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Spatially dense stochastic epidemic models

with infection-age dependent infectivity

GUODONG PANG∗ AND ÉTIENNE PARDOUX†

Abstract. We study an individual-based stochastic spatial epidemic model where the number of
locations and the number of individuals at each location both grow to infinity. Each individual is
associated with a random infectivity function, which depends on the age of infection. Individuals
are infected through interactions across the locations with heterogeneous effects. The epidemic
dynamics in each location is described by the total force of infection, the number of susceptible
individuals, the number of infected individuals that are infected at each time and have been infected
for a certain amount of time, as well as the number of recovered individuals. The processes can
be described using a time-space representation. We prove a functional law of large numbers for
these time-space processes, and in the limit, we obtain a set of time-space integral equations. We
then derive the PDE models from the limiting time-space integral equations, in particular, the
density (with respect to the infection age) of the time-age-space integral equation for the number
of infected individuals tracking the age of infection satisfies a linear PDE in time and age with an
integral boundary condition. These integral equation and PDE limits can be regarded as dynamics
on graphons under certain conditions.

1. Introduction

In order to capture the geographic heterogeneity, spatial epidemic models have been well devel-
oped, both in discrete and continuous spaces. With discrete space, multi-patch epidemic models
have been studied in [1, 2, 5, 27, 31] and recently by the authors [22], where each patch represents a
geographic location, and infection may occur within each batch and from the distance (for example,
due to short travels). See also the multi-patch multi-type epidemic models in [5, 11], as well as
relevant models in [4, 17, 18]. With continuous space, various PDE models have been developed
(see the surveys in [25, 26, 19, 8]). There are two well–known models: Kendall’s PDE model [14, 15]
and Diekmann-Thieme’s PDE model [9, 10, 28, 29]. Kendall’s PDE model has a constant recovery
rate while in the Diekmann-Thieme PDE model, the infection rate depends on the age of infection,
as in the PDE model proposed by Kermack and McKendrick in their 1932 paper [16]. Kendall’s
PDE model was proved to be the FLLN limit for the multitype Markovian model by Andersson and
Djehiche [3], where both the number of types and the population size go to infinity. However, the
Diekmann-Thieme PDE model has not been proved to be the FLLN limit of a stochastic epidemic
model.

In this paper, we start with an individual-based stochastic epidemic model at a finite number of
locations. Each individual at every location may be infected from his or her own location or from
other locations (see the infection rate function in equation (2.4)). Note that individuals do not
migrate from one location to another in our model. Each individual is associated with a random
infectivity function/process, independent from any other individual but having the same law as
all the other individuals (this is reasonable since the model is for the same disease). This random
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infectivity function also determines the law of the infectious duration of each individual, which is
i.i.d. for all individuals. For each individual, we track the age of infection, that is, the elapsed time
since the individual was infected (for the initially infected individuals, this means we also know
their infection times before time zero). To describe the epidemic dynamics at each location, we
use the aggregate infectivity process of the population and a two-parameter (equivalently, measure-
valued) process tracking the number of individuals that have been infected for less than or equal
to a certain amount time as well as the numbers of susceptible and recovered individuals. Such an
individual-based stochastic model with only one location has been studied by the authors in [21],
where an FLLN is established and the associated PDE model for the limit is derived.

We consider this stochastic epidemic model in a spatially dense setting, where the number of
locations increases to infinity while the number of individuals in each location (and the total
population) also goes to infinity. This has the same flavor as the asymptotic regime in [3] for the
multitype Markovian model where the number of types goes to infinity while the population in each
type also go to infinity. This is also in a similar fashion as the asymptotic regime of the Markovian
epidemic model on a refining spatial grid in R

d (d = 1, 2, 3), recently studied in [20], where the
mesh of the grid goes to zero and the population size at each site also goes to infinity. However, our
model is non-Markovian and the infection process is much more complicated with the infection-age
dependent infectivity.

For this model, it is convenient to describe the epidemic dynamics at all locations using a time-
space representation of the vector-valued processes (for the number of infected individuals tracking
the age of infection, this in fact becomes a time-age-space process). We treat the time-space
processes in the functional spaces D and DD given the spatial component, while choosing the
L1 norm on the spatial component. We prove an FLLN (Theorem 2.1) for the scaled time-space
processes under a set of regularity conditions on the initial conditions, infection contact rates and
and random infectivity functions (Assumptions 2.1, 2.2 and 2.3). The limits in the FLLN are
described by a set of time-space integral equations. It is worth highlighting that the heterogeneity
of interaction effects between different locations is represented by a function β(x, y) for x, y ∈ [0, 1]
(which resembles the kernel function in graphon, see further discussions below).

For the weak convergence of the time-space processes, we introduce new weak convergence cri-
teria for these time-space processes (Theorems 4.1 and 4.2), which involves the L1 norm for the
spatial component. To verify these criteria, we establish moment estimates for the increments of
these processes, which is challenging due to the interactions among the individuals at the different
locations. In particular, the interactions introduce nontrivial dependence in various components of
the time-space processes. We first study the joint time-space dynamics of the susceptible popula-
tion and total force of infectivity (Section 5). This involves the existence and uniqueness of solution
to a set of time-space Volterra-type integral equations (see equations (5.8)-(5.9)), and the moment
estimates associated with the increments involving the varying infectivity functions together with
their interactions (in order to use Theorem 4.1). Given their convergence, we then establish the
convergence of the time-age-space process tracking the infection ages of individuals (Section 6). In
order to employ Theorem 4.2, we need to establish the moment estimates for the increments with
respect to both time and infection-age parameters, for which the dependence due to interactions
also brings additional challenges.

From the limit tracking the rescaled number of infected individuals with a given age of infection,
we derive a PDE model with partial derivatives with respect to time and the age of infection (not
with respect to the spatial variable, since there is no migration among locations). It is a linear PDE
model with an integral boundary condition. It may be seen as an extension of the PDE models in
[21], with the addition of a spatial component. We then discuss how the PDE model is related to
the well-known Diekmann-Thieme PDE model and how it reduces to Kendall’s PDE model in the
Markovian case (see Remarks 3.2 and 3.4). Note that our PDE model is much more general since
we do not require any condition on the distribution function of the infectious periods.
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This work is part of our continuing efforts on the understanding of non-Markovian epidemic mod-
els (see the survey in [12]). In our previous work, most models consider a homogeneous population
with the two exceptions of a multi-patch (discrete space) model [22, 11]. Our model in this paper
starts from a dense discrete space model, while the limit becomes a spatial model in continuous
space. We should also mention the spatial models in continuous space in [7] and [30], where the
stochastic model starts with a continuous process for the movement of individuals, in particular, it
is assumed that individual movements follow an Itô diffusion process, and the epidemic models are
Markovian.

Our work also contributes to the recent studies of stochastic dynamics on graphons. Keliger et
al. [13] consider a finite-state Markov chain on a discretized graph of a graphon, and then prove
a PDE limit for the dynamics as an FLLN. Their model includes an SIS model on graphon. Petit
et al. [23] consider a random walk on graphon and prove a PDE limit for the Markovian dynamics.
However, we start with a non-Markovian epidemic dynamics, and the limiting integral equations in
Theorem 2.1 and the PDE models in Proposition 3.1 and Corollaries 3.1 and 3.2 can be regarded
as dynamics on graphons, when the kernel function β(x, y) is symmetric and takes values in [0, 1]
(see further discussions in Remark 2.2).

1.1. Organization of the paper. The paper is organized as follows. In Section 2.1, we provide
the detailed model description. We then present the scaled processes and assumptions and state
the FLLN result in Section 2.2. We derive the PDE models from the FLLN limits and discuss how
they are related to the already known spatial PDE models in Section 3. The proofs of the FLLN
are given in Sections 5 and 6 after some technical preliminaries in Section 4.

1.2. Notation. All random variables and processes are defined on a common complete probability
space (Ω,F ,P). Throughout the paper, N denotes the set of natural numbers, and R

k(Rk
+) denotes

the space of k-dimensional vectors with real (nonnegative) coordinates, with R(R+) for k = 1. Let
D = D(R+;R) denote the space of R–valued càdlàg functions defined on R+. Here, convergence in
D means convergence in the Skorohod J1 topology, see Chapter 3 of [6]. Let C be the subset of D
consisting of continuous functions. Let DD = D(R+;D(R+;R)) be the D-valued D space, and the
convergence in the space DD means that bothD spaces are endowed with the Skorohod J1 topology.
For any increasing càdlàg function F (·) : R+ → R+, abusing notation, we write F (dx) by treating
F (·) as the positive (finite) measure on R+ whose distribution function is F . For any R–valued

càdlàg function φ(·) on R+, the integral
∫ b

a
φ(x)F (dx) represents

∫

(a,b] φ(x)F (dx) for a < b. We use

1{·} for the indicator function. For x, y ∈ R, we denote x ∧ y = min{x, y} and x ∨ y = max{x, y}.
We use ‖ · ‖1 to denote the L1([0, 1]) norm. For time-space processes Z(t, x) and Z(t, s, x), for

each x, we regard them in the spaces D and DD, respectively. For the weak convergence of the
time-space processes ZN (t, x) to Z(t, x) as N → ∞, we use the Skorohod topology for the processes
in D with the L1([0, 1]) norm with respect to x. Similarly, for the weak convergence of the time-
space processes ZN (t, s, x) to Z(t, s, x) as N → ∞, we use the Skorohod topology for the processes
in DD with the L1([0, 1]) norm with respect to x. We write these spaces as D(R+, L

1([0, 1])) and
D(R+,D(R+, L

1([0, 1])), or D(R+, L
1) and D(R+,D(R+, L

1) for short. See the weak convergence
criteria in Theorems 4.1 and 4.2.

2. Model and FLLN

2.1. Model Description. We consider a population of fixed size N distributed in K locations in a
space S (for example, [0, 1], R2 or R3). For simplicity, we take S = [0, 1]. Also let K depend on N ,
denoted as KN . Let the KN locations be at xNk , k = 1, . . . ,KN in [0, 1] such that 0 ≤ xN1 < xN2 <

· · · < xN
KN ≤ 1. For notational convenience, let INk , k = 1, . . . ,KN be a partition of [0, 1] such that

xNk ∈ I
N
k and |INk | = (KN )−1 for all 1 ≤ k ≤ KN . In each location, individuals are categorized into
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three groups: susceptible, infected (possibly including both exposed and infectious) and recovered.
We assume that individuals do not move among the different locations, and susceptible individuals
in each location can be infected from their own location as well as from other locations (as explained
below). Suppose that there are BN

k individuals at location k, such that BN
1 + · · ·+BN

KN = N . (For

example, there is an equal number of individuals in each path, that is, BN
k = N/KN for all k.) We

assume that

both KN → ∞ and
N

KN
→ ∞, as N → ∞ . (2.1)

Notation: Whenever not causing any confusion, we drop the superscript N in xNk , INk , KN

and BN
k . For any vector z = (z1, . . . , zK), we write z(x) =

∑K
k=1 zk1INk

(x) where 1
I
N
k
(·) denotes

the indicator function of the set INk . For a process Z(t) = (Z1(t), . . . , ZK(t)), we write Z(t, x) =
∑K

k=1 Zk(t)1IN
k
(x) for t ≥ 0, x ∈ [0, 1].

Let SN
k (t), INk (t) and RN

k (t) be the numbers of susceptible, infected and recovered individu-

als in location xk at time t. We can also write the vectors SN (t) = (SN
1 (t), . . . , SN

K (t)), IN (t) =
(IN1 (t), . . . , INK (t)) andRN (t) = (RN

1 (t), . . . , RN
K(t)), as the following time-space processes SN (t, x) =

∑K
k=1 S

N
k (t)1Ik (x), I

N (t, x) =
∑K

k=1 I
N
k (t)1Ik(x) and RN (t, x) =

∑K
k=1R

N
k (t)1Ik (x), respectively.

Note that SN
k (t) = SN (t, xk), and so on.

To each infected individual is attached a random infectivity function. Individual j in location
k has a random infectivity function λj,k(·). The initially infected individual j from location k

gets infected at time τNj,k < 0, for j = −INk (0), . . . ,−1, and has at time t ≥ 0 the infectivity

λj,k(τ̃
N
−j,k + t) where τ̃N−j,k = −τNj,k. The initially susceptible individual j that gets infected at time

τNj,k has the infectivity λj,k(t − τNj,k) at time t ≥ 0 for each j ≥ 1. We assume that the sequence

{λj,k : j ∈ Z\{0}, k = 1, . . . ,K} is i.i.d. (Since we are concerned about the same disease, it is
reasonable to require all the individuals at all the locations have the same law of infectivity and
recovery, that is, homogeneous over locations.) Also, let λ̄(t) = E[λj,k(t)] for j ∈ Z\{0} and
k = 1, . . . ,K, for each t ≥ 0.

We assume that λj,k(t) = 0 a.s. for t < 0, for all j ∈ Z\{0}, k = 1, . . . ,K, and that each
λj,k has paths in D. Define ηj,k = sup{t > 0 : λj,k(t) > 0}, which represents the duration of the
infected period for individual j. Note that this may include both the exposed and infectious periods.
Under the above assumption on {λj,k}, the variables {ηj,k} are also i.i.d. Let F (t) = P(ηj,k ≤ t)
for j ∈ Z\{0} and k = 1, . . . ,K, representing the cumulative distribution function for the newly
infected individuals.

For each j ≤ −1, let η0j,k = inf{t > 0 : λj(τ̃
N
j,k + r) = 0, ∀r ≥ t} be the remaining infected period,

which depends on the elapsed infection time τ̃Nj,k, but is independent of the elapsed infection times

of other initially infected individuals. In particular, for j ≤ −1, the conditional distribution of η0j,k
given that τ̃Nj,k = s > 0 is given by

P(η0j,k > t|τ̃Nj,k = s) =
F c(t+ s)

F c(s)
, for t, s > 0. (2.2)

Note that the η0j,k’s are independent but not identically distributed.
The total force of infection of the infected individuals in location k is given by

FN
k (t) =

IN
k
(0)
∑

j=1

λ−j,k(τ̃
N
−j,k + t) +

SN
k
(0)

∑

j=1

λj,k(t− τNj,k), t ≥ 0. (2.3)
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We similarly write the time-space process for the total force of infection in the population:

FN (t, x) =

KN
∑

k=1

FN
k (t)1Ik(x).

The rate of infection for individuals in location k is given by

ΥN
k (t) =

SN
k (t)

BN
k

1

KN

KN
∑

k′=1

βN
k,k′F

N
k′(t), t ≥ 0. (2.4)

Here the factor βN
k,k′ reflects the effect of infection of individuals from location k′ upon those from

location k. It also represents the heterogeneity of the effects of the interactions among different
locations.

The number of newly infected individuals in location k by time t is given by

AN
k (t) =

∫ t

0

∫ ∞

0
1u≤ΥN

k
(s)Qk(ds, du), (2.5)

where {Qk(ds, du), 1 ≤ k ≤ K} are mutually independent standard (i.e., with mean measure the
Lebesgue measure) Poisson random measures (PRMs) on R

2
+. The counting process AN

k has the

event times {τNj,k, j ≥ 1}.
Let INk (t, a) be the number of infected individuals in location k that are infected at time t and

have been infected for less than or equal to a. Then we can write

INk (t, a) =

IN
k
(0)
∑

j=1

1η0
−j,k

>t1τ̃N
−j,k

≤(a−t)+ +

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

1τN
j,k

+ηj,k>t . (2.6)

We suppose that there exists ā ∈ [0,∞) such that INk (0) = INk (0, ā). It is also clear that for all
t ≥ 0,

INk (t) = INk (t,∞).

To account for the location, we also write the time-age-space process

IN (t, a, x) =
KN
∑

k=1

INk (t, a)1Ik (x).

Note that for each x, the process IN (t, a, x) has paths in DD.
The dynamics of SN

k (t), INk (t) and RN
k (t) can be expressed as

SN
k (t) = SN

k (0) −AN
k (t),

INk (t) =

IN
k
(0)
∑

j=1

1η0
−j,k

>t +

AN
k
(t)

∑

j=1

1τN
j,k

+ηj,k>t ,

RN
k (t) = RN

k (0) +

IN
k
(0)
∑

j=1

1η0
−j,k

≤t +

AN
k
(t)

∑

j=1

1τN
j,k

+ηj,k≤t .

2.2. FLLN. We recall that

N =

KN
∑

k=1

(SN
k (t) + INk (t) +RN

k (t)) =

KN
∑

k=1

BN
k , (2.7)
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and observe that
∫ 1

0
(SN (t, x) + IN (t, x) +RN (t, x))dx =

1

KN

KN
∑

k=1

(SN
k (t) + INk (t) +RN

k (t)) =
N

KN
. (2.8)

It is then reasonable to introduce the scaling of the processes by N/KN , that is, for any process
ZN
k = FN

k ,INk ,ΥN
k , AN

k , SN
k , INk , RN

k , we define Z̄N
k = (N/KN )−1ZN

k . We then define the scaled
time-space processes

Z̄N (t, x) =
KN
∑

k=1

Z̄N
k (t)1Ik(x), ZN

k = FN
k ,ΥN

k , AN
k , SN

k , INk , RN
k

and

ĪN (t, a, x) =

KN
∑

k=1

ĪNk (t, a)1Ik (x) .

In addition, define the scaled population size at each location

B̄N (x) =
KN
∑

k=1

B̄N
k 1Ik(x), with B̄N

k = (N/KN )−1BN
k .

Hence, from (2.8) and the scaling, we obtain
∫ 1

0
(S̄N (t, x) + ĪN (t, x) + R̄N (t, x))dx =

∫ 1

0
B̄N (x)dx = 1 .

We make the following assumption on the initial condition.

Assumption 2.1. There exist nonnegative deterministic functions (S̄(0, x), Ī(0, a, x), R̄(0, x)) such
that for each x, Ī(0, ·, x) is in C, and for each a ∈ [0, ā],

‖S̄N (0, ·) − S̄(0, ·)‖1 → 0, ‖ĪN (0, a, ·) − Ī(0, a, ·)‖1 → 0, ‖R̄N (0, ·) − R̄(0, ·)‖1 → 0 (2.9)

in probability as N → ∞, where letting Ī(0, x) = Ī(0,∞, x), we have
∫ 1

0
(S̄(0, x) + Ī(0, x) + R̄(0, x))dx = 1. (2.10)

In addition, there exists B̄(x) such that

‖B̄N (·)− B̄(·)‖∞ = sup
x∈[0,1]

|B̄N (x)− B̄(x)| → 0, (2.11)

where for some constants 0 < cB < CB < ∞,

B̄(x) ∈ [cB , CB ] ∀x ∈ [0, 1], (2.12)

and
∫ 1

0
B̄(x)dx = 1 .

Note that, thanks to (2.11) and (2.12), we may and do assume that cB and CB have been chosen
in such a way that

B̄N (x) ∈ [cB , CB ] ∀N ≥ 1, x ∈ [0, 1]. (2.13)

Under the assumption in (2.9), it follows that

‖ĪN (0, ·) − Ī(0, ·)‖1 → 0

in probability as N → ∞.
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We introduce for each x, x′ ∈ [0, 1],

βN (x, x′) =
∑

k,k′

βN
k,k′1Ik(x)1Ik′ (x

′) . (2.14)

Assumption 2.2. There exists a constant Cβ > 0 such that for all N ≥ 1, x ∈ [0, 1],
∫ 1

0
βN (x, y)dy ∨

∫ 1

0
βN (y, x)dy ≤ Cβ . (2.15)

There exists a function β : [0, 1] × [0, 1] 7→ R+ such that for any bounded measurable function
φ : [0, 1] 7→ R,

∥

∥

∥

∥

∫ 1

0
[βN (·, y)− β(·, y)]φ(y)dy

∥

∥

∥

∥

1

→ 0 . (2.16)

Remark 2.1. Concerning condition (2.15), let us first note that, if βN
k,k′ = βN

k′,k (symmetric) for

all N ≥ 1, 1 ≤ k, k′ ≤ K, the boundedness of
∫ 1
0 βN (x, y)dy is equivalent to that of

∫ 1
0 βN (y, x)dy.

Clearly (2.16) implies that (2.15) is satisfied with βN replaced by β. We note that this assumption
allows in particular β(x, y) to explode on the diagonal x = y, for example, β(x, y) = c√

|x−y|
for

some c > 0, meaning that infectious interactions between “close by” individuals are much more
frequent than between distant ones. See further discussions in Remark 2.2.

We make the following assumption on the random function λ.

Assumption 2.3. Let λ(·) be a process having the same law of {λ0
j (·)}j and {λi(·)}i. Assume that

there exists a constant λ∗ such that for each 0 < T < ∞, supt∈[0,T ] λ(t) ≤ λ∗ almost surely. Assume

that there exist an integer κ, a random sequence 0 = ζ0 ≤ ζ1 ≤ · · · ≤ ζκ and associated random
functions λℓ ∈ C(R+; [0, λ

∗]), 1 ≤ ℓ ≤ κ, such that

λ(t) =

κ
∑

ℓ=1

λℓ(t)1[ζℓ−1,ζℓ)(t). (2.17)

We write Fℓ for the c.d.f. of ζ
ℓ, ℓ = 1, . . . , κ. In addition, we assume that there exists a deterministic

nondecreasing function ϕ ∈ C(R+;R+) with ϕ(0) = 0 such that |λℓ(t) − λℓ(s)| ≤ ϕ(t − s) almost
surely for all t, s ≥ 0 and for all ℓ ≥ 1. Let λ̄(t) = E[λi(t)] = E[λ0

j(t)] and v(t) = Var(λ(t)) =

E
[(

λ(t)− λ̄(t)
)2]

for t ≥ 0.

Theorem 2.1. Under Assumptions 2.1, 2.2 and 2.3,

‖F̄N (t, ·)− F̄(t, ·)‖1 → 0, ‖S̄N (t, ·) − S̄(t, ·)‖1 → 0, ‖R̄N (t, ·) − R̄(t, ·)‖1 → 0,

‖ĪN (t, a, ·) − ĪN (t, a, ·)‖1 → 0 (2.18)

in probability as N → ∞, locally uniformly in t and a, where the limits are given by the unique
solution to the following set of integral equations. The limit (S̄(t, x), F̄(t, x)) is a unique solution to
the system of integral equations: for t ≥ 0 and x ∈ [0, 1],

S̄(t, x) = S̄(0, x) −
∫ t

0
Ῡ(s, x)ds , (2.19)

F̄(t, x) =

∫ ∞

0
λ̄(a+ t)Ī(0, da, x) +

∫ t

0
λ̄(t− s)Ῡ(s, x)ds , (2.20)

where

Ῡ(t, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)F̄(t, x′)dx′ = Īa(t, 0, x) . (2.21)
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Given S̄(t, x) and F̄(t, x), the limits Ī(t, a, x) and R̄(t, x) are given by

Ī(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

(t−a)+
F c(t− s)Ῡ(s, x)ds , (2.22)

R̄(t, x) = R̄(0, x) +

∫ ∞

0

(

1− F c(a′ + t)

F c(a′)

)

Ī(0, da′, x) +

∫ t

0
F (t− s)Ῡ(s, x)ds . (2.23)

In addition,

‖ĪN (t, ·)− Ī(t, ·)‖1 → 0

locally uniformly in t in probability as N → ∞, where

Ī(t, x) =

∫ ∞

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

0
F c(t− s)Ῡ(s, x)ds . (2.24)

For each x, the limits S̄(t, x), F̄(t, x), Ī(t, a, x), Ī(t, x) and R̄(t, x) are continuous in t and a.

Remark 2.2. Our model can be regarded in some sense as non-Markovian population dynamics
on graphons. In particular, the function β(x, x′) can be regarded as the graphon kernel function,
representing the inhomogeneity in the connectivity. However, the kernel function is often assumed
to take values in [0, 1] and to be symmetric in the graphon literature. In our model, β(x, x′) does not
necessarily take values in [0, 1] although it can be rescaled to [0, 1], and the function β(x, x′) may not
be necessarily symmetric. In the prelimit (the N th system), the locations {INk }k can be regarded as
a discretization of the unit interval [0, 1] and the infection rate functions between different locations
βN
k,k′ in (2.14) can then be regarded as the corresponding discretization of the function β(x, x′). We

refer the readers to [13] and [23] for Markov dynamics on graphons and PDE approximations.

Remark 2.3. For the spatial SIS model, we have the identity
∑KN

k=1(S
N
k (t) + INk (t)) = N and

∫ 1
0 (S̄(t, x) + Ī(t, x))dx = 1. We use two processes F̄N(t, x) and ĪN (t, a, x) to describe the epidemic

dynamics, and can show that ‖F̄N (t, ·)−F̄(t, ·)‖1 → 0 and ‖ĪN (t, a, ·)−Ī(t, a, x)‖1 → 0 in probability
locally uniformly in t and a as N → ∞, where

F̄(t, x) =

∫ ∞

0
λ̄(a+ t)Ī(0, da, x) +

∫ t

0
λ̄(t− s)S̄(s, x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds , (2.25)

and

Ī(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

(t−a)+
F c(t− s)S̄(s, x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds ,

(2.26)

with S̄(t, x) satisfying
∫ 1

0
(S̄(t, x) + Ī(t,∞, x))dx = 1 . (2.27)

Using Ī(t, x) = Ī(t,∞, x), we can write the last equation as
∫ 1
0 (S̄(t, x) + Ī(t, x))dx = 1, and the

limit Ī(t, x) is given by

Ī(t, x) =

∫ ∞

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) +

∫ t

0
F c(t− s)S̄(s, x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds .
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3. PDE Models

In this section we derive the PDE models associated with the limits from the FLLN. For each t,
the limits S̄(t, x), F̄(t, x), Ī(t, x), R̄(t, x) can be regarded as the densities of the quantities, suscepti-
bles, aggregate infectivity, infected and recovered, distributed over the location x ∈ [0, 1], and for
each t and a, the function Ī(t, a, x) can be also regarded as the density of the proportion of infected
individuals at time t with infection age less than or equal to a, over the location x ∈ [0, 1]. In
addition, for each fixed t and x, Ī(t, a, x) is increasing in a, and can be regarded as a “distribution”
over the infection ages. If Ī(t, a, x) is absolutely continuous in a, we let ī(t, a, x) = Īa(t, a, x) be the
density function of Ī(t, a, x) with respect to the infection age a.

In the following we will consider the dynamics of S̄(t, x), F̄(t, x), Ī(t, x), R̄(t, x), Ī(t, a, x) in t and
a, as a PDE model. Since there is no movement of individuals between locations, no derivative
with respect to x will appear. However, the interaction among individuals in different locations
will be captured in these dynamics, in particular, in the expression of Ῡ(t, x) in (2.21).

We consider any arbitrary distribution F , and for notational convenience, we let G(t) = F (t−)
and Gc(t) = 1 − G(t) = F c(t−), which are the left continuous versions of F and F c. Denote ν(·)
the law of η. Then ν(da)

Gc(a) can be regarded as a generalized hazard rate function.

Remark 3.1. Let us explain why we introduce here the left continuous version of F . Note that when
F is absolutely continuous, this makes no difference. The simplest example which motivates this
choice is the following: ν = δt0 . In this case, Gc(t0) = 1, while F c(t0) = 0. So, with the convention

that ν(dt)
Gc(t) is zero outside the support of ν, whatever the denominator might be, this fraction is well

defined, which would not be the case if we replace Gc(t) by F c(t) in the denominator.

Proposition 3.1. Suppose that for each x, Ī(0, a, x) is absolutely continuous with respect to a with
density ī(0, a, x) = Īa(0, a, x). Then for t, a > 0 and x ∈ [0, 1], the function Ī(t, a, x) is absolutely
continuous in t and a, and its density ī(t, a, x) = Īa(t, a, x) with respect to a satisfies

∂ ī(t, a, x)

∂t
+

∂ ī(t, a, x)

∂a
= − ī(t, a, x)

Gc(a)
ν(da) , (3.1)

(t, a, x) in (0,∞)2 × [0, 1], with the initial condition ī(0, a, x) = Īa(0, a, x) for (a, x) ∈ (0,∞)× [0, 1],
and the boundary condition

ī(t, 0, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

(

∫ t+ā

0

λ̄(a′)
Gc(a′)

Gc(a′−t)

ī(t, a′, x′)da′

)

dx′ , (3.2)

where Gc ≡ 1 on R− and the integrand inside the second integral is set to zero whenever Gc(a) = 0.
The function S̄(t, x) satisfies

∂S̄(t, x)

∂t
= −ī(t, 0, x) , (3.3)

with S̄(0, x) satisfying (2.10).
Moreover, the PDE (3.1)-(3.2) has a unique non-negative solution which is given as follows: for

a ≥ t and x ∈ [0, 1],

ī(t, a, x) =
Gc(a)

Gc(a− t)
ī(0, a − t, x), (3.4)

and for t > a and x ∈ [0, 1],
ī(t, a, x) = Gc(a) ī(t− a, 0, x), (3.5)

and the boundary function is the unique non-negative solution to the integral equation

ī(t, 0, x) = (B̄(x))−1
(

S̄(0, x)−
∫ t

0
ī(s, 0, x)ds

)
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×
∫ 1

0
β(x, x′)

(
∫ ∞

0
λ̄(a+ t) ī(0, a, x′)da+

∫ t

0
λ̄(t− s) ī(s, 0, x′)ds

)

dx′ . (3.6)

Provided with the PDE solution ī(t, a, x) and with Ῡ(t, x) = ī(t, 0, x), the functions Ī(t, x) and
R̄(t, x) are given by

Ī(t, x) =

∫ ∞

0

F c(a′ + t)

F c(a′)
ī(0, a′, x)da′ +

∫ t

0
F c(t− s) ī(s, 0, x)ds ,

R̄(t, x) = R̄(0, x) +

∫ ∞

0

(

1− F c(a′ + t)

F c(a′)

)

ī(0, a′, x)da′ +

∫ t

0
F (t− s) ī(s, 0, x)ds .

Also, by definition,

Ī(t, x) = Ī(t,∞, x) =

∫ ∞

0
ī(t, a, x)da.

Proof. Using the expression of Ῡ(s, x) = Īa(s, 0, x) in (2.21) and with Gc, we can equivalently
rewrite (2.22) as

Ī(t, a, x) =

∫ (a−t)+

0

Gc(a′ + t)

Gc(a′)
Īa(0, a

′, x)da′ +

∫ t

(t−a)+
Gc(t− s)Īa(s, 0, x)ds . (3.7)

Exploiting the fact that ∂
∂t

+ ∂
∂a

of a function of t− a vanishes, we deduce from (3.7) that

Īt(t, a, x) + Īa(t, a, x) = −
∫ (a−t)+

0

1

Gc(a′)
Īa(0, a

′, x)ν(t+ da′)

+ Īa(t, 0, x) −
∫ t

(t−a)+
Īa(s, 0, x)ν(t− ds)

= −
∫ a∨t

t

1

Gc(a′ − t)
Īa(0, a

′ − t, x)ν(da′)

+ Īa(t, 0, x) −
∫ a∧t

0
Īa(t− s, 0, x)ν(ds) .

Here we consider the derivative with respect to t in the distributional sense and use the measure
ν(·) associated with G since we do not necessarily have differentiability of Gc. We then take
derivative with respect to a on both sides of this equation (denoting Īt,a(t, a, x) and Īa,a(t, a, x) as
the derivatives of Īt(t, a, x) and Īa(t, a, x) with respect to a) and obtain the following:

Īt,a(t, a, x) + Īa,a(t, a, x) = −1a≥t
ν(da)

Gc(a− t)
Īa(0, a − t, x)− 1t>aν(da)Īa(t− a, 0, x) .

Rewriting ∂ ī(t,a,x)
∂t

= Īa,t(t, a, x) = Īt,a(t, a, x) and
∂ ī(t,a,x)

∂a
= Īa,a(t, a, x), we obtain the PDE:

∂ ī(t, a, x)

∂t
+

∂ ī(t, a, x)

∂a
= −1a≥t

ν(da)

Gc(a− t)
ī(0, a − t, x)− 1t>aν(da) ī(t− a, 0, x) . (3.8)

In order to see that the right hand side coincides with that in (3.1), we first establish (3.4) and
(3.5). For a ≥ t, 0 ≤ s ≤ t and x ∈ [0, 1],

∂ ī(s, a− t+ s, x)

∂s
= −ν(a− t+ ds)

Gc(a− t)
ī(0, a − t, x) ,

and for t > a, 0 ≤ s ≤ a and x ∈ [0, 1],

∂ ī(t− a+ s, s, x)

∂s
= −ν(ds) ī(t− a, 0, x) .
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From these, by integration and simple calculations, we obtain (3.4) and (3.5). Now (3.1) follows
from (3.8), (3.4) and (3.5).

Then using (3.4) and (3.5), by (2.20) and the second equality in (2.21), we obtain

F̄(t, x) =

∫ ∞

0
λ̄(a+ t) ī(0, a, x)da +

∫ t

0
λ̄(t− s) ī(s, 0, x)ds . (3.9)

The expression for the boundary condition in (3.6) then follows directly from (2.21) using this
expression of F̄(t, x). Again, using (3.4) and (3.5), we see that the boundary condition (3.6) is
equivalent to (3.2).

We now sketch the proof of existence and uniqueness of a non-negative solution to (3.6). Note
that, thanks to (3.4) and (3.5), existence and uniqueness of a non-negative solution to the PDE
(3.1)-(3.2) will follow from that result. First of all, let us rewrite that equation as

u(t, x) = (B̄(x))−1

(

f(x)−
∫ t

0
u(s, x)ds

)

×
∫ 1

0
β(x, x′)

(

g(t, x′) +

∫ t

0
λ̄(t− s)u(s, x′)ds

)

dx′,

where 0 ≤ f(x) ≤ 1 and 0 ≤ g(t, x) ≤ λ∗ are given from the initial conditions. Any nonnegative
solution satisfies

u(t, x) ≤
∫ 1

0
β(x, x′)

(

g(t, x′) +

∫ t

0
λ̄(t− s)u(s, x′)ds

)

dx′, hence

‖u(t, ·)‖∞ ≤ Cβλ
∗

(

1 +

∫ t

0
‖u(s, ·)‖∞ds

)

≤ Cβλ
∗eCβλ

∗t .

Here ‖u(t, ·)‖∞ = supx∈[0,1] |u(t, x)|. Let now u and v be two non negative solutions. Then,

|u(t, x)− v(t, x)| ≤ (B̄(x))−1

(
∫ 1

0
β(x, x′)

[

g(t, x′) +

∫ t

0
λ̄(t− s)u(s, x′)ds

])
∫ t

0
|u(s, x)− v(s, x)|ds

+ (B̄(x))−1

(

f(x) +

∫ t

0
v(s, x)ds

)
∫ 1

0
β(x, x′)

∫ t

0
λ̄(t− s)|u(s, x′)− v(s, x′)|dsdx′ .

Integrating over dx, exploiting the previous a priori estimate and (2.15), we deduce the uniqueness
from Gronwall’s Lemma. Finally, the existence of a nonnegative L1([0, 1])-valued solution can be
established using a Picard iteration argument. Note that in the previous lines we have used the
two distinct inequalities contained in (2.15). �

If F is absolutely continuous, with density f , we denote by µ(a) the hazard function, i.e., µ(a) =
f(a)
F c(a) for all a ≥ 0. We obtain the following corollary in this case.

Corollary 3.1. Under the assumptions of Proposition 3.1, if F is absolutely continuous with density
f , then the PDE in (3.1) becomes

∂ ī(t, a, x)

∂t
+

∂ ī(t, a, x)

∂a
= −µ(a) ī(t, a, x) , (3.10)

with the initial condition ī(0, a, x) = Īa(0, a, x) for (a, x) ∈ (0,∞)×[0, 1] and the boundary condition
(3.2). The function S̄(t, x) satisfies (3.3), and the PDE (3.10) has a unique solution which is given
by (3.4) and (3.5), and the boundary function is the same as in (3.6).

When the infectious periods are deterministic, we obtain the following corollary.

Corollary 3.2. Suppose that the infectious periods are deterministic and equal to ti, that is, F (t) =
1t≥ti and G(t) = 1t>ti . Then the PDE in in (3.1) becomes

∂ ī(t, a, x)

∂t
+

∂ ī(t, a, x)

∂a
= −δti(a) ī(t, a, x) , (3.11)
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with δti(a) being the Dirac measure at ti, with the initial condition ī(0, a, x) = Īa(0, a, x) for a ∈
(0, ti)× [0, 1], and the boundary condition

ī(t, 0, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

(

∫ ti

0
λ̄(a′) ī(t, a′, x′)da′

)

dx′ , (3.12)

The PDE (3.11) has a unique solution which is given as follows: for t ≤ a < ti and x ∈ [0, 1],

ī(t, a, x) = ī(0, a − t, x), (3.13)

and for a < t ∧ ti and x ∈ [0, 1],
ī(t, a, x) = ī(t− a, 0, x), (3.14)

and for a ≥ ti, ī(t, a, x) = 0. The boundary function is the unique solution to the integral equation:
for 0 < t < ti,

ī(t, 0, x) = B̄(x)−1
(

S̄(0, x) −
∫ t

0
ī(s, 0, x)ds

)

×
∫ 1

0
β(x, x′)

(∫ ti

t

λ̄(a) ī(0, a − t, x′)da+

∫ t

0
λ̄(t− s) ī(s, 0, x′)ds

)

dx′ , (3.15)

and for t ≥ ti,

ī(t, 0, x) = B̄(x)−1
(

S̄(0, x) −
∫ t

0
ī(s, 0, x)ds

)

×
∫ 1

0
β(x, x′)

∫ ti

0
λ̄(t− s) ī(s, 0, x′)dsdx′ . (3.16)

Remark 3.2. In the special case when λi(t) = λ̃(t)1t<ηi for a deterministic function λ̃(t), the
boundary condition (3.2) becomes

ī(t, 0, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

(

∫ t+ā

0
λ̃(a′) ī(t, a′, x′)da′

)

dx′ . (3.17)

This is because λ̄(t) = λ̃(t)F c(t) and E[λ̃(t)1t<η0 |τ̃0 = y] = λ̃(t+y)F
c(t+y)
F c(y) . This boundary condition

resembles that given in the Diekmann PDE model [9] (without B̄(x) in the denominator). See further
discussions in Remark 3.4.

Remark 3.3. By using the solution expressions in (3.4) and (3.5) together with the second identity
Ῡ(t, x) = Īa(t, 0, x) in (2.21), we can rewrite F̄(t, x) in (2.20) as

F̄(t, x) =

∫ ∞

0
λ̄(a+ t) ī(0, a, x)da +

∫ t

0
λ̄(t− s) ī(s, 0, x)ds

=

∫ ∞

0
λ̄(a+ t)

Gc(a)

Gc(t+ a)
ī(t, t+ a, x)da +

∫ t

0
λ̄(a)

1

Gc(a)
ī(t, a, x)da

=

∫ t+ā

0

Gc(a− t)

Gc(a)
λ̄(a) ī(t, a, x)da , (3.18)

where Gc(a) = 1 for a ≤ 0. In the special case when λi(t) = λ̃(t)1t<ηi as described in the previous
remark, we obtain

F̄(t, x) =

∫ t+ā

0
λ̃(a) ī(t, a, x)da , (3.19)

which further gives

Ῡ(t, x) =
S̄(t, x)

B̄(x)

∫ 1

0
β(x, x′)

∫ t+ā

0
λ̃(a) ī(t, a, x′)dadx′
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=
S̄(t, x)

B̄(x)

∫ t+ā

0

∫ 1

0
β(x, x′)λ̃(a) ī(t, a, x′)dx′da . (3.20)

Remark 3.4. In Diekmann [9], the spatial-temporal deterministic model is specified as follows.
The function Ī(t, x) is written as an integral of the function ī(t, a, x):

Ī(t, x) =

∫ ∞

0
ī(t, a, x)da .

The infectivity function is given by

Ῡ(t, x) = S̄(t, x)

∫ ∞

0

∫ 1

0
ī(t, a, x′)A(a, x, x′)dx′da , (3.21)

where A(a, x, x′) is the infectivity at x due to the infected individual with the infection age a at
x′. (Note the difference of Ῡ(t, x) in (3.21) from our limit Ῡ(t, x) in (3.20) with B̄(x) in the
denominator, and abusing notation we use the same symbols in this remark). Therefore, in order
to match the model by Diekmann [9], we can take

A(a, x, x′) = β(x, x′)λ̄(a). (3.22)

By (3.3) and (3.6), we obtain

∂S̄(t, x)

∂t
= −S̄(t, x)

∫ ∞

0

∫ 1

0
β(x, x′)λ̄(a+ t) ī(0, a, x′)dx′da

− S̄(t, x)

∫ t

0

∫ 1

0
β(x, x′)λ̄(t− s) ī(s, 0, x′)dx′ds

= S̄(t, x)

(∫ t

0

∫ 1

0
β(x, x′)λ̄(a)

∂S̄(t− a, x′)

∂t
dx′da− h(t, x)

)

, (3.23)

where

h(t, x) =

∫ ∞

0

∫ 1

0
β(x, x′)λ̄(a+ t) ī(0, a, x′)dx′da .

Then integrating (3.23) with respect to t, we also get

u(t, x) = − ln
S̄(t, x)

S̄(0, x)
=

∫ t

0

∫ 1

0
(1− e−u(t−a,x′))S̄(0, x′)β(x, x′)λ̄(a)dx′da+

∫ t

0
h(s, x)ds.

By using (3.22), we obtain the specification of u(t, x) in [9].

In the special case λ(t) = λ̃(t)1t<η for some deterministic function λ̃(t) as described in Remark
3.2, given the expressions in (3.19) and (3.20), to match the model by Diekmann [9], we can take

A(a, x, x′) = β(x, x′)λ̃(a).

Moreover, if the infection rate is constant λ and the infectious periods are exponential of rate µ,
we have F̄(t, x) = λĪ(t, x), and as a result, the infectivity function of Diekmann in (3.21) becomes

Ῡ(t, x) = S̄(t, x)

∫ 1

0
β(x, x′)λĪ(t, x′)dx′ . (3.24)

Because of the memoryless property of exponential periods, it is adequate to use the process I(t, x)
to describe the dynamics instead of I(t, a, x). In this case, we obtain the PDE model by Kendall
[14, 15], in which given the limit Ῡ(t, x) in (3.24),

∂S̄(t, x)

∂t
= −Ῡ(t, x),

∂Ī(t, x)

∂t
= Ῡ(t, x)− µĪ(t, x),

∂R̄(t, x)

∂t
= µĪ(t, x) .
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Remark 3.5. Recall the spatial SIS model in Remark 2.3. We obtain the same PDE in (3.1) with
the boundary condition in (3.2), in which S̄(t, x) is the solution to (3.3) with S̄(0, x) satisfying
∫ 1
0 (S̄(0, x)+ Ī(0, x))dx = 1. The solution to the PDE is also given by (3.4)–(3.5) with the boundary

condition in (3.2), in which S̄(0, x) satisfying
∫ 1
0 (S̄(0, x)+ Ī(0, x))dx = 1. Similarly, we also obtain

the expression of F̄(t, x) in (3.18).
Assume that limt→∞ Ī(t, a, x) exists and the limit is denoted as Ī∗(a, x), and let Ī∗(x) = limt→∞ Ī(t, x) =

Ī∗(∞, x). Also let S̄∗(x) = limt→∞ S̄(t, x). Note that
∫ 1

0
(S̄∗(x) + Ī∗(x))dx = 1. (3.25)

Let β−1 =
∫∞
0 F c(a)da and Fe(a) = β

∫ a

0 F c(s)ds.
By (2.26) and (3.18), we obtain

Ī∗(a, x) =

∫ a

0
F c(s)ds S̄∗(x)

∫ 1

0
β(x, x′)

∫ ∞

0

1

Gc(a′)
λ̄(a′)Ī∗(da′, x′)dx′

= β−1Fe(a)S̄
∗(x)

∫ 1

0
β(x, x′)

∫ ∞

0

1

Gc(a′)
λ̄(a′)Ī∗(da′, x′)dx′ . (3.26)

By letting a → ∞ on the both sides, we obtain

Ī∗(x) = β−1S̄∗(x)

∫ 1

0
β(x, x′)

∫ ∞

0

1

Gc(a′)
λ̄(a′)Ī∗(da′, x′)dx′ . (3.27)

This implies
Ī∗(a, x) = Fe(a)Ī

∗(x) ,

which then gives
∂

∂a
Ī∗(a, x) = βF c(a)Ī∗(x) .

Thus,

Ī∗(a, x) = β−1Fe(a)S̄
∗(x)

∫ 1

0
β(x, x′)

∫ ∞

0

1

Gc(a′)
λ̄(a′)βF c(a′)Ī∗(x′)da′dx′

= Fe(a)
(

∫ ∞

0
λ̄(a′)da′

)

S̄∗(x)

∫ 1

0
β(x, x′)Ī∗(x′)dx′ .

Recall that R0 =
∫∞
0 λ̄(t)dt. By letting a → ∞ again on both sides, we obtain

Ī∗(x) = R0S̄
∗(x)

∫ 1

0
β(x, x′)Ī∗(x′)dx′ .

This equation together with the identity (3.25) determines the values Ī∗(x) and S̄∗(x).

4. Some technical preliminaries

We will use the following convergence criteria for the processes: a) XN (t, x) in D(R+, L
1) and

b) XN (t, s, x) in D(R+,D(R+, L
1)). They extend the convergence criterion for the processes in D

(the Corollary on page 83 of [6]) and in DD ([21, Theorem 4.1]). The proof is a straightforward
extension of those results (in [6] it is noted that with very little change, the theory can be extended
to functions taking values in metric spaces that are separable and complete). We remark that one
may also replace the L1 norm ‖ · ‖1 by the L2 norm in the following results.

Theorem 4.1. Let {XN (t, x) : N ≥ 1} be a sequence of random elements such that XN is in
D(R+, L

1). If the following two conditions are satisfied: for any T > 0,
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(i) for any ǫ > 0, supt∈[0,T ] P
(

‖XN (t, ·)‖1 > ǫ
)

→ 0 as N → ∞, and

(ii) for any ǫ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

‖XN (t+ u, ·)−XN (t, ·)‖1 > ǫ

)

→ 0,

then ‖XN (t, ·)‖1 → 0 in probability, locally uniformly in t, as N → ∞.

Theorem 4.2. Let {XN : N ≥ 1} be a sequence of random elements such that XN is in D(R+,D(R+, L
1)).

If the following two conditions are satisfied: for any T, S > 0,

(i) for any ǫ > 0, supt∈[0,T ] sups∈[0,S] P
(

‖XN (t, s, ·)‖1 > ǫ
)

→ 0 as N → ∞, and

(ii) for any ǫ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
s∈[0,S]

‖XN (t+ u, s, ·)−XN (t, s, ·)‖1 > ǫ

)

→ 0,

lim sup
N

sup
s∈[0,S]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖XN (t, s+ v, ·)−XN (t, s, ·)‖1 > ǫ

)

→ 0,

then ‖XN (t, s, ·)‖1 → 0 in probability, locally uniformly in t and s, as N → ∞.

We shall also need the following Lemma.

Lemma 4.1. For each N ≥ 1, let fN : R+ × [0, 1] 7→ R+ be measurable and such that t 7→ fN (t, x)
is non–decreasing for each x ∈ [0, 1]. Assume that there exists f : R+ × [0, 1] 7→ R+ such that
t 7→ f(t, x) is continuous for each x ∈ [0, 1], and for all t ≥ 0, as N → ∞,

‖fN (t, ·)− f(t, ·)‖1 → 0 . (4.1)

Let g ∈ D(R;R+) be such that there exists C > 0 with g(t) ≤ C for all t ≥ 0. Define

hN (t, x) =

∫ t

0
g(s)fN (ds, x), h(t, x) =

∫ t

0
g(s)f(ds, x) .

Then for any t > 0, ‖hN (t, ·)− h(t, ·)‖1 → 0 as N → ∞. In addition,
∫ 1
0 hN (t, x)dx →

∫ 1
0 h(t, x)dx

locally uniformly in t, as N → ∞.
Moreover, if for each N ≥ 1, fN is random and the convergence (4.1) holds in probability, then

the conclusion holds in probability as well.

Proof. Let {sn, n ≥ 1} be a countable dense subset of [0, 1]. By successive extraction of sub-
sequences we can extract a subsequence from the original sequence {fN , N ≥ 1}, which by an
abuse of notation we still denote as the original sequence, and which is such that there exists
a subset N ⊂ [0, 1] with zero Lebesgue measure, such that for all n ≥ 1 and x ∈ [0, 1]\N ,
fN (sn, x) → f(sn, x). Since for all N and x, s 7→ fN(s, x) is nondecreasing and s 7→ f(s, x) is
continuous, we deduce that for all s ∈ [0, T ] and x ∈ [0, 1]\N , fN (s, x) → f(s, x). Consequently,
for all x ∈ [0, 1]\N , the sequence of measures fN(ds, x) on [0, T ] converges weakly to the measure
f(ds, x). Since the set of points of discontinuity of g on [0, T ] is at most countable and s 7→ f(s, x)
is continuous, that set is of zero f(ds, x) measure. Hence a slight extension of the Portmanteau
theorem (see Theorem 1.2.1 in [6]) yields that for all x ∈ [0, 1]\N , hN (t, x) → h(t, x). Moreover,
0 ≤ hN (t, x) ≤ CfN(t, x), and the upper bound converges in L1([0, 1]), hence the sequence hN (t, ·)
is uniformly integrable and converges in L1([0, 1]) towards h(t, x). Now all converging subsequences
have the same limit, so the the whole sequence converges.

The “locally uniform in t” convergence of the integrals follows from the second Dini theorem (see,

e..g, Problem 127 on pages 81 and 270 in [24]). Indeed the convergence
∫ 1
0 hN (t, x)dx →

∫ 1
0 h(t, x)dx

for each t follows from the above arguments, for each N ≥ 1, t 7→
∫ 1
0 hN (t, x)dx is non–decreasing

and the limit t 7→
∫ 1
0 h(t, x)dx is continuous.
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The case of random fN is treated similarly. The extraction of subsequences is done in such a way
that for each n, fN (sn, x) converges as N → ∞ on a subset of Ω × [0, 1] of full dP ⊗ dx measure.
We conclude that from any subsequence of the original sequence {hN (t, ·), N ≥ 1}, we can extract
a further subsequence which converges a.s. in L1([0, 1]), hence the convergence in probability in
L1([0, 1]), as claimed. �

5. Proof of the Convergence of S̄N (t, x) and F̄N (t, x)

In this section we prove the convergence of S̄N (t, x) and F̄N (t, x) to S̄(t, x) and F̄(t, x) given by
the set of equations (2.19) and (2.20) together with (2.21). We first write SN

k (t) = SN
k (0)− AN

k (t)
as follows by (2.5):

SN
k (t) = SN

k (0) −
∫ t

0

∫ ∞

0
1u≤ΥN

k
(s)Qk(ds, du),

and recall FN
k (t) in (2.3). Then, we have

S̄N (t, x) = S̄N (0, x) −
KN
∑

k=1

KN

N

∫ t

0

∫ ∞

0
1u≤ΥN

k
(s)Qk(ds, du)1Ik (x)

= S̄N (0, x) −
∫ t

0
ῩN (s, x)ds − M̄N

A (t, x) , (5.1)

where Qk(ds, du) = Qk(ds, du) − dsdu and

M̄N
A (t, x) :=

KN
∑

k=1

KN

N

∫ t

0

∫ ∞

0
1u≤ΥN

k
(s)Qk(ds, du)1Ik (x) . (5.2)

We then write

F̄N (t, x) = F̄N
0 (t, x) +

∫ t

0
λ̄(t− s)ῩN (s, x)ds +∆N

1,1(t, x) + ∆N
1,2(t, x) , (5.3)

where

F̄N
0 (t, x) =

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

λ−j,k(τ̃
N
−j,k + t)1Ik(x), (5.4)

∆N
1,1(t, x) =

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

(

λj,k(t− τNj,k)− λ̄(t− τNj,k)
)

1Ik(x) , (5.5)

and

∆N
1,2(t, x) =

KN
∑

k=1

KN

N

∫ t

0
λ̄(t− s)

∫ ∞

0
1u≤ΥN

k
(s)Qk(ds, du)1Ik (x) . (5.6)

Observe that

ῩN (s, x) =

KN
∑

k=1

KN

N

SN
k (s)

BN
k

1

KN

KN
∑

k′=1

βN
k,k′F

N
k′(s)1Ik (x)

=

KN
∑

k=1

S̄N
k (s)

B̄N
k

1Ik(x)

∫ 1

0

KN
∑

k′=1

βN
k,k′F̄

N
k′(s)1Ik′ (x

′)dx′

=
S̄N (s, x)

B̄N (x)

∫ 1

0
βN (x, x′)F̄N (s, x′)dx′ , (5.7)
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where βN (x, x′) is defined in (2.14).
Before proceeding to prove the convergence of S̄N (t, x) and F̄N (t, x), we describe the proof

strategy as follows. In the expressions of S̄N (t, x) and F̄N (t, x) in (5.1) and (5.3), the stochastic
terms M̄N

A (t, x), ∆N
1,1(t, x) and ∆N

1,2(t, x) will converge to zero in probability as N → ∞, which are

proved in Lemmas 5.5 and 5.6. The term F̄N
0 (t, ·) will converge to a limit F̄0(t, ·) (in the ‖ · ‖1 norm

in probability), which is proved in Lemma 5.4. Thus, the proof for the convergence of S̄(t, x) and
F̄N (t, x) can be carried out by studying the set of integral equations (5.1) and (5.3) together with
the expression of ῩN (s, x) above, given the convergence of the terms S̄N (0, ·), F̄N

0 (t, ·), M̄N
A (t, x),

∆N
1,1(t, x) and ∆N

1,2(t, x). In the following we will first provide this argument in Proposition 5.1 and
then provide the proofs for the convergence of the required individual terms.

The following Lemma follows readily from (2.8) and (2.3), and the conditions on B̄N (x) in (2.13).

Lemma 5.1. The processes S̄N (t, x) and F̄N (t, x) are nonnegative and satisfy the following a priori
bounds:

sup
N

sup
t≥0, x∈[0,1]

S̄N (t, x) ≤ CB and sup
N

sup
t≥0, x∈[0,1]

F̄N (t, x) ≤ λ∗CB a.s.

Next, recall the set of the limiting equations:

S̄(t, x) = S̄(0, x)−
∫ t

0

S̄(s, x)

B̄(x)

∫ 1

0
β(x, y)F̄(s, y)dyds,

F̄(t, x) = F̄0(t, x) +

∫ t

0
λ̄(t− s)

S̄(s, x)

B̄(x)

∫ 1

0
β(x, y)F̄(s, y)dyds ,

(5.8)

where

F̄0(t, x) :=

∫ ∞

0
λ̄(a+ t)Ī(0, da, x). (5.9)

We have the following lemmas on the solution properties to this set of equations, and also the
existence and uniqueness of its solution.

Lemma 5.2. Under Assumptions 2.1 and 2.3, any (L∞([0, 1]))2–valued solution (S̄(t, x), F̄(t, x))
of equation (5.8) is nonnegative, and satisfies supt≥0 S̄(t, x) ≤ S̄(0, x) ≤ CB and for any T > 0,
there exists CT > 0 such that

sup
0≤t≤T,x∈[0,1]

F̄(t, x) ≤ CT .

Proof. The non–negativity of S̄ follows from that of the initial condition and the linearity of the
equation. For the second statement, we first note that Ī(0,∞, x) ≤ CB , hence from (5.9) and
Assumption 2.3, 0 ≤ F̄0(t, x) ≤ λ∗CB. Hence from the second line of (5.8) and (2.15) and from the
assumption that B̄(x) ≥ cB > 0 for each x ∈ [0, 1] in (2.12), we obtain

‖F̄(t, ·)‖∞ ≤ λ∗CB +
Cβ

cB
λ∗CB

∫ t

0
‖F̄(s, ·)‖∞ds.

Thus, the second statement with CT = λ∗CB exp
(Cβ

cB
λ∗CBT

)

follows from Gronwall’s lemma. We

next show that F̄(t, x) ≥ 0. Suppose that F̄(t, x) = F̄+(t, x)− F̄−(t, x). Then we have

F̄−(t, x) ≤
∫ t

0
λ̄(t− s)

S̄(s, x)

B̄(x)

∫ 1

0
β(x, y)F̄−(s, y)dyds,

and by a similar argument as above using Gronwall’s Lemma, we deduce that ‖F̄−(t, ·)‖∞ = 0, hence
the result. Finally it follows readily from Assumption 2.1 that S̄(0, x) ≤ supN S̄N (0, x) ≤ CB for
all x. From the first line of (5.8), since S̄ and F̄ are nonnegative, S̄(t, x) ≤ S̄(0, x), hence the first
statement. �
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Lemma 5.3. Under Assumptions 2.1 and 2.3, equation (5.8) has a unique (L∞([0, 1]))2–valued
solution.

Proof. We already know that any solution is nonnegative and locally bounded. Uniqueness is then
easy to deduce from the following estimate. Consider two solutions (S̄, F̄) and (S̄′, F̄′), and define

Ῡ(t, x) = S̄(t,x)
B̄(x)

∫ 1
0 β(x, y)F̄(t, y)dy, Ῡ′(t, x) similarly, replacing (S̄, F̄) by (S̄′, F̄′).

Since from (2.12) B̄(x) ≥ cB , and from Lemma 5.2 S̄(t, x) ≤ CB and for 0 ≤ t ≤ T, x ∈ [0, 1],
F̄(t, x) ≤ CT , we obtain

‖Ῡ(t, ·)− Ῡ′(t, ·)‖∞ ≤ sup
x∈[0,1]

∣

∣

∣

∣

S̄(t, x)

B̄(x)
− S̄′(t, x)

B̄(x)

∣

∣

∣

∣

∫ 1

0
β(x, y)F̄(t, y)dy

+ sup
x∈[0,1]

S̄′(t, x)

B̄(x)

∫ 1

0
β(x, y)|F̄(t, y)− F̄′(t, y)|dy

≤ 1

cB
‖S̄(t, ·)− S̄′(t, ·)‖∞ sup

x∈[0,1]

∫ 1

0
β(x, y)F̄(t, y)dy

+
CβCB

cB
‖F̄(t, ·)− F̄′(t, ·)‖∞

≤ Cβ

cB
CT ‖S̄(t, ·)− S̄′(t, ·)‖∞ +

CβCB

cB
‖F̄(t, ·)− F̄′(t, ·)‖∞.

From this inequality, we see that uniqueness follows from Gronwall’s Lemma. The same estimate
can be used repeatedly for proving convergence in L∞([0, 1]) of the Picard iteration procedure, which
establishes existence. �

We can now prove the main result of this section. Let us first introduce a notation. We let
EN
F
(t, x) = ∆N

1,1(t, x) + ∆N
1,2(t, x) and

ΨN (t) :=

∫ 1

0
|F̄N

0 (t, x)− F̄0(t, x)|dx+

∫ 1

0
|M̄N

A (t, x)|dx +

∫ 1

0
|EN

F (t, x)|dx .

Proposition 5.1. Let T > 0 be arbitrary. Given that
∫ 1
0 |S̄N (0, x)− S̄(0, x)|dx → 0 in Assumption

2.1, and assuming that sup0≤t≤T ΨN (t) → 0 in probability as N → ∞, we have

sup
0≤t≤T

(

‖S̄N (t, ·) − S̄(t, ·)‖1 + ‖F̄N (t, ·)− F̄(t, ·)‖1
)

→ 0

in probability as N → ∞.

Proof. Referring to the notations in Lemmas 5.1 and 5.2, let us assume that λ∗ ≤ CT . We first
upper bound the following difference

S̄(t, x)

B̄(x)

∫ 1

0
β(x, y)F̄(t, y)dy − S̄N (t, x)

B̄N(x)

∫ 1

0
βN (x, y)F̄N (t, y)dy

=

(

S̄(t, x)

B̄(x)
− S̄N (t, x)

B̄N (x)

)
∫ 1

0
βN (x, y)F̄N (t, y)dy

+
S̄(t, x)

B̄(x)

(
∫ 1

0
β(x, y)F̄(t, y)dy −

∫ 1

0
βN (x, y)F̄N (t, y)dy

)

≤ CβCT

∣

∣

∣

∣

S̄(t, x)

B̄(x)
− S̄N (t, x)

B̄N (x)

∣

∣

∣

∣

+

∫ 1

0
βN (x, y)(F̄(t, y)− F̄N (t, y))dy

+

∫ 1

0
(β(x, y) − βN (x, y))F̄(t, y)dy .
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Note that by (2.12) and (2.13),
∣

∣

∣

∣

S̄(t, x)

B̄(x)
− S̄N (t, x)

B̄N(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

S̄(t, x)− S̄N (t, x)

B̄(x)
+ S̄N (t, x)

(

1

B̄(x)
− 1

B̄N (x)

)∣

∣

∣

∣

≤ c−1
B |S̄(t, x)− S̄N (t, x)|+ c−2

B CB|B̄N (x)− B̄(x)| .
Consequently,

∥

∥

∥

∥

S̄(t, ·)
B̄(·)

∫ 1

0
β(·, y)F̄(t, y)dy − S̄N (t, ·)

B̄N (·)

∫ 1

0
βN (·, y)F̄N (t, y)dy

∥

∥

∥

∥

1

≤ CβCT c
−1
B ‖S̄(t, ·)− S̄N (t, ·)‖1 + CβCT c

−2
B CB‖B̄N (·)− B̄(·)‖1

+

(

sup
N,y

∫ 1

0
βN (x, y)dx

)

‖F̄(t, ·) − F̄N (t, ·)‖1

+

∫ 1

0

∣

∣

∣

∣

∫ 1

0
(β(x, y) − βN (x, y))F̄(t, y)dx

∣

∣

∣

∣

dy .

We can now estimate the norm ‖S̄(t, ·)−S̄N (t, ·)‖1 and ‖F̄(t, ·)−F̄N (t, ·)‖1. Let C̄ := max{Cβ , CβCT c
−1
B ,

CβCT c
−2
B CB}. We now deduce from (5.1), (5.8) and the last computation that

‖S̄(t, ·)− S̄N (t, ·)‖1 ≤ ‖S̄(0, ·) − S̄N (0, ·)‖1 + ‖M̄N
A (t, ·)‖1

+

∫ t

0

∫ 1

0

∣

∣

∣

∣

∫ 1

0
(β(x, y) − βN (x, y))F̄(s, y)dx

∣

∣

∣

∣

dyds

+ C̄

∫ t

0
‖S̄(s, ·)− S̄N (s, ·)‖1ds + C̄‖B̄N (·)− B̄(·)‖1

+ C̄

∫ t

0
‖F̄(s, ·)− F̄N (s, ·)‖1ds.

Next from (5.3) and (5.8), we get

‖F̄(t, ·)− F̄N (t, ·)‖1 ≤ ‖F̄0(t, ·)− F̄N
0 (t, ·)‖1 + ‖EN

F (t, ·)‖1

+

∫ t

0

∫ 1

0

∣

∣

∣

∣

∫ 1

0
(β(x, y) − βN (x, y))F̄(s, y)dx

∣

∣

∣

∣

dyds

+ C̄

∫ t

0
‖S̄(s, ·)− S̄N (s, ·)‖1ds+ C̄‖B̄N (·)− B̄(·)‖1

+ C̄

∫ t

0
‖F̄(s, ·) − F̄N (s, ·)‖1ds .

Adding those two inequalities, the result follows from our assumptions, the fact that (2.16) in
Assumption 2.2 implies that

∫ t

0

∫ 1

0

∣

∣

∣

∣

∫ 1

0
(β(x, y) − βN (x, y))F̄(s, y)dx

∣

∣

∣

∣

dyds → 0 as N → ∞,

and the following variant of Gronwall’s Lemma: if f(t) and g(t) are nonnegative real-valued func-

tions of t and satisfy f(t) ≤ g(t) + c
∫ t

0 f(s)ds for all 0 ≤ t ≤ T and for some c > 0, then for those

t, f(t) ≤ g(t) + c
∫ t

0 e
c(t−s)g(s)ds. �

It remains to show that sup0≤t≤T ΥN (t) → 0 in probability, which follows from the next three

lemmas, where we establish the convergence of F̄N
0 (t, ·) to F̄0(t, x), and that the stochastic terms

M̄N
A (t, x), ∆N

1,1(t, x) and ∆N
1,2(t, x) of (5.2), (5.5) and (5.6) tend to 0 in probability, as N → ∞.
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Lemma 5.4. Under Assumptions 2.1 and 2.3,

‖F̄N
0 (t, ·)− F̄0(t, ·)‖1 → 0 (5.10)

in probability, locally uniformly in t, as N → ∞, where F̄0(t, x) is defined in (5.9).

Proof. We apply Theorem 4.1. First, we have

F̄N
0 (t, x)− F̄0(t, x) = ∆N

0,1(t, x) + ∆N
0,2(t, x),

where

∆N
0,1(t, x) =

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

(

λ−j,k(τ̃
N
−j,k + t)− λ̄(τ̃N−j,k + t)

)

1Ik(x) ,

∆N
0,2(t, x) =

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

λ̄(τ̃N−j,k + t)1Ik(x)−
∫ ā

0
λ̄(a+ t)Ī(0, da, x)

=

∫ ā

0
λ̄(a+ t)[ĪN (0, da, x) − Ī(0, da, x)] .

We now verify condition (i) of Theorem 4.1. For the first term ∆N
0,1(t, x), we have

‖∆N
0,1(t, ·)‖1 ≤ 1

KN

KN
∑

k=1

KN

N

∣

∣

∣

∣

∣

∣

IN
k
(0)
∑

j=1

(

λ−j,k(τ̃
N
−j,k + t)− λ̄(τ̃N−j,k + t)

)

∣

∣

∣

∣

∣

∣

.

Here the summands over k are independent, and for each k, conditional on {τ̃N−j,k}j , the summands
over j are also independent and centered. Using Jensen’s inequality for the sum over k, and the
conditional independence for the sum over j, we deduce

E











1

KN

KN
∑

k=1

KN

N

∣

∣

∣

∣

∣

∣

IN
k
(0)
∑

j=1

(

λ−j,k(τ̃
N
−j,k + t)− λ̄(τ̃N−j,k + t)

)

∣

∣

∣

∣

∣

∣





2






≤ E





1

KN

KN
∑

k=1

KN

N

∫ ā

0
v(a+ t)ĪNk (0, da)



 → 0 as N → ∞,

since under Assumption 2.1, thanks to Lemma 4.1,

1

KN

KN
∑

k=1

∫ ā

0
v(a+ t)ĪNk (0, da) →

∫ 1

0

∫ ā

0
v(a+ t)Ī(0, da, x)dx

in probability and KN

N
→ 0 as N → ∞. Recall that v(t) is the variance of the random function λ(t)

in Assumption 2.3, which is bounded.
The fact that ‖∆N

0,2‖1 → 0 in probability follows again from Lemma 4.1 and Assumption 2.1.

Now to check condition (ii) of Theorem 4.1, we first have for t, u > 0,

∆N
0,1(t+ u, x)−∆N

0,1(t, x)

=

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

(

λ−j,k(τ̃
N
−j,k + t+ u)− λ−j,k(τ̃

N
−j,k + t)

)

1Ik(x)

−
KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

(

λ̄(τ̃N−j,k + t+ u)− λ̄(τ̃N−j,k + t)
)

1Ik(x) .



FLLN FOR SPATIALLY DENSE NON-MARKOVIAN EPIDEMIC MODELS 21

Observe that
∥

∥

∥

∥

∥

∥

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

(

λ−j,k(τ̃
N
−j,k + t+ u)− λ−j,k(τ̃

N
−j,k + t)

)

1Ik(x)

∥

∥

∥

∥

∥

∥

1

≤ 1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

∣

∣

∣λ−j,k(τ̃
N
−j,k + t+ u)− λ−j,k(τ̃

N
−j,k + t)

∣

∣

∣ ,

and similarly for the second term. Thus,

‖∆N
0,1(t+ u, x)−∆N

0,1(t, x)‖1 ≤ 1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

∣

∣

∣
λ−j,k(τ̃

N
−j,k + t+ u)− λ−j,k(τ̃

N
−j,k + t)

∣

∣

∣

+
1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

∣

∣

∣λ̄(τ̃N−j,k + t+ u)− λ̄(τ̃N−j,k + t)
∣

∣

∣

=: ∆
N,(1)
0,1 (t, u) + ∆

N,(2)
0,1 (t, u) .

By Assumption 2.3, using the expression of λ(t) in (2.17), that is, λ−j,k(t) =
∑κ

ℓ=1 λ
ℓ
−j,k(t)1[ζℓ−1

−j,k
,ζℓ

−j,k
)(t),

we obtain

∆
N,(1)
0,1 (t, u) =

1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

∣

∣

∣

∣

κ
∑

ℓ=1

λℓ
−j,k(τ̃

N
−j,k + t+ u)1[ζℓ−1

−j,k
,ζℓ

−j,k
)(τ̃

N
−j,k + t+ u)

−
κ
∑

ℓ=1

λℓ
−j,k(τ̃

N
−j,k + t)1[ζℓ−1

−j,k
,ζℓ

−j,k
)(τ̃

N
−j,k + t)

∣

∣

∣

∣

≤ 1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

κ
∑

ℓ=1

∣

∣

∣λℓ
−j,k(τ̃

N
−j,k + t+ u)− λℓ

−j,k(τ̃
N
−j,k + t)

∣

∣

∣1ζℓ−1

−j,k
≤τ̃N

−j,k
+t≤τ̃N

−j,k
+t+u≤ζℓ

−j,k

+ λ∗ 1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

κ
∑

ℓ=1

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+u

≤ ϕ(u)
1

KN

KN
∑

k=1

ĪNk (0) + λ∗ 1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

κ
∑

ℓ=1

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+u . (5.11)

Since both terms in the right hand side are increasing in u, we obtain

sup
u∈[0,δ]

∆
N,(1)
0,1 (t, u) ≤ ϕ(δ)

1

KN

KN
∑

k=1

ĪNk (0) + λ∗
κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+δ . (5.12)

Note that

1

KN

KN
∑

k=1

ĪNk (0) →
∫ 1

0
Ī(0, x)dx as N → ∞

under Assumption 2.1. For the second term in (5.12), we have

κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+δ
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=
κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

[

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+δ −
(

Fℓ(τ̃
N
−j,k + t+ δ)− Fℓ(τ̃

N
−j,k + t)

)]

+

κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

(

Fℓ(τ̃
N
−j,k + t+ δ)− Fℓ(τ̃

N
−j,k + t)

)

. (5.13)

In both expressions, the summands over k are independent, and in the first, for each k, conditional
on {τ̃N−j,k}j , the summands over j are also independent. We have

E











1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

[

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+δ −
(

Fℓ(τ̃
N
−j,k + t+ δ) − Fℓ(τ̃

N
−j,k + t)

)]





2






≤ E





1

KN

KN
∑

k=1

(KN

N

)2
( IN

k
(0)
∑

j=1

[

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+δ −
(

Fℓ(τ̃
N
−j,k + t+ δ)− Fℓ(τ̃

N
−j,k + t)

)]

)2




= E





1

KN

KN
∑

k=1

(KN

N

)2
IN
k
(0)
∑

j=1

[

1τ̃N
−j,k

+t≤ζℓ
−j,k

≤τ̃N
−j,k

+t+δ −
(

Fℓ(τ̃
N
−j,k + t+ δ) − Fℓ(τ̃

N
−j,k + t)

)]2





= E

[

1

KN

KN
∑

k=1

(KN

N

)2
IN
k
(0)
∑

j=1

[(

Fℓ(τ̃
N
−j,k + t+ δ)− Fℓ(τ̃

N
−j,k + t)

)

×
(

1−
(

Fℓ(τ̃
N
−j,k + t+ δ) − Fℓ(τ̃

N
−j,k + t)

))]

]

= E





1

KN

KN
∑

k=1

KN

N

∫ ā

0

[(

Fℓ(a+ t+ δ) − Fℓ(a+ t)
)(

1−
(

Fℓ(a+ t+ δ)− Fℓ(a+ t)
))]

ĪNk (0, da)





→ 0 as N → ∞ ,

since under Assumption 2.1,

1

KN

KN
∑

k=1

∫ ā

0

[(

Fℓ(a+ t+ δ)− Fℓ(a+ t)
)(

1−
(

Fℓ(a+ t+ δ)− Fℓ(a+ t)
))]

ĪNk (0, da)

→
∫ 1

0

∫ ā

0

[(

Fℓ(a+ t+ δ)− Fℓ(a+ t)
)(

1−
(

Fℓ(a+ t+ δ) − Fℓ(a+ t)
))]

Ī(0, da, x)dx ,

and KN

N
→ 0 as N → ∞. Hence, the first term in (5.13) converges to zero in probability as N → ∞.

For the second term in (5.13), we have

κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

(

Fℓ(τ̃
N
−j,k + t+ δ) − Fℓ(τ̃

N
−j,k + t)

)

=

κ
∑

ℓ=1

1

KN

KN
∑

k=1

∫ ā

0

(

Fℓ(a+ t+ δ)− Fℓ(a+ t)
)

ĪNk (0, da)

→
κ
∑

ℓ=1

∫ 1

0

∫ ā

0

(

Fℓ(a+ t+ δ) − Fℓ(a+ t)
)

Ī(0, da, x)dx ,



FLLN FOR SPATIALLY DENSE NON-MARKOVIAN EPIDEMIC MODELS 23

in probability as N → ∞. For each ℓ = 1, . . . , κ, the function δ →
∫ 1
0

∫ x̄

0

(

Fℓ(a + t + δ) − Fℓ(a +

t)
)

Ī(0, da, x)dx is continuous and equal to zero at δ = 0. Thus we have shown that for any small

enough δ > 0,

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
0≤u≤δ

∆
N,(1)
0,1 (t, u) > ǫ/2

)

= 0. (5.14)

Note that

∆
N,(2)
0,1 (t, u) =

∫ 1

0

∫ ā

0

∣

∣λ̄(a+ t+ u)− λ̄(a+ t)
∣

∣ ĪN (0, da, x)dx . (5.15)

By similar calculations leading to (5.12), we obtain for any small enough δ > 0,

sup
u∈[0,δ]

∆
N,(2)
0,1 (t, u) ≤ ϕ(δ)

1

KN

KN
∑

k=1

ĪNk (0)

+ λ∗
κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

(

Fℓ(τ̃
N
−j,k + t+ δ)− Fℓ(τ̃

N
−j,k + t)

)

.

Thus, by the same arguments for these two terms as in the proof for (5.14), we obtain that (5.14)

holds for ∆
N,(2)
0,1 (t, u). Thus, combining these two results, we obtain that for any ǫ > 0, for δ > 0

small enough,

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
0≤u≤δ

‖∆N
0,1(t+ u, x)−∆N

0,1(t, x)‖1 > ǫ

)

= 0 . (5.16)

Now for ∆N
0,2(t, x), we have for t, u > 0,

‖∆N
0,2(t+ u, x)−∆N

0,2(t, x)‖1

≤
∫ 1

0

∫ ā

0
|λ̄(a+ t+ u)− λ̄(a+ t)|[ĪN (0, da, x) + Ī(0, da, x)]dx,

which is treated exactly as ∆
N,(2)
0,1 (t, u), see formula (5.15). This completes the proof of the lemma.

�

Lemma 5.5. Under Assumptions 2.1, 2.2 and 2.3, for all T > 0,

E

[

sup
t∈[0,T ]

‖M̄N
A (t, ·)‖21

]

→ 0 , (5.17)

and thus,
∥

∥

∥ĀN (t, ·) −
∫ t

0
ῩN (s, ·)ds

∥

∥

∥

1
→ 0 (5.18)

in probability, locally uniformly in t.
In addition, there exists CT > 0 such that for all N ≥ 1,

E

[

sup
t≤T

‖ĀN (t, ·)‖1
]

≤ CT . (5.19)

Proof. Recall the expressions of AN
k (t) in (2.5) and ΥN

k (t) in (2.4). By (2.3), under Assumption 2.3

that λ(t) ≤ λ∗, under the condition on B̄(x) in (2.12), and (2.13), we have F̄N (t, x) ≤ λ∗CB and
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thus, under Assumption 2.2, ῩN (t, x) ≤ λ∗CBCβ, where we have used (2.15). Hence ‖ῩN (t, ·)‖1 ≤
λ∗CBCβ, and

∥

∥

∥

∫ t

0
ῩN(r, ·)dr −

∫ s

0
ῩN (r, ·)dr

∥

∥

∥

1
≤ λ∗CBCβ(t− s) . (5.20)

For each k, we can write

ĀN
k (t) =

∫ t

0
ῩN

k (s)ds + M̄N
A,k(t)

where

M̄N
A,k(t) =

KN

N

∫ t

0

∫ ∞

0
1u≤ΥN

k
(s−)Q̄k(ds, du)

with Q̄k(ds, du) = Qk(ds, du) − dsdu being the compensated PRM associated with Qk. Let

M̄N
A (t, x) =

∑KN

k=1 M̄
N
A,k(t)1Ik(x). Then we have the time-space representation:

ĀN (t, x) =

∫ t

0
ῩN(r, x)dr + M̄N

A (t, x) . (5.21)

It is clear that for each k, {M̄N
A,k(t) : t ≥ 0} is a square-integrable martingale with respect to the

filtration FN
A = {FN

A (t) : t ≥ 0} where

FN
A (t) := σ

{

INk (0), τ̃N−j,k : j = 1, . . . , INk (0), k = 1, . . . ,K
}

∨ σ
{

λj,k(·), j ∈ Z \ {0}, k = 1, . . . ,K
}

∨ σ

{∫ t′

0

∫ ∞

0
1u≤ΥN

k
(s−)Qk(ds, du) : 0 ≤ t′ ≤ t, k = 1, . . . ,K

}

.

and has the quadratic variation

〈M̄N
A,k〉(t) =

KN

N

∫ t

0
ῩN

k (s)ds, t ≥ 0.

Then,

‖M̄N
A (t, ·)‖1 ≤

∫ 1

0

∣

∣

∣

∣

KN
∑

k=1

M̄N
A,k(t)1Ik(x)

∣

∣

∣

∣

dx ≤ 1

KN

KN
∑

k=1

∣

∣M̄N
A,k(t)

∣

∣ . (5.22)

By Doob’s inequality for submartingales,

E

[

sup
t∈[0,T ]

∣

∣M̄N
A,k(t)

∣

∣

2
]

≤ E
[∣

∣M̄N
A,k(T )

∣

∣

2]
= E

[

KN

N

∫ T

0
ῩN

k (s)ds

]

≤ λ∗CBCβT
KN

N
.

Since KN

N
→ 0 as N → ∞, the last inequality entails that as N → ∞,

sup
1≤k≤K

E

[

sup
t∈[0,T ]

∣

∣M̄N
A,k(t)

∣

∣

2
]

→ 0.

This combined with (5.22) implies that (5.17) holds.
Note that the above computations, combined with (5.21) and (5.20), yield (5.19).
Finally (5.18) follows directly from (5.21) and (5.17). �

We finally show that ∆N
1,1(t, ·) and ∆N

1,2(t, ·) tend to 0.

Lemma 5.6. Under Assumptions 2.1, 2.2 and 2.3, as N → ∞, both ∆N
1,1(t, ·) and ∆N

1,2(t, ·) defined
in (5.5) and (5.6) converge to zero in L1([0, 1]) in probability, locally uniformly in t.
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Proof. We apply Theorem 4.1. We first consider ∆N
1,1(t, x). To verify condition (i) of Theorem 4.1,

we have

‖∆N
1,1(t, ·)‖1 ≤ 1

KN

KN
∑

k=1

KN

N

∣

∣

∣

∣

∣

∣

AN
k
(t)

∑

j=1

(

λj,k(t− τNj,k)− λ̄(t− τNj,k)
)

∣

∣

∣

∣

∣

∣

.

Recall the expression of AN
k (t) in (2.5) and the associated ΥN

k (t) in (2.4). It is clear that
the summands over k are not independent due to the interactions among individuals in different
locations in the infection process. Using first Jensen’s inequality, and then the fact that for each k,
conditional on the arrivals {τNj,k}j , the summands over j are independent and centered, we have

E











1

KN

KN
∑

k=1

KN

N

∣

∣

∣

∣

∣

∣

AN
k
(t)

∑

j=1

(

λj,k(t− τNj,k)− λ̄(t− τNj,k)
)

∣

∣

∣

∣

∣

∣





2






≤ E







1

KN

KN
∑

k=1





KN

N

AN
k
(t)

∑

j=1

(

λj,k(t− τNj,k)− λ̄(t− τNj,k)
)





2






= E





1

KN

KN
∑

k=1

(KN

N

)2
AN

k
(t)

∑

j=1

∣

∣

∣
λj,k(t− τNj,k)− λ̄(t− τNj,k)

∣

∣

∣

2





= E





1

KN

KN
∑

k=1

(KN

N

)2
∫ t

0
v(t− s)dAN

k (s)





≤ (λ∗)2E





1

KN

KN
∑

k=1

KN

N
ĀN

k (t)





= (λ∗)2
KN

N
E
[

‖ĀN (t, ·)‖1
]

→ 0 as N → ∞ ,

where we used v(t) ≤ (λ∗)2 under Assumption 2.3, and the convergence follows from the assumption

that KN

N
→ 0 as N → ∞, and (5.19) in Lemma 5.5.

We next check condition (ii) in Theorem 4.1 for ∆N
1,1(t, x). We have

∆N
1,1(t+ u, x)−∆N

1,1(t, x) =

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

(

λj,k(t+ u− τNj,k)− λj,k(t− τNj,k)
)

1Ik(x)

−
KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

(

λ̄(t+ u− τNj,k)− λ̄(t− τNj,k)
)

1Ik(x)

+

KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
(t)+1

(

λj,k(t+ u− τNj,k)− λ̄(t+ u− τNj,k)
)

1Ik(x) ,

and

‖∆N
1,1(t+ u, x)−∆N

1,1(t, x)‖1 ≤ 1

KN

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

∣

∣

∣
λj,k(t+ u− τNj,k)− λj,k(t− τNj,k)

∣

∣

∣
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+
1

KN

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

∣

∣

∣
λ̄(t+ u− τNj,k)− λ̄(t− τNj,k)

∣

∣

∣

+
1

KN

KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
(t)+1

∣

∣

∣λj,k(t+ u− τNj,k)− λ̄(t+ u− τNj,k)
∣

∣

∣

=: ∆
N,(1)
1,1 (t, u) + ∆

N,(2)
1,1 (t, u) + ∆

N,(3)
1,1 (t, u) .

Similar to ∆
N,(1)
0,1 (t, u) in (5.11), we have

sup
u∈[0,δ]

∆
N,(1)
1,1 (t, u) ≤ ϕ(δ)

∫ 1

0
ĀN (t, x)dx+ λ∗ 1

KN

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

κ
∑

ℓ=1

1t−τN
j,k

≤ζℓ
j,k

≤t+δ−τN
j,k

.

We note that
∫ 1

0
ĀN (t, x)dx =

∫ 1

0

∫ t

0
ῩN (s, x)dsdx+

∫ 1

0
M̄N

A (t, x)dx

≤ λ∗CBCβt+

∫ 1

0
M̄N

A (t, x)dx .

Hence, we deduce from (5.17) that as soon as δ > 0 is small enough such that ϕ(δ)λ∗CBCβt < ǫ/6,

lim sup
N

1

δ
P

(

ϕ(δ)

∫ 1

0
ĀN (t, x)dx > ǫ/6

)

= 0 . (5.23)

For the second term, we have

E











κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

1t−τN
j,k

≤ζℓ
j,k

≤t+δ−τN
j,k





2






≤ 2E









κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

∫ t

0

∫ ∞

0

∫ t+δ−s

t−s

1r≤ΥN
k
(s−)Qk,ℓ(ds, dr, dζ)





2



+ 2E









κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

∫ t

0

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)

ΥN
k (s)ds





2



where Qk,ℓ(ds, dr, dζ) is a PRM on R
3
+ with mean measure dsdrFℓ(dζ) whose projection on the first

two coordinates is Qk, and Qk,ℓ(ds, dr, dζ) is the corresponding compensated PRM. Observe that

E









κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

∫ t

0

∫ ∞

0

∫ t+δ−s

t−s

1r≤ΥN
k
(s−)Qk,ℓ(ds, dr, dζ)





2



≤ κ
κ
∑

ℓ=1

E





1

KN

KN
∑

k=1

(

KN

N

∫ t

0

∫ ∞

0

∫ t+δ−s

t−s

1r≤ΥN
k
(s−)Qk,ℓ(ds, dr, dζ)

)2




= κ

κ
∑

ℓ=1

1

KN

KN
∑

k=1

(KN

N

)2
E

[∫ t

0

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)

ΥN
k (s)ds

]
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≤ λ∗CBCβκ
κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

∫ t

0

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)

ds

≤ λ∗CBCβκ
2δ

KN

N
→ 0 as N → ∞,

where we have used the inequality

0 ≤
∫ t

0
[Fℓ(s+ δ)− Fℓ(s)]ds ≤

∫ t+δ

0
Fℓ(s)ds−

∫ t

0
Fℓ(s)ds ≤ δ , (5.24)

and

E









κ
∑

ℓ=1

1

KN

KN
∑

k=1

KN

N

∫ t

0

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)

ΥN
k (s)ds





2



≤ κ

κ
∑

ℓ=1

1

KN

KN
∑

k=1

E

[

(

KN

N

∫ t

0

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)

ΥN
k (s)ds

)2
]

≤ κ(λ∗CBCβ)
2

κ
∑

ℓ=1

(∫ t

0
[Fℓ(s+ δ)− Fℓ(s)]ds

)2

≤ (κλ∗CBCβδ)
2 .

This combined with (5.23) shows that

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
0≤u≤δ

∆
N,(1)
1,1 (t, u) > ǫ/3

)

→ 0 as δ → 0 . (5.25)

Next, similar to ∆
N,(1)
0,1 (t, u) in (5.11), we have

sup
u∈[0,δ]

∆
N,(2)
1,1 (t, u) ≤ ϕ(δ)

1

KN

KN
∑

k=1

ĀN
k (t) + λ∗ 1

KN

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=1

κ
∑

ℓ=1

(

Fℓ(t+ δ − τNj,k)− Fℓ(t− τNj,k)
)

.

Then using the same arguments leading to (5.25), we obtain that (5.25) holds for ∆
N,(2)
1,1 (t, u).

Finally, for ∆
N,(3)
1,1 (t, u), we have

sup
0≤u≤δ

∆
N,(3)
1,1 (t, u) ≤ λ∗ 1

KN

KN
∑

k=1

(ĀN
k (t+ δ)− ĀN

k (t))

= λ∗

∫ 1

0

∫ t+δ

t

ĀN (ds, x)dx .

So

P

(

sup
0≤u≤δ

∆
N,(3)
1,1 (t, u) > ǫ/3

)

≤ 18(λ∗)2

ǫ2

{

E

[

(
∫ 1

0

∫ t+δ

t

ῩN (s, x)dsdx

)2
]

+ E
[

‖M̄N
A (t+ δ, ·) − M̄N

A (t, ·)‖21
]

}

,

and from (5.17) and (5.20),

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
0≤u≤δ

∆
N,(3)
1,1 (t, u) > ǫ/3

)

≤
18(λ∗)4(CB)

2C2
β

ǫ2
δ
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→ 0, as δ → 0 .

Consequently (5.25) holds for ∆
N,(3)
1,1 (t, u).

Thus combining the three last results, we obtain

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
0≤u≤δ

‖∆N
1,1(t+ u, x)−∆N

1,1(t, x)‖1 > ǫ

)

→ 0, as δ → 0. (5.26)

Thus we have shown that ∆N
1,1(t, ·) → 0 in L1([0, 1]) in probability, locally uniformly in t, as N → ∞.

We now consider ∆N
1,2(t, x). To check condition (i) in Theorem 4.1, we have for each t ≤ T ,

E
[

‖∆N
1,2(t, ·)‖21

]

≤ E









1

KN

KN
∑

k=1

KN

N

∫ t

0

∫ ∞

0
λ̄(t− s)1u≤ΥN

k
(s)Qk(ds, du)





2



≤ E





1

KN

KN
∑

k=1

(KN

N

)2
(
∫ t

0

∫ ∞

0
λ̄(t− s)1u≤ΥN

k
(s)Qk(ds, du)

)2




= E





1

KN

KN
∑

k=1

(KN

N

)2
∫ t

0
λ̄(t− s)2ΥN

k (s)ds





≤ (λ∗)2
KN

N
E





1

KN

KN
∑

k=1

∫ t

0
ῩN

k (s)ds





≤ (λ∗)3CBCβT
KN

N
→ 0

as N → ∞. To check condition (ii) in Theorem 4.1, we have

∆N
1,2(t+ u, x)−∆N

1,2(t, x)

=

KN
∑

k=1

KN

N

∫ t+u

0

∫ ∞

0

(

λ̄(t+ u− s)− λ̄(t− s)
)

1r≤ΥN
k
(s)Qk(ds, dr)1Ik (x)

+

KN
∑

k=1

KN

N

∫ t+u

t

∫ ∞

0
λ̄(t− s)1r≤ΥN

k
(s)Qk(ds, dr)1Ik (x) .

Thus,

‖∆N
1,2(t+ u, ·)−∆N

1,2(t, ·)‖1

≤ 1

KN

KN
∑

k=1

∣

∣

∣

∣

KN

N

∫ t+u

0

∫ ∞

0

(

λ̄(t+ u− s)− λ̄(t− s)
)

1r≤ΥN
k
(s)Qk(ds, dr)

∣

∣

∣

∣

+
1

KN

KN
∑

k=1

∣

∣

∣

∣

KN

N

∫ t+u

t

∫ ∞

0
λ̄(t− s)1r≤ΥN

k
(s)Qk(ds, dr)

∣

∣

∣

∣

≤ 1

KN

KN
∑

k=1

KN

N

∫ t+u

0

∫ ∞

0

∣

∣λ̄(t+ u− s)− λ̄(t− s)
∣

∣1r≤ΥN
k
(s)Qk(ds, dr)

+
1

KN

KN
∑

k=1

KN

N

∫ t+u

0

∣

∣λ̄(t+ u− s)− λ̄(t− s)
∣

∣ΥN
k (s)ds
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+
1

KN

KN
∑

k=1

KN

N

∫ t+u

t

∫ ∞

0
λ̄(t− s)1r≤ΥN

k
(s)Qk(ds, dr)

+
1

KN

KN
∑

k=1

KN

N

∫ t+u

t

λ̄(t− s)ΥN
k (s)ds ,

from which we obtain

sup
0≤u≤δ

‖∆N
1,2(t+ u, ·)−∆N

1,2(t, ·)‖1

≤ 1

KN

KN
∑

k=1

KN

N

∫ t+δ

0

∫ ∞

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

1r≤ΥN
k
(s)Qk(ds, dr)

+
1

KN

KN
∑

k=1

KN

N

∫ t+δ

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

ΥN
k (s)ds

+
1

KN

KN
∑

k=1

KN

N

∫ t+δ

t

∫ ∞

0
λ̄(t− s)1r≤ΥN

k
(s)Qk(ds, dr)

+
1

KN

KN
∑

k=1

KN

N

∫ t+δ

t

λ̄(t− s)ΥN
k (s)ds .

For the first term, we have

E









1

KN

KN
∑

k=1

KN

N

∫ t+δ

0

∫ ∞

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

1r≤ΥN
k
(s)Qk(ds, dr)





2



≤ 2E









1

KN

KN
∑

k=1

KN

N

∫ t+δ

0

∫ ∞

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

1r≤ΥN
k
(s)Qk(ds, dr)





2



+ 2E









1

KN

KN
∑

k=1

KN

N

∫ t+δ

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

ΥN
k (s)ds





2



≤ 2E





1

KN

KN
∑

k=1

(

KN

N

∫ t+δ

0

∫ ∞

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

1r≤ΥN
k
(s)Qk(ds, dr)

)2




+ 2E





1

KN

KN
∑

k=1

(

KN

N

∫ t+δ

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

ΥN
k (s)ds

)2




≤ 2E





1

KN

KN
∑

k=1

KN

N

∫ t+δ

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]2

ῩN
k (s)ds





+ 2E





1

KN

KN
∑

k=1

(

∫ t+δ

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

ῩN
k (s)ds

)2




≤ 2
KN

N
λ∗CBCβ

∫ t+δ

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]2

ds
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+ 2(λ∗CBCβ)
2

(

∫ t+δ

0

[

ϕ(δ) + λ∗
κ
∑

ℓ=1

(

Fℓ(t+ δ − s)− Fℓ(t− s)
)]

ds

)2

.

Since the integral terms can be made arbitrarily small by choosing δ > 0 small enough, we have
that

lim sup
N→∞

sup
t∈[0,T ]

P

(

sup
0≤u≤δ

∆
N,(1)
1,2 (t, u) > ǫ/4

)

= 0

for δ > 0 small enough. The second term is already treated above as the second component in the
upper bound. The other two terms can be treated in a similar but simpler way. Thus we have
shown that

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
0≤u≤δ

‖∆N
1,2(t+ u, x)−∆N

1,2(t, x)‖1 > ǫ

)

→ 0, as δ → 0. (5.27)

Thus we have shown that ∆N
1,2(t, ·) → 0 in L1([0, 1]) in probability, locally uniformly in t, as N → ∞.

The proof for the lemma is complete. �

We now deduce the following Corollary from the results in Proposition 5.1 and Lemmas 5.5, 5.4
and 5.6.

Corollary 5.1. Under Assumptions 2.1, 2.2 and 2.3, we have that ‖ῩN (t, ·) − Ῡ(t, ·)‖1 → 0 in
probability, locally uniformly in t, as N → ∞ where Ῡ(t, x) is given in (2.21), and thus, ‖ĀN (t, ·)−
Ā(t, ·)‖1 → 0 in probability, locally uniformly in t, as N → ∞, where

Ā(t, x) =

∫ t

0

S̄(s, x)

B̄(x)

∫ 1

0
β(x, x′)F̄(s, x′)dx′ds =

∫ t

0
Ῡ(s, x)ds . (5.28)

Proof. Combining the results in Lemmas 5.5, 5.4 and 5.6 we have shown that sup0≤t≤T ΨN (t) → 0

in probability as N → ∞. Thus by Proposition 5.1, we can conclude the convergence of S̄N (t, ·)
and F̄N(t, ·) in L1([0, 1]) in probability, locally uniformly in t. By the expression of ῩN (t, x) in
(5.7), we immediately obtain the convergence of ῩN (t, ·). Then by the expression of ĀN (t, x) in
(5.21), we obtain the convergence in probability of ĀN (t, ·) to Ā(t, ·) given in (5.28), as announced.
The uniformity in t follows from the second Dini theorem. �

6. Proof for the Convergence of ĪN (t, a, x)

In this section, we prove the convergence of ĪN (t, a, x) to Ī(t, a, x) as stated in Proposition 6.1
below. Recall INk (t, a) in (2.6). We write the two decomposed processes:

ĪN0 (t, a, x) =

KN
∑

k=1

KN

N

IN
k
(0)
∑

j=1

1η0
−j,k

>t1τ̃N
−j,k

≤(a−t)+1Ik(x) =

KN
∑

k=1

KN

N

IN
k
(0,(a−t)+)
∑

j=1

1η0
−j,k

>t1Ik(x) , (6.1)

and

ĪN1 (t, a, x) =

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

1τN
j,k

+ηj,k>t1Ik(x) . (6.2)

Lemma 6.1. Under Assumptions 2.1 and 2.3,

‖ĪN0 (t, a, ·) − Ī0(t, a, ·)‖1 → 0 (6.3)

in probability, locally uniformly in t and a, as N → ∞, where

Ī0(t, a, x) :=

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
Ī(0, da′, x) . (6.4)
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Proof. We first write
ĪN0 (t, a, x) = ĪN0,1(t, a, x) + ĪN0,2(t, a, x)

where

ĪN0,1(t, a, x) =

KN
∑

k=1

KN

N

IN
k
(0,(a−t)+)
∑

j=1

F c(τ̃N−j,k + t)

F c(τ̃N−j,k)
1Ik(x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x) , (6.5)

ĪN0,2(t, a, x) =

KN
∑

k=1

KN

N

IN
k
(0,(a−t)+)
∑

j=1

(

1η0
−j,k

>t −
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)

1Ik(x) . (6.6)

We apply Theorem 4.2. We first consider the process ĪN0,1(t, a, x) and show that

‖ĪN0,1(t, a, ·) − Ī0(t, a, ·)‖1 → 0, in probability, locally uniformly in t and a, (6.7)

as N → ∞. We first check condition (i) of Theorem 4.2. we have

ĪN0,1(t, a, x) − Ī0(t, a, x) =

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
[ĪN (0, da′, x)− Ī(0, da′, x)] .

Condition (i) of Theorem 4.2 follows from Lemma 4.1 and Assumption 2.1.
Next, we check condition (ii) of Theorem 4.2 for the processes ĪN0,1(t, a, x)− Ī0(t, a, x). We verify

the condition for ĪN0,1(t, a, x) in detail below, since the similar calculations can be done for Ī0(t, a, x).

Namely, we show that for any ǫ > 0, and for any T, ā′ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
a∈[0,ā′]

‖ĪN0,1(t+ u, a, ·) − ĪN0,1(t, a, ·)‖1 > ǫ

)

→ 0 , (6.8)

lim sup
N

sup
a∈[0,ā′]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN0,1(t, a+ v, ·) − ĪN0,1(t, a, ·)‖1 > ǫ

)

→ 0 . (6.9)

To prove (6.8), we have

ĪN0,1(t+ u, a, x) − ĪN0,1(t, a, x)

=

∫ (a−t−u)+

0

F c(a′ + t+ u)

F c(a′)
ĪN (0, da′, x)−

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x) ,

and

∥

∥ĪN0,1(t+ u, a, ·) − ĪN0,1(t, a, ·)
∥

∥

1
≤
∫ 1

0

∫ (a−t−u)+

0

F c(a′ + t)− F c(a′ + t+ u)

F c(a′)
ĪN (0, da′, x)dx

+

∫ 1

0

∫ (a−t)+

(a−t−u)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .

Thus,

sup
u∈[0,δ]

sup
a∈[0,ā′]

∥

∥ĪN0,1(t+ u, a, ·) − ĪN0,1(t, a, ·)
∥

∥

1
≤
∫ 1

0

∫ (ā′−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

+ sup
a∈[0,ā′]

∫ 1

0

∫ (a−t)+

(a−t−δ)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .

Thanks to Lemma 4.1 and Assumption 2.1, the first term on the right converges in probability as
N → ∞ to

∫ 1

0

∫ (ā′−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx ,
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which converges to zero as δ → 0. It follows from the uniform convergence established in Lemma
4.1 that the second term on the right converges in probability as N → ∞, to

sup
a∈[0,ā′]

∫ 1

0

∫ (a−t)+

(a−t−δ)+

F c(a′ + t)

F c(a′)
Ī(0, da′, x)dx ≤ sup

a∈[0,ā′]

∫ 1

0

∫ (a−t)+

(a−t−δ)+
Ī(0, da′, x)dx .

Under Assumption 2.1, it is clear that the upper bound converges to zero at δ → 0. Thus we have
shown that for ǫ > 0, if δ > 0 is small enough,

lim sup
N

sup
t∈[0,T ]

P

(

sup
u∈[0,δ]

sup
a∈[0,ā]

‖ĪN0,1(t+ u, a, ·) − ĪN0,1(t, a, ·)‖1 > ǫ

)

= 0 .

To prove (6.9), we have

ĪN0,1(t, a+ v, x)− ĪN0,1(t, a, x) =

∫ 1

0

∫ (a+v−t)+

(a−t)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx ,

and

sup
v∈[0,δ]

sup
t∈[0,T ]

∥

∥ĪN0,1(t, a+ v, ·) − ĪN0,1(t, a, ·)‖1 ≤ sup
t∈[0,T ]

∫ 1

0

∫ (a+δ−t)+

(a−t)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .

In order to show that the supt on the above right hand side converges in probability, as N → ∞,
to

sup
t∈[0,T ]

∫ 1

0

∫ (a+v−t)+

(a−t)+

F c(a′ + t)

F c(a′)
Ī(0, da′, x)dx ≤ sup

t∈[0,T ]

∫ 1

0

∫ (a+v−t)+

(a−t)+
Ī(0, da′, x)dx , (6.10)

it suffices to show that the convergence of
∫ 1
0

∫ (a+δ−t)+

(a−t)+
F c(a′+t)
F c(a′) ĪN (0, da′, x)dx is uniform in t. Indeed,

we note that
∫ 1

0

∫ (a+δ−t)+

(a−t)+

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx

=

∫ 1

0

∫ (a+δ−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx−

∫ (a−t)+

0

F c(a′ + t)

F c(a′)
ĪN (0, da′, x)dx .

This right hand side is the difference of two non–increasing functions of t which converge pointwise
to their limit in probability, as N → ∞, and both limits are continuous in t. Hence the uniform
convergence follows from the second Dini theorem, exactly as in the proof of Lemma 4.1. Going
back to (6.10), we note that, under Assumption 2.1, the right hand side converges to zero at δ → 0.
Thus we have shown that for ǫ > 0, if δ > 0 is small enough,

lim sup
N

sup
a∈[0,ā]

P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN0,1(t, a+ v, ·) − ĪN0,1(t, a, ·)‖1 > ǫ

)

= 0 .

Thus we have verified condition (ii) of Theorem 4.2 for the processes ĪN0,1(t, a, x), and with a similar

argument for Ī0(t, a, x), and thus, for the difference ĪN0,1(t, a, x) − Ī0(t, a, x). Therefore, the claim

on the convergence of ĪN0,1(t, a, x) in (6.7) is proved.

We next prove the convergence of ĪN0,2(t, a, x):

‖ĪN0,2(t, a, ·)‖1 → 0, in probability, locally uniformly in t and a, as N → ∞. (6.11)

To check condition (i) of Theorem 4.2, we have

‖ĪN0,2(t, a, ·)‖1 ≤ 1

KN

KN
∑

k=1

∣

∣

∣

∣

∣

KN

N

IN
k
(0,(a−t)+)
∑

j=1

(

1η0
−j,k

>t −
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)

∣

∣

∣

∣

∣

.



FLLN FOR SPATIALLY DENSE NON-MARKOVIAN EPIDEMIC MODELS 33

We deduce from Jensen’s inequality that

E

[(

1

KN

KN
∑

k=1

KN

N

∣

∣

∣

∣

∣

IN
k
(0,(a−t)+)
∑

j=1

(

1η0
−j,k

>t −
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)

∣

∣

∣

∣

∣

)2]

≤ 1

KN

KN
∑

k=1

KN

N
E

[

∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(

1− F c(a′ + t)

F c(a′)

)

ĪNk (0, da′)

]

, (6.12)

where we have used the fact that the η0−j,k’s are conditionally independent, given the τ̃N−j,k’s. Note
that under Assumption 2.1, thanks to Lemma 4.1, as N → ∞, in probability,

1

KN

KN
∑

k=1

∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(

1− F c(a′ + t)

F c(a′)

)

ĪNk (0, da′)

=

∫ 1

0

∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(

1− F c(a′ + t)

F c(a′)

)

ĪN (0, da′, x)dx

→
∫ 1

0

∫ (a−t)+

0

F c(a′ + t)

F c(a′)

(

1− F c(a′ + t)

F c(a′)

)

Ī(0, da′, x)dx .

Thus, the upper bound in (6.12) converges to zero as N → ∞. This implies that for any ǫ > 0,

sup
t∈[0,T ]

sup
a∈[0,ā]

P
(

‖ĪN0,2(t, a, ·)‖1 > ǫ
)

→ 0 as N → ∞.

Next, to check condition (ii) of Theorem 4.2, we show that for any ǫ > 0, and for any T, ā′ > 0, as
δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
a∈[0,ā′]

∥

∥ĪN0,2(t+ u, a, ·) − ĪN0,2(t, a, ·)
∥

∥

1
> ǫ

)

→ 0 , (6.13)

lim sup
N

sup
a∈[0,ā]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

∥

∥ĪN0,2(t, a+ v, ·)− ĪN0,2(t, a, ·)
∥

∥

1
> ǫ

)

→ 0 . (6.14)

To prove (6.13), we have

ĪN0,2(t+ u, a, x) − ĪN0,2(t, a, x)

=

KN
∑

k=1

KN

N

IN
k
(0,(a−t−u)+)
∑

j=1

(

1t<η0
−j,k

≤t+u −
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

)

1Ik(x)

−
KN
∑

k=1

KN

N

IN
k
(0,(a−t)+)
∑

j=IN
k
(0,(a−t−u)+)+1

(

1η0
−j,k

>t −
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)

1Ik(x) ,

and
∥

∥ĪN0,2(t+ u, a, ·) − ĪN0,2(t, a, ·)
∥

∥

1

≤ 1

KN

KN
∑

k=1

∣

∣

∣

∣

∣

KN

N

IN
k
(0,(a−t−u)+)
∑

j=1

(

1t<η0
−j,k

≤t+u −
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

)

∣

∣

∣

∣

∣

+
1

KN

KN
∑

k=1

∣

∣

∣

∣

∣

KN

N

IN
k
(0,(a−t)+)
∑

j=IN
k
(0,(a−t−u)+)+1

(

1η0
−j,k

>t −
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)

∣

∣

∣

∣

∣
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≤ 1

KN

KN
∑

k=1

KN

N

IN
k
(0,(a−t−u)+)
∑

j=1

1t<η0
−j,k

≤t+u

+
1

KN

KN
∑

k=1

KN

N

IN
k
(0,(a−t−u)+)
∑

j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

+
1

KN

KN
∑

k=1

(

ĪNk (0, (a − t)+)− ĪNk (0, (a − t− u)+)
)

. (6.15)

For the first term on the right, we have

P

(

sup
u∈[0,δ]

sup
a∈[0,ā′]

1

KN

KN
∑

k=1

KN

N

IN
k
(0,(a−t−u)+)
∑

j=1

1t<η0
−j,k

≤t+u > ǫ

)

≤ P

(

1

KN

KN
∑

k=1

KN

N

IN
k
(0,(ā′−t)+)
∑

j=1

1t<η0
−j,k

≤t+δ > ǫ

)

≤ P

(

1

KN

KN
∑

k=1

KN

N

IN
k
(0,(ā−t)+)
∑

j=1

(

1t<η0
−j,k

≤t+δ −
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)

)

> ǫ/2

)

+ P

(

1

KN

KN
∑

k=1

KN

N

IN
k
(0,(ā−t)+)
∑

j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)
> ǫ/2

)

. (6.16)

Here using Jensen’s inequality and the fact that the summands over j are independent, conditionally
upon the τ̃N−j,k’s, the first probability is bounded by

4

ǫ2
E

[

(

1

KN

KN
∑

k=1

KN

N

IN
k
(0,(ā−t)+)
∑

j=1

(

1t<η0
−j,k

≤t+δ −
F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)

))2
]

≤ KN

N

4

ǫ2
E

∫ 1

0

∫ (ā−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx. (6.17)

Now under Assumption 2.1, it follows from Lemma 4.1 that
∫ 1

0

∫ (ā−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

→
∫ 1

0

∫ (ā−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx

in probability as N → ∞. Hence the upper bound in (6.17) converges to zero, as N → ∞. Inside
the second probability in (6.16), we have

1

KN

KN
∑

k=1

KN

N

IN
k
(0,(ā−t)+)
∑

j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ δ)

F c(τ̃N−j,k)

=

∫ 1

0

∫ (ā−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

→
∫ 1

0

∫ (ā−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx
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in probability as N → ∞, again from Lemma 4.1, and the limit converges to zero as δ → 0. Hence
for any ǫ > 0, if δ > 0 is small enough, lim supN of the second term in the right hand side of (6.16)
is zero.

For the second term on the right of (6.15), we have

sup
u∈[0,δ]

sup
a∈[0,ā′]

1

KN

KN
∑

k=1

KN

N

IN
k
(0,(a−t−u)+)
∑

j=1

F c(τ̃N−j,k + t)− F c(τ̃N−j,k + t+ u)

F c(τ̃N−j,k)

≤
∫ 1

0

∫ (ā′−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
ĪN (0, da′, x)dx

which, thanks to Lemma 4.1 and Assumption 2.1, converges in probability as N → ∞, to
∫ 1

0

∫ (ā−t)+

0

F c(a′ + t)− F c(a′ + t+ δ)

F c(a′)
Ī(0, da′, x)dx.

This expression will also converge to zero as δ → 0. For the third term on the right of (6.15), we
have

sup
u∈[0,δ]

∫ 1

0

(

ĪN (0, (a − t)+, x)− ĪN (0, (a − t− u)+, x)
)

dx

≤
∫ 1

0

(

ĪN (0, (a − t)+, x)− ĪN (0, (a − t− δ)+, x)
)

dx

which converges in probability to
∫ 1

0

(

Ī(0, (a − t)+, x)− Ī(0, (a − t− δ)+, x)
)

dx

as N → ∞. Since ĪN (0, ·, x) and Ī(0, ·, x) are nondecreasing and the limit is continuous, the
convergence also holds uniformly over a ∈ [0, ā′]. Moreover, we also have that

sup
a∈[0,ā]

∫ 1

0

(

Ī(0, (a − t)+, x)− Ī(0, (a − t− δ)+, x)
)

dx → 0,

as δ → 0. Combining the results on the three terms on the right of (6.15), we have shown that
(6.13) holds.

We next prove (6.14). We have

ĪN0,2(t, a + v, x)− ĪN0,2(t, a, x) =
KN
∑

k=1

KN

N

IN
k
(0,(a+v−t)+)
∑

j=IN
k
(0,(a−t)++1

(

1η0
−j,k

>t+u −
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)

1Ik(x) ,

and

∥

∥ĪN0,2(t, a+ v, ·) − ĪN0,2(t, a, ·)‖1 ≤ 1

KN

KN
∑

k=1

∣

∣

∣

∣

∣

KN

N

IN
k
(0,(a+v−t)+)
∑

j=IN
k
(0,(a−t)++1

(

1η0
−j,k

>t+u −
F c(τ̃N−j,k + t)

F c(τ̃N−j,k)

)

∣

∣

∣

∣

∣

≤ 1

KN

KN
∑

k=1

∣

∣ĪNk (0, (a + v − t)+)− ĪNk (0, (a − t)+
∣

∣ .

Thus,

sup
v∈[0,δ]

sup
t∈[0,T ]

∥

∥ĪN0,2(t, a + v, ·)− ĪN0,2(t, a, ·)‖1
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≤ sup
t∈[0,T ]

1

KN

KN
∑

k=1

(

ĪNk (0, (a + δ − t)+)− ĪNk (0, (a − t)+)
)

= sup
t∈[0,T ]

∫ 1

0

(

ĪN (0, (a + δ − t)+, x)− ĪN (0, (a − t)+, x)
)

dx

and we claim that the right hand side converges in probability as N → ∞, to

sup
t∈[0,T ]

∫ 1

0

(

Ī(0, (a + δ − t)+, x)− Ī(0, (a − t)+, x)
)

dx .

Indeed, the convergence without the supt follows from Assumption 2.1, and both t 7→
∫ 1
0 ĪN (0, (a+

δ − t)+, x)dx and t 7→
∫ 1
0 ĪN (0, (a − t)+, x)dx are non–increasing, while the limits are continuous.

Hence again an application of the second Dini theorem implies that the convergence is locally
uniform in t, hence the claim. The limit then converges to zero as δ → 0. Thus we have shown
(6.14). This completes the proof of the lemma. �

Lemma 6.2. Under Assumptions 2.1, 2.2 and 2.3,

‖ĪN1 (t, a, ·) − Ī1(t, a, ·)‖1 → 0 (6.18)

in probability, locally uniformly in t and a, as N → ∞, where

Ī1(t, a, x) :=

∫ t

(t−a)+
F c(t− s)Ā(ds, x) , (6.19)

where Ā(t, x) is given in (5.28).

Proof. We first write
ĪN1 (t, a, x) = ĪN1,1(t, a, x) + ĪN1,2(t, a, x)

where

ĪN1,1(t, a, x) =

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

F c(t− τNj,k)1Ik(x) =

∫ t

(t−a)+
F c(t− s)ĀN (ds, x) , (6.20)

ĪN1,2(t, a, x) =

KN
∑

k=1

KN

N

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

1Ik(x) . (6.21)

We apply Theorem 4.2. We start with the process ĪN1,1(t, a, x) and show that
∥

∥ĪN1,1(t, a, ·) − Ī1(t, a, ·)
∥

∥

1
→ 0, in probability, locally uniformly in t and a, (6.22)

as N → ∞. Since

ĪN1,1(t, a, x) − Ī1(t, a, x) =

∫ t

(t−a)+
F c(t− s)

(

ĀN (ds, x)− Ā(ds, x)
)

,

condition (i) of Theorem 4.2 follows from Lemma 4.1 and Corollary 5.1. In other words, we have
that for each t and a, and for any ǫ > 0,

P(‖ĪN1,1(t, a, ·) − Ī1(t, a, ·)‖1 > ǫ) → 0 as N → ∞.

We next want to check (ii) of Theorem 4.2 for the processes ĪN1,1(t, a, x) − Ī1(t, a, x). We will

verify the following conditions for ĪN1,1(t, a, x): for any ǫ > 0, and for any T, ā′ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
a∈[0,ā′]

‖ĪN1,1(t+ u, a, ·) − ĪN1,1(t, a, ·)‖1 > ǫ

)

→ 0 , (6.23)
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lim sup
N

sup
a∈[0,ā′]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN1,1(t, a+ v, ·) − ĪN1,1(t, a, ·)‖1 > ǫ

)

→ 0 . (6.24)

It will be clear that the same results hold (and are simpler to prove) for Ī1(t, a, ·). To prove (6.23),
we have

ĪN1,1(t+ u, a, x)− ĪN1,1(t, a, x)

=

∫ t+u

(t+u−a)+
F c(t+ u− s)ĀN (ds, x)−

∫ t

(t−a)+
F c(t− s)ĀN (ds, x)

=

∫ t+u

(t−a)+

(

F c(t+ u− s)− F c(t− s)
)

ĀN (ds, x)

−
∫ t+u−a)+

(t−a)+
F c(t+ u− s)ĀN (ds, x) +

∫ t+u

t

F c(t− s)ĀN (ds, x) ,

and
∥

∥ĪN1,1(t+ u, a, ·) − ĪN1,1(t, a, ·)
∥

∥

1

≤
∫ 1

0

∫ t+u

(t−a)+

(

F c(t− s)− F c(t+ u− s)
)

ĀN (ds, x)dx

+

∫ (t+u−a)+

(t−a)+
F c(t+ u− s)ĀN (ds, x)dx +

∫ t+u

t

F c(t− s)ĀN (ds, x)dx . (6.25)

Here the first term on the right satisfies

sup
u∈[0,δ]

sup
a∈[0,ā′]

∫ 1

0

∫ t+u

(t−a)+

(

F c(t− s)− F c(t+ u− s)
)

ĀN (ds, x)dx

≤
∫ 1

0

∫ t+δ

(t−ā′)+

(

F c(t− s)− F c(t+ δ − s)
)

ĀN (ds, x)dx

→
∫ 1

0

∫ t+δ

(t−ā′)+

(

F c(t− s)− F c(t+ δ − s)
)

Ā(ds, x)dx

in probability as N → ∞ by Lemma 5.5 and Corollary 5.1, and the limit converges to zero as δ → 0.
The second term on the right side of (6.25) satisfies

sup
u∈[0,δ]

sup
a∈[0,ā′]

∫ 1

0

∫ t+u−a)+

(t−a)+
F c(t+ u− s)ĀN (ds, x)dx

≤ sup
a∈[0,ā′]

∫ 1

0

(

ĀN ((t+ δ − a)+, x)− ĀN ((t− a)+, x)
)

dx

→ sup
a∈[0,ā′]

∫ 1

0

(

Ā((t+ δ − a)+, x)− Ā((t− a)+, x)
)

dx

in probability as N → ∞ by Corollary 5.1 and the second Dini theorem, and the limit converges
to zero as δ → 0. The third term on the right side of (6.25) does not depend on a and satisfies

sup
u∈[0,δ]

∫ 1

0

∫ t+u

t

F c(t− s)ĀN (ds, x)dx

≤
∫ 1

0

(

ĀN (t+ δ, x)− ĀN (t, x)
)

dx →
∫ 1

0

(

Ā(t+ δ, x) − Ā(t, x)
)

dx
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in probability as N → ∞ by Corollary 5.1, and the limit converges to zero as δ → 0. Thus we have
shown that for small enough δ > 0, for any ǫ > 0, and for any T, ā′ > 0,

lim sup
N

sup
t∈[0,T ]

P

(

sup
u∈[0,δ]

sup
a∈[0,ā′]

‖ĪN1,1(t+ u, a, ·) − ĪN1,1(t, a, ·)‖1 > ǫ

)

= 0 .

To prove (6.24), we have

ĪN1,1(t, a+ v, x)− ĪN1,1(t, a, x) =

∫ (t−a)+

(t−a−v)+
F c(t− s)ĀN (ds, x) ,

and

∥

∥ĪN1,1(t, a+ v, ·) − ĪN1,1(t, a, ·)
∥

∥

1
=

∫ 1

0

∫ (t−a)+

(t−a−v)+
F c(t− s)ĀN (ds, x)dx .

Hence,

sup
v∈[0,δ]

sup
t∈[0,T ]

∥

∥ĪN1,1(t, a + v, ·)− ĪN1,1(t, a, ·)
∥

∥

1

≤ sup
t∈[0,T ]

∫ 1

0

(

ĀN ((t− a)+, x)− ĀN ((t− a− δ)+, x)
)

dx

→ sup
t∈[0,T ]

∫ 1

0

(

Ā((t− a)+, x)− Ā((t− a− δ)+, x)
)

dx

in probability as N → ∞ by Corollary 5.1 and again the second Dini theorem. Moreover, the limit
converges to zero as δ → 0. Thus we have shown that for small enough δ > 0, for any ǫ > 0, and
for any T, ā′ > 0,

lim sup
N

sup
a∈[0,ā′]

P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN1,1(t, a+ v, ·) − ĪN1,1(t, a, ·)‖1 > ǫ

)

= 0 .

Therefore, combining the above, we have proved the convergence of ĪN1,1(t, a, x) as stated in (6.22).

We next consider the process ĪN1,2(t, a, x) and show that
∥

∥ĪN1,2(t, a, ·)
∥

∥

1
→ 0, in probability, locally uniformly in t and a, as N → ∞. (6.26)

To check condition (i) of Theorem 4.2, we have

∥

∥ĪN1,2(t, a, ·)‖1 =
1

KN

KN
∑

k=1

∣

∣

∣

∣

KN

N

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

∣

∣

∣

∣

,

and

E
[∥

∥ĪN1,2(t, a, ·)‖21
]

= E

[(

1

KN

KN
∑

k=1

∣

∣

∣

∣

KN

N

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

∣

∣

∣

∣

)2]

≤ E

[

1

KN

KN
∑

k=1

(

KN

N

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

)2]

= E

[

1

KN

KN
∑

k=1

(KN

N

)2
AN

k
(t)

∑

j=AN
k
((t−a)+)+1

F (t− τNj,k)F
c(t− τNj,k)

]
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≤ KN

N
E

[

∫ 1

0

∫ t

(t−a)+
F (t− s)F c(t− s)ĀN (ds, x)dx

]

.

By Corollary 5.1 and Lemma 4.1, we obtain the convergence
∫ 1

0

∫ t

(t−a)+
F (t− s)F c(t− s)ĀN (ds, x)dx →

∫ 1

0

∫ t

(t−a)+
F (t− s)F c(t− s)Ā(ds, x)dx

in probability as N → ∞. This implies that for any ǫ > 0,

sup
t∈[0,T ]

sup
a∈[0,ā′]

P
(

‖ĪN1,2(t, a, ·)‖1 > ǫ
)

→ 0 as N → ∞.

Next, to check condition (ii) of Theorem 4.2, we need to show that for any ǫ > 0, and for any
T, ā′ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
a∈[0,ā′]

‖ĪN1,2(t+ u, a, ·) − ĪN1,2(t, a, ·)‖1 > ǫ

)

→ 0 , (6.27)

lim sup
N

sup
a∈[0,ā′]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

‖ĪN1,2(t, a+ v, ·) − ĪN1,2(t, a, ·)‖1 > ǫ

)

→ 0 . (6.28)

To prove (6.27), we have

ĪN1,2(t+ u, a, x) − ĪN1,2(t, a, x)

=

KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
((t+u−a)+)+1

(

1τN
j,k

+ηj,k>t+u − F c(t+ u− τNj,k)
)

1Ik(x)

−
KN
∑

k=1

KN

N

AN
k
(t)

∑

j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

1Ik(x)

=
KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t+u − F c(t+ u− τNj,k)
)

1Ik(x)

−
KN
∑

k=1

KN

N

AN
k
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j=AN
k
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(

1τN
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+ηj,k>t+u − F c(t+ u− τNj,k)
)

1Ik(x)

−
KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

1Ik(x)

+

KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
(t)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

1Ik(x)

= −
KN
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k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
((t−a)+)+1

(

1t<τN
j,k

+ηj,k≤t+u −
(

F c(t− τNj,k)− F c(t+ u− τNj,k)
)

)

1Ik(x)

−
KN
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KN

N

AN
k
((t+u−a)+∧t)
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j=AN
k
((t−a)+)+1

(

1τN
j,k

+ηj,k>t+u − F c(t+ u− τNj,k)
)

1Ik(x)
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+
KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
(t)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

1Ik(x) .

Thus we obtain
∥

∥ĪN1,2(t+ u, a, ·) − ĪN1,2(t, a, ·)
∥

∥

1

≤ 1

KN

KN
∑

k=1

∣

∣

∣

∣

KN

N

AN
k
(t+u)
∑

j=AN
k
((t−a)+)+1

(

1t<τN
j,k

+ηj,k≤t+u −
(

F c(t− τNj,k)− F c(t+ u− τNj,k)
)

)

∣

∣

∣

∣

+
1

KN

KN
∑

k=1

∣

∣

∣

∣

KN

N

AN
k
((t+u−a)+
∑

j=AN
k
((t−a)+∧t)+1

(

1τN
j,k

+ηj,k>t+u − F c(t+ u− τNj,k)
)

∣

∣

∣

∣

+
1

KN

KN
∑

k=1

∣

∣

∣

∣

KN

N

AN
k
((t+u)+∧t)
∑

j=AN
k
(t)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

∣

∣

∣

∣

≤ 1

KN

KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
((t−a)+)+1

1t<τN
j,k

+ηj,k≤t+u

+
1

KN

KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
((t−a)+)+1

(

F c(t− τNj,k)− F c(t+ u− τNj,k)
)

+
1

KN

KN
∑

k=1

(

ĀN
k (t+ u)− ĀN

k (t)
)

+
1

KN

KN
∑

k=1

(

ĀN
k ((t+ u− a)+)− ĀN

k ((t− a)+)
)

. (6.29)

For the first term on the right, we have

E

[(

sup
u∈[0,δ]

sup
a∈[0,ā′]

1

KN

KN
∑

k=1

KN

N

AN
k
(t+u)
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j=AN
k
((t−a)+)+1

1t<τN
j,k

+ηj,k≤t+u

)2]

≤ E
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1

KN
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k=1
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N

AN
k
(t+δ)
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k
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1t<τN
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≤ E
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1
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k
(t+δ)
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)2]

≤ 2E
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1
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(
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1r≤ΥN (s−)Qk,ℓ(ds, dr, dz)

)2]

+ 2E

[

1
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KN
∑

k=1

(

KN

N

∫ t+δ

(t−ā′)+
(F (t+ δ − s)− F (t− s))ΥN

k (s)ds

)2]

= 2
KN

N
E

[

1
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KN
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(F (t+ δ − s)− F (t− s))ῩN

k (s)ds

]
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+ 2E

[

1

KN

KN
∑

k=1

(

∫ t+δ

(t−ā′)+
(F (t+ δ − s)− F (t− s))ῩN

k (s)ds

)2]

≤ 2λ∗CBCβ
KN

N

∫ t+δ

(t−ā′)+
(F (t+ δ − s)− F (t− s))ds

+ 2(λ∗CBCβ)
2

(

∫ t+δ

(t−ā′)+
(F (t+ δ − s)− F (t− s))ds

)2

,

where Qk,ℓ(ds, dr, dz) is the PRM on R
3
+ with mean measure dsdrF (dz) already introduced in the

proof of Lemma 5.6, and Qk,ℓ(ds, dr, dz) is the corresponding compensated PRM, and we have used

the bound ῩN
k (t) ≤ λ∗CBCβ. The first term on the right goes to zero as N → ∞, and the integral

in the second is bounded from above by
∫ t

0

(

F (s+ δ)− F (s)
)

ds ≤ δ ,

as in (5.24) above. Thus we obtain that for any ǫ > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
a∈[0,ā′]

1

KN

KN
∑

k=1

KN

N

AN
k
(t+u)
∑

j=AN
k
((t−a)+)+1

1t<τN
j,k

+ηj,k≤t+u > ǫ

)

→ 0 .

For the second term on the right side of (6.29), we have
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((t−ā′)+)+1

(

F c(t− τNj,k)− F c(t+ δ − τNj,k)
)

)2]

≤ 2E

[

1
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(KN

N
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(∫ t+δ
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(

F c(t− s)− F c(t+ δ − s)
)

dMN
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)2
]

+ 2E

[

1
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k=1

(
∫ t+δ

(t−ā′)+

(

F c(t− s)− F c(t+ δ − s)
)

ῩN
k (s)ds

)2
]

= 2λ∗CBCβ
KN

N

∫ t+δ

(t−ā′)+

(

F c(t− s)− F c(t+ δ − s)
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ds

+ 2(λ∗CBCβ)
2

(
∫ t+δ
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(

F c(t− s)− F c(t+ δ − s)
)
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)2

.

It is clear that the first term converge to zero locally uniformly in t, and the second term can be
treated in the same way above. The third and fourth terms on the right side of (6.29) can be also
treated similarly as the last two terms in (6.25). Thus, we have shown that (6.27) holds.

To prove (6.28), we have

ĪN1,2(t, a+ v, x)− ĪN1,2(t, a, x) =

KN
∑

k=1

KN

N

AN
k
((t−a)+)
∑

j=AN
k
((t−a−v)+)+1

(

1τN
j,k

+ηj,k>t − F c(t− τNj,k)
)

1Ik(x) ,
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and

∥

∥ĪN1,2(t, a+ v, ·)− ĪN1,2(t, a, ·)‖1 ≤ 1

KN
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AN
k
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k
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1τN
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+ηj,k>t − F c(t− τNj,k)
)

∣
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≤
∫ 1

0

(

ĀN ((t− a)+, x)− ĀN ((t− a− v)+, x)
)

dx .

Then, we obtain

sup
v∈[0,δ]

sup
t∈[0,T ]

∥

∥ĪN1,2(t, a + v, ·)− ĪN1,2(t, a, ·)‖1

≤ sup
t∈[0,T ]

∫ 1

0

(

ĀN ((t− a)+, x)− ĀN ((t− a− δ)+, x)
)

dx .

Here the upper bound converges in probability to

sup
t∈[0,T ]

∫ 1

0

(

Ā((t− a)+, x)− Ā((t− a− δ)+, x)
)

dx

which converges to zero as δ → 0, uniformly in a. Indeed, the convergence of the supt follows

from the fact that the convergence in probability
∫ 1
0 ĀN (t, x)dx →

∫ 1
0 Ā(t, x)dx is locally uniform

in t, thanks to Corollary 5.1. Thus we have proved (6.28) holds, and hence, the convergence of
ĪN1,2(t, a, x) in (6.26). This completes the proof of the lemma. �

By the two lemmas above, we can conclude the convergence of ĪN (t, a, x) to Ī(t, a, x).

Proposition 6.1. Under Assumptions 2.1, 2.2 and 2.3,

‖ĪN (t, a, ·) − Ī(t, a, ·)‖1 → 0 (6.30)

in probability, locally uniformly in t and a, as N → ∞, where Ī(t, a, x) = Ī0(t, a, x) + Ī1(t, a, x), Ī0
and Ī1 being given respectively by (6.4) and (6.19).

Completing the proof of Theorem 2.1. Given the results in Propositions 5.1 and 6.1 and
Corollary 5.1, the convergence of R̄N(t, x) and ĪN (t, x) can be easily established and their limits
R̄(t, x) and Ī(t, x) follows directly. The second expression of Ῡ(t, x) in (2.21) is obtained from

Ī(t, a, x) in (2.22), by noting that Īa(t, 0, x) = lima→0
Ī(t,a,x)−Ī(t,0,x)

a
.
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