um := Xm◦ηm. Let Sm be the stopping time defined
by

Sm = inf {r > 0;Un
r = 0} .

Note that Sm = Lm, the length of the genealogical forest of trees of the
population Xm, since we have Sm =

∫ Hm

0
Xm
r dr. The process Xm can be

expressed using two mutually independent standard Poisson processes, as

Xm
t = m+ P1

(∫ t

0

µXm
r dr

)
− P2

(∫ t

0

[λXm
r + γ(Xm

r − 1)α] dr

)
,

Consequently the process Um = Zm ◦ ηm satisfies

Um
t = m+ P1(µt)− P2

(∫ t

0

[
λ+ γ(Um

r )−1(Um
r − 1)α

]
dr

)
.

On the interval [0, Sm), Um
t ≥ 1, and consequently we have the two inequal-

ities

m−P2

(∫ t

0

[
λUm

r + γ(Um
r − 1)α−1

]
dr

)
≤ Um

t

≤ m+ P1

(∫ t

0

µUm
r dr

)
− P2

(∫ t

0

[γ
2

(Um
r − 1)α−1

]
dr

)
The following result is now a consequence of Proposition 5.1 and Theorem
5.2



6 HEIGHT AND LENGTH OF THE CONTINUOUS TREE 17

Theorem 5.4 If α ≤ 2, then

sup
m≥0

Lm =∞ a. s..

If α > 2, then

E
[

sup
m≥0

Lm
]
<∞.

6 Height and length of the continuous tree

Now we study the same quantities in the continuous model. We first need to
establish some preliminary results on SDEs with infinite initial condition.

6.1 SDE with infinite initial condition

Let f : R+ → R be locally Lipschitz and such that

lim
x→∞

|f(x)|
xα

= 0. (6.1)

Theorem 6.1 Let α > 1, γ > 0 and f satisfy the assumption (6.1). Then
there exists a minimal X ∈ C ((0,+∞);R) which solves{

dXt = [f(Xt)− γ(Xt)
α]1{Xt≥0}dt+ dWt;

Xt →∞, as t→ 0.
(6.2)

Moreover, if T0 := inf{t > 0, Xt = 0}, then E[T0] <∞.

Proof: A priori estimate Setting Vt = Xt −Wt, the result is equivalent
to the existence of a minimal V ∈ C ((0,+∞);R) solution of the ODE

dVt
dt

= f(Vt +Wt)− γ(Vt +Wt)
α;

Vt →∞, as t→ 0.
(6.3)

Let first

M = inf{x > 0; |f(x)| ≤ γxα/2},
τ = inf{t > 0, Wt 6∈ [−M, 2M ]}.

Suppose there exists a solution {Vt, t ≥ 0} to the ODE (6.3). Then the
following random time is positive a. s.

S := inf{t > 0, Vt < 2M}.
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Now on the time interval [0, τ ∧ S],

−Vt
2
≤ Wt ≤ Vt,

M ≤ Vt
2
≤ Vt +Wt ≤ 2Vt,

−3γ

2
(Vt +Wt)

α ≤ f(Vt +Wt)− γ(Vt +Wt)
α ≤ −1

2
γ(Vt +Wt)

α,

−3γ2α−1V α
t ≤

dVt
dt
≤ − γ

2α+1
V α
t ,

γ(α− 1)

2α+1
≤ d

dt

[
(Vt)

−(α−1)
]
≤ 3γ(α− 1)2α−1,

γ(α− 1)

2α+1
t ≤ 1

(Vt)α−1
≤ 3γ(α− 1)2α−1t,

cα,γ
t1/(α−1)

≤ Vt ≤
Cα,γ
t1/(α−1)

,

where

cα,γ =
1

2
[3γ(α− 1)]−1/(α−1), Cα,γ =

2
α+1
α−1

[γ(α− 1)]1/(α−1)
.

Proof of Existence To each x > 0, we associate the unique solution Xx of
equation (6.2), but with the initial condition Xx

0 = x. Clearly x ≤ y implies
that Xx

t ≤ Xy
t for all t ≥ 0 a. s. Consider an increasing sequence xn → ∞,

the corresponding increasing sequence of processes {Xxn
t , t ≥ 0}n≥1, and

define V n
t := Xxn

t − Wt, Sn = inf{t > 0, V n
t < 2M}. Note that Sn is

increasing. A minor modification of the computations in the first part of this
proof shows that for 0 ≤ t ≤ Sn,

1

(cα−1
α,γ t+ x

−(α−1)
n )1/(α−1)

≤ V n
t ≤

1

(Cα−1
α,γ t+ x

−(α−1)
n )1/(α−1)

.

It readily follows that Vt := limn→∞ V
n
t solves (6.3), while Xt := Vt + Wt

solves (6.2). Those solutions do not depend upon the choice of a particular
sequence xn → ∞, and the thus constructed solution is clearly the minimal
solution of (6.2).

Proof of E[T0] < ∞; Step1 We first show that S ∧ τ is bounded, and
VS∧τ is integrable.

For that sake, start noting that VS∧τ ≥ 2M . It then follows from one of
the inequalities obtained in the first part of the proof that

S ∧ τ ≤
(
Cα,γ
2M

)α−1

.
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On the set S < τ , VS∧τ = 2M . Consequently

VS∧τ = 2M1{S<τ} + Vτ1{τ≤S}

≤ 2M + Cα,γτ
−1/(α−1).

We now show that
E[VS∧τ ] <∞. (6.4)

From the last inequality,

E[VS∧τ ] ≤ 2M + Cα,γE
[
τ−1/(α−1)

]
.

We need to compute (below W ∗
t = sup0≤s≤t |Ws|)

E
[
τ−1/(α−1)

]
=

∫ ∞
0

P
(
τ−1/(α−1) > t

)
dt

=

∫ ∞
0

P
(
τ < t−(α−1)

)
dt

≤
∫ ∞

0

P
(
W ∗
t−(α−1) ≥ 2M

)
dt

≤ 4

∫ ∞
0

P (Wt−(α−1) ≥ 2M) dt

≤ 4

∫ ∞
0

P
(
W1 ≥ 2Mt(α−1)/2

)
dt

≤ 4
√
e

∫ ∞
0

exp
(
−2Mt(α−1)/2

)
dt

<∞,

where we have used for the fourth inequality the following Chebycheff in-
equality

P(W1 > A) = P
(
eW1−1/2 > eA−1/2

)
≤
√
e

eA
.

(6.4) follows.

Proof of E[T0] < ∞; Step 2 Now we turn back to the X equation, and
we show in this step that X comes down to level M in time which has finite
expectation. Since VS∧τ ≥ 2M and −M ≤ WS∧τ ≤ 2M ,

M ≤ XS∧τ ≤ VS∧τ + 2M.

In order to simplify notations, let us write ξ := XS∧τ . Until Xt reaches the
level M ,

f(Xt)− γ(Xt)
α ≤ −γ

2
(Xt)

α ≤ −1,
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from the choice of M . Conseqently, if TM = inf{t > 0, Xt ≤ M}, XS∧τ+r ≤
Yr for all 0 ≤ r ≤ TM − S ∧ τ a. s., where Y solves

dYr = −dr + dWr, Y0 = ξ,

where W is a standard Brownian motion independent of ξ. Let RM :=
inf{r > 0, Yr ≤M}. Clearly TM ≤ S ∧ τ +RM . So since S ∧ τ is bounded,
Step 2 will follow if we show that E(RM) < ∞. But the time taken by Y
to descend a given level is linear in that level. So, given that E(ξ) < ∞,
it suffices to show that the time needed for Y to descend a distance one is
integrable, which is easy, since if τ := inf{t > 0, Wt − t ≤ −1}, for t ≥ 2,

P(τ > t) ≤ P(Wt > t− 1)

≤ P(Wt > t/2)

≤ P(W1 >
√
t/2)

≤
√
e exp(−

√
t/2).

Proof of E[T0] < ∞; Step 3 For proving that E[T0] < ∞, it remains to
show that the time taken by X to descend from M to 0 is integrable, which
we now establish. Given any fixed T > 0, let p denote the probability that
starting from M at time t = 0, X hit zero before time T . Clearly p > 0.
Let α be a geometric random variable with success probability p, which is
defined as follows. Let X start from M at time 0. If X hits zero before
time T , then α = 1. If not, we look at the position XT of X at time T . If
XT > M , we want until X goes back to M . The time needed is bounded by
the integrable random variable η, which is the time needed for X to descend
to M , when starting from +∞. If however XT ≤ M , we start afresh from
there, since the probability to reach zero in less than T is greater than or
equal to p, for all starting points in the interval (0,M ]. So either at time
T , or at time T + η, we start again from a level which is less than or equal
to M . If zero is reached during the next interval of length T , then α = 2.
Repeating this procedure, we see that the time needed to reach 0, starting
from M , is bounded by

αT +
α∑
i=1

ηi,

where the r. v.’s ηi are i. i. d., with the same law as η, globally independent
of α. Now the total time needed to descend from +∞ to 0 is bounded by

αT +
α∑
i=0

ηi,

whose expectation is T/p+ (1 + 1/p)E(η) <∞.
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6.2 Height of the continuous tree

We consider again the process {Zx
t , t ≥ 0} solution of (3.1) :

dZx
t = [θZx

t − γ(Zx
t )α] dt+ 2

√
Zx
t dWt, Z

x
0 = x,

with θ ≥ 0, γ > 0, α > 0, and define T x = inf{t > 0, Zx
t = 0}.

We first prove

Theorem 6.2 If 0 < α < 1, 0 < P(T x =∞) < 1 if θ > 0, while T x <∞ a.
s. if θ = 0.

If α = 1, T x <∞ a. s. if γ ≥ θ, while 0 < P(T x =∞) < 1 if γ < θ.
If α > 1, T x <∞ a. s.

Proof: Clearly, if θ > 0 and α < 1, then for large values of Zx
t , the nonlinear

term −γ(Zx
t )α is negligible with respect to the linear term θZx

t , hence the
process behaves as in the super critical branching case : both extinction in
finite time, and infinite time survival happen with positive probability. If
however θ = 0, then the process goes extinct in finite time a. s., since on the
interval [1,∞) the process is bounded from above by the Brownian motion
with constant negative drift (equal to −γ), which comes back to 1 as many
times as necessary, until it hits 0, hence T x <∞ a. s.

In case α = 1 we have a continuous branching process, whose behavior is
well–known.

In case α > 1, the non linear term −γ(Zx
t )α dominates for large values of

Zx
t , hence the process comes back to 1 as many times as necessary, until it

hits 0, hence T x <∞ a. s.

We now establish the large x behaviour of T x.

Theorem 6.3 It α ≤ 1, then T x →∞ a. s., as x→∞.

Proof: The result is equivalent to the fact that the time to reach 1, starting
from x, goes to ∞ as x → ∞. But when Zx

t ≥ 1, a comparison of SDEs
for various values of α shows that it suffices to consider the case α = 1.
But in that case, T n is the maximum of the extinction times of n mutually
independent copies of Z1

t , hence the result.

Theorem 6.4 If α > 1, then E [supx>0 T
x] <∞.

Proof: It follows from the Itô formula that the process Y x
t :=

√
Zx
t solves

the SDE

dY x
t =

[
θ

2
Y x
t −

γ

2
(Y x

t )2α−1 − 1

8Y x
t

]
dt+ dWt, Y

x
0 =
√
x.
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By a well–known comparison theorem, Y x
t ≤ Ux

t , where Ux
t solves

dUx
t =

[
θ

2
Ux
t −

γ

2
(Ux

t )2α−1

]
dt+ dWt, U

x
0 =
√
x.

The result now follows readily from Theorem 6.1, since α > 1 implies that
2α− 1 > 1.

6.3 Length of the continuous tree

Recall that in the continuous case, the length of the genealogical tree is given
as

Sx =

∫ Tx

0

Zx
t dt.

For fixed values of x, Sx is finite iff T x is finite (remind that T x = ∞
requires that Zx

t →∞ as t→∞), hence the result of Theorem 6.2 translates
immediately into a result for Sx. We next consider the limit of Sx as x→∞.
Consider the additive functional

At =

∫ t

0

Zx
s ds, t ≥ 0,

and the associated time change

η(t) = inf{s > 0, As > t}.

We now define Ux
t = Zx ◦ η(t), t ≥ 0. It is easily seen that the process Ux

solves the SDE

dUx
t =

[
θ − γ(Ux

t )α−1
]
dt+ 2dWt, U

x
0 = x. (6.5)

Let τx := inf{t > 0, Ux
t = 0}. It follows from the above that η(τx) = T x,

hence Sx = τx.
We have the following results.

Theorem 6.5 If α ≤ 2, then Sx →∞ a. s. as x→∞.

Proof: α ≤ 2 means α − 1 ≤ 1. The same argument as in Theorem 6.3
implies that it suffices to consider the case α = 2. But in that case equation
(6.5) has the explicit solution

Ux
t = e−γtx+

∫ t

0

e−γ(t−s)[θds+ 2dWs],

hence

Sx = inf

{
t > 0,

∫ t

0

eγs(θds+ 2dWs) ≤ −x
}
,

which clearly goes to infinity, as x→∞.
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Theorem 6.6 If α > 2, then E [supx>0 S
x] <∞.

Proof: This theorem follows readily from Theorem 6.1 applied to the Ux–
equation (6.5), since α > 2 means α− 1 > 1.
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