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Abstract

We prove the existence and uniqueness of a quasi-stationary distribution for three stochastic pro-
cesses derived from the model of the Müller ratchet. This model has been originally introduced to
quantify the limitations of a purely asexual mode of reproduction in preventing, only through natu-
ral selection, the fixation and accumulation of deleterious mutations. The main considered model is
clearly non-classical, as it is a stochastic diffusion evolving on an irregular set of infinite dimension
with hard killing on an hyperplane. We are nonetheless able to prove exponential convergence in to-
tal variation to the quasi-stationary distribution even in this case. The parameters in this last result
of convergence are directly related to the core parameters of the Müller ratchet effect. The speed
of convergence to the quasi-stationary distribution deduced from the infinite dimensional model ex-
tends to the approximations with a large yet finite number of potential mutations. Likewise, we
have uniform moment estimates of the empirical distribution of mutations in the population under
quasi-stationarity.

1 Introduction

1.1 General presentation

Since deleterious mutations occur much more frequently than beneficial ones, it is crucial to under-
stand how the fixation of these deleterious mutations is regulated. Notably, it is very exceptional
that a subsequent mutation reverts a deleterious one, so that only natural selection can maintain
some purity in the population. In this respect, there is a major distinction to be made between sex-
ual and asexual reproduction. In a purely asexually reproducing population, a deleterious mutation
can only be purged when the lineages carrying it go extinct. In a sexually reproducing population,
such a deleterious mutation can be avoided through recombination, without getting rid of the whole
set of other mutations carried by the lineages. There is actually no strong evidence that deleterious
mutations are specifically targeted during this process of recombination. It appears sufficient that
at random some lineages do not carry the mutation any longer and that natural selection comes into
play. This aspect of purging deleterious mutations is often cited to explain the success of sexual re-
production (see [16] for more details). Such an advantage for sexual reproduction is to be confronted
with the cost (in terms of reproduction efficacy) of requiring two parents. The above scheme for
purging deleterious mutations in asexual populations is the main object of study of the current paper.

We plan to justify the existence and uniqueness of a metastable state in which selective effects
are able to maintain the population from having an additional deleterious mutation fixed. We call
a click such an event of fixation. It has been shown in [1] that clicks happen in finite time a.s. even
for the infinite dimensional diffusion model (with infinitely many types of individuals). Rigorous
definitions of such metastable state (characterized by the absence of click) can be obtained in a broad
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generality by a conditioning of stochastic processes. We refer to Subsection 2.1 for the definition of
several crucial characteristic of metastability, especially the notion of quasi-stationary distribution
(or QSD).

We treat in this paper three models of the Müller ratchet: the first one is discrete both in time
and space, the second is a finite dimensional diffusion and the third one is an infinite dimensional
diffusion, see Section 1.2 below. We prove the existence and uniqueness of a QSD for those three
stochastic representations see resp. Theorems 2.1, 2.2 and 2.3. To our knowledge, the existence and
uniqueness of a QSD has not been rigorously proved until now except in the case of a finite state
space. This result was nonetheless implicitly exploited for the approximations provided in [17].

We shall see that these QSD are concentrated on distributions with light tails, meaning that
the proportion of the population carrying a large number of mutations remains negligible under the
QSD. This claim is supported by our Proposition 2.3.2.

We also address the classical issue of specifying the conditions under which metastability is the
”most common” observable. A generally accepted answer is to compare the so-called relaxation
time tR, which quantifies the rate at which the dependence in the past conditions vanishes, and the
average clicking time tC of the system. Metastability between clicks would be the most common
observation provided tR ≪ tC , so that a sequence of i.i.d. exponential law provides an accurate
description of the sequence of intervals between clicks. This is where the comparison with the clicks
of a ratchet comes from. If tR is of the same order as tC or larger, we a priori can not exclude that
trains of short interdependent intervals could alter this observed distribution of interval length. But
already if tR is of the same order as tC , there shall still be long realizations of inter-click intervals
after which we can say that the dependence in the past is forgotten. This discussion is pursued in
more details in Subsection 3.

The above mentioned theorems provide a proper definition of these two main quantities. The
clicking time is given by the extinction rate of the QSD. On the other hand, the QSD is approached
at an exponential rate, from which we derive tR, by the marginal law of the process conditioned upon
the fact that the click has not occurred. We establish these results for the three versions of the model.

As compared to the other models that we have treated by similar techniques as in the current
paper, the proof of Theorem 2.3 is particularly difficult. It specifically exploits the effect of selection
to obtain practical bounds on the maximal number of accumulated mutations. The argument is
technical because at any time an infinitesimal proportion of heavily counter-selected mutants cannot
be completely neglect.

A simplified version of such bounds is already needed for the proof of Theorem 2.1. This con-
cerns the process defined in Section 1.2.1 and treated with Theorem 2.1 in Section 2.2. The fact
that the process describes a discrete population greatly simplifies the argument. We then extend
the justification of the relaxation time and the clicking rate for large population limiting models.
Note that the results of [17] or [10] already largely exploit the fact that the population is large.
In the diffusive limit defined in Section 1.2.2, an additional difficulty arises in that the diffusion is
degenerate on a non-smooth boundary that is partly absorbing and partly repulsive. In order to
present a simplified analysis, we introduce a limitation in the number of carried mutations for the
statement of Theorem 2.2 given in Section 2.3. In the last step given in Section 2.4 with Theorem
2.3, we establish the existence and uniqueness of a QSD for the more natural infinite dimensional
model.

The paper is organized as follows. In the next Section 1.2, we specify the stochastic processes
under consideration, first the individual-based model in Section 1.2.1 and then its diffusive limits in
Section 1.2.2. Our results of quasi-stationarity are presented in Section 2. Starting in Section 2.1
with the general notion of exponential quasi-stationarity that we aim to establish, we treat resp.
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in Sections 2.2, 2.3 and 2.4 each of the three stochastic processes mentioned above. The generic
assumptions and theorems on which these proofs rely are stated in Subsection 2.5. Next, we discuss
more precisely the interpretation of these results in Section 3. We first justify in Subsection 3.1 to
3.3 under which conditions quasi-stationarity can be observed, then in Subsection 3.4 why we expect
it to be frequent in ecology. Finally, we motivate our choice for not introducing a bound on the
number of mutations in Section 3.5. The rest of the paper is dedicated to the proofs. Sections 4, 5
and 7 are devoted to the proofs of quasi-stationarity for each of the three processes, while Section 6
is devoted to uniform moment estimates of the QSDs. Such controls of the moments are exploited
in Section 7, which makes this ordering natural.

1.2 The mathematical model of the Müller ratchet

1.2.1 The individual-based model as a guideline

For the origin of the models which we study, we refer to the simplified mathematical model which
has been proposed by Haigh in [11] to quantify the regulation of deleterious mutations in an asexual
population. The interest for this type of simplified models stems from general considerations on
the evolutive advantage of recombination, as notably advanced by Müller in 1964 [19]. Since in any
finite population, the ultimate fixation of deleterious mutations cannot be avoided (unless by the
extinction of the population), the “mechanism” has been called the Müller ratchet.

Assuming a constant deleterious effect of mutations, at each time that the fittest individuals dis-
appear, the ratchet clicks in the sense that the new fittest individuals carry an additional deleterious
effect. If the mutation rate is slow enough for these fittest individuals to maintain the stability of
the system for a while, we shall rapidly get back to the dynamics before the click, translating the
empirical distribution of the number of carried mutations by one. This fixed deleterious mutation
is indeed shared by the whole population (present and future). Since the population size is fixed, it
does not contribute to natural selection any longer.

This first model with discrete generations and fixed population size N evolves as follows. Mu-
tations that occur are only deleterious and they occur at rate λ > 0. The cost in fitness of each
mutation is quantified by α ∈ (0, 1). Assume that the current population is distributed with Ni

individuals carrying i mutations and consider an individual from the next generation. Each one
chooses its parent independently from the others, where the probability that he chooses a specific
parent carrying i mutations is:

(1− α)i∑
k≥0 Nk(1− α)k

.

In addition to the mutations of its parent, each newborn gains ξ deleterious mutations, where ξ is a
Poisson random variable with mean λ, specific to the newborn. ξ is drawn independently for each
newborn and of the choice of the parents.

Remark 1.2.1. Of course, the situation is more intricate in reality. Mutations certainly do not have
constant effect, and combination effects are frequent (i.e. epistasis). In many asexual populations,
there is evidence of the role of horizontal gene transfers, for instance with plasmids ([13], [18], [20],
[24]), which can be seen as a weak form of recombination. Moreover, the fact that mutations are
deleterious is due to a change in the physiology that may be compensated by other means. It might
even happen that after subsequent mutations, the carriers of an initially deleterious mutation become
more adapted than the wild types [23]. Neglecting these effects enables however to gain insight on
the main regulatory factor.

1.2.2 The stochastic diffusion under consideration

In the following, we also consider a description of the model that corresponds to a limit of large
population size, accelerated time-scale (for which time is continuous), thus also small selective effects
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and small mutation rate. In the following statements, d ∈ N ∪ {∞} defines an upper-bound on the
number of deleterious mutations that can be carried by an individual. If d := ∞ in the following
expression, i ∈ [[0, d]] has to be understood as i ∈ Z+.

We are interested in the following Fleming-Viot system of SDEs for the Xi(t)’s, i ∈ [[0, d]],
where Xi(t) denotes the proportion of individuals in the population who carry exactly i deleterious
mutations at time t (with X−1 ≡ 0): ∀ i ≤ d,

dXi(t) = α(M1(t)− i)Xi(t) dt+ λ(Xi−1(t)− 1{i<d}Xi(t)) dt

+
√
Xi(t) dW

i
t −Xi(t) dWt (1.1):(S(d))

where Wt :=
∑d

j=0

∫ t

0

√
Xj(s)dW

j
s , M1(t) :=

∑d
i=0 iXi(t),

with (W i)i≥0 a family of mutually independent Brownian Motions.
This process has been introduced in [10] and it has been shown in [1] that clicks occur a.s. in

finite time. In [22], a closely related process with compensatory mutations is considered. We refer
to this article for a detailed presentation of the connection to related individual-based models and
only sketch next the interpretation of the parameters.

The selective effect of the deleterious mutations is the term proportional to α in the drift term.
Since the population size is fixed, the growth rate of the individuals is shifted to be 0 on average over
the population. As we assume that all deleterious mutations carry the same burden, the growth rate
of individuals carrying imutations is proportional to the difference between i and the average number
of mutations, i.e. M1(t). The appearance of new mutations is modeled by the term proportional to
λ in the drift term. λ corresponds to the rate at which individuals carrying i mutations give birth
to individuals carrying i + 1 mutations. Finally, the neutral choice of the individuals replaced at
each birth events give rise to the martingale term. Our time-scale corresponds to the rescaling of
time t 7→ t′/Ne, where Ne is the “effective population size”.

Remark 1.2.2. This notion of “effective population size” has been largely considered to extend the
properties of unstructured homogeneous individual-based models to individual-based models with a
population structure that differentiates the individuals. So it is meant to be applied to real populations
under ecological study. Notably, it provides the scaling of the genealogies that makes it approximate
the standard Kingman’s coalescent [14]. Thus, it gives for any sample in the population an estimate
on the time at which their most recent common ancestor lived. It is of course natural that this
quantity plays a role in such modeling of heritable factors.

Remark 1.2.3. For practical reasons, the current formulation of the martingales is different from
the one in [1] in the aftermath of [10]. One can easily check however that the brackets of these
martingale parts coincide, so that the models are actually the same.

2 Exponential quasi-stationarity results

2.1 Exponential quasi-stationarity

The conclusions of the following theorems are expressed in terms of the notion of exponential quasi-
stationarity that we borrow from [26]. For X a generic (Polish) space, hereafter B(X ) is the space
of bounded measurable functions on X and M1(X ) the space of Borel probability measures.

Definition 1. For any linear and bounded semi-group (Pt)t≥0 acting on M1(X ), we say that P dis-
plays a uniform exponential quasi-stationary convergence (abbreviated as QSC) with characteristics
(ν, h, ρ0) ∈ M1(X )×B(X )×R if 〈ν

∣∣h〉 = 1 and there exists C, γ > 0 such that for any t > 0 and for
any measure µ ∈ M(X ) with ‖µ‖TV ≤ 1:

∥∥eρ0tµPt − 〈µ
∣∣ h〉 ν

∥∥
TV

≤ Ce−γt. (2.1)
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As stated in Corollary 2.2.4 [26], this implies the following convergence result to ν.

Corollary 2.1.1. Assume (2.1). Then for any t ≥ 0 and µ ∈ M1(X ) such that 〈µ
∣∣h〉 > 0 :

‖Pµ (Xt ∈ dx | t < τ∂)− ν(dx) ‖TV ≤ C
‖µ− ν‖TV

〈µ
∣∣h〉 e−γ t. (2.2)

Remark 2.1.2. Choosing µ = ν in (2.1), it is not hard to deduce the following relation:

∀ t ≥ 0, νPt = e−ρ0 t ν, and in particular Pν(t < τ∂) = e−ρ0 t, (2.3)

cf Fact 2.2.2. in [26]. This relation is what characterizes ν as a QSD since it implies that for
any t ≥ 0, Pν (Xt ∈ dx | t < τ∂) = ν(dx). By restricting the convergence stated in (2.1) on the
evaluation of the measure on X , we obtain a similar characterization of h. This latter convergence
is what makes us call h the survival capacity.

There is an additional related notion that will be useful to describe the behavior of the process
with the requirement of a long inter-click interval. This process is generically defined through the
survival capacity h, on the state space: H := {x ∈ X ; h(x) > 0}.

Definition 2. We say that the Q-process exists if there exists a family (Qx)x∈H of probability
measures on Ω defined by:

lim
t→∞

Px(Λs

∣∣ t < τ∂) = Qx(Λs) (2.4)

for any Fs-measurable set Λs. We also implicitly assume that the process (Ω; (Ft)t≥0; (Xt)t≥0; (Qx)x∈H)
is a homogeneous strong Markov process.

Remark 2.1.3. The transition kernel of the Q-process is given by:

q(x; t; dy) = eρ0 t h(y)

h(x)
p(x; t; dy), (2.5)

where p(x; t; dy) is the transition kernel of the Markov process (X) under (Px). Note that X \ H is
generally avoided by the process X under Qx. In the examples of the current article, h is actually
positive while ν is unique as a QSD. No distinction has then to be made between X and H regarding
the Q-process.

Thanks to Corollary 2.2.8 of [26], our justification for the proof of QSC actually implies re-
lated results of convergence for the Q-process. Notably β(dx) := h(x) ν(dx) is the unique invariant
probability measure of this process.

2.2 The discrete population case

Let N ≥ 1 be the number of individuals in the population, and Dn(t) for n ≤ N and t ∈ Z+ be
the number of mutations carried by the n-th individual. We consider the empirical measure at time
t > 0 defined as follow:

ZN
t := (1/N)

∑
n≤N δDn(t), (2.6)

so that ZN
t (i) ∈ N−1×[[0, N ]] specifies the proportion of individuals with exactly i mutations (since

everything is discrete, we identify ZN
t as a function from Z+ to R+). From the rules describing the

next generation from the previous one, see Subsection 1.2.1, ZN is clearly a Markov process evolving
on MN

1 (Z+), where:

MN
1 (Z+) := {(1/N)

∑
i≤N δdi

; di ∈ Z+ ,
∑

i∈Z+
di = N} (2.7)

≡ {z : Z+ 7→ (1/N)× [[0, N ]] ;
∑

i∈Z+

z(i) = 1}.
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The clicking time under consideration comes from the extinction of the fittest individuals, i.e.:

τ∂ := inf{t ≥ 0 ; ZN
t (0) = 0} = inf{t ≥ 0 ; ZN

t /∈ M
(0),N
1 (Z+)} (2.8)

where M
(0),N
1 (Z+) = {z ∈ MN

1 (Z+), z(0) ≥ 1/N}. (2.9)

Remark 2.2.1. Classical theory on quasi-stationarity can be exploited by interpreting the clicking
time τ∂ as an extinction time. We implicitly rely on the process Z̄N

t := ZN
t 1{t<τ∂}+∂1{τ∂≤t} which

is clearly Markov and lives on M
(0),N
1 (Z+) ∪ {∂}. For the process Z̄N , τ∂ is the hitting time of the

absorbing state ∂ (the cemetery).

Our main conclusion for this process is the following theorem:

Theorem 2.1. Consider for any N the Markov process ZN whose transitions are prescribed as
in Section 1.2.1, with clicking time τ∂ . Then, its semigroup P displays QSC with characteristics

(ν, h, λ) ∈ M1(M
(0),N
1 (Z+))×B(M

(0),N
1 (Z+))×R

∗
+.

Moreover, h is bounded, admits a positive lower-bound, while the Q-process exists on H =

M
(0),N
1 (Z+). The convergence to ν given in (2.2) is uniform. In particular, ν is the unique QSD.

Remark 2.2.2. The proof of this theorem strongly relies on the criteria given in the proofs in [5]
and generalized in Section 2.1 of [25], notably in order to exploit the property that lineages carrying
many mutations tend to rapidly go extinct. It provides an elementary understanding of how the
criteria of persistence (A3) can be deduced (cf Subsection 2.5.1). To handle both of these aspects,
the discreteness of the process is however strongly involved in the proof, which makes the estimation
poorly quantitative for large N .

2.3 The finite dimensional case

In this section, we denote by τ∂ the clicking time of the process X(d) solution of the system
(1.1):(S(d)), that is:

τd∂ := inf{t ≥ 0 ; X
(d)
0 (t) = 0}.

The system of SDE then evolves for finite d on:

Xd := {(xk)k∈[[0,d]] ∈ [0, 1]d+1 ;
∑d

k=0 xk = 1}.

Our main conclusion for this process is the following theorem:

Theorem 2.2. Consider the system of SDEs (1.1):(S(d)) for any d ∈ N, with clicking time τ∂ .
Then, its semigroup P displays a QSC with characteristics (νd, hd, λd) ∈ M1(Xd)×B(Xd)×R

∗
+.

Moreover, hd is bounded and the associated Q-process exists on H = Xd. In addition, for any
y0 ∈ (0, 1), hd is lower-bounded by a positive constant on {x ∈ Xd ; x0 ≥ y0}. In particular, νd is
the unique QSD.

Remark 2.3.1. The proof of this theorem applies quite directly the ideas that we have previously
exploited in [25]. As in [6], we rely mainly on the Harnack inequality. Nonetheless, we have here to
be cautious in the way we handle jointly the absorbing and repulsive boundary conditions.

Moreover, we prove the following controls on the moments of the QSDs νd, for d ∈ N:

Proposition 2.3.2. For any k ≥ 1, we have uniform tightness in d over the moments of order k of
the unique QSDs νd associated to the solution of (1.1):(S(d)), i.e.:

supd∈N

∫
Xd

νd(dx)1{Mk(x)≥mk} → 0 as mk → ∞ where Mk(x) :=
∑

i∈[[0,d]] i
k xi.

In particular, the sequence ν̂d, where the values for the coordinates larger than k+1 are put to 0, is
tight in M1(R

Z
+).
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Remark 2.3.3. Thanks to the above theorem, we expect the sequence (νd) to converge as d → ∞
to the unique QSD ν∞ for the infinite system (for which the control extends). This control on the
moments is actually crucial for the proof of uniqueness when d = ∞.

2.4 The infinite dimensional case

We consider now the infinite dimensional case, for which we require the existence of moments. Let

X η := {(xk)k∈Z+ ∈ [0, 1]∞ ;
∞∑

k=0

xk = 1 ,
∞∑

k=0

kηxk < ∞}

Thanks to Theorem 3 in [1], we know that for any initial condition x that belongs to X η, for
some η > 2, (S(∞)) has a unique weak solution which is a. s. continuous with values in X η. Our
main conclusion for this process is the following theorem:

Theorem 2.3. Consider the system of SDEs (S(∞)), i.e. with d = ∞, defined on X 6 with clicking
time τ∂ . Then, its semigroup P displays a QSC with characteristics (ν∞, h∞, λ∞) ∈ M1(X

6)×
B(X 6)×R∗

+.
Moreover, h∞ is bounded and the Q-process exists on H = X 6. In addition, for any ǫ ∈ (0, 1),

h∞ is lower-bounded by a positive constant on
{
x ∈ X 6 ; x0 ≥ ǫ

}
. In particular, ν∞ is the unique

QSD. Besides, there exist C, γ, d∧ > 0 such that , the convergences stated in (2.1) and (2.2) hold true
with these constants for the processes given both by (1.1):(S(d)) on X 6 and on Xd for any d ≥ d∧.

Remark 2.4.1. In practice, we shall need to control moments of order η′ strictly larger than 2 while
exploiting the finiteness of moments of order 2η′. For simplicity, we thus restrict ourselves to X 6

although our proof could certainly be adapted provided η > 4. The core of our proof is based on the
intuition that the slower the decay of the tail the more rapidly it gets erased and renewed. So we do
not expect large tails to play a significant role.

2.5 Some crucial sets of conditions ensuring exponential quasi-stationarity

The proof of QSC are exploiting the criteria given both in Section 2.1 of [25] and in Subsection 2.2.1
of [26]. In particular, in [26] the methods and statements of [25] have actually been adjusted with
the current paper in mind. Assumptions (A) and (AF) are exploited for our general Theorem 2.4
as stated in Subsection 2.5.2.

2.5.1 Basic assumptions

(A0S) : Specification on the state space There exists a sequence (Dℓ)ℓ≥1 of closed subsets of
X such that (with int(D) the interior of D):

∀ ℓ ≥ 1, Dℓ ⊂ int(Dℓ+1). (A0)

Remark 2.5.1. Originally in [25], it is also assumed that ∪ℓ≥1Dℓ = X . Due to the fact that we
shall deal here with reflecting boundaries, it will however be more convenient for our proofs that none
among the sets (Dℓ) includes them.

The sequence Dℓ will serve as a reference in the following, and we also denote:

D := {D ; D is closed and ∃ ℓ ≥ 1, D ⊂ Dℓ} . (2.10)

For the next statements, we shall exploit the following notations for the exit and entry times of
any set D:

TD := inf {t ≥ 0 ; Xt /∈ D} , τD := inf {t ≥ 0 ; Xt ∈ D} .

7



(A1) : Mixing property There exists a probability measure ζ ∈ M1(X ) such that, for any
ℓ ≥ 1, there exists L > ℓ and c, t > 0 such that:

∀x ∈ Dℓ, Px (Xt ∈ dx ; t < τ∂ ∧ TDL
) ≥ c ζ(dx).

(A2) : Escape from the Transitory domain There exist ρ > 0 and E ∈ D:

sup{x∈X} Ex (exp [ρ (τ∂ ∧ τE)]) < ∞.

ρ in the previous exponential moment is required to be strictly larger than the following ”survival

estimate”:

ρS := sup
{
γ ≥ 0

∣∣∣ supL≥1 lim inft>0 eγt Pζ(t < τ∂ ∧ TDL
) = 0

}
∨ 0. (2.11)

Remark 2.5.2. It is proved in Theorem 2.3 of [26] that ρS coincide with the extinction rate ρ0
provided the semi-group displays QSC.

The next two assumptions are proposed as alternatives and each alternative will be exploited in
the current paper. The former is the assumption first introduced in Section 2.1 of [25]. The latter
provides a way to ensure the former given (A0− 2) as proved in [26].

(A3) : ”Asymptotic comparison of survival” There exists E ∈ D and ζ ∈ M1(X ):

lim sup
t→∞

sup
x∈E

Px(t < τ∂)

Pζ(t < τ∂)
< ∞.

(A3F ) : ”Absorption with failures”

Given ζ ∈ M1(X ), ρ > ρS and E ∈ D, for any ǫ ∈ (0, 1), there exist t⊻, c > 0 such that for any

x ∈ E there exists a stopping time UA such that:

{τ∂ ∧ t⊻ ≤ UA} = {UA = ∞} and Px(UA = ∞, t < τ∂) ≤ ǫ exp(−ρ t⊻),

while for a certain stopping time VA:

Px

(
X(UA) ∈ dx′ ; UA < τ∂

)
≤ cPζ

(
X(VA) ∈ dx′ ; VA < τ∂

)
.

We further require that there exists a stopping time U∞
A extending UA in the following sense:

• U∞
A := UA on the event

{
τ∂ ∧ UA < τ1E

}
, where τ1E := inf{s ≥ t⊻ ; Xs ∈ E}.

• On the event
{
τ1E ≤ τ∂ ∧ UA

}
and conditionally on Fτ1

E
, the law of U∞

A − τ1E coincides with the

law of Ũ∞
A for a realization X̃ of the Markov process (Xt, t ≥ 0) with initial condition X̃0 := X(τ1E)

and conditionally independent of X , given X(τ1E).

2.5.2 Theorems

Slightly adapting [25] (regarding (A0S)), we say that Assumption (A) holds, whenever:
”(A1) holds for a certain ζ ∈ M1(X ) and a sequence (Dℓ) that satisfies (A0S). Moreover, there

exist E ∈ D such that (A2), holds with a certain ρ > ρS as well as (A3).”

As in [26], we say that Assumption (AF) holds, whenever:
”(A1) holds for a certain ζ ∈ M1(X ) and a sequence (Dℓ) satisfying (A0S). Moreover, there

exist ρ > ρS and E ∈ D such that assumptions (A2), and (A3F ) hold.”

Theorem 2.2 in [26] can be restated for our purpose as:
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Theorem 2.4. Assume that either (A) or (AF) holds. Then, the semigroup P displays QSC with
characteristics (ν, h, ρ0) ∈ M1(X )×B(X )×R and the Q-process exists on H.

Since the exploited sequence (Dℓ)ℓ≥1 usually does not cover the whole state space, we shall exploit
Proposition 2.2.5 of [26] to deduce lower-bounds of h. The next proposition recalls its statement.

Proposition 2.5.3. Assume that (AF) or (A) holds. Then, the survival capacity h is uniformly
lower-bounded on any set H ⊂ X that satisfies the following condition:
(H0) : there exists t > 0, ℓ ≥ 1 such that inf{x∈H} Px(τDℓ

≤ t ∧ τ∂) > 0.
It implies the following identification :

H := {x ∈ X ; h(x) > 0} = {x ∈ X ; ∃ ℓ ≥ 1, Px(τDℓ
< τ∂) > 0} .

Thanks to Proposition 2.5.3, we shall prove in our models that h is actually positive, which
proves the uniqueness of the QSD thanks to Corollary 2.1.1.

3 Outlook

3.1 Interpretation of crucial parameters

For the last process, no parameter other than α and λ is introduced. We deduce from Theorem 2.3
that the QSD and the survival capacity depend only on α and λ, as well as the values C, γ > 0 in
(2.1) and (2.2).

As already noted by Haigh in [11], α/λ is the average number of deleterious mutations that are
established in the deterministic limit (neglecting neutral fluctuations). The deterministic distribu-
tion of mutations is a function of α/λ, and actually follows a Poisson distribution with this mean, as
shown in [10]. To infer the level of fluctuations around this deterministic equilibrium, we shall look
at the coefficient in front of the martingale term in a new time-scale such that the mutation rate is
set at 1. This gives 1/λ, which we recall to scale as

√
1/Ne, where Ne is the effective population

size mentioned in Remark 1.2.2. This term actually quantifies the relatedness in the population of
uniformly sampled individuals. A large population size thus corresponds to letting λ go to infinity,
making the deviations away from the deterministic distribution more rare.

A natural scale for the time between clicks can be easily derived from this notion of QSC, with the
definition tC := ρ−1

0 . On the other hand, we can propose the following definition for the relaxation
time:

tR := inf{tr > 0 ; ∃C > 0, ∀µ, ‖µAt − ν‖TV ≤ (C/〈µ
∣∣h〉)×e−t/tr} ≤ 1/ζ. (3.12)

Our results justify the validity of this definition. We can deduce as in [25] that the convergence to
h and β also occurs at quicker rate than 1/tR.

By relying on the arguments of Theorem 2.3 and Proposition 2.3.2, we expect that truncating the
number of accumulated mutations is not likely to alter much this value of tR provided the threshold
is sufficiently large. Since we cannot evaluate tR precisely and are only able to provide an upper-
bound, this is still conjectural. But substantial increase of these last components are proved to be
rare thanks to Proposition 2.3.2 and not so significant when we look at Section 7.7.

Remark 3.1.1. The dependence on the initial condition in (3.12) is expected from the linearity of
the semi-group (Pt), as observed in [26]. More general dependencies could nonetheless be imagined,
relying for instance on Lyapunov functions as in [7] or in [2]. We simply do not think it would
change the value of tR because the confinement is mainly due to extinction and immediate repulsion
from the boundaries.
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3.2 Previous estimations

The study of this quasi-stationary regime arises naturally when one wishes to estimate the rate
at which the ratchet clicks. To obtain quantitative estimates, several authors have justified their
approach by assuming that the typical clicking time tC is much larger than the typical relaxation
time tR of the system, usually with an empirical reference for the latter ([10], [17]).

In [17], an estimation of tC in the context where tR ≪ tC is obtained through the characteristic
equation of a certain QSD ν⋆, of the form Lν⋆ = −λν⋆, with L is a certain infinitesimal generator
and λ its main eigenvalue . This QSD ν⋆ that they study is not the general QSD ν∞ that we
describe. The detailed description of the latter is reasonably argued to be too intricate. The former
is in fact derived from a one-dimensional approximation of the process under metastability. It is
argued that in the context of large populations, and given the number of fittest individuals, one can
approximate the rest of the distribution as an almost deterministic profile. The dependence in this
number of fittest individuals only occurs in the normalizing factor of this distribution. This latter
argument of concentration could probably be made rigorous by using Large Deviation theory. Such
results are beyond the scope of the present paper.

Note that the validity of this approximation relies upon the fact that tR ≪ tC , where tR is to be
related to the QSD ν∞. The relaxation rate of ν⋆ is only a partial indication, although presumably
carrying most of the information.

3.3 The quasi-stationary regime is generally observed for tR ≪ tC

Provided tR ≪ tC , we clearly expect to generally observe the quasi-stationary regime between clicks.
It is classical that with the QSD as an initial condition, the extinction time and extinction state

are independent, the former being exponentially distributed, as it has been established in Theorem
2.6 of [8]. Assuming that we start the analysis at a new click after a long time-interval without
click, it implies that the profile of mutations just after the click is distributed as the restriction of
the QSD to the hyperplane {X0 = 0}.

Since having large values of M1 makes it actually harder for the process to reach the hyperplane,
we expect that, under the QSD restricted to {X0 = 0}, M1 tends to be smaller than the prediction
1+ λ/α derived from the deterministic limit (under the constraint that x0 = 0). Besides, the fittest
individuals are altered by first changing into the type with only one mutation. So we expect also
that under the QSD restricted to {X0 = 0}, there is an over-representation of the proportion of
individuals carrying a single mutation (the new optimal trait). Thus, we expect the distribution
just after the click to be less prone to a future click than would be the QSD itself. Since tR ≪ tC ,
the quasi-stationary regime is then rapidly reached.

Let us also imagine a dramatic situation where some clicks would rapidly follow each others.
Then, it would imply that these fittest classes of individuals are rapidly wiped off, while not letting
much time for the others to change much. Since we have seen that we have very strong controls
of moments under the QSD, cf notably Proposition 2.3.2, such succession of clicks cannot hold for
long. A class that is not prone to a quick extinction should be reached quite early and generate a
new quasi-stationary regime. Such dramatic situations are thus expected to be very isolated and of
limited impact, while of course very rare.

Expecting an exponential law for the inter-click intervals and the independence between them
should be in conclusion fairly accurate provided tR ≪ tC .

As we discuss in Subsection 2.3 of [27], one can also conclude whether or not the QSD profile
is likely to be observed without conditioning by comparing ν to the survival capacity h. If quasi-
stationarity is stable, we do not expect that the conditioning on having a click in the far future shall
substantially alter the dynamics. In most trajectories, the Q-process shall thus behave as the original
process. So h should be mostly constant on the support of β(dx) = h(x) ν(dx), implying h ≈ 1 where
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the density of ν is large. Yet, the QSD and the survival capacity are certainly quite difficult to specify
with simulations because they live on a large dimensional space. Likewise, the convergence in total
variation exploited in (3.12) is probably not very practical for numerical estimation.

3.4 Such a quasi-stationary regime is favored by natural selection

The fact that such a quasi-stationary regime can be defined does not directly imply that this state
is likely to be observed: if tC ≪ tR, the next click would happen too quickly after the previous one
for the dependence in the transition to be lost.

In the context of a rapid succession of clicks, the population would be likely to get extinct quite
early on as compared to populations able to reach a metastable regime between each click (notably
by having a lower mutation rate). Provided that the process in the metastable regime ensures
the maintenance of an optimal sub-population of large size, the time between clicks can get much
longer than a simple scaling by the mutation rate would suggest. Indeed, the click would then be
the consequence of an exceptional deviation of the process away from the metastable attractor. It
thus provides opportunity for additional beneficial mutations to fix and outcompete the fixation
of deleterious mutations. A larger population size is then favoring both the selection of beneficial
mutations and the prevention of deleterious fixations, in a positive feedback loop.

The second scenario with metastability is thus expected to be the more likely for stable asexual
populations. Although the first scenario cannot be excluded for destabilized populations or too small
ones, the interest in this metastable regime is thus biologically motivated by its benefice in term of
survival.

3.5 Motivation for an unbounded number of deleterious mutations

In order to prove quasi-stationarity results, the case where d < ∞ can be treated more easily and
provides an introduction to the case d = ∞. Nonetheless, the arguments for having a convergence
at a given rate becomes more and more artificial as d tends to infinity. The constant involved in
the Harnack inequalities go toes zero as the dimension increases. By considering the case d = ∞,
we actually handle as a whole the case where d is sufficiently large. By these means, we are able to
prove that the rate of convergence can be upper-bounded by a quantity that does not depend on the
specific value of d. This is to be expected since, even when a large number of deleterious mutations
is permitted, we expect individuals carrying a large number of mutations to remain negligible.

Referring for instance to [10], it is not difficult to prove that in the deterministic limit of a
large population, the empirical measure of the number of mutations in the population tends to a
Poisson distribution. The tail of the distribution is quickly disappearing. This deterministic limit
corresponds to a limiting time-change of equation (1.1):(S(d)) of the form t′ = t/ǫ with α = α′/ǫ,
λ = λ′/ǫ as ǫ tends to 0. The Poisson distribution has a mean of λ′/α′ = λ/α so that it may be
possible to quantify much more precisely than we do the threshold in the number of deleterious
mutations after which differentiating individuals is not so crucial. This could make it possible to
obtain quantitative bounds from our arguments in the context of very large populations (in the
vicinity of the deterministic limit).

4 Proof of Theorem 2.1

The proof of Theorem 2.1 relies on the criteria presented in Section 2.1 of [25]. The two following
propositions provides the first two steps in this proof.

Proposition 4.0.1. For any N ≥ 1, α ≥ 0, λ > 0 and z ∈ M
(0),N
1 (Z+):

inf
z0∈M(0),N

1 (Z+)

Pz0(Z
N (1) = z) > 0.
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Proposition 4.0.2. For any N ≥ 1, α, λ > 0 and ǫ > 0, there exists K ≥ 1 such that:

∀ z ∈ M
(0),N
1 (Z+), Pz(Z

N (1) /∈ E) ≤ ǫ,

where E := {z ∈ M
(0),N
1 (Z+) ; z([[K,∞[[) = 0}

Remark 4.0.3. The convergence is uniform in this case. By exploiting Theorem 2.1 of [25], we
thus implicitly deduce the two criteria presented in [5] for the proof of a uniform convergence.

Step 1: proof of Proposition 4.0.1 We simply impose that all the individuals of the next
generation are the offspring of an individual without any mutation, and prescribe the number of
mutations that they get from the profile of z. We obtain a positive lower-bound uniform over

any z0 ∈ M
(0),N
1 (Z+) by noticing that the probability of choosing a fittest individual as a parent

is: z0(0)/(
∑

i≥0 z0(i)×(1− α)i), which is necessarily larger than 1/N . The number of mutations
is then chosen independently of z0, and there is indeed a positive probability that the sequence
of independent Poisson distributed random variables has an empirical law distributed as z. This
concludes the proof of Proposition 4.0.1. �

Step 2: proof of Proposition 4.0.2 We first prove that with a high probability, the sub-
population of individuals carrying a large number of mutations leave no progeny. Let K ≥ 1 for
the threshold in the number of mutations. The probability that an individual chooses a parent with
more than K mutations is upper-bounded by N × (1 − α)K , since z(0) ≥ 1. For any ǫ > 0, there
exists indeed K ≥ 1 such that, with a probability greater than 1 − ǫ/2, no individual in the next
generation descends from an individual with more than K mutations. Likewise, there exists K ′ ≥ 1
such that, with a probability greater than 1− ǫ/2, the number of additional mutations is less than
K ′ (for any individual, independently of the initial condition z). We deduce that:

∀ z ∈ M
(0),N
1 (Z+), Pz(Z

N (1) /∈ E) ≤ ǫ,

where E := {z ∈ M
(0),N
1 (Z+) ; z([[K +K ′,∞[[) = 0}

which concludes the proof of Proposition 4.0.2. �

Step 3: proof of Theorem 2.1 The choice of the sequence Dℓ is here degenerate, since we can

simply set Dℓ as the whole space M
(0),N
1 (Z+) for any ℓ. Note that (A0S) is satisfied even for this

degenerate case. Actually, the exit time are simply infinite and the entry times in Dℓ always equal
zero. We see that Proposition 4.0.1 clearly implies Assumption (A1) of [25]. Next we prove (A2),
namely that for any ρ > 0, there exists E such that, with τE its first hitting time:

sup
z

Ez(exp[ρ(τ∂ ∧ τE)]) < ∞.

This is easily deduced thanks to Proposition 4.0.2 through the Markov property and an induction
over k ≥ 1 to have a proper upper-bound on Pz(k < τ∂ ∧ τE). Then, for the last criterion (A3),
we remark that E as defined in Proposition 4.0.2 is finite. By Proposition 4.0.1 and the Markov
property, we deduce that there exists c > 0 such that for any t ≥ 1:

Pδ0(t < τ∂) ≥ c sup
z∈E

Pz(t− 1 < τ∂) ≥ c sup
z∈E

Pz(t < τ∂).

This concludes (A3) and that Assumption (A) is satisfied. Theorem 2.1 is then deduced from
Theorem 2.4. �
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Remark 4.0.4. If we were to replace the law of ξ by a Bernoulli distribution (mutations occurring
one by one), Proposition 4.0.1 would still hold with the restriction of z = δ0, which is the only
case we need. It would extend to any z provided we change the time 1 by the maximal number of
mutations in z. The proof would not be much more difficult with overlapping generations, except
that individuals should then be removed one by one. The proof of the equivalent of Proposition 4.0.2
would merely be slightly more difficult. The details are left to the interested reader.

5 Proof of Theorem 2.2

5.1 Main properties leading to the proof

The proof of Theorem 2.2 relies (roughly) on the criteria stated in Susbection 2.2.1 of [26], with here
a non-uniform convergence. In the following, d is fixed and we drop the notations recalling it. Let:

Dℓ :=

{
x = (xi)0≤i≤d ∈

(
1

2ℓd
, 1− 1

2ℓ

)d

;
∑

0≤i≤d xi = 1

}
, (5.1)

which have non-empty interiors. The three following propositions state that X with extinction time
τ∂ satisfies Assumption (A), as we show in Section 5.2. The proofs of each of them is deferred to
further subsections. We recall that TDℓ

denotes the exit time out of Dℓ.

Proposition 5.1.1. For any t > 0, there exists ζ ∈ M1(Xd) with support in D2 such that for any
ℓ ≥ 1, there exists c > 0 such that:

∀x ∈ Dℓ, Ex

(
Xt ∈ dy ; t < τ∂ ∧ TDℓ+1

)
≥ c ζ(dy).

Proposition 5.1.2. For any ℓ ≥ 1:

lim sup
t→∞

sup
x,x′∈Dℓ

Px (t < τ∂)

Px′ (t < τ∂)
< ∞.

Proposition 5.1.3. For any ρ > 0, there exists ℓ ≥ 1 such that:

sup
x∈Xd

Ex exp[ρ (τDℓ
∧ τ∂)] ≤ 16.

The lower-bound of the survival capacity is derived from the following lemma:

Lemma 5.1.4. For any y0 > 0, the set H := {x ∈ Xd ; x0 ≥ y0} satisfies (H0) as stated in
Proposition 2.5.3.

Since its proof is elementary, it is deferred to Subsection 5.3 just after we show that Theorem
2.2 is implied by the four above statements.

Remark 5.1.5. The above results hold for any d ∈ N and the constant could depend dramatically
on d, except for Lemma 5.1.4. The choice of 16 In Proposition 5.1.3 is arbitrary and suffices to our
purpose.

5.2 Proof of Theorem 2.2 with these propositions

For this proof, we plan to exploit Theorem 2.4 and first ensure Assumption (A) (cf Subsection 2.5.2).
It is easily seen from their definition in (5.1) that the sets Dℓ satisfy (A0S).
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Propositions 5.1.1, 5.1.2 and 5.1.3 ensure respectively (A1), (A3) and (A2). Notably, for (A3),
since ζ has support in D2, for any ℓ ≥ 2, thanks to Proposition 5.1.2:

lim sup
t→∞

sup
x∈Dℓ

Px (t < τ∂)

Pζ (t < τ∂)
< ∞.

From Theorem 2.4, we thus deduce that the semi-group displays QSC. The survival capacity
is actually positive, thanks to Lemma 5.1.4 combined with Proposition 2.5.3. This implies with
(2.2) that ν is in fact the unique QSD because any QSD ν′ must then satisfy both 〈ν′

∣∣h〉 > 0 and
ν′At = ν′ for any t. This concludes the proof of Theorem 2.2. �

5.3 Proof of Lemma 5.1.4

Let any y0 > 0 and define H := {x ∈ Xd ; x0 ≥ y0}. X0 under P
(d)
x is lower-bounded by the solution

Y (independent of d) to:

dYs = −λds+
√
Ys (1− Ys)dB0(s) , Y (0) = y0.

We consider the extinction time for Y : τY∂ := inf{s ; Ys = 0} and an arbitrary time t = 1. We
deduce the following uniform lower-bound:

inf{d,x∈H} P
(d)
x (t < τ∂) ≥ cS := Py0(t < τY∂ ) > 0.

By the Markov inequality and Proposition 5.1.3, there exists ℓ such that for any d and x ∈ Xd:

P(d)
x (t < τDℓ

∧ τ∂) ≤ cS/2.

This clearly implies (H0) for H in the sense that for any x ∈ H :

P(d)
x (τDℓ

≤ t ∧ τ∂) ≥ P(d)
x (t < τ∂)− P(d)

x (t < τDℓ
∧ τ∂) ≥ cS/2. �

5.4 Harnack inequalities for Propositions 5.1.1 and 5.1.2

The proofs of Propositions 5.1.1 and 5.1.2 are actually similar to those in Subsection 4.2.2 of [25].
They exploit the Harnack inequality –the following assumption (H)– classically deduced for such an
elliptic diffusion.

In the following, we say that a process (Yt) on Y with generator L (including possibly an extinc-
tion rate ρc) satisfies Assumption (H) if:

For any compact sets K,K ′ ⊂ Y with C2 boundaries such that K ⊂ int(K ′), 0 < t1 < t2 and

positive C∞ constraints: u∂K′ : ({0} × K ′) ∪ ([0, t2] × ∂K ′) → R+, the unique positive solution

u(t, x) to the Cauchy problem:

∂tu(t, x) = Lu(t, x) on [0, t2]×K ′ ;
u(t, x) = u∂K′(x) on ({0} ×K ′) ∪ ([0, t2]× ∂K ′),

satisfies, for a certain C = C(t1, t2,K,K ′) > 0 independent of u∂K′ :

infx∈K u(t2, x) ≥ C supx∈K u(t1, x).

On any Dn, σ
(d) is uniformly elliptic while σ(d) and b(d) are uniformly Lipschitz. Similarly as we

show in Section 4.2.2 of [25], Assumption (H) holds for the generator L(d) of any finite dimensional
process X(d), while restricted on a certain set Dn.
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5.4.1 Proof of Proposition 5.1.1

We apply assumption (H) to u(t, y) := Ey

(
f(Yt) ; t < τn+1

∂

)
, where f is any non-negative C∞

function with support in Dn = K, and τn+1
∂ := inf{t ≥ 0 ; X

(d)
t /∈ Dn+1}. It implies that for any

y ∈ Dn, y0 ∈ D1 and 0 < t0 < t:

Ey

(
f(Yt) ; t < τn+1

∂

)
≥ Cn Ey0

(
f(Yt0) ; t0 < τ2∂

)
.

Since infy0∈D1 Py0

(
Yt ∈ D1 ; t < τ2∂

)
> 0 (by choosing arbitrary y0 and t0 = t/2), we can obtain a

probability measure ζ with support on D2, independent of n, such that (since Cn does not depend
on f):

∀ y ∈ Dn, Ey

(
Yt ∈ dy ; t < τn+1

∂

)
≥ cn ζ(dy). �

5.4.2 Proof of Proposition 5.1.2

The proof is similar but more technical because the reference measure is now in the upper-bound,
so that we can no longer neglect trajectories exiting Dn+1. We can choose t1 := 1 and find two
compact sets K,K ′ ⊂ Y with C2 boundaries such that Dn ⊂ K ⊂ int(K ′) ⊂ int(Dn+1). We want
to approximate the function:

u(t, y) := Ey (f(Yt) ; t < τ∂) , with t ≥ t1, y ∈ K ′

defined for some non-negative f ∈ C∞(Y). Referring to Theorem 5.1.15 in [15], we can prove that
u is continuous. It is clearly non-negative. However, it is a priori not regular enough to apply the
Harnack inequality directly. Thus, we approximate it on the parabolic boundary [t1, ∞)× ∂K ′
⋃
{t1} ×K ′ by a certain family (Uk)k≥1 of non-negative smooth –C∞

+ w.l.o.g.– functions. We then
deduce approximations of u in [t1, ∞)×K ′ by (smooth) solutions of:

∂tuk(t, y)− Luk(t, y) = 0, t ≥ t1, y ∈ int(K ′)

uk(t, y) = Uk(t, y), t ≥ t1, y ∈ ∂K ′, or t = t1, y ∈ K ′.

By Assumption (H), the constant involved in the Harnack inequality does not depend on the
values on the boundary. Thus, it applies with the same constant for the whole family of approxima-
tions uk. With t2 := 2 and t3 := 3, we deduce that there exists Cn > 0 such that for any k and any
y, y′ ∈ Dn:

uk(t2, y) ≤ Cnuk(t3, y
′),

where the constant Cn does not depend on f either. We refer to the proof in [6], Section 4, step 4, to
state that such an Harnack inequality extends to the approximated function u, with the convergence
of Uk on the parabolic boundary. It means that for any non-negative f ∈ C∞(Y):

∀ y, y′ ∈ Dn, Ey (f(Yt2) ; t2 < τ∂) ≤ Cn Ey′ (f(Yt3) ; t3 < τ∂)

It thus extends to any measurable and bounded f . We know fix t ≥ t2 and apply this result to the
function f(y) := Py(t− t2 < τ∂), together with the Markov property:

∀ y, y′ ∈ Dn, ∀ t ≥ t2, Py (t < τ∂) ≤ Cn Py′ (t+ t3 − t2 < τ∂) ≤ Cn Py′ (t < τ∂) .

This concludes the proof of Proposition 5.1.2. �
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5.5 Proof of Proposition 5.1.3

Proposition 5.1.3 is proved by recursively ensuring that the k-th first coordinates have escaped from
the value 0. For any y > 0, and 0 ≤ k ≤ d, let:

T k
y := inf{s ≥ 0 ; ∀ j ≤ k, Xj(s) ≥ y}.

The proof of Proposition 5.1.3 is achieved with two following lemmas as its first steps.

Lemma 5.5.1. For any d ∈ N and t > 0 :

sup
{
Px (t < τ∂)

∣∣∣x ∈ Xd, x0 ≤ y0

}
→ 0 as y0 → 0.

Lemma 5.5.2. For any y ∈ (0, 1), ǫ, t⊻ > 0 and 1 ≤ k ≤ d, there exists y′ ∈ (0, 1), t ∈ (0, t⊻) such
that:

inf
{
Px

(
T k
y′ < t ∧ τ∂

) ∣∣∣x ∈ Xd, ∀ j ≤ k − 1, xj ≥ y
}
≥ 1− ǫ.

Lemma 5.5.1 is a direct consequence of the fact that X0 is upper-bounded by the solution Y of:

dYt = αdYtdt+
√
Yt(1− Yt)dB0(t) , Y0 = y0,

for which it is known that 0 is an absorbing value.

Step 1: proof of Lemma 5.5.2. Given k, ǫ, y, t⊻, choose t ∈ (0, t⊻) sufficiently small such that:

inf
{
Px

(
t < Uk−1

y/2

) ∣∣∣x ∈ Xd, ∀ j ≤ k − 1, xj ≥ y
}
≥ 1− ǫ/2,

where Uk−1
y/2 := inf{s ≥ 0 ; ∃ j ≤ k − 1, Xj(s) ≤ y/2}.

To ensure roughly the uniformity in such x, we can simply lower-bound Xj for j ≤ k−1 by solutions
to the equation:

dY j
s = −(λ+ αj) dt+

√
Yt(1− Yt)dB(t) , Y j

0 = y,

and choose t such that Y j stays above y/2 on the time-interval [0, t] with probability greater than
1− ǫ/(2k).

Let y1 := λ y/(4λ+ 4αk). Then, for any s ≤ Uk−1
y/2 ∧ T k

y1
:

(αM1(s)− αk − λ)Xk(s) + λXk−1(s) ≥ λ y/2− (αk + λ) y1 ≥ λ y/4,

so that Xk is lower-bounded by the solution Yk of:

dYk(s) = λ y/4 dt+
√
Yt(1− Yt)dB(t) , Yk(0) = 0.

Since 0 is an entrance boundary for this process, cf e.g. Subsection 3.3.3 in [12], there exists
0 < y′ ≤ y1 ∧ (y/2) such that:

P(sup{s≤t}Yk(s) < y′) ≤ ǫ/2.

On the event
{
sups≤t Yk(s) ≥ y′

}
∩
{
t < Uk−1

y/2

}
, which occurs with probability greater than 1 − ǫ,

the condition T k
y′ < t ∧ τ∂ is satisfied. This ends the proof of Lemma 5.5.2. �
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Step 2: concluding the proof of Proposition 5.1.3. Given ρ > 0, let t0 := log(2)/ρ. We can
choose thanks to Lemma 5.5.1 a certain y0 ∈ (0, 1) such that for any x = (xi) satisfying x0 ≤ y0, it
holds:

Px (t0 < τ∂) ≤ exp[−ρ t0]/2 = 1/4.

By the Markov property and an induction, for any k ≥ 1:

Px(k t0 ≤ τ∂ ∧ T 0
y0
) ≤ Px(k t0 ≤ τ∂ , (k − 1) t0 ≤ T 0

y0
) ≤ 1/4k,

sup
x

Ex exp[ρ (T
0
y0

∧ τ∂)] ≤
∑

k≥0 e
ρt0[k+1] Px(k t0 ≤ τ∂ ∧ T 0

y0
)

≤
∑

k≥0 2
k+1/4k = 4 < ∞.

By the Markov property, Lemma 5.5.2 and by induction on 0 ≤ k ≤ d, there exists yk such that,
on the event {T 0

y0
≤ τ∂} and with ǫ = 1/16d:

Px − a.s. Px

(
T k
yk

≤ (T 0
y0

+ k t0/d) ∧ τ∂ |FT 0
y0

)
≥ 1− k/(16d). (5.2)

To deduce this induction, we set t⊻ := t0/d when we apply Lemma 5.5.2 for 1 ≤ k ≤ d .

Then, for some large value of t > 0, let Vt := τ∂ ∧ T d
yd

∧ t, and consider

Et := sup{x} Ex exp[ρVt] < ∞.

For any x such that x0 ≥ y0 (so that T 0
y0

= 0 Px-a.s.), we deduce from the Markov property, with

Ṽt defined as Vt for the Markov process X̃ starting at time 0 from Xt0 :

Ex exp[ρVt] ≤ eρt0 (1 + Ex[EX(t0) exp[ρṼt] ; t0 < Vt])

≤ 2 (1 + Et × [1− Px(T
d
yd

≤ t0 ∧ τ∂)])

≤ 2 + Et/8,

where we exploited inequality (5.2). On the other hand, for any general x:

Ex exp[ρVt] ≤ Ex

(
exp[ρ(T 0

y0
∧ τ∂)];Vt ≤ T 0

y0

)
+ Ex

(
exp[ρT 0

y0
]EX(T 0

y0
) exp[ρṼt] ; T 0

y0
< Vt

)

≤ (2 + Et/8)× Ex

(
exp[ρ(T 0

y0
∧ τ∂)]

)

≤ 8 + Et/2,

where we exploited the previous estimate with the fact that X0(T
0
y0
) ≥ y0. Taking the supremum

over x, and since Et < ∞, we deduce: Et ≤ 16.
The limit where t → ∞ ensures supx Ex exp[ρ(T

d
yd

∧ τ∂)] ≤ 16. This concludes the proof of
Proposition 5.1.3. �

6 Proof of Proposition 2.3.2

The proof of Proposition 2.3.2 relies on the two following propositions, handled uniformly over d.
The first states that descent from large values of the moment quickly occurs with probability close
to one; the second states that a too large increase of the moment is unlikely to occur.

Proposition 6.0.1. For any k, t, ǫ,m > 0, there exists m′ > 0 such that for any d ∈ N and initial
condition x ∈ Xd such that Mk(x) ≤ m:

Px

(
sups≤t Mk(Xs) ≥ m′) ≤ ǫ.
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Proposition 6.0.2. For any t > 0 and k ≥ 1, with Tk(m) := inf{t ≥ 0 ; Mk(Xt) ≤ m}:

sup
{
Px (t < τ∂ ∧ Tk(m))

∣∣∣d ∈ N, x ∈ Xd

}
−→
m→∞

0.

We shall first prove Proposition 2.3.2 thanks to these two propositions, then Proposition 6.0.1
and finally prove Proposition 6.0.2. This last proof relies on 3 steps of descent, the last one being
iterated for each moment between 2 and k. The main result for each of these steps is given by the
three following lemmas, whose proofs are deferred at the end of Subsection 6:

Lemma 6.0.3. For any t > 0:

sup
{
Px (t < τ∂)

∣∣∣d ∈ N, x ∈ Xd,M1(x) ≥ 1, x0 M1(x) ≤ δ
}
→ 0 as δ → 0.

Lemma 6.0.4. Given any t, y0 > 0:

sup
{
P(d)
x (t ≤ T1(m1) ∧ τ∂)

∣∣∣d ∈ N, x ∈ Xd, x0 ≥ y0

}
−→

m1→∞
0.

Lemma 6.0.5. Given any k ≥ 1 and t, mk > 0:

sup
{
P(d)
x (t ≤ Tk+1(mk+1) ∧ τ∂)

∣∣∣d ∈ N, x ∈ Xd,Mk(x) ≤ mk

}
−→

mk+1→∞
0.

6.1 Proof of Proposition 2.3.2

First of all, we show that we have a uniform upper-bound on the extinction rate ρ
(d)
0 associated to

the system (1.1):(S(d)): supd∈N ρ
(d)
0 < ∞. Indeed, whatever d ∈ N, we can find x ∈ Xd such that

x0 ≥ 1/2 so that X0 under P
(d)
x is lower-bounded by the solution Y to:

dYs = −λds+
√
Ys (1− Ys)dB0(s) , Y (0) = 1/2.

Note that the boundary y = 1 is entrance for this process so that it exits (0, 1) only through 0, cf e.g.
Subsection 3.3.3 in [12]. The semi-group governing Y , with extinction at τY0 , corresponds exactly
to the system (1.1):(S(d)) with d = 1, α = 0, X ′

0 = Y and X ′
1 = 1− Y . We know from Theorem 2.2

that the semigroup displays QSC with extinction rate ρ∨. Denoting PY
1/2 the law of Y , we deduce

from the convergences of the survival capacities:

ρ
(d)
0 = lim

t→∞
−1
t logP

(d)

x(d)(t < τ∂) ≤ lim
t→∞

−1
t logPY

1/2(t < τY0 ) := ρ∨.

Thanks to Proposition 6.0.2, we can choose m such that Tk(m) satisfies:

sup
d≥1

sup
x∈Xd

E(d)
x exp[(ρ∨ + 1) (Tk(m) ∧ τ∂)] ≤ C < ∞.

In particular, it implies that for any t > 0 and d ∈ N:

P(d)
νd (t < Tk(m) ∧ τ∂) ≤ C exp[−(ρ∨ + 1) t]. (6.1)

Then, for any ǫ > 0, consider t := − log(ǫ/(2C)). Thanks to Proposition 6.0.1, we can choose a
certain m′ > 0 such that for any initial condition x such that Mk(x) ≤ M :

P(d)
x

(
sup
s≤t

Mk(Xs) ≥ m′
)

≤ ǫ/2 exp[−ρ∨ t]. (6.2)
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Thus, for any d ∈ N: (with the QSD νd)

νd({Mk ≥ m′}) = exp[ρ
(d)
0 t]P(d)

νd
(Mk(Xt) ≥ m′ ; t ≤ τ∂)

≤ exp[ρ∨ t]
(
P(d)
νd (Tk(m) > t ; t < τ∂)

+ E(d)
νd

[
P
(d)
X(Tk(m))

(
sup
s≤t

Mk(Xs) ≥ m′
)

; Tk(m) < t ∧ τ∂

] )

≤ C × ǫ/(2C) + ǫ/2 ≤ ǫ,

by inequalities (6.1), (6.2) and the definition of t. This concludes the proof of Proposition 2.3.2,
given Propositions 6.0.1 and 6.0.2 whose proofs follow. �

Remark 6.1.1. We deduce thanks to Lemma 6.0.5 that we are in fact able to bound any moment
with large probability under the QSD νd uniformly on d ∈ N. These of course will extend to the
limiting QSD on X 6.

6.2 Proof of Proposition 6.0.1

Let k, t > 0,m′ ≥ m, d ∈ N and x ∈ Xd such that Mk(x) ≤ m be fixed.
We consider the semi-martingale decomposition of Mk:

dMk(t) = Vk(t) dt+ dMk(t), (6.3)

where Mk is a continuous martingale starting from 0, whose quadratic variation is

〈Mk〉t =

∫ t

0

(M2 k(s)−Mk(s)
2) ds,

and Vk is a bounded variation process defined as:

Vk := α(M1×Mk −Mk+1) + λ
d−1∑

ℓ=0

(ℓ+ 1)kXℓ − λ(Mk − dkXd). (6.4)

Thanks to the Hölder inequality, considering a random variable Y such that Y = j with proba-
bility Xj :

M1 = E(Y ) ≤ E(Y k+1)1/(k+1) ; Mk = E(Y k) ≤ E(Y k+1)k/(1+k) thus M1×Mk ≤ Mk+1.

Exploiting also that (ℓ+ 1)k ≤ 2k×ℓk for ℓ ≥ 1, we deduce, with C = C(k) = λ(2k − 1):

Vk ≤ CMk + λ. (6.5)

To obtain an upper-bound on the probability that sups≤t Mk(s) is large, we want to exploit the
Doob inequality on a non-negative sub-martingale that is an upper-bound of Mk. It leads us to
consider the solution of the following equation:

M̂k(t) := m+ λt+ C
∫ t

0 M̂k(s) ds+Mk(t), (6.6)

because classical results of comparison imply that for any t ≥ 0, M̂k(t) ≥ Mk(t), see for instance

Proposition 3.12 in [21]. The fact that M̂k is non-negative comes from the fact that Mk is non-

negative. As a solution to equation (6.6), M̂k is clearly a sub-martingale. Since it is upper-bounded
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by dk, we can also apply the Gromwall Lemma to deduce that for any initial condition x such that
Mk(x) ≤ m:

sup{s≤t} E
(d)
x

[
M̂k(s)

]
≤ (m+ λt) eCt. (6.7)

By exploiting Doob’s inequality on M̂k, then inequality (6.7) with CM := (1+λt) eCt, we obtain:

P(d)
x (sup{s≤t} Mk(s) > m′) ≤ P(d)

x (sup{s≤t} M̂
(k)
k (s) > m′)

≤
E
(d)
x [M̂k(t)]

m′ ≤
CM m

m′ .

This concludes the proof of Proposition 6.0.1. �

6.3 Proof of Proposition 6.0.2

Let t, ǫ > 0. From Lemma 6.0.3, we can choose certain δ > 0 and m∨
1 ≥ 2λ/α such that:

sup
{
P(d)
x (t < τ∂)

∣∣∣d ∈ N, x ∈ Xd,M1(x) ≥ m∨
1 , x0 M1(x) ≤ δ

}
≤ ǫ. (6.8)

Recall T1(m1) := inf{t ≥ 0 ; M1(Xt) ≤ m1} ≤ T1(m
∨
1 ) for any m1 ≥ m∨

1 . The value of m1 will
be fixed in (6.12), but we first need to prove that with a probability close to 1, X0 has escaped from
the boundary x0 = 0 provided that M1 has not been small. Let:

TB(δ) := inf{t ≥ 0 ; X0(t)M1(Xt) ≤ δ}, (6.9)

By the Markov property, we deduce from (6.8) that for any x ∈ Xd and d ≥ 1:

P(d)
x (TB(δ) ≤ t ≤ T1(m

∨
1 ) , 2 t < τ∂) ≤ ǫ. (6.10)

Recalling m∨
1 ≥ 2λ/α, t ≤ TB(δ)∧T1(m

∨
1 )∧ τ∂ implies that for any s ≤ t: (αM1(s)−λ)X0(s) ≥

α δ/2. Thus, X0 is lower-bounded, a.s. on the event {t ≤ TB(δ) ∧ T1(m
∨
1 ) ∧ τ∂}, by the solution Y

to:
dYs = α δ/2 ds+

√
Ys (1− Ys)dB0(s) , Y (0) = 0. (6.11)

Note that Y is independent of d and x and 0 is an entrance boundary for Y , cf e.g. Subsection
3.3.3 in [12]. So we can choose y0 > 0 such that: P(Y (t) ≤ y0) ≤ ǫ. This implies that for any d
and x:

P(d)
x (X0(t) ≤ y0 , t ≤ T1(m

∨
1 ) , 2 t < τ∂) ≤ P(d)

x (TB(δ) ≤ t ≤ T1(m
∨
1 ) , 2 t < τ∂)

+ P(d)
x (Y (t) ≤ y0 , t ≤ TB(δ) ∧ T1(m

∨
1 ) ∧ τ∂)

≤ 2 ǫ.

Thanks to Lemma 6.0.4, we can choose a certain m1 ≥ m∨
1 associated to y0. We thus deduce,

with the Markov property at time t:

P(d)
x (2 t < T1(m1) ∧ τ∂) ≤ P(d)

x (X0(t) ≤ y0 , t ≤ T1(m
∨
1 ) , 2 t < τ∂)

+ E(d)
x [P

(d)
X(t)(t ≤ T1(m1) ∧ τ∂) ; X0(t) ≥ y0]

≤ 3 ǫ. (6.12)

Thanks to Lemma 6.0.5, we can choose a certain m2 > 0 associated to m1 (with T2(m2) :=
inf{t ≥ 0 ; M2(Xt) ≤ m2}). and a certain m3 > 0 associated to m2 such that:

P(d)
x (3 t < T2(m2) ∧ τ∂) ≤ 4 ǫ , P(d)

x (4 t < T3(m3) ∧ τ∂) ≤ 5 ǫ.
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More generally, we can prove inductively that there exists mk such that:

P(d)
x ((k + 1) t < Tk(mk) ∧ τ∂) ≤ (k + 2) ǫ,

so as to treat any moment. Since t is arbitrary, this concludes the proof of Proposition 6.0.2, given
Lemmas 6.0.3-5 whose proofs follow. �

6.4 Proof of Lemma 6.0.3

This proof is an extension of the one of Proposition 3.8 in [1]. W.l.o.g., we assume δ ≤ δ∧ := 1/(16α).
Consider an initial condition x such that there exists m1 ≥ M1(x) ∧ 1 and x0 m1 ≤ δ, where δ is
to be fixed later. Thus, on the event {sups≤t X0(s)M1(s) ≤ 2 δ∧} ∩ {sups≤t X0(s) ≤ 1/2}, we have
for any s ≤ t, (αM1(s)− λ)X0(s) ≤ 2αδ∧ ≤ 1/4 (1−X0(s)). X0 is thus upper-bounded on this
event by the solution Y to:

dYs = (1− Ys)/4 ds+
√
Ys (1− Ys)dB0(s) , Y (0) = y0 := δ/m1.

The main interest of this upper-bound is that it is explicitly given as:

Yt := y0 exp

[
−

∫ t

0

1− Ys

4 Ys
ds+

∫ t

0

√
1− Ys

Ys
dB0(s)

]
,

which is an immediate consequence of Itô’s formula. We then define the time-change:

ρt :=

∫ t

0

1− Ys

Ys
ds , Wt := M(ρ−1(t)),where Mt :=

∫ t

0

√
1− Ys

Ys
dB0(s).

Y (ρ−1(t)) := y0 exp [−t/4 +Wt]

We can easily check from the quadratic variations that the martingale W is indeed a Brownian
Motion. Through conditions on the law of exp [−t/4 +Wt] (independent of the parameters), we
shall thus constrain Y , then X0.

(ρ−1)′(t) = (ρ′ ◦ ρ−1(t))−1 =
y0 exp [−t/4 +Wt]

1− y0 exp [−t/4 +Wt]
.

For any y > 0, let: τYy := inf{t ≥ 0 ; Yt = y} and remark that for any µ > 0 :

{t < τY0 } = {t < ρ−1(∞)} =

{
t <

∫ ∞

0

y0 exp [−r/4 +Wr]

1− y0 exp [−r/4 +Wr]
dr

}

On the event {τY0 < τYy0+µ}, for any t ≥ 0: y0e
−t/4+Wt < y0 + µ, so that one can have an explicit

upper-bound of (1 − y0e
−t/4+Wt)−1. On the event {τYy0+µ < τY0 }, there must exist t ≥ 0 such that

y0e
−t/4+Wt = y0 + µ. From these, we deduce:

Py0(t < τY0 < τYy0+µ) ≤ P

(
t (1− y0 − µ)

y0
<

∫ ∞

0

exp [−r/4 +Wr] dr

)
, (6.13)

Py0(τ
Y
y0+µ < τY0 ) = P

(
(y0 + µ)/y0 < sup

r≥0
exp [−r/4 +Wr]

)
. (6.14)

Let ǫ > 0. Since Wt/t −→
t→∞

0, we can define c1, c2 > 1 such that

P

(
c1 <

∫ ∞

0

exp [−r/4 +Wr] dr

)
≤ ǫ , P

(
c2 < sup

r≥0
exp [−r/4 +Wr]

)
≤ ǫ.
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Likewise, thanks to Lemma 3.2 in [1], we can choose a certain c3 > 0 such that for any x:

Px(sup{s≤t} M1(s)−M1(0) ≥ λ t+ c3) ≤ ǫ.

This motivates: m′
1 := m1 + λ t+ c3 , µ := δ∧/m′

1.
We choose also δ ≤ δ∧ sufficiently small to ensure, with m1 ≥ 1:

t (1− y0 − µ)

y0
≥

m1 t

δ
× (1− 2

δ∨
m′

1

) ≥ c1 ,
y0 + µ

y0
≥

µ

y0
≥

δ∧
δ

× (1 + λ t+ c3)
−1 ≥ c2.

Thus, from equations (6.13) and (6.14) and the above definitions:

Px(A) ≥ 1− 3 ǫ, where A :=

{
sup
s≤t

M1(s) ≤ m′
1

}
∩
{
τY0 < t ∧ τYy0+µ

}
.

To check the upper-bound by Y , let TB := inf{s ≥ 0 ; X0(s)M1(s) ≥ 2 δ∧}. Then, on the event A,
for any s ≤ t ∧ TB (recalling µ/y0 ≥ c2 > 1, where µ := δ∧/m′

1) :

X0(s) ≤ Ys ≤ y0 + µ ≤ 2δ∧/m
′
1 , M1(s) ≤ m′

1 so X0(s)M1(s) < 2 δ∧.

By continuity of X0M1, TB < t is incompatible with A, so that we indeed have ∀s ≤ t, X0(s) ≤ Ys,
thus τ∂ ≤ t. In conclusion, for any x such that m1 ≥ 1 and x0 m1 ≤ δ:

Px(τ∂ ≤ t) ≥ Px(A) ≥ 1− 3 ǫ. �

6.5 Proof of Lemma 6.0.4

On the event {infs≤t M1(X
(d)
s ) ≥ m1}, X0 is lower-bounded on [0, t] by the solution Y to:

dYs = r(m1)Ys ds+
√
Ys (1− Ys)dB0(s) , Y (0) = y0,

where r(m1) := αm1 − λ −→
m1→∞

∞.

Since M1(s) = 0 as soon as X0 = 1, this lower-bound cannot hold until T Y
1 := inf{t ≥ 0 ; Yt ≥ 1}.

We thus only have to prove that P(t < T Y
1 ) → 0 as m1 → ∞.

Let ǫ, t1 > 0. The quadratic variation of the martingale part Ms until time t1 ≤ t is upper-
bounded by t1, so that the Doob inequality implies:

Py0(sups≤t1 |Ms| > y0/2) ≤ 8t1/y
2
0 . (6.15)

By choosing t1 sufficiently small, we can assume 8t1/y
2
0 ≤ ǫ. On the event

{
sups≤t1 |Ms| ≤ y0/2

}
, it

is clear that Y stays above y0/2 on the time-interval [0, t1]. The drift term can thus be lower-bounded
by r(m1) s y0/2 for any s ≤ t1∧T Y

1 . Since it cannot exceed 1−y0/2 before T Y
1 , it necessarily implies

that for r(m1) sufficiently large (that is m1 sufficiently large), we must have T Y
1 < t1 on the event{

sups≤t1 |Ms| ≤ y0/2
}
. With (6.15) and t1 ≤ t, this clearly implies P(t < T Y

1 ) → 0 as m1 → ∞ and
concludes the proof of Lemma 6.0.4. �

6.6 Proof of Lemma 6.0.5

For any k ≥ 1:

dMk(t) = α (M1(t)Mk(t)−Mk+1(t)) dt+ λ
∑

j≤k−1

ckj Mj(t)dt+ dMk(t),

where Mk(t) is a continuous martingale, and 〈Mk〉t =

∫ t

0

(M2 k(s)−Mk(s))
2 ds.
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For a certain m
(k)
1 to be defined later, depending on ǫ, let τ

(k)
1 := inf{t ≥ 0 ; M1(t) ≥ m

(k)
1 } so

that, since Mk is increasing with k ≥ 1:

0 ≤ Ex(Mk(t ∧ τ
(k)
1 ) ≤ Mk(x) − αEx

(∫ t∧τ
(k)
1

0

Mk+1(s) ds

)
+ Ck Ex

(∫ t∧τ
(k)
1

0

Mk(s) ds

)

Ex

(∫ t∧τ
(k)
1

0

Mk+1(s) ds

)
≤ mk/α+ C′

k Ex

(∫ t∧τ
(k)
1

0

Mk(s) ds

)
.

By immediate induction:

Ex

(∫ t∧τ
(k)
1

0

Mk+1(s) ds

)
≤ (k − 1)mk/α+ C

′′

k Ex

(∫ t∧τ
(k)
1

0

M1(s) ds

)

≤ (k − 1)mk/α+ C
′′

k tm
(k)
1 .

For any ǫ > 0, we then exploit Lemma 3.2 in [1] together with M1(x) ≤ mk to choose m
(k)
1 such

that: Px(τ
(k)
1 < t) ≤ ǫ for any x ∈ Xd such that Mk(x) ≤ mk. Now that m

(k)
1 , τ

(k)
1 is clearly

defined, we can choose, by the Markov inequality, mk+1 such that:

Px

(∫ t∧τ
(k)
1

0

Mk+1(s) ds ≥ tmk+1

)
≤ ǫ.

This concludes the proof of Lemma 6.0.5:

{
inf
s≤t

Mk+1(X
(d)
s ) ≥ mk+1

}
∩
{
t ≤ τ

(k)
1

}
⊂

{∫ t∧τ
(k)
1

0

Mk+1(s) ds ≥ tmk+1

}
. �

With this, the proof of Proposition 6.0.2 is completed and by extension the one of Proposition 2.3.2.

7 Proof of Theorem 2.3: the infinite dimensional case

As one can imagine, this final Section is much more technical than the previous ones. For instance,
there is no explicit reference measure that seems to be exploitable as ζ: the Lebesgue measure
cannot be extended on an infinite dimensional space ! Nonetheless, the core idea behind the proof
is still that the individuals carrying many mutations are actually wiped out very rapidly, implying
rapid shuffle of the last coordinates. Quite unexpectedly, the criteria we developed to deal with
jump events has proved to be very effective in this context. Notably, we could deal with moments
increasing too largely as exceptional events.

7.1 Main properties leading to the proof

The proof of Theorem 2.3 relies on the criteria stated in Subsection 2.2.1 of [26], as an extension to
those in Section 2.1 of [25]. We will treat both the case of large yet finite values of d and d = ∞,
for which we recall that any x ∈ X∞ := X 6 has a finite sixth moment.

For the purpose of Theorem 2.3, we replace the notation given in (5.1) by the following one:

Dℓ := {x ∈ Xd ; M3(x) ≤ ℓ , x0 ∈ [(3ℓ)−1, 1− (3ℓ)−1]}.

We prove Theorem 2.3 thanks to the following Theorems 7.1-3, ordered by difficulty, and Lemmas
7.1.2 and 7.1.3. We will see in Section 7.1 how these Theorems together with Theorems 2.2 in [26]
imply Theorem 2.3. In the next subsections, we then prove Theorems 7.1-3 by order of appearance.
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Escape from the Transitory domain. The sets E that we shall consider next are defined
through three parameters m3, y > 0 as follow:

E := {x ∈ Xd ; M3(x) ≤ m3 , ∀ j ≤ ⌊m3/η⌋+ 1, xj ≥ y}. (7.1)

We recall the notation τE as the entry time of E.

Theorem 7.1. For any t, ǫ, η > 0, there exists m3, y > 0 such that, for any d ∈ N ∪ {∞} :

sup
d∈N∪{∞}

sup
x∈Xd

Px (t < τ∂ ∧ τE) ≤ ǫ.

In particular, for any ρ, η > 0 we can choose such m3 and y such that:

sup
d∈N∪{∞}

sup
x∈Xd

Ex (exp[ρ (τ∂ ∧ τE)]) ≤ 2.

Mixing property and accessibility. The two following theorems exploit a reference probability
measure ζ on Xd. This measure is chosen to be especially adapted for our arguments, in a way
that makes it actually complex to express. Its specific definition is given in (7.22) by relying on the
notations introduced in Subsections 7.4 and 7.5.

Theorem 7.2. For any d ∈ N∪ {∞}, the probability measure ζ defined below in (7.22) satisfies the
following uniform mixing condition. For any ℓ ≥ 1 and t > 0, there exists L > ℓ and c > 0 such
that for any d ∈ N ∪ {∞} and x ∈ Dℓ, with TDL

the exit time out of DL:

P(d)
x (X(t) ∈ dx ; t < TDL

∧ τ∂) ≥ c ζ(dx).

Remark 7.1.1. It can be noted that for any x ∈ Dℓ, TDL
< τ∂ , so that the latter may be omitted in

the expression.

Absorption with failures. We will consider any E of the form prescribed by Theorem 7.1 and
again the same probability measure ζ.

Theorem 7.3. Given any ρ,m3, η, y > 0 and any ǫ ∈ (0, 1), there exists t⊻, tA, cA > 0 such that
for any d ∈ N ∪ {∞} and x ∈ E, there exists a stopping time UA such that for any xζ ∈ E:

{τ∂ ∧ t⊻ ≤ UA} = {UA = ∞} and Px(UA = ∞, t⊻ < τ∂) ≤ ǫ exp(−ρ t⊻),

while Px (X(UA) ∈ dy ; UA < τ∂) ≤ cA Pxζ
(X(tA) ∈ dy ; tA < τ∂) . (7.2)

Moreover, there exists a stopping time U∞
A satisfying the following properties:

• U∞
A := UA on the event

{
τ∂ ∧ UA < τ1E

}
, where τ1E := inf{s ≥ t⊻ : Xs ∈ E}.

• On the event
{
τ1E < τ∂

}
∩{UA = ∞}, and conditionally on Fτ1

E
, the law of U∞

A − τ1E coincides

with the one of Ũ∞
A for the shifted process (X̃t)t≥0 := (Xτ1

E
+t)t≥0.

For the proof of this Theorem, it is helpful to replace the initial condition ζ by xζ ∈ E. Without
this issue of having an estimate uniform in d sufficiently large, we could simply impose additionally
in our choice of m3 ≥ 1 and y > 0 that ζ(E) ≥ 1/2. A priori, there is no reason to expect that
it could not hold globally in d, yet we do not see how to justify it clearly. Instead, we exploit the
following Lemma, which is to be combined with the fact that the definition of ζ in (7.22) makes it
supported on:

X d
∗ := {x ∈ X d ; x0 ≥ 1/10}.

Lemma 7.1.2. There exists m3, y, c, t > 0 such that for any d and ζ supported on X d
∗ , we have

P
(d)
ζ (Xt ∈ E) ≥ c. In this expression, E is defined as (7.1) in terms of m3, y with the arbitrary

choice of η := 1.
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Proof of Lemma 7.1.2. We have thanks to Theorem 7.1 a uniform control on the time of coming
back to E, provided we can handle the survival starting from ζ. From (7.22) and the definition of

τ0, Since ζ is supported on X d
∗ , we deduce that under P

(d)
ζ , whatever d, (X0(s)) is lower-bounded

by the solution Y to the equation:

dYs = −λds+
√
Ys (1− Ys)dB0(s) , Y (0) = 1/10.

Thus, denoting c := P1/10(Yt/2 > 0)/2 > 0 independent of d, we have uniformly:

P
(d)
ζ (t/2 < τ∂) ≥ 2c. (7.3)

Thanks to Theorem 7.1, with the arbitrary choice of η = 1, we then deduce m3, y > 0 such that for
any d and x ∈ Xd:

P
(d)
ζ (t/2 < τ∂ ∧ τE) ≤ c.

Combined with (7.3), this concludes the proof of Lemma 7.1.2. �

Lower-bound of the survival capacity. The sets (Dℓ) do not completely cover the state space,
yet:

∪ℓ≥1Dℓ = Xd \ {δ0}, where {δ0} := (1, 0, 0, ...).

To deduce that h is positive on δ0, we exploit the following Lemma:

Lemma 7.1.3. For any y0 > 0 and uniformly in d ∈ N ∪ {∞}, there exists t > 0, ℓ ≥ 1 such that
the sets Hd := {x ∈ Xd : x0 ≥ y0} satisfy:

inf{d≥1,x∈Hd} Px(τDℓ
≤ t ∧ τ∂) > 0.

In particular, there exists ℓ such that Pδ0(τDℓ
< τ∂) > 0. The proof of Lemma 7.1.3 is a

straightforward adaptation of the one of Lemma 5.1.4 by replacing Proposition 5.1.3 by Theorem
7.1. The reader will be spared further details. We note that the specific definition of the sets Dℓ,
which are different for the two lemmas, is actually not involved.

7.2 Proof of Theorem 2.3 with Theorems 7.1-3 and Lemmas 7.1.2-3.

For this proof, we plan again to exploit Theorem 2.4 and ensure this time Assumption (AF).
First, it is clear that the sets Dℓ satisfy assumption (A0S). From Theorem 7.2, assumption (A1)

holds true for the reference measure ζ defined by (7.22). This measure ζ defines a value for ρS From
Lemma 3.0.2 in [25] and (A1), we know that ρS is upper-bounded by a certain value ρ̃S that only
depends on the constants involved in (A1). In order to satisfy ρ > ρS , we set ρ := 2ρ̃S.

From Theorem 7.1 and arbitrary imposing η = 1, we deduce m3, y > 0 such that assumption
(A2) holds for this value of ρ and E defined as (7.1).

Since increasingm3 and reducing y make the corresponding subset E increase, we assume without
restriction that these values are larger than the ones specified in Lemma 7.1.2. Note that the
definition of ζ given in (7.22) ensures that it is supported on X d

∗ (because of the constraint tM < τ0).

It means that there exists t1, c1 > 0 such that for any d, we have P
(d)
ζ (Xt1 ∈ E) ≥ c1.

For the proof of (A3F ), we use this choice of m3, y, η and ρ and exploit Theorem 7.3 for any
given ǫ > 0 to define t⊻, tA, cA > 0 and to express UA as a function of x. Note that we exploit the
Markov property to get the following inequality:

P(d)
x (XUA

∈ dx′ , UA < ∞) ≤ c1.cA P
(d)
ζ (X(t1 + tA) ∈ dx′ ; t1 + tA < τ∂).
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This concludes that Assumption (AF) holds true. Exploiting Theorem 2.4, this concludes the proof
that the semi-group displays QSC and that the Q-process exists on H. Thanks to Proposition 2.5.3
and Lemma 7.1.3, we deduce the required positive lower-bounds of h∞, notably implying H = X .

Since all the parameters can be chosen independently of d sufficiently large, this is also the case
of any parameter involved in the convergences. One can indeed check that there are intricate yet
explicit relations between all the parameters introduced in [26]. This concludes the proof of Theorem
2.3. �

7.3 Proof of Theorem 7.1

The proof of Theorem 7.1 relies on the following Lemmas, easily adapted from the uniform escape
and the uniform descent of the moments in the finite dimensional systems.

Lemma 7.3.1. For any t > 0:

sup
{
Px (t < τ∂)

∣∣∣d ∈ N ∪ {∞} , x ∈ Xd , M1(x) ∈ (1,∞) , x0 M1(x) ≤ δ
}

tends to 0

as δ tends to 0.

Lemma 7.3.2. Given any t, y0 > 0, and recalling T1(m1) := inf{t≥0 ; M1(Xt) ≤ m1} :

sup
{
Px (t ≤ T1(m1) ∧ τ∂)

∣∣∣d ∈ N ∪ {∞} , x ∈ Xd , x0 ≥ y0

}
tends to 0 as m1 tends to ∞.

Lemma 7.3.3. For any t,m1 > 0:

sup
{
Px (t < τ∂)

∣∣∣d ∈ N ∪ {∞} , x ∈ Xd , M1(x) ≤ m1 , x0 ≤ δ
}

tends to 0

as δ tends to 0.

From the finite dimensional case, we adapt the definition, for any y > 0 and k ≥ 0, of:

T k
y := inf{s ≥ 0 ; ∀ j ≤ k, Xj(s) ≥ y}.

Lemma 7.3.4. Given any k ∈ N, and t, m1, y0 > 0:

sup
{
Px

(
t < T k

y ∧ τ∂
) ∣∣∣d ∈ [[k,∞[[∪{∞} , x ∈ Xd , x0 ≥ y0 , M1(x) ≤ m1

}
tends to 0

as y′ tends to 0.

Lemma 7.3.5. Given any k ∈ N and t, m1, y > 0:

sup
{
Px (∃ j ≤ k, ∃ s ≤ 3 t, Xj(s) ≤ y′ , 4 t < τ∂)

∣∣∣d ∈ [[k,∞[[∪{∞} , x ∈ Xd,

M1(x) ≤ m1 ; ∀ j ≤ k, xj ≥ y
}

tends to 0 as y′ tends to 0.

Lemma 7.3.6. Given any k ∈ N and t, mk > 0:

sup
{
Px

(
inf
s≤t

Mk+1(Xs) ≥ mk+1

)∣∣∣d ∈ [[k,∞[[∪{∞} , x ∈ Xd , M2 k(x) < ∞ , Mk(x) ≤ mk

}

tends to 0 as mk+1 tends to ∞.
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We let the reader check that the proofs of Lemmas 7.3.1, 7.3.2, 7.3.4 and 7.3.6 can be adapted
mutatis mutandis from the ones of resp. Lemmas 6.0.3, 6.0.4, 5.5.2 and 6.0.5.

As a generalization of Lemma 5.5.1, Lemma 7.3.3 is a consequence of the fact that X0 is upper-
bounded on the event {sups≤t M1(s) ≤ m′

1} by the solution Y of:

dYt = αm′
1 Yt dt+

√
Yt(1 − Yt)dB0(t) , Y0 = δ,

for which it is known that 0 is an absorbing value. Thanks to Lemma 3.2 in [1], we know an
upper-bound going to 0 as m′

1 goes to ∞ of Px(sups≤t M1(s) ≥ m′
1), uniform in x ∈ Xd such that

M1(x) ≤ m1.
We begin with the remaining proof of Lemma 7.3.5, and then conclude the proof of Theorem 7.1.

7.3.1 Step 1: proof of Lemma 7.3.5

Let k ≥ 1, t,m1, y > 0. For δ > 0, that we shall choose sufficiently small, let: τδ := inf{t ≥
0 ; X0(t) ≤ δ}. By Lemma 3.2 in [1], M1((3t) ∧ τδ) ≤ m′

1 with probability close to one for m′
1

sufficiently large and independently of δ. Thus, thanks to Lemma 7.3.3, choosing δ sufficiently small
ensures that on the event {τδ ≤ 3t} extinction before 4 t happens with a probability close to one.

We restrict ourselves in the following to the event {3 t < τδ}. Now, for 1 ≤ i ≤ k, and yi−1 > 0,
let:

τ i−1(yi−1) := inf{t ≥ 0 ; ∃ j ≤ i, Xj(t) ≤ yi−1}.

The proof relies on an induction over the coordinates 1 ≤ i ≤ k that there exits 0 < yi ≤ yi−1 such
that 3 t < τ i(yi) with a probability close to 0 conditionally on the event {3 t < τ i−1(yi−1)}.

On the event {3t < τ i−1(yi−1)}, we can observe:

dXi(t) ≥ λ yi−1 dt− (i α+ λ)Xi(t) dt+
√

Xi(t) (1 −Xi(t)) dBi(t),

for some Brownian Motion Bi (these are clearly not independent for different values of i). By some
comparison principle, for instance Proposition 3.12 in [21], Xi is lower-bounded (uniformly in x) by
the solution to the SDE:

dYi(t) = λ yi−1 dt− (i α+ λ)Yi(t) dt+
√
Yi(t) (1− Yi(t)) dBi(t),

with Yi(0) = y and absorption at 1. Note that Yi cannot be absorbed at 1 before τ i−1(yi−1) by the
definition of the latter and that Yi does not depend on d.

Now, for any i, 0 is an entrance boundary for Yi, cf e.g. Subsection 3.3.3 in [12], so that there exists
0 < yi ≤ yi−1 such that with a probability close to 1 conditionally on the event {3t ≤ τ i−1(yi−1)}:

infs≤t Yi(s) ≥ yi thus t ≤ τ i(yi).

More precisely, for any ǫ, the above arguments shows by induction that there exists a decreasing
sequence (yi)1≤i≤k ∈ (R∗

+)
k, with y0 = δ, such that:

sup
{
Px

(
4t < τ∂

∣∣ 3t ≤ τ0y0

) ∣∣∣x ∈ Xd,M1(x) ≤ m1 ; ∀ j ≤ k, xj ≥ y
}
≤ ǫ/2,

sup
{
Px

(
τ iyi

< 3t
∣∣ 3t ≤ τ i−1

yi−1

) ∣∣∣x ∈ Xd,M1(x) ≤ m1 ; ∀ j ≤ k, xj ≥ y
}
≤ ǫ/2i+1.

Now, since an immediate induction ensures that:

Px(τ
k(yk) ≤ 3 t , 4 t < τ∂) ≤ Px(4 t < τ∂

∣∣ τδ ≤ 3t) +

k∑

i=1

Px

(
τ iyi

≤ 3t
∣∣ 3t < τ i−1

yi−1

)
,

we can indeed conclude that the probability of {τk(yk) ≤ 3 t}∩{4 t < τ∂} is uniformly upper-bounded
by ǫ. This ends the proof of Lemma 7.3.5. �
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7.3.2 Step 2: final proof of Theorem 7.1

With exactly the same reasoning as for Proposition 6.0.2, with Lemmas 7.3.1 and 7.3.2 instead of
6.0.3 and 6.0.4, we deduce that for any x ∈ Xd, t > 0 and ǫ, we can find m1 such that:

Px(E1) ≤ 3 ǫ, with E1 := {2 t < T1(m1) ∧ τ∂}

From Lemma 7.3.3, we can choose y0 such that:

Px(E2) ≤ ǫ, with E2 := {X0(T1(m1)) ≤ y0} ∩ {T1(m1) ≤ 2 t} ∩ {3 t < τ∂}.

Again with Lemma 3.2 in [1] and the Markov property, we choose m′
1 > 0 such that:

Px(E4) ≤ ǫ, with E4 := {T1(m1) + t < τ∂}

∩ {∃ s ∈ [T1(m1), T1(m1) + t], M1(s) ≥ m′
1}

Before we ensure that many components escape 0 during this time-interval [T1(m1), T1(m1) + t],
we need to know the number of components needed, which is given by the next step. Thus, thanks
to Lemma 7.3.6 and again the Markov property at T1(m1) + t, we choose first a certain m3 (with
an implicit step for the second moment) such that:

Px (E6) ≤ ǫ, with E6 := {T1(m1) + t < τ∂} ∩ {M1(T1(m1) + t) ≤ m′
1}

∩ {T1(m1) + 3 t ≤ T̃3(m3)}

and T̃3(m3) := inf{s ≥ T1(m1) + t ; M3(s) ≤ m3}

Now, we can define k := ⌊m3/η⌋ + 1 (η being an imposed parameter in the statement of Theorem
7.1) and choose thanks to Lemma 7.3.4 a certain y such that:

Px (E3) ≤ ǫ, with E3 := {T1(m1) < τ∂} ∩ {X0(T1(m1)) ≥ y0}

∩ {T1(m1) + t ≤ T̃ k
y }

where T̃ k
y := inf{s ≥ T1(m1) ; ∀ j ≤ k, Xj(s) ≥ y}.

Finally, we choose thanks to Lemma 7.3.5 a certain y′ such that:

Px (E5) ≤ ǫ, with E5 := {T̃ k
y + 4 t < τ∂} ∩ {M1(T̃

k
y ) ≤ m′

1}

∩ {∃ s ∈ [T̃ k
y , T̃

k
y + 3 t], ∃ j ≤ k, Xj(s) ≤ y′}

Provided that we prove that the event E := {6 t < τ∂ ∧ τE} (with y′ instead of y in the definition
of τE) is necessarily included in the union of the exceptional events we have just defined, this ensures:
∀x ∈ Xd, Px(6 t < τ∂ ∧ τE) ≤ 8 ǫ and concludes the proof since t and ǫ have been arbitrary chosen.

On E \ E1, we know T1(m1) ≤ 2 t.
On E \ ∪2

i=1Ei, we deduce also X0(T1(m1)) ≥ y0.

On E \ ∪3
i=1Ei : T̃ k

y ≤ T1(m1) + t ≤ 3 t.

On E \ ∪4
i=1Ei : M1(T̃

k
y ) ∨M1(T1(m1) + t) ≤ m′

1.

On E \ ∪5
i=1Ei : ∀ s ∈ [T̃ k

y , T̃
k
y + 3 t], ∀ j ≤ k, Xj(s) ≥ y′.

On E \ ∪6
i=1Ei : T̃3(m3) ≤ T1(m1) + 3 t ≤ 5 t.

Since moreover T̃ k
y ≤ T1(m1) + t, while, by definition of T̃3(m3),

T̃3(m3) ≥ T1(m1) + t, we deduce: T̃3(m3) ∈ [T̃ k
y , T̃

k
y + 3 t]. As a consequence:

∀ j ≤ k, Xj(T̃3(m3)) ≥ y′. Then, it would imply τE ≤ T̃3(m3) ≤ 5 t, which contradicts the definition
of E . Thus: E ⊂ ∪6

i=1Ei, and the conclusion of Theorem 7.1 is proved. �
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Transformation of the system of SDEs

The changes in the description of the system specified in the next two sections will be crucial for both
the proofs of Theorems 7.3 and 7.2. Up to a multiplicative constant in the probabilities, they makes
it possible to gather the last coordinates in one specific block while keeping a Markovian description.
Our aim is then to prove that the dependence in the initial values of these last coordinates vanishes
very quickly. We split the system of SDEs to distinguish the ”descendants” of these doomed lineages
from the unlucky newcomers that have acquired additional mutations (whose traits are predictable).

7.4 Aggregation of the last coordinates

In the following, for any d ∈ N ∪ {∞} and k ≤ d, we denote by P(k,d) the law of the solution to:

∀ i ≤ d, dXi(t) = α(M
(k)
1 (t)− i ∧ k)Xi(t) dt+ λ(Xi−1(t)− 1{i<d} Xi(t)) dt

+
√
Xi(t) dW

i
t −Xi(t) dWt (7.4):(S(k,d))

where Wt :=
∑

j

∫ t

0

√
Xj(s)dW

j
s ,

M
(k)
1 (t) :=

∑
i(i ∧ k)Xi(t) =

∑
i≤k−1 iXi(t) + k

∑
i≥k Xi(t),

with (W i)i≥0 a family of mutually independent Brownian Motions.
For the following proposition, we shall exploit a control on moments of order δ relying on the

stopping time:
τδm := inf{s ≥ 0 ; Mδ(s) ≥ m}.

Proposition 7.4.1. Given any t, ǫ > 0, δ > 2, there exists CM , CG > 0 for which the following
holds. For any m ≥ 1, with m′ := CM ×m, for any d ∈ N∪ {∞}, k ≤ d, and any x ∈ Xd ∩X 2δ such
that Mδ(x) ≤ m, there exists a coupling between P(k,d) and P(d) such that:

on the event {t < τδm′} :
∣∣∣ log

(
dP

(k,d)
x

dP
(d)
x

|[0,t]

) ∣∣∣ ≤ CG
m

kδ−2
,

where m′ is such that P(d)
x

(
τδm′ ≤ t

)
≤ ǫ.

An analogous result holds for δ := 2, except that the upper-bound on the log-ratio of densities is then
CG×m.

Remark 7.4.2. In practice, we shall exploit Proposition 7.4.1 only for δ = 3. Yet, the proof is
almost the same for any moment provided δ > 2, while we mentioned earlier that the requirement
that M6(x) < ∞ could be replaced by the requirement M2δ(x) < ∞. So we treat Proposition 7.4.1 in
this generality and let the interested reader extend the argument.

This transform is naturally associated to the following projection πk from Xd to Xk, given by:

πk(x)i





= xi, if i ≤ k − 1,

=

d∑

j=k

xj = 1−

k−1∑

j=0

xj , if i = k,
(7.5)
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For the following proposition, we also define (X
[F ]
i )i∈[[k,d]] as the solution to:

dX
[F ]
i (t) := λ

Xk−1(t)

X(k)(t)
(1{i=k} −X

[F ]
i (t)) dt + λ(X

[F ]
i−1(t)1{i≥k+1} − 1{i<d} X

[F ]
i (t)) dt

+

√
X

[F ]
i (t)

X(k)(t)
dW

[F ],i
t −

X
[F ]
i (t)√
X(k)(t)

dW
[F ]
t (7.6)

where X(k)(t) := 1−
∑

i≤k−1

Xi(t) , W [F ]
t :=

∑

i≥k

∫ t

0

√
X

[F ]
i (t)

X(k)(t)
dW

[F ],i
t ,

where (W [F ],i)i∈[[k,d]] is a sequence of independent Brownian Motion that are mutually independent

from the (W i)i∈[[0,d]]. X [F ] shall play the role of the renormalized sequence of the last coordinates,
and F stands for ”Final”.

Proposition 7.4.3. For any k ≥ 1, πk(X) is by itself a Markov process under any P
(k,d)
x , whose

law is independent of d ∈ [[k, ∞[[∪{∞}. The vector X under the law P
(k,d)
x has the same law as the

vector (Xi : 0 ≤ i ≤ k − 1 ; X(k)×X
[F ]
i : i ≥ k), where the X

[F ]
i are defined in (7.6).

The control of the increase in the moments for Proposition 7.4.1 is obtained with the following
proposition as the first step of proof.

Proposition 7.4.4. For any t > 0, there exists C ≥ 1 such that for any m,m′, d ∈ N ∪ {∞} and
x ∈ Xd such that M3(x) ≤ m,

P(d)
x

(
τ3m′ ≤ t

)
≤

Cm

m′ .

Similarly, exploiting the decomposition in Proposition 7.4.3, we define:

M
[F ]
3 (t) :=

∑

i≥k

i3X
[F ]
i (t) ∈ [k3,∞) (7.7)

τ [F ],3
m := inf{s ≥ 0 ; M

[F ]
3 (s) ≥ m}, m > 0. (7.8)

For clarity, we define F (k) = σ(W i : i ≤ k − 1 ; W ). Recall that the process X
[F ]
i is driven by

Brownian Motions (W [F ],i : i ≥ k) that are independent of F (k). The inclusion σ(πk(X)) ⊂ F (k) is
directly obtained through the autonomous set of equation verified by πk(X). The following control

on M
[F ]
3 exploits the filtration F

(k)
t := F (k) ∨ Ft.

Proposition 7.4.5. For any t > 0, there exists C ≥ 1 such that for any m,m′, d ∈ N ∪ {∞} and

x ∈ Xd such that M
[F ]
3 (x) ≤ m,

P(k,d)
x

(
τ
[F ],3
m′ ≤ t

∣∣F (k)
)
≤

Cm

m′ .

7.4.1 Proof of Proposition 7.4.1

Step 1. We first express the Girsanov transform that makes it possible to relate P(k,d) and P(d).
It is expressed in the following Lemma 7.4.6 in terms of the following processes:

R
(k)
1 (t) :=

∑

i≥k+1

(i− k)Xi(t) , R
(k)
2 (t) :=

∑

i≥k+1

(i − k)2 Xi(t)

One can notice that they correspond to the expectation and variance of the vector (
∑k

i=0 Xi;
Xk+1;Xk+2; ...).
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Lemma 7.4.6. There exists a coupling between P(k,d) and P(d) such that:

log
dP

(k,d)
x

dP
(d)
x

|[0,t]
= αR

(k)
1 (0)− αR

(k)
1 (t) + α2

∫ t

0

(M1(s)− k)R
(k)
1 (s) ds

− α2

∫ t

0

R
(k)
2 (s) ds+ αλ

∫ t

0

X(k)(s) ds−
α2

2

∫ t

0

[
R

(k)
2 (s)−R

(k)
1 (s)2

]
ds.

Proof: While applying the Girsanov formula, we consider the exponential martingale of:

L
(k)
t := −α

∑

i≥k+1

(i− k)

∫ t

0

√
Xi(s) dW

i
s + α

∫ t

0

R
(k)
1 (s) dWs

By this choice, we obtain the following equalities:

d〈L(k),W i〉s = α
[
M1(s)−M

(k)
1 (s)− (i− k)+

]√
Xi(s) ds,

d〈L(k),W 〉s = −α
∑

i≥k+1

(i − k)Xi(s) ds+ αR
(k)
1 (s) ds = 0,

d〈L(k)〉s = −α
∑

i≥k+1

(i − k)
√
Xi(s)d〈L

(k),W i〉s = α2
[
R

(k)
2 (t)−R

(k)
1 (t)2

]

The coupling can thus indeed be given by the exponential martingale associated to L(k), i.e.:

log
dP

(k,d)
x

dP
(d)
x

|[0,t]
= −α

∑

i≥k+1

(i− k)

[∫ t

0

√
Xi(s) dW

i
s −

∫ t

0

Xi(s) dWs

]

−
α2

2

∫ t

0

[
R

(k)
2 (s)−R

(k)
1 (s)2

]
ds.

By noting the following equality

dR
(k)
1 (s) = α(M1(s)− k)R

(k)
1 (s) ds+ αR

(k)
2 (s) + λX(k)(s) ds

+
∑

i≥k+1

(i− k)

[∫ t

0

√
Xi(s) dW

i
s −

∫ t

0

Xi(s) dWs

]
.

we can state the above expression as stated in Lemma 7.4.6 in term of the solution to P
(d)
x .

Step 2: The aim is now to get uniform upper-bound on the expression given in Lemma 7.4.6.
We note that:

0 ≤ R
(k)
1 ≤ k−(δ−1)

∑

i≥k+1

iδ Xi(t) ≤ k−(δ−1)Mδ, (7.9)

Likewise 0 ≤ M1×R
(k)
1 ≤ k−(δ−2)M1×Mδ−1 ≤ k−(δ−2)Mδ, (7.10)

where we exploited Hölder’s inequality to deduce: M1 ≤ M
1/δ
δ and Mδ−1 ≤ M

(δ−1)/δ
δ . Similarly,

0 ≤ X(k) ≤ k−δMδ, 0 ≤ R
(k)
2 ≤ k−(δ−2)Mδ while (R

(k)
1 )2 ≤ R

(k)
2 by the Cauchy-Schwarz inequality.

Thanks to Lemma 7.4.6, this proves that on the event {t < τδm′}, for a certain constant C1 only
depending on δ and t (also on α and λ):

∣∣∣ log dP
(k,d)
x

dP
(d)
x

|[0,t]

∣∣∣ ≤ C1
m′

kδ−2
. (7.11)
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For ǫ, with the constant C2 coming from Proposition 7.4.4, to prove P
(d)
x

(
τδm′ ≤ t

)
≤ ǫ, it suffices

to choose CM := C2/ǫ, where we recall m′ = CM ×m. With CG = C1×C2/ǫ, we deduce then from
inequality (7.11) that on the event {t < τδm′}:

∣∣∣ log dP
(k,d)
x

dP
(d)
x

|[0,t]

∣∣∣ ≤ CG
m

kδ−2
.

The proof is quite the same for the case δ = 2, except that we only require (k∨M1)R
(k)
1 ∨R

(k)
2 ≤ M2.

This concludes the proof of Proposition 7.4.1. �

7.4.2 Proof of Proposition 7.4.3

By defining X(k)(t) :=
∑

i≥k Xi(t), we can remark that: M
(k)
1 (t) :=

∑
i≤k−1 iXi(t) + k X(k)(t).

Moreover, under P(k,d):

dX(k)(t) = α(M
(k)
1 (t)− k)X(k)(t) dt+ λXk−1(t) dt+

√
X(k)(t) dW

(k)
t −X(k)(t) dWt,

where W
(k)
t :=

∑

j≥k

∫ t

0

√
Xj(s)

X(k)(s)
dW j

s ,

Wt :=
∑

i

∫ t

0

√
Xi(s)dW

i
s =

∑

i≤k−1

∫ t

0

√
Xi(s)dW

i
s +

∫ t

0

√
X(k)(s)dW

(k)
s .

Here, W (k) indeed defines a Brownian Motion at least until τ∂ , since the mutation term ensures
that X(k) stays positive, as it has been stated in Lemmas 7.3.4 and 7.3.5. (the way we may extend

it afterwards plays no role). The correlation between W (k) and the (W i)i≤k−1 remains zero, while
they constitute a system of Brownian Motions under the same filtration. W (k) is thus independent

from σ(W i; i ≤ k−1), so that the system of equations satisfied by πk(X) is equivalent for any P
(k,d)
x .

Concerning X [F ], we define:

dX̄
[F ]
i (t) := λ

Xk−1(t)

X(k)(t)
(1{i=k} − X̄

[F ]
i (t)) dt + λ(X̄

[F ]
i−1(t)1{i≥k+1} − X̄

[F ]
i (t)) dt

+

√
X̄

[F ]
i (t)

X(k)(t)
dW i

t −
X̄

[F ]
i (t)√
X(k)(t)

dW
(k)
t .

Then, we define X̄i as Xi for i ≤ k − 1 and as X(k) × X̄
[F ]
i for i ≥ k. Next, we check by exploiting

the Itô formula that Xi coincide with X̄i also for i ≥ k, in which case:

dX̄i(t) = λ(X̄i−1(t)− X̄i(t)) dt− λXk−1(t) X̄i(t) dt+ α(M
(k)
1 − k) X̄i(t) dt+ λ X̄k−1(t) X̄i(t) dt

+
√
X̄i(t)dW

i
t −

√
X(k)(t)

√
X̄

[F ]
i (t)dW

(k)
t +

√
X̄

[F ]
i (t)

√
X(k)(t)dW

(k)
t

− X̄i(t)dW
i
t +

1
2 d〈M

(k),M[F ],i〉t, (7.12)

where M
(k)
t and M

[F ],i
t denote the martingale parts of resp. X(k)(t) and X̄

[F ]
i (t). In fact, this

covariation vanishes because, from the definitions of (W j , j ∈ Z+) and W (k), we first deduce:

√
X̄

[F ]
i (t)d〈W i,W (k)〉t − X̄

[F ]
i (t)d〈W (k),W (k)〉t ≡ 0. (7.13)

Concerning then the covariation withW and recalling dWt =
∑

j≤k−1

√
Xj(t)dW

j(t)+
√
X(k)(t)dW

(k)(t),

since for any j ∈ [[0, k−1]], 〈W i,W j〉 ≡ 0 and 〈W (k),W j〉 ≡ 0, we can conclude that d〈M(k),M[F ],i〉t ≡
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0. After simplification and replacing dW
(k)
t by its expression involving (X̄i)i≥k, the system of

equations (7.12) satisfied by (X̄i)i∈[[0,d]] coincide with the system satisfied by (Xi)i∈[[0,d]]. By the
uniqueness of the whole system, Xi coincide with X̄i.

Now, we have exploited in the previous calculation that the martingale component of X̄
[F ]
i , for

i ≥ k, has a quadratic co-variation with W (k) that stays null. Since these semi-martingales are
also adapted to a common filtration (Ft) and their increments after time t is independent of Ft, we
deduce from Theorem 2.1.8 in [9] that W (k) is actually independent of the martingale components
driving X̄ [F ]. Moreover, σ(W i : i ≤ k − 1) is by construction independent of σ(W i : i ≥ k). Thus,
considering σ(W i : i ≤ k − 1;W (k)), for which W is measurable, we deduce that it is independent
of the family of martingale driving X̄ [F ]. We can thus replace the latter by the expression with a
system of independent copies W [F ],i as in Proposition 7.4.3 without changing the law of the vector.
This ends the proof of Proposition 7.4.3.

�

7.4.3 Proof of Proposition 7.4.4

Let t > 0, δ > 1, m′ ≥ m, d ∈ N ∪ {∞} and x ∈ Xd such that Mδ(x) ≤ m be fixed. The proof
generalizes the one of Lemma 6.0.1 in the case where the martingale part is a priori only local.

We again consider the semi-martingale decomposition of Mδ:

dMδ(t) = Vδ(t) dt+ dMδ(t), (7.14)

where Mδ is a continuous local martingale starting from 0, whose quadratic variation is

〈Mδ〉t =

∫ t

0

(M2 δ(s)−Mδ(s)
2) ds,

and Vδ is a bounded variation process. Thanks to Theorem 3 in [1], since M2δ(x) < ∞, we know
that (M2δ(t))t≥0 is a.s. finite. This expression for the quadratic variation is thus well-defined.

Step 1: We first control the expectation of Mδ, by proving the following lemma.

Lemma 7.4.7. Let δ, t > 0 be given. There exists CM = C > 0 such that for any m ≥ 1, x ∈ X 2δ

such that Mδ(x) ≤ m, there exists a sequence of positive sub-martingale M̂
(k)
δ stopped at times Tk,

where Tk → ∞, such that for any s ≤ t ∧ Tk, Mδ(s) ≤ M̂
(k)
δ (s), and such that:

Ex[M̂
(k)
δ (t)] ≤ CM m.

Proof: The sequence Tk, for k ≥ 1, is introduced to localize Mδ and have an upper-bound on

M
(k)
δ .

Tk := inf{s ≥ 0 ; 〈Mδ〉s ≥ k , M (k)
δ (s) ≥ k}.

Recalling Theorem 3 in [1], for the fact that (M2δ(t))t≥0 is a.s. finite, we easily deduce that Tk → ∞
as k → ∞.

We wish to characterize M̂
(k)
δ as the solution to the following equation, valid for s ≤ t ∧ Tk:

M̂
(k)
δ (s) = m+

∫ s

0

(CM̂
(k)
δ (r) + λ)dr +M

(k)
δ (s). (7.15)

We exploit Duhamel’s formula to first define what will be M̂
(k)
δ (s)−M

(k)
δ (s) on the event {s ≤ Tk}:

E(s) := (m−Mδ(x)) e
Cs + eCs

∫ s

0

e−Cr(CMδ(r) + λ− Vδ(r))dr.
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For any s < Tk, E(s) is upper-bounded by a deterministic constant. Similarly as in Proposition 6.0.1
and thanks to the Hölder inequality, there exists C = C(δ) = λ(2δ − 1) such that: Vδ ≤ CMδ + λ.
E(s) is thus positive.

Let us check that M̂
(k)
δ (s) := M

(k)
δ (s∧ Tk) +E(s∧ Tk) is indeed solution to equation (7.15). Let

s ≤ Tk and compute:

E(s) = eCs × (e−CsE(s)) = (m−Mδ(x)) +

∫ s

0

eCr
×e−Cr(CMδ(r) + λ− Vδ(r))dr

+

∫ s

0

CeCr × (e−CrE(r))dr

= (m−Mδ(x)) +

∫ s

0

[C(E(r) +Mδ(r)) + λ− Vδ(r)]dr

= M̂
(k)
δ (0)−Mδ(0)−

∫ s

0

Vδ(r)dr +

∫ s

0

[CM̂
(k)
δ (r) + λ]dr,

from which it is clear that M̂
(k)
δ (s) is indeed solution.

Recalling that E is positive, we immediately deduce that M̂
(k)
δ (s) > Mδ(s) for any s ≤ Tk. Since

Mδ is non-negative by definition, it is also the case for M̂
(k)
δ . Because of (7.15), with the fact that

M̂
(k)
δ stays fixed after Tk, this proves that M̂

(k)
δ is a positive sub-martingale and that for any s ≤ t:

Ex[M̂
(k)
δ (s)] ≤ (m+ λt) + C

∫ s

0

Ex[M̂
(k)
δ (r)]dr.

Recall that both Mδ(s) and E(s), are upper-bounded for any s ≤ t ∧ Tk, by a uniform constant

depending on t and k. This implies a similar upper-bound on Ex[M̂
(k)
δ (r)], that guaranties that we

are in conditions to apply Gromwall’s Lemma, see for instance Proposition 6.59 in [21]. From this
we deduce:

Ex[M̂
(k)
δ (t)] ≤ (m+ λt) eCt.

This concludes the proof of Lemma 7.4.7 with CM := (1 + λt) eCt (recalling m ≥ 1).

Step 2: By exploiting Doob’s inequality on M̂
(k)
δ , we obtain:

Px( sup
s≤t∧Tk

Mδ(s) > m′) ≤ Px(sup
s≤t

M̂
(k)
δ (s) > m′)

≤
Ex[M̂

(k)
δ (t)]

m′ ≤
CM m

m′ .

We know let Tk → ∞ and conclude the proof of Proposition 7.4.4 by showing that:

Px(τ
δ
m′ ≤ t) ≤

CM m

m′ .

�

7.4.4 Proof of Proposition 7.4.5

Under P(k,d), we exploit the Itô formula and distinguish the part involving the Brownian Motions.

M
[F ]
3 is solution of:

dM
[F ]
3 (t) := V

[F ]
3 (t)dt+ dM

[F ]
3 (t), (7.16)
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where V
[F ]
3 is a bounded variation process defined as:

V
[F ]
3 := λ

Xk−1

X(k)
(k3 −M

[F ]
3 (t)) + λ

∑

ℓ≥k

(ℓ+ 1)3X
[F ]
ℓ − λM

[F ]
3 . (7.17)

Note that whatever the values of
Xk−1

X(k)
, with the rough estimate (ℓ+ 1)3 ≤ 8ℓ3 for ℓ ≥ 1, we always

have V
[F ]
3 ≤ 7λM

[F ]
3 . On the other hand, M

[F ]
3 is defined as:

M
[F ]
3 :=

∑

i≥k

i3



√

X
[F ]
i (t)

X(k)(t)
dW

[F ],i
t −

X
[F ]
i (t)√
X(k)(t)

dW
[F ]
t


 . (7.18)

Relying on the same calculations as for M3, M
[F ]
3 is a continuous local martingale starting from 0

for the filtration F
(k)
t whose quadratic variation is

〈M
[F ]
3 〉t =

∫ t

0

M
[F ]
6 (s)− (M

[F ]
3 (s))2

X(k)(s)
ds.

The rest of the proof of Proposition 7.4.5 can be easily adapted from the one of Proposition 7.4.4
(with C = exp[7λtH ] ∨ 1). �

Now that we have all the tools we need for the first transform, we can turn in the next subsection
to the second one.

7.5 Splitting of the solution

For any d ∈ N ∪ {∞} and k ∈ [[1, d]], consider the solution to: ∀ i ≤ d,

dX
[G]
i (t) = α(M

(k)
1 (t)− i ∧ k)X

[G]
i (t) dt+ λ(X

[G]
i−1(t)− 1{i6=d}X

[G]
i (t)) dt

+

√
X

[G]
i (t) dW

[G],i
t −X

[G]
i (t) dWt, (S[G])

where X
[G]
i (0) := xi 1{i≤k−1} ; X[R](t) := 1−

d∑

i=0

X
[G]
i (t) ;

Wt :=
∑

i

∫ t

0

√
X

[G]
i (s)dW [G],i

s +

∫ t

0

√
X[R](s)dW

[R]
s ,

M
(k)
1 (t) :=

∑
i≤d(i ∧ k)X

[G]
i (t) + k X[R](t).

Here, the (W [G],i, i ≥ 0 ;W [R]) defines a mutually independent family of standard BrownianMotions.
[G] stands for ”Generative” while [R] stands for ”Rest”, with the idea that the [R] component shall

quickly get extinct. Notably, 0 is an absorbing state for X[R], whose absorption time is denoted τ
[R]
∂ .

The following solutions are well-defined in the time interval [0, τ
[R]
∂ ).

∀ i ≤ d, dX
[R]
i (t) = λ (X

[R]
i−1(t)− 1{i6=d} X

[R]
i (t)) dt+

√
X

[R]
i (t)

X[R](t)
dW

[R],i
t −

X
[R]
i (t)√
X[R](t)

dW
[R]
t

where W
[R]
t :=

∑

i≥0

∫ t

0

√
X

[R]
i (s)dW [R],i

s , X
[R]
i (0) =

xi 1{i≥k}∑
j≥k xj

. (S[R])
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Again, the (W [R],i) define a mutually independent family of Brownian Motions, also mutually inde-
pendent from the family (W [G],i) (and not from W [R] of course). Let F [G] be the filtration generated
by the family (W [G],i, i ≥ 0 ; W [R]).

Looking at the equations for X [G], we see that it describes an autonomous system. We thus
deduce the following fact.

Fact 7.5.1. Considering two initial conditions x and x′ such that ∀ i ≤ k − 1, xi = x′
i, X

[G] under
Px has the same law as X̄ [G] under Px′ .

Our model is implicitly exploiting the following lemma:

Lemma 7.5.2. For any t,
∑

j X
[R]
j (t) = 1. W [R] as defined in S[R] is a Brownian Motion, by con-

struction independent from the family (W [G],i). We are thus allowed to choose this same Brownian
Motion in the coupling between the dynamics of X [R] and X [G].

Lemma 7.5.3. X[R] is solution to:

dX[R](t) = α (M
(k)
1 (t)− k)X[R](t) dt+

√
X[R](t) (1−X[R](t)) dŴ

[R]
t ,

for a certain Brownian Motion Ŵ [R]. Looking more precisely at the interactions with X [G], it is
actually solution to:

dX[R](t) = α (M
(k)
1 (t)− k)X[R](t) dt+

√
X[R](t) dW

[R]
t −X[R](t) dWt. (7.19)

We see in the next lemma how these solutions are related to our initial problem.

Lemma 7.5.4. The (X
[G]
i +X[R] ×X

[R]
i )i≤d defines a solution to (7.4):(S(k,d)).

Moreover, an analogue of Proposition 7.4.4 can also be obtained in this setting. Let:

M
[R]
3 (t) :=

∑
{i≥k} i

3 X
[R]
i (t), (7.20)

τ [R],3
m := inf{s ≥ 0 ; M

[R]
3 (s) ≥ m}, m > 0. (7.21)

Lemma 7.5.5. For any t > 0, there exists C ≥ 1 such that for any m,m′, d ∈ N∪{∞} and x ∈ Xd

such that x(k) > 0 and M
[F ]
3 (x) ≤ m,

P(k,d)
x

(
τ
[R],3
m′ ≤ t

∣∣F [G]
)
≤

Cm

m′ .

The proof of this lemma relies on the same ingredient as the ones of Propositions 7.4.4 and 7.4.5.

The main difference is that the sequence (T
[R]
k ), i.e. the analogue to the sequence (Tk) of Lemma

7.4.7, now satisfies limk→∞ T
[R]
k ≥ τ

[R]
∂ := inf{t ≥ 0 ; X[R](t) = 0}. The reader will be spared

further details. Next we prove Lemmas 7.5.2 to 7.5.4.

Remark 7.5.6. • To define (X
[R]
i )i≥0, one can extend the well-defined solutions on [0, τ

[R]
n ] where

τ
[R]
n := inf{t ≥ 0 ; X[R](t) ≤ 2−n}.

• By construction, X
[R]
i (t) = 0 for any t < τ

[R]
∂ and i ≤ k − 1.

• X [R] gathers all the information related to dependence in the initially large components. It is
doomed to disappear quickly when k is large, because it concerns only a very small fraction of the

population, and the source term has been driven towards X
[G]
k . Note that M

(k)
1 (t) ≤ k so that even

the drift term will not help.
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7.5.1 Proof of Lemma 7.5.2:

The independence is clear and to prove that W [R] is actually a Brownian Motion, we simply have

to check that for any t ∈ [0, τ
[R]
∂ ),

∑
j X

[R]
j (t) = 1. Let Yt := 1 −

∑
j X

[R]
j (t). By definition Y0 = 0.

This process satisfies on the other hand:

dYt = −
∑

{j≤d} dX
[R]
j (t) =−

1−
∑

{j≤d} X
[R]
j (t)

√
X[R](t)

· (
∑

{j≤d}

√
X

[R]
j (t)dW

[R],j
t ).

= −
Yt√

X[R](t) · (1 − Yt)
dW̃

[R]
t ,

where W̃
[R]
t :=

∑
{i≤d}

∫ t

0

√

X
[R]
i (s)√
Yt

dW
[R],i
s is a Brownian Motion. Classical methods as the ones

exploited in [21] for comparison principles makes it possible to prove for any m ≥ 1 that Yt = 0 for

any t ≤ inf{s ≥ 0 ; X[R](s) ≤ 1/m}. This thus holds true for any t < τ
[R]
∂ . �

7.5.2 Proof of Lemma 7.5.3

We deduce equation 7.19 from (S[G]) since
∑

i≤d(xi−1 − 1{i6=d}xi(t)) = 0 for any x ∈ Xd and:

∑

i

[M
(k)
1 (t)− (i ∧ k)]X

[G]
i (t) = M

(k)
1 (t) [1 −X[R](t)]−

∑

i

(i ∧ k)X
[G]
i (t)

= kX[R](t)−M
(k)
1 (t)X[R](t)

From this, we deduce:

dX[R](t) = α(M
(k)
1 (t)− k)X[R](t) +

√
X[R](t) (1 −X[R](t))dŴ

[R]
t ,

where dŴ
[R]
t := 1{t<τ∂}



√
1−X[R](t) dW

[R]
t −

√
X[R](t)

∑

i≤d

√
X

[G]
i (t)

1−X[R](t)
dW

[G],i
t




+ 1{t≥τ∂} dW
(e)
t ,

is indeed a Brownian Motion for W (e) a Brownian Motion, noting that 1−X[R] ≥ X
[G]
0 > 0 as soon

as t < τ∂ := inf{t ≥ 0 ; X
[G]
0 (t) = 0}. �

7.5.3 Proof of Lemma 7.5.4

For i ≤ d, denote X̃i := X
[G]
i +X[R] ×X

[R]
i . We deduce the system of equations it satisfies from the

Itô formula. Note that the martingale parts of X[R] and X [R] have a zero covariation. The bounded

variation term in the equation of X̃i is thus:

α(M
(k)
1 (t)− i ∧ k)X

[G]
i (t) + λ (X

[G]
i−1(t)− 1{i6=d} X

[G]
i (t))

+ α (M
(k)
1 (t)− k)X[R](t)X

[R]
i +X[R](t)λ (X

[R]
i−1(t)− 1{i6=d} X

[R]
i (t))

= α(M
(k)
1 (t)− i ∧ k) X̃i(t) + +λ (X̃i−1(t)− 1{i6=d} X̃i(t)).
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For the martingale part, we find:

dMi(t) :=

√
X

[G]
i (t) dW

[G],i
t −X

[G]
i (t) dWt

+
√
X[R](t)

[√
X

[R]
i (t) dW

[R],i
t −X

[R]
i (t) dW

[R]
t

]
+X

[R]
i (t)

[√
X[R](t) dW

[R]
t −X[R](t) dWt

]

=

√
X

[G]
i (t) dW

[G],i
t +

√
X[R](t)X

[R]
i (t) dW

[R],i
t − (X

[G]
i (t) +X[R](t)X

[R]
i (t)) dWt

Here, we thus define the family W̃i by

Wt :=
∑

i

∫ t

0

√
X

[G]
i (s)dW [G],i

s +

∫ t

0

√
X [R](s)dW [R]

s

Then, (Xi) indeed defines solutions to (7.4):(S(k,d)) since for any i ≤ d and decomposition
y = yr + yn, we have: xr

i−1 − 1{i6=d}x
r
i (t) + xn

i−1 − 1{i6=d}x
n
i (t) = xi−1 − 1{i6=d}xi(t). In particular,

we have a.s.
∑

j X
[G]
j +X

[R]
j = 1. �

With the tools for the two transforms given in the last two subsections, we are now in position
to prove Theorem 7.2 and Theorem 7.3 in the next two subsections.

7.6 Proof of Theorem 7.2

We recall the definition of Dℓ:

Dℓ := {x ∈ Xd ; M3(x) ≤ ℓ , x0 ∈ ( (3ℓ)−1, 1− (3ℓ)−1 )}

The mixing will be achieved in two steps, with each step being completed after a time-interval of
length tM . tM is arbitrarily taken as tM = 1. We will exploit upper-bounds of the third moments
given in Propositions 7.5.5 and 7.4.5 for the specific case where k = 1. In this proof, considering
second moments instead of third ones would have been sufficient. Yet, estimates of the third moment
shall be required for Theorem 7.3 and we wish to emphasize the similarity between these proofs.

The proof of Theorem 7.2 is concluded by exploiting the two following lemmas, that we shall prove

as first steps. For certain m > ℓ and y < 1/(2ℓ) to be fixed later, and noting M
[F ]
3 = M3/(1−X0),

let:

τ [F ],3
m := inf{t ≥ 0 ; M3(t) ≥ m (1−X0(t))} , T 0

y := inf{t ≥ 0 ; X0(t) /∈ (y, 1− y)} < τ∂ .

Lemma 7.6.1. For any ℓ ≥ 1 and tM > 0, there exists m > ℓ such that for any y ∈ (0, 1/2 ℓ) there
exists c > 0 such that for any x ∈ Dℓ:

P(d)
x (X0(tM ) ∈ dx0 ; tM < τ [F ],3

m ∧ T 0
y ) ≥ c1{x0∈(2 y,1−2 y)} dx0.

For the following lemma, we base ourselves on the splitting presented in subsection 7.5 with
k = 1. With these definitions of X [G] and X [R], we also denote:

τ
[R]
∂ := inf{t ≥ 0 ; X[R](t) = 0}

τ [G],3
mG

:= inf{t ≥ 0 ; M
[G]
3 (t) ≥ mG} , τ [R],3

mR
:= inf{t ≥ 0 ; M

[R]
3 (t) ≥ mR},

where M
[G]
3 :=

∑
i≥0 i

3X
[G]
i , M

[R]
3 :=

∑
i≥0 i

3 X
[R]
i .

Moreover, recalling that F [G] is the filtration generated by the family (W [G],i, i ≥ 0 ; W [R]), the

event {τ
[R]
∂ ≤ tM < τ

[G],3
mG ∧ τ0} is F [G]-measurable.

38



Lemma 7.6.2. For any tM > 0,there exists mG, c > 0, y ∈ (0, 1/10), y′ ∈ (0, y), such that for any
x ∈ Xd such that x0 ∈ (1 − 3 y, 1− 2 y), with τ0 := inf{t ≥ 0 ; X0(t) /∈ (1/10, 1− y′)}:

P(1,d)
x (τ

[R]
∂ ≤ tM < τ [G],3

mG
∧ τ0) ≥ c.

Thanks to these two Lemmas and Lemma 7.5.5, we shall be able to prove Theorem 7.2 with the
following definition of ζ. In this formula, the values of y and mG are deduced thanks to Lemma
7.6.2 with the (arbitrary) choice tM := 1.

ζ(dx) := 1
y

∫ 1−2y

1−3 y

dx0 P
(1,d)
x̄0

(X(tM ) ∈ dx
∣∣ τ [R]

∂ ≤ tM < τ [G],3
mG

∧ τ0), (7.22)

where x̄0 := x0δ0 + (1− x0) δ1.

Remark 7.6.3. • As claimed in Subsection 7.2 while exploiting Lemma 7.1.2, the constraint tM < τ0
indeed ensures that X0 ≥ 1/10, ζ-a.s. The constant 1/10 is arbitrary chosen for convenience.

• For simplicity, we shall apply the cutting and the splitting for k = 1. The proof of Theorem 7.3
will exploit a generalization of this result for k large, with the first step ensuring a lower-bounded
density of (Xi(tM ) ; i ≤ k − 1) on any Yk(y), where Yk(y) is defined for y ∈ (0, 1/k) by:

Yk(y) := {x ∈ Xd ; (
∧

i≤k−1 xi) ∧ (1−
∑

i≤k−1 xi) > y}.

7.6.1 Step 1: proof of Lemma 7.6.1.

Under P(1,d), X0 is solution to the following autonomous equation:

dX0(t) := αX0(t) (1−X0(t)) dt − λX0(t) dt+
√
X0(t) (1 −X0(t)) dŴ

0
t .

This property can be deduced as in Lemma 7.5.3, by identifying Ŵ 0 as a Brownian Motion that
satisfies for any t < τ∂ :

√
X0(t) (1 −X0(t)) dŴ

0
t =

√
X0(t) dW

0
t −X0(t) dWt.

It is then classical for such an elliptic diffusion that X0(tM ) has a lower-bounded density on (2 y, 1−
2 y) on the event {tM < T 0

y }, uniformly over any initial condition such that x0 ∈ (1/ℓ, 1− 1/ℓ).
We apply Lemma 7.5.5 with splitting generated for k = 1. Thus, we can choose a certain m > 0

such that for any x ∈ Dℓ:

P(1,d)
x (tM < τ [R],3

m

∣∣F [G]) ≥ 1/2. (7.23)

Note that Ŵ 0 is clearly F [G]-measurable

On the event {tM < τ
[R],3
m ∧ T 0

y }, one has for any s < tM :

sup{X(1)(s) ; M1(s) ; R
(1)
1 (s) ; R

(1)
2 (s)} ≤ M3(s) ≤ m.

Applying Lemma 7.4.6, we thus deduce that there exists C > 0 only depending on m and tM such
that:

P(d)
x (X0(tM ) ∈ dx0 ; tM < τ [R],3

m ∧ T 0
y ) ≥ C P(1,d)

x (X0(tM ) ∈ dx0 ; tM < τ [R],3
m ∧ T 0

y ).

Because of (7.23), this concludes the proof of Lemma 7.6.1. �

39



7.6.2 Step 2: proof of Lemma 7.6.2.

Thanks to the Harnack inequalities, recalling that the equation for X0 = X
[G]
0 is autonomous, we

can choose a certain c0 > 0 such that for any x ∈ X satisfying x0 ∈ [1/2, 1]:

P(1,d)
x (tM < τ1/10) ≥ c0, where τ1/10 := inf{t ≥ 0 ; X0(t) ≤ 1/10}. (7.24)

Likewise, X(1) being governed by an autonomous equation, we can choose a certain y sufficiently
small such that for any x ∈ X satisfying x0 ∈ [1− 2 y, 1− y] (i.e. X(1)(0) ∈ [y, 2 y]):

P(1,d)
x (tM < τ

[R]
∂ ) ≤ c0/4. (7.25)

Since the border 1 is an entrance boundary for X0, cf e.g. Subsection 3.3.3 in [12], there exists
y′ ∈ (0, y) (again independent of d because X0 is autonomous under P(1,d)), such that for any x ∈ X
satisfying x0 ∈ [1/2, 1− y]:

P(1,d)
x (tM < τ0) ≥ 3c0/4. (7.26)

By Proposition 7.4.4, there exists mG sufficiently large such that for any x ∈ X :

P(1,d)
x (τ [G],3

mG
≤ tM ) = P

(1,d)
x̄0

(τ [G],3
mG

≤ tM ) ≤ c0/4, (7.27)

where we exploited that M3(x̄0) ≤ 1 because x̄0 has support on {0, 1}.
Combining the inequalities (7.26), (7.25), (7.27), we obtain the following inequality:

P(1,d)
x (τ

[R]
∂ ≤ tM < τ [G],3

mG
∧ τ0) ≥ c0/2.

This concludes the proof of Lemma 7.6.2. �

7.6.3 Step 3: conclusion of the proof of Theorem 7.2.

We first define mG, cG > 0, y ∈ (0, 1/10), y′ ∈ (0, y) thanks to Lemma 7.6.2 such that for any x ∈ Xd

such that x0 ∈ (1 − 3 y, 1− 2 y):

P(1,d)
x (τ

[R]
∂ ≤ tM < τ [G],3

mG
∧ τ0) ≥ cG. (7.28)

Given ℓ ≥ 1, we then define mF , cℓ > 0 such that for any x ∈ Dℓ:

P(d)
x (X0(tM ) ∈ dx0 ; tM < τ [F ],3

mF
∧ T 0

y ) ≥ cℓ 1{x0∈(1−3 y,1−2 y)} dx0. (7.29)

We define also mR > 0 thanks to Lemma 7.5.5, so that:

P(1,d)
x (tM < τ [R],3

mR

∣∣F [G]) ≥ 1/2, (7.30)

provided x satisfies M
[R]
3 (0) ≤ 2mF (so in particular when x0 ≥ 1/2 and M3(x) ≤ mF ).

By choosing L sufficiently large, we ensure L ≥ mF ∨ (mG +mR) ∨ (1/y′). Recalling that TDL

denotes the exit time out ofDL, and thatM3 ≤ M
[F ]
3 (here k = 1), it proves that {tM < τ

[F ],3
mF ∧T 0

y } ⊂

{tM < TDL
}. Likewise, since M3 ≤ M

[G]
3 +M

[R]
3 , {tM < τ

[G],3
mG ∧ τ

[R],3
mR ∧ τ0} ⊂ {tM < TDL

}.
By the Markov property:

P(d)
x (X(2 tM ) ∈ dx′ ; 2 tM < TDL

) ≥

∫

X (d)

νx(dz)P
(d)
z (X(tM ) ∈ dx′ ; tM < TDL

),

where νx(dz) := P(d)
x (X(tM ) ∈ dz ; tM < τ [F ],3

mF
∧ T 0

y ).
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The previous r.h.s. is itself lower-bounded by
∫

X (d)

νx(dz)1{z0∈(1−3y,1−2y)}P
(d)
z (X(tM ) ∈ dx′ ; τ

[R]
∂ ≤ tM < τ [G],3

mG
∧ τ0 ∧ τ [R],3

mR
).

Note that on the event {τ
[R]
∂ ≤ tM}, we know thanks to Proposition 7.4.3 that X(tM ) =

X [G](tM ). Both X [G](tM ) and {τ
[R]
∂ ≤ tM} are F [G]-measurable. Moreover, on the event {tM <

τ
[G],3
mG ∧ τ0 ∧ τ

[R],3
mR }:

sup
s≤tM

M3(s) ≤ sup
s≤tM

M
[G]
3 (s) + sup

s≤tM∧τ
[R]
∂

M
[R]
3 (s) ≤ mG +mR.

Using Lemma 7.4.6 with a uniform upper-bound on the exponential martingale (with k = 1) on the

event {τ
[R]
∂ ≤ tM < τ

[G],3
mG ∧ τ0 ∧ τ

[R],3
mR }, we deduce that there exists cE > 0 such that:

P(d)
x (X(2 tM ) ∈ dx′ ; 2 tM < TDL

)

≥ cE

∫

X (d)

νx(dz)1{z0∈(1−3y,1−2y)}E
(1,d)
z

[
P(1,d)
z (tM < τ [R],3

mR

∣∣F [G]) ; X [G](tM ) ∈ dx′,

τ
[R]
∂ ≤ tM < τ [G],3

mG
∧ τ0

]

≥ (cE/2)

∫

X (d)

νx(dz)1{z0∈(1−3y,1−2y)}E
(1,d)
z̄0

[
X [G](tM ) ∈ dx′ , τ [R]

∂ ≤ tM < τ [G],3
mG

∧ τ0
]

where we exploited that both X [G] and the event {τ
[R]
∂ ≤ tM < τ

[G],3
mG ∧ τ0} are F [G]-measurable,

that they depend on z only through z0, and (7.30). We thus have the same laws for initial condition
z and z̄0. Thanks to (7.28) and (7.29), this concludes the proof of Theorem 7.2.

�

7.7 Proof of Theorem 7.3

7.7.1 Choice of the parameters

We give ourselves ρ,m0
3, η

0, y0 > 0 and fix arbitrarily t⊻ = 1.
In the first time-interval of length tH ≤ t⊻ to be fixed below, we couple the first k coordinates

between two processes with different initial conditions. Then, we aggregate the last coordinates in
X[R] and impose that X[R] get extinct in the next time-interval of length t⊻ while X [N ] evolves
independently.

In view of Lemma 7.5.3, we wish to control extinction of an upper-bound of X[R] of the form:

for t ≥ t⊻, dZt :=
√
Zt (1− Zt) dWt , Zt⊻ = z, (7.31)

where W is a Brownian Motion. Namely, for any ǫ > 0, we choose z in such a way that:

Pz(t⊻/2 < τZ∂ ) ≤ ǫ, where τZ∂ := inf{t ≥ 0 ; Zt = 0}. (7.32)

Now, with the constants CG, CM appearing in Proposition 7.4.1 for δ = 3 and t = t⊻, we choose
η such that:

η < (z/CM ) ∧ (ǫ/(CG)
2) ∧ η0. (7.33)

Given some ρ > 0, we can choose thanks to Theorem 7.1 certain m3 ≥ m0
3 and y < y0 such that:

∀x ∈ Xd, Ex (exp[ρ (τ∂ ∧ τE)]) ≤ 2, (7.34)

where we recall:

E := {x ∈ Xd ; M3(x) ≤ m3 , ∀ j ≤ ⌊m3/η⌋+ 1, xj ≥ y}. (7.35)
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Remark 7.7.1. The set E0 defined through m0
3, η

0, y0 is included in this set E (depending on ǫ).
Proving the inequalities for any x, xζ ∈ E clearly implies them for any x, xζ ∈ E0, as required.

Exploiting Proposition 7.4.1 with m′ = CMm3, we deduce that for any x ∈ E:

Px(τ
3
m′ ≤ t⊻) ≤

CGm3

k
≤ ǫ. (7.36)

Recalling that k := ⌊m3/η⌋ + 1 and η ≤ z/CM , we deduce that on the event {t⊻ < τ3m′}, for any
tH < t⊻:

X(k)(tH) ≤
CM ×m3

k3
≤ z. (7.37)

This provides the initialisation of X[R], that we couple to the original process from time tH onward
thanks to the Markov property. Notably, X[R] is upper-bounded by Z (see definition (7.31)).

Note that for any x ∈ E, recalling (7.5):

πk(x) ∈ Y(y) where Y(y) := {x ∈ Xk ; (
∧

i[[0,k]]

xi) > y}.

on which the diffusion term for (S(k)), i.e. (1.1):(S(d)) with d replaced by k, is uniformly elliptic.
In practice, we need a bit more space for the Harnack inequality to hold, so that we consider the
exit time:

TH := inf{t ≥ 0 ; πk(X(t)) /∈ Y(y/2)} < τ∂ . (7.38)

The probability of such an escape is required to be very small, uniformly in x ∈ E, according to the
following lemma.

Lemma 7.7.2. With the above definitions, and P(k) the law of the system given by (S(k)):

sup
x∈E

P
(k)
πk(x)

(TH ≤ tH) → 0 as tH → 0.

Since the system (S(k)) is uniformly elliptic on Y(y/3), and recalling Proposition 7.4.3, Lemma
7.7.2 is easily deduced from classical results as for instance Proposition V.2.3 in [4].

Thanks to Proposition 7.4.3, we can thus choose tH ≤ t⊻/2 sufficiently small such that:

sup
x∈E

P(k,d)
x (TH ≤ tH) ≤ ǫ. (7.39)

7.7.2 Definition of UA with a control of exceptional events

In this context, with the splitting starting at time tH , τ
[R]
∂ := inf{t ≥ tH ; X[R](t) = 0}.

In view of Theorem 7.3, we define UA := t⊻ on the event {tH < TH}∩{t⊻ < τm
′

3 ∧τ∂}∩{τ
[R]
∂ ≤ t⊻},

and otherwise UA := ∞.
Exploiting Proposition 7.4.1 and recalling the definition of E, m′ and tH , we deduce:

Px(UA = ∞, t⊻ < τ∂) ≤ 2P(k,d)
x (tH ≤ TH) + 2P(k,d)

x (t⊻ < τ
[R]
∂ ) + P(d)

x

(
τm

′

3 ≤ t⊻

)
≤ 5 ǫ.

For Theorem 7.3, it means that the threshold is obtained with ǫ′ such that ǫ = ǫ′ × exp[−ρ t⊻]/5.
Since ǫ is freely chosen, so is ǫ′.

It is technical but elementary that this definition of UA gives rise to a stopping time U∞
A extending

it in the sense described in Theorem 7.3. Rigorously, in the notations of this Subsection 7.7, note
that E0, see (7.35), takes the place of the set E in Theorem 7.3, which makes little difference in the
proof.
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7.7.3 Comparison of densities

Since the problem is reduced to a finite dimensional one, the Harnack inequality states, as in Sub-
section 5.4, that there exists CH > 0 such that:

inf
x ; πk(x)∈Y(y)

P(k,d)
x (πk(XtH ) ∈ dx′ , tH < TH ∧ τ

(k),3
m′ )

≥ CH sup
x′ ; πk(x′)∈Y(y)

P
(k,d)
x′ (πk(X

′
tH ) ∈ dx′ , tH < τ∂ ∧ τ

(k),3
m′ ), (7.40)

where τ
(k),3
m′ := inf

{
t ≥ 0 ;

∑
{i≥0} (i ∧ k)3Xi(t) ≥ m′

}
.

Let x, xζ ∈ E. Thanks to Proposition 7.4.1:

P(d)
x (XUA

∈ dx′ , UA < ∞) ≤ 2P(k,d)
x (Xt⊻ ∈ dx′ , UA < ∞)

= 2E(k,d)
x [P

(k,d)
XtH

(X [G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂ ∧ τ3m′) ; tH < TH ∧ τ3m′ ]

≤ 2E(k,d)
x [P

(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂ ∧ τ

[G],3
m′ ) ; tH < TH ∧ τ

(k),3
m′ ]

≤ 2CH E(k,d)
xζ

[P
(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂ ∧ τ

[G],3
m′ ) ; tH < TH ∧ τ

(k),3
m′ ],

(7.41)

because of (7.40) and Fact 7.5.1, noting that τ∂ and τ
[R]
∂ are measurable with respect to σ(X [G]).

To go back to P(d), we shall exploit again Proposition 7.4.1. So we need to again ensure upper-
bounds on the third moments for the last components for which we lost the information.

For the time-interval [0, tH ], in order to exploit independence as much as possible, we shall

exploit the representation given in Proposition 7.4.3. Since xζ ∈ E, we have M
[F ]
3 (0) ≤ m3/y. From

Proposition 7.4.5, we thus define mH such that for any xζ ∈ E:

P(k,d)
xζ

(
τ [F ],3
mH

≤ tH
∣∣F (k)

)
≤ 1/2. (7.42)

Note that M
[R]
3 , as in Lemma 7.5.5, is initialized (at time tH in this context) by M

[R]
3 (tH) =

M
[F ]
3 (X [R](tH)) ≤ mH . Depending on the context for the start of the splitting with X [F ], the

definition of τ
[F ],3
mR may be adapted accordingly.

From Lemma 7.5.5, with t = t⊻ − tH , we then define mR such that for any x ∈ Xd such that

M
[R]
3 (x) ≤ mH :

P(k,d)
x

(
τ [R],3
mR

≤ t⊻ − tH
∣∣F [G]

)
≤ 1/2. (7.43)

From these results, we can come back to (7.41) and deduce first from (7.43) that, on the event

{tH < TH ∧ τ
(k),3
m′ }:

P
(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ∧ τ [F ],3

mR
≤ t⊻ − tH < τ∂)

≥ (1/2)×P
(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂)
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Then more generally, since X [G] is independent of what happens to X [F ] in the time-interval [0, tH ] :

E(k,d)
xζ

[P
(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂ ∧ τ

[G],3
m′ ∧ τ [F ],3

mR
)

; tH < TH ∧ τ
(k),3
m′ ∧ τ [F ],3

mH
]

≥ (1/2)E(k,d)
xζ

[P
(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂ ∧ τ

[G],3
m′ )

; tH < TH ∧ τ
(k),3
m′ ∧ τ [F ],3

mH
]

≥ (1/4)E(k,d)
xζ

[P
(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂ ∧ τ

[G],3
m′ ) ; tH < TH ∧ τ

(k),3
m′ ]

(7.44)

The upper-bound is then simplified, with the Markov property and the fact that M3 ≤ M
[G]
3 +M

[R]
3 .

Then, we exploit again Proposition 7.4.1 to state that there exists CG > 0, independent of x, such
that:

E(k,d)
xζ

[P
(k,d)
X(tH)(X

[G](t⊻ − tH) ∈ dx′ ; τ
[R]
∂ ≤ t⊻ − tH < τ∂ ∧ τ

[G],3
m′ ∧ τ [F ],3

mR
)

; tH < TH ∧ τ
(k),3
m′ ∧ τ [F ],3

mH
]

≤ P(k,d)
xζ

(X(t⊻) ∈ dx′ ; t⊻ < τ∂ ∧ τ3m′+mR
)

≤ CG P(d)
xζ

(X(t⊻) ∈ dx′ ; t⊻ < τ∂). (7.45)

Combining (7.41), (7.44) and (7.45) yields that, with C := 8CH CG > 0, for any x, xζ ∈ E:

P(d)
x (XUA

∈ dx′ , UA < ∞) ≤ CG P(d)
xζ

(X(t⊻) ∈ dx′ ; t⊻ < τ∂).

This concludes the proof of Theorem 7.3. �

The proof of Theorem 2.3 is then finally concluded.
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