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LARGE DEVIATIONS OF THE EXIT MEASURE THROUGH A

CHARACTERISTIC BOUNDARY FOR A POISSON DRIVEN SDE

Etienne Pardoux* and Brice Samegni-Kepgnou

Abstract. Let O be the basin of attraction of a given equilibrium of a dynamical system, whose
solution is the law of large numbers limit of the solution of a Poissonian SDE as the size of the
population tends to +∞. We consider the law of the exit point from O of that Poissonian SDE. We
adapt the approach of Day [J. Math. Anal. Appl. 147 (1990) 134–153] who studied the same problem
for an ODE with a small Brownian perturbation. For that purpose, we will use the large deviations
principle for the Poissonian SDE reflected at the boundary of O, studied in our recent work Pardoux
and Samegni [Stoch. Anal. Appl. 37 (2019) 836–864]. The main motivation of this work is the extension
of the results concerning the time of exit from the set O established in Kratz and Pardoux [Vol. 2215
of Lecture Notes in Math.. Springer (2018) 221–327] and Pardoux and Samegni [J. Appl. Probab. 54
(2017) 905–920] to unbounded open sets O. This is done in sections 4.2.5 and 4.2.7 of Britton and
Pardoux [Vol. 2255 of Lecture Notes in Math. Springer (2019) 1–120], see also The SIR model with
demography subsection below.
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1. Introduction

We consider a d-dimensional process of the type, with any z ∈ Rd+ such that
∑d
i=1 zi ≤ 1.

ZN (t) = ZN,z(t) :=
[Nz]

N
+

1

N

k∑
j=1

hjPj

(∫ t

0

Nβj(Z
N,z(s))ds

)
. (1.1)

Here (Pj)1≤j≤k are i.i.d. standard Poisson processes. The hj ∈ Zd denote the k respective jump directions
with respective jump rates βj(z) and z ∈ A (where A is the “domain” of the process). In fact (1.1) specifies a
continuous time Markov chain with state space

A(N) =
{
z ∈ Rd+ : (Nz1, . . . Nzd) ∈ Zd+,

d∑
i=1

zi ≤ 1
}
. (1.2)
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The following assumption ensures that the process ZN (t) remains in A(N): for any 1 ≤ j ≤ k such that hij < 0

(hij denotes the i–th coordinate fo the vector hj), βj(z) = 0 whenever zi = 0; moreover, if
∑d
i=1 h

i
j > 0, βj(z) = 0

whenever
∑d
i=1 zi = 1.

We know from the law of large numbers of Kurtz [10], see also Chapter 11 of Ethier and Kurtz [6], and Britton
and Pardoux [2], that under mild assumptions on the rates βj , 1 ≤ j ≤ k, for all T > 0, ZN,z(t) converges to
Y (t, z) almost surely and uniformly over the interval [0, T ], where Y (t, z) = Y (t) is the solution of the ODE

Y (t, z) = z +

∫ t

0

b(Y (s, z))ds (1.3)

with

b(y) :=

k∑
j=1

βj(y)hj , (1.4)

and Y (t, z) takes its values in the set

A =
{
z ∈ Rd+,

d∑
i=1

zi 6 1
}
.

Remark 1.1. Our results would be valid with A replaced by the more general compact set AR = {z ∈
Rd+,

∑d
i=1 zi 6 R}, and A(N) being redefined accordingly. However, it is essential that A be compact. In fact

the extension of the results of [11] to non compact sets relies precisely upon the result of the present paper, as
we shall explain in Section 6.3.

We assume that O is the basin of attraction of a stable equilibrium z∗ of (1.3), in the sense that, starting
from any point in the open set O, the solution of (1.3) converges to z∗ as t→∞, but this need not be the case
when starting from at least part of the boundary of O, and there can be other equilibria outside O. For the
models we have in mind (see the four examples in Sect. 6), O has a characteristic boundary which is either the
set {z ∈ A; z1 = 0}, or else the part of the boundary of O which is included in Å, the interior of A. In both
cases, that characteristic boundary is defined as

∂̃O := {z ∈ ∂O; < b(z), n(z) >:= 0}, (1.5)

where < ·, · > denotes the scalar product in Rd and n(z) the unit outward normal to ∂̃O at z. Clearly the

solution of the dynamical system (1.3) starting from z ∈ ∂̃O remains in ∂̃O for all time. In the example treated

in section 6, either O = Å, in which case ∂̃O = {z ∈ A; z1 = 0}  ∂O (this is the situation treated in Sects. 6.2
and 6.3), or else A is the union of the basins of attraction of both the endemic and the disease free equilibria,

and the boundary between them, which is precisely ∂̃O, this is the situation in both Sections 6.4 and 6.5, see
Figures 1 and 2 in those sections.

Our goal in this paper is to study the behaviour for large N of the exit measure of ZN,z from O. In other
words, the aim is to study the large N asymptotic of the probability that a trajectory of ZN exits O in the
neighborhood of a given point. Our main result, Theorem 5.3, says that, τNO denoting the first time that the

process ZN,z(t) either exits Ō or hits ∂̃O, if y ∈ ∂̃O and δ > 0, for any η > 0 and N large enough,

exp{−N(Sz(y) + η)} ≤ Pz(|ZN (τN (O))− y| < δ) ≤ exp{−N(Sz(y)− η)} ,

where Sz(y) is defined by (5.12).
Our main motivation comes from epidemics models, for which we have already studied a similar asymptotic

for the exit time from the same set by the same process in [8, 11]. Those results are established when A is a
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compact set. However, for the purpose of certain epidemics models, we need to extend those results to a non
compact set A ⊂ Rd+, see Section 6.3. This is easily done with the help of Theorem 5.3 of the present paper, once
we show that inf |y|≥R Sz(y)→∞ as R→∞, uniformly for z in the vicinity of z∗, see sections 4.2.5 and 4.2.7
of Britton and Pardoux [2], and Section 6.3. This is the main expected outcome of the results of the present
paper.

Another motivation is to identify, when it exists, the most probable exit neighborhood for the process. It
turns out that we can do so in four epidemics models.

As far as we know, this had never been done up to now for Poisson driven SDEs. Similar results have been
established for dynamical systems with small Brownian type perturbations, see e.g. chapter 5 of Dembo and
Zeitouni [4], which, for the analog of the results we aim at, refer to the work of Day [3].

Our method of proof consists in adapting the approach developed by Day [3]. First we define a reflected
Poissonian SDE for which the large deviations principle is satisfied, with the same rate function as the original
one defined by (1.1), as has been proved in our earlier paper [12]. We then mimic the arguments of Day [3] to
obtain our results.

The identification of a preferred exit neighborhood in the four considered models relies upon the charac-
terization of the quasi–potential as the value function of a deterministic optimal control problem, and the use
of the Pontryagin maximum principle to specify as much as possible the optimal trajectory. It turns out that
the preferred point z̄ happens to be in our examples the unique limit point of the solution of the ODE, when

starting from a point on the boundary ∂̃O.
Let us explain the application to epidemics models. In all our examples, the first coordinate z1 will denote

the proportion1 of susceptible individuals in the population. In the two examples treated in Sections 6.2 and 6.3,
for the considered range of values of the parameters, the ODE (1.3) has two equilibria, one stable, the endemic
equilibrium z∗ (endemic means that the population contains a positive proportion of infected individuals, i.e.
z∗1 > 0), and a disease free equilibrium z̄ (disease free means that in that equilibrium there is no infected

individual, z̄1 = 0), which is unstable for the same range of values of the parameters, and ∂̃O = {z, z1 = 0}. In
those two examples, we do not need to use the reflected solution of the SDE which will be defined below, since
the reflected and unreflected processes are identical.

In the two other examples considered in Sections 6.4 and 6.5, the situation is more complex, both the endemic
equilibrium z∗ and the disease-free equilibrium are locally stable equilibria of (1.3), in the sense that both have
a basin or attraction, which is a given neighborhood in A of the corresponding equilibrium. Those two basins

of attraction are separated by a manifold of dimension d− 1, which coincides with ∂̃O, and contains a second
endemic equilibrium, which is unstable, and is z̄. More precisely, z̄ is a hyperbolic point, which attracts all

points of ∂̃O, but starting from any point in a neighborhood of ∂̃O which is not in ∂̃O, the solution of (1.3) is

repelled by ∂̃O, and is attracted by one of the two stable equilibria.
The paper is organized as follows. Section 2 is devoted to definitions and the statement of our assumptions.

In Section 3, we define our reflecting Poissonian SDE and we formulate a large deviations principle satisfied
by the latter. Section 4 presents some preliminary lemmas about the rate function. These lemmas are mostly
adapted versions of those in chapter 6 of Freidlin and Wentzell [7] and in Day [3]. Section 5 discusses the large
deviations of the exit measure. Finally, in Section 6 we prove that in four selected examples of infectious disease

models, the quasi–potential has a unique minimum on ∂̃O, hence for large N the exit takes place close to that
specific point with probability close to 1.

2. Notation and the main assumption

We define the following cone generated by the family of vectors (hj)j=1,...,k

C =

y ∈ Rd : y =

k∑
j=1

µjhj , µ
j ≥ 0 ∀j

 . (2.1)

1In the example treated in Section 6.3, the notion of proportion has to be interpreted in an extended sense.
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We remark that in all the epidemics models that we will consider, the family of vectors (hj)j=1,...,k is such that
C = Rd.

We now formulate some assumptions which are useful in order to obtain the large deviations principle of the
reflected Poissonian SDE that we will construct in Section 3, and which we will assume to hold throughout this
paper, without recalling them in the statements.

Assumption 2.1.

1. C = Rd.
2. There exists a point z0 in the interior of O such that each segment joining z0 and any z ∈ ∂O does not

touch any other point of the boundary ∂O.
3. There exists a constant c such that for each a > 0 small enough, z ∈ Ō, if we denote za = z + a(z0 − z),

dist(za, ∂O) ≥ ca

We shall assume that c is choosen such that |z − za| ≤ c−1a for all z ∈ Ō, a > 0.
4. The rate functions βj are Lipschitz continuous with the Lipschitz constant less than or equal to C.
5. There exist two constants λ1 and λ2 such that whenever z ∈ Ō is such that βj(z) < λ1, βj(z

a) > βj(z)
for all a ∈]0, λ2[2.

6. There exist ν ∈]0, 1/2[ and a0 > 0 such that Ca ≥ exp{−a−ν} for all 0 < a < a0, where

Ca = inf
j

inf
z:dist(z,∂O)≥a

βj(z).

3. Reflected solution of a Poisson driven SDE, and large
deviations principle

In this section, we define a notion of Poisson driven SDE “reflected at the boundary of O”, and recall the
large deviations principle for its solution, which has been established in [12]. For any z ∈ Ō, let

zN =


[Nz]
N if [Nz]

N ∈ Ō,
arg inf
y∈Ō(N)

|y − z| otherwise, (3.1)

and Z̃Nt denote the d-dimensional processes defined by

Z̃N (t) = Z̃N,z(t) := zN +
1

N

k∑
j=1

hjQ
N,j
t − 1

N

k∑
j=1

hj

∫ t

0

1
{Z̃N,z(s−)+

hj
N 6∈Ō}

dQN,js

:= zN +
1

N

k∑
j=1

hj

∫ t

0

1
{Z̃N,z(s−)+

hj
N ∈Ō}

dQN,js , (3.2)

where for j = 1, . . . , k, QN,j. is given as

QN,jt = Pj

(
N

∫ t

0

βj(Z̃
N,z(s))ds

)
. (3.3)

We then obtain a Poisson driven SDE whose solution takes its values in O(N) = A(N) ∩ Ō.

2This means that the βj ’s are positive for any z ∈ O, and whenever βj(z) = 0 for z belonging to some part of ∂O, βj is strictly
increasing along a trajectory which moves away from that part of the boundary.
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Note that our reflection affects only the behaviour of ZNt near the part ∂̃O of the boundary of O. Note also
that the rate function of the large deviations of the solutions of the reflected and unreflected SDEs coincide.
This is reminiscent of the situation for Brownian driven SDEs, where the same is true, provided the reflection
is “co–normal”, see e.g. [3, 5].

Let DT,Ō denote the set of functions from [0, T ] into Ō which are right continuous and have left limits,
ACT,Ō ⊂ DT,Ō the subspace of absolutely continuous functions. For any φ, ψ ∈ DT,Ō and W a subset of DT,Ō

let

‖φ− ψ‖T = sup
t≤T
|φt − ψt|

where |.| denotes Euclidian distance in Rd and

ρT (φ,W ) = inf
ϕ∈W

‖φ− ϕ‖T . (3.4)

For all φ ∈ ACT,Ō, let Ad(φ) denote the (possibly empty) set of vector-valued Borel measurable functions µ

such that for all j = 1, . . . , k, 0 ≤ t ≤ T , µjt ≥ 0 and

dφt
dt

=

k∑
j=1

µjthj , t a.e.

We define the rate function

IT (φ) :=

 inf
µ∈Ad(φ)

IT (φ|µ), if φ ∈ ACT,Ō;

∞, else,
(3.5)

where

IT (φ|µ) =

∫ T

0

k∑
j=1

f(µjt , βj(φt))dt

with f(ν, ω) = ν log(ν/ω)− ν + ω. We assume in the definition of f(ν, ω) that for all ν > 0, log(ν/0) =∞ and
0 log(0/0) = 0 log(0) = 0. By the definition of f , it is not difficult to remark that

IT (φ) = 0 if and only if φ solves the ODE (1.3). (3.6)

The above rate function can also be defined as

IT (φ) :=

{∫ T
0
L(φt, φ

′
t)dt if φ ∈ ACT,Ō

∞ else.

where for all z ∈ Ō, y ∈ Rd

L(z, y) = sup
θ∈Rd

`(z, y, θ) (3.7)
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with for all z ∈ Ō, y ∈ Rd and θ ∈ Rd

`(z, y, θ) =
〈
θ, y
〉
−

k∑
j=1

βj(z)(e

〈
θ,hj

〉
− 1)

The rate function defined above is a good rate function (cf. [8]), that is for all s > 0, the set {φ ∈ DT,Ō :
IT (φ) ≤ s} is compact. We now formulate a new assumption, and the result concerning the LDP for our reflected
model (3.2), which is proved in [12].

Assumption 3.1. There exists a function u ∈ C1
b (Ō) which satisfies the following assumptions:

1. O = A ∩ {z ∈ Ō; u(z) > 0}, ∂̃O = A ∩ {z ∈ Ō; u(z) = 0}.
2. ∇u(z) 6= 0, for all z ∈ ∂̃O.

3. There exists C1, C2 > 0 such that min{C1 dist(z, ∂̃O), C2} ≤ u(z), for all z ∈ Ō.

4. 〈b(z),∇u(z)〉 ≥ 0 for all z ∈ Ō, with again b(z) =
∑k
j=1 βj(z)hj .

5. There exists ρ > 0 such that 〈−gN (z),∇u(z)〉 ≤ ρ
∑k
j=1 1

{z+
hj
N 6∈Ō}

, where

gN (z) =

k∑
j=1

1
{z+

hj
N 6∈Ō}

βj(z)hj .

Note that in the examples treated in Sections 6.2 and 6.3, assumption 3.1 is satisfied with u(z) = z1, while
this assumption holds true in the two examples treated in Sections 6.4 and 6.5, as explained in section 7 of [12].

Theorem 3.2. Let {Z̃N,zt , 0 ≤ t ≤ T} be the solution of (3.2).

a) For z ∈ Ō, φ ∈ DT,Ō, φ0 = z, η > 0 and δ > 0 there exists Nη,δ ∈ N such that for all N > Nη,δ

Pz
(
‖Z̃N − φ‖T < δ

)
≥ exp{−N(IT (φ) + η)}.

b) For any open subset G of DT,Ō, the following holds uniformly over z ∈ Ō

lim inf
N→∞

1

N
logPz(Z̃N ∈ G) ≥ − inf

φ∈G,φ0=z
IT (φ).

c) For z ∈ Ō, δ > 0 let

Hδ(s) = {φ ∈ DT,Ō :, φ0 = z, ρT (φ,Φ(s)) ≥ δ} where Φ(s) = {ψ ∈ DT,Ō : IT (ψ) ≤ s}.

For any δ, η, s > 0 there exists N0 ∈ N such that for all N > N0

Pz(Z̃N ∈ Hδ(s)) ≤ exp{−N(s− η)}.

d) For any closed subset F of DT,Ō, the following holds uniformly over z ∈ Ō

lim sup
N→∞

1

N
logPz(Z̃N ∈ F ) ≤ − inf

φ∈F,φ0=z
IT (φ).
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4. Notations and important lemmas

We assume from now on that there exists a (unique) point z∗ ∈ O such that for any z ∈ O, Y (t, z)→ z∗, as
t→∞.

For z, y ∈ Ō, we define the following functionals.

VŌ(z, y, T ) := inf
φ∈DT,Ō,φ0=z,φT=y

IT (φ)

VŌ(z, y) := inf
T>0

VŌ(z, y, T )

V
∂̃O

:= inf
y∈∂̃O

VŌ(z∗, y).

We will denote by Br(y) the open ball centered at y with radius r, and Br(K) = ∪y∈KBr(y). For large N , the
function VŌ(z, y) quantifies the energy needed for a trajectory to deviate from being a solution of the ODE

(1.3), and go from z to y, without leaving Ō = O ∪ ∂̃O and V
∂̃O

is the minimal energy required to hit the

boundary ∂̃O when starting from z∗. We now prove a few Lemmas, which are analogues of some Lemmas of
chapter 6 in [7].

Lemma 4.1. There exists a constant C > 0 and a function K ∈ C(R+,R+) with K(0) = 0 such that for all ρ > 0
small enough, there exists a constant T (ρ) with T (ρ) ≤ Cρ such that for all x ∈ Å∩ Ō and all z, y ∈ Bρ(x)∩ O̊
there exists an curve (φt) = (φt(ρ, z, y)) 0 ≤ t ≤ T (ρ) with φ0 = z, φT (ρ) = y entirely in Bρ(x) ∩ Ō, such that
IT (ρ)(φ) ≤ K(T (ρ)).

Proof. We will exploit Assumptions 2.1.3 and 2.1.6 and refer to the notations there. Note that the distance
between y and z is at most 2ρ. Let ya and za be the points defined in Assumption 2.1.3, with a = 2ρ/c. Then
both are at distance at least 2ρ from the boundary of O, while they are at distance less than 2ρ one from another.
Consequently the segment joining those two points is at distance at least

√
3ρ from the boundary. We choose as

function φ the piecewise linear function which moves at speed one, first in straight line from z to za, then from
za to ya, and finally from ya to y. The time needed to do so is bounded from above by 2

(
1 + c−2

)
ρ. Thanks to

Assumption 2.1.1, IT (ρ)(φ) <∞. Refering to the formula (3.5) for the rate function and to Assumption 2.1.6,
we see that the contribution of the straight line between za and ya to IT (ρ)(φ) is bounded by Cρ1−ν , while the
contribution of the two other pieces is bounded by a universal constant times (below c̄ = 2c−2)∫ c̄ρ

0

dt

tν
=

c̄1−ν

1− ν
ρ1−ν .

The result follows.

Lemma 4.2. ∀η > 0, K ⊆ O̊ ∪ ∂̃O compact, there exist T0 such that for any z, y ∈ K there exists a function
φt, 0 ≤ t ≤ T satisfying φ0 = z, φT = y, T ≤ T0 such that IT (φ) ≤ VŌ(z, y) + η.

Proof. As K is compact there exists a finite number M of points {zi, 1 ≤ i ≤M} in K such that

K ⊆
M⋃
i=1

Br(zi).

For all z, y ∈ K, there exist 1 ≤ i, j ≤ M with z ∈ Br(zi), y ∈ Br(zj). Since VŌ(u, v) is continuous, chosing r
small enough, we deduce that

VŌ(zi, zj) ≤ VŌ(z, y) +
η

8
. (4.1)
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Moreover, from the finiteness of VŌ we have that for all zi, zj , there exists T i,j and φ̃t with φ̃0 = zi, φ̃T i,j = zj

IT i,j (φ̃) ≤ VŌ(zi, zj) +
η

4
.

We can fix T0 = max
i,j

T i,j + 2 and Lemma 4.1 tells us that it is always possible to connect z and xi resp (zj and

y) with φit, 0 ≤ t ≤ T i < 1 resp (φjt , 0 ≤ t ≤ T j < 1) such that φi0 = z, φiT i = zi resp (φj0 = zj , φ
j
T j = y) and

IT i(φ
i) ≤ η

4
resp

(
IT j (φ

j) ≤ η

4

)
.

Concatenating φi, φ̃ and φj , we obtain a trajectory φ with all the required properties.

Now, we define the equivalence relation ”R” in Ō by

zRy iff VŌ(z, y) = VŌ(y, z) = 0.

Lemma 4.3. Suppose there exists y 6= z such that zRy, y, z ∈ Ō. Then the trajectory Y (t, z) of the dynamical
system (1.3) starting from z lies in the set of points {v ∈ Ō : vRz}.

Proof. As zRy there exists a sequence of functions φnt , 0 ≤ t ≤ Tn, φn0 = z, φTn = y, with values in Ō and such
that ITn(φn)→ 0. The Tn are bounded from below by a positive constant. Indeed there exists n0 ∈ N such that
for all n ≥ n0

ITn(φn|µn) ≤ 1.

Now either Tn ≥ σ−1, where σ := sup1≤j≤k, z∈A βj(z), or else from the Lemma 1 in [11], for all 1 ≤ j ≤ k,

∫ Tn

0

µn,jt dt ≤ 2

− log(σTn)
. (4.2)

Moreover
dφnt
dt =

k∑
j=1

µn,jt hj , hence

|z − y| ≤
∣∣∣ ∫ Tn

0

dφnt
dt

dt
∣∣∣

≤
√
d

k∑
j=1

∫ Tn

0

µn,jt dt,

thus there exists 1 ≤ j ≤ k such that

1

k
√
d
|z − y| ≤

∫ Tn

0

µn,jt dt. (4.3)

Now, combining (4.2) and (4.3) we deduce that

Tn ≥ σ−1 exp

(
− 2k

√
d

|z − y|

)
> 0,



156 E. PARDOUX AND B. SAMEGNI-KEPGNOU

which shows that Tn ≥ T for all n and some T > 0. Now IT (φnt ) converges to 0 as n → ∞. Therefore, for
a constant s > 0, there exists n0 ∈ N such that for all n ≥ n0, IT (φn) < s. By the compactness of the set
{ψ : IT (ψ) ≤ s}, there exists a subsequence (φnk)nk of these functions which converges, uniformly on [0, T ], to
a function φt. As IT is lower semicontinuous, we have

0 = lim inf
k→∞

IT (φnk) ≥ IT (φ).

Thus IT (φ) = 0 and φ is the trajectory of the dynamical system (1.3) starting from z. The points φt, 0 ≤ t ≤ T ,
are equivalent to z and y since we have VŌ(z, φnt ) and VŌ(φnt , y) do not exceed ITn(φn)→ 0 as n→∞.

Let u be one of the points z and y such that that |φT − u| ≥ 1
2 |z − y| then φTRu. In the same way as earlier,

we can find some time interval in which the points of the dynamical system starting from φT are equivalent to
u. We obtain the result by a successive application of the above reasoning, as in the proof of Lemma 1.5 page
165 in [7].

Lemma 4.4. Let all points of a compact K ⊆ O̊ ∪ ∂̃O be equivalent to each other but not equivalent to any

other point in O ∪ ∂̃O. For any η > 0, δ > 0 and z, y ∈ K there exists a function φt, 0 ≤ t ≤ T , φ0 = z, φT = y,
entirely in the intersection of Ō with the δ-neighborhood of K and such that IT (φ) < η.

Proof. As z, y ∈ K there exists a sequence of functions φnt , 0 ≤ t ≤ Tn, φn0 = z, φnTn = y, with values in O ∪ ∂̃O
and such that ITn(φn)→ 0. And then there exists n0 ∈ N such that for all n > n0, ITn(φn) < η. If all curves φnt
with n > n0 left the δ-neighborhood of K, then they would have a limit point x outside of this δ-neighborhood
and we have VŌ(z, y) = VŌ(y, z) = 0 thus x is equivalent to z and y. A contradiction since all points of a
compact K are equivalent to each other but not equivalent to any other point in Ō.

Lemma 4.5. Let K be a compact subset of O ∪ ∂̃O not containing any ω-limit set3 of the dynamical system
(1.3) entirely. There exist two positive constants C and T0 such that for all sufficiently large N , any T > T0

and z ∈ K we have

Pz(τNK > T ) ≤ exp{−N C (T − T0)}

where τNK is the time of first exit of Z̃Nt from K and under Pz, Z̃Nt starts from the point zN defined by (3.1).

Proof. As K does not contain any ω-limit set entirely, we can choose δ sufficiently small such that the closed
δ-neighborhood Kδ does not contain any ω-limit set entirely, either. For z ∈ Kδ, let

τ(z) = inf{t > 0 : Y (t, z) 6∈ Kδ}.

where Y (t, z) is the solution of (1.3) starting from z. We have τ(z) < ∞ for all z ∈ Kδ. By the continuous
dependence of a solution on the initial conditions,the function τ(z) is upper semi-continuous, and then it
attains its largest value T1 = supz∈Kδ τ(z) <∞.

Fix T0 = T1 + 1 and let FKδ

the set of all functions φt defined for 0 ≤ t ≤ T0 and assuming values only in Kδ.
the set of these functions is closed in the sense of uniform convergence and because IT0 is lower semi-continuous,

I0 = min
φ∈FKδ

IT0
(φ) is attained on FK

δ

.

Moreover for all φ ∈ FKδ

, IT0
(φ) > I0 > 0 since there are no trajectories of the dynamical system (1.3) in FKδ

.
If a function φ spend a time T in K with T longer than T0 we have IT (φ) ≥ I0; for the functions φ spending

3Given a dynamical system Y (t, z), a point z̄ is called an ω−limit point of z0 if there exists a sequence (tn)n≥1 such that tn →∞
as n→∞, and Y (tn, z0)→ z̄ as n→∞. The set of all such points is called the ω−limit set of Y (t, z0) and denoted ω(z0).
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time T ≥ 2T0 in K we have IT ≥ 2I0, and so on. We deduce that for all φ spending time T in T > T0 in K we
have

IT (φ) ≥ I0
[ T
T0

]
> I0

( T
T0
− 1
)

=
I0
T0

(T − T0).

For z ∈ K the functions in the set

Φz(I0) = {φ : φ0 = z, IT0
(φ) ≤ I0}

leave Kδ during the time from 0 to T0; the trajectories Z̃N,zt for which τNK > T0, are at a distance greater than
δ to this set. We deduce by using Theorem 3.2 that for any z ∈ K

Pz(τNK > T0) ≤ P(ρT0(Z̃N ,Φz(I0)) ≥ δ)
≤ exp{−N(I0 − η)}.

Now we use the Markov property and we have

Pz(τNK > (n+ 1)T0) ≤ Ez
(
τNK > nT0;PZ̃N (nT0)(τ

N
K > T0)

)
≤ Pz(τNK > nT0) sup

y∈K
Py(τNK > T0).

We obtain by induction that

Pz(τNK > T ) ≤ Pz
(
τNK >

[ T
T0

]
T0

)
≤
(

sup
y∈K

Py(τNK > T0)
)[ T

T0

]
≤ exp

{
−N

[ T
T0

]
(I0 − η)

}
.

Hence the result with c = I0−η
T0

, where η is an arbitrary small number.

The following assumption comes essentially from [7] (p. 150).

Assumption 4.6. There exists a finite number of compacts K1, . . . ,KM ⊆ ∂̃O such that

(1) z, y ∈ Ki implies zRy
(2) z ∈ Ki, y 6∈ Ki implies z 6Ry
(3) every ω-limit set of z ∈ ∂̃O associated to (1.3) is contained entirely in one of the Ki.

Remark 4.7. In the four examples presented in Section 6, Assumption 4.6 is satisfied withM = 1 andK1 = {z̄},
where z̄ is the limit as t→∞ of Y (t, z), for all z ∈ ∂̃O.

We moreover define K0 = {z∗}. We now construct as in [3, 7] an embedded Markov chain Z̃n associated to
the process Z̃N (t) in the following way: let ρ0 and ρ1 such that 0 < ρ1 < ρ0 <

1
2min
i 6=j

dist(Ki,Kj),

G1
i := Bρ1(Ki); (4.4)

C := Ō \
M⋃
0

Bρ0
(Ki); (4.5)
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Γi := B2ρ0(Ki) \Bρ0(Ki); (4.6)

θ0 := 0; (4.7)

σn := inf{t ≥ θn : Z̃N (t) ∈ C}; (4.8)

θn+1 := inf
{
t ≥ σn : Z̃N (t) ∈

M⋃
0

G1
i

}
; (4.9)

Z̃n := Z̃N (θn). (4.10)

Define moreover

τNO := inf
{
t > 0 : Z̃N (t−) +

1

N

k∑
j=1

hj∆Q
j
t 6∈ Ō or Z̃N (t) ∈ ∂̃O

}
, (4.11)

where Qj. is defined by (3.3) and ∆Qjt = Qjt −Q
j
t− .

We also introduce the quantities ṼŌ(z, y), ṼŌ(z,Ki), ṼŌ(Ki,Kj) and VŌ,Kc
0
(z, y) defined as in [7] by: ∀z, y ∈ Ō

ṼŌ(z, y) := inf
{
IT (φ) : T > 0, φ0 = z, φT = y, φt ∈ Ō \

M⋃
`=0

K` ∀t ∈ (0, T )
}

ṼŌ(z,Ki) := inf
{
IT (φ) : T > 0, φ0 = z, φT ∈ Ki, φt ∈ Ō \

⋃
` 6=i

K` ∀t ∈ (0, T )
}

ṼŌ(Ki,Kj) := inf
{
IT (φ) : T > 0, φ0 ∈ Ki, φT ∈ Kj , φt ∈ Ō \

⋃
` 6=i,j

K` ∀t ∈ (0, T )
}

VŌ,Kc
0
(z, y) := inf{IT (φ) : T > 0, φ0 = z, φT = y, φt ∈ Ō \K0 ∀t ∈ (0, T )}.

We now establish the following equality (recall (4.11) and the definition of V
∂̃O

at the beginning of the present
section).

Lemma 4.8. We have

V
∂̃O

:=
M

min
i=1

ṼŌ(K0,Ki). (4.12)

Proof. We fix ε > 0 arbitrary. Let φt, 0 ≤ t ≤ T be such that φ0 = z∗, φT ∈ ∂̃O and IT (φ) < V
∂̃O

+ ε. If

φt ∈
M⋃
i=1

Ki for some t ∈ [0, T ), we can find 0 ≤ t0 < t1 < T such that φt0 = z∗, φt 6∈
M⋃
i=1

Ki for all t0 < t < t1

and φt1 ∈ Kj for some j. Thus ṼŌ(K0,Kj) ≤ V∂̃O + ε. Otherwise if φt has reached ∂̃O but avoided
M⋃
i=1

Ki, then

we can extend φt to t > T as a solution of (1.3). By the assumption 4.6 (3), φt comes arbitrarily close to
⋃M

1 Ki

as t→ +∞, but without any increase in the value of IT (φ). It follows that

M
min
i=1

ṼŌ(K0,Ki) ≤ V∂̃O + ε.

As ε is arbitrary and the reverse inequality, V
∂̃O
≤

M
min
i=1

ṼŌ(K0,Ki), is obvious, we have the result.
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Lemma 4.9. For all η > 0 there exists ρ0 small enough such that for any ρ2, 0 < ρ2 < ρ0, there exits ρ1,
0 < ρ1 < ρ2 such that for all N large enough, for all z in the ρ2-neighborhood G2

i of the compact Ki (0 ≤ i ≤M),
and all j ≥ 0 we have the inequalities:

exp{−N(ṼŌ(Ki,Kj) + η)} ≤ Pz{Z̃1 ∈ G1
j} ≤ exp{−N(ṼŌ(Ki,Kj)− η)} (4.13)

Proof. By using Lemma 4.1 let ρ > 0 such that T (ρ) < η/3K. We choose ρ0 > 0 smaller than ρ/3 and
1
3 mini,j dist(Ki,Kj), and ρ2 ∈ (0, ρ0) . For any two compacts Ki, Kj , i 6= j, for which ṼŌ(Ki,Kj) < ∞, we

choose a function φi,jt , 0 ≤ t ≤ Ti,j , such that φi,j0 ∈ Ki, φ
i,j
Ti,j
∈ Kj , φ

i,j
t does not touch

⋃
` 6=i,j

K` and for which

ITi,j (φ
i,j) ≤ ṼŌ(Ki,Kj) +

η

6
. (4.14)

Let

ρ3 =
1

2
min

dist

φi,jt , ⋃
` 6=i,j

K`

 : 0 ≤ t ≤ Ti,j , i, j = 0, . . . ,M


We now choose 0 < ρ1 < min(ρ/2, ρ2, ρ3), and δ smaller than ρ1, ρ0 − ρ2. By Lemma 4.1, for any z ∈ G2

i , let

(ψi,1t , 0 ≤ t ≤ T̄i,1) with ψi,10 = z, ψi,1
T̄i,1

= z′ ∈ Ki such that ψi,1 stays in G2
i and

IT̄i,1(ψi,1) ≤ η

6
.

We also have dist(ψi,1, C) ≥ δ where C is defined by (4.5). Moreover according to Lemma 4.4, there exists a
curve (ψi,2t )t, 0 ≤ t ≤ T̄i,2 in G2

i with ψi,20 = z′, ψi,2
T̄i,2

= φi,j0 ∈ Ki such that

IT̄i,2(ψi,2) ≤ η

6
.

We combine these curves with the curve φi,jt and we obtain a function φt, 0 ≤ t ≤ T = T̄i,1 + T̄i,2 + Ti,j (φt and
T depend on z ∈ G2

i and j) and φ0 = z, φT ∈ Kj such that:

IT (φ) ≤ ṼŌ(Ki,Kj) +
η

2
.

If j = i we define φt, 0 ≤ t ≤ T such that φ0 = z ∈ G2
i , φT = z′′ ∈ Ki and dist(z′, z′′) = dist(z′,Ki) and we

have

IT (φ) ≤ η

2
= ṼŌ(Ki,Ki) +

η

2
.

It is easy using Lemmas 4.1 and 4.2 to justify that the lengths of the intervals of definition of the functions
φt constructed for all possible compacts Ki, Kj and point z ∈ G2

i can be bounded from above by a constant
T0 < ∞. The functions φt can be extended to the intervals from T to T0 to be a solution of (1.3) so that
IT (φ) = IT0(φ).

Any trajectory Z̃N,z(t) such that ‖Z̃N,z − φ‖T0
≤ δ reaches the δ-neighborhood of Kj without getting closer

than 2ρ1 − δ to any of the other compacts and then Z̃1 = Z̃N,z(θ1) ∈ G1
j . Thus using the large deviations
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Theorem 3.2 , we deduce that there exists N0 depending only on η, T0 and δ such that for all N ≥ N0 we have

Pz{Z̃1 ∈ G1
j} ≥ Pz(ρT (Z̃N , φ) < δ)

≥ exp{−N(IT0
(φ) +

η

2
)}

> exp{−N(ṼŌ(Ki,Kj) + η)}.

And the left inequality of the Lemma follows.
Using the strong Markov property, it is sufficient to prove the right inequality for z ∈ Γi. With our choice of

ρ0 and δ, for any curve φt, 0 ≤ t ≤ T beginning in a point of Γi, touching the δ-neighborhood of G1
j and not

touching the compacts K`, ` 6= i, j we have

IT (φ) ≥ ṼŌ(Ki,Kj)− η/2.

Using Lemma 4.5, there exists two constants c and T1 such that for all N large enough and z ∈ (O ∪ ∂̃O) \G
where G =

⋃M
i=1G

1
i , we have:

Pz(θ1 > T ) ≤ exp{−Nc(T − T1)} for all T > T1.

Now we fix a T > T1 then any trajectory of Z̃N,z(t) beginning at a point z ∈ Γi and being in G1
j at time θ1 and

not touching the compacts K`, ` 6= i, j either spends time T without touching G ∪ ∂̃O (i.e the event {θ1 > T}
is realized) or reaches G1

j before time T and in this second case, with the notation Φz(s) = {ψ ∈ DT,Ō : ψ(0) =
z, IT (ψ) ≤ s}, the event {

ρT (Z̃N,z,Φz(ṼŌ(Ki,Kj)− η/2)) ≥ δ
}

is realized.

Hence, for any z ∈ Γi we have from Lemma 4.5 and Theorem 3.2 (c) that for N large enough

Pz(Z̃N (θ1) ∈ G1
j ) ≤ Pz(θ1 > T ) + Pz(ρT (Z̃N ,Φz(ṼŌ(Ki,Kj)− η/2)) ≥ δ)

≤ exp{−Nc(T − T1)}+ exp{−N(ṼŌ(Ki,Kj)− 2η/3)}

≤ 2 exp{−N(ṼŌ(Ki,Kj)− 2η/3)} with T large enough

≤ exp{−N(ṼŌ(Ki,Kj)− η)} N large enough such that
ln(2)

N
<
η

3

The lemma is proved.

Before we present others lemmas which will be useful, let us define the sequence κn ∈ N for which Z̃κn =

Z̃N,z(θκn) ∈ G1
0. Note that the κn are Z̄n stopping times and that the θn and θκn are GN,zt stopping times,

where GN,zt = σ{Z̃N,z(s), 0 ≤ s ≤ t}.

Lemma 4.10. For all z ∈ O,

lim
N→∞

Pz
(
τNO > θκ1

)
= 1.

Proof. We note that the statement is equivalent to limN→∞ Pz
(
Z̃N (θκ1 ∧ τNO ) ∈ G1

0

)
= 1, and we prove that

lim
N→∞

Pz
(
Z̃N (θκ1 ∧ τNO ) 6∈ G1

0

)
= 0.
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It is enough to take z ∈ O \G1
0. Indeed if z ∈ G1

0 by the strong Markov property,

Pz
(
Z̃N (θκ1

∧ τNO ) 6∈ G1
0

)
= Ez

(
Ez
(
1{Z̃N (θκ1

∧τNO )6∈G1
0}
|Fσ0

))
= Ez

(
PZ̃N (σ0)

(
Z̃N (θκ1

∧ τNO ) 6∈ G1
0

))
≤ sup
v∈Γ0

Pv
(
Z̃N (θκ1

∧ τNO ) 6∈ G1
0

)
Let furthermore T := inf{t ≥ 0|Y (t, z) ∈ Bρ1/2(z∗)}. Since Y (·, z) is continuous and never reaches ∂̃O, we

have inft≥0 dist(Y (t, z), ∂̃O) =: δ > 0. Hence we have the following implication:

sup
t∈[0,T ]

|Z̃N,zt − Y (t, z)| ≤ δ

2
⇒ Z̃N,z(θκ1

∧ τNO ) ∈ G1
0.

In other words,

Pz
(
Z̃N (θκ1

∧ τNO ) /∈ G1
0

)
≤ Pz

(
sup
t∈[0,T ]

|Z̃N,z(t)− Y (t, z)| > δ

2

)
. (4.15)

The right hand side of Inequality (4.15) converges to zero as N → ∞ by the weak law of large numbers
established in [12].

In the following, we present some lemmas which are analogue to the lemmas of [3].

Lemma 4.11. Given η > 0, there exists ρ0 > 0 (which can be chosen arbitrarily small) such that for any
ρ2 ∈ (0, ρ0), there exists ρ1 ∈ (0, ρ2) and N large enough such that for all z ∈ G1

0

exp(−N(V
∂̃O

+ η)) ≤ Pz

(
Z̃1 ∈

M⋃
i=1

G1
i

)
≤ exp(−N(V

∂̃O
− η)).

Proof. We have

Pz

(
Z̃1 ∈

M⋃
i=1

G1
i

)
=

M∑
i=1

Pz
(
Z̃1 ∈ G1

i

)
then we deduce from Lemma 4.9 that 0 < ρ1 < ρ2 < ρ0 can be chosen in such a way that ∀x ∈ G1

0,

exp{−Nη/2}
M∑
i=1

exp{−NVŌ(K0,Ki)} ≤ Pz

(
Z̃1 ∈

M⋃
i=1

G1
i

)
,

Pz

(
Z̃1 ∈

M⋃
i=1

G1
i

)
≤ exp{Nη/2}

M∑
i=1

exp{−NVŌ(K0,Ki)}.

Moreover it is easy to see that

exp{−N min
i
VŌ(K0,Ki)} ≤

M∑
i=1

exp{−NVŌ(K0,Ki)} ≤M exp{−N min
i
VŌ(K0,Ki)}.
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Hence ∀x ∈ G1
0,

exp
{
−N

(
min
i
VŌ(K0,Ki) + η/2

)}
≤ Pz

(
Z̃1 ∈

M⋃
i=1

G1
i

)
,

Pz

(
Z̃1 ∈

M⋃
i=1

G1
i

)
≤ exp

{
−N

(
min
i
VŌ(K0,Ki)− η/2−

1

N
logM

)}
.

The result now follows from Lemma 4.8 if we choose N such that

N >
2| log(M)|

η
.

In the following essential Lemma, we establish that an exit through the characteristic boundary ∂̃O is
relatively likely once Z̃N,z(t) is close to it.

For its proof, we shall need the following assumption

Assumption 4.12. We assume that our system satisfies one of the two following conditions.

A ∂̃O = {z, z1 = 0} and for each N ≥ 1 the first coordinate ZN1 (t) of the process ZN (t) takes the form

ZN1 (t) = z1 +
1

N
P1

(
N

∫ t

0

ϕrZ
N
1 (r)dr

)
− 1

N
P2

(
N

∫ t

0

ψrZ
N
1 (r)dr

)
,

where P1 and P2 are two mutually independent standard Poisson processes, the two processes ϕ and ψ
are adapted to the filtration GNt = σ{ZNs , 0 ≤ s ≤ t}, and there exist two constants a, b > 0 such that
0 ≤ ϕt ≤ a, b ≤ ψt for all t ≥ 0 a.s.

B For any y ∈ ∂̃O, δ > 0, the set Bδ(y) ∩ (Ō)c ∩A has a non empty interior.

Remark 4.13. Note that the two examples presented below in Sections 6.2 and 6.3 satisfy condition A and not
condition B, while the two examples presented in Sections 6.4 and 6.5 satisfy condition B and not condition A.

Remark 4.14. In the situation covered by condition A, the two processes ZN and Z̃N coincide, and the results
from [12] are of no use, given the results from [11], while the results in [12] are useful for us in this paper for
the situation covered by condition B. Indeed, the process ZN cannot exit the set A. Under condition B, only

the piece ∂̃O of the boundary of O can be crossed by the process ZN , see Figures 1 and 2 in Sections 6.4 and
6.5 for an illustration. Under condition A, the process ZN cannot cross the boundary.

In the proof of our next result, we shall need the following technical result.

Lemma 4.15. Let Ξ be a Poisson r.v. with mean λ. For any µ > λ,

P(Ξ > µ) ≤ exp
{
−
(
µ log

(µ
λ

)
− µ+ λ

)}
.

Proof. It follows from Chebychef’s inequality that for any θ > 0,

P(Ξ > µ) = P(eθΞ > eθµ) ≤ exp{−θµ+ (eθ − 1)µ}.

The result follows by choosing the optimal θ = log(µ/λ).

We can now state and prove the following crucial result.
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Lemma 4.16. Given η > 0, there exist 0 < γ < η, 0 < ρ < η, and N0 large enough so that whenever

dist(z, ∂̃O) < ρ/3 and N > N0,

Pz
(
τNO < γ; sup

0≤t≤γ
|Z̃N (t)− z| < ρ

)
≥ exp(−Nη).

Proof. In this proof, we will use both processes ZN and Z̃N .

Step 1. Proof under Assumption 4.12
A) Recall that here Z̃N = ZN . Let γ1 > 0 and 0 < ρ1 < ρ to be chosen below. Let B(γ1, ρ1, ρ) ⊂ Dγ(O) be
specified by the following requirements : φ : [0, γ1]→ O belongs to B(γ1, ρ1, ρ) iff φ1(t) ≤ ρ/3 for all 0 ≤ t ≤ γ1,
and φ1(γ1) < ρ1. Since ZN satisfies the large deviations principle, it follows from Lemma 4.1 that for any
0 < ρ1 < ρ, ρ small enough, we can choose γ1 > 0 such that

P(ZN ∈ B(γ1, ρ1, ρ)) ≥ exp(−Nη/3). (4.16)

We now consider the process

ZN,2(t) = ZN (γ1 + t), 0 ≤ t ≤ γ2.

Thanks to Assumption 4.12 A, ZN,21 (t) ≤ XN (t), where

XN (t) = ZN1 (γ1) +N−1P̃1

(
Na

∫ t

0

XN (s)ds

)
−N−1P̃2

(
Nb

∫ t

0

XN (s)ds

)
,

with

P̃1(t) = P1

(
N

∫ γ1

0

ϕsZ
N
1 (s))ds+ t

)
− P1

(
N

∫ γ1

0

ϕsZ
N
1 (s))ds

)
,

P̃2(t) = P2

(
N

∫ γ1

0

ψsZ
N
1 (s))ds+ t

)
− P2

(
N

∫ γ1

0

ψsZ
N
1 (s))ds

)
.

Indeed, while XN (t) = ZN,21 (t) (which is the case for t > 0 small enough), if the first jump is positive, it hits

XN first, while if it is negative it hits ZN,21 first. So that when XN and ZN,21 start to disagree, they verify

XN (t) > ZN,21 (t). Since the two processes cannot cross, ZN,21 (t) ≤ XN (t) for all t > 0 a.s. Let us denote by τNext
the time of extinction of XN . From the above comparison, we see that or any γ2 > 0,

τNO − γ1 ≤ τNext, hence {τNO − γ1 < γ2} ⊃ {τNext < γ2}.

Let γ = γ1 + γ2. There exist mutually independent standard Poisson process P̃j , 1 ≤ j ≤ k, which are
independent of σ{ZNt , 0 ≤ t ≤ γ1}, and positive constants cj and dj , 1 ≤ j ≤ k, such that

{τNO < γ} ∩ { sup
0≤t≤γ

|Z̃N (t)− z| < ρ}

⊃ {ZN ∈ B(γ1, ρ1, ρ)} ∩ {τNO − γ1 < γ2} ∩kj=1 {P̃ (cjγ2N) ≤ djρN}
⊃ {ZN ∈ B(γ1, ρ1, ρ)} ∩ {τNext < γ2} ∩kj=1 {P̃ (cjγ2N) ≤ djρN}.

Note that NXN is a continuous time birth and death branching process starting from NzN1 (γ1), with birth
rate a and death rate b. We can and do assume that a > b (which is the case in our applications covered by
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the situation A), i.e. NXN is supercritical. If we combine formula (1) page 107 of Athreya and Ney [1] and the
formula for the birth and death case page 109, we see that

P
(
τNext < γ2|ZN (γ1)

)
=

(
b− b e(b−a)γ2

a− b e(b−a)γ2

)NZN1 (γ1)

.

Now

P
(
τNO < γ, sup

0≤t≤γ
|Z̃N (t)− z| < ρ

)
≥ P

(
ZN ∈ B(γ1, ρ1, ρ)

)
P
(
{τNext < γ2} ∩2

j=1 {P̃ (cjγ2N) ≤ djρN}|ZN ∈ B(γ1, ρ1, ρ)
)

×
k∏
j=3

P
(
P̃ (cjγ2N) ≤ djρN

)
.

(4.17)

First we choose α < minkj=1
dj
cj

and let γ2 = αρ. It follows from the law of large numbers that∏k
j=3 P

(
P̃ (cjγ2N) ≤ djρN

)
→ 1 as →∞. Hence for any η > 0, there exists N1 ≥ 1 such that for all N ≥ N1,

k∏
j=3

P
(
P̃ (cjγ2N) ≤ djρN

)
≥ exp(−Nη/3). (4.18)

We now treat the second factor on the right of (4.17)

P
(
{τNext < γ2} ∩2

j=1 {P̃ (cjγ2N) ≤ djρN}|ZN1 (γ1) ≤ ρ1

)
≥ P

(
τNext < γ2|ZN1 (γ1) ≤ ρ1

)
−

2∑
j=1

P
(
P̃ (cjγ2N) > djρN

)

≥
(
b− b e(b−a)γ2

a− b e(b−a)γ2

)Nρ1

−
2∑
j=1

exp

(
−Nρ

{
dj log

(
dj
cjα

)
− dj + cjα

})
≥ exp (−Nρ1 log[Aγ2

])− 2 exp (−Nρδ) ,

where we have used Lemma 4.15 for the second inequality, and used the notations

Aγ2 =
a− b e(b−a)γ2

b− b e(b−a)γ2
, and δ =

2
min
j=1

dj log

(
dj
cjα

)
− dj + cjα > 0.

We now choose ρ = η/(3δ), hence γ2 = (αη)/(3ρ). We finally choose ρ1 =
[
6 log

(
3ρ
αηa

)]−1

η, so that

ρ1 log[Aγ2
] = η/6. Consequently, provided N ≥ (6 log[3])/η,

P
(
{τNext < γ2} ∩2

j=1 {P̃ (cjγ2N) ≤ djρN}|ZN1 (γ1) ≤ ρ1

)
≥ exp(−Nη/3). (4.19)

The result follows by combining (4.17), (4.16), (4.18) and (4.19).
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Step 2. Proof under Assumption 4.12
B) Let

G =

{
φ ∈ Dγ,A : dist(φ0, ∂̃O) < ρ/3, sup

0≤t≤γ
|φt − φ0| < ρ/2 and inf{t : φt ∈ Ōc} < γ

}
.

G is open for the Skorohod topology and as ZN,z satisfies the large deviations principle, we deduce that for all

z ∈ O such that dist(z, ∂̃O) < ρ/3 we have for N large enough

Pz(ZN ∈ G) ≥ exp{−N( inf
φ∈G

Iγ(φ) + η/4)}.

Moreover from Lemma 4.1 we can choose γ, ρ < η such that infφ∈G Iγ(φ) < η/4. Consequently

Pz(ZN ∈ G) ≥ exp{−Nη/2}.

We also have for all z ∈ O with dist(z, ∂̃O) < ρ/3.

Pz
(
τNO < γ, sup

0≤t≤γ
|Z̃N (t)− z| < ρ

)
≥ Pz

(
τNO < γ, sup

τNO ≤t≤γ
|Z̃N (t)− z| < ρ, sup

0≤t<τNO
|Z̃N (t)− z| < ρ/2

)

= Pz

(
sup

τNO ≤t≤γ
|Z̃N (t)− z| < ρ

∣∣∣τNO < γ, sup
0≤t<τNO

|Z̃N (t)− z| < ρ/2

)

× Pz

(
τNO < γ, sup

0≤t<τNO
|Z̃N (t)− z| < ρ/2

)
. (4.20)

Moreover we have

Pz

(
τNO < γ, sup

0≤t<τNO
|Z̃N (t)− z| < ρ/2

)
= Pz

(
τNO < γ, sup

0≤t<τNO
|ZN (t)− z| < ρ/2

)
≥ Pz(ZN ∈ G) ≥ exp{−Nη/2}. (4.21)

Using the strong Markov property, we also have

Pz

(
sup

τNO ≤t≤γ
|Z̃N (t)− z| < ρ

∣∣∣τNO < γ, sup
0≤t<τNO

|Z̃N (t)− z| < ρ/2

)

= Ez

(
PZ̃N (τNO )

(
sup

τNO ≤t≤γ
|Z̃N (t)− z| < ρ

)∣∣∣τNO < γ, sup
0≤t<τNO

|Z̃N (t)− z| < ρ/2

)

≥ inf
y:|y−z|<ρ/2

Py
{

sup
0≤t≤γ

|Z̃N (t)− z| < ρ

)
≥ inf
y:|y−z|<ρ/2

Py
(

sup
0≤t≤γ

|Z̃N (t)− y| < ρ/2

)
≥ exp{−Nη/2}, (4.22)
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where the last inequality follows from Theorem 3.2 and Lemma 4.1. Combining (4.20), (4.21) and (4.22) we
have the result.

In the proofs of the next lemmas we denote

Oε := {z ∈ O : dist(z, ∂̃O) > ε}

and we establish some inequalities involving θκ1 .

Lemma 4.17. For all η, ρ0 > 0, y ∈ ∂̃O, and z ∈ O \
⋃M

0 Bρ0
(Ki), there exist δ0, ρ2 and N0 so that for all

ρ1 < ρ2, for all δ < δ0 and N > N0

Pz
(
τNO < θκ1 ; |Z̃N (τNO )− y| < δ

)
≥ exp

(
−N(VŌ,Kc

0
(z, y) + η)

)
Proof. First, by definition of VŌ,Kc

0
(z, y), there exist T̄ and a curve ψt, 0 ≤ t ≤ T̄ with ψ0 = z, ψT̄ = y and

ψt ∈ Ō \K0 for all 0 ≤ t ≤ T̄ such that

IT̄ (ψ) ≤ VKc
0
(z, y) +

η

12
.

We can next choose a such that ψat , 0 ≤ t ≤ T̄ defined by

ψat = (1− a)ψt + az0

satisfies dist(ψat , ∂̃O) ≥ ca and

IT̄ (ψa) ≤ IT̄ (ψ) +
η

12
.

According to Lemma 4.1, there exist two functions ψa,1t , 0 ≤ t ≤ T a,1 and ψa,2t , 0 ≤ t ≤ T a,2 such that ψa,10 = z,
ψa,1Ta,1 = ψa0 , ψa,20 = ψa

T̄
, ψa,2Ta,2 = y and

ITa,1(ψa,1) ≤ η

12
and ITa,2(ψa,2) ≤ η

12
.

Combining ψa,1t , 0 ≤ t ≤ T a,1, ψat−Ta,1 , T a,1 ≤ t ≤ T̄ + T a,1 and ψa,2
t−T̄−Ta,1 , T̄ + T a,1 ≤ t ≤ T a,2 + T̄ + T a,1 we

obtain a function ϕt, 0 ≤ t ≤ T = T̄ + T a,1 + T a,2

IT (ϕ) ≤ VKc
0
(z, y) +

η

3
. (4.23)

Let ρ1 < ρ0, δ < min
{

1
2ca,

ρ0

2

}
and H ⊆ DT,Ō be the set of functions φ having the following properties:

• |φT − y| < 1
2δ

• φt does not intersect
(
Ō \O 1

4 δ

)
\B 1

2 δ
(y)

• φt does not intersect Bρ1(z∗)

H is open and ϕ ∈ H (if ϕ intersects Bρ1
(z∗) we use again Lemma 4.1 to modify ϕ). From theorem 3.2, for all

N large enough we deduce by using (4.23) that

logPz(Z̃N ∈ H) ≥ −N
(

inf
ψ∈H,ψ0=z

IT (ψ) +
η

3

)
≥ −N

(
VKc

0
(z, y) +

2η

3

)
.
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Moreover we remark that Z̃N,z ∈ H implies |Z̃N,z(τNO ∧ T )− y| < 1
2δ and T < θκ1

. So

logPz
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, T < θκ1

)
≥ −N

(
VKc

0
(z, y) +

2η

3

)
. (4.24)

We also have

Λ = Pz
(
|Z̃N (τNO )− y| < δ, θκ1

> τNO

)
≥ Pz

(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, |Z̃N (τNO )− y| < δ, T < τNO < θκ1

)
+ Pz

(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, |Z̃N (τNO )− y| < δ, τNO ≤ T < θκ1

)
+ Pz

(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, |Z̃N (τNO )− y| < δ, τNO < θκ1

≤ T
)

≥ Λ1 + Λ2 + Λ3.

Further

Λ1 = Ez
(
Pz
(
|Z̃N (T )− y| < 1

2
δ, τNO < θκ1 , T < θκ1 ∧ τNO , |Z̃N (τNO )− y| < δ|FT

))
= Ez

(
|Z̃N (T )− y| < 1

2
δ, T < θκ1

∧ τNO ,PZ̃N (T )

(
τNO < θκ1

, |Z̃N (τNO )− y| < δ
))

.

Furthermore for any x such that dist(x, y) < δ/2

Px
(
|Z̃N (τNO )− y| < δ, τNO < θκ1

)
≥ Px

(
τNO < γ, sup

0≤t≤γ
|Z̃N (t)− y| ≤ δ

)
.

for all γ > 0. In particular with γ selected as in Lemma 4.16, we deduce that

Λ1 ≥ Pz
(
|Z̃N (T )− y| < 1

2
δ, T < θκ1

∧ τNO
)

exp(−Nη/3).

We also have

Λ2 = Pz
(
|Z̃N (τNO )− y| < 1

2
δ, τNO ≤ T < θκ1

)
≥ Pz

(
|Z̃N (τNO )− y| < 1

2
δ, τNO ≤ T < θκ1

)
exp(−Nη/3),

since {
|Z̃N,z(τNO )− y| < 1

2
δ, τNO ≤ T < θκ1

}
⊆
{
|Z̃N,z(τNO )− y| < δ, τNO < θκ1

}
,
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and Λ3 > 0. Thus

Λ ≥ Pz
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, T < θκ1 ∧ τNO

)
exp(−Nη/3)

+ Pz
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, τNO ≤ T < θκ1

)
exp(−Nη/3)

≥ Pz
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, T < θκ1

)
exp(−Nη/3). (4.25)

It follows from (4.24) and (4.25) that

logPz(|Z̃N (τNO )− y| < δ, τNO < θκ1) ≥ −N
(
VKc

0
(z, y) + η

)
.

The lemma follows.

Lemma 4.18. For all η > 0, y ∈ ∂̃O, there exists δ0 > 0 and ρ0 > 0 (which can be chosen arbitrarily small)
such that for any ρ1, 0 < ρ1 < ρ0, for any δ < δ0 there exists N0 so that for all N > N0 and any z ∈ G1

0,

Pz
(
τNO < θκ1 ; |Z̃N (τNO )− y| < δ

)
≥ exp(−N(VŌ(z∗, y) + η)).

Proof. Let ρ1 < ρ0, ∀z ∈ G1
0

Pz
(
τNO < θκ1

; |Z̃N (τNO )− y| < δ
)

= Ez
(
Pz
(
τNO < θκ1

; |Z̃N (τNO )− y| < δ
∣∣Fσ0

))
= Ez

(
PZ̃N (σ0)

(
τNO < θκ1

; |Z̃N (τNO )− y| < δ
))

> inf
v∈Γ0

Pv
(
τNO < θκ1

; |Z̃N (τNO )− y| < δ
)

By definition of the VŌ(z∗, y), there exists a curve ϕ(t), 0 ≤ t ≤ T1 with ϕ0 = z∗, ϕT1
= y such that

IT1
(ϕ) ≤ VŌ(z∗, y) +

η

24
.

Moreover by Lemma 4.1 v ∈ Γ0 and z∗ can be connected by a curve ϕ̃t, 0 ≤ t ≤ T2 such that

IT1
(ϕ̃) <

η

24
.

Combining ϕ̃t, 0 ≤ t ≤ T2 and ϕ(t), 0 ≤ t ≤ T1, we construct a curve ϕ̄ by

ϕ̄t =

{
ϕ̃t if t ∈ [0, T2],

ϕt−T2
if t ∈ [T2, T1 + T2].

so that

IT1+T2
(ϕ̄) ≤ VŌ(z∗, y) +

η

12

For this function ϕ̄ we can choose a such that its corresponding curve ϕ̄a, 0 ≤ t ≤ T3 = T1 + T2 defined by

ϕ̄at = (1− a)ϕ̄t + az0
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is such that dist(ϕ̄at , ∂̃O) ≥ ca and

IT3
(ϕ̄a) ≤ IT3

(ϕ̄) +
η

12
.

Thus

IT3(ϕ̄a) ≤ VŌ(z∗, y) +
η

6

According to the Lemma 4.1, there exist two functions ϕa,1t , 0 ≤ t ≤ T a,1 and ϕa,2t , 0 ≤ t ≤ T a,2 such that
ϕa,10 = v, ϕa,1Ta,1 = ϕa0 , ϕa,20 = ϕaT3

, ϕa,2Ta,2 = y and

ITa,1(ϕa,1) ≤ η

12
and ITa,2(ϕa,2) ≤ η

12
.

Concatenating ϕa,1t , 0 ≤ t ≤ T a,1, ϕ̄at−Ta,1 , T a,1 ≤ t ≤ T3 +T a,1 and φa,2t−T3−Ta,1 , T3 +T a,1 ≤ t ≤ T a,2 +T3 +T a,1,
we obtain a function ψt, 0 ≤ t ≤ T such that

IT (ψ) ≤ VŌ(z∗, y) +
η

3
. (4.26)

Let δ ≤ min
{

1
2ca,

ρ0

2

}
and define G ⊆ DT,Ō to be the set of functions φ having the following properties:

• |φT − y| < 1
2δ

• φt does not intersect
(
Ō \O 1

4 δ

)
\B 1

2 δ
(y)

• φt does not intersect Bρ1
(z∗)

G is open and ψ ∈ G (if ψ intersect Bρ1
(z∗) we use again Lemma 4.1 to modify it) we deduce from Theorem 3.2

and (4.26) that for large enough N

logPNv (G) ≥ −N
(

inf
φ∈G,φ0=v

IT (ϕ) +
η

3

)
≥ −N

(
VŌ(z∗, y) +

2η

3

)
.

Moreover we remark that Z̃N ∈ G implies |Z̃N (τNO ∧ T )− y| < 1
2δ and θκ1

> T . So for N large enough,

logPv(|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

> T ) ≥ −N
(
VŌ(z∗, y) +

2η

3

)
. (4.27)

We have moreover

Θ = Pv
(
|Z̃N (τNO )− y| < δ, θκ1

> τNO

)
≥ Pv

(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, |Z̃N (τNO )− y| < δ, θκ1

> τNO > T
)

+ Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, |Z̃N (τNO )− y| < δ, θκ1

> T ≥ τNO
)

+ Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, |Z̃N (τNO )− y| < δ, T ≥ θκ1

> τNO

)
≥ Θ1 + Θ2 + Θ3.
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Further

Θ1 = Ev
(
Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

> τNO > T, |Z̃N (τNO )− y| < δ|FT
))

= Ev
(
Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

> τNO , θκ1
∧ τNO > T, |Z̃N (τNO )− y| < δ|FT

))
= Ev

(
|Z̃N (T )− y| < 1

2
δ, θκ1 ∧ τNO > T,PZ̃N (T )

(
θκ1 > τNO , |Z̃N (τNO )− y| < δ

))
.

Furthermore for x such that dist(x, y) < δ/2

Px
(
|Z̃N (τNO )− y| < δ, θκ1

> τNO

)
≥ Px

(
τNO < γ, sup

0≤t≤γ
|Z̃N (t)− y| ≤ δ

)
,

for all γ > 0. In particular with γ selected as in Lemma 4.16 and δ = ρ, we deduce that

Θ1 ≥ Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

∧ τNO > T
)

exp(−Nη/3).

We also have

Θ2 = Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

> T ≥ τNO
)

≥ Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

> T ≥ τNO
)

exp(−Nη/3).

Thus since Θ3 ≥ 0,

Θ ≥ Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

∧ τNO > T
)

exp(−Nη/3)

+ Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

> T ≥ τNO
)

exp(−Nη/3)

= Pv
(
|Z̃N (τNO ∧ T )− y| < 1

2
δ, θκ1

> T
)

exp(−Nη/3). (4.28)

It follows from (4.27) and (4.28) that

logPv(|Z̃N (τNO )− y| < δ, θκ1
> τNO ) ≥ −N

(
VŌ(z∗, y) + η

)
.

Lemma 4.19. Given any η, there exists ρ0 > 0 (which can be chosen arbitrarily small) such that for any
ρ2 ∈ (0, ρ0), there exists ρ1 ∈ (0, ρ2) and Nη such that for all N > Nη and z ∈ G1

0,

Pz
(
τNO < θκ1

)
≤ exp(−N(V

∂̃O
− η)).

Proof. Let δ > 0, we define

τNOδ = inf{t > 0 : Z̃N,z(t) 6∈ Oδ}.
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It is easy to see that τNOδ < τNO . Moreover if ρ1 < δ, then τNOδ < θκ1
implies τNOδ < θ1. Thus ∀z ∈ G1

0

Pz(τNO < θκ1
) ≤ Pz(τNOδ < θκ1

) ≤ Pz(τNOδ < θ1).

Now we use the strong Markov property to write that ∀z ∈ G1
0

Pz(τNOδ < θ1) = Ez
(
PZ̃N (σ0)(τ

N
Oδ

< θ1)
)

we deduce that

sup
z∈G1

0

Pz(τNO < θκ1
) 6 sup

v∈Γ0

Pv(τNOδ < θ1)

Now, we establish that we can choose ρ0 and δ sufficiently small such that for all v ∈ Γ0 we have,

Pv(τNOδ < θ1) ≤ exp

{
−N

(
V
∂̃Oδ
− 2η

3

)}
.

Using Lemma 4.1 there exists ρ > 0 such that T (ρ) < η/3K. We take ρ0 < ρ/2, δ and γ sufficiently small such
that for any trajectory φt, 0 ≤ t ≤ T starting from v ∈ Γ0 and touching Oδ \Oδ+γ we have

IT (φ) ≥ V
∂̃Oδ
− η

4
.

Moreover, using Lemma 4.5 there exists a constant c and T1 such that for all N large enough, any T > T1 and
v ∈ Oδ \G where G =

⋃M
i=1G

1
i we have

Pv(τNOδ\G > T ) ≤ exp{−Nc(T − T1)}.

Now if we take any trajectory Z̃N,v, with v ∈ Γ0, and which reaches O \ Oδ before going to G either spends
time T without touching O \Oδ (the event {τN

Oδ\G
> T} is realized) or reaches O \Oδ before time T and in this

case the event {
ρT

(
Z̃N,v,Φ

(
V
∂̃Oδ
− η

4

))
≥ γ

}
is realized.

Hence, for all v ∈ Γ0 we have from Lemma 4.5 and Theorem 3.2 (c)

Pv(τNOδ < θ1) ≤ Pv
(
τN
Oδ\G

> T
)

+ Pv
({
ρT

(
Z̃N,v,Φ

(
V
∂̃Oδ
− η

4

))
≥ γ

})
≤ exp{−Nc(T − T1)}+ exp

{
−N

(
V
∂̃Oδ
− η

2

)}
≤ 2 exp

{
−N

(
V
∂̃Oδ
− η

2

)}
taking T large enough

≤ exp

{
−N

(
V
∂̃Oδ
− 3η

4

)}
taking N large enough such that

ln(2)

N
<
η

4

Moreover, VŌ(z∗, .) is continuous so if δ is sufficiently small then

V
∂̃Oδ
≥ V

∂̃O
− η

4
.
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So

sup
z∈G1

0

Pz(τNO < θκ1) ≤ exp{−N(V
∂̃O
− η)}.

This prove the lemma.

5. Main result on the exit measure

The proof of our main result, Theorem 5.3, will rely upon Lemma 5.2, for which the following notion will be
essential.

Definition 5.1. Let L a subset of N and W a subset of L. A W-graph on L is an oriented graph which satisfies
the following conditions

(a) It consists of arrows i→ j, i 6= j with i ∈ L \W and j ∈ L.
(b) For all i ∈ L \W , there exists exactly one arrow such that i is its initial point.
(c) For any i ∈ L \W there exists a sequence of arrows leading from it to some point j ∈W .

We will denote by Gr(W ) the set of W -graphs and for i ∈ L \W , j ∈ W we denote by Gri,j(W ) the set of
W -graphs in which the sequence of arrows leading from i into W ends at j. We can now show the analogue of
Lemma 3.2 in [3].

Lemma 5.2. For all y ∈ ∂̃O and η, δ0 > 0 there exist ρ, δ < δ0 and N0, so that for all z with dist(z, z∗) < ρ
and N > N0, we have

exp(−N(VŌ(z∗, y)− V
∂̃O

+ η)) ≤ Pz(|Z̃N (τNO )− y| < δ) (5.1)

and

Pz(|Z̃N (τNO )− y| < δ) ≤ exp(−N(VŌ(z∗, y)− V
∂̃O
− η)) (5.2)

Proof. Let y ∈ ∂̃O. We can always assume that y ∈
⋃M

1 Ki else we add the compact K = {y} in the list of the
compacts and Assumption 2.1 remains true since VO(y, y) = 0 and If yRu for some u 6= y, then Lemma 4.3
implies that any ω-limit point of (1.3) starting at y is equivalent to y and then y was in a compact Ki.

In what follows we assume that y ∈ K1. Let δ > 0. Using the strong Markov property we have, for all z ∈ G1
0,

Pz(|Z̃N (τNO )− y| < δ)

=

∞∑
k=0

Pz(|Z̃N (τNO )− y| < δ; θκk ≤ τNO < θκk+1
)

=

∞∑
k=0

Ez
[
Pz(|Z̃N (τNO )− y| < δ; θκk ≤ τNO < θκk+1

|Fθκk )
]

=

∞∑
k=0

Ez
[
Pz(|Z̃N (τNO )− y| < δ; θκk ≤ τNO < θκk+1

|ZN (θκk))
]

=

∞∑
k=0

Ez
[
PZ̃N (θκk )(|Z̃

N (τNO )− y| < δ; τNO < θκ1
); θκk ≤ τNO

]
=

∞∑
k=0

Ez
[
PZ̃N (θκk )(|Z̃

N (τNO )− y| < δ|τNO < θκ1
)PZ̃N (θκk )(τ

N
O < θκ1

); θκk ≤ τNO
]

(5.3)



EXIT MEASURE FOR A POISSON DRIVEN SDE 173

Furthermore, ∀z ∈ G1
0 we have

Pz(|Z̃N (τNO )− y| < δ|τNO < θκ1) =
Pz(|Z̃N (τNO )− y| < δ; τNO < θκ1

)

Pz(τNO < θκ1)
(5.4)

Let us now deduce the lower bound (5.1) from (5.4), (5.3) combined with Lemmas 4.18 and 4.19. Given η, δ > 0
pick 0 < ρ1 < ρ0 satisfying both Lemmas with η replaced by η/2. For all z ∈ G1

0 and N large enough, we have

Pz(|Z̃N (τNO )− y| < δ; τNO < θκ1)

Pz(τNO < θκ1
)

≥ exp(−N(VŌ(z∗, y) + η/2))

exp(−N(V∂̃O − η/2))

= exp(−N(VŌ(z∗, y)− V∂̃O + η))

The lower bound (5.1) follows from this and (5.3).
For the upper bound (5.2), we first obtain a lower bound of the denominator of (5.4) as follows:

Pz(τNO < θκ1
) = Pz

Z̃1 ∈
M⋃
`=1

G1
` ; Z̃

N (t−) +
1

N

k∑
j=1

hj4QNj (t) 6∈ O for some t ∈ [θ1, θ2)


= Ez

(
PZ̃1

(τNO < θ1); Z̃1 ∈
M⋃
`=1

G1
`

)

Now we use Lemma 4.16 to deduce that choosing γ, ρ1 such that 0 < γ < η, 0 < ρ1 < η and N0 ∈ N we have

for all u ∈
⋃M

1 G1
` , dist(u, ∂̃O) < ρ1/2 and then for N > N0,

Pu(τNO < θ1) ≥ Pu
(
τNO < γ; sup

0≤t≤γ
|Z̃N (t)− u| < ρ1

)
≥ exp(−Nη).

Thus, for all ρ1 sufficiently small, N large enough and all z ∈ G1
0,

Pz(τNO < θκ1
) ≥ exp(−Nη/4)Pz

(
Z̃1 ∈

M⋃
1

G1
`

)
(5.5)

By using the lemma 4.11 we have for all suitable small ρ1, ρ0, and N large enough, and all z ∈ G1
0,

Pz

(
Z̃1 ∈

M⋃
`=1

G1
`

)
≥ exp{−N(V∂̃O + η/4)} (5.6)

We then deduce of (5.5) and (5.6) that

Pz(τNO < θκ1
) ≥ exp(−N(V∂̃O + η/2)). (5.7)
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We now use the embedded chain Z̃n to obtain a upper bound of the numerator of (5.4) in the following way:
given δ < ρ1 and z ∈ G1

0,

Pz(|Z̃N (τNO )− y| < δ; τNO < θκ1
) ≤ Pz(Z̃N (τNO ) ∈ G1

1; τNO < θκ1
)

≤ Pz(Z̃n ∈ G1
1 for some 1 ≤ n < κ1) (5.8)

= Ez(PZ̃1
(Z̃n ∈ G1

1 for some 0 ≤ n < κ1)), (5.9)

where we assume of course that

Pv
(
Z̃n ∈ G1

1 for some 0 ≤ n < κ1

)
:=

{
1 if v ∈ G1

1,

0 if v ∈ G1
0.

Now we try to have an upper bound of Pv(Z̃n ∈ G1
1 for some 0 ≤ n < κ1) for v ∈ G1

` where ` 6= 0, 1. For
all suitable ρ1, ρ0 and N large we have for all v ∈ G1

`

Pv(Z̃n ∈ G1
1 for some 0 ≤ n < κ1) = qW (v,G1

1).

Where qW (v,G1
1) is the probability that, starting from v the Markov chain (Z̃n) hits G1

1 when it first enters
G1

0 ∪G1
1.

Now we will use a result on the Markov chains described by [7] lemma 3.3 of chapter 6 in terms of the
W -graphs on the sets L = {0, . . . ,M} where W = {0, 1}. To apply this lemma we define the sets Xi = G1

i

∀i ∈ {0, . . . ,M} and X =
M⋃
i=0

Xi. If we define a = exp{Nη/4M−1} and pi,j = exp{−NṼŌ(Ki,Kj)}, we deduce

from lemma 4.9 that the assumptions of the lemma 3.3 of chapter 6 in [7] hold true, hence for all suitable ρ1,
ρ0 and N large enough, v ∈ G1

` ,

qW (v,G1
1) ≤ a4M−1

∑
g∈Gr`,1(W )

∏
(i→j)∈g pi,j∑

g∈Gr(W )

∏
(i→j)∈g pi,j

.

Thus

qW (v,G1
1) ≤ exp{Nη/7}

∑
g∈Gr`,1(W ) exp

{
−N

∑
(i→j)∈g ṼŌ(Ki,Kj)

}
∑
g∈Gr(W ) exp

{
−N

∑
(i→j)∈g ṼŌ(Ki,Kj)

} . (5.10)

It is easy to see that
∑
g∈Gr`,1(W ) exp

{
−N

∑
(i→j)∈g ṼŌ(Ki,Kj)

}
is equivalent to a positive constant C1 which

is the number of graphs in Gr`,1(W ) at which the minimum of
∑

(i→j)∈g ṼŌ(Ki,Kj) is attained multiplied by

exp
{
−N ming∈Gr`,1(W )

∑
(i→j)∈g ṼŌ(Ki,Kj)

}
. We also see easily that the denominator in (5.10) is equivalent

to a positive constant multiplied by exp
{
−N ming∈Gr(W )

∑
(i→j)∈g ṼŌ(Ki,Kj)

}
. Hence there exists N0 such

that for N ≥ N0

qW (v,G1
1) ≤ exp

−N
 min
g∈Gr`,1(W )

∑
(i,j)∈g

ṼŌ(Ki,Kj)− min
g∈Gr(W )

∑
(i,j)∈g

ṼŌ(Ki,Kj)

+Nη/6

 .
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We remark here that in the case of a single attracting set K0, ṼŌ(Ki,K0) = 0 for all i. Then we have

min
g∈Gr(W )

∑
(i,j)∈g

ṼŌ(Ki,Kj) = 0

We also have

min
g∈Gr`,1(W )

∑
(i,j)∈g

ṼŌ(Ki,Kj) = VŌ,Kc
0
(K`,K1).

With these preceding remark, we deduce that

Pv(Z̃n ∈ G1
1 for some 0 ≤ n < κ1) ≤ exp{−N(VŌ,Kc

0
(K`,K1)− η/6)}; v ∈ G1

` , ` 6= 0, 1.

Now according (5.9) and lemma 4.9 we have for N > 6 log(M)
η ∨N0

Pz(|Z̃N (τNO )− y| < δ; τNO < θκ1) ≤ Ez

(
M∑
`=0

1Z1∈G1
`
PZ1

(
Zn ∈ G1

1 for some 0 ≤ n < κ1

))

= Pz(Z̃1 ∈ G1
1) +

M∑
`=2

Ez
(
1Z̃1∈G1

`
PZ̃1

(
Z̃n ∈ G1

1 for some 0 ≤ n < κ1

))
≤ exp

{
−N(ṼŌ(K0,K1)− η/6)}+

M∑
`=2

exp{−N(ṼŌ(K0,K`) + VŌ,Kc
0
(K`,K1)− η/6)

}
≤ exp

{
−N(ṼŌ(K0,K1)− η/6)}+ exp{−N( min

2≤`≤M
{ṼŌ(K0,K`) + VŌ,Kc

0
(K`,K1)} − η/3)

}
≤ exp

{
−N

(
ṼŌ(K0,K1) ∧ min

2≤`≤M
{ṼŌ(K0,K`) + VŌ,Kc

0
(K`,K1)} − η/2

)}
.

We remark here that

ṼŌ(K0,K1) ∧ min
2≤`≤M

{ṼŌ(K0,K`) + VŌ,Kc
0
(K`,K1)}

= VŌ(K0,K1)

= VŌ(z∗, y)

And then

Pz(|Z̃N (τNO )− y| < δ; τNO < θκ1
) ≤ exp{−N(V (z∗, y)− η/2)} (5.11)

uniformly over z ∈ G1
0, provided ρ1, ρ0 and N are chosen in suitable way.

Combining (5.7), (5.11) and (5.4), we deduce that

Pz(|Z̃N (τNO )− y| < δ|τNO < θκ1
) ≤ exp{−N(VŌ(z∗, y)− V∂̃O − η)}, for all z ∈ G1

0,

provided δ < ρ1 with ρ1 sufficiently small and N sufficiently large. As η > 0 is arbitrary, we obtain the upper
bound (5.2) from (5.3). This concludes the proof of lemma 5.2.

We finally establish our main result which is an analogue of Theorem 3.1 in [3].
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Theorem 5.3. Assume that the Assumptions 2.1, 4.6 and 4.12 hold true. Then for z ∈ O, y ∈ ∂̃O and any
η > 0, δ0 > 0 there exist δ < δ0 and N0, such that for all N > N0

exp(−N(Sz(y) + η)) < Pz(|ZN (τNO )− y| < δ) < exp(−N(Sz(y)− η))

where Sz(y) is defined by:

Sz(y) = VŌ(z, y) ∧ (VŌ(z∗, y)− V
∂̃O

). (5.12)

Proof. So far we have worked with the reflected processes Z̃N . We have come back to ZN in the above statement.
Of course, the two processes are coupled by the fact that their equations are driven by the same Poisson processes.
As a result, we can reformulate the definition (4.11) of τNO as follows

EτNO = inf{t > 0; ZN (t) ∈ (Ō)c ∪ ∂̃O} ,

which yields exactly the same stopping time. Also |ZN (τNO )− Z̃NO (τNO )| ≤ N−1h̄, where h̄ = sup1≤j≤k |hj |. So

clearly the statement of the theorem is equivalent to the fact that for all z ∈ O, y ∈ ∂̃O and η > 0, δ0 > 0 there
exist δ < δ0 and N0, such that for all N > N0,

exp(−N(Sz(y) + η)) < Pz(|Z̃N (τNO )− y| < δ) < exp(−N(Sz(y)− η)). (5.13)

We shall in fact establish the last statement.
We first remark that for z = z∗ the result is given by Lemma 5.2 . If z ∈ O \ {z∗}, we make the restriction

that ρ0 be sufficiently small so that dist(z,Ki) > ρ0 for all i = 0, . . . ,M . This allows us to write

Pz(|Z̃N (τNO )− y| < δ) = Pz(|Z̃N (τNO )− y| < δ, θκ1 < τNO )

+ Pz(|Z̃N (τNO )− y| < δ, θκ1
> τNO ))

= Ez(PZ̃κ1
(|Z̃N (τNO )− y| < δ); θκ1

< τNO )

+ Pz(|Z̃N (τNO )− y| < δ, θκ1 > τNO )

= Π1 + Π2. (5.14)

We now split the rest of the proof in 5 steps.

Step 1. Upper bound of Π1. Lemma 5.2 tells us that for all z ∈ G1
0,

Pz(|Z̃N (τNO )− y| < δ) ≤ exp{−N(VŌ(z∗, y)− V
∂̃O
− η/3)}.

Hence Π1 can be bounded from above as follows

Π1 = Ez(PZ̃κ1
{|Z̃N (τNO )− y| < δ}; θκ1

< τNO )

≤ Pz{θκ1 < τNO )} exp{−N(VŌ(z∗, y)− V
∂̃O
− η/3)}

≤ exp{−N(VŌ(z∗, y)− V
∂̃O
− η/3)}.
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Step 2. Lower bound of Π1. From Lemma 4.10 we deduce that for suitably small ρ0, ρ1 there exists N ∈ N
such that, for all N > N0,

Pz{θκ1 < τNO } ≥ Pz{Z̃N (θκ1 ∧ τNO ) ∈ G1
0}

≥ exp{−Nη/2}.

Π1 can then be bounded from below as follows using Lemma 5.2

Π1 = Ez(PZ̃κ1
(|Z̃N (τNO )− y| < δ), θκ1

< τNO )

≥ Pz(θκ1 < τNO ) exp{−N(VŌ(z∗, y)− V
∂̃O

+ η/2)}
≥ exp{−N(VŌ(z∗, y)− V

∂̃O
+ η)}.

Step 3. Upper bound of Π2. We now obtain a upper bound for Π2 by making the same computations as in
the proof of lemma 5.2. Indeed

Pz(|Z̃N (τNO )− y| < δ; τNO < θκ1
) ≤ Pz(Z̃N (τNO ) ∈ G1

1; τNO < θκ1
)

≤ Pz(Z̃n ∈ G1
1 for some 0 ≤ n ≤ κ1)

= Ez(PZ̃1
(Z̃n ∈ G1

1 for some 0 ≤ n < κ1)).

Where we assume of course that,

Pv(Z̃n ∈ G1
1 for some 0 ≤ n < κ1) :=

{
1 if v ∈ G1

1

0 if v ∈ G1
0.

For v ∈ G1
` , ` 6= 0, 1 we can establish as in the proof of Lemma 5.2 that

Pv(Z̃n ∈ G1
1 for some 0 ≤ n < κ1) 6 exp{−N(VŌ,Kc

0
(K`,K1)− η)}

Hence

Π2 = Pz(|Z̃N (τNO )− y| < δ, τNO < θκ1)

≤ exp{−N(ṼŌ(z,K1) ∧ min
2≤`≤M

[ṼŌ(z,K`) + VŌ,Kc
0
(K`,K1)]− 2η/3)}

≤ exp{−N(VŌ,Kc
0
(z, y)− 2η/3)}.

Step 4. Lower bound of Π2. From Lemma 4.17, we deduce

Π2 = Pz(|Z̃N (τNO )− y| < δ, θκ1
> τNO )

≥ exp{−N(VŌ,Kc
0
(z, y) + η)}.

Step 5. Conclusion. Thus, the term on the left in (5.14) can be bounded from above as follows, provided

that N > 3 log(2)
η

Pz(|Z̃N (τNO )− y| < δ) ≤ exp{−N(VŌ(z∗, y)− V
∂̃O
− η/3)}+ exp{−N(VŌ,Kc

0
(z, y)− 2η/3)}

≤ exp{−N(VŌ,Kc
0
(z, y) ∧ [VŌ(z∗, y)− V

∂̃O
]− η)}.
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We now show that

VŌ,Kc
0
(z, y) ∧ [VŌ(z∗, y)− V

∂̃O
] = VŌ(z, y) ∧ [VŌ(z∗, y)− V

∂̃O
] (5.15)

Indeed we first remark that VŌ,Kc
0
(z, y) ≥ VŌ(z, y). If VŌ,Kc

0
(z, y) > VŌ(z, y), then the nearly minimal paths for

VŌ(z, y) must come arbitrarily close to K0, so

VŌ(z, y) = VŌ(z, z∗) + VŌ(z∗, y) = VŌ(z∗, y),

and then VŌ(z∗, y) − V
∂̃O

< VŌ(z, y) < VŌ,Kc
0
(z, y) and (5.15) is true. This establishes the upper bound in

(5.13).
In order to obtain the lower bound in (5.13), we deduce from the lower bounds for Π1 and Π2 that

Pz(|Z̃N (τNO )− y| < δ) ≥ exp{−N(VŌ(z∗, y)− V
∂̃O

+ η)}+ exp{−N(VŌ,Kc
0
(z, y) + η)}

≥ exp{−N(VŌ,Kc
0
(z, y) ∧ [VŌ(z∗, y)− V

∂̃O
] + η)},

and then the lower bound in (5.13) follows from (5.15).

We now deduce

Corollary 5.4. Assume that there exits a unique point y∗ ∈ ∂̃O such that

VŌ(z∗, y∗) = V
∂̃O

= inf
y∈∂̃O

VŌ(z∗, y),

then for all δ > 0, and z ∈ O

lim
N→∞

Pz(|ZN (τNO )− y∗| < δ) = 1.

6. Application to four models

In this section, we shall apply our result to 4 examples of epidemic models. In each of these models, for
certain values of the parameters, the deterministic ODE model (which is the law of large numbers limit of our
stochastic model) has a locally stable endemic equilibrium, i.e. an equilibrium with a positive proportion of
infectious individuals (while a disease free equilibrium is an equilibrium with the proportion of infectious equal
to zero). That equilibrium being stable, the ODE model predicts that the epidemic will persist for ever, hence
the disease is endemic, this is why we call the corresponding equilibrium an endemic equilibrium. On the other
hand, the stochastic model will hit soon or later the absorbing set of disease free states. Corollary 5.4 states
that the preferred region of exit from the basin of attraction of the endemic equilibrium is the vicinity of the

point z̄ in ∂̃O which realizes the minimum of the function V (z∗, z) on ∂̃O, if that minimum is unique. We will
show that in our 4 examples such uniqueness holds, and we will characterize the point z̄.

In the two first examples, which satisfy condition A of Assumption 4.12, that is where ∂̃O = {z, z1 = 0}, z̄ is
the unique disease free equilibrium, which is an unstable equilibrium, which however is stable in the set {z1 = 0}.
In the two last examples, which satisfy condition B of Assumption 4.12, the boundary ∂̃O separates the basins
of attraction of the endemic equilibrium z∗, and of the disease free equilibrium z0. A third equilibrium, which

is an unstable (in fact a hyperbolic) endemic equilibrium, attracts all points in ∂̃O, that point is precisely z̄ in
those two examples.

In the four following models, we show that for N large, with high probability the stochastic process hits the
boundary of the basin or attraction of the endemic equilibrium near the point to which the law of large number
limit converges, when restricted to this boundary. Note that V

∂̃O
is the value function of a deterministic optimal
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control problem. We will exploit Pontryagin’s maximum principle, in order to prove the results of this section.
We will first describe the relevant optimal control problem, and present Pontryagin’s maximum principle in the
case of that optimal control problem. Then we shall present the four models successively, and finally we shall
prove our result. Note that Assumption 2.1 is easily verified in the first two examples, and has been carefully
verified in [12] for the last two.

6.1. Pontryagin maximum principle

Let us formulate the optimal control problem, of which V
∂̃O

is the value function.
B being the d× k matrix whose j-th column is the vector hj , 1 ≤ j ≤ k, and f : R2+ 7→ R being defined by

f(a, b) = a log(a/b)− a+ b, we consider the following optimal control problem

(OCP )



MinT>0, u∈L1(0,T ;Rk+)C(u), where

C(u) =

k∑
j=1

∫ T

0

f(uj(t), βj(zt))dt, subject to the constraints

żt = But, z0 = z∗, zT ∈M,

where M := ∂̃O is the set of points z ∈ A (or ∈ AR in the case of the SIR model with demography) which are

such that zt → z̄ as t → ∞, if z0 = z and żt = b(zt) =
∑k
j=1 βj(z)hj . In other words, z̄ is either the disease–

free equilibrium (in the situations considered in Sects. 6.2 and 6.3), or the unstable endemic equilibrium (in the
situations considered in Sects. 6.4 and 6.5). The fact that V

∂̃O
coincides with the minimum of the cost functional

C(u) over the above set of admissible controls follows readily from the definition (3.5) of IT (φ), combined with
the definition of V

∂̃O
which appears in the first lines of Section 4.

We associate to the above control problem the Hamiltonian

H(z, r, u) = 〈r,Bu〉 −
k∑
j=1

f(uj , βj(z)).

The maximum principle states that (see [13, 17])

Proposition 6.1. If (T̂ ; ût, 0 ≤ t ≤ T̂ ) is an optimal pair, then there exists an adjoint state r ∈ C([0, T̂ ];Rd)
such that

żt = Bût, : z0 = z∗, zT̂ ∈M,

ṙt =

k∑
j=1

[
∇βj(zt)− ûjt

∇βj(zt)
βj(zt)

]
, rT̂ ⊥M,

H(zt, rt, ût) = max
v∈Rk+

H(zt, rt, v) = 0, 0 ≤ t ≤ T̂ .

Note that rT̂ ⊥ M means that rT̂ and any tangent vector to M at zT̂ are perpendicular. The fact that the
Hamiltonian is zero at the final time is a consequence of two facts: the final time T is not fixed and there is no
final cost; the fact that the Hamiltonian is zero along the optimal trajectory then follows from the fact that it
is constant, since none of the coefficient depends upon the variable t.

Let us exploit Proposition 6.1 to rewrite the system of ODEs for zt and rt along an optimal trajectory. We
denote by B∗ the transposed of the matrix B. Since for each 1 ≤ j ≤ k, u→ (B∗r)ju− f(u, βj(z)) is concave,
its maximum is achieved at the zero of its derivative, if it is non negative. We conclude that ûj = e(B∗r)jβj(z).
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Consequently, along the optimal trajectory,

żt =

k∑
j=1

e(B∗rt)jβj(zt)hj , ṙt =

k∑
j=1

(
1− e(B∗rt)j

)
∇βj(zt). (6.1)

Moreover, the optimal cost reads

Ĉ =

k∑
j=1

∫ T̂

0

(
1− e(B∗rt)j + (B∗rt)je

(B∗rt)j
)
βj(zt)dt.

In the examples below, d = 2. We shall denote by xt and yt the two components of zt, and by pt and qt the
two components of rt.

6.2. The SIRS model

Let xt denote the proportion of infectious individuals in the population and yt the proportion of susceptibles.
Since the total population size is constant, 1 − xt − yt is the proportion of removed (also called recovered)
individuals, who lose their immunity and become susceptible again at rate ρ. The deterministic SIRS model,
see e.g. [2], can be written as

ẋt = λxtyt − γxt,
ẏt = −λxtyt + ρ(1− xt − yt).

The initial condition is supposed to satisfy x0 ≥ 0, y0 ≥ 0, x0 + y0 ≤ 1. It is easy to see that the pair (xt, yt)
satisfies the same restrictions for all t > 0. Here

O = A = {(x, y) ∈ R2
+; x+ y ≤ 1}, ∂̃O = {0} × [0, 1].

We assume that the basic reproduction number R0 = λ/γ satisfies R0 > 1. Then there is a unique stable endemic

equilibrium z∗ =
(
ρ
λ
λ−γ
ρ+γ ,

γ
λ

)
. The disease free equilibrium is z̄ = (0, 1).

The corresponding SDE is of the form (1.1), with d = 2, k = 3, h1 =

(
1
−1

)
, h2 =

(
−1
0

)
, h3 =

(
0
1

)
,

β1(x, y) = λxy, β2(x, y) = γx, β3(x, y) = ρ(1− x− y).
Note that in this example and in the next one, we do not need the definition of the reflected process Z̃Nt ,

since it is identical to ZNt .
The system of ODES for the state and adjoint state (6.1) reads in this case

ẋt = λept−qtxtyt − γe−ptxt,
ẏt = −λept−qtxtyt + ρeqt(1− xt − yt),
ṗt = λ(1− ept−qt)yt + γ(1− e−pt)− ρ(1− eqt),
q̇t = λ(1− ept−qt)xt − ρ(1− eqt),

x0 =
ρ

λ

λ− γ
ρ+ γ

, y0 =
γ

λ
, xT = 0, qT = 0.
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6.3. The SIR model with demography

The deterministic SIR model with demography, see e.g. [2], can be written as

ẋt = λxtyt − (γ + µ)xt,

ẏt = −λxtyt + µ− µyt.

Here xt (resp. yt) denotes the proportion of infectious (resp. susceptible) individuals in the population, if the
initial condition (x0, y0, u0) satisfies x0, y0, u0 ≥ 0, x0 + y0 + u0 = 1. Note that ut denotes the proportion of
recovered individuals in the population, which satisfies

u̇t = γxt − µut .

However, in the stochastic model, the coordinates of the vector ZNt are not exact proportions, since we divide
the number of individuals in each compartment by N , while the total population Nt fluctuates around N . This
is why ZNt lives in R2

+, and

O = A = R2
+, ∂̃O = {0} × R+ .

As opposed to the SIRS model, the removed individuals do not loose their immunity, rather new susceptibles
are born at rate µ, which is the rate at which both susceptibles and infectious die (the infectious heal at rate

ρ as in the SIRS model). If R0 = λ
γ+µ > 1, there is a stable endemic equilibrium z∗ =

(
µ

γ+µ −
µ
λ ,

γ+µ
λ

)
, and a

disease free equilibrium z̄ = (0, 1).

The corresponding SDE is of the form (1.1), with d = 2, k = 4, h1 =

(
1
−1

)
, h2 =

(
−1
0

)
, h3 =

(
0
1

)
,

h4 =

(
0
−1

)
, β1(x, y) = λxy, β2(x, y) = (γ + µ)x, β3(x, y) = µ, β4(x, y) = µy. One can show, see [2], that the

cost needed to hit the boundary {x + y = R} tends to ∞ as R →∞, hence for R large enough, if we restrict
ourself to the subset AR = {(x, y) ∈ R2

+, x + y ≤ R}, minz∈∂AR V (z∗, z) = minz1=0 V (z∗, z). Also AR is not
exactly A1 which has been considered so far, it is easily seen that all our results extend to this new situation, and
Corollary 5.4 combined with Proposition 6.2 tells us that for large R, the process ZN hit {z1 = 0} ∪ {|z| ≥ R}
near a given point of the boundary {z1 = 0} which is independent of R, with probability close to 1.

The system of ODEs for the state and adjoint state (6.1) reads in this case

ẋt = λept−qtxtyt − (γ + µ)e−ptxt,

ẏt = −λept−qtxtyt + µeqt − µe−qtyt,
ṗt = λ(1− ept−qt)yt + (γ + µ)(1− e−pt),
q̇t = λ(1− ept−qt)xt + µ(1− e−qt),

x0 =
µ

γ + µ
− µ

λ
, y0 =

γ + µ

λ
, xT = 0, qT = 0.

6.4. The SIV model

In this model, some of the individuals are vaccinated. Also the vaccine is not perfect, it gives a partial
protection. If we denote by xt (resp. yt) the proportion of infectious (resp. of vaccinated) individuals at time t,
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Figure 1. The 3 equilibria and ∂̃O in case of the SIV model.

the model studied by [9] reads

ẋt = (β − µ− γ)xt − β(1− χ)xtyt − βx2
t ,

ẏt = η(1− xt)− (η + µ+ θ)yt − χβxtyt.

Here

A = {(x, y) ∈ R2
+; x+ y ≤ 1} .

For certain values of the parameters, it is shown that this model has one disease–free equilibrium, one locally
stable endemic equilibrium z∗, and a third equilibrium z̄ which lies on the characteristic boundary which

separates the basins of attraction of the two other equilibria, which is here ∂̃O, O being the basin of attraction

of z∗. The corresponding SDE is of the form (1.1), with d = 2, k = 7, h1 =

(
1
0

)
, h2 =

(
1
−1

)
, h3 =

(
−1
0

)
,

h4 =

(
0
−1

)
, h5 =

(
0
1

)
, h6 =

(
−1
0

)
and h7 =

(
0
−1

)
, β1(x, y) = βx(1− x− y), β2(x, y) = χβxy, β3(x, y) = γx,

β4(x, y) = θy, β5(x, y) = η(1− x− y), β6(x, y) = µx, β7(x, y) = µy.
The system of ODES for the state and adjoint state (6.1) reads in this case

ẋt = βeptxt(1− xt − yt) + χβept−qtxtyt − (γ + µ)e−ptxt,

ẏt = −χβept−qtxtyt − (θ + µ)e−qtyt + ηeqt(1− xt − yt),
ṗt = β(1− ept)(1− 2xt − yt) + χβ(1− ept−qt)yt + γ(1− e−pt)− η(1− eqt) + µ(1− e−pt),
q̇t = −β(1− ept)xt + χβ(1− ept−qt)xt + θ(1− e−qt) + η(eqt − 1) + µ(1− e−qt),
x0 = x∗, y0 = y∗, (xT , yT ) ∈M, (pT , qT ) ⊥M.
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Figure 2. The 3 equilibria and ∂̃O in case of the S0IS1 model.

6.5. The S0IS1 model

This is a version of the SIR model, where the recovered individuals are susceptible, but with a susceptibility
which is less that that of those who have never been infected. They are of type S1. This model has been studied
in [14]. Let xt (resp. yt) denote the proportion of infectious (resp. of type S1) individuals. The ODE reads

ẋt = β(1− xt − yt)xt − (µ+ α)xt + rβxtyt,

ẏt = αxt − µyt − rβxtyt.

Here

A = {(x, y) ∈ R2
+; x+ y ≤ 1} .

Again for certain values of the parameters, we have the same large time description as for the SIV model, and

∂̃O is the characteristic boundary which separates the basins of attraction of the two local stable equilibria, O

being the basin of attraction of z∗. The corresponding SDE is of the form (1.1), with d = 2, k = 5, h1 =

(
1
0

)
,

h2 =

(
−1
1

)
, h3 =

(
−1
0

)
, h4 =

(
1
−1

)
and h5 =

(
0
−1

)
, β1(x, y) = βx(1− x− y), β2(x, y) = αx, β3(x, y) = µx,

β4(x, y) = rβxy and β5(x, y) = µy.
The system of ODES for the state and adjoint state (6.1) reads in this case

ẋt = βeptxt(1− xt − yt)− αeqt−ptxt − µe−ptxt + rβept−qtxtyt,

ẏt = αeqt−ptxt − rβept−qtxtyt − µe−qtyt,
ṗt = β(1− ept)(1− 2xt − yt) + α(1− eqt−pt) + µ(1− e−pt) + rβ(1− ept−qt)yt,
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q̇t = −β(1− ept)xt + rβ(1− ept−qt)xt + µ(1− e−qt),
x0 = x∗, y0 = y∗, (xT , yT ) ∈M, (pT , qT ) ⊥M.

6.6. The result

Recall that we start our process ZNt from the endemic equilibrium, i.e. ZN0 = z∗. Since is N assumed to be
large, ZNt stays for a long time close to its law of large numbers limit, hence close to z∗. Wentzell–Freidlin’s
theory of “small random perturbations of dynamical systems” suggests that at some large time, which is of the

order of exp(NV
∂̃O

), ZNt will hit the boundary ∂̃O. In the two first examples where ∂̃O = {z1 = 0}, at that
time the epidemic stops, we say that we have extinction of the endemic disease. In fact the same is true in the

last two examples, since as soon as the process crosses the boundary ∂̃O, it converges in time of order one to
the disease free equilibrium. Consequently the asymptotic of the time to hit or cross that boundary (which is
a.s. the same event) is the same as the one for the epidemic to go extinct.

When on the boundary ∂̃O, the solution of the ODE converges to z̄. Recalling the notations defined at the
beginning of Section 4, it clearly follows that V

∂̃O
= VO(z∗, z̄). What we want to show is that this minimum is

unique, i.e.

Proposition 6.2. In each of the above four examples, for all z ∈ ∂̃O\{z̄}, VO(z∗, z̄) < VO(z∗, z).

This shows, thanks to Corollary 5.4, that for large N , ZN,z will exit the domain of attraction of the endemic
equilibrium z∗ in the vicinity of z̄ with probability close to 1.

We now turn to the
Proof of Proposition 6.2 Our assumptions are easy to verify in the first two examples, the verification in the
last two examples has been done in [12]. We consider the optimal control problem which has been stated in
subsection 6.1, in one of the four above examples. Suppose first that there exists a minimizing sequence {un,
n ≥ 1} ⊂ L1(R+;Rk+) such that the corresponding trajectory zt hits the target M at some point zn ∈ ∂̃O\{z̄} in
time Tn, with T := supn Tn <∞. Since IT is a good rate function (i.e. its level sets are compact), see Theorem
3 in [11], there exists a subsequence znk which converges to a optimal trajectory ẑ which hits M at point z 6= z̄

at time T̂ ≤ T , with a control û ∈ L1([0, T ];Rk+). We concatenate ẑ with the solution of the ODE starting from
z, which converges to z̄ (in infinite time). Since the second part of the trajectory runs at no cost, the whole
trajectory is optimal for the same control problem as above, but with the constraint that z̄ must be the final
point. We apply the Pontryagin maximum principle to this new optimal control problem, which implies the
existence of a continuous adjoint state (pt, qt). Since pt = qt = 0 for t > T̂ , we have pT̂ = qT̂ = 0. But this is
not possible. zt being bounded, the solution (pt, qt) of the adjoint state equation cannot hit (0, 0) in finite time.
One way to see this is to note that the function (pt, qt) time reversed from time T̂ would solve an ODE starting
from (0, 0), whose unique solution is (pt, qt) ≡ (0, 0), see the second equation in (6.1). We conclude from the
above argument that if an optimal trajectory converges to some point z 6= z̄, then it does so in infinite time.
Consequently (x∞, y∞, p∞, q∞) must be a fixed point of (6.1). It remains to show that (x̄, ȳ, 0, 0) is the only
admissible fixed point. The argument is now slightly different in the various considered examples.

In the first two examples (SIRS and SIR with demography), we know that x∞ (the first coordinate of z∞)
and the second coordinate q∞ of r∞ vanish. Consequently y∞ must be the zero of 1− y, hence equals 1.

In the two other cases, we first note that both p∞ and q∞ must be finite. Indeed, either the solution must
remain bounded, or else would explode in finite time, which contradicts the existence of the adjoint state on
[0,+∞). We next show that both coordinates of z∞, x∞ and y∞, are positive. In case of the SIV model, we
first note that y∞ = 0 would imply x∞ = 1, but (1, 0) is clearly not on M . On the other hand, x∞ = 0 would
imply that the second coordinate q∞ of r∞ vanishes, and y∞ = η

η+µ+θ , which again gives a point not on M .
In case of the S0IS1 model, we note that x∞ = 0 implies y∞ = 0, and the reserve implication is also true, but
(0, 0) is not on M . Finally, since Ĉ < ∞, the running cost must converge to 0 as t → ∞. For each 1 ≤ j ≤ k
such that βj(z∞) > 0, this implies that 〈rt, hj〉 → 0 as t→∞. This is true for j = 3 and 4 in case of the SIV
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model, for j = 3 and 5 in case of the S0IS1 model. In both cases, it implies that (p∞, q∞) = (0, 0). Consequently

z∞ is a zero of b(z) =
∑k
j=1 βj(z)hj and belongs to M , hence equals z̄.

We next need to consider the case where all minimizing sequences {un, n ≥ 1} satisfy Tn →∞, as n→∞.
The limiting trajectory, which is optimal, reaches the target M in infinite time. The argument just developed
shows that the point of M to which the optimal trajectory converges must be z∞ = z̄.

We have proved that, if zinf is such that V (z∗, zinf) = min
z∈∂̃O V (z∗, z), then zinf = z̄. Hence for any z ∈

∂̃O\{z̄}, V (z∗, z) > V (z∗, z̄), and the result is established. �
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