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Abstract

We consider an individual-based SIR stochastic epidemic model in continuous space. The
evolution of the epidemic involves the rates of infection and cure of individuals. We assume that
individuals move randomly on the two-dimensional torus according to independent Brownian
motions. We define the empirical measures >V, /Y and p*V which describe the evolution
of the position of the susceptible, infected and removed individuals. We prove the convergence
in propbability, as N — oo, of the sequence (>, u!V) towards (u°, u’) solution of a system
of parabolic PDEs. We show that the sequence (UY = /N (5N — 115), VN = /N(u'N — u))
converges in law, as N — oo, towards a Gaussian distribution valued process, solution of a
system of linear PDEs with highly singular Gaussian driving processes. In the case where the
individuals do not move we also define and study the law of large numbers and central limit
theorem of the sequence (p>V, ub'V).

Keywords: Measure-valued process; Stochastic Epidemic model; Law of large numbers; Cen-
tral limit theorem.

1 Introduction

Recent studies on homogeneous stochastic models of epidemics of Anderson and Britton [4],
and Britton and Pardoux [8] show that deterministic models of epidemics are the law of large
numbers limits (as the size of the population tends to co) of stochastic models, while the central
limit theorem and moderate and large deviations (see [8] and [21]) give tools to accurately
describe the gap between stochastic and deterministic models. However, the homogeneity
hypothesis made in these models is not realistic since it means that when an infected individual
infects a susceptible individual, this latter is uniformly chosen in the population, while in
real life an infected individual infects a susceptible person who is geographically close to him.
Hence the interest of modelling epidemics for a population distributed in a continuous space
with or without displacement of the population. The case without displacement is important
for populations of plants. The corresponding deterministic models are beginning to be well
studied in the literature, see for example [3].

In this paper we study the law of large numbers and the central limit theorem of two
stochastic SIR epidemic models for a population distributed on the two dimentional torus. The
only difference between the two models is that in the first one the population is moving and
in the second it does not move. More precisely we consider a population of size N distributed
on the torus (T? = R?/Z?) such that at any time each individual is either susceptible(S),
infectious(I) or recovered(R). Let S(t), I(t) and R(t) denote the number of individuals in the
different states at time t.
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During the epidemic an individual # moves on the torus according to the processes

{X} = II(X}), t > 0}, where IT is the canonical projection from R? to T?, X} = X* + /2vB;,
with {X? 1 <4 < N} an independent and identically distributed family of random variables,
globally independent of {B?,1 < i < N}, which in turn is a family of independent standard
Brownian motions on the torus (v is a positive constant in the first model and is zero in the
second). We assume at time t=0 (for v > 0), that the population consists of two classes S(0)
and I(0) described as follows.

Let A be an arbitrary Borel subset of T2 and 0 < p < 1, each individual i is placed in T2
independently of the others at the position X*. If X* € A€ then the individual i is susceptible
and if X € A, the individual 7 is infected with probability p and susceptible with probability

1 — p. This situation is modelled by empirical measures
N

e = 5 ST A)(1 - )+ Lie(X9) o
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N
N 1 i
=N ; La(X")&0x

N
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N S,.N I,N
= g’ == Oxi
Ho Mo T+ My N¢§:1 X,

where {&;,1 < i < N} is a mutually independent family of Ber(p) random variables, globally
independent of {X* /1 <7< N}.
Let K be a function defined by
K:T*xT? =Ry
(z,y) = k(dp(2,y))

where k : R, — R, is a non-increasing function which is non zero only in a neighbourhood of
zero in such a way that by considering for any =,y € T2, dy2(z,y) = 1nf Allz—y—all}, one has

Vo € T?, y € support{ K (x,.)} iff dy2 (2, ) = ||z — y]|. (1.1)

Let E! be the state of the individual i at time t, E{ € {S,I, R} and 3 a positive constant. In
the homogeneous model [8], the rate of infectious contacts can be thought of as a product of a
rate ¢ at which each infectious individual has contacts with others, and the probability p’ that
such a contact results in an infection given that the other person is susceptible, which happens
with the probability S;/N, where N is the total population size, because all the individuals
have the same probability to be in contact with an infectious. However, in our case the rate
Pj; at which an infectious j has a contact with a susceptible ¢ depends upon the distance that
separates them, so P;; is proportional to K (X, X7), thus
K(X]

« 7= i

e An infectious individual j has an infectious contact with susceptible individuals at the
Sty KX iy

YLy K(XEX))
Hence infectious individuals have infectious contacts with susceptible individuals at the rate

N Zz | K (XX Ei=

B2 SN K(X] ;]) - {Bl=1}"

rate (8

The epidemic evolves according to the following rules:
K(X},X]) v
i=1 YN K(xt,x7) {B{=I}
e FEach infected individual cures at rate o independently of the others, of the number of
infected and of the respective positions of the individuals.

e A susceptible ¢ becomes infected at time t at the rate S1pi_g P

The evolution of the numbers of susceptible, infected and removed individuals is described by
the following equations.
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SN K (X X)L
S(t) = S(0) — Pings /Z . {f S}l{EH}dT
_] 1 Zl 1 (X7l’7X7“)

E 1K XZ Xj)l{Eizs} /t -
I1(t) =1(0)+ P, / = A2 ) odr | — P | o 1,5 dr
() ( ) f( Z Zl } (X,{,Xﬂ) {El=I} 0 ; {El=I}

j= 1

R(t) = R(0) + P, (a /0 Z; 1 {Egj}dr>

where Py, ; and P, are two independent standard Poisson processes.

We now define the renormalized point processes, V¢ > 0,

1 N
=N Z; LiEi=5)0x;
1 N
N
S YRRLN
1 N
LS ety
i=1
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We first study the law of large numbers and the central limit theorem of the sequence
(™, pb™ 1Y) y>1, then we study the law of large numbers and the central limit theorem of
the sequences (u™)ns1 and (%N, u")y>1 when 7 is a positive constant, and finally when ~

1S zero.

The paper is organized as follows. In section 2 we recall some results that will be useful in
the sequel. In sections 3 and 4 we study the law of large numbers and the central limit theorem
of the sequence (,LLOS’N, ,ué’N, i )n>1. In section 5, for v > 0, we first establish the evolution
equations of the measure-valued process p>" and pu/*V then we show that p converges in
probability as N — oo towards the processes {p;,t > 0} where for each t > 0, y; is the law
X! and finally we prove that {(u>, ™), t > 0} converges in probability as N — co towards
(5, ) solution of a system of parabolic PDEs. In section 6 we study the convergence of the
sequences ZV = V' N(u™ — p) and (UN = VN (p®N — 1), VN = VN(u"N — 1)), Finally in
section 7 we assume that the individuals do not move (v = 0) then we study the law of large
numbers and the central limit theorem of the sequence {(y;"", ul™), N > 1,¢ > 0}.

Notation:

— Mp(T?) denotes the space of finite measures on T2
— C(T?) denotes the space of continuous functions on T2.
~Vp € Mp(T?) and ¢ € C(T?), we denote the integral [, o(z)u(dz) by (i, ¢).

— We define the Fortet distance on Mp(T?) by Vu, v € Mp(T?)
dp(p,v) = sup | (u, f) =W f)],

fec()
I loo<t, )£l <1

where [| f [[.= iil;(l f(@) = f(y) 1)/ dv(z,y).

This distance induces the topology of weak convergence, in other words the sequence of
measures (i, converges weakly towards p if and only if lim dg(p,, p) =0
n—o0

— In the following, the letter C' will denote a (constant) positive real number which can
change from line to line.
— We equip Mp(T?) with the topology of weak convergence.
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2 Preliminaries

Definition 2.1. Sobolev spaces (see [1])

1) Let m € N, p € Ry the Sobolev space W™P(T?) is defined by:
WmP(T?) = {p € LP(T?) : D" € LP(T?),Vn = (n1,1m2) € N? such that |n|=mn + 12 < m}
where D"y is the weak derivative of the function ¢ with respect to the multi-indez 7).

2) Let s =n+ o withn € N and o €0, 1], the Sobolev space W*P(T?) is defined as follows

We(T2) = {p € WP(T2)) Y [ra, go 2EEDReEUE 1007 < o0},
nl=n

(dy2 (z,27)) %
\
Notice that for p=2 and s € Ry, W**(T?) is denoted H*(T?) and is a Hilbert space.

Proposition 2.2. (see [7])
Consider the following sets of functions.

A = {j‘}llhn2 (21, x2) = 2sin(mnizy)cos(mnars), ny > 0,ny >0 even}
sin(mnyxy

) )
) )
) )
Ay = {féhn2 (1, x9) = 2cos(mnyzy)sin(mnyzs)

As = { [ o(z1,22) = V2cos(mnyx
Ag = {fgm2 (1, m) = \/5008(71’712.1’2

Ay = {fﬁhn2 (1, x9) = 2sin(mny 1 ,ny > 0,n9 >0 even}

)
As = {f3 ., (x1,22) = 2cos(mnyay)cos(mnoas), ny > 0,n3 > 0 even}
) ,n1 >0,ny >0 even}

s fry0(T1,02) = V2sin(mnizy),ny > 0 even}

~— ~—

S o (21, T2) = V2sin(mnats), ny > 0 even}.

For any v > 0,
1D){f° =1, (A;, i € {1,2,3,4}), As, Ag} are eigenfunctions of the operator v/\ on T2, with
eigenvalues {Ng =0, —An,n, = —yT2(N3+03), =\, = =703, =\, = —y7°n3} respectively,

they form an orthonormal basis of 1.2(T?).

fr;,l n2 fnl 0
{0 = 14k, = i1 € (L2343 {0 = otigsi € (5.6},

(P65, = (1+f° 222)2 i e {7, 8}}} is an orthonormal basis of HS(FZ).
~y72n,

Proposition 2.3. Parseval identity (see the lemma 6.52 [1])
For any s >0, ¢ € H*(T?), A € H*(T?)

— [(As0)]
”A”H‘S—w#ﬁuf’ lells
JAIG-= (AP 3 (AR X (Apd )P+ 3 1Akl
1€{5,6} 1€{7,8} 1€{1,2,3,4}
n1>0,even ng>0,even n1>0,n9>0,even
= 20 (AP I?
1,M1,M2
=, )2+ 2 (T+amnl) (@ fao)e+ 2 (LHmn3) (@, fo,0,)1
ic{5,6} ie{7,8}
n1>0,even ng>0,even
o (am(nd +03) (@ foyn)Te
i€{1,2,3,4}

n1>0,n9>0,even

= 3 (L7 (nd +n3))* (@ fayna) 220

1,M1,12

where (.,.)r2 denote the scalar product in L*(T?) and (.,.) is the duality product.

Proposition 2.4. Sobolev injection (see [25] page 22)

1) If s > k+1 with k € N then H*(T?) C C*(T?) and Vo € H*(T?), 3 C(s) > 0 such that
[1D7plloe< C(s)ll @l s, VIn|< k.

2) If s>1 then H*(T?) is a Banach algebra, ie 3C > 0; Yu, v € H*(T?), uv € H*(T?) and
[wv| s < Clluf| s [ 0]

Hs Hs.
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Proposition 2.5. Description of the Contraction Semigroup (see [7] and [15]). Let v > 0,
1) The operator y/\ is selfadjoint, unbounded on L*(T?) and it is the infinitesimal generator of
a semigroup Y(t) = e furthemore Vo € L*(T?),
T(t)g@ = Z exp(_AnLth)(SO? fTiLl,ng)LQfél,nQ' (21)
i,n1,n2

2)Vs <0 (resp. s>0) Y(t) and v\ have extension (resp. restriction ) to H*(T?) such that Y (t)
is a contraction semigroup, stronly-continuous, and bounded on H*(T?) with | (t)|zcms(r2) < 1,
where L(H*(T?)) is the space of linear continuous operator on H*(T?).

Lemma 2.6. (see [15]) Vs >0, Vo € H*(T?), resp. Vo € L>°(T?), from (2.1), we have
1T @)@l < ll@llms and [T(#)plloo< [l

Lemma 2.7. (Lemma 2.5 of [9]) A
Suppose that (D, d) is a separable metric space and let (P,), denote a sequence of random
probability measures on (D, D) defined on a probability space (2, A, P). Then

/D f(@)dby(z) / f()dP (),

for any f bounded and Lipschitz if and only if dF(Pn, P) 5o.

Let T" > 0. Let F' be a separable and reflexive Banach space included (with density and
continuous injection) in a Hilbert space H. We identify H with its dual. So F' C H C F’, where
F'is the dual of F'. Let (A(t,.))qejo,rp be a family of linear operators from F' to F”, such that:

(1) 0 — (A(t,u + Ov),w) is continuous from R to R, Yu,v,w € F

(2) 30> 0,[[A(L )l < Ollullp, Yu e F

(3) Foy >0, 00 €R, (A(t,u),u) + oz||u||%> o1||ul|%, Yue F

(4) Yu € F, t — A(t,u) est Lebesgue-mesurable with values in F”,
where (.,.) is a duality product between F’ and F'.

Proposition 2.8. (see Theorem 1.1 page 81 in [20])
Let (2, Fo,P) be a probability space, let (A(t,.))ueorp be a family of operators from F to F'
which satisfy (1), (2), (3) and (4). For u(0) € L*(Q, Fo,P, H), [ = f1 + fo with
— f1 € L*(Q, LY0,T, H)), non-anticipative,
— fo € L*(Qx]0,T|, F), non-anticipative,
and (My)o<t<r a continuous square-integrable martingale with values in H, the equation
du(t) + A(u(t))dt = f(t)dt +dM(t), t € [0,T] with u(0) = wy,
admits a unique solution u € L*(Q2x]0,T[, F) N L*(Q, C([0,T], H)).

3 Law of Large Numbers of Initial Measures

Recall that g™ = £ 370 {1a(X7)(1 = &) + Lac(X)}oxe, py™ = £ S, La(X)&idx and
w = g™ + g™ = %Zi\; dxi where {X*,1 < ¢ < N} is an independent an identically
distributed family of random variables, globally independent of {¢;,1 < i < N}, which in turn
is a mutually independent family of Ber(p).

The following is assumed to be hold throughout this paper.
Assumption (HO): The law v of X! is abosuletly continuous with respect to the Lebesgue

measure and its density ¢ satisfies:
there exists d; > 0, d, > 0 such that §; < g(x) < &, Vo € T2
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Theorem 3.1. The sequence (g™, g™, i) )1 converges a.s towards (uf, pih, o)

in (Mp(T?%))?, where pi5(dz) = {(1 = p)la(x) + Lac(z)}v(dz), po(dz) = pla(z)v(dz) and
o(dz) = v(dzx).

Proof. All we need is to prove that for any ¢, 1, ¢ € C(T?) the sequence
<(M§7N7 90)7 (:u([)’Na w) (MO ) (b)) >1 converges a.s tOW&I‘dS ((:ug7 90)7 (:u67 1/})7 (:u(h (b)) .
Let p,1, ¢ € C(Ty), we have ‘ ‘

(g, ) = N ZZ LA (1 = &) + Lae (X)) p(X7)

(Mo 7 ) - N 22:1 1A<XZ)§17/1< )

(1, 0) = % sy S(X7).
Furthemore, according to the law of large numbers
(15 0) =5 E((Ly(X)(1 = €1) + Lae(X))p(X1)) = / {1 = P)La(@) + Lac(@) bo(w)(da),
'H'Q

(™ ) =5 E(1a (XDt / e

(145 6) =5 E@(X) = | o)
Thus
(500, ™), () 9)) =5 (1= p) [y e(@)(de) + [ o(@)w(de),

p [, 0(@)v(de), [ ¢<x>u<dx>). 0

4 Central Limit Theorem of Initial Measures

We define U = v/N (g™ = p13) , Vi¥ = VN (g™ = pp)) and 2 = VN () — po)-
In this section we study the convergence of the sequence (U, ViV, Z{V) in (H=3(T?))3,
as N — oo, with s>1.

Proposition 4.1. For any s>1, there exists Cy,Cs, C3 > 0 such that
supE(|Z)1I3,-.) < Cr; - supE(IUY[%-.) < Cy and supE(|Vi¥ [3-.) < C.
N>1 N>1 N>1

Proof. We only prove that supE(||V{V[|%_,) < Cs. The other estimates follow by a similar
N>1

argument. Since 14(X;)§;dx, are iid with law yf, from assumption (H0) and Lemma 8.1 in
the Appendix below, we have

E(IVEY 13- = EC >0 (V&Y. s na)?)

1,11,N2

I.N s I s 2
=N > E ((Mo ,pﬁl,ng)—(ﬂo,pﬁl,n2)>

1,m1,n2

S [%[ a(X )Sjpmm(Xj)—(ué,pﬁf,ng)]]

<
Il
—_

X0 (5) = (b )]

N
3
S
3
¥
<
Il

-

La(X5)80%5 nn (X))

A .

@
3
oy
3
™1
<
Il

—_

I
2[-
(]
a
—~ A

IN
=
M=

il
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Let us give now the main result of this section.

Theorem 4.2. For any s>1, the sequence (UY,V{¥, ZNV)ns>1 converges in law in (H*(T?))3
towards (Uy, Vo, Zo) where Y, v, ¢ € H*(T?), ((Uy, ) (Vo, ), (Zo, ¢)) is a Gaussian vector
which satisfies:

(Vo 0) = Wilon/3{(1 - >1A+1AC}] AN /

A

o(@)g()dx — Wi(y/5) / o(@)g(x)da

c

+Wa(lapy/ (p — p?) (4.1)
(Vo) = pWi (Lathy/3) — P (VG / B(2)g(@)dz — W (Lat/(p = 77) (4.2)
(Zo.6) = Wi(éyg) — ( [ o ) , (43)

where Wy, Wy are mutually independent two dimentional white noises.

4.1 Proof of Theorem 4.2
We first prove the tightness of the sequence (U3, Vi, Z{¥)n>1, then identify the limit.

4.1.1 Tightness of (U}, VN, ZV =1
Proposition 4.3. For any s>1, the sequences (U )ns1; (V¥ )ns1 and (Z) )ns1 are tight in
Hs.
Proof. The tightness of (UY)y>; in H~* follows readily from the fact that
supE (U8 ) < Ca.
N>1
Indeed, since V1 < s’ < s, the embedding H~*'(T?) — H~*(T?) is compact (see Theorem 1.69
page 47 of [5]) then By = {u € H™%;||u||;-+< R} is a compact subset of H~°.
Thus PUY ¢ Byy-r) = POIUY | ye> F)
< wEU 50 < B
So by choosing R large enough we get the result.
The tightness of (VV)y>1 and (Z¥)n>1 are obtained by similar arguments. O
From Proposition 4.3 we deduce that the sequence (U, VY, Z)n>1 is tight in (H )3,

thus by Prokhorov’s theorem there exists a subsequence still denoted (UY, Vi, Z{¥)n>1 which
converges in law towards (Uy, Vo, Zo) in (H*)?.

4.1.2 Gaussian caracter and expressions of ((Uy, ¢),(Vo, V), (Zo, ¢)) using white noises

Let ¢, 1,6 € H?, let us first compute the values of Var((Uy, )); Var((Vo,)); Var((Zo, ¢));
COV(<UO7 )7 (‘/ng))’ COV(<U07 )7 (ZO7¢>)7 and COV((%u ) (ZO7¢>)
— Computation of Var((Up, ¢)). We have

(UoN,sO)I\/N[(uo L) = (15, )]
=VN[% Z{lA(XZ)(l—Sz)+1Ac(X1)}<P(XZ ) — (1 —=p) [ye(@)de — [,. o(z)dz],
and
Var[{14(X1)(1 — &) 4+ 1ac(XH) }o(Xy)]=
=Var[14(X")(1 =& )p(X) 4 Var(Lae (X ) o(X 1)) +2Cov[14(X1) (1 = &)e(X 1), 1ae(X (X))
=Var[14(X")(1 =& )e(X )]+ Var(1ae(X (X)) = 2E[14(X 1) (1 = £1)e(XH]E(1ae (XM )p(X 1))
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~1-p) [ Fegis—1-pP( [ e@is) + [ P ([ p@o)

~2(1-p) [ pl@lgords [ oz
o, A A
So according to the central limit theorem

Yy, <p) (U, ¢) where (Uy, ) ~» N(0, ). (4.4)

— Computation of Var((Vy,v)). One has
(Ve¥,0) = VN((o™ %) — (1, )) and )
VarlLy (X6 (X)) = p [ 2@t - 5*( [ w@igte)dn)” =,
A A
So according to the central limit theorem

(VN 40) % (Vo, ) where (Vo, 1) ~ N'(0, 3,). (4.5)

— Computation of Var((Zy, ¢)). According to central limit theorem
2
(Zév,@ = (Zo, ¢) where (Zy, ) ~~ 0 o —/ ®*(z dSL’— gb(a:)g(a:)da:) ) (4.6)

— Computation of Cov((Uy, ¢), (Vo, 1)), Cov((Us, ), (Zo, ¢)) and Cov((Vy, ), (Zo, ¢)).

As Cov((Uy, @), (Vo, 1)) = §[Var((Uo, ) + (Vo,1))-Var((Us, ¢))-Var((Vo, ¥))],
%(\)/W}? need to compute Var((Up, p) + (Vo, %)), Var((Uy, ¢) + (Zo, ¢)) and Var((Vo, ) + (Zo, ¢)).

(U8 0) + (V) (2,0) = VI{ & 3 [0 (1= )+ Lae(X)}pl(X7) + La(XD)Ei(X7)

+0(X9)] ~(1=p) [, p(@)a(@)da— [, o(@)g(@)da—p [, (w)g(@)da— [z d(x)g(x)d
and
Var[{ L (X1)(1 = &) + Lae(X ) hp(X1) 4+ La(X)&(X1) + (X))
= ay+ By + 2+ 20ov[{La(X)(1 = &) + Lae(X) Jp(X1), La(X)(X1)]
+ 200v[{La(X) (1= &) + Lae (X Jo(X1), (X )]+ 2Cov[La(X )& (X*), (X))
Furthemore since {14(X1)(1 — &) + 1ae(X1) (X114 (X1 E(XT))=0 as,

Cov[{1a(X1)(1 = &) + Lac(X) bo(X ), La(X )& (X))
= —[E[{lA X1 - 51) + 14e(X )}90( DIE(La(X )51?/)(
- ’Vp

—p) dx/d) x)dxr — p/ d:p/@b
A
On the other hand:

Cov[{1a(X1)(1 = &) + Lac(X 1) Jp(XT1), o(X )]

—(1-p) [ p@le)gle)dn+ (b - / P)da / e
+ [ oy - [ el / e
= Tlps
LA ) 6 p [ v@ois ~p [ vg@ds [ oyt -

Thus according to the central limit theorem
(Us's ) + (V" 9) + (25, 0) ~ N(0, 0 + By + 0% + 2(7 + Ay +13)). (4.7)
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Taking ¢ = 0; ¢» = 0 and ¢ = 0 respectively in (4.7), we obtain
Var((Us, ) + (Vo,¥)) = a + By + 27,
Var((Uo, ¢) + (Zo,¢)) =y + o’ + 21,
Var((Vo, ¥) + (Zo, ¢)) =6, + 0% + 2),,.
So we deduce that
Cov((U ). Vo, 1))~ Cov( (L. ). (Zas6)) = 1y and Cov((Ve,0). (Z0,8)) = Xy (49

Hence from (4.4), (4.5), (4.6), (4.7) and (4.8), we conclude that for any ¢, ¢ € H?,
((Uo, ), Vo, ), (Zy, ¢)) is a Gaussian vector with the same law as the vector given by (4.1),
(4.2) and (4.3).

4.1.3 Conclusion

The sequence (U, VY, Z{¥)n>1 being tight so by Prokhorov’s theorem there exists a subse-
quence still denoted (UL, ViV, Z8) y>1 which converge in law in (H*(T?))? towards (Up, Vo, Zo).

Qp Yp T
On the other hand Vo, v, ¢ € H* ((Us, ), (Vo, ), (Zo,¢)) ~ N | (0,0,0), | v Bp Ay :
M Ap o?

hence we conclude that the whole sequence (U}, ViV, Z{¥)n>1 converge in law in (H~*)3 towards

(U07 %7 ZO)

5 Law of Large Numbers

SN I,N)

The aim of this section is to study the convergence of (u under Assumption (H1)

below, and the convergence of u as N — cc.

1

To this end we are going to:
e Write the system of evolution equations of (5, ufV).
e Study the convergence of {u¥,t > 0} in C(Ry, Mp(T?)).

e Study the tightness of (>, u!*¥)x>; in Skorokhod’s space (D(R,, Mp(T?)))2.

e Show that all limit points p° and pu! of (4®")y>1 and (u!V) x>, are absolutely continuous
with respect to the Lebesgue measure with density fs and f; bounded by dy (09 is defined
in section 3).

e Show that the system of PDEs verified by the pair (fs, f;) admits a unique solution in
A=A{(f1, 2)/0 < fi < 620 € {1,2}}.
The following is assumed to hold throughout section 5.
Assumption (H1):  k is Lipschitz, with the Lipschitz constant C.

5.1 System of evolution equations of {(u"", ul™), t > 0}

5.1.1 Evolution equation of {4 ¢ > 0}

Let {M* 1 < i < N} be a family of mutualy independant standard (i.e with mean measure
the Lebesgue measure ) Poisson Random Measures (in short PRMs) on R which are globally
independent of { X7/, 0 < t,1 <1i < N}. We note by {MZ, 1 <i < N} the family of compensated
PRMs. We recall that IT is the canonical projection from R* to FQ,)@ = X'+ /2vB! and
X! = IT(X!). Now Let ¢ € C2(T?), if we let $ = ¢ o II, according to the Ité formula, we have

t t
F(X0) = (X + /2y / VE(X)dB: + / AG(Kyr,
0 0
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hence o(X7) = o(X?) + /2 / ve(XHdB: —1—7/ Np(Xh)d
Thus {1;gi_gyp(X; ),t > 0} is a jump process satisfying

t t
1{E§:S}¢<Xz) = 1{E¢*S}90 )(Z —I— \/2 / 1{Ei:5} \V/ (p(Xﬁ)dBi + ’Y/; 1{E};:S} AN (p(Xﬁ)dT

L e gt O )

Z K(Xl X] (Br=1}
=

Taking the sum over i and multlplylng by + ~ We obtain

V2 N
~ Z Lipi—syp(X Z Ymi=syp(X°) + — Z/O Lipi—sy V p(X;)dB,
i=1
gl ' -
+ N Z/ Lipi—sy & o(X;)dr
i= 1 0

Z/ / fugpyl, HORXD }1{E:;=S}<P(Xﬁ)ﬁ(du,dr)
=1

J
z K(xb,xg) =N

N t N

1 B K(X;, X}) i

3 [T s
=T LS K (LX)

So
s

t t
W, 0) = (145, 0) 44 / (W5, Ag)dr — B (uva, (i,
0 0

(uiV,K))) dr + M; "%, (5.1)

where

(uf’N,w(ui’N7 (Mf,K))) = / 290( s [ K K@ y) N PN (dy) N (d)

and

N
1 t o) A L

N _ . 7 a
M = N ;/o /0 I{Ei—zs}(p(X”)l{u@Z kocod) }}M (dr, du)

J
=1 2 r(xkxiy =
=1

vy = [ i i
N > i Lipi=sy V p(X;)dB,.
i—1

5.1.2 Evolution equation of {u" ¢ > 0}

Let {@Q%,1 <7< N} be a family of mutually independent standard Poisson Random Measures
(abreviated below as PRMs) on R which are globally independent of {X;,0 <¢,1<i< N}

and {M’,1 <i < N}. We note by {Q',1 <i < N} the family of compensated PRMs.
Let ¢ € C*(T?), {1gi=nye(X{),t > 0} is a jump process satisfying

t t
Ligine(X)) = Ligi_ne(X') + /27 / 1{Ei=1}V90(Xﬁ)dBﬁ+7/0 Ligi—ry O o(X))dr

/ / {U<BZ] ) _K((XEXD) XJ 1 1{E;—:S}¢<X£>Ml<du’dr>

>N, K(xb.x]) (Ei=1}

_ / / Lp_—nye(X)Q' (du, dr).

Summing over i and multiplying by < we obtain



5 LAW OF LARGE NUMBERS 11

h

N t

Z/ Lipi—ry V p(X,)dB,
Y i

NZ/ 1{Ei I}ASO(X )d

N
1 -
N / / {u<p N _KGxEXD) l{Ei_:S}SO(XT)M (du, dr)
Jj=1

=N, K(xtk X1 (El=1}

+_ // usByN, L KeRXD 1{E;’:S}90(X,,)d7’du

ZN K(xL XJ) (Bl=1

Z// Lp_—ne( X))@ (du, dr) __Z/ Lgi—np(X;)dr.

N Zz 1 Lmi= 1}80 Z 1{EZ_I}90

So
K t
(i) = (™ ,90)+7/( 7 A9) dHB/ ol T K)))dr_a/(uiw’w)dr
r 0
+ LY, (5.2)
where
LV — 1 1 M'(dr,d
Z// (gi_—sy( X;) (T 1M1{E£_1}} (dr,du))

Z K(xk,x1)

Z/ Lpi—ny v ¢(X;)dB, ——Z/ / Lp_—ne( X)Q'(dr, du).

5.2 Convergence of {y¥,t > 0}y>; in O(R,, Mp(T?))

Recall that we equip M p(T?) with the topology of weak convergence and the space of continuous
functions from Ry to Mz(T?), denoted C(Ry, Mp(T?)) with the uniform topology.
It follows from the It6 formula that the processes {u, ¢ > 0} satisfies

! N. N. 27y - ! ; ;
) = 0 9) + [ plar 43, with 1 = LS [ gp(xian:
0 i=1 70

Proposition 5.1. The sequence {uN,t >0, N > 1} converges in probability
in C'(Ry, Mp(T?)) towards {p,t > 0}, where for each t > 0, py is the law of X}
t

and for any o € C*(T?), t > 0, (s, ) = (s 9) +1 / 1y, )
0

Proof. We refer to Theorem 2.2 and Remark page 58 of Roelly [24]. Let IT be a dense subset
of C(T?). In order to prove that (uV)xs1 converges in probability in C'(R,, Mp(T?)) towards
{p,t > 0} it is enough to prove that:

1- \V/SO € Ha {(,ui\f’ QO),t > O}NZl 18 tlght in C([R-l—v [R-l-)
2- For any m > 1, any (t1,tg........ tm) € RT, and any (o1, @2, .ovoe.. ,©m) € (II)™ the sequence
((:ui\lfa Spl)a ) (:ui:;a @m)) converges n probablhty in R™ towards ((:utu ()01)7 teeey (:utm’ (pm))

Proof of 1. We choose IT = C?(T?). Let ¢ € C*(T?), due to Proposition 37 of Pardoux [22],
Corollary page 179 of Billingsleg [6] a sufficient condition for the sequence (u¥,p)y>; to be
tight in C (R4, R, ) is that both

o (udY, ) is tight in R,
o VT >0, sup (| (u, L) [ +5 (', (Vp)?)) is tight in R.
0<t<T

Since for all N > 0, t > 0, u is a probability measure, these two points follow readily from
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the fact that o, Ay and (7¢)? are bounded on T2

Proof of 2. According to the law of large numbers, V¢ > 0, (u, p) =5 E(p(X}))

0 ((Mi\;@l) (thvwm)) <[E<()01(X ))77[E<()0m(Xt1))) = ((Mt17901)7'-7(ﬂtm790m>> :

Finally the fact that (u,t > 0) solves the PDE appearing in the statement follows readily from
the It6 formula. O

Lemma 5.2. For anyt > 0, the measure p; s absolutely continuous with respect to the Lebesgue
measure and its density f(t,.) verifies §; < f(t,x) < 8y, Vo € T2, where §; and 0y are defined
i section 3.

t
Proof. Given that p; = po + 7/ Appdr, g = Y(t) po.

Thus as from (2.1) in Propositi%n 2.5, for any measurable subset of T2, with zero Lebesgue
measure Y(t)14 = 0, the absolute continuity of p; with respect to the Lebesgue measure
follows from the fact that p; = Y (¢)po. Furthemore we notice that the law p; of X/ is absolute
continuous with respect to the Lebesgue measure, this being true whether the law jio of X' has
or not this property.

— Let us now show that Vo € T%, §; < f(t,x) < do.

We first recall that ¢ is the density of the law pg of X*.

Let P; be the heat kernel on the two dimentional torus. As the solution of the heat equation
with the initial condition ¢, is the function defined on T? by T(t)p(z) = [, Pi(x, y)d(y)dy,
Y(t) is non decreasing in the sence that Vip,¢ € L*(T?) such that ¢ < ¢, T(t)e < T(t).
So since for any C' € R, T(¢t)C = C (which follows from (2.1)) and f(¢,.) = T(t)g, the result
follows from the facts that 0; < g < d5 and Y(¢) is non decreasing,. ]

5.3 Tighness and Convergence of (;*V, p/V)y>1 in (D(Ry, Mp(T2)))?

Recall that we equip M p(T?) with the topology of weak convergence and the Skorokhod space
of cadlag functions from R, to Mp(T?), denoted D(R,, Mp(T?)) with the Skorokhod topology.
We first note that:

N
1
Sv
(Y 1) = = > ymiegy < 1,

and therefore, Vo € C(T?)

{ Lo D<ol
1™ DI el

Lemma 5.3. Let H' = {(1,7,p) € (M(T))*/(v, 1r2) < 1; (1 0) < (p, 9), Vo € C(T%R,))
For all (u,v, p) € H', ¢ € C(T?), we have

(e (v rggy) ) | < el

Proof. ‘(uw(v,%)) ‘ = ‘/p o(z) 5 fw K@ y) () (dy)u(dfc)‘

Ji. K(z.y da:)
< el [ 5" ()
T2 f-u-g d:L’)
< [léplloos
where we have exploited the symetry of K: K(z,y) = K(y,x) for the first inequality and the
w(d
facts that f1r2 (dz) <1 and (v, 1y2) < 1 for the last inequality. O

Jp: K p(dz’)
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We can now establish the wished tightness.
Proposition 5.4. Both sequences (1Y) n>1 and (u"N)ns1 are tight in D(Ry, Mp(T?)).
Proof. - Let us prove that (u5)y>; is tight in D(R,, Mp(T2)).
As already stated in the proof of Proposition 5.1, it suffices to prove that
Yo € C2(T2), (12N, ), t > 0) 1 is tight in D(R,, R).
Let ¢ € C%*(T?), we have

K
00 = o+ [ apar =5 [ (Volut™ )

T

¢ K
= (M(}S’N,wH/ YN, Ap) — B <ur’ L o(ul o K))> dr + MM?.
0

T

We notice that {(;;"", @), > 0} is a semi-martingale since M is a square integrable mar-
tingale. Indeed, M™% is a local martingale as the sum of local martingales, and from Lemma
5.3 we deduce that

K 2y [*
Ny _ I,N S,N 2
< MN# >, N/ ( Nl ’7(M£V7K))) d'f’+—N/0(ur , (V)?)dr

Bll*|loct L2t
<= trliv ©)?[loo-
Hence E(| M;¢ |2) = [E(< MN“’ >;) < 00.

Consequently
t t
(1, 0) = (1™ ) + / W edr + M with < MN# >,= / @, ¥dr,
0 0

and

wh? = (N, Lp) — B (“f’N’ ‘p(“i’N(uf,K))) ’

o = £ (SN, PN, o)) + H N, (99)?).
Furthemore w™¥ and w™*¥ are progressively measurable since they are adapted and right con-
tinuous, so according to Proposition 37 of [22] a sufficient condition for ((u;"",¢))n=1 to be
tight in D(R,, R) is that both:

o {(u™, ), N > 1} is tight in R,

o VT >0, sup (| w,"? | +w¥) is tight in R.
0<t<T

These follow readily from the facts that:

Sv
— 1™, )< el oo .
— From Lemma 5.3, | w? |[< || & ¢|los + B]/¢]ls and @w¥ < 5”*’ I 1 L11(79)?] oo

The same arguments yields the tightness of {u-™,¢ >0, N > 1} in D(R,, Mp(T?)). O

Proposition 5.5. All limit points (u°, p!) of the sequence (>N, p!"N)y>1 are elements of
(C(Ry, Mp(T2)))%

Proof. Let us prove that {u7,t > 0} is continuous. It is enough to prove that Vo € C(T?), the
processes {(u?, ¢),t > 0} is continuous. However according to Proposition 3.26 page 315 in
[12], a sufficient condition for {(u7,¢),t > 0} to be continuous is that:

VT > 0,Ye > 0 lim P( sup |(u", ) — (uf_’N, ©)|>¢e)=0
N—oo 0<t<T
Let T>0, ¢ > 0, since the infection of two individuals can not occur at the same time, we have:

N
s, S, i
(™, 0) = (2" )< 2 (X)L zi=s) — Lipi_ sl
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lele N ollos
< Z‘l{El sy — Nei _gl< g,

So for any € > 0, hm P( sup |(p; N,(p) (1N, 0)|> ) = 0.
=00 0<<T
By a similar argument we obtain the continuity of {u!,¢ > 0}. O

Let us now state the main result of this section.

Theorem 5.6. The sequence (>, !N ns1 converges in probability in (D(R,, Mp(T?)))?
(1%, 1') € (C(Ry, Mp(T2)))? where Yoo € C*(T?), {((117, #), (1)), t > 0} satisfies

(i, ) = (u§,¢)+7/0 (uf,&p)dr—ﬁ/o <uf,so(uf7 (MKK))) dr (5.3)

) ir—a ko 61

t t
K
(uf,w)z(ué,sOH’V/(ui,Aw)dr+6/ (uf,w(ui, I
0 0 (ptr, K)

5.3.1 Proof of Theorem 5.6

By Proposition 5.4, both sequence (%) > and (/") ys are tight in D(Ry, Mp(T?)), so the
sequence (p5N | ) vy is tight in (D(Ry, Mp(T?)))2. Thus according to Prokhorov’s theorem
there exists a subsequence of (Y, u!V)y>; still denoted (%%, ) >, which converges in
law towards (u°, u!). Hence to complete the proof of Theorm 5.6 it remains to:
— Find the system of PDEs satisfied by {(u7, u!),t > 0}.
— Show that V¢ > 0, the measure p7 and p! are absolutely continuous with respect to
the Lebesgue measure with densities fs(t) and f;(¢) bounded by d,.
— Show that the system verifies by (fs(¢), fr(t)) admits a unique solution on the set
A=A{(f1, f2)/0 < fi < da,i € {1,2}}.
We first prove the following Lemmas, which will be useful to establish the system of PDEs
satisfied by {(u7, ul),t > 0}.

Lemma 5.7. Under the assumption (H1), the function K is Lipschitz on T? x T2, with the
Lipschitz constant 2v/2Cy,.

Proof. Let x,2',y,vy" € T?, one has

| K(z,y) — K(2', ) |=] k(d7=(z,y)) — k(dg(2", ) |
< Cildy2(z,y) — dy2(2', )| (dy2 (2, y) + dy2(2", ).

Furthemore |dy2(z,y) — dy2(2',y)|< dyz(x, 2") + dr2(y, ¢).

Indeed, |dy2(x,y) — dy= (2, y)|= dr2(x,y) — dy2 (2, y') or dy2(2',y') — dy2 (2, y) and

dy2(z,y) — dp(2', ') < dp(x,2') + dp2(2',y) — dp (2, y) < dp(z,2") + de(y,y).

Thus since /2 is the maximal distance between two points in T2, we conclude from the above

results that

For any SL’,I'/, Y, y/ S -”—27 | K(l’,y) - K<xl7y1) |S 2\/§Ck<dT2 ('Ta SL’/) + dy2 <y7y/)) (5?:)‘

Lemma 5.8. For all u, v € M(T?), we have
sup '/ K(2',y)(pu(dx') — V(dx'))' < (IIklloo+2v2Ck)dr (1, v)-

y |JT12
Proof. Since from (5.5), for any y € T2, the function K(.,y) is Lipschitz uniformly in y with

the Lipschitz constant 2v/2C), , we have
[ )= 0)(03)| = (Wele2vEC | || e ) ()

< ([klloo2v2C1)di (1, ).
Hence the result. O
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Lemma 5.9. The following map is continuous.

G (MF(—I]—Q),dF) X (MF(—H—z),dF) — (./\/IF(—“—2 X —H—z),dp)
(V) — p@v

where V6 € C(T1? x T2), (u® v, ) = /  dle iy

Proof. Let (u,v), (u',v') € (Mp(T?))?; ¢ a Lipschitz function on T? x T?, such that
16]|co< 1 and ||¢]|z< 1. We have

S, y)(pev— ®V1)(daf,dy)) <
< [ | [ etwntu-wanfan + [ | [ oo o))
< v(®psup| [ ot w)d)| +(P)su] [ o) =)

T2
< C (dF(Mnul) + dF(Vv Vl))a

since supl|(., y) |2 Vsuplé(z, )< [6]l1< 1. 0
Y T

’ T2xT2

We can now establish the system of equations satisfied by (u®, u?).
Proposition 5.10. The processes (u°, ul) satisfies the equations (5.3) and (5.4)

Proof. We prove this Proposition by taking the limit in the equations (5.1) and (5.2).
1- Let us prove that

/t </~LS’N - )) dr = /t (us ol )) dr
0 " ' ’(Miva) 0 o N(MTWK) .

One has
K p2 N oK
(Mf’N,s@(Mi’N, ~ )) - (Mﬁ’N,7< 5 )
(1, K) (Mr,f;})v .
o, oK p oK
= (it S = ) ) (e 2,
(u, K)(pr, K) (pr, K)

Moreover:

1-1. Since from Lemma 5.2, f(t,.) is lower bounded by a positive constant and Vy € T2,
/ K (z,y)dz is a positive constant independent of y,
T2

3 C > 0 such that Vy € T?, / K(x,y)f(t,z)dz > C.
T2

On the other hand, since from Proposition 5.1 for any ¢ € C(T?), (u, ¢) L (fr, ),

dr(uN, 1) 2 0 (see Lemma 2.7). Thus as dp(u, 1) < 2, so from Lemmas 5.3 and 5.8 from
the Lebesgue dominated convergence theorem, we have

e (| [ (e e <u§—ur,K>)er

U
(ur, ) (e, K
fw xyur dx

<ot ([ L= N [ = o)

< c||so||oo<||k||oo+mck> / [E(dm e 2
v (N eK)\ @( VK (2, y) .
1-2. We have ( 1, ,7@“[() ) = /1T2><1T2 K@ y)ur(dﬂf’) N (dy)p™ (d).

Moreover since K(2',y)p-(dx') is lower bounded by a positive constant independent of
T2

uf’N(dy)d'f)
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y € T? and from Lemma 5.7, the map y € T? / K(2',y)u.(dz') is continuous, from Lemma
T2

sO( JK (,y)

Jo K (2, y) pur (da”)
Thus from Lemma 5.9, we deduce that

<p( K (e,y) N 90( VK (2, y)
o (dy dx . (dy) e (dx

foe TRt gty 5 [ i)
2- Since Ay and ¢ are continuous and bounded,

t
/( SN Ap) dr—>/ ,ur,Ago)drand/( dr—>/ ulp)d
0

3 - Let us prove that, MtN’“’ — 0 and Liv’“’ — 0.
From Lemma 5.3, we have
E(] M )= E(< MY >))

-2 g (e 0, ) Jar+ B (8, (7))

N—oo

< 5P oot % 1(V9)lloc = 0.

MtN’S" converges to 0 in L?, so also in probability. A similar argument yields the fact that Liv’“"
converges in probability to 0.

Thus from the results 1-, 2-; 3-, and from the convergence of the initial measures obtained in
Theorem 3.1 we conclude that (1, uf) satisfies the equations (5.3) and (5.4). O

is continuous and bounded on T2 x T2.

5.7 again, the map (z,y) € T>xT? —

Proposition 5.11. Vt > 0, the measures 7 and u! are absolutely continuous with respect to
the Lebesque measure and their densities fs(t,.) and fi(t,.) are bounded by 0.

Proof. For any t > 0, we have ,uf’N = % Zf\il Lpi—ryx; = N — uf’N — utI’N
Furthemore:
- uf N4 utI N weakly converges towards uf + u! since (,uf N utI ’N) weakly converges towards
(u?, pl) and the map (u,v) € (Mp(Ty),dr)? = u+ v is continuous,
- 1 converges in probability towards the measure p; which is deterministic (ju; = Y(t)v),
thus pio™ = puN — 2N — pb™ weakly converges towards i, — pu¥ — pil.
Hence as the measures p, p! and p; — py — pl are non negative (since ,uf NophN and pN are
non negative), we can conclude that
- ¢ and p! are absolutely continuous with respect to the Lebesgue measure since y; has
this property;
- their densities satisfy fs(t,.) + fr(t,.) < f(t,.) < 0. O

Proposition 5.12. The pair of densities (fs(t,.), fi(t,.)) of the pair of measures (u?, ul) sat-
1sfies

50 = 10550~ 5 [ 16-n[5s0) [ et

K(z' y)f(r,o")dx'

0 =T 045 [ T0-n[1s0) [ et

fi(r,y)dy] dr. (5.6)

filr,y)dydr

a /0 T ) () (5.7)

Moreover the system formed by the equations (5.6) and (5.7) admits a unique solution on the
set A = {(fl, fg)/o < fz < 52,’i € {1,2}}
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Proof. Recall that Yy € T2, (u,, K(.,y)) = [p K(2/,y)f(r,2")dz’ > C. From the equations
(5.3) and (5.4), it is easy to deduce that (fs(¢,.), fi(t,.)) satisfies the equations (5.6) and (5.7).
Let (fi(t), f1(1)), (f2(t), f3(t)) € A be two solutions of the system formed by equations (5.6)
and (5.7) with the same initial value. Noticing that for any ¢ € L*(T?), ||T(¢)¢]|e< [|¢]|oo (see

Lemma 2.6) and ‘/ K(- dyH < Cl¢|loo, We have
170 = £l < 8 [ [ 100 {030 = 20D [ et ]| o
0 o >[fs sy e (fz('f’,y)—f}('f’,y))dy] | ar

<2 [ s —f;rnooH/K. Ay _ar
2 L1801 [ K G0 = )| _an

< 500, [ {1530) = FH0 e 15700) = 510 (53)
Furthemore as f7(t) — £}(t) = — (73(t) = £2(0) —a | Yt = n)(73r) — FH))dr

0

then || f7(t) = f1 (#) [l < |!f§(t)—fé(t)Hoo+a/0 £ (r) = f1 ()| sodr (5.9)

Hence summing (5.8) and (5.9) and applying Gronwall’s lemma, we obtain f!(t) = f2(t) and
) = f200). .
We can now finish the proof of Theorem 5.6.

Since (%N, utN )y is tight in (D(Ry, Mp(T?)))?, and all converging subsequences of the se-
quence (%N, uIN) y>; weakly converge to the same limit (p, uf), the sequence (=N, u5) >
weakly converge in (D(Ry, Mp(T?%)))? towards (p°, pu!); furthemore (1, pi?) is deterministic,
so we have convergence in probability.

6 Central Limit Theorem

In this section we will study the convergence of (UN = /N (15 — 1), VN = /N (!N — uh))
under the assuption (H2) below and the convergence of ZV¥ = v/N (Y — ) as N — oo.

Note that the trajectories of these processes belong to (D(R,,E(T?)))? and C(R,,E(T?)) re-
spectively, where £(T?) is the space of signed measures on the torus, which can be seen as the
dual of C(T?). However, since the limit processes may be less regular than their approximations
we will first:

e Establish the equations verified by the process Z» and by the pair (UY, V).

e Fix the space in which the convergence results will be established.
Then we will study the convergence of the above sequences.

The following is assumed to hold throughout section 6.
Assumption (H2): k€ C3(R,).

Remark 6.1. Let x € T2, if we let A(x) = support{K(x,.)}, from (1.1) and under (H2), we
have

— Ve N?, |n|< 2 the map y € A(x) — D"K(x,.) is Lipschitz and bounded with the Lipschitz
constant independent of x.

—vn e N, n|< 3 themapy € A(z) — D"K(x,.) is continuous and bounded by C n‘1a|><(3Hk(‘"| | o-
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Indeep, this two points follow from the facts that:

—If C={2K'(l= — yl?), 4K" (lz — yl|*), 8k (|} — y[|*)} and
Co = {(z1 = y1)"(x2 — )™, (n,m) €{0,1,2,3}*}, V|n|< 3, D"K(x,y) = D"k(||x — y|]?) is
written as the sum of the products of elements of Cy and Cy;
— V|n|< 2, [kUD| is locally Lipschitz in Ry and ¥|n|< 3, [k1D| is bounded in R, ;
2 1s the mazimal distance between two points of the torus.

Lemma 6.2. Under the assumption (H2), we have sup| K (z,.)||gs < oo.

Proof. From (1.1), if we let Vo € T?, A(x)=support{K(z,.)}, we will have

K () [s= 32 | Dk(|ly — ) |*dy
[0 <3/ A(a)

<,
where the first inequality follows from Remark 6.1. O
6.1 Evolution equations of Z"V and of the pair (U", V)
6.1.1 Evolution equation of ZV = /N(u" — p)
Let ¢ € C%*(T?), we have

! N N 2y = [
(0 = 0+ [ )+ 1%, where 1 = Y S [ wa(xjax,
0 i=1 70

¢
(e, ) = (uo,w)+7/ (o, Dp)dr,
0
t —_~ —_—
hence (ZN, ) = (ZY, ) + 7/ (ZN, Np)dr + ’HtN’w, where ’HtN’(p = VNHM?. (6.1)
0

6.1.2 System of evolution equations of the pair (U, V")
Let ¢ € C*(T?), we have

S,N (SN - K N,
(e 0) = (1o ,90)+7/( PN, Dp)dr 6/( o(ph ,7(MN’K)))dT+Mt e

T

(uf, ) = (ug,so)+v/0t(uf,ﬁso)dr—ﬁ/0 (uf,w(uﬁ (ufK)>) dr.

K(af y)
Note first that (> LN _K :/ d d
ote first tha (,u,, o™, o K))> ) o(x) 5 fw? (daz’) PN (dy) 2™ (d)

5 fTQI : SL’ y)ﬂzdx<;ix>ﬂi,N(dy)
_ I,N (Nr ,<PK)
- <“’" (W K) )

Thus

(U, ) = (Uévaw)+v/t(UN ) dr—ﬁ/t <\/Nui’N,7(M§7N’QpK)) dr
0

(7Y, K)
+6/ (\/_ur, Mr’;pfg))err\/NMN’“’

:(Uév,go)—l—fy/ (U, Ap) dr+5/ ( LN, Mi‘ig’(if)l()(zﬁ,f()) dr

IN a‘PK N Nm‘P )) N,p
— ——— ) dr — ~—r - )d )
B/ < Mra ) ' B/ <V (pr, ) T+\/NMt
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Hence if we let M = v NM}*, one has
t t
(UtN,gp):<Uév,(,0)+’}// (UﬂV,A@errﬁ/ (ZN, G5 ) 5/ (UN, GV ) dr
0

—5/ (VN,GS¢) dr + M2, (6.2)

and also

t t
<%N,so>=<%N,so)+w/<MN,A¢)dr—5/ (ZN, G5 ) dr+ﬁ/ (UN,GING) dr
0
t ~
5 [[(v¥.a)dr—a [0 o+ 1Y (6.3)
0

where Vz,y, 2’ € T2,

S.I,N x (", o)
) = (o K0 )

B L S () K (2, y) ™ (dor) N
_/1I2 K@.y) Jre K, )l (dy') [ K (Y, W ) () (),

G o(a) = (o) (1 T8) = ola) [ e Bl )

s v W oK (Ly)  Jpe(@)K(,y)u; (do)
CreW) =L R )

) Jr: K", y) e (dy')

6.2 The space of convergence of the sequences Z"¥ and (U", V)

We first recall that for any s > 0, the family (p’*

P33 ny)imime (as defined in Proposition 2.2) is an
orthonormal basis of H*(T?).

Proposition 6.3. Every limit point W1 of the sequence (M )n>1 satisfies
Vi >0, E(|[WH3-.) <o iff s> 2.

Proof. We have
Ncp_ Z/ / 1{Ez —S}SO )1{ <oy Kkxixd) Hz(dr,du)
N

3= (N k(L xD) {El= I}}

2 4 4
+4/ ﬂz:/ Limi—sy V (X;)dB;.

<0 o= [ (W ) a2y [ (oo

T

and it follows from Theorem 5.6 that
— t K
PRV / {6 (Mf, 0 (ul, )) + 29 (1, (vw)z)} dr,
0 (:urv K)

! K
furthemore / {5 </~Lfa V* (1 ) )) + 2 (e, (Vgo)z)} dr being the quadratic variation of
0 s

a Gaussian martingale of the form (W1, ¢), our aim is to find the smallest value of s for which
E([[WH|3-,) < co. We have
E(IW7-) = BEC X2 1W ol o)) = 22 B(< (W it 1) >4)-

ini, ng 1,1m1,12

fT[Q l‘ y ILLT' dl’)
© Jp K2/ y)p,(da’)

However as pl(dy) < 1, then from Lemma 8.1 in the Appendix below,
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iff s>2, we will have

i K 0,5
S < Wl = Y / (ur, Pt na)” (b (ur,K))) +29(17, (V55 y) )l

1,m1,n2

i,n1,n9

/ /m/p; Pisna) fp K(x gﬁr(dx)ui(dy)uf(dfc)
v | Z (900 )}

i,n1,n2

<50/ /Irff; (;l,)) dydr—i—Q’yC//,ur (dz)d

< Ct(B + 27).
The result follows. 0

By Doob’s inequality and by calculations similar to those done above we obtain the following
result.

Corollary 6.4. VT' >0, s > 2, 3C(T) > 0,C5(T) > 0,C5(T) > 0 such that:
supE( sup |[HN[3-.) < Cu(T),

N>1 0<t<T
supE( sup [[MN][3-.) < Co(T),

Nz1 0<t<T
supE( sup [[LYM]7-.) < Cs(T).

N>1  0<t<T
In the rest of this section we arbitrarily choose 2< s <3, and we prove that the
sequences (ZV)ys; and (UM, VY)ys; converge in law in C(R,, H*) and in (D(Ry, H™*))?
respectively, where we have equipped C(Ry, H~*) with the uniform topology and D(R., H™*)
with the Skorokhod topology.
6.3 Tighness and Convergence of (ZV)y>

Recall that the sequence (ZVV)ys; satisfies (6.1). We first give an estimate for the norm of the
fluctuations process Z~ which is not uniform in N.

Lemma 6.5. For all N > 1, ZN¥ € C(R,, H™®).
Proof. Since s>2, H*(Ty) < C(T2) (see Proposition 2.4). Thus

(2, o) = VE|L % o(XE) — (i, 9|

< VN(y (EI%@(XZ)HH@HOO)

<2¢_H90Hoo
< 20V N| ¢l

This inequality combined with || ZN||z-s= sup |(” e Ol vields [l-:(sup||ZN||H ) <4CN. O
p#0,p€

The main result of this subsection is the next Theorem.

Theorem 6.6. The sequence {Z", N > 1} converges in law in C(R,, H™*) towards
{Z;,t >0} € C([R+, H~*), where ¥t > 0,

Zy = Zy + fy/ AZ,dr + H, and Vo € H? (ﬁ,(p) 1s a centered Gaussian martingale whose

t
predictable quadratic variation is given by < ('H, ) >= 27/ (ur, (ch)z) dr.
0
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Before we prove this Theorem we first state a condition of Aldous-Rebolledo type for the
tightness of a sequence of H-valued cadlag processes, where H is a Hilbert space (see definition
2.2.1, Corollary page 16, and the particular case 2.1.5 of [13]).

Proposition 6.7. Let H be a separable Hilbert space, (V"), a sequence of H-valued cadlag
processes, their laws (15”) form a tight sequence in D(Ry, H) if
(Ty)  for each t in a dense subset T of Ry, the sequence (9}),, is tight in H
(Ty) YT > 0,Vey,e9 > 0,30 > 0,n9 > 1 such that for any stopping times 7" < T
sup [P(W Pnlla> €1) < &2.

n>ng
0<é

(rn+0)

Note that if (9"), is a sequence of H-valued continuous processes, then a way to show that
(9"),, is tight is to prove that (T1) and (T2) are satisfied.
Let us now prove the following results which are useful for the proof of Theorem 6.6.

Proposition 6.8. The sequence HN converges in law in C(Ry., H™®) towards H where Yo e H?,
(H, <p) s a centered, continuous, Gaussian martingale having the same law as

Ht, //8 29 fs(r, x)Wh(dr, dx) //8 2v fs(r, 2)Ws(dr, dz)
1 X2
// WV\erd:p // \/ng,dr,dx
T2 61’1 T2 8372
/ / o (@)V/2y(f(r,2) = fs(r,z) — fi(r,2))We(dr, do)
T2

+ [ ] SV n) — B~ T e W, ), (6.4
T2 $2
where Wy, Wa, Wa, Wy, Ws, We, Wo, Wy are independent spatio-temporal white noises.

Proof. We first establish the tightness of the sequence HN , then show that all converging
subsequences have the same limit which we shall identify. However, Theorem 2.15 of [19]
restricted the tightness criterion of right-continuous martingales (Theorem 2.3.2 of [13]) to that
of continuous martingales, thus to avoid repetition we obtain the tightness of HN by adapting
the proof of Proposition 6.15 below. So by Prokhorov’s theorem there exists a subsequence of
HY still denoted HY which converge in law toward H. By adapting the proof of Lemma 6.17
below, we show that Vo € H?, the processes ('H, ) is a centered, continuous martingale. On
the other hand Vyp € H®,

t t _
< TN 5= 2 / (1 (Te))dr B 2y / (s (T9))dr =< (F. ) >,
0

thus the quadractic variation < (7—7, ¢) > being deterministic, ('}Q, ) is a centered, continuous,
Gaussian martingale

— Expression of (H, ) using the white noises.

We have ﬁt =1\~ Z/ Vel XZ dXZ
[2y NEal - [
_ NZ / Lig—s) V (X)X + /5 > / Lpi—n V p(X;)dX;
= Jo i=1 Y0
27y N ¢
+4/ WZ/ Ligi—ry V 9(X;)dX;.
i=1 Y0
Furthemore

< MNO HNE > = 27/( PN (Vo) (ve))dr = 27/0 (17, (V) (V9))dr
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<D =2y [ () woNdr B2 [l (v

t t
<A =2y [ (9oP)r B2y [ (vo)ar
0 0 _
Thus since f(r,.) — fs(r,.) — f1(r,.) >0, for any ¢ > 0, (H,, ) satisfies (6.4). O
Proposition 6.9. There exists C > 0, such that for any stopping times T < oo a.s and 6 > 0,

7+0 2
[E(H/ Y(F+0—r)dHY

)<co
H—s

Proof. We first recall that (f), ,..)inin, (as defined is Proposition 2.2) is a family of eigenfonc-
tions of the operator YA associated to the family of eigenvalues (—Apn; ny)nns-

From (2.1) in Proposition 2.5 we see that 7Y ()}, ,, = e ™2 57 fi | so by noticing that
for any ¢ € H*™' C C*(T?),

T+0 _ 2y N o 746 ' '
[ -nea) =T [ 9T o - nexias,
7 i /T
one has

(H/Tw T 0 —r)dHY 2): 2
:ZEM[E((/T+€T(F+9—r)p2fn2,dﬁf7) )

ﬁ”i <( / VY —Tﬂrzf,m(Xﬁr)dBLT)Z)

_ Z ( / (s (L 720 12900 = 1))

- Z </ :ur+?a (1 + 77T2 (n% + n%))_se_Q(G_r))\nl’nQ (Vfrithm)Q)dT)

i\ni,n2

< 29E < / / Z VS o ( ur+7(dfc)d'f’>
N
§270E</ / /,LTJF?(da:)d'r)
0 Jr

< 27090,
where the second inequality follows from Lemma 8.1 below and the last one follows from the

fact that / pN—(dz) < 1. O
T2

Proposition 6.10. For all T>0,

sup sup E(|Z]V][3-.) < .
N>10<t<T

Proof. Recall that the semigroup Y(t) generated by vA satisfies |Y(t)|z(z-=)< 1, where |.| o)
denotes the operator norm on H~°.

t
From equation (6.1), we have Z" = T (t)Z + / Yt —r)dHY.

Thus sup E(|Z"|%-.) < 2E(1Z[F-.) +2 sup [E H / (t — r)dHY

0<t< <t<T

S)-Q

Furthemore from Proposition 6.9 we deduce that sup [E H / T(t — r)dHN
0<t<T 0

Combined with Proposition 4.1 in section 4, this show that sup sup E(||Z}|%-.) < cc. O
N>10<t<T

)gCT.

—S
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6.3.1 Proof of Theorem 6.6

We first prove that Z% is tight in C'(R,, H %) then we show that all converging subsequences
have the same limit.

Proposition 6.11. The sequence ZN is tight in C(R,, H™*).

Proof. We prove that Z" satisfies the conditions of Proposition 6.7 with H—=H .
— Proof of (T1). It suffices to show that

Vt > 0, Ve > 0 there exists a compact subset K of H~* such that P(ZY ¢ K) < ¢.

It follows from Proposition 6.10 that for each 2<s’<s, there exists C' such that,

sup sup E(||ZN]?,_.) < C.
N>10<t<T

Thus since V2 < s’ < s the embedding H~*'(T?) < H~*(T?) is compact (see theorem 1.69
page 47 of [5]), By = {pu € H™*; ||p|| -+ < R} is a compact subset of H~*. But

P(ZY & By-v) = P(IZ] | p-v> R) < HEUIZYI1-0) < 5
So by choosing R large enough we get the result.

- Proof of (T2). Let T>0, £1,&3 >0, (%) x a family of stopping times such that 7% < T
t
By noticing that V0 <u < t, ZN = Y(t —u)ZY + / Y (t —r)dHY, we have

™6 .
Nero— 2% = (1(0) — 1) 25 + / Y 0 r)dEY
We want to find § > 0 and Ny > 1 such that
sup supP([|[(Y(0) — 1) ZN ||g-+> 1) < &2, (6.5)

N>Ny >0

sup suplP <|
N>No >0
Proof of (6.5). Recall that (A, ny)n, n, denotes the family of eigenvalues of the operator —yA.

Let mq, my € N*, such that

1
32sup sup E(|Z]13 o)\ °
N>10<t<T

Nio .
/ (Y 40 — r)dHY

N

Z 81) S £9. (66)
H-s

5 < Amy.ms, forsome 0 < o < s—2. (6.7)
8182
Note that we can choose m; and my such that (6.7) is satisfied since

sup sup E(||Z % o0) < o0 for 0 < 0 < s — 2 (see Proposition 6.10) and (A, my)my ms 1S @
N>10<t<T

non-decreasing sequence which converges to +00 as m; — 0o or my — oo (see Proposition
2.2).

Let F,,, m, denotes the sub-space of H*® generated by
{pO’ (P:f,()ai < {57 6})7 (PE’;QJ < {77 8})7 (p:f,/@27i S H 1,4 H)v K1, kg even and K1 < My, Ky < mQ}'

Let ZZ‘Vle - be the orthogonal projection of Z on the dual space of Fy,, m,-
We have P([[(Y(0) — 1)) Z N |ln-+> 1) < PUI(Y0) — L) Z )%, N> F)
FROITO) ~ IEN ~ 2%, a2 3).

Let us bound each of the two terms of the above right hand side.
— PUICO) — L) Z N, Mli-= 5) < 5 sup E([(Y(0) — L) 2], . [5-)-
[Frng o alogtST my,mg

Furthemore from (2.1) in Proposition 2.5 Y (t)fi = e Asimal fo thus

K1,K2 K1,Kk27
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mi,m2 .
7= 21) (1 +9m®(k1 + £2)) *((C(0) — L) 2, £, )
g
= 5 (1) (2 (T(60) = L))
g .
= > (e7%mme — 121+ 72 (k1 + £2)) (21 fay o)

i,k1,K2

< (o 1209

1(C(0) — 14) Zy)

oy s

€1 4(67&""1””2 — 1)2
hence  P(|[(T(0) — 1a)Z )% g, . 1> 5) < 3 sup sup E([|Z[|5-.). (6.8)
€1 N>10<t<T

— Since | Y()ZN | g-< |1 28] -,
PI(CO) = La)(Z} — Z]%

TN Fing mo

Ma-= %) <PI(Z% - Zﬁqpm == )
<9 sup E(1(2 — 20, ).
0<t<T
On the other hand since (Ax, 4y )w; .4, 1S @ Don-decreasing sequence, for any 0 < o < s — 2, one

has

12 = 28 Bea= [(Ta =) F (L= 725 (2D = 2 e
Z )\Iful K)Q((Id - 7A> (Id - fYA) (ZN Zt]‘Vle m2) 12*61,/{2)2
1,K1,K2
Z )\/@1 /@2( Zt]|VF ([d _f}/A)%([d _VA) /@1 ng)2
Z )\Kls:g)\ﬁlomg(z Zi\Vle my 2171'62)2
< Am(: mo E A;f,:;(ztjv7 /2171'62)2
t,k1=m1+1,ke=ma+1
< )\m(: ma HZtN”?r{*S“"
Thus

€1 16)\;;17% N2
PUI(YO) = L) (Z% = Z% g, o ) > 5) < ———sup sup E(||Z;" |-s+0).  (6.9)
Proof of (6

€1 N>10<t<T
~ 2
/ (TN + 6 —r)dHY
N H-s H—s

1
(6.6) follows. (T1), (T2) are proved, hence (ZV)y is tight in C'(R,, H™*). O

So from (6.7), (6.8) and (6.9) we deduce (6.5).
(6.6). From Proposition 6.9, we have

N0 .
> 51> < SE (H/ T(r 40 — r)dHY
)

< C

We end the proof of Theorem 6.6 by showing the next Proposition.

Proposition 6.12. Every limit point Z of ZV is solution of

t
zt:m)zw/ Y(t —r)dH,.
0

t

Proof. We have ZN =Y (t)ZY + T(t — T)d’}?[N. Furthemore

S~

- according to Proposition 6.8 T t—r) d’HN - / (t— 7“)al’7‘-tr7

- according to Theorem 4.2 Y (t)Z} L Y(t)Zy
Hence the result. O
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6.4 Convergence of (UN, VY)ys,

We recall that (UN, V) satisfies the equations (6.2) and (6.3).
The following Lemma is proved by the same argument as used in the proof of Lemma 6.5.

Lemma 6.13. For all N > 1, the processes UN and V¥V belong to D(R,, H™).
We now state the main result of this section.

Theorem 6.14. Under (H2), the sequence of processes (UN,VN)ns1 converges in law in
(D(Ry, H*))? to the pair of processes (U, V) which belongs to (C(Ry, H™*))* and satisfies

t t t t
Uy =U +’y/ AU,,errﬁ/ (GSY* Z,dr — 5/ (GH*U,dr — 5/ (G9Y*Vydr + W, (6.10)
0 0 0 0

t t t t
Vi = Vitr / AV,dr—3 / (GSTY Z,dr+B / (G Uydr+ / (B(GS) —al)Vdr+W2, (6.11)
0 0 0 0

where Y, € H* (W1, ), (W2 1)) is a centered continuous Gaussian martingale verifying

1 _ ! 2 K ! 2
< (W) >t—ﬁ/0 (uf,so (i, (ur,K))>dr+27/o (12, (7)?)dr,

t K t t
_ S
< 20) 2= 8 [ (8020 ) ) [l (gyisa [l iyar

< (W), (W2,4h) >= —B/ (ur,ww iy, (ufK))) dr.

The proof of this Theorem is the aim of this subsection, however let us first prove the
following preliminary results.

Proposition 6.15. Both sequences (MY )1 and (LN)ys1 are tight in D(Ry, H*).

Proof. — Tightness of (MN)Nzl.
We prove that (MN)Nzl satisfies the conditions (T1) and (T2) of the Proposition 6.7.

— Based on Corollary 6.4, we deduce (7'1) by the same argument as used in the proof of (7'1)
in Theorem 6.6.

. t
— Proof of (T2). First note that < M™% >,= / AN (p)dr, where
0

AN() = 8 (1N, (il ) ) + 29N, (79)?).

According to Theorem 2.3.2 in [13] it is enough to prove that
VT >0 Vey,ea >0 35 >0, Ny > 1 such that for any stopping times 7%V < T,

sup supP(|< MY > nig) — < MY > v [> 1) < e,
N>No 0<6

where < M > is the increasing, continuous process such that, ||M;||? _.— < M >, is a martin-

gale. It is the trace of < M > which is the continuous increasing operator valued process such
that {M; ® M;— < M >;,t > 0} is a martingale.

Let T'> 0,e1,e9 > 0, from Lemma 8.1 below, we have

< MN >(nip — < MN > |= |5 {< MNP >N 1) — < MNP > Y|

1,m1,12

(N +6) N
7} Zz N1 ng/ Ar (pzr;f,ng)dr
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0
N 7,8
:) Zi,nl,ng / A(TN+T') (pnhng)dr

f-[|-2 $fUMN (dz) |y S,N
SC/ - N dy+/ ay,(dx) pdr
{ T2 fvz Y1 N+r(dx/>’uT +r( ) T2 H +T( )}
<6C.

Hence it follows from the Markov inequality that
E(]< MN >(nig — < MN > v |)

€1

P(|< MY >(Ngg) — < MY > x |> &)

o)
< —.
€1
(T2) follows.

(T1) and (T2) proved, we conclude that (MN)Nzl is tight in D(R,, H~*). The same argument

yields the tightness of (EN)Nzl in D(Ry, H?). O

Proposition 6.16. Every limit point (W', W?2) of the sequence (MY, LNV N1 is an element of
C(R,, H=*) x C(R., H).

Proof. We prove that the processes W' and W? are continuous.
Since Proposition 3.26 page 315 in [12] concerning the continuity of the limit in law of R™-valued
cadlag processes can be adapded to cadlag processes that take values in an arbitrary Hilbert
space, to prove that W1 is continuous, it is enough to show that

VI'>0 VYe>0 lim P(sup [|MYN —MYN|yz->¢)=0.
N 0<t<T

oo

Let T > 0, o € H*!, since the jump of M™% and (1%, ) happen at the same time, we have
7N, 7N, Cllellgs
| MY M ?|< ||\S/O%H .

Thus P( sup [ = 31 |ly-+> £) < LE( sup MY = MY l-o) <
0<t<T

C
eV N’

so lim P( sup HMN MY g—s>e) = 0.

—00  0<<T
The same argument ylelds the fact that W?2 is continuous. O

Lemma 6.17. Every limit point (W, W?) of the sequence (MN, EN)Nzl is such that for any
o, € HTL (W1 ), (W2 4))) is a martingale.

Proof. — Martingale property of (W1, )

A sufficient condition for (W1, ) to be a martingale, is that, for all & € N*, &, € C,(RF),
©1, P2, o € H? and 0 < 59 < 51 < 859 < 83 < ..... <sp <s<t,

E(o((WH,9))) =0,
where ¢((W*, @) = @i((Wy,, 01), (W, 02), oo (W ) (W, 0) = (Wi, ).

However given that M is a martingale, E(¢(M~¥)) = 0, moreover ¢ is continuous thus,
S(MN#) L5 p(W, ), as N — c.

On the other hand ¢(MY) is uniformly integrable since E[(¢(MY°)?] < C,

hence E(¢((W?, )= lim E[p(MY+)]=0.

So we conclude that (W1 ) is a martingale. A similar argument shows that (W? 1) is a

martingale. O
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Proposition 6.18. The sequence (MY, LN)ys1 converges in law in (D(Ry, H=*))? towards
the processes (W', W?) € C(R,, H=*) x C(Ry, H™%) where Vp,v € H* (W1, ), (W2 1)) is a

centered Gaussian martingale having the same law as:

Kwy)
/ 4?¢amra:ﬂ?h2 o (U)o W dr
//83:1 I 27 fs(r, 2)Wa(dr, dx) + //(%2 I 27 fs(r, 2)Ws(dr, dx),
T2

(6.12)

y) f(r, 2")dz'
/Lmﬂﬁﬁ@m@mwlé%@ﬁﬁﬁme

+[ [ vovareawiar. i), (6.13)

where Wi, Wa, Ws, Wy, Wi, We are independent spatio-temporal white noises defined in Propo-
sitton 6.8.

=[] \/ﬁfsmx) 3 IQK(jf(x’y) fi(r,y)dy (@)W (dr. dz)

Proof. From Proposition 6.15 (MN, EN)Nzl is tight in D(Ry, H %) x D(Ry, H™*),

hence according to Prokhorov’s theorem there exists a subsequence still denoted (]Téf N TN IN>1
which converges in law in (D(R,, H*))? towards (W', W?). By Proposition 6.16 and Lemma
6.17, Vo, € H*, (W1 ), (W2 4)) is a continuous martingale, thus we end the proof of propo-
sition 6.18 by showing that the centered, continuous martingale ((W?!, @), (W2 1)) is Gaussian
and satisfies (6.12) and (6.13).

We have

~Ng0 ——i
- Z/ / l{EZ —S}‘p )1 K(XE,x)) M (dTv du)
{u Z] 1 N(K( XJ))l{EJ I}}
2y i i
T4/ N Z/o Limi—sy V 0(X;)dB,
i=1

~ N,p .
La \/—Z/ / 1{Ez —sy¢( )1{u< k(xbxi) M (dr,du)) +

i WN(K(x])) {Bl= 0

\/72/ Vgi—ny V 9(X)dB; — Z// g —ne(X)Q' (dr, du)

fMth“’ + MPYE 4 MY,
Consider for o, € H*"(T?) the following sequence of martingales
]\ZNSO + L~th = MM M MY MY MY
The martingales M} M>N¢ MNP MY being two by two orthogonal,

< MNSLINY >i=c MWNVE >y 4 < M2V > 4 < MYV >, 4 < M3V >, 4 < MANY >,
J— 2 < M17N7<P’M17N7¢ >t .
In addition we have the following convergences in probability

t t
< MMV >, 5 6/ (uf, (o )) dr, < M*N# > 27/ (1 (79)*)dr
0 0

K
(i, K)

¢ t
<0 = 5o [t (guyin, < a9 s o [ gar
0 0
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On the other hand:
- MM 4 N £> (W @)+ (W? 1) along a subsequence since
(MM, LNG) S5 (W, 0), (W2, 40)).
- (W o) + (W2 4) is a continuous martingale since (W', ) and (W2 1) have this property.

Thus (W1, @)+ (W2 1)) is a time changed Brownian motion.
The quadratic variation

< (Whg) + (W2, 0) >
=/0 B[ (uf,ﬁ(ﬁi, (ufK))) + (uf,@/f(ui, (ufK))) —2 (uf,w(ﬂi, (ufK))) }dr
b [0 (707) + 220 (T07) + ol )y

of (W, o)+ (W? 1) being deterministic then we conclude that (W1, )+ (W?2 1) is a Gaussian
martingale having the same law as

(W}, 9) + (W7, 0) =
-/ \/stm“ e i ) ele) — v W . )

f(r, z")da!
/ Waxl mwﬂlrdﬂf / Wa o OV fs(r )W (dr, da)
+/0 2 8:101 (2)V23fi(r, 2)Wa(dr, dz) + /0 (2)\/27 f1 (r, 2)Ws (dr, dz)
+ [ [ vovaneawr. i),

where Wi, Wh, Wi, Wy, Wi, Wi are independent spatio-temporal white noises defined in Propo-
sition 6.8.

So taking ¢ = 0, ¢
satisfy (6.12) an (

T2 8372

= 0 respectively in the above equation we see that (W1 ¢) and (W?2 )
13). O

6.4.1 Proof of Theorem 6.14

We first prove that UY and V¥ are tight in D(R,, H ) then we show that all converging

subsequences of (UY,V¥)ys; have the same limit which we shall identify. Let us recall the

following embeddings which follow from Proposition 2.4, Lemma 2.6 above, and from Theorem

1.69 page 47 of [5].

— If 8 > 1 then H*¥(T?) C C(T?) and for all p € H*, T(t)p € H* and || Y(t)¢|l 5o < [|0]l 7o
furthemore if ¢, ¢ € H* there exists C' > 0 such that ||¢y|| 5o < C|| || o 12| g -

— If 8 > 2 then , H¥*+1(T?) c C*(T?).

— Vs1, 89 € R such that s; > s, the embedding H*'(T?) — H*2(T?) is compact.

Proposition 6.19. There exists a constant C' > 0 such that for any s>0, ¢ € H®, we have

G2 ol =< Cllol msup|| K (., y) | e, (6.14)
Yy
1G]l e < C||<P|H85UP||K( Yl (6.15)
K(x, ) 2
e () ‘ (6.16)

Proof. Proof of (6.14). We first recall that / K(x, y) f (t SL’)dSL’ is lower bounded by a positive

Jre K

f‘[|'2 U‘ y :ur

)_n oo

constant C' independently of y € T? and
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Now we have

EE [ T PR
- x) N (d
N Z-g,:m(l (4 n2)) /wr T2 Kzy) Jp K (u y)ur du ) Sy K (u, y) i (du)

X iy (Gl ()2
< > (I +97*(nf 4+ n3))° / <f1y2 S K @ SN(dx) (du)) pr™ (dy)

in1ms K (u, y) ¥ ( du ) Jr K (u, y)pr

/ /sz s ( )dz)Quﬁ’N(dy)

<Cllpl [ 3 (@ amint ) ([ Ko i (Gz) nl )

i,m1,n2
< Cllelifssupl| K (., y)ll7s-
v
Proof of (6.15).
K
1,N — I,N . I,N d
G elm= [l (1™ ) = el | (0 )
K i
(™ B e = 32 (L (03 4 n3))* (™, =) Fanna) 12
1,m1,Nn2 (Mra )
K(z,y) ‘ I,N 2
= 1+ 7% (n? + n2 S(/ (@) dydx)
Z'Jg;nQ( ( 1 2)) 1 Jre f_ﬂ_Q K(u,y),ur(du) 1, 2( ) ( )
1
< T () | 1 (dy)
(o Ko

< ([ E@n @)
<o [ 30 aamtt ([ K, ut

i,n1,mn2

< CsupHK(-, Yl

Proof of (6.16). Since [}, ¢*(x)py (dz) < [ ¢*(x)dx, we have

S o MT,K(,O)‘ o 2/..2 2\\s (MT’KQO) ) 2
||G7"S0 Hs— ‘ K) s —Z;ql (1+77T (TLl +TL2)) ( (MMK) 9 nl’nQ)LQ
Jre Kz, y)o(x)puf (dx) 2
= 1+ ym2(n? +n2))® T - 1o (Y)Y
i,rgng( ( ! 2)) ( T2 fp SL’ y Hr dx/) 7 ( ) >
< 5 eardm) [ o)
1,m1,n2 T2
K(Jf y) S
X d dx
L e W< >> y) ps o)
<CH90HL2/ > (1 4y (nd +nd)) / TR dx,) (7 )dy) ps (de)
1,1m1,N2 T2 r
K(x,) 2
Jpe K (@', ) pr(da’)

We have the following immediate consequence of Proposition 6.19.

29

0
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Corollary 6.20. There exists a constant C' > 0 such that for any s >0,V V € H™*, we have
(G V=< Csup||K (. 9) = [V |-+,

Y
(G Vi< CSUPHK(-,y)HHsHVHHfs,

)

G2y e

Wl

Let us prove the following results which will be useful to prove the tightness of (UN)ys

and (VN)N21 in D([R+, Hﬁs).

Lemma 6.21. The pair of processes (UN, V) satisfies V0 < u < t,

Uy T(t—uUNJrﬁ/ r) (G ZNdr—ﬁ/ I (GENY UN drr

—5/ T(t—r) (G2 VNdr + [T(t —r)dMN, (6.17)
VN =T (t —u) 5/ ) (GSENY ZN dr + ﬁ/ — ) (G UN dr

+/u Y(t —7)[B(GEN)* — ]WNdr+/utT(t—r)dL7{V. (6.18)

Proof. Let us consider a function ¢ belonging to CY?(R, x T?). By the It6 formula applied to
é(t, X}) and using a similar computation as in subsections 5.1 and 6.1, we obtain for 0 < u < ¢,

V00 =W o+ [ @ o+ [0 Sar

oo [ (@ (it ) oo [ (et gl o
_5/ ( vy “T’¢T)))dr+L(¢r,dM§).

Let o € H*™ and 0 < u < t, consider for r € [u,t] the mapping ¢, (z) = T (t — r)p(x).
We have that 1.(-) € CY?([u,t] x T?). Indeed:

- For any r € [u,t], ¥,.(-) € H*T(T?) C C*(T?).

-Vz € T?, the map r € [u,t] — ¥.(z) = —y A (Y(t — r)p(x)) is continuous since Y(t)
is a strongly continuous semi-group and —y A (Y(t — r)p(x)) = Y(t — r)(—y A p(z)), (see
Proposition 2.5). Thus replacing ¢ by 1 in the above equation we obtain,

UN, ) = (UN, Tt - u)y +5/( ( it T(t_r)w)K))>dr

Mr ) MT?

o f (ot g )oo [ (A
+/ut(T(t — 1), dMNM).

We obtain (6.18) by similar argument. O

Proposition 6.22. There exists C' > 0 such that for any stopping times T < o0 a.s and 6 > 0,
T+60 o 2
E ( / T(F+ 60 —r)dMN ) < O, (6.19)
7 H=s

3

T+ N
/ T(F+0—r)dLY

2
< . .
H_s) < Ch (6.20)
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Proof. Proof of (6.19). Let us recall that AY () = 3 (uf’N, ©*(ub™, G ))) +29(pSN (7)?)

N

TV 40
and/ (YN + 60— r)p, dMN) = ,/ Z/ Ligicsy 7 YT + 0 — 1r)p(X})dB:

™ +6 4
V¥ / J A e I LU 0]
j=1 Z K(xL,x7)) (Br=1}
Now from Lemma 8.1 below, we have
2 746 . \?2
E( )g > [E((/ T(?+9—'f’)p2f,n2,dMﬂv))
H=s IR T
9 .
— Z [E(/ AﬁT(T(G—T)pgf,m)dr)
: 0
0
[ At e i)
0

sm(/ e 2 Pliin) )

1,n1,Mn2

T+6 .
/ Y7+ 0 —r)dMN

I
i'm i

INA
S
Q

A similar argument yields (6.20). O

Proposition 6.23. For all T > 0,

sup sup E(|U7[3-.) < oo,
N>10<t<T

sup sup E(|V;¥[%-.) < .
N>10<t<T

Proof. Choosing u = 0 in equation (6.17) and (6.18), we get the estimates
t
1O I < 5|!T(t)UNqus+552t/ IT(t = r)(GRN) ZY |3y -odr

+58%t /||T ) (GENYUN||3,-odr + 55% /||T (t —r) (G VN2 odr

+ 5“/ (t — r)adr™||

t
VNI - < 61TV 15— +68% | (1T (t = r)(GPY) 2| -edr
0

!
H~-

t t
67 [ T = )G UY i + 6157 / (= )GV e

+ 6ta? / V2, sdr+6H/ (t —r)ai|
From Corollary 6.20, we have
t
U I < 5HUNH?{s+5t5208upHK(ﬂf,-)H?{s/0 U |11+
z,.)

Dy (dx’)

H-s

+ 5Ct/32

t t
oo [V e 5t Cspl o e [ 12

+H fyr(t - r)dMgV

Y

H-—s
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t
VNI, < 6HVNH?{fs+6t620supHK (2, )|y / VUM g-edr
t
i) +a?) / 1V dr

D (da’) 1
H/ 1ZN)2,—dr + ]/ Tt — )|

Thus from Lemmas 8.2 in the Appendix below, 6.2 and Proposition 6.22, we have

+6t(

+ 6t6205up||K

H s

T
sup E(U y-2) < SE(U -0 +575°C [ { sup EQUN -0 + sup BV - e

0<t< 0<r<t

+5T23%C sup E(||ZN || g-s)+CT, (6.21)
0<t<T

T
sup E(1V7*r-2) < OV - +67(C-+0) [ { sup EU2 o)+ sup BV -0

0<t< 0<r<t

+6T26%C sup E(||Z)3-.)+CT. (6.22)
0<t<T
Hence summing (6.21) and (6.22) and applying Gronwall’s lemma we deduce the result from
Proposition 4.1 in section 4 and Proposition 6.10. U
Now we can establish the tightness of the sequences (UY)y and (VV)y.
Proposition 6.24. Both sequences of processes UN and VY are tight in D(R,, H™*).

Proof. We only establish the tighness of U by showing that the conditions of the Proposition
6.7 are satisfied.

— (T1) is obtained by using the Proposition 6.23 and applying an argument similar to that of
the proof of (T1) in Theorem 6.6.

— Proof of (T2). Let T>0, &1,e5 >0, (7V)y a family of stopping times with 7% < T
From equation (6.17), we have

Ul —UN = (T(0 ) L)UN +5/ — ) (G ZN ar

T T

™ +0
_ﬁ/ T(TN—i—H—T)(GT{vN)*UT{VdT_ﬁ/ TN 40— 1)(GS)VVdr
’]rv+€ - T
Jr/ Y(rN + 0 —r)dMY
= (T(0) — L)U7 + 5/ YN+ 6 —r) PN (2N, UN VY dr

™16 N
+/ (N +60—r)dMY,

N
where J3N(ZN UN VN = (GSENYy ZN — (GENYUN — (G VN
We find § > 0 and Ny > 1 such that

sup suplP (|[(r o) — 1)UX HH L >e1) < e, (6.23)
N>Nos

+6
sup suplP ( g YN+ 0 — ) SN (ZN N VNYar > 51> < &9, (6.24)
N>No 50 N e
N+9

sup suplP ( / TN 40— T)erN
TN

N>Ny 6>6

> 51) < &a. (6.25)
H-s



6 CENTRAL LIMIT THEOREM 33

— (6.23) is proved by similar reasoning to that of the proof of (6.5) in Proposition 6.11.

— Proof of (6.24). Let [ € R.\[0, 1], we find 6 > 0 such that 7% + ¢ < IT and such that (6.24)
is satisfied. Since Vo € H®, [|[Y(7V + 60 — 1)l =< ||¢||ms, from Corollary 6.20, Lemmas 8.2
below, 6.2 and Propositions 6.10 and 6.23, we have
> 51)
H—s

N1
/ TN+ 0 —r) IS N ZN UN VN Yar

N

N6
P <H5 /N TN+ 0 —r) I (2N U VY )dr

2
H-s

629 ™10
<TPE( [ 1T o s U Ve
N

™10
N2 N |12
wE( [ 2 Bt IUN -

oC
< ——sup| K (.,y)]
€1y
‘ K(x,.) ‘ . /TN
fv? K2, )y (da’) | s N
252

B26°C

< ———sup sup ({12 |5 +HIU -+ VN5 D)
€1 N>10<t<IT

B262C

el

29C
61 T

+6
IV 1l

<

So (6.24) is proved.

— Proof of (6.25). From result (6.19) in Proposition 6.22 we have,
2

™46 . N 1o .
P / TN +60 —r)dMY >e | < SE / Y(rV 4+ 0 —r)dMY
1
™ H—s ™ H—s
1
S _2507
&1
hence (6.25) is proved. O

To show that all converging subsequences of (U, V") ys; have the same limit we will need
the next two Lemmas.

Lemma 6.25. For anyt >0, ¢ € H*(T?), as N — oo,
¢ 1
[ E(ne - i) a—o

0

Proof. Since s > 3, H® — H*, thus
t 1

t 1 1
| (et - aiyre =gl ) ar < ¢ [ E(NIGH = GIT( = glin) ar
0 0
Furtemore as H? is a Banach algebra (see Proposition 2.4) and [|Y(¢)pl|zs< C||o|| g3,

G2 — G~ r)ple= 0~ ryo (=l )]

(pr, K)/ 113
K
< Cllellas (Mﬂ’N — 11y, m)’ s

If we let support{ K (z, )} = A(x), we will have
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DnK@ y) I,N I 2
e — ) (dy)| de,
Ko Wr(dx)< )(dy)

H< - M’"’ (b, K

furthemore from Remark 6.1 the map y € A(:c) — D"K(x,y) is continuous and bounded by
C IT‘la|X |0 || . Thus as the map y € T? — [ K(2/,y)p,(d2’) is also continuous and lower
0<|n|<3 T2
DK (z,y)

7 T Ky ()
bounded by C IT‘laX |50 o. So we deduce from Theorem 5.6 that
0<

[ it sy = )

(@', y) pr(da’)

is continuous and

bounded by a positive constant, the map y € A(z

2

2o,

K 2
According to Lebesgue’s dominated convergence theorem, E(H (uf’N — m) 3) — 0,
:uf'u H
as N — oo. Hence
t 1
[ E(lier - ciyrte = nel) a
0
K 2 \3
<t [ €|t o)) o
— 0, as N — oc.
Hence the result. O

Lemma 6.26. For anyt >0, ¢ € H*(T?), as N — oo,
¢ 1
[E(iies - asee - neli) e —o

0
Proof. We have

GPIN(Y(t —r)p)(z) = GPI(T(t = 1)) ()
N K(x (2N, KT (t = 1)p) 4 K(x (), KY(t —1)p)
(e i)~ (ot e R
_ IN T . (NraKT< 7)) IN . (/i}q —m,KT(t—r)gp)
= (e TR (s )

I,N (N, KTt =1r)p)
G e )
Furthemore:
a) Since :
}fp Y (t —r)o(a’) s (da') I
f1]'2 2", y) pr(da”) -
— The map y € FQ > / K(2',y)pu-(dz') is continuous and lower bounded by a positive
T2

constant.
— Under (H2), The map y € T? — / K (2, y)Y(t — r)p(a" )2 (de') is continuous
T2

— From Remark 6.1, for any = € T?, |n|< 3, the map y € A(z) — D"K(z,y) is continuous

and bounded by C n‘la|x3|]]<; In\)”

t— ,,S dz’
fwﬂ el )’MTQ( ) is continous and bounded
(fw D (da))

the map y € A(z) — D"K(x,y)

by Cl¢lls Og‘laﬁ?”\k(w |, hence
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/ DV (2, y) x 2K t—'f’)w(x’)ufz(dfc’)
(IW ", y)p (dxﬂ))

Furthemore, according to Lebesgue’s dominated convergence theorem, we have

/ (H( L (Mfﬁi(}(;ﬂ@))F

LN _  Iyiq Zp
(k™ = p)(dy)| = 0.

1
>2d7’
HS

/ (H( <umgi(;()—2r)so>)‘

fTQ Y t - T)Q‘J( ,),Ltf(dl’/) I,N %
x 2 ( - r)(d ) dx ¢ dr
( fﬁ 2, y)in(da") ) ot )i

2 1
2
) dr
H3

—>O,asN—>oo

S KY(t—
b) Let us prove that lim (H (MIN K('ur — Hr ( TW))

N—o0 (pr, K)?
Under (H2):
— Vy € T?, the map x € T? — K(x,y)Y(t — r)¢(z) is Lipschitz and bounded and its |||
and ||-||z norms are bounded by C||k||«|/¢|lee and C(||k||co+|¢]lc) respectively.

— For any z € T?, |n|< 3, the map y € A(z) — D"K(x,y) is continuous and bounded by
C max ||k .

2

1
>2dt:O.

Hs

0<|n|<3
— Vy € T?, ————— is bounded by a positive contant independent of y.
(MT7K<7y))
Thus on S S
’ — — —_— —_— 2
H iy gl = 1, KY(E= 1)) < CH N g = KX (= r)p)
(o, K)? (b, K)? HS
2 t— / SN _ S dr’ 2
Inl<3 A(x) (IT LL’”,y (dl”/))
2
/ /. / K g) (¢ = )pla) (3 = i) (o it ()
In|<3
< C(||kl 0 [l o0s KD )| o) (uN
(1Elloos lllloc, masx KT oo )i (™ 17)-
Hence since d2(u5V, 1) L5 0, and d2(u5Y, %) < 4, according to Lebesgue’s dominated
convergence theorem we have
t SN _ S KT (1 — 2\ 4
0 (”T?K) ; He
(. J (D /[Ed SN u))3d
(e s ) [ B2l
— 0, as N — o0.
SN KY(t—1)p) 2 \2
c¢) Finaly we show that hm (H ( : (u — Mr,K)) ‘ ) dt = 0.
:ur Y K (e, K)? He

Since for all x € T?, K(z,.) is Lipschitz and bounded by ||k|ls and For any x € T2, |n|< 3, the

)
map y € A(z) — D”K(:L’ y) is bounded by C' n‘1a|><(3Hk(‘"| || 00, We have
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2

S,N —r N
| Ry =)

<] (o K% o 0 07 1)

, Tt —r)o(x)K (2, y) >N (da’
Inl<3 Ale) fﬁ (w, y) (fp (u, y) dU))

Hs
2

H3

2
K y) ) — ) (d) ul (dy) ) da
2
<aleln Y [ ([ 1w / K u,) (s = ) )| ¥ () )
In|<3
C(l1&l oo, ll2lloo; n\1a|x3||k:("7' loo)d (1" ).
Thus
t SN KY(t—1)p) 2 3
E H v g N_ K ‘ dt
/o ( (K T 0 =) [0
t
1
< C([1%] oo, [l ]loos H‘lalthH’f(‘"' oo )/0 E(d% (1), pr)) 2 dr
— 0, a8 N — . O

The next Proposition establish the evolution equations of all limit points (U, V) of the
sequence (UY, V),

Proposition 6.27. Any limit point (U, V) of the sequence (UN, V™) satisfies

Uo+ﬁ/ (G2 Z,dr — 5/ t—r)(GI)Udr—B/ (t —r)(G2)* V,dr
+/ Y(t—r)W}, (6.26)
(t)\Vo — 5/ GSI)Zdr+5/ t—r)(GI)Udr+6/ (t — r) (G2 V,dr
—oz/o T(t—r)wdr+/0 Y(t—7r)dW?. (6.27)

Proof. We prove this Proposition by taking the weak limit in the equations (6.17) and (6.18).
Note first that from Propositions 6.11 and 6.24 there exists a subsequence along which the
sequences (UN, V) y, and (ZV)y converge in law towards (U, V) and Z respectively.

1- We first prove that / (UN GENY(t —r)p)dr LN / Un, GIT(t — r))dr.
0

¢
We have / (UN,GINY(t—7r)p) dr = / (UN,GIY(t —r)p) dr
0 0

¢
+ / (UN[GEN = GIY(t —r)p) dr.
0
— Since GIY(t —r)p € H,

t t
/ (U,{V, GiT(t - r)gp) dr & / (Ur, GiT(t — T)(p) dr.
0

0
¢
— From Lemma 6.25 and Proposition 6.23 / (UM, [GEY = GIY(t = r)p) dr — 0 in L*(P).
0
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Indeed, E O /t (UN,[GIY = GIY(t = 1)) er <

0
t

< sup sup E(JUN|,_.)?% / E(NGEY — GIT(¢ — )l
0

1
1) 2dr.
N>10<r<t

2- Since V¥ converges in law in D(R,, H*) towards V,

/0 (T(t — (G5 VY, @)dr B / (Y(t — r)(G5) V. p)dr.

t t

3- The convergence / (ZN, GEINY(t — r)p)dr L / (Z,, GHY(t — 7)p)dr follows from the
0

same argument as the one in 1-, using this time Lemma 6.26 and Proposition 6.10.

4- Since for any ¢ € H*™ Y (t)p € H*™, from Theorem 4.2 and Pr0p051t10n 6.18, we have

(UN,T(t)p) L (Up, Y(t)p) and /0 (T(t—r)cp,dMN —)/ t—r)gp,dW) O

From Proposition 6.16 we deduce that all limit points (U, V) of (UN,V¥)ys; are ele-
ments of (C'(Ry, H™*))?, thus since it is so easy to see that equations (6.26) and (6.27) are
the same as equations (6.10) and (6.11) repectively, we end the proof of Theorem 6.14 by

showing that the system formed by the equations (6.26) and (6.27) admits a unique solution
(U, V) € (C(Ry, H %))~

Proposition 6.28. Suppose that (U', V') and (U?,V?) both belong to (C(Ry, H™*))* and are
solutions to equations (6.26) and (6.27) with (U}, Vy) = (U2, V) then (U, V') = (U V?)

Proof. We have

U -0 = [ X =GO - U 5 [ T (@3 - v
thus " . " .

|1U} = U || =< 5/ 1Tt —r)(G)* (U, —U3)||H—sdr+6/ 10t =) (GF) (V= V) |- dr.
Moreover from Corolla(t)ry 6.20, we deduce that ’

U2 Uzl < Bl / |02 — U2 edr +

/||v1 V2| gsdr,

D (dx)

hence using Lemmas 8.2 below and 6.2, we obtaln

U2 =U2l< 5C [ 10 U2 IV =V Y (6.28)
On the other hand " .

VISV = U= U2 = a [ T 0 - Ve
hence ’ .

Vi = Vel a--< U} = UfHH—erOé/ IV = Ve |lz—sdr (6.29)
Summing (6.28) and (6.29) and applying Gronwall’s loemma we obtain (U', V1) = (U%,V?). O

The next two Lemmas will be useful to show an additional result about the regularity of
the pair of Processes (U, V).

(M{’ K(zx,.)

. (:utaK)
exists C' > 0 such that
L) = KL O a2 < C(dp (g, prag) + dp (] 1))

Lemma 6.29. For any x € T2, let us set Kl(x) = ) For any t,ty € Ry, there
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Proof. Let t,ty € Ry, we have

I i I T, . ; Kz, ) (e — g, K)
i) = Kb o) = (1l = s 758+ (™ f%wtfm ).

Furthemore:
1- Since the map y € A(z) — / K(2',y)p-(dx') is Lipschitz (with the Lipschitz constant
T2

2v/2Cy05 (see Lemma 5.7)) and lower bounded by a positive constant and from Remark 6.1,
V|n|< 2 the map
y € A(x) — D"K(x,y) is Lipschitz (with the Lipschitz constant independent of 2) and bounded

D K
by C max ||k(I")| ., the map y € A(z (:1: v) is Lipschitz (with the constant
0<n|<2 f-u-z y)pr(da’)
Lipschitz independent of ZL‘) and bounded by C’maXHk(‘”' || o
K(x D”K (:p y) 2
Hence (I— e / I I (dy)| da
He = Hyg (ut, § N ToE () e~ Hio) ()

< CdF(Mtnuto)'
2- Since K(z,.) is Lipschitz (with the Lipschit constant 2v/2C), (see Lemma 5.7)) and bounded
by ||k|lc and the map y € A(x) — / K(z',y)p-(dz') is lower bounded and V|n|< 2 the map

T2
y e A(zr) — D”K(x y) is bounded,

t to> )
H< s (Mtaf(()(ﬂt: K>

2

2

dx,

114, (dy)

2

/ DK (x,y) (e — uth(-,y))

2 ' JA() fp (@', y) pe(da’) fw (', y) gy (d’)
D”K(w y) (e — uth(-,y))

S K (2 y)pe(da’) [ K (2, y) py (d”)

[n|<2

<cy //
T2 J A(z)

In \<2

< Cd2 (ﬂtaﬂto)-
So the result follows from 1- and 2-. O
(5, 0 (x,.))
(:uta K(l‘, ))

! (dy)dz,

Lemma 6.30. Let ¢ € H*(T?), for any x € T2, let us set K2 (z,p) =
For any t,ty € Ry,

17 (- 0) = K5 (o)l =< Clloll ) (dr (pe, preo) + di (i p1z)).
Proof. Let t,ty € Ry, we have

Sl o) S (o) — = My PE () (17, K (,.)) B )
NI oY 2% B 7 ) [ (R R

1- Since from Remark 6.1, V|n|< 2, the map y € A(x) — ¢(y)D"K (x,y) is Lipschitz ( with the

Lipschitz constant independent of x) and bounded by C/||¢|| nlla‘bx |k and H? is Banach

algebra and an easy adaptation of the proof of Lemma 8.2 below yields that H ) ’ Y < C,
th 2
(1 —Mto,wK) H IR B ol
H /~Lt07 H? (MtouK) H? <Mt luto790 ) H? 9
-cY P(y) DK (2, ) (15 — 15) (dy) | do
<2 /T2 S A@)

< Cllolloe) (i i)
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2- Using an argument similar to the proof of (6.14) in proposition 6.19 and an easy adap-
tation of Lemma 8.2 below, we have

H (45, oK) K(z,.)
,uta (:utoa K) K<7 .T//)/it<dl'//) f'ﬂ'QK(.,m/) Htq (dl’l) H?
Now since from Remark 6.1, V|n|< 2, the map y € A(z) — D"K(x,y) is Lipschitz (with the

Lipschitz constant mdependent of x) and bounded by C n\1a|x |£0"]|, and H? is Banach alge-
0<|n|<2

<C.

H?2

bra, one has

(Mfa@K) H MtvcpK) 2 2
- 7K - 7K
’ (:uta K) (:utov K) <'ut Hio ) :uta (:utm K) H? <Iut . ) 1 2
el 3 [ || DK ) )| da
<2/ T S AE)
< Cllllm2)di (pre p1e,)-
So the result follows from 1- and 2-. O

Now we state an additional result about the regularity of the pair of processes (U, V).
Proposition 6.31. The pair of processes (U, V') belongs to L2, (R, (H'™*)?).

Proof. Let us set

Up=(la—=yD)2U, Vi=Ia—yA)2V,, Z=(la—7D)7 4,

Wi = (Lo =) T W WP = (Lg—v0) 7 W2,
Given that U, € H™*, Uf € L*(T?). The same conclusion remains true for V;*, Zg, W,"* and
W2*. Now by noticing that A(I; — yA)Z = (I; — yA) T A, we deduce from the evolution
equations (6.10) and (6.11) of (U, V) given in Theorem 6.14 that

Us =Us +fy/tAUsd'r + 5/t Iy — N2 (GO (I — D)2 Z3dr

g / (Li=70) 7 (G (L= )3 Uzdr— / (L= 2) 7 (GE) (L= ) V2 dr + W,
Ve=Vy +7/ Avsdr—ﬁ/ (Ig — )T (G (I — D)2 Z3dr

" / (Lo = 4A)F (GLY (I — 4 A)RUSdr + / (= 7O T (GE) (T — A5 EV2dr

/ Vidr + W2
0
Moreover the above system can be rewritten as one equation as follows

(dUg, dVE) + A(t, (Ug, VE))dt = J(t)dt + (W5, dW2°),

where
A(t, (U7, V)=
A +B(a— L) 2 (G])*(Ia — D)2 Bly—=yD0) 7 (GP)*(Ia — v A)> (Ut>
F(GH) (L= 1D +a AV

—Bi— D) T (G (la—vD): =7 A=p(la—7D)
J() = (L =vD)7 (G (Lo = y2)2 25, —(La— L) 7 (G
and (u,v)" denotes the transpose of the pair (u,v).

On the other hand given that the dual spaces of (L?(T?))? and (H')? are isomorphic to
(L3(T?)) x (L*(T?)) and H~' x H~! respectively, by identifying L*(T?) to its dual space
(L*(T?))’, we have (H')* C (L*(T?))? c (H )%

Let us now prove that the family of operators A(t, .) satisfies the assuptions given in Proposition

(Ia—72)2Z7)
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2.8 in section 2, with H = (L*(T?))?, F = (H')? and F' = (H')2
We first Recall that the family of eigenfunctions (f%* ); ., n, (as defined in Proposition 2.2)

ni,n2
associate to the family of eigenvalues (A, n,)ny.n, Of the operator —yA is an orthonormal basis

of L*(T?).
Now we start by showing that V(U, V) € H' x H', A(t,(U,V)) € H' x H~'. We have
A(t, (U, V) =

( =y AU+ Bl —40)F (G}
B(Ia =)= (G (La — vD)
Moreover:
(i) I(Za = ¥2) 2 (GI)*(Ta = ¥2) Ul < Cll(Ta — vA) = (G])* (1o — 7A)2U | 12
= C(G])*(Ia = D)2 U] -
< C|[(1a = vD)2Ul| -
= Cllt][ 2,

where the second inequality follows from Corollary 6.20.

J'(a =7 8)3U + 5(la —98) 7 (GE) (I =1 0)2V )
U=y AV = Bla—78)7 (G (Ta— L)V +av |

(i7). Similarly form Corollary 6.20, we have

18(Ls — 7 A)F (GF) (Lo = 78)3 V1< Cll(Ta = 7A)F (GF) (Lo — v 2)3 V] 12
— CIGEY (I = 72) 3Vl
< Cll(Ly — 72)3 V] -
= V]|

(idd). [|l=y AUlF-= 3 (L+am®(ng +n3)) " (=7 AU, £, 0,)7e

1,m1,12

:'7&02 v (n + n3)(1 4y (nf +n3)) " U, £, )7
1£0,n1,n2

< 2 (Lam?(nd +nd)) U, fr,0,)7e = UG

So from (i), (i), (i77) we conclude that A(t, (U,V)) € H* x H™L.

Let us now prove that the four assuptions in Proposition 2.8 are satisfied. In the rest of this
proof we will note by < .,. > the duality product between H ! x H~! and H' x H'.

(1). Given that A(t,.) is linear, to prove the first point, it is enough to show that V(U, V),
(U, Vy) € H' x H' the map 0 —< A(t,0(U,V)), (U, V1) > is continuous on R, which in turn
is so easy.

(2). The fact that there exists 6 > 0 such that ||A(t, (U, V) ||z-1xu—1< 0||(U, V)| g1xm follows
from (7), (i7), and (7i1).
(3). Let us prove that there exists o1 > 0, 03 € R, such that
< A<t7 (Z/{, V)>7 (uv V) > +02"<u7 V)”%2><L22 al”(“? V)H?{lel'
We have < A(t, (U, V)),(U,V) >
=< =y AU+ B(Ig — D)= (G (L — yA) U + B(Ig —yA) = (GF)*(Ia — yA)2V, U >
+ < =BLai—D) 2 (G (Ia=~D) U=y AV = B(Ia— D)2 (GF ) (Ig—vD)2V+aV, V > .

Furthemore:
(31). <=y AU, U >=~ < YU, TU >=~|[vU|3..
(3.2). From (4) and (i7), we note that
Bla— D)2 (G])*(Ig = D) iU + f(la — yA) 2 (GF)*(Ia — 7A) 2V € L (T?),
thus as H' C L*(T?), from (i) and (4i) and from Young’s inequality we have
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|< B(Lg — D)2 (G])*(Lg = vA) U + B(Lg — yA) 2 (GF)*(Ig = yA) 2V, U > |

< N18(La = v2) 7 (G (Ta = v2)2Ul| 2 U] 2+ B(La — v2) 7 (GF)* (Lg — ¥D) V|| 2 |U] | 12

< CB(IUNIZHIVI 2 Ul 22) < CLB(I 22+ [IVI12)-

Hence

< BLa = yD)Z (G (Ta = ¥D) U + B(Ia — 4 D) = (GF) (1o — 7 A)2V, U >

+ < —B(Ig—yAN) T (G (Ig — AU — B(Ig — yAN) T (GF) (I —yAN)2V, V > belongs in the
interval [ — Cof([U|[2:+IVIIZ2), CoB(IUNIZ:+IVIIZ:)]-

(3.3). <V, V>=|V|3i,

So from (3.1), (3.2) and (3.3) we see that it is enough to choose oy = Cy5 + v and 07 = 7.
(4). We finish by showing that for any (U4,V) € H' x H' the map t — A(t, (U, V)) is Lebesgue
measurable from |0, 7[ to H~ ! x H~!. However since H ! is a separable Hilbert space then
according to the Pettis theorem (see Theorem 1.1 page 2 in [20]) it is enough to prove that
V(Uy, V1) € H' x HY, the map ¢ —< A(t, (U,V)), (U, V1) > is Lebesgue measurable from ]0, 7|

to R.
Let us prove that the map ¢t —< A(t, (U, V)), (U, V1) > is continuous from |0, 77 to R.

K(z,.
Let t,ty €]0, T[, by noticing that Vz € T?, Glp(z) = ¢(z) (,uf, (u(l}(o = o(2)K! () and H**
ts

is a Banach algebra, from Lemma 6.29, we have
< (Ia=v2)7 ((GI)* = (G)") (La —v2)2U, Uy > |
=< (Ig—vL)U, (GI = GL)Ls— L) Uy > |
<N (g = D) U5 || (G = G (Lo — ¥D) = Un || o
< [T = D) 2U || -+ || (Ig — v D) 2 U (K () = K ()]
< Cled|| | (1a = D) 2 U | I () = KF, ()]
< CllUd]| (U || =2 1 () — K () e
< Clldlla d | (dr(pf miy) + d (i s 1))
Similarly by noticing that V4, € H', (I; — yA) =T U, € H'** € H? and
(1, Ly =N 2 U K (2, )
(e, K)
< (La=72)7 (GF) = (GR) ) Ta —vL)2V, Uy > |
=< (Li=72)2V, (GF = G3) (Lo —vD) 7 Uy > |
< N(La = D) V|- |[(G7 = G3)) (Ig — v2) 7 U || s
<AV CEC, (Lo = vD) 2 Uy) = K3 (5 (Ia = vD) 2 Uy |2
< C(IVNas W) (die (g s 1) + di (e pieo)) -

Hs—1

Hs—1

G (1= A) T Ui (2) =

, from Lemma 6.30, we have

So
|< A(t7 (u7 V))v (ula Vl) > —< A(ttm (Z/[, V))a (ula Vl) > |

< OV v, Wkl U IV 00 ) (G 5) + il ) + e, )
thus the result follows from the fact that u°, u/ and p belongs to C([RJF, (Mp(T?), dF)).

Now in addition to the fact that the family of operators A(t,.) satisfies the four assumptions
given in Proposition 2.8 in section 2, with H = (L*(T?))* F = (H')? and F’ = (H')?, we
note that:
= J() = (L= 72) 2 (G (g =v8)2 28, =(La =4 8) 7 (G (1o = D)3 2

belongs to L7 (R, (L*(T?))?). Indeed,
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1(1a = v2) 2 (GP) (L = 72)2 23\l 12= |(GF)* Zill =+ < Cl| Z|| -+ and Z € C(Ry, H™).
— (U5, Vg) € (L2(T2))%.
Thus we deduce from Proposition 2.8 that for (A(t,.)) e, being the above family of opera-
tors, the stochastic differential equation
(dU(®), dV(1)) + A(t, U(), V(1))dt = J(t)dt + (W, AW’
(U(0),v(0)) = (Us, V¢), (6.28)
admits a unique solution (U, V) € L} (Ry, (H*(T%))?) N C(Ry, (L*(T?))?) a.s.

loc
On the other hand, it has been shwon in Proposition 6.28, that the pair (U*, V*®) is the unique
solution of the equation (6.28) in C(R,, (L*(T?))?)(since equation (6.28) is equivalent to the
system formed by equations (6.10) and (6.11), which in turn is the same as the system formed
by equations (6.26) and (6.27)). Thus we conclude that the pair of processes
(U*,V?®) = (U, V) which belongs to L (R, (H'(T%))?) N C(Ry, (L*(T?))?), consequently the

pair of processes (U, V) belongs to L}, (R, (H'%)?). O

loc

Remark 6.32. Given that dZN = v A ZNdt+dHY (see equation (6.1)), by proceeding as in, the
proof of Proposition 6.31, it is easy to see that VN € N*, ZV € L} (R,, H'™*). Furthemore by
Using the Ité formula establish in [20 page 62] we can see that the sequence (ZN)y is bounded
in L2 (Ry, H™%) (although we do not establish this result in this paper). Consequently since in

loc
a Hilbert space the bounded sets are relatively compact for the weak topology, the convergence

in law of (ZN)n in L2 (R, H'™*) equipped with its weak topology can be easily deduced.
The convergence in law of the sequence (UN, VN)xy in (L} (Ry, H'™%))* where

L} (Ry, H'™®) is equipped with its weak topology follows also by the fact it is bounded in
(L3 (Ry, H™%))%, which in turn is not difficult to prove by using the Proposition 6.31. However
we do not establish that result in this paper.

7 Law of Large Numbers, Central Limit Theorem of the
sequence (p>V, V) y=1 : the case v =0

In this section we consider the second model presented in the Introduction ie when the diffusion
coefficient v = 0. More precisely we consider a compartmental SIR stochastic epidemic model
for a population distributed on the two dimentional torus such that:
e The position of an individual 7 is independent of time and is represented by X* defined as
in the Introduction.

e A susceptible i become infected at time t at the rate Blipi—s) ZN KX, X7)

| =1 S, KX =1y
where «, 8, E; and the function K are defined as in the Introduction.

The temporal evolution of S(-), I(-) and R(-) are defined as in the Introduction.

The assumptions made at time ¢ = 0, are presented in the Introduction, in other words, the

sequence of empirical measures (15", g™, 1)) is defined as in the Introduction.

Thus the renormalized processes p>, p'N, N and pv are defined as follows. V¢ > 0,

N
1
SN __ ] ]
ot —N§ I{E;:S}CSXl
1=1
N

1
I,N __ 2 ) )
Hy - N ]‘{E’;zf}é)(Z

i=1
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We first recall that Assumption (HO) in section 3 remams true. Now since we have already

shown in section 3 and section 4 respectively that (u5™, ub™, u™) 25 (g, b, i) and that

(U = VN(ug™ = 1), Vi = VN (g™ — i), Z¥ = VN (1" — 1)) converges in law in (H=*)?
(for any s>1) towards the Gaussian vector (Up, Vp, Z), then the aim in this section is to study the
law of large numbers and the central limit theorem of the sequence { (™, ui™), t > 0, N > 1}.

7.1 Law of Large Numbers

The following is assumed to hold throughout subsection 7.1.
Assumption (H3): k is Lipschitz.

7.1.1 System of evolution equations of the pair (>, /")

For ¢ € C(T?), since v = 0, the evolution equations of >V and pu’"V simplify as follows.

! K ,
(™, 0) = (g™ p) — 5/ (uf’N,w(uf’N, T K))) dr + M,
0 )

t K t ,
(™, 0) = (g™, ) +/0 <uf’N, e(ul, W)) dr — a/o (uEN o)dr + LN,

where

’N
¢_——Z// 1{Ez —sy( )1{U<BZ KEXT)

Z K(x!,x7)
=1

N t o]
/ 1 ; '
N, i !
LY = N E /0 /0 Lp_—spp(X )1{u<5 SN KGXD M (dr, du))
i=1

S K(xt,x9) (Br=1}
N t a
1 // i
- — Ligi —ne(X)Q (dr, du).
N; o Jo B

=1
Let us state the main result of this subsection.

}Mi (dr,du),

(Bl=1}

Theorem 7.1. The sequence (>, p!"N)n>1 converges in probability in (D(Ry, M(T?)))?
wards (p°, pl) € (C(Ry, M(T?)))? where {(u, ul),t > 0} satisfies, Vo € C(T?),

R R N T P 7)

(1> ) = (uéw)ﬂ%/o (uf,w(uﬁ (M’KK))) dr—&/ot(ui,w)d'f’- (7.2)

Proof. We obtain the tightness of the sequence (", u!V)y>; by an adaptation of the proof of
Proposition 5.4, thus by Prokhorov’s theorem we deduce the existence of a subsequence which
converges in law towards {(u;,ul),t > 0}. Furthemore, adapting the proof of Theorem 5.6
we prove that {(u;, ul),t > 0} is continuous and verifies the system formed by the equations
(7.1) and (7.2), and V¢ > 0, pf and p! are absolutely continuous with respect to the Lebesgue
measue with densities fs(t,.) and fs(t,.) bounded by d5(ds is defined in section 3).

On the other hand (fs(t,.), f1(t,.)) satisfies the following system.

fs(t) = 5/ fs(r oK f(:y’y) )z - f1(r, y)dydr,

10 = 10+ 5 [ 1500) [ ettt —a [ gy
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where ¢ is the density of ;. Moreover it is easy to prove that the above system admits a unique
solution in the set A = {(f1, f2)/0 < fi < 09,7 € {1,2}}. Thus we conclude that the sequence
(5N uN) ns1 weakly converges in (D(Ry, M(T?)))? towards (1°, u'). However as the initial
measures /5 and pf are deterministic (see Theorem 3.1 in section 3), the measures p; and puf
also have this property, consequently we have the convergence in probability. O

7.2 Central Limit Theorem

The aim here is to study the convergence of the sequence (UN = /N(u5N — %), VN =
VN (N — ), as N = oo in D(Ry, H*) x D(Ry, H*) with s>1 (the choice of such a ’s’ is
justified as in subsection 6.2). To this end we make the following assumptions.

Assuptions (H4): k € C%(R,).

Following the same argument as that used in the proof of lemma 6.2, we note that:

Remark 7.2. Under the assumption (H4), sup|| K (x,.)||gs < oo

7.2.1 Equations verified by the pair (UY, V")

Let ¢ € C(T?), by a similar reasoning as in subsection 6.1, we see that

U0 = W o)+ [ .63y [ 0.6 - [ G+ TN,
0 0
t t (7.3)
(%N,so)z(VoN,w)—ﬁ/ (ZN,Gf’I’Nw)errﬁ/ (UN, G o) dr+5/ VN, GIp)
0 0
—« / (VN @)dr + L, (7.4)
0
where
- MM = VNMN? and LYY = VNLM?,
-Va,y, 2’ € T,
SN
GSIN I,N K (Mr’ ,goK) )
o) = <“ &N B )
fpw VK (2, y) (dw) N
= | K(z N(dy),
/ fv? N(dy') Jou Ky y)nldy) ()
K(x,.) (IL‘, Y)
GI’N — I,N _ I,N d
1N () = pla) (1, WQ) 0@ | Tt ey @)
GSo(y) = WK (Y) _ Jr @)Kl y)ur (dw)_
' (1, K () fw p(dy’)

In the rest of this section we arbitrarily choose 1 < s < 2, and we equipped D(R,, H™*)
with the Skorhokod topology.
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Theorem 7.3. Under (Hj), the sequence (UN,VN)nsy converges in law in (D(R,, H™*))?* to
the pair of process (U, V') which belongs to (C(Ry, H=*))? and satisfies:

t t t
U, = Uy+ 8 / (ST Zdr — B / (G Usdr — B / (G5 Vidr + W, (75)
0 0 0
t t t t
Vi :VO—ﬁ/ (Gf’l)*Zdr—Irﬁ/ (G{,)*U,,drw/ (Gf)*v,,dr—a/ Vidr+W,2, (7.6)
0 0 0 0

where Y, € H®, (W',
K
< (W, 0) >= / 20, dr,
W50)>=8 | (ur v (M,K)>>

©), (W2, 9)) is a centered Gaussian martingale verifying

<)== [ (w0t ) o [kt

N

The proof of the next Proposition, which will be useful for the proof of Theorem 7.3 is an
easy adaptation of the proof of Proposition 6.18.

Proposition 7.4. The sequence {(MtN,L/N), 0}n>1 converges in law in (D(Ry, H™*))?
towards the process (W', W'2) € (C(Ry., H*))? and Vo, ) € H° (W @), (W24h)) is a cen-

tered Gaussian martmgale of the form

K (z, y)
o= [ \/stm: Ry 1 v W, )
Wt271/} / / \/ﬁfs T, SL’ 2 f1y2 y)x/ dr /f ('r’,y)dyz/}(x)wl(dr,dx)
—/ / (x)\/ afr(r,x)Ws(dr, dx),
o Jr2

where g is the density of p and Wy, Ws are independent spatio-temporal white noises.

7.2.2  Proof of Theorem 7.3

We establish the tightness of the sequence (U™, V) first, then we show that all converging
subsequences of (UN, V") x> have the same limit which we shall identify.

The next proposition is useful to prove the tightness of the sequence (UY, VY)y>1.
Proposition 7.5. VT > 0,

supE( sup [UN]I3,-.) < o,
N>1 0<t<T
0.

supE( sup [[VV[3,-.) <
N>1 0<t<T

Proof. From equations (7.3) and (7.4), we have
t t
VUM, < BIUN -t 55% / N(GSENY 2N |2, dr + 55% / N(GENYUN |2, dr
0 0
t 7
+58% / (G V2 adr + BIDEY )2 -,
0
t t
V12, < GV |2 652 / N(GSPNY 2|2, dr + 66% / NG UN |2, dr
0 0

t t
+662t/ II(Gf)*WNII?{—sdT+6O¢2t/ VN -+ 6l -
0 0
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So since Proposition 6.19 and Corollary 6.20 remain true for u; = u, we have

m/WUﬂmsw

/HWWMFMT+WM@Mﬂmﬂ,
Hs [

2V [y 55 Csup .

HS

1N 17— < BN TG 17—+ +58%¢* Csup || K (-, y) |17
Yy
K(x,.)

g .

t
VM1 < 6!\%N!\?{—s+6/32t203up|!K(-,y)H?{sIIZNH?{—#%%CSUPHK (y qus/ U3 dr

+ 6t (0/32

2 N N,
+a? /HVHHAW+&M .

d:c )
Thus from Remark 7.2 and Lemma 8.2 below, one has

t
<wmmnHQ<%wﬂwuma+qu/{<wmwwHo+mewan}r

o<i<t 0<u<r

+5t25205up[E(HZNHH )+ SHEE(OSHE HM | -s), (7.7)

E(sup |[V;V][%-.) < 6sup[E(H%NHH7s)
0<I<t N>1

t
+mw%wa%/{<swuwwHa+Emuwvaa}r
0 o<u<r 0<

+ 6t BQCSUP[E(HZNHH s)+sup[E( S LN o). (7.8)

Hence summing (7.7) and (7.8) and applymg Gronwall s lemma we obtain the result from
Corollary 6.4 and Proposition 4.1 in section 4. O

Now we prove the tightness of the sequence (U™, V¥)y>; in (D(Ry, H™*%))%
Proposition 7.6. Both sequences (UN)ns1 and (V) ys1 are tight in D(R,, H™*).

Proof. We only establish the tightness of (UY)ys; by showing that the conditions (T1) and
(T2) of Proposition 6.7 are satisfied.

The condition (T1) is obtained by using the Proposition 7.5 and applying an argument similar
to that of the proof of (T1) in Theorem 6.6.

- Proof of (T2). we have
t t t —
U = U + 5/ (G ZN dr — 5/ (GIN)UN dr — 5/ (G2 VNdr + M,
0 0

t -
=U + 6/ I'Ndr + MtN’ with TV = (GSEN)y ZN — (GEN)*UN — (GH)* VN,

0
We want to prove that
VT > 0, Vep,e9 > 0,35 > 0, Ny > 1 such that for any family of stopping times (7V)y with
™ <T,

N6
sup P H/ Ff,vdrH >y | < éq, (7.9)
N>Ny N H—s
5>0
sup P (HM Nio ]TJ/;]]\V[H > 81) < €. (7.10)
N>Ny H—s

5>0

—(7.10) is proved by using an argument similar to that of the proof of (T2) in Proposition 6.15
— Proof of (7.9). Let T > 0,1 € Ry \[0,1], £1, &2 > 0, we find § > 0, Ny > 1 such that §+7~ <IT

and
N0
sup P (H/ Fivd'r’H > €1> < &,.
N>No N H=s

5>0
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N1 (TN+9)
/ I'Ydr - < / ITN| gr—sdr < 6 sup ||TN || g-s.
N H—s N 0<r<IT

Thus (7.9) will follows from supE( sup ||[TY||g-+) < C in view of the last inegality, which in
N>1  0<r<IT
turn follows readilly form Lemma 8.2 below, Remark 7.2 and Propositions 4.1 and 7.5, combined

with the fact that Corollary 6.20 remains true for p; = . So (T2) is established. O

We have

An easy adaptation of the proof of Lemmas 6.25 and 6.26 yields respectively the next two
Lemmas.

Lemma 7.7. For anyt >0, p € H*(T?), as N — oo,

[ e —anet) a —o
Lemma 7.8. For anyt > 0, cop € H*(T?), as N — o0,
[E(i@s - s ) at —o

0
From Proposition 7.6, we deduce that the sequence (UY, V) y is tight in (D(R,, H*))?, so
there exists a subsequence still denoted (UY, V) y, which converges in law in (D(R, H*))?
towards (U, V). Moreover from Proposition 7.4, we deduce that (U, V) € (C(Ry, H™*%))?, thus
we end the proof of Theorem 7.3 as follows.

Proposition 7.9. The pair (U, V) is the unique solution in (C(Ry, H=*))? of the system formed
by equations (7.5) and (7.6).

Proof. By adapting the proof of Proposition 6.27 we obtain the following results
t
/ (UN,GINpydr & / (U,, GLo)dr,
0
t t
[ @ ez s [ (2,63
0 0

Therefore, with the convergence of the other terms of equations (7.3) and (7.4), we see that the
pair (U, V') satisfies the equations (7.5) and (7.6). By adapting the proof of Proposition 6.28
we also see that the system formed by equations (7.5) and (7.6) admits a unique solution in
(C(Ry, H*))2. O

8 Appendix

We first recall that for any s > 0, the family (p%°,,,)in,n, (as defined in Proposition 2.2) is an
orthonormal basis of H*(T?).

In this appendix we prove the next two Lemmas.
Lemma 8.1. Vz € Ty, we have,

Z (pi;im(x)y < o0 Zﬁ s>1,

1,m1,n2

N (V0 na(@))? < 00 iff 552,

i,n1,n2

Proof. As for any x € T?, 4 € [|1,8]], 0 < (f;,,,,(x))* < 4,

S (@)= Y e @

(1 +972(ni +n3))*

i,n1,n2 1,11,N2

ivs x2:7r24 ni + nj iy
PRILZTEI R SED DL el S R

%,11,N2 i=1 n1>0,n2>0,even
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+ E m*n3[(f5, 0)2 @)+ (£, 0)? ()] + Z m2n3[(fr, 0)2 (@) +(fr 0)° ()]

n1>0,even (1+'y7r2n%)5 n2>0,even (H—’WQn%)S
So
1
S (i @r e Y sy S o,
i,n1,n2 n1>0,n2>0,even <1 T (77, - 77, i=1 n1>0 even 1 + fyﬂ- " )

7,8 +
> @hiaersioe it ees ¥

,M1,Nn2 n1>0,n2>0,even i=1 n;>0,even

1+ ’}/71' n: )
Hence we see that:

i\s 2 : : 1 . 1
_ Z (P 0y ()" < 00 provided the series >~ EET= T n12>0 (EET=TE

n1>0,n2>0

i,m1,m2

1
and 2; gy converge.
n

— Z (vpf;fm (7))* < oo provided the series > Wrw@%’ Z (HW m

i,n1,n2 n1>0,n2>0

2
3
and ) Ree=reris converge.

- Convergence of the series
n2+4n2
1) Convergence of > A2 02 )
n1>0,n2>0 1 2

5 —+o0 —+o0 .T _'_ y
It is so easy to see that & and dzdy are of
: gy [ [ G e

the same type (either convergent or divergent), and the latter is of the same type as

—+00 73 1 —+00 n
/ ( dr < / r3725dr and I, =2 dr < oo iff $>2.
1 1

1 +’77T2T2)8 - 787-(-28
2 2
Thus > S - — converges iff s>2.
>Tne>1 (I+y7?(ni+n3))
2) By the same argument as previously ) m converges for s>1.
n1>0,n2>0 v 1

3) By the comparison criterion the series > ﬁ and ) m converge for s > s

n1>0 v no >0 v

2 2
# ™ 3

4) By the comparison criterion the series nz> GEEE and nz>0 (7m2n7ys Converge for s > U

Lemma 8.2. Under the assumption (HQ) for any t > 0, we have
) 2

Dpe(da’) ‘

Proof. We refer to Proposit1on 2.4 above. H?’(TTQ) c CY(T?).

< o0

H3

If we let support{K ( )} = A(x), we will have
z,.) K(z,y) :
| o s e = 2 / K@, yyata)|

K(x Y)

Jaw K@ y)p(da’)’
since from Lemma 6.2, for any x € T2, K(x,.) € H*> C C'(T?), one has

Now letting wy(z,y) =

%(x y) = gfl (z,9) B K(z,y fA ayl (w, y) pe(due)
Oyr Jr, B (u,y)pe(du) fA K(u,y ,ut(du))
0wy 383/251 (z,y) 8y1 (z,y fA 8y2 (w, y) pe(due)

B ¥ = Jai KCwy)mldu) ([, K(w,y)pu(du))’
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B ay2 :E Y fA(y gi (u y)ﬂt(du) +K l‘ Y fA ay2y1 (u y):ut(du)
fA K(u,y m(du))
K(z,y fA (y) 8y1 (U ) e ( du fA(y) By2 (u, y)pe(du)

+ 2
(Sa K (w, y)pe(du))?
93 PK
Py, vy aylyljyl (z,y) aygyl( fA(y ayl( ) pe(du)
Onyeyr fA(y (u,y Nt(du) fTQ (u, y)pe(du))?
2K 0K (z
B aaylyl fA () ay2 u y)ﬂt(du +2 Ka(yly fA(y ale U y):ut(du)

JQ( (u,y Au(du))
43_5@’@ fA(y) g_zi u, y) p(du) fA(y ayr (% Y) e (du)
fA( (u, y)pe(du))?
83/2 fA(y 8y2y1 (u y),ut(du) + K(z,y fA(y aylyé(yl (u, y) pe(du)
(Sagy K (, y)pe(du))?
Ja A(y) gi(“ y) pue(du) [8312 (z,y fvg ayr (W y)pe(du) 4+ 2K (z, y) fA(y) %(u,y)ut(du)
Uy K@ ppald))?

K(2,9) [a) 22 () pa(du) [y, 55 (u, y)p(du)
(Sagy K (u,y Mt(du))

K e u)( L) 25 o)) f g 2 () ()

(Sagy K (w,y) pre(du))*
On the other hand if we let C; = {2k/(||z — yl|?), 4k"(||x — y||?), 8k®)(||x — y||*)} and
Cy = {(21 — y)"(32 — o)™ (n,m) € {0,1,2,3)2}, VIn|< 3, DK (z,y) — Dk(||z — y|P?) is
written as the sum of the products of elements of C; and Cy. Thus as from assumption (H2),
V|n|< 3, |k is bounded in R, V|n|< 3, v € FQ D”K(:L’ y) is bounded by a constant inde-

+2

+ 2

+6

pendent of 2. Now since Vy € T?, [, K(u,y)p (du) = [, K (t,u)(du) is lower bounded
by a constant independent of y and f(¢,.) < dy then we deduce from the above calculations
K(x,y)
that / D"
% f Aly K(z',y)p.(dx')
the result. 0
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