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CENTRAL LIMIT THEOREM FOR A SPATIAL STOCHASTIC

EPIDEMIC MODEL WITH MEAN FIELD INTERACTION

M. HAURAY, E. PARDOUX, Y. V. VUONG

Abstract. In this article, we study an interacting particle system in the context
of epidemiology where the individuals (particles) are characterized by their position
and infection state. We begin with a description at the microscopic level where the
displacement of individuals is driven by mean field interactions and state-dependent
diffusion, whereas the epidemiological dynamic is described by the Poisson processes
with an infection rate based on the distribution of other nearby individuals, also of the
mean-field type. Then under suitable assumptions, a form of law of large numbers has
been established to show that the associated empirical measure to the above system
converges to the law of the unique solution of a nonlinear McKean-Vlasov equation.
As a natural follow-up question, we study the fluctuation of this stochastic system
around its limit. We prove that this fluctuation process converges to a limit process,
which can be characterized as the unique solution of a linear stochastic PDE. Unlike
the existing literature using a coupling approach to prove the central limit theorem
for interacting particle systems, the main idea in our proof is to use a semigroup
formalism and some appropriate estimates to directly study the linearized evolution
equation of the fluctuation process in a suitable weighted Sobolev space and follows a
Hilbertian approach.

1. Introduction

In this paper, we study a spatial stochastic epidemic model based on the well-
known SIR model, where S, I and R respectively stands for the different states of
an individual. These states can vary from the compartment of Susceptible to the
Infected one, and eventually to the compartment of Recovered (Removed) when the
individual recovers from the illness (or dies). In fact, for many problems related to
the spread of infectious disease in ecology and public health, an explicit description
of spatial structure is not necessary nor advantageous. In many cases, the concept
of average behavior in a large population is sufficient enough to provide the insights
and extract useful information from existing data. However, the spatial component of
many transmission systems is becoming increasingly important [35]. Recent studies in
both deterministic and stochastic epidemic models have enabled us to understand the
significance of individual displacements in a population on the persistence or extinction
of an endemic disease [5, 6, 12, 29].

In our spatial model, an individual will be characterized by two features: its position
and its infection state. The state E varies in the set of the types {S, I, R} = {0, 1, 2},
where we identify S with 0, I with 1 and R with 2 in order to simplify the mathematical
description. It is also useful for the representation of the jumps between the states in
the epidemic dynamic. Meanwhile, the position is a continuous variable X ∈ R

d.
1
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The addition of spatial variables complicates the standard homogeneous SIR model in
two ways: by using an infection rate that depends on the distribution of surrounding
population and by taking into account the individual displacements.

In fact, it is a natural tendency that an infected individual will infect a close neigh-
bor more often than a more distant individual. While these different transmission
behaviors are averaged in homogeneous SIR models, in our model, we use an infection
rate depending on the relative distance between individuals. The infection rate between
locations x, y ∈ R

d will be given by a function K : Rd ×R
d → R+, which is assumed to

be bounded and Lipschitz. Averaging over all the infected individuals, the susceptible
individual i becomes infected (in other words its state jumps from 0 to 1) at time t at
the rate

1

N

N
∑

j=1

K(X i,N
t , Xj,N

t )1{Ei,N
t =S}1{Ej,N

t =I}. (1.1)

The infectious individuals recover (in other words their state jumps from 1 to 2) at
rate γ > 0 and once an individual recovers, it is immune forever.

Each individual moves in R
d according to a diffusion σ

(

X i,N
t , Ei,N

t

)

dBi
t which de-

pends on both individual’s state and position, and weakly interact with the other in-
dividuals in the population in the mean filed type through a kernel V . In this paper,
the interaction kernel V , the diffusion strength σ are assumed to be bounded Lipschitz
continuous with respect to the position variables. Of course, this equation has a mean-
ing on a probability space endowed with the requested Brownian motions (and Poisson
point processes for the infectious-jump part of the dynamic). The Lipschitz hypothesis
will be very useful to build a correct theory of existence, uniqueness to that system, and
also for our results concerning the large population limit (i.e. when N goes to infinity).

In light of the aforementioned settings, the epidemiological dynamic can be rep-
resented using Poisson point processes jumping in {0, 1, 2}. Now we choose a proba-
bility space (Ω,F , (Ft)t≥0,P) equipped with N independent Poisson random measures
(Qi)i=1,...,N and N Brownian motions (Bi)i=1,...,N , the position and state of the individ-
uals will evolve in time according to the following system:























dX i,N
t =

1

N

N
∑

j=1

V
(

X i,N
t , Ei,N

t , Xj,N
t , Ej,N

t

)

dt+ σ
(

X i,N
t , Ei,N

t

)

dBi
t,

Ei,N
t = Ei,N

0 +

∫

[0,t]×R+

1{
u≤ 1

N

∑
j 6=i K

(

Xi,N
s ,Xj,N

s

)

1
(E

i,N

s−
,E

j,N

s−
)=(0,1)

+γ11(E
i,N

s−
)
}Qi(ds, du).

(1.2)

For more details concerning the origin of this model and its interest, we refer readers
to the previous paper of the authors [18].

In the study of a system composed of N particles, one of the most important objects
is the empirical measure that can help us fully describe the whole dynamic. In this
paper, let us introduce the empirical measure process associated to the above system
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consisting of N individuals
(

X i,N
t , Ei,N

t ), i = 1, . . . , N defined by

t 7→ µN
t =

1

N

N
∑

i=1

δ(Xi,N
t ,Ei,N

t ),

where δ(x,e) is the Dirac measure at point (x, e) ∈ R
d × {0, 1, 2}.

Under suitable assumptions in [18], we established a conditional propagation of

chaos result (in the presence of a common noise σ0(X i,N
t , Ei,N

t )dB0
t ), which states that

conditionally to the common noise, the individuals are asymptotically independent and
the stochastic dynamic converges to a random nonlinear McKean-Vlasov process when
the population size tends to infinity. And as a consequence, the associated empirical
measure converges to the unique solution of a stochastic mean-field PDE driven by the
common noise.

In this work, we only treat the case without the common noise. As a special case
of the results obtained in [18] (with σ0 = 0), we can also show that when N → ∞, the
empirical measure µN

t converges to µt the law of the unique solution to the following
nonlinear McKean-Vlasov equation



















dXt = Vµt
(Xt, Et)dt+ σ(Xt, Et)dBt,

Et = E0 +

∫

[0,t]×R+

1{
u≤Kµs(Xs)10(Es− )+γ11(Es− )

}Q(ds, du),

µt = L (Xt, Et) .

(1.3)

As typical with McKean-Vlasov dynamics, the limit measure µt can also be charac-
terized as the unique solution of a nonlinear partial differential equation. That PDE is
called the forward Kolmogorov equation associated to the McKean-Vlasov SDE (1.3)
and given by the following equation

dµt =−Dx · (Vµt
µt) dt+

1

2
tr
[

D2
xx

(

(σσT )µt

)]

dt

+Kµt

(

1e=1 − 1e=0

)

µt(dx, 0)dt+ γ
(

1e=2 − 1e=1

)

µt(dx, 1)dt.
(1.4)

Now, as a natural follow-up question after studying the law of large numbers, the
aim of this paper is to look for a limit theorem for the fluctuation process of µN

t around
its limit µt.

In the previous work, a quantitative law of large numbers is established in the
Wasserstein distance, which roughly shows that

E
[

W1

(

µN
t , µt

)]

≤ C(t)











N−1/2, d = 1,

N−1/2 logN, d = 2,

N−1/d, d ≥ 3.

(1.5)

Moreover, it is well-known that the 1-Wasserstein distance used in (1.5) is equivalent
to its dual formulation,

W1(µ
N
t , µt) = sup

{
∫

Rd×{0,1,2}

φ
(

µN
t − µt

)

| φ : Rd × {0, 1, 2} → R with Lip(φ) ≤ 1

}

,

(1.6)
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which apparently shows the strong dependence of the rate of convergence on the regu-
larity of test functions. Therefore, to recover the right order of N1/2-normalization as
the classical central limit theorem, we need to modify the regularity of test functions.
This point will be further clarified in the next section.

Now we consider the following fluctuation process with the N1/2 scaling:

ηNt =
√
N
(

µN
t − µt

)

, t ∈ [0, T ].

Following the Hilbertian approach used in [15, 24, 30], we can prove a central limit
theorem for the sequence of the fluctuation processes (ηN)N≥1 in an appropriate space of
distributions. The limit process of the normalized fluctuation processes can be described
as the unique solution a linear stochastic partial differential equation driven by space-
time white noises. In order to achieve this, we regard the fluctuation process ηNt as
a process taking values in a Hilbert space, which we consider as the dual of some
Sobolev space of test functions. The regularity of that dual space corresponding to
the regularity of test functions will be decided by the martingale term appearing in the
evolution equation of the fluctuations as well as the form of generators in that equation.

It is worth noticing that the Sobolev spaces used in the present paper are not
exactly the classical one and they must be refined. Indeed, we will study a class of the
weighted Sobolev spaces with polynomial weights, see the definition in subsection 2.1.
The importance of the weight will be explained in the proof, provided that the weight
satisfies some suitable integrability properties. Moreover, we observe that the dimension
d plays a crucial role in the rate of convergence (1.5) and it is also well-known that the
Sobolev embeddings depend strongly on the dimension of the space. This will help us
identify the right level of smoothness.

Let us now discuss the main differences between our results and the previous one in
the exiting literature. In fact, this kind of spatial epidemic model have been studied by
Emakoua et al. [5,12] with the same SIR epidemic dynamic but with a simpler model for
the displacement of individuals (individual’s movements follow independent Brownian
motions on a compact torus in [5], and follow independent diffusion processes in [12]),
where the mean field interactions between individuals through the kernel V are not
taken into account. This leads to the main difficulty in comparison with the previous
works due to the presence of nonlocal terms in the evolution equation of the fluctuations
(ηN)N≥1. In contrast to the independence of individual’s movements in [5, 12], these
nonlocal terms are created by mean field interactions and they do not allow to obtain
directly good estimates for the norm of fluctuations in the weighted Sobolev spaces.

The Hilbertian approach used in this work has already been used to prove central
limit theorem in the context of interacting particle systems [15,24,30], mean field games
[11], mean field age-dependent Hawkes processes [9], neuron networks [38]. In [15, 30],
Méléard et al. developed a coupling method used in [39] and [20] with some relaxations
on the initial conditions and coefficients. The authors provide a sharper estimate on
the control of the couplings (instead of the original one of order 2 in the proof of the
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quantitative law of large numbers),

E

[

sup
t≤T

∣

∣X i,N
t −X i

t

∣

∣

4
]

≤ CT

N2
, (1.7)

where (X i), i = {1, . . . , N} are i.i.d copies of the unique solution to the limit SDE
of their original system. This estimate of order 4 requires a careful computation of
the covariance between the pairs

(

X i,N , X i
)

and takes advantage of the independence
between the particles (X i), i = {1, . . . , N}.

In [11], Delarue et al. also used the coupling method and this estimate of order 4 to
prove central limit theorem for a system consisting of N agents in the context of mean
field games. The main idea is to use the solution to the mean field limit to construct
an associated McKean-Vlasov interacting system of N particles that is sufficiently close
to the original system for large N , then derive the central limit theorem for the latter
from the central limit theorem for the former.

However, the main reason that prevents us from applying this coupling method
to prove central limit theorem is that the authors in the aforementioned articles only
work in a continuous framework and rely strongly on the estimate of order 4 (1.7). In
contrast, the individuals in our model possess both continuous and discrete features.
In the previous work, we have pointed out the compulsion of using estimates of order 1
for the control of the couplings (see Remark 3.2 in [18]). As usual when working with
jump processes, we can not get higher rate for the moment estimates as in (1.7). Hence
the standard trick used for diffusion processes is useless in this case. To solve this
difficulty, the author in [9] developed the above coupling method for a specific mean
field interacting age-dependent Hawkes process. A refined version of the higher order
estimates (1.7) is provided by estimating the coupling in the total variation sense.

Unlike the articles listed above, where the coupling method is used to prove the
central limit theorem, in the proof of the present paper, we use the semigroup formalism
and some appropriate estimates to directly study the linearized evolution equation of
the fluctuation process in a suitable weighted Sobolev space. It will be shown that
under some suitable assumptions on the initial conditions and the smoothness of the
coefficients, the fluctuation processes (ηNt )N≥1 belong uniformly in N and t to the
weighted Sobolev spacesH−(1+D),2D andH−(2+2D),D (see the definition in subsection 2.1,
with D := ⌈d/2⌉ ). Then we prove the tightness of the pre-limit fluctuation process
in D

(

[0, T ], H−(2+2D),D
)

by using appropriate compact embeddings. We also show that

the Hilbert space H−(2+2D),D is sharp in some sense: it has the smallest regularity order
as possible in the class of Sobolev spaces with polynomial weights where we can obtain
the tightness result. Finally, we complete the proof of convergence of the sequence
(ηN)N≥1 by identifying the limit fluctuation process η as the unique solution of a linear
stochastic partial differential equation.

Organisation of the paper. In Section 2, we provide some preliminaries on the
weighted Sobolev spaces and state the main results. Section 3 is devoted to prove
the tightness of the pre-limit fluctuation process and the martingale terms appearing in
the evolution equation. In order to do this, we first establish some key estimates in dual
Sobolev norms and then take advantage of the Hilbert structure of the Sobolev spaces
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to prove the tightness results. Section 4 contains the proof of the main Theorem 2.3,
and we give a characterization of the limit fluctuation process as the unique solution
to a linear SPDE driven by space-time white noises.

2. Preliminaries and main result

2.1. Preliminaries on weighted Sobolev spaces. This section is devoted to the
definitions and some technical results related to the Sobolev spaces with polynomial
weights used in this paper. This kind of weighted Sobolev spaces was first introduced
in [32], see also [15].

Weighted Sobolev spaces. For all j ∈ N, α > 0, g ∈ Cj(Rd), we define

‖g‖j,α :=





∑

|k|≤j

∫

Rd

|Dkg(x)|2
(1 + |x|2)αdx





1/2

,

where k = (k1, . . . , kd), |k| = k1 + · · ·+ kd.

Let Hj,α(Rd) be the completion of the space consisting of all functions g ∈ C∞(Rd)
with compact support with respect to the ‖ · ‖j,α norm. Hj,α equipped with this norm
is a Hilbert space. We denote by H−j,α its dual space.

Let Cj,α be the space of functions g with continuous partial derivatives up to order
j and satisfies

lim
|x|→∞

∣

∣Dkg(x)
∣

∣

1 + |x|α = 0, ∀ |k| ≤ j.

This space is normed with

‖g‖Cj,α =
∑

|k|≤j

sup
x∈Rd

∣

∣Dkg(x)
∣

∣

1 + |x|α .

Noticing that for all j ≥ 0, Cj,0 ≡ Cj
b , the space of Cj functions with bounded

derivatives of all order less than j.

Sobolev embeddings. We recall the some continuous embeddings related to the Sobolev
spaces defined above, which are useful in some proofs in the rest of this paper. For
more details, see e.g. [1], [15].

We have

Cj
b →֒ Hj,α, j ≥ 0, α > d/2,

(

so that

∫

Rd

1/(1 + |x|2α)dx < +∞
)

, (2.1)

Hj+m,α →֒ Cj,α, j ≥ 0, m > d/2, α ≥ 0, (2.2)

i.e. there exists C1, C2 (that depends on m, j and α) such that
∥

∥g
∥

∥

Hj,α ≤ C1

∥

∥g
∥

∥

Cj
b

,
∥

∥g
∥

∥

Cj,α ≤ C2

∥

∥g
∥

∥

Hj+m,α .
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Moreover, using the embedding (2.2), we can prove that

Hj+m,α →֒c H
j,α+β, j ≥ 0, m > d/2, α ≥ 0, β > d/2, (2.3)

where →֒c means that the embedding is compact.

We also deduce the following dual embeddings:

H−j,α →֒ C−j,0, j ≥ 0, α > d/2, (2.4)

C−j,α →֒ H−(j+m),α, j ≥ 0, m > d/2, α ≥ 0, (2.5)

H−j,α+β →֒c H
−(j+m),α, j ≥ 0, m > d/2, α ≥ 0, β > d/2. (2.6)

Hilbert structures. In the next sections, once (φk)k≥1 is mentioned, it always denotes
an orthonormal basis of Hj,α composed of C∞ functions with compact support. The
existence of this basis follows from the fact that the functions of class C∞ with compact
support are dense in Hj,α. Moreover, if (φk)k≥1 is an orthonormal basis of Hj,α(Rd) and
u belongs to H−j,α(Rd) then Parseval’s identity give us the following representation

∥

∥u
∥

∥

2

−j,α
=
∑

k≥1

〈u, φk〉2 (2.7)

We also note that for any distribution µ = (µ0, µ1, µ2) ∈ D(Rd × {0, 1, 2}), we can
define

∥

∥µ
∥

∥

2

H−j,α(Rd×{0,1,2})
:=
∥

∥µ0
∥

∥

2

H−j,α(Rd)
+
∥

∥µ1
∥

∥

2

H−j,α(Rd)
+
∥

∥µ2
∥

∥

2

H−j,α(Rd)
.

For any test function φ = (φ0, φ1, φ2) and µ = (µ0, µ1, µ2),

〈

µ, φ
〉

=

2
∑

i=0

〈

µi, φi
〉

=

2
∑

i=0

∫

Rd

φi(x)µi(dx).

2.2. Main results. In this section, we rigorously describe the evolution equation of
the fluctuation process and state the main results. As in the previous paper [18], by
using Itô’s formula we showed that the evolution of the empirical measure process µN

t

satisfies the following equation:

〈

µN
t , φ

〉

=
〈

µN
0 , φ

〉

+

∫ t

0

〈

µN
s , Dxφ · VµN

s

〉

ds+
1

2

∫ t

0

〈

µN
s , tr

[

(σσT )D2
xxφ
]〉

ds

+

∫ t

0

〈

µN
s (dx, 0), KµN

s
(1e=1 − 1e=0)φ

〉

ds+

∫ t

0

〈

µN
s (dx, 1), γ(1e=2 − 1e=1)φ

〉

ds

+MN
t (φ),

(2.8)
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where MN
t (φ) is a martingale which converges to 0,

MN
t (φ) =

1

N

N
∑

i=1

∫ t

0

Dxφ(X
i,N
s , Ei,N

s )σ(X i,N
s , Ei,N

s )dBi
s

+
1

N

N
∑

i=1

∫

[0,t]×R+

(

φ(X i,N
s , Ei,N

s )− φ(X i,N
s , Ei,N

s− )
)

×

× 1{
u≤K

µNs
(Xi,N

s )10(E
i,N

s−
)+γ11(E

i,N

s−
)
}Q̄i(ds, du).

Subtracting the equation (1.4) to the evolution equation (2.8) of the empirical mea-
sure µN

t , and then multiplying by N1/2, we can obtain the evolution equation of the
fluctuation process ηNt as the following:

〈

ηNt , φ
〉

=
〈

ηN0 , φ
〉

+
1

2

∫ t

0

〈

ηNs , tr
[

(σσT )D2
xxφ
]〉

ds

+

∫ t

0

〈

ηNs , Dxφ · VµN
s

〉

ds+

∫ t

0

〈

µs, Dxφ · VηNs
〉

ds

+

∫ t

0

〈

ηNs (dx, 0), KµN
s
(1e=1 − 1e=0)φ

〉

ds+

∫ t

0

〈

µs(dx, 0), KηNs
(1e=1 − 1e=0)φ

〉

ds

+

∫ t

0

〈

ηNs (dx, 1), γ(1e=2 − 1e=1)φ
〉

ds+
√
NMN

t (φ).

(2.9)
It is worth noting that the two terms in the second line on the r.h.s. are created

by linearizing the nonlinear term
〈

µN
s , Dxφ · VµN

s

〉

, whereas the two terms in the third

line are the linearization of
〈

µN
s (dx, 0), KµN

s
(1e=1 − 1e=0)φ

〉

. In contrast to the law of
large numbers, the martingale term in (2.9) does not go to 0 when N tends to infinity.

Instead of vanishing, the renormalized martingale
√
NMN

t is expected to converge to
some Gaussian process.

Before giving a statement about the convergence, the first problem one needs to
overcome is to find a suitable space in which both ηN and its limit belong. We want to
prove that the fluctuation ηNt belongs to some weighted Sobolev space H−j,α uniformly
in N and t ∈ [0, T ]. By taking an orthonormal basis (φk)k≥1 of the Sobolev space Hj,α

as in (2.7), our desire is to get the following

sup
N≥1

sup
t≤T

E

[

∑

k≥1

〈

ηNt , φk

〉2

]

= sup
N≥1

sup
t≤T

E

[

∥

∥ηNt
∥

∥

2

−j,α

]

< +∞. (2.10)

To see the impact of the regularity of test functions on the estimates of the fluctua-
tion process ηNt in the dual spaces, let us provide in the following a simple example on
the class of functions with bounded Lipschitz constant, where we can compute properly
by using the Kantorovich-Rubistein duality (1.6). Indeed, from the quantitative law of
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large number, we have

E

[

sup
φ∈Lip(1)

∣

∣

〈

ηNt , φ
〉∣

∣

]

=E

[

sup
φ∈Lip(1)

∣

∣

∣

〈√
N(µN

t − µt), φ
〉∣

∣

∣

]

=
√
NE

[

W1(µ
N
t , µt)

]

≤C(t)







√
NE

[

W1

(

µN
0 , µ0

)]

+











1, d = 1,

logN, d = 2,

N (d−2)/2d, d ≥ 3.






.

Since
{

(X i,N
0 , Ei,N

0 )
}

N≥1
are i.i.d. with the initial law µ0, the classical central limit

theorem ensures at initial time that ηN0 converges in law to a limit η0, which is a
Gaussian. However, the above estimate is obviously not enough to guarantee central
limit theorem for the fluctuation process when it evolves in time, and even the uniform
estimate (2.10) fails when the dimension d is large. Therefore, in order to obtain the
needed estimates and recover the right order for convergence in central limit theorem,
test functions indeed must be more regular than only Lipschitz.

Before stating the main results, let us introduce the assumptions made for the initial
condition and the coefficients throughout this paper.
Assumptions. We fix D := ⌈d/2⌉.

Assumption A1. supN≥1max1≤i≤N E

[

∣

∣X i,N
0

∣

∣

4D
]

< +∞.

Assumption A2. The functions V,K belong to class C1+D
b and σ ∈ C4D+5

b . We also
assume that the symmetric matrix [σσ†] is uniformly positive definite.

Assumption A3. The functions V,K belong to class C2+2D
b .

The assumptions A1, A2 above are essential to prove the propagation of moments
and the tightness results in the next section. We also notice that with the hypothesis
[σσ†] is uniformly positive definite, the operator A := 1

2
Dx ·

(

σσ†Dx

)

is uniformly
elliptic, i.e.

d
∑

i,j=1

(σσ†)ij(x, e)ξiξj ≥ λ|ξ|2, ∀(x, e) ∈ R
d × {0, 1, 2}, ξ ∈ R

d,

for some positive constant λ. This assumption allows us to perform some crucial es-
timates in the proof of Proposition 2.1. In order to characterize the limit fluctuation
process as in the statement of the central limit theorem 2.3, more regularity on the
coefficients will be required and given in Assumption A3.

It is shown in the following that under appropriate assumptions on the initial con-
ditions and the smoothness of the coefficients, the fluctuation processes (ηNt )N≥1 belong
uniformly in N and t to H−(1+D),2D.
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Proposition 2.1. Let T > 0. Under Assumptions A1, A2, the fluctuation process
(ηNt )t≤T belongs to H−(1+D),2D uniformly in t and N , i.e.

sup
N≥1

E

[

sup
t≤T

∥

∥ηNt
∥

∥

2

−(1+D),2D

]

< +∞. (2.11)

Then we prove the tightness of the fluctuation process ηNt in D
(

[0, T ], H−(2+2D),D
)

by using the embeddings described in subsection 2.1.

Proposition 2.2. Under Assumptions A1, A2, the sequence of the laws of (ηN)N≥1 is
tight in D

(

[0, T ], H−(2+2D),D
)

.

The main result of this paper will be stated below. It identifies the limit fluctuation
process η as the unique solution of a linear stochastic partial differential equation.

Theorem 2.3. Under Assumptions A1,A2,A3, the sequence of fluctuation processes
(

ηN
)

N≥1
converges in law in D

(

[0, T ], H−(2+2D),D
)

to a process η which solves the fol-

lowing equation

ηt =η0 +
1

2

∫ t

0

tr
[

D2
xx

(

(σσT )ηs
)]

ds−
∫ t

0

Dx · (ηsVµs
)ds−

∫ t

0

Dx · (µsVηs)ds

+

∫ t

0

Kµs
(1e=1 − 1e=0)ηs(dx, 0)ds+

∫ t

0

Kηs(1e=1 − 1e=0)µs(dx, 0)ds

+

∫ t

0

γ(1e=2 − 1e=1)ηs(dx, 1)ds+Wt,

(2.12)

where Wt is a continuous centered Gaussian process with values in H−(2+2D),D and
covariance is given by: For all φ1, φ2 ∈ H(2+2D),D, for any s, t ∈ [0, T ],

E [Wt(φ1)Ws(φ2)] =

∫ t∧s

0

〈

µr, σσ
TDxφ1 ·Dxφ2

〉

dr

+

∫ t∧s

0

〈

µs(dx, 0), Kµr(dx,1)φ1φ2

〉

dr +

∫ t∧s

0

〈

µr(dx, 1), γφ1φ2

〉

dr.

(2.13)

3. Tightness

3.1. Preliminary estimates. In this section, we first prove some useful estimates
which are the technical steps in the proof of tightness and convergence in the next
sections.

We first recall a fundamental result which states that the initial condition A1 prop-
agates finite moments uniformly in N and time t ∈ [0, T ]. The proof of this result is
classical.
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Lemma 3.1. For any T > 0, there exists a constant CT such that

sup
N≥1

E

[

sup
t≤T

∣

∣X i,N
t

∣

∣

4D
]

≤ CT , ∀ 1 ≤ i ≤ N,

E

[

sup
t≤T

|Xt|4D
]

≤ CT .

Remark 3.2. By the definition of the empirical measure µN
t and its limit µt, we can

easily deduce from Lemma 3.1 that

sup
N≥1

E

[

sup
t≤T

〈

µN
t , | · |4D

〉

]

≤ CT ,

E

[

sup
t≤T

〈

µt, | · |4D
〉

]

≤ CT .

Next, we give some useful estimates of several linear operators on Hj,α. We may
use them many times in the next sections.

Lemma 3.3. For any fixed α ≥ 0, j ≥ 1+D and x, y ∈ R
d, the mappings δx,Λx,y,Ψx :

Hj,α → R, defined by

δx(φ) := φ(x); Λx,y(φ) := φ(x)− φ(y); Ψx(φ) := (div φ)(x)

are continuous linear forms, and we have

∥

∥δx
∥

∥

−j,α
≤K(1 + |x|α),

∥

∥Λx,y

∥

∥

−j,α
≤K(1 + |x|α + |y|α),

∥

∥Ψx

∥

∥

−j,α
≤K(1 + |x|α).

(3.1)

Proof. We prove the first estimate by applying the embedding (2.2),

|δx(φ)| = |φ(x)| ≤
∥

∥φ
∥

∥

C0,α(1 + |x|α) ≤ K
∥

∥φ
∥

∥

j,α
(1 + |x|α), ∀ j ≥ D,α ≥ 0. (3.2)

Using the definition of dual norms of linear mappings, we have

∥

∥δx
∥

∥

−j,α
= sup

06=φ∈Hj,α

|δx(φ)|
∥

∥φ
∥

∥

j,α

≤ K(1 + |x|α).

The estimate for Λx,y follows (3.2) since

|Λx,y(φ)| ≤ |φ(x)|+ |φ(y)| = |δx(φ)|+ |δy(φ)|.

A similar argument holds true for Ψx with j ≥ D + 1 and α ≥ 0.
�
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3.2. Decomposition of the fluctuations. In this section, we will describe the fluc-
tuation process (ηNt )t≥0 explicitly in terms of each epidemiological state S, I and R. On
the one hand, this turns the equation (2.9) to a system consisting of three equations.
On the other hand, rewriting the evolution equation of fluctuation process as a system
seems to be compatible with our strategy to prove the convergence in the next sec-
tion. Indeed, we will represent the linearized equation (2.9) in a semigroup formalism,
and take advantage of some useful estimates in the semigroup approach to prove the
key estimate (2.11). For that reason, in order to make the semigroup representation
of the evolution equation (2.9) less complex, we consider its projections on M(Rd)
for each epidemiological state separately. For more details concerning this semigroup
representation, see Section 3.5.

For x ∈ R
d, let

µS,N(x) := µN(x, 0),

µI,N(x) := µN(x, 1),

µR,N(x) := µN(x, 2).

We regard µS,N , µI,N , µR,N as càdlàg processes taking values in the space of finite mea-
sures on R

d, equipped with the Skorohod topology.

For each e ∈ {S, I, R}, we introduce the following alternative notations

σe(·) :=σ(·, e),
V e
µ (·) :=Vµ(·, e) =

〈

V (·, e, y, f), µ(dy, df)
〉

to adapt with the measures on R
d.

We also note that somewhere the notion V e will be assigned to a function of there
variables on R

d × R
d × {0, 1, 2}, V e(·, ·, ·) := V (·, e, ·, ·).

Now as usual, by using Itô’s formula we can derive the evolution equation for the
empirical measures µS,N , µI,N , µR,N . Indeed, for any test function φ ∈ C2

b (R
d), we have

the following system which is equivalent to equation (2.8):

〈

µS,N
t , φ

〉

=
〈

µS,N
0 , φ

〉

+
1

2

∫ t

0

〈

µS,N
s , tr

[

(σSσS†
)D2

xxφ
]〉

ds+

∫ t

0

〈

µS,N
s , Dxφ · V S

µN
s

〉

ds

−
∫ t

0

〈

µS,N
s , φKµI,N

s

〉

ds+MS,N
t (φ), (3.3)

〈

µI,N
t , φ

〉

=
〈

µI,N
0 , φ

〉

+
1

2

∫ t

0

〈

µI,N
s , tr

[

(σIσI †)D2
xxφ
]〉

ds+

∫ t

0

〈

µI,N
s , Dxφ · V I

µN
s

〉

ds

+

∫ t

0

〈

µS,N
s , φKµI,N

s

〉

ds− γ

∫ t

0

〈

µI,N
s , φ

〉

ds+M I,N
t (φ), (3.4)

〈

µR,N
t , φ

〉

=
〈

µR,N
0 , φ

〉

+
1

2

∫ t

0

〈

µR,N
s , tr

[

(σRσR†
)D2

xxφ
]〉

ds+

∫ t

0

〈

µR,N
s , Dxφ · V R

µN
s

〉

ds

+ γ

∫ t

0

〈

µI,N
s , φ

〉

ds+MR,N
t (φ), (3.5)
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where for each e ∈ {S, I, R}, the quantity Me,N
t is a local martingale represented by

the following

Me,N
t (φ) =

1

N

N
∑

i=1

∫ t

0

1{Ei,N
s =e}Dxφ(X

i,N
s )σe(X i,N

s )dBi
s

+
1

N

N
∑

i=1

∫

[0,t]×R+

(

1e(E
i,N
s )− 1e(E

i,N
s− )
)

φ(X i,N
s )×

× 1{
u≤K

µ
I,N
s

(Xi,N
s )10(E

i,N

s−
)+γ11(E

i,N

s−
)
}Q̄i(ds, du).

Remark 3.4. To avoid confusions, it is worth to notice that we implicitly used three
different test function φS, φI , φR for each measure µS,N , µI,N , µR,N in the above system
when we perform Itô’s calculus.

We know that these local martingles converge to 0 as N → ∞, and the law of large
numbers result established in [18] ensures the convergence of the triple

(

µS,N , µI,N , µR,N
)

∈
(

D
(

[0, T ],M(Rd)
))3

towards
(

µS, µI , µR
)

∈
(

C
(

[0, T ],M(Rd)
))3

, which is the unique
solution of the limit system of (3.3)-(3.5).

Now, if we consider for each epidemiological state the fluctuation process around its
mean field limit, namely

(

ηS,N , ηI,N , ηR,N
)

=
(
√
N(µS,N − µS),

√
N(µI,N − µI),

√
N(µR,N − µR)

)

,

then equation (2.9) becomes the following system:

〈

ηS,Nt , φ
〉

=
〈

ηS,N0 , φ
〉

+

∫ t

0

〈

ηS,Ns , LS,N
s (φ)

〉

ds+

∫ t

0

〈

ηNs , 〈µS
s , Dxφ · V S〉

〉

ds

−
∫ t

0

〈

ηI,Ns , 〈µS
s , φK〉

〉

ds+ M̃S,N
t (φ), (3.6)

〈

ηI,Nt , φ
〉

=
〈

ηI,N0 , φ
〉

+

∫ t

0

〈

ηI,Ns , LI,N
s (φ)

〉

ds+

∫ t

0

〈

ηNs , 〈µI
s, Dxφ · V I〉

〉

ds

+

∫ t

0

〈

ηS,Ns , φKµI,N
s

〉

ds+ M̃ I,N
t (φ), (3.7)

〈

ηR,N
t , φ

〉

=
〈

ηR,N
0 , φ

〉

+

∫ t

0

〈

ηR,N
s , LR,N

s (φ)
〉

ds+

∫ t

0

〈

ηNs , 〈µR
s , Dxφ · V R〉

〉

ds

+ γ

∫ t

0

〈

ηI,Ns , φ
〉

ds+ M̃R,N
t (φ), (3.8)
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where the differential operators LS,N , LI,N , LR,N are defined by

LS,N
s (φ) =

1

2
tr
[

(σSσS†
)D2

xxφ
]

+Dxφ · V S
µN
s
− φKµI,N

s
, (3.9)

LI,N
s (φ) =

1

2
tr
[

(σIσI †)D2
xxφ
]

+Dxφ · V I
µN
s
+ 〈µS

s , φK〉 − γφ, (3.10)

LR,N
s (φ) =

1

2
tr
[

(σRσR†
)D2

xxφ
]

+Dxφ · V R
µN
s
, (3.11)

and the martingale terms M̃e,N
t =

√
NMe,N

t for e ∈ {S, I, R}.

Remark 3.5. The first term in the definition of differential operators LS,N , LI,N , LR,N

emerge naturally after renormalizing the difference between the original system (3.3)-
(3.5) and its limit (there is no linearization here), whereas the other terms represent a
part of the linearized terms and the epidemic dynamic.

We also notice that

∫

E

ηN(de) =

∫

E

(

ηS,N + ηI,N + ηR,N
)

(de).

Remark 3.6. We consider the above system as a semimartingale representation of
ηS,N , ηI,N , ηR,N and regard M̃S,N , M̃ I,N , M̃R,N as distributions acting on test functions.
More specifically, in the next sections, we will show that they are the distributions in
H−(2+2D),D. Nevertheless, instead of using the usual notion for the dual product of M̃e,N

t

and function φ, we always write M̃e,N
t (φ) to avoid the abuse of notion 〈·, ·〉, e.g. when

compute the quadratic variations as in (3.12) below.

Before going on, let us give a heuristic description how the limit of the martingale
terms should look like. For e ∈ {S, I, R} and any φ ∈ C2

b (R
d), M̃e,N

t (φ) is a real valued
martingale with the quadratic variation given by

〈

M̃S,N(φ)
〉

t
=

1

N

N
∑

i=1

∫ t

0

10(E
i,N
s )
(

Dxφ(X
i,N
s )σS(X i,N

s )
)2
ds

+
1

N

N
∑

i=1

∫ t

0

10(E
i,N
s )φ(X i,N

s )2KµI,N
s

(X i,N
s )ds,

=

∫ t

0

〈

µS,N
s ,

(

Dxφσ
S
)2〉

ds+

∫ t

0

〈

µS,N
s , φ2KµI,N

s

〉

ds, (3.12)
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〈

M̃ I,N(φ)
〉

t
=

1

N

N
∑

i=1

∫ t

0

11(E
i,N
s )
(

Dxφ(X
i,N
s )σI(X i,N

s )
)2
ds

+
1

N

N
∑

i=1

∫ t

0

10(E
i,N
s )φ(X i,N

s )2KµI,N
s

(X i,N
s )

+
1

N

N
∑

i=1

∫ t

0

γ11(E
i,N
s )φ(X i,N

s )2ds,

=

∫ t

0

〈

µI,N
s ,

(

Dxφσ
I
)2〉

ds+

∫ t

0

〈

µS,N
s , φ2KµI,N

s

〉

ds+

∫ t

0

〈

µI,N
s , γφ2

〉

ds,

(3.13)

and

〈

M̃R,N (φ)
〉

t
=

1

N

N
∑

i=1

∫ t

0

12(E
i,N
s )
(

Dxφ(X
i,N
s )σR(X i,N

s )
)2
ds

+
1

N

N
∑

i=1

∫ t

0

γ11(E
i,N
s )φ(X i,N

s )2ds,

=

∫ t

0

〈

µR,N
s ,

(

Dxφσ
R
)2〉

ds+

∫ t

0

〈

µI,N
s , γφ2

〉

ds. (3.14)

By the law of large numbers, we can deduce the convergence of the above qua-
dratic variation processes. When N tends to infinity, these processes are determined
by the limit measures µS, µI , µR replacing µS,N , µI,N , µR,N in equations (3.12)-(3.14).
And hence if the limit processes M̃S, M̃ I , M̃R (respectively of M̃S,N , M̃ I,N , M̃R,N )
are continuous martingales with the deterministic quadratic variations, they can be
characterized by Gaussian processes.

3.3. Main estimates in dual spaces. We first establish some estimates for the fluc-
tuations ηS,N , ηI,N , ηR,N and the martingales M̃S,N , M̃ I,N , M̃R,N with norms in the
dual Sobolev spaces H−(1+D),2D and H−(2+2D),D. In our framework, even though the
jumps are bounded, the position variables take value in R

d so the use of weighted
Sobolev spaces is necessary. The weights and regularity index of that Sobolev spaces
will be identified in the proof and related to the order of moment estimates acquired
on the position of individuals.

Proposition 3.7. Under Assumptions A1, A2, for any T > 0 and for each e ∈ {0, 1, 2},
the process M̃e,N

t is a H−(1+D),2D-valued martingale and satisfies

sup
N≥1

E

[

sup
t≤T

∥

∥M̃e,N
t

∥

∥

2

−(1+D),2D

]

< +∞. (3.15)

Proof. We give proof for the case of M̃S,N
t . The estimates for M̃ I,N

t , M̃R,N
t can be

obtained by similar arguments.
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Let (φk)k≥1 be a complete orthonormal basis of H1+D,2D. It suffices to show that

sup
N≥1

∑

k≥1

E

[

sup
t≤T

(

M̃S,N
t (φk)

)2
]

< +∞. (3.16)

Using Doob’s inequality and the boundedness of σ,K, we deduce that

∑

k≥1

E

[

sup
t≤T

(

M̃S,N
t (φk)

)2
]

≤C
∑

k≥1

E

[

(

M̃S,N
T (φk)

)2
]

≤C
∑

k≥1

E

[
∫ T

0

〈

µS,N ,
(

Dxφkσ
S
)2
〉

ds

]

+ C
∑

k≥1

E

[
∫ T

0

〈

µS,N , φ2
kKµI,N

s

〉

ds

]

≤C
∑

k≥1

E

[
∫ T

0

〈

µS,N ,
(

div φk

)2
〉

ds

]

+ C
∑

k≥1

E

[
∫ T

0

〈

µS,N , φ2
k

〉

ds

]

. (3.17)

On the other hand, using the fact that (X i,N , Ei,N), i = 1, . . . , N are identically
distributed, we have

r.h.s. =C
∑

k≥1

∫ T

0

E

[

1

N

N
∑

i=1

1{Ei,N
s =0}

(

div φk(X
i,N
s )
)2

]

ds

+ C
∑

k≥1

∫ T

0

E

[

1

N

N
∑

i=1

1{Ei,N
s =0}φ

2
k(X

i,N
s )

]

ds

≤C
∑

k≥1

∫ T

0

E

[

(

div φk(X
1,N
s )

)2
]

ds+ C
∑

k≥1

∫ T

0

E
[

φ2
k(X

1,N
s )

]

ds. (3.18)

Combing (3.17) and (3.17) we obtain

∑

k≥1

E

[

sup
t≤T

(

M̃S,N
t (φk)

)2
]

≤C
∑

k≥1

∫ T

0

E

[

(

div φk(X
1,N
s )

)2
]

ds

+ C
∑

k≥1

∫ T

0

E
[

φ2
k(X

1,N
s )

]

ds.

(3.19)
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Now applying the definition of the linear mappings Ψx, δx in Lemma 3.3, the above
inequality can be rewritten as follows

∑

k≥1

E

[

sup
t≤T

(

M̃S,N
t (φk)

)2
]

≤CE
[
∫ T

0

∥

∥ΨX1,N
s

∥

∥

2

−(1+D),2D
ds

]

+ CE

[
∫ T

0

∥

∥δX1,N
s

∥

∥

2

−(1+D),2D
ds

]

.

Finally, we combine Lemma 3.3 and Lemma 3.1 to conclude that

sup
N≥1

E

[

sup
t≤T

∥

∥M̃S,N
t

∥

∥

2

−(1+D),2D

]

≤ sup
N≥1

∑

k≥1

E

[

sup
t≤T

(

M̃S,N
t (φk)

)2
]

≤C sup
N≥1

E

[

sup
t≤T

(

1 + |X1,N
t |4D

)

]

< +∞.

�

Proposition 3.8. Under Assumptions A1, A2, for each e ∈ {0, 1, 2}, for 0 < t ≤ T

and for every N , the operator Le,N
t is a linear continuous mapping from H2+2D,D into

H1+D,2D and we have for all φ ∈ H2+2D,D,

∥

∥Le,N
t (φ)

∥

∥

1+D,2D
≤ CT

∥

∥φ
∥

∥

2+2D,D
, (3.20)

where the constant CT does not depend on N and the randomness.

Proof. We recall that

LS,N
s (φ) =

1

2
tr
[

(σSσS†
)D2

xxφ
]

+Dxφ · V S
µN
s
− φKµI,N

s
,

LI,N
s (φ) =

1

2
tr
[

(σIσI †)D2
xxφ
]

+Dxφ · V I
µN
s
+ 〈µS

s , φK〉 − γφ,

LR,N
s (φ) =

1

2
tr
[

(σRσR†
)D2

xxφ
]

+Dxφ · V R
µN
s
.

Since σS, V,K ∈ C1+D
b , we easily deduce that

∥

∥LS,N
s (φ)

∥

∥

1+D,2D
≤
∥

∥φ
∥

∥

3+D,2D
≤ C

∥

∥φ
∥

∥

2+2D,D
, (3.21)

where the inequality on the r.h.s follows by the embedding (2.3) and since the fact that
D ≥ 1.

The same argument holds true for LR,N
s (φ).

In the representation of LI,N
s (φ), there is an extra term

〈

µS
s , φK

〉

, which reduces
the regularity of the test functions. To treat this tricky term, we start by using the fact
that all the derivatives of K up to order 1+D are bounded, we can differentiate under
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the integral sign w.r.t. variable y and obtain the following

∥

∥

〈

µS
s , φK

〉 ∥

∥

2

1+D,2D
=

1+D
∑

|k|=0

∫

Rd

∣

∣

∣
Dk

y

〈

µS
s , φK(·, y)

〉∣

∣

2

1 + |y|4D dy

≤C
∫

Rd

∣

∣

〈

µS
s , φ
〉 ∣

∣

2

1 + |y|4D dy

≤C
∫

Rd

|φ(x)|2µS
s (dx)

∫

Rd

1

1 + |y|4Ddy.

Using Lemma 3.3, we have

|φ(x)|2 =|δx(φ)|2

≤‖δx‖2−(2+2D),D‖φ‖2(2+2D),D

≤C
(

1 + |x|2D
)

‖φ‖2(2+2D),D

Hence we deduce that
∥

∥

〈

µS
s , φK

〉 ∥

∥

2

1+D,2D
≤C
∥

∥φ
∥

∥

2

2+2D,D

∫

Rd

(

1 + |x|2D
)

µS
s (dx)

∫

Rd

1

1 + |y|4Ddy

≤C
∥

∥φ
∥

∥

2

2+2D,D
,

where we get the last inequality by the fact that 4D > d (thus
∫

Rd dy/(1+|y|4D) < +∞)

and µS
s has finite moments of order 2D (by Lemma 3.1). Again, we can see the essential

of weights in the Sobolev spaces in the above proof. �

Remark 3.9. In the system (3.6)-(3.8), it remains the terms
∫ t

0

〈

ηNs , 〈µe
s, Dxφ · V e〉

〉

ds, e ∈ {S, I, R},

which are not involved in the integrals
∫ t

0

〈

ηe,Ns , Le,N
s

〉

ds.
In fact, these terms are created when we linearize the transport terms in (3.3)-(3.5).

The functions 〈µe
s, Dxφ · V e〉, e ∈ {S, I, R}, they all tested against the distribution ηNs .

Following the lines in the proof of Proposition 3.8, we can obtain similar estimates for
these functions, i.e.

∥

∥ 〈µe
s, Dxφ · V e〉

∥

∥

1+D,2D
≤ C

∥

∥φ
∥

∥

2+2D,D
, e ∈ {S, I, R}.

Now we state a proposition concerning the uniform estimate of the fluctuation pro-
cesses (ηe,Nt )t≤T , e ∈ {0, 1, 2}. This proposition is equivalent to Proposition 2.1.

Proposition 3.10. Under Assumptions A1, A2, for any T > 0 and for each e ∈
{0, 1, 2}, the fluctuation process ηe,Nt belongs to H−(1+D),2D uniformly in t and N , i.e.

sup
N≥1

E

[

sup
t≤T

∥

∥ηe,Nt

∥

∥

2

−(1+D),2D

]

< +∞. (3.22)

The proof of Proposition 3.10 is postponed to Section 3.5.
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Remark 3.11. We have in the following some important remarks:

• We have
∥

∥ ·
∥

∥

−(2+2D),D
≤ C

∥

∥ ·
∥

∥

−(1+D),2D
by the dual embedding (2.6). Now

combining with Proposition 3.7 and Proposition 3.10, we can also ensures that
for e ∈ {S, I, R}, ηe,Nt and M̃e,N

t belong to H−(2+2D),D, i.e.

sup
N≥1

E

[

sup
t≤T

∥

∥ηe,Nt

∥

∥

2

−(2+2D),D

]

<+∞,

sup
N≥1

E

[

sup
t≤T

∥

∥M̃e,N
t

∥

∥

2

−(2+2D),D

]

<+∞.

In particular, at the initial time, we have supN≥1 E

[

∥

∥ηe,N0

∥

∥

2

−(2+2D),D

]

< +∞
under the assumptions A1, A2.

• As a consequence of Proposition 3.8, we also have the following statement for
the adjoint operators: For e ∈ {S, I, R}, for every u ∈ H−(1+D),2D,

∥

∥Le,N
t

∗
u
∥

∥

2

−(2+2D),D
≤CT

∥

∥u
∥

∥

2

−(1+D),2D
. (3.23)

With the above remarks, we can consider the decomposition (3.6)-(3.8) as the fol-
lowing adjoint system in H−(2+2D),D

ηS,Nt =ηS,N0 +

∫ t

0

LS,N
s

∗
ηS,Ns ds−

∫ t

0

div
(

µS
s V

S
ηNs

)

ds−
∫ t

0

µS
sKηI,Ns

ds+ M̃S,N
t , (3.24)

ηI,Nt =ηI,N0 +

∫ t

0

LI,N
s

∗
ηI,Ns ds−

∫ t

0

div
(

µI
sV

I
ηNs

)

ds+

∫ t

0

µS,N
s KµI,N

s
ds+ M̃ I,N

t , (3.25)

ηR,N
t =ηR,N

0 +

∫ t

0

LR,N
s

∗
ηR,N
s ds−

∫ t

0

div
(

µR
s V

R
ηNs

)

ds+ γ

∫ t

0

µS
sKηI,Ns

ds+ M̃R,N
t .

(3.26)

3.4. Tightness results. In the following, we discuss about the benefit of the Hilbert
structure of the Sobolev spaces used in this present paper when proving the tight-
ness results. Let us state here the Aldous tightness criterion for Hilbert space valued
stochastic processes.
Aldous’s criterion. (See e.g. [2], [30]) Let H be a separable Hilbert space. A sequence
of processes (XN)N≥1 in D(R+, H) defined on the respective filtered probability spaces
(ΩN ,FN , (FN

t )t≥0,P
N) is tight if it satisfies both the two following conditions:

(A1): For every t ≥ 0 and ε > 0, there exists a compact set K ⊂ H such that

sup
N≥1

P
N
(

XN
t /∈ K

)

≤ ε,

(A2): For every ε, ε2 > 0 and θ ≥ 0, there exists δ0 > 0 and an integer N0 such that
for all (FN

t )t≥0-stopping time τN ≤ θ,

sup
N≥N0

sup
δ≤δ0

P
N
(∥

∥XN
τN+δ −XN

τN

∥

∥

H
≥ ε
)

≤ ε2.
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To check the Aldous criterion, we will use another version of the first condition
where (A1) is replaced by the condition (A′

1) stated below:

(A′
1): There exists a Hilbert space H0 such that H0 →֒c H and, for all t ≥ 0,

sup
N≥1

E
N [
∥

∥XN
t

∥

∥

2

H0
] < +∞,

where the notation →֒c means that the embedding is compact and E
N denotes the

expectation associated with the probability P
N .

Indeed, (A1) is implied by (A′
1) since the embedding H0 →֒c H is compact, the

closed balls in H0 are compact in H . Combining with the Markov inequality, condition
(A1) is satisfied.

Theorem 3.12. The sequences of the laws of (M̃S,N)N≥1, (M̃
I,N)N≥1, (M̃

R,N )N≥1 are
tight in D

(

[0, T ], H−(2+2D),D
)

.

Proof. We will only check the two conditions in Aldous’s criterion for M̃S,N , the same
can be justified for M̃ I,N and M̃R,N .

Thanks to Proposition 3.7, condition (A1) is satisfied with H0 = H−(1+D),2D and
H = H−(2+2D),D since the embedding H−(1+D),2D →֒ H−(2+2D),D is compact (see (2.6)).

Condition (A2) is obtained as soon as it holds for the trace of the process ≪
M̃S,N ≫t, where ≪ M̃S,N ≫t is the Doob-Meyer process associated with the mar-
tingale (M̃S,N

t )t≥0 and satisfies the following: For any t > 0, ≪ M̃S,N ≫t is a linear
continuous mapping from H1+D,2D to H−(1+D),2D defined for all φ, ψ in H1+D,2D by

〈

≪ M̃S,N ≫t(φ), ψ
〉

=

∫ t

0

〈

µS,N
s ,

(

Dxφσ
S
)(

Dxψσ
S
)〉

ds+

∫ t

0

〈

µS,N
s , φψKµI,N

s

〉

ds,

(See e.g. Rebolledo’s Theorem in [23]).

Let T, ε, ε2 > 0 and let τN ≤ T be a stopping time. For a complete orthonormal
basis (φk)k≥1 in H2+2D,D, we have

sup
N≥N0

sup
δ≤δ0

P

(

∣

∣

∣
tr≪ M̃S,N ≫τN+δ − tr≪ M̃S,N ≫τN

∣

∣

∣
> ε

)

≤ 1

ε
sup
N≥N0

sup
δ≤δ0

E

[

∑

k≥1

〈

≪ M̃S,N ≫τN+δ(φk), φk

〉

−
〈

≪ M̃S,N ≫τN (φk)φk

〉

]

≤ C

ε
sup
N≥N0

sup
δ≤δ0

E

[∫ τN+δ

τN

〈

µS,N
s ,

∥

∥Ψx

∥

∥

2

−(2+2D),D
+
∥

∥δx
∥

∥

2

−(2+2D),D

〉

ds

]

.
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At this step, we again use Lemma 3.3 and Lemma 3.1 to bound the r.h.s.,

r.h.s. ≤ C

ε
sup
N≥N0

sup
δ≤δ0

E

[∫ τN+δ

τN

〈

µS,N
s ,

∥

∥Ψx

∥

∥

2

−(1+D),2D
+
∥

∥δx
∥

∥

2

−(1+D),2D

〉

ds

]

≤ C

ε
sup
N≥N0

sup
δ≤δ0

E

[

∫ τN+δ

τN

1

N

N
∑

i=1

(

1 +
∣

∣X i,N
s

∣

∣

4D
)

ds

]

≤ Cδ0
ε

sup
N≥N0

E

[

sup
s≤T

(

1 +
∣

∣X1,N
s

∣

∣

4D
)

]

≤ ε2,

when δ0 is small enough.

And thus, both the two conditions for tightness are fulfilled. �

Theorem 3.13. The sequences of the laws of (ηS,N)N≥1, (η
I,N)N≥1, (η

R,N)N≥1 are tight
in D

(

[0, T ], H−(2+2D),D
)

.

Proof. Proposition 3.10 implies that condition (A1) is satisfied with H0 = H−(1+D),2D

and H = H−(2+2D),D. Thanks to Rebolledo’s Theorem and the proof of Theorem 3.12
for the martingale terms, condition (A2) for the sequences (ηe,N)N≥1, e ∈ {S, I, R}
are satisfied as soon as they are satisfied for the drift terms. We will check it for the
integrals

∫ t

0

Le,N
s

∗(
ηS,Ns , ηI,Ns , ηR,N

s

)

ds, e ∈ {S, I, R},

the remaining terms in the adjoint equations (3.24)-(3.26) can be treated in the similar
way.

We now give a proof for instance to ηS,N . Let T, ε > 0 and let τN ≤ T be a stopping
time. By using Chebyshev’s inequality, one can deduce that

P

(

∥

∥

∥

∥

∫ τN+δ

0

LS,N
s

∗
ηS,Ns ds−

∫ τN

0

LS,N
s

∗
ηS,Ns ds

∥

∥

∥

∥

−(2+2D),D

≥ ε

)

≤ 1

ε2
E

[

∥

∥

∥

∥

∫ τN+δ

τN

LS,N
s

∗
ηS,Ns ds

∥

∥

∥

∥

2

−(2+2D),D

]

≤ δ

ε2
E

[
∫ τN+δ

τN

∥

∥LS,N
s

∗
ηS,Ns

∥

∥

2

−(2+2D),D
ds

]

.

Let (φk)k≥1 be a complete orthonormal system in H2+2D,D, we have

∥

∥LS,N
s

∗
ηS,Ns

∥

∥

2

−(2+2D),D
=
∑

k≥1

〈

ηS,Ns , LS,N
s (φk)

〉2
.
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Thus, using Propposition 3.8 we obtain

r.h.s. ≤ δ

ε2
E

[

∫ τN+δ

τN

∑

k≥1

〈

ηS,Ns , LS,N
s (φk)

〉2
ds

]

≤ Cδ

ε2
E

[
∫ τN+δ

τN

∥

∥ηS,Ns

∥

∥

2

−(1+D),2D

]

≤ Cδ2

ε2
E

[

sup
s≤T

∥

∥ηS,Ns

∥

∥

2

−(1+D),2D

]

.

Now thanks to Proposition 3.10, the last expectation is finite and hence, we can
find δ0 > 0 such that the condition (A2) is satisfied. The proof for tightness of the laws
of (ηS,N)N≥1 in D

(

[0, T ], H−(2+2D),D
)

is completed.
�

3.5. Proof of Proposition 3.10. In this section, we study a semigroup representation
of the evolution equation of the fluctuation processes ηS,N , ηI,N , ηR,N . First, we establish
the semigroup formalism for the evolution equation of ηS,N , ηI,N , ηR,N and provide some
useful estimates in weighted Sobolev norms related to the regularity of these semigroups.
Second, we state a uniform in time estimate for the stochastic convolution with these
semigroups. All results obtained in this section are devoted to prove Proposition 3.10
in Section 3.3.

For each epidemiological state e ∈ {S, I, R}, we consider the second order differential
operator Ae defined by

Ae :=
1

2
Dx ·

(

σeσe†Dx

)

. (3.27)

The operators Ae, e ∈ {S, I, R} are self-adjoint and we have

1

2
tr[(σeσe†)D2

xx] = Ae +B ·Dx, (3.28)

where B =
(

1
2

∑d
i=1 ∂xi

(

σeσe†
)

ij

)

1≤j≤d
.

Now we introduce a new drift term

Ṽ e
µ := V e

µ +B, e ∈ {S, I, R}. (3.29)

For each e ∈ {S, I, R}, we denote by
(

T e
t

)

t≥0
the semigroup generated by Ae on

L2(Rd). First, we show in the following the adjoint equations under the action of these
semigroups T S

t , T I
t , T R

t .
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Lemma 3.14. For t ∈ [0, T ], the processes ηS,N , ηI,N , ηR,N satisfy the following system:

ηS,Nt =T S
t

∗
ηS,N0 −

∫ t

0

T S
t−s

∗
div
(

ηS,Ns Ṽ S
µN
s

)

ds−
∫ t

0

T S
t−s

∗
div
(

µS
s V

S
ηNs

)

ds

−
∫ t

0

T S
t−s

∗(
ηS,Ns KµI,N

s

)

ds−
∫ t

0

T S
t−s

∗(
µS
sKηI,Ns

)

ds+

∫ t

0

T S
t−s

∗
dM̃S,N

s , (3.30)

ηI,Nt =T I
t

∗
ηI,N0 −

∫ t

0

T I
t−s

∗
div
(

ηI,Ns Ṽ I
µN
s

)

ds−
∫ t

0

T I
t−s

∗
div
(

µI
sV

I
ηNs

)

ds

+

∫ t

0

T I
t−s

∗(
ηS,Ns KµI,N

s

)

ds+

∫ t

0

T I
t−s

∗(
µS
sKηI,Ns

)

ds− γ

∫ t

0

T I
t−s

∗
ηI,Ns ds

+

∫ t

0

T I
t−s

∗
dM̃ I,N

s , (3.31)

ηR,N
t =T R

t

∗
ηR,N
0 −

∫ t

0

T R
t−s

∗
div
(

ηR,N
s Ṽ R

µN
s

)

ds−
∫ t

0

T R
t−s

∗
div
(

µR
s V

R
ηNs

)

ds

+ γ

∫ t

0

T R
t−s

∗
ηI,Ns ds+

∫ t

0

T R
t−s

∗
dM̃R,N

s . (3.32)

Proof. First, we fix t ∈ [0, T ] and φ ∈ C2
(

R
d
)

. Appling Itô’s formula to the test function

ψ(s, x) = (T S
t−sφ)(x), and notice that for all x ∈ R

d, the mapping s 7→ (T S
t−sφ)(x) is

differentiable and
d

ds
T S
t−sφ(x) = −AS(T S

t−sφ)(x),

we can derive the following equation similar to (3.6),
〈

ηS,Nt , φ
〉

=
〈

ηS,N0 , T S
t φ
〉

+

∫ t

0

〈

ηS,Ns , Dx(T S
t−sφ) · Ṽ S

µN
s

〉

ds+

∫ t

0

〈

ηNs , 〈µS
s , Dx(T S

t−sφ) · V S〉
〉

ds

−
∫ t

0

〈

ηS,Ns , (T S
t−sφ)KµI,N

s

〉

ds−
∫ t

0

〈

ηI,Ns , 〈µS
s , (T S

t−sφ)K〉
〉

ds

+

∫ t

0

dM̃S,N
s (T S

t−sφ).

�

Before going on, let us provide some useful estimates to control the terms in the
system (3.30)-(3.32). The first one concerns the regularity estimates of the semigroups
(T e

t−s)e∈{S,I,R} in weighted Sobolev spaces Hk,α and will be given in the following propo-
sition (see also a more general result in [19]).

We consider A the second order differential operator given in the divergence form
by

Aφ = −
d
∑

i,j=1

∂xi

(

aij(x)∂xj
φ
)

,
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where the coefficients aij are symmetric, smooth enough (will be precised) and satisfy
the uniform ellipticity condition, i.e.

d
∑

i,j=1

aij(x)ξiξj ≥ λ|ξ|2, ∀x, ξ ∈ R
d,

for some positive constant λ. With the above definition, the operator A is a self-adjoint
and positive. Let (Tt)t≥0 be the semigroup generated by A on L2(Rd).

Proposition 3.15. Let k ≥ 0 and assume that aij ∈ C2k+1
b (Rd). Let (Tt)t≥0 be the

semigroup generated by A. For any T ≥ 0, there exists a constant CT > 0 depends only
on T, d, k, ‖a‖H2k+1,α such that for any t ∈ [0, T ], the following holds true

(1)
‖Ttφ‖Hk,α ≤ CT‖φ‖Hk,α. (3.33)

(2)

‖∇xTtφ‖Hk,α ≤ CT

(

1 +
1√
t

)

‖φ‖Hk,α. (3.34)

Another difficulty we need to handle in the system (3.30)-(3.32) is the stochastic
convolutions with the semigroups T S

t , T I
t , T R

t , namely
∫ t

0

T S
t−s

∗
dM̃S,N

s ,

∫ t

0

T S
t−s

∗
dM̃S,N

s ,

∫ t

0

T S
t−s

∗
dM̃S,N

s .

In the following, we provide a first bound for those terms.

Proposition 3.16. For 0 < t ≤ T , there exists a positive constant CT such that

E

[

∥

∥

∥

∥

∫ t

0

T S
t−s

∗
dM̃S,N

s

∥

∥

∥

∥

2

−(1+D),2D

]

≤CT , (3.35)

E

[

∥

∥

∥

∥

∫ t

0

T I
t−s

∗
dM̃ I,N

s

∥

∥

∥

∥

2

−(1+D),2D

]

≤CT , (3.36)

E

[

∥

∥

∥

∥

∫ t

0

T R
t−s

∗
dM̃R,N

s

∥

∥

∥

∥

2

−(1+D),2D

]

≤CT . (3.37)

Proof. Let (φk)k≥1 be a complete orthonormal system in H1+D,2D, we can also using

the expression of T S
t−s

∗
dM̃S,N

s in H−(1+D),2D via this basis, namely

E

[

∥

∥

∥

∥

∫ t

0

T S
t−s

∗
dM̃S,N

s

∥

∥

∥

∥

2

−(1+D),2D

]

= E

[

∫ t

0

∑

k≥1

〈

dM̃S,N
s , T S

t−sφk

〉2
ds

]

and then have the same estimates follows the lines in the proof of Proposition 3.7. �

However the above bounds are not exactly what we need. Instead, we expect to
have a uniform in time estimate for the stochastic convolutions with the semigroups by
exploiting the independence of the noise terms. Indeed, we can observe that if these
terms do not involve a convolution with the semigroups (T e

t−s)e∈{S,I,R} then it would
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be a martingale and we can apply the maximal inequalities for a standard martingale,
for instance, the Burkholder-Davis-Gundy inequality and obtain the desired bound.
On the other hand, even though the convolution with the semigroups (T e

t−s)e∈{S,I,R}

destroys the martingale property, it is still closely related to maximal inequalities by
the following proposition (See Theorem 2.1 in [26]).

Proposition 3.17. Let
(

H, ‖ · ‖H
)

be a separable Hilbert space and Tt be a semigroup
acting on H. We assume the exponential growth condition on Tt, ‖Tt‖L(H) ≤ eαt for
some positive constant α. Then, there exists a constant C > 0 such that for any H-
valued locally square integrable càdlàg martingale Mt,

E

[

sup
0≤t≤T

∥

∥

∥

∥

∫ t

0

St−sdMs

∥

∥

∥

∥

2

H

]

≤ Ce4αTE
[

∥

∥MT

∥

∥

2

H

]

.

In [17], the authors give a generalization for this maximal inequality with p-th
moment (0 < p <∞) of stochastic convolution integrals.

Now we are able to prove Proposition 3.10.

Proof of Proposition 3.10. Using the expression in (3.30), we have
∥

∥ηS,Nt

∥

∥

−(1+D),2D
≤
∥

∥T S
t

∗
ηS,N0

∥

∥

−(1+D),2D

+

∫ t

0

∥

∥T S
t−s

∗
div
(

ηS,Ns Ṽ S
µN
s

)∥

∥

−(1+D),2D
ds+

∫ t

0

∥

∥T S
t−s

∗
div
(

µS
s V

S
ηNs

)∥

∥

−(1+D),2D
ds

+

∫ t

0

∥

∥T S
t−s

∗(
ηS,Ns KµI,N

s

)∥

∥

−(1+D),2D
ds+

∫ t

0

∥

∥T S
t−s

∗(
µS
sKηI,Ns

)∥

∥

−(1+D),2D
ds

+

∥

∥

∥

∥

∫ t

0

T S
t−s

∗
dM̃S,N

s

∥

∥

∥

∥

−(1+D),2D

.

(3.38)
Let (φk)k≥1 be a complete orthonormal system in H1+D,2D. Again, we can use the

Parseval’s identity to represent the dual norms. First we will treat the two terms in the
second line on the r.h.s. of (3.38).

Let us consider the linear mappings Φ1, Φ2 : H
1+D,2D → R defined by

Φ1(φk) =
〈

ηS,Ns , Dx(T S
t−sφk) · Ṽ S

µN
s

〉

,

Φ2(φk) =
〈

µS
s , Dx(T S

t−sφk) · Ṽ S
ηNs
〉
〉

.

Using the second inequality in Proposition 3.15, we get
∣

∣Φ1(φk)
∣

∣ =
∣

∣

〈

ηS,Ns , Dx(T S
t−sφk) · Ṽ S

µN
s

〉∣

∣

≤C
∥

∥ηS,Ns

∥

∥

−(1+D),2D

∥

∥Dx(T S
t−sφk) · Ṽ S

µN
s

∥

∥

1+D,2D

≤C
∥

∥ηS,Ns

∥

∥

−(1+D),2D

∥

∥Dx(T S
t−sφk)

∥

∥

1+D,2D

≤CT

(

1 +
1√
t− s

)

∥

∥ηS,Ns

∥

∥

−(1+D),2D

∥

∥φk

∥

∥

1+D,2D
.
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We notice that to obtain the third line, we used the assumption that V ∈ C1+D
b (Rd×R

d).
Now by the similar way, we also have

∣

∣Φ2(φk)
∣

∣ ≤ CT

(

1 +
1√
t− s

)

∥

∥µS
s

∥

∥

−(1+D),2D

∥

∥φk

∥

∥

1+D,2D
,

and using the continuous embedding from P(Rd) into H−(1+D),2D, we obtain

∣

∣Φ2(φk)
∣

∣ ≤ CT

(

1 +
1√
t− s

)

∥

∥φk

∥

∥

1+D,2D
.

Hence we deduce that
∫ t

0

∥

∥T S
t−s

∗
div
(

ηS,Ns Ṽ S
µN
s

)∥

∥

−(1+D),2D
ds+

∫ t

0

∥

∥T S
t−s

∗
div
(

µS
s V

S
ηNs

)∥

∥

−(1+D),2D
ds

≤
∫ t

0

CT

(

1 +
1√
t− s

)

∥

∥ηS,Ns

∥

∥

−(1+D),2D
ds+

∫ t

0

CT

(

1 +
1√
t− s

)

ds.

(3.39)

To treat the two terms created by the jumping part in the third line of (3.38), we
use the first statement in Proposition 3.15. Indeed by the similar way as before, we
also obtain the following bounds

∫ t

0

∥

∥T S
t−s

∗(
ηS,Ns KµI,N

s

)∥

∥

−(1+D),2D
ds+

∫ t

0

∥

∥T S
t−s

∗(
µS
sKηI,Ns

)∥

∥

−(1+D),2D
ds

≤
∫ t

0

CT

∥

∥ηS,Ns

∥

∥

−(1+D),2D
ds+

∫ t

0

CT

∥

∥µS
s

∥

∥

−(1+D),2D
ds

≤
∫ t

0

CT

∥

∥ηS,Ns

∥

∥

−(1+D),2D
ds+ CT .

(3.40)

Concerning the last term (the stochastic convolution), we use Proposition 3.17,
Jensen’s inequality and Proposition 3.7 to deduce the following

E

[

sup
t≤T

∥

∥

∥

∥

∫ t

0

T S
t−s

∗
dM̃S,N

s

∥

∥

∥

∥

−(1+D),2D

]

≤E

[

sup
t≤T

∥

∥

∥

∥

∫ t

0

T S
t−s

∗
dM̃S,N

s

∥

∥

∥

∥

2

−(1+D),2D

]1/2

≤CTE

[

∥

∥M̃S,N
T

∥

∥

2

−(1+D),2D

]1/2

<+∞.

(3.41)

Now summing up (3.39)-(3.41), we conclude that

E

[

sup
s≤t

∥

∥ηS,Ns

∥

∥

−(1+D),2D

]

≤CTE

[

∥

∥ηS,N0

∥

∥

−(1+D),2D

]

+

∫ t

0

CT√
t− s

E

[

∥

∥ηS,Ns

∥

∥

−(1+D),2D

]

ds

+

∫ t

0

CTE

[

∥

∥ηS,Ns

∥

∥

−(1+D),2D

]

ds+ CT .
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The similar arguments also give us the uniform in time estimates for ηI,Nt and ηR,N
t ,

namely

E

[

sup
s≤t

∥

∥ηI,Ns

∥

∥

−(1+D),2D

]

≤CTE

[

∥

∥ηI,N0

∥

∥

−(1+D),2D

]

+

∫ t

0

CT√
t− s

E

[

∥

∥ηI,Ns

∥

∥

−(1+D),2D

]

ds

+

∫ t

0

CTE

[

∥

∥ηS,Ns

∥

∥

−(1+D),2D
+
∥

∥ηI,Nt

∥

∥

−(1+D),2D

]

ds+ CT ,

E

[

sup
s≤t

∥

∥ηR,N
s

∥

∥

−(1+D),2D

]

≤CTE

[

∥

∥ηR,N
0

∥

∥

−(1+D),2D

]

+

∫ t

0

CT√
t− s

E

[

∥

∥ηR,N
s

∥

∥

−(1+D),2D

]

ds

+

∫ t

0

CTE

[

∥

∥ηI,Ns

∥

∥

−(1+D),2D

]

ds+ CT .

Now combining all the above estimates and denoting

ϕ(t) = E

[

sup
s≤t

(

∥

∥ηS,Nt

∥

∥

−(1+D),2D
+
∥

∥ηI,Nt

∥

∥

−(1+D),2D
+
∥

∥ηR,N
t

∥

∥

−(1+D),2D

)

]

,

we obtain one estimate in type of Gronwall’s lemma.

ϕ(t) ≤CTϕ(0) + CT

∫ t

0

(

1 +
1√
t− s

)

ϕ(s)ds+ CT . (3.42)

However it is not straightforward to directly apply Gronwall’s lemma to the above
estimate. Indeed, we need to do some modifications. By iterating the estimate (3.42)
we get

ϕ(t) ≤
(

CTϕ(0) + CT

)

+
(

CTϕ(0) + CT

)

CT

∫ t

0

(

1 +
1√
t− s

)

ds

+ C2
T

∫ t

0

∫ s

0

(

1 +
1√
t− s

)(

1 +
1√
s− r

)

ϕ(r)drds

≤
(

CTϕ(0) + CT

)

(

1 + CT

(

T + 2
√
T
)

)

+ C2
T

∫ s

0

ϕ(r)

∫ t

0

(

1 +
1√
t− s

)(

1 +
1√
s− r

)

dsdr,

(3.43)

where we interchanged the order in the integral in the second line.
Now for r < s < t, we have

∫ t

r

(

1 +
1√
t− s

)(

1 +
1√
s− r

)

ds =

∫ t

r

(

1 +
1√
t− s

+
1√
s− r

+
1√

t− s
√
s− r

)

ds

≤T + 2
√
T +

∫ t

r

ds√
t− s

√
s− r

.

(3.44)
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By the change of variables u = s− r, v = t− r we have
∫ t

r

ds√
t− s

√
s− r

=

∫ v

0

du√
u
√
v − u

≤
∫ v/2

0

du√
u
√
v − u

+

∫ v

v/2

du√
u
√
v − u

≤ 1
√

v/2

∫ v/2

0

du√
u
+

1
√

v/2

∫ v

v/2

du√
v − u

≤4.

(3.45)

Finally, we combine inequalities (3.43), (3.44) and (3.45) to obtain an estimate in
type of Gronwall’s lemma as usual. Using Remark 3.11 for the boundedness at the
initial time, we complete the proof of Proposition 3.10.

�

4. Characterization of the limit

The aim of this section is to prove convergence of the sequence of fluctuation pro-
cesses (ηN)N≥1, where the limit fluctuation processes η is the unique solution of a system
of SPDEs driven by four inputs: an initial condition and three noises created by the
martingale terms M̃S,N

t , M̃ I,N
t , M̃R,N

t . In Section 4.1, we first identify all the noise terms
appearing in the limit system. In Section 4.2, we will show that this system uniquely
characterizes the limit law and hence complete the proof of the convergence in law of
(ηN)N≥1 to η.

4.1. Convergence of
(

M̃S,N , M̃ I,N , M̃R,N
)

N≥1
. Before stating the convergence result

of the martingale terms, let us introduce the definition of Gaussian white noises.

Definition 4.1. A random distribution W defined on a probability space (Ω,F ,P) is
called a standard Gaussian white noise on R

d if the mapping ϕ 7→ 〈W, ϕ〉 is linear and
continuous from L2

(

R
d
)

into L2(Ω), and 〈W, ϕ〉 is a generalized centered Gaussian
process satisfying

E [〈W, ϕ〉 〈W, φ〉] = 〈ϕ, φ〉L2 , ∀ ϕ, φ ∈ L2(Rd).

Here 〈·, ·〉L2 denotes a scalar product on L2
(

R
d
)

.

Space-time white noise is a Gaussian white noise on R+ × R
d.

Lemma 4.2. For all φ ∈ H−(2+2D),D, The limit process
(

MS(φ),MI ,MR
)

of the

sequence
(

M̃S,N , M̃ I,N , M̃R,N
)

N≥1
belong a.s. to

(

C
(

R+, H
−(2+2D),D

))3
.

Proof. We can adapt the proof in the case of real-value càglàg processes to the càglàg
process taking values in H−(2+2D),D. See e.g. Theorem 3.26 in [22], or [4]. �

Proposition 4.3. The sequence of the martingales
(

M̃S,N , M̃ I,N , M̃R,N
)

N≥1
converges

in law in
(

D
(

R+, H
−(2+2D),D

))3
towards the continuous centered Gaussian process
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(

MS,MI ,MR
)

with values in
(

H−(2+2D),D
)3

defined by: for all ϕ, ψ, φ ∈ H2+2D,D,

〈

MS
t , ϕ

〉

=

∫ t

0

∫

Rd

√

µS
r (x)Dxϕ(x)σ

S(x)W1(dr, dx)

−
∫ t

0

∫

Rd

√

µS
r (x)

∫

Rd

µI
r(x)K(x, y)dyϕ(x)W2(dr, dx), (4.1)

〈

MI
t , ψ
〉

=

∫ t

0

∫

Rd

√

µI
r(x)Dxψ(x)σ

I(x)W1(dr, dx)

+

∫ t

0

∫

Rd

√

µS
r (x)

∫

Rd

µI
r(x)K(x, y)dyψ(x)W2(dr, dx)

−
∫ t

0

∫

Rd

ψ(x)
√

µI
r(x)W3(dr, dx), (4.2)

〈

MR
t , φ

〉

=

∫ t

0

∫

Rd

√

µR
r (x)Dxφ(x)σ

R(x)W1(dr, dx)

+

∫ t

0

∫

Rd

φ(x)
√

γµI
r(x)W3(dr, dx), (4.3)

where W1,W2,W3 are independent standard space-time white noises.

Proof. In the previous section, we proved that the sequence
(

M̃S,N , M̃S,N , M̃S,N
)

N≥1
is

tight in
(

D
(

R+, H
−(2+2D),D

))3
. Hence, according to Prokhorov’s Theorem, there exists

a subsequence (still denoted by
(

M̃S,N , M̃S,N , M̃S,N
)

N≥1
), which converges in law in

(

D
(

R+, H
−(2+2D),D

))3
towards

(

MS,MI ,MR
)

.

For all φ1, φ2, φ3 ∈ H2+2D,D, by Lemma 4.2, we know thatMS(φ1),MI(φ2),MR(φ3)
are continuous martingales and thus for any a1, a2, a3 ∈ R, a1MS(φ1) + a2MI(φ2) +
a3MR(φ3) is also a continuous martingale. Now, we will show that the centered, contin-
uous martingale

(

MS(φ1),MI(φ2),MR(φ3)
)

is a Gaussian process and satisfies (4.1)-
(4.3).

Indeed, let us identify the limit. The LLN result implies that
(

µS,N , µI,N , µR,N
)

converges in
(

D
(

[0, T ],M(Rd)
))3

towards
(

µS, µI , µR
)

, which is the unique solution of
the limit system of (3.3)-(3.5), and we have

〈

MS(φ)
〉

t
=

∫ t

0

〈

µS
s ,
(

Dxφσ
S
)2〉

ds+

∫ t

0

〈

µS
s , φ

2KµI
s

〉

ds,

〈

MI(φ)
〉

t
=

∫ t

0

〈

µI
s,
(

Dxφσ
I
)2〉

ds+

∫ t

0

〈

µS
s , φ

2KµI
s

〉

ds+

∫ t

0

〈

µI
s, γφ

2
〉

ds,

〈

MR(φ)
〉

t
=

∫ t

0

〈

µR
s ,
(

Dxφσ
R
)2〉

ds+

∫ t

0

〈

µI
s, γφ

2
〉

ds.
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It turns out that
〈

a1MS(φ1) + a2MI(φ2) + a3MR(φ3)
〉

t
is a continuous martingale

with a deterministic quadratic variation, so it is characterized as a Gaussian process
determined by (4.1)-(4.3). �

4.2. Convergence of
(

ηS,N , ηI,N , ηR,N
)

N≥1
. We now prove convergence of the se-

quence
(

ηS,N , ηI,N , ηR,N
)

N≥1
and give a characterization of the limit processes as solu-

tion of an equation in H−(4+2D),D. We consider the Hilbert semimartingale decomposi-
tion (3.24)-(3.26) of

(

ηS,N , ηI,N , ηR,N
)

, and we will find a semimartingale decomposition

for the limit values, denoted by
(

ηS, ηI , ηR
)

. The difficulty is to close this limit decom-
position, i.e. to find a good space in which to immerse the limit process and which allows
to give a sense to the limit drift terms. We have seen that the processes ηS,N , ηI,N , ηR,N

belong uniformly to H−(1+D),2D and are tight in H−(2+2D),D. We also know that the
limit processes ηS, ηI , ηR are in H−(2+2D),D. But to identify the limit in the drift terms,
we need to work in a large space that is H−(4+2D),D. And this will be possible if we
assume more regularity on the coefficients σ and b.

We now introduce the following limit operators LS
s , L

I
s, L

R
s of the linear operators

LS,N , LI,N , LR,N , defined by

LS
s (φ) =

1

2
tr
[

(σSσS†
)D2

xxφ
]

+Dxφ · V S
µs

− φKµI
s
, (4.4)

LI
s(φ) =

1

2
tr
[

(σIσI †)D2
xxφ
]

+Dxφ · V I
µs

+ 〈µS
s , φK〉 − γφ, (4.5)

LR
s (φ) =

1

2
tr
[

(σRσR†
)D2

xxφ
]

+Dxφ · V R
µs
. (4.6)

Under the Assumption A3, and follows the lines in the proof of Proposition 3.8, we
can also prove the following lemma.

Lemma 4.4. For e ∈ {S, I, R}, for every N and any t ≤ T , the operators Le
s, L

e,N
s :

H4+2D,D → H2+2D,D are linear, continuous and satisfies
∥

∥Le,N
t (φ)

∥

∥

2+2D,D
≤CT

∥

∥φ
∥

∥

4+2D,D
, (4.7)

∥

∥Le
t (φ)

∥

∥

2+2D,D
≤CT

∥

∥φ
∥

∥

4+2D,D
. (4.8)

where the constant CT does not depend on N and the randomness.

Now by the trivial embeddingH−(2+2D),D →֒H−(4+2D),D, the sequence
(

ηS,N , ηI,N , ηR,N
)

N≥1

also converges to
(

ηS, ηI , ηR
)

in
(

C
(

[0, T ], H−(4+2D),D
))3

. This result is stated by the
following theorem.

Theorem 4.5. Under Assumptions A1,A2,A3, the sequence
(

ηS,N , ηI,N , ηR,N
)

N≥1
con-

verges in law in
(

D
(

[0, T ], H−(2+2D),D
))3

to a process
(

ηS, ηI , ηR
)

which solves the fol-
lowing equation
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ηSt − ηS0 −
∫ t

0

LS
s

∗
ηSs ds+

∫ t

0

div
(

µS
s V

S
ηSs +ηIs+ηRs

)

ds+

∫ t

0

µS
sKηIs

ds = MS
t , (4.9)

ηIt − ηI0 −
∫ t

0

LI
s

∗
ηIsds+

∫ t

0

div
(

µI
sV

I
ηSs +ηIs+ηRs

)

ds−
∫ t

0

µS
sKµI

s
ds = MI

t , (4.10)

ηRt − ηR0 −
∫ t

0

LR
s

∗
ηRs ds+

∫ t

0

div
(

µR
s V

R
ηSs +ηIs+ηRs

)

ds− γ

∫ t

0

µS
sKηIs

ds = MR
t , (4.11)

where MS,MI ,MR are the Gaussian processes defined in Proposition 4.3.

Proof. Since the sequence of the martingale terms
(

M̃S,N , M̃S,N , M̃S,N
)

N≥1
converges

in law in
(

D
(

R+, H
−(2+2D),D

))3
to the Gaussian vector process

(

MS,MI ,MR
)

defined
in Proposition 4.3, thus to prove that the limit processes satisfies the system (4.9)-(4.11),
it suffices to show that

ηS,Nt − ηS,N0 −
∫ t

0

LS,N
s

∗
ηS,Ns ds+

∫ t

0

div
(

µS
s V

S
ηNs

)

ds+

∫ t

0

µS
sKηI,Ns

ds,

ηI,Nt − ηI,N0 −
∫ t

0

LI,N
s

∗
ηI,Ns ds+

∫ t

0

div
(

µI
sV

I
ηNs

)

ds−
∫ t

0

µS,N
s KµI,N

s
ds,

ηR,N
t − ηR,N

0 −
∫ t

0

LR,N
s

∗
ηR,N
s ds+

∫ t

0

div
(

µR
s V

R
ηNs

)

ds− γ

∫ t

0

µS
sKηI,Ns

ds

converges in law to

ηSt − ηS0 −
∫ t

0

LS
s

∗
ηSs ds+

∫ t

0

div
(

µS
s V

S
ηSs +ηIs+ηRs

)

ds+

∫ t

0

µS
sKηIs

ds,

ηIt − ηI0 −
∫ t

0

LI
s

∗
ηIsds+

∫ t

0

div
(

µI
sV

I
ηSs +ηIs+ηRs

)

ds−
∫ t

0

µS
sKµI

s
ds,

ηRt − ηR0 −
∫ t

0

LR
s

∗
ηRs ds+

∫ t

0

div
(

µR
s V

R
ηSs +ηIs+ηRs

)

ds− γ

∫ t

0

µS
sKηIs

ds,

when N tends to ∞. By Lemma 4.4, the integrals
∫ t

0
LS
s
∗
ηSs ds,

∫ t

0
LI
s
∗
ηIsds,

∫ t

0
LR
s
∗
ηRs ds

and the remaining drift terms make sense in H−(4+2D),D. Now, for any φ ∈ H−(4+2D),D,

let us introduce linear vector function F φ =
(

F S,φ, F I,φ, FR,φ
)

from
(

D
(

[0, T ], H−(2+2D),D
))3
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into R
3 defined by

F S,φ
t (u) =

〈

ut, φ
〉

−
〈

u0, φ
〉

−
∫ t

0

〈

us, L
S
s (φ)

〉

ds

−
∫ t

0

〈

(us + vs + ws), 〈µS
s , Dxφ · V S〉

〉

ds+

∫ t

0

〈

vs, 〈µS
s , φK〉

〉

ds,

F I,φ
t (v) =

〈

vt, φ
〉

−
〈

v0, φ
〉

−
∫ t

0

〈

vs, L
I
s(φ)

〉

ds

−
∫ t

0

〈

(us + vs + ws), 〈µI
s, Dxφ · V I〉

〉

ds−
∫ t

0

〈

us, φKµI
s

〉

ds,

FR,φ
t (w) =

〈

wt, φ
〉

−
〈

w0, φ
〉

−
∫ t

0

〈

ws, L
R
s (φ)

〉

ds

−
∫ t

0

〈

(us + vs + ws), 〈µR
s , Dxφ · V R〉

〉

ds− γ

∫ t

0

〈

vs, φ
〉

ds.

The function F φ is continuous and thus, the sequence
(

F φ(ηS,N , ηI,N , ηR,N)
)

N≥1

converges in law to
(

F φ(ηS, ηI , ηR)
)

since the sequence
(

ηS,N , ηI,N , ηR,N
)

N≥1
converges

in law to
(

ηS, ηI , ηR
)

by the tightness result 3.13.

Now it remains to show that
∫ t

0

〈

ηS,Ns , LS,N
s (φ) − LS

s (φ)
〉

ds (and the analogues for

ηI,Ns , ηR,N
s ) tends to 0 when N tends to ∞. We will prove that it tends to 0 in L1.

Indeed, by Cauchy-Schwartz’s inequality, we deduce that

E

[
∫ t

0

∣

∣

∣

〈

ηS,Ns , LS,N
s (φ)− LS

s (φ)
〉

∣

∣

∣
ds

]

≤E

[
∫ t

0

∥

∥ηS,Ns

∥

∥

−(2+2D,D)2

∥

∥LS,N
s (φ)− LS

s (φ)
∥

∥

2

2+2D,D
ds

]

≤
∫ t

0

E

[

∥

∥ηS,Ns

∥

∥

2

−(2+2D,D)

]1/2

E

[

∥

∥LS,N
s (φ)− LS

s (φ)
∥

∥

2

2+2D,D

]1/2

ds

≤C
∫ t

0

E

[

∥

∥LS,N
s (φ)− LS

s (φ)
∥

∥

2

2+2D,D

]1/2

ds,

where we used Proposition 3.10 and Remark 3.11 to obtain the last inequality.

Following the lines in the proof of Proposition 3.8 and the LLN result µe,N → µe,
e ∈ {S, I, R}, we can also prove that

∥

∥LS,N
s (φ) − LS

s (φ)
∥

∥

2+2D,D
tends to 0 as N tends

to ∞, and thus complete the proof.

Noticing that to compute
∥

∥LS,N
s (φ) − LS

s (φ)
∥

∥

2+2D,D
, we used the additional as-

sumption on σ, V,K, and once we do the analysis for the term 1
2
tr
[

(σeσe†)D2
xxφ
]

in

LS,N
s (φ), LS

s (φ), it will require the regularity order 4 + 2D instead of 2 + 2D as in the
inequality (3.21). Thus, the equations (4.9)-(4.11) are regarded as the equations in
the space H−(4+2D),D, while ηS, ηI , ηR are known to take values in the smaller space
H−(2+2D),D. �
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In order to complete the proof of convergence of the sequence
(

ηS,N , ηI,N , ηR,N
)

N≥1
,

it remains to prove the uniqueness of solutions to the system (4.9)-(4.11).

Proposition 4.6. For any initial condition ηS0 , η
I
0, η

R
0 with values in H−(2+2D),D, the

system (4.9)-(4.11) has at most one solution with paths in
(

D
(

[0, T ], H−(2+2D),D
))3

.

Since the equations (4.9)-(4.11) are linear, the standard argument is to take two solu-

tions of this system with the same initial condition and paths in
(

D
(

[0, T ], H−(2+2D),D
))3

.

Considering an orthonormal basis of H4+2D,D, we can prove the uniqueness of solutions

to this system (4.9)-(4.11) in
(

D
(

[0, T ], H−(2+2D),D
))3

. For instance, we can follows the
same argument as the proof of uniqueness in [27].

References

[1] R. A. Adams, J. J. F. Fournier. Sobolev spaces. Volume 140 of Pure and Applied Mathematics.
Elsevier, Amsterdam, second edition, 2003. MR-2424078

[2] D. Aldous. Stopping times and tightness. The Annals of Probability 6(2), 335-340, 1978.
[3] V. Bally, D. Goreac, V. Rabiet. Regularity and Stability for the Semigroup of Jump Diffusions

with State-Dependent Intensity. Annals of Applied Probability, Institute of Mathematical Statis-
tics (IMS) 28 (5), 2018.

[4] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statistics:
Probability and Statistics. John Wiley, New York, second edition, 1999.

[5] S. Bowong, A. Emakoua, E. Pardoux. A spatial stochastic epidemic model: law of large num-
bers and central limit theorem. Stochastics and Partial Differential Equations: Analysis and

Computations, Springer, 2022.
[6] F. Brauer, P. van den Driessche, J. Wu. Mathematical epidemiology, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2008.
[7] T. Britton, E. Pardoux. Stochastic epidemic in a homogeneous community, Part I of stochastic

epidemic models with inference, Lecture Notes in Mathematics 2225, pp. 1-120 Springer, 2019.
[8] R. Carmona, F. Delarue. Probabilistic theory of mean field games with applications I: Mean Field

FBSDEs, Control, and Games, Springer, 2017.
[9] J. Chevallier. Fluctuations for mean-field interacting age-dependent Hawkes processes. Electronic

Journal of Probability, Institute of Mathematical Statistics (IMS), 22 (42), 2017.
[10] M. Coghi, F. Flandoli. Propagation of chaos for interacting particles subject to environmental

noise. The Annals of Applied Probability, Vol. 26, No. 3, 1407–1442, 2016.
[11] F. Delarue, D. Lacker, K. Ramanan. From the master equation to mean field game limit theory:

a central limit theorem. Electronic Journal of Probability, 24(51), 2019.
[12] A. Emakoua. A SIR Stochastic Epidemic Model in Continuous Space: Law of Large Numbers

and Central Limit Theorem, preprint, 2022.
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[15] B. Fernandez, S. Méléard. A Hilbertian approach for fluctuations on the McKean-Vlasov model.
Stochastic Processes and their Applications, 71(1):33–53, 1997. MR-1480638

[16] N. Fournier, A. Guillin. On the rate of convergence in Wasserstein distance of the empirical
measure. Probability Theory Related Fields, 162, 707–738, 2015.

[17] H. Hamedani, B. Zangeneh. Stopped Doob inequality for p-th moment (0 < p < ∞) stochastic
convolution integrals. Stochastic Analysis and Applications 19(5), 771-798, 2001.



34 M. HAURAY, E. PARDOUX, Y. V. VUONG

[18] M. Hauray, E. Pardoux, Y. V. Vuong. Conditional propagation of chaos in a spatial stochastic
epidemic model with common noise. Stochastics and Partial Differential Equations: Analysis

and Computations, Springer, 2022.
[19] M. Hauray, Y. V. Vuong. Regularity estimates for diffusion semigroups in weighted Sobolev

spaces, preprint, 2022.
[20] M. Hitsuda, I. Mitoma. Tightness problem and stochastic evolution equation arising from fluc-

tuation phenomena for interacting diffusions. Journal of Multivariate Analysis, 19(2):311–328,
1986.

[21] N. Ikeda, S. Watanabe. Stochastic Differential Equations and Diffusion Processes, Second Edi-
tion. North-Holland Mathematical Library 24, Amsterdam, 1989.

[22] J. Jacod and A. N. Shiryaev. Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin,
1987.

[23] A. Joffe, M. Métivier. Weak convergence of sequences of semimartingales with applications to
multitype branching processes. Advances in Applied Probability, pages 20–65, 1986. MR0827331
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