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Abstract

Consider an epidemic model with a constant flux of susceptibles, in a situation where
the corresponding deterministic epidemic model has a unique stable endemic equi-
librium. For the associated stochastic model, whose law of large numbers limit is
the deterministic model, the disease free equilibrium is an absorbing state, which
is reached soon or later by the process. However, for a large population size, i.e.
when the stochastic model is close to its deterministic limit, the time needed for the
stochastic perturbations to stop the epidemic may be enormous. In this paper, we
discuss how the Central Limit Theorem, Moderate and Large Deviations allow us to
give estimates of the extinction time of the epidemic.
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1 Introduction

We consider epidemic models where there is a constant flux of susceptible individuals,
either because the infected individuals become susceptible immediately after healing
(SIS model), or after some time during which the individual is immune to the illness
(SIRS model), or because there is a constant flux of newborn or immigrant susceptibles
(SIR model with demography).

In the above three cases, for certain values of the parameters, there is an endemic
equilibrium, which is a stable equilibrium of the associated deterministic epidemic model.
The deterministic model can be considered as the Law of Large Numbers limit (as the
size of the population tends to ∞) of a stochastic model, where infections, healings,
births and deaths happen according to Poisson processes whose rates depend upon the
numbers of individuals in each compartment.

Since the disease free states are absorbing, it follows from an irreducibility property
which is clearly valid in our models, that the epidemic will stop soon or later in the more
realistic stochastic model. However, the time which the stochastic perturbances will
need to stop the epidemic may be enormous when the size N of the population is large.
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Moderate Deviations and Epidemics

The aim of this paper is to describe, based upon the Central Limit Theorem, Large and
Moderate Deviations, the time it takes for the epidemic to stop in the stochastic model.

The law of large numbers and central limit theorems are rather old. They can be
found e.g. in chapter 11 of Ethier and Kurtz [3]. There are also presented, in the
framework of epidemic models, in Britton and Pardoux [1]. The Large Deviations results
are close to those presented in Shwartz and Weiss [10], [11], although their assumptions
are not quite satisfied in our models. Derivations adapted to our setup can be found
in Kratz and Pardoux [5], Pardoux and Samegni–Kepgnou [7], and Britton and Pardoux
[1]. The results concerning moderate deviations are new and constitute the core of this
paper. Our derivation is essentially based upon a process version of the Gärtner–Ellis
Theorem, Corollary 4.6.14 from Dembo and Zeitouni [2]. Our main results are Theorem
4.10 and Theorem 4.13. We also give the expression for the rate function in our three
models of interest in section 4.5, and in case of the SIS model we give an explicit formula
for the quasi–potential in section 4.7.2. Finally, again for the case of the SIS model, we
compare in section 4.8 the upper bound of fluctuations given respectively by the central
limit theorem, moderate deviations, and large deviations.

The results of this paper have been anounced in [6]

The paper is organized as follows. In section 2, we describe the three deterministic
and stochastic models which we have in mind, namely the SIS, SIRS and SIR model with
demography. In section 3, we give the general formulation of the stochastic models, and
recall the Law of Large Numbers, the Central Limit Theorem and the Large Deviations,
and their application to the time of extinction of an epidemic. In section 4, we establish
the moderate deviations result and explain how it can be used to predict the time taken
for an epidemic to cease. Finally an Appendix establishes an estimate of exponential
moments of the integral with respect to a compensated Poisson random measure. This
estimate is used several times in our proofs.

In this paper, the same letter C denotes an arbitrary constant, whose value may
change from line to line. The value at time t of a function φ will be denoted φt, but the
value at time t of the first coordinate of φ will be denoted φ1(t).

2 The three models

2.1 The SIS model

The deterministic SIS model is the following. Let s(t) (resp. i(t)) denote the propor-
tion of susceptible (resp. infectious) individuals in the population. Given an infection
parameter λ, and a recovery parameter γ, the deterministic SIS model reads{

s′(t) = −λs(t)i(t) + γi(t),

i′(t) = λs(t)i(t)− γi(t).

Since clearly s(t) + i(t) ≡ 1, the system can be reduced to a one dimensional ODE. If we
let z(t) = i(t), we have s(t) = 1− z(t), and we obtain the ODE

z′(t) = λz(t)(1− z(t))− γz(t) .

It is easy to verify that this ODE has a so–called “disease free equilibrium”, which is
z = 0. If λ > γ, this equilibrium is unstable, and there is an endemic stable equilibrium
z∗ = 1− γ/λ.

The corresponding stochastic model is as follows. Let SNt (resp. INt ) denote the
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Moderate Deviations and Epidemics

proportion of susceptible (resp of infectious) individuals in a population of total size N .
SNt = SN0 −

1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Prec

(
γN

∫ t

0

INr dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
.

Here Pinf (t) and Prec(t) are two mutually independent standard (i.e. rate 1) Poisson
processes. Let us give some explanations, first concerning the modeling, then concerning
the mathematical formulation.

Let SNt (resp. INt ) denote the number of susceptible (resp. infectious) individuals in
the population. The equations for those quantities are the above equations, multiplied
by N . The argument of Pinf (t) reads

λ

∫ t

0

SNr
N
INr dr .

Note that SNt = N−1SNt and INt = N−1INt , so that in particular all those processes live
on the same time scale. The formulation of such a rate of infections can be explained
as follows. Each infectious individual meets other individuals in the population at some
rate β. The encounter results in a new infection with probability p if the partner of the
encounter is susceptible, which happens with probability SNt /N , since we assume that
each individual in the population has the same probability of being that partner, and
with probability 0 if the partner is an infectious individual. Letting λ = βp and summing
over the infectious individuals at time t gives the above rate. Concerning recovery, it is
assumed that each infectious individual recovers at rate γ, independently of the others.

2.2 The SIRS model

In the SIRS model, contrary to the SIS model, an infectious who heals is first immune
to the illness, he is “recovered”, and only after some time does he loose his immunity
and turn to susceptible. The deterministic SIRS model reads

s′(t) = −λs(t)i(t) + ρr(t),

i′(t) = λs(t)i(t)− γi(t),
r′(t) = γi(t)− ρr(t),

while the stochastic SIRS model reads

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Ploim

(
ρN

∫ t

0

RNr dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
RNt = RN0 +

1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Ploim

(
ρN

∫ t

0

RNr dr

)
.

These two models could be reduced to two–dimensional models for z(t) = (i(t), s(t))

(resp. for ZNt = (INt , S
N
t )).

2.3 The SIR model with demography

In this model, recovered individuals remain immune for ever, but there is a flux of
susceptibles by births at a given rate multiplied by N , while individuals from each of the
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three compartments die at rate µ. Thus the deterministic model
s′(t) = µ− λs(t)i(t)− µs(t)
i′(t) = λs(t)i(t)− γi(t)− µi(t)
r′(t) = γi(t)− µr(t),

whose stochastic variant reads

SNt = SN0 −
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
+

1

N
Pbirth(µNt)−

1

N
Pds

(
µN

∫ t

0

SNr dr

)
,

INt = IN0 +
1

N
Pinf

(
λN

∫ t

0

SNr I
N
r dr

)
− 1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Pdi

(
µN

∫ t

0

INr dr

)
,

RNt = RN0 +
1

N
Prec

(
γN

∫ t

0

INr dr

)
− 1

N
Pdr

(
µN

∫ t

0

RNr dr

)
.

Remark 2.1. One may think that it would be more natural to decide that births happen
at rate µ times the total population. The total population process would be a critical
branching process, which would go extinct in finite time a.s., which we do not want.
Next it might seem more natural to replace in the infection rate the ratio SNt /N by
SNt /(S

N
t + INt +RNt ), which is the actual ratio of susceptibles in the population at time t.

It is easy to show that SNt +INt +RNt is close to N , so we choose the simplest formulation.

Again, we can reduce these models to two–dimensional models for z(t) = (i(t), s(t))

(resp. for ZNt = (INt , S
N
t )), by deleting the r (resp. RN ) component.

3 The stochastic model, LLN, CLT and LD

3.1 The stochastic model

The three above stochastic models are of the following form.

ZNt = zN +
1

N

k∑
j=1

hjPj

(
N

∫ t

0

βj(Z
N
s )ds

)

= zN +

∫ t

0

b(ZNs )ds+
1

N

k∑
j=1

hjMj

(
N

∫ t

0

βj(Z
N
s )ds

)
,

(3.1)

where {Pj(t), t ≥ 0}0≤j≤k are mutually independent standard Poisson processes, Mj(t) =

Pj(t)− t, and b(z) =
∑k
j=1 βj(z)hj . Z

N
t takes its values in Rd.

In the case of the SIS model, d = 1, k = 2, h1 = 1, β1(z) = λz(1 − z), h2 = −1 and
β2(z) = γz.

In the case of the SIRS model, d = 2, k = 3, h1 =

(
1

−1

)
, β1(z) = λz1z2, h2 =

(
−1

0

)
,

β2(z) = γz1 and h3 =

(
0

1

)
, β3(z) = ρ(1− z1 − z2).

In the case of the SIR model with demography, we can restrict ourselves to d = 2,

while k = 4, h1 =

(
1

−1

)
, β1(z) = λz1z2, h2 =

(
−1

0

)
, β2(z) = (γ + µ)z1, h3 =

(
0

1

)
,

β3(z) = µ, h4 =

(
0

−1

)
, β4(z) = µz2.

While the above expressions has the advantage of being concise, we shall rather
use the following equivalent formulation of (3.1). Let {Mj , 1 ≤ j ≤ k} be mutually
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independent Poisson random measures onR2
+ with mean measure the Lebesgue measure,

and letMj(ds, du) =Mj(ds, du)− ds du, 1 ≤ j ≤ k. We can rewrite (3.1) in the form

ZNt = zN +
1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du)

= zN +

∫ t

0

b(ZNs )ds+
1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du),

(3.2)

The joint law of {ZN , N ≥ 1} is the same law of a sequence of random elements of the
Skorohod space D([0, T ];Rd), whether we use (3.1) or (3.2) for its definition.

Let us state the assumptions which we will need in section 4 below. Those are more
than necessary for the results of the present section to hold, see [1] for the proofs.

(H.1) βj is bounded , 1 ≤ j ≤ k;

(H.2) b ∈ C1(Rd;Rd), and ∇b : Rd 7→ Rd×d is bounded and Lipshitz.

Remark 3.1. In practice, in our models, either the process ZNt takes its values in a
compact subset of Rd (this is the case for all models with a constant population size), or
else we restrict ourselves to such a situation, by stopping the process when the total
population exceeds a given large value, see section 4.2.7 in [1]. As a consequence, the
boundedness of βj is not a severe assumption, while (H.2) would follow from the fact
that b is of class C2. It is possible that our results could be extended to b being C1, since
it implies that ∇b is continuous, hence uniformly continuous since its argument remains
in a compact set, but that would require a very careful check.

Concerning the initial condition, we assume that for some z ∈ [0, 1]d, zN = [Nz]/N ,
where [Nz] ∈ Zd+ is the vector whose i–th component is the integer part of the real
number Nzi.

3.2 Law of Large Numbers

We have a Law of Large Numbers

Theorem 3.2. Let ZNt denote the solution of the SDE (3.1). Then ZNt → zt a.s. locally
uniformly in t, where {zt, t ≥ 0} is the unique solution of the ODE

dzt
dt

= b(t, zt), z0 = x.

The main argument in the proof of the above theorem is the fact that, locally uniformly
in t,

P (Nt)

N
→ t a.s. as N →∞.

3.3 Central Limit Theorem

We also have a Central Limit Theorem. Let UNt :=
√
N(ZNt − zt).

Theorem 3.3. As N →∞, {UNt , t ≥ 0} ⇒ {Ut, t ≥ 0} for the topology of locally uniform
convergence, where {Ut, t ≥ 0} is a Gaussian process of the form

Ut =

∫ t

0

∇xb(s, zs)Usds+

k∑
j=1

hj

∫ t

0

√
βj(s, zs)dBj(s), t ≥ 0 , (3.3)

where {(B1(t), B2(t), . . . , Bk(t)), t ≥ 0} are mutually independent standard Brownian
motions.
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The proof of this theorem can be found e.g. in [1]. It relies essentially upon the
fact that if P is a rate 1 Poisson process, then

√
N(P (Nt)/N − t)t≥0 ⇒ B, where B is a

standard Brownian motion.

Remark 3.4. One may wonder whether the above two theorems are compatible with
the fact that for each N fixed, as we shall see below, extinction happens in finite time a.s.
However, the extinction time tends to +∞ as N →∞, so that the determinsitic limit of
ZN is a function whose infectious component remains > 0 for all t, and for any fixed t
the fluctuations

√
N(ZNt − zt) tend to be Gaussian as N →∞.

3.4 Large Deviations, and extinction of an epidemic

We denote by ACT,d the set of absolutely continuous functions from [0, T ] into Rd. For
any φ ∈ ACT,d, let Ak(φ) denote the (possibly empty) set of functions c ∈ L1(0, T ;Rk+)

such that cj(t) = 0 dt a.e. on the set {t, βj(φt) = 0} and

dφt
dt

=

k∑
j=1

cj(t)hj a.e.

We define the rate function

IT,z(φ) :=

{
infc∈Ak(φ) IT (φ|c), if φ ∈ ACT,d and φ0 = z;

∞, otherwise.

where as usual the infimum over an empty set is +∞, and

IT (φ|c) =

∫ T

0

k∑
j=1

g(cj(t), βj(φt))dt

with g(ν, ω) = ν log(ν/ω)− ν + ω. We assume in the definition of g(ν, ω) that for all ν > 0,
log(ν/0) =∞ and 0 log(0/0) = 0 log(0) = 0. Given z ∈ Rd, we shall denote by ZN,zN the
solution of equation (3.1), starting from ZN,zN0 = zN = [Nz]/N . The collection ZN,zN

obeys a Large Deviations Principle, in the sense that

Theorem 3.5. For any open subset O ⊂ D([0, T ];Rd),

lim inf
N→∞

1

N
logP

(
ZN,zN ∈ O

)
≥ −IT,z(O).

For any closed subset F ⊂ D([0, T ];Rd),

lim sup
N→∞

1

N
logP(ZN,zN ∈ F ) ≤ −IT,z(F ) .

A proof of this result can be found in [5] and in [1]. A slight reinforcement of this
theorem allows us to conclude Theorem 3.6ă below. In what follows, we assume that the
first component of ZNt (resp. of z(t)) is INt (resp. i(t)). Assume that the deterministic
ODE which appears in Theorem 3.2 has a unique stable equilibrium z∗ whose first
component satisfies z∗1 > 0. We define

V := inf
T>0

inf
φ∈ACT,d,φ(0)=z∗,φ1(T )=0

IT (φ).

Let now
TN,zExt = inf{t > 0, ZN1 (t) = 0, if ZN (0) = zN}.

We have the
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Theorem 3.6. Given any η > 0, for any z with z1 > 0,

lim
N→∞

P
(

exp{N(V − η)} < TN,zExt < exp{N(V + η)}
)

= 1.

Moreover, for all η > 0 and N large enough,

exp{N(V − η)} ≤ E(TN,zExt ) ≤ exp{N(V + η)}.

We refer for the proof of this Theorem to [5] and [1].
It is important to evaluate the quantity V . Note that it is the value function of an

optimal control problem. In case of the SIS model, which is one dimensional, one can
solve this control problem explicitly with the help of Pontryagin’s maximum principle,
see [9], and deduce in that case that V = log λ

γ − 1 + γ
λ . For other models, one can

compute numerically a good approximation of the value of V for each given value of the
parameters.

3.5 CLT and extinction of an epidemic

The discussion of this subsection, which motivates the moderate deviations approach
of this paper, is taken from section 4.1 in [1]. Consider the SIR with demography.

i′(t) = λi(t)s(t)− γi(t)− µi(t),
s′(t) = −λi(t)s(t) + µ− µs(t).

We assume that λ > γ + µ, in which case there is a unique stable endemic equilibrium,
namely z∗ = (i∗, s∗) = ( µ

γ+µ −
µ
λ ,

γ+µ
λ ). We can study the extinction of an epidemic in

the above model using the CLT. We note that the basic reproduction number R0 and the
expected relative time of a life an individual is infected, ε, are given by

R0 =
λ

γ + µ
ε =

1/(γ + µ)

1/µ
=

µ

γ + µ
. (3.4)

The rate of recovery γ is much larger than the death rate µ (52 compared to 1/75 for
a one week infectious period and 75 year life length) so we use the approximations
R0 ≈ λ/γ and ε ≈ µ/γ. Denote again by INt the fraction of the population which is
infectious in a population of size N . The law of large numbers tells us that for N and t
large, INt is close to i∗. The central limit theorem tell us that

√
N(INt − i∗) converges to

a Gaussian process, whose asymptotic variance can be shown to well approximated by
R−1

0 −R
−2
0 ≈ R−1

0 , see Exercise 4.1.3 in [1], and its solution on pages 116–117. Note that
INt = z∗1 +N−1/2UN1 (t) ≈ zt+N−1/2U1(t), and for large t the law of U1(t) is approximately
N(0, R−1

0 ). This suggests that for large t, the number of infectious individuals in the
population is approximately Gaussian, with mean Ni∗ and standard deviation

√
N/R0. If

Ni∗ and
√
N/R0 are of the same order, i.e. N is of the same order as 1

(i∗)2R0
, it is likely

that the fluctuations described by the central limit theorem explain that the epidemic
might cease in time of order one. This gives a critical population size roughly of the
order of

Nc ∼
1

(i∗)2R0
=

1

ε2(1−R−1
0 )2R0

,

in fact probably a bit larger than that.
Consider measles prior to vaccination. In that case it is known that R0 ≈ 15, and

ε ≈ 1/75
1/(1/52)+1/75 ≈ 1/3750 we arrive at Nc ∼ (3750)2/15, which is almost 106. So, if the

population is at most a million (or perhaps a couple of millions), we expect that the
disease will go extinct quickly, whereas the disease will become endemic (for a rather
long time) in a significantly larger population. This confirms the empirical observation
that measles was continuously endemic in UK whereas it died out quickly in Iceland (and
was later reintroduced by infectious people visiting the country).
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4 Moderate deviations

If the CLT allows to predict extinction of an endemic disease for population sizes
under a given threshold Nc, and Large Deviations gives predictions for arbitrarily large
population sizes, it is fair to look at Moderate Deviations, which describes ranges of
fluctuations between those of the CLT and those of the LD.

The assumptions (H.1) and (H.2) are assumed to hold throughout this section.

4.1 The set–up and preliminary estimates

We shall use the general model written in the form (3.2). We assume that the limiting
law of large numbers ODE

z(t) = z +

∫ t

0

b(z(s))ds

has a unique stable equilibrium point z∗ such that z∗1 > 0, called the endemic equilibrium,
which is such that, provided z1(0) > 0, z(t)→ z∗ as t→∞.

For the sake of simplifying many formulas below, we change our coordinates, and
let z∗ = 0. The reader should be aware of the fact that there is a price to pay for that
translation of the origin. Indeed, since in the original coordinate system, the process ZNt
was living on the set of vectors whose coordinates are integer multiples of N−1 (this is
essential for the process to remain in the set where it makes sense, i.e. for proportions
to remain between 0 and 1), the new origin generically does not belong to the set of
point in Rd which our process ZNt may visit. The grid on which ZNt lives is translated by
the vector z∗ − {z∗}N , where here and below {z}N := [Nz]/N , [Nz] denoting the vector
whose i–th component is the integer part of the i–th component of Nz. However, this
minor complexity will appear only in the formula for the initial condition of the SDE.
Once the SDE starts on the correct grid, the solution remains there.

From now on 0 will be the endemic equilibrium (of course in the translated coordinate
system), while z∗ 6= 0 will denote that endemic equilibrium in the original coordinates
(we shall need it for the formula of the initial condition of the SDE).

We want to study the moderate deviations at scale Nα of ZNt , where 0 < α < 1/2.
Note that α = 0 would correspond to the large deviations, and α = 1/2 to the central
limit theorem. We shall need below to consider the ODE starting from a point close to
z∗ = 0, namely we shall consider the function {zN (t), 0 ≤ t ≤ T}, solution of the ODE

zN (t) = N−αz +

∫ t

0

b(zN (s))ds,

where z ∈ Rd is arbitrary. In fact, we shall be more interested in zN (t) := NαzN (t),
which solves (below we exploit the fact that b(0) = 0)

zN (t) = z +Nα

∫ t

0

b(zN (s))ds

= z +

∫ t

0

∇b(0)zN (s)ds+

∫ t

0

∫ 1

0

[∇b(θzN (s))−∇b(0)] dθ zN (s)ds.

It is not hard to prove that, under our standing assumption (H.2) that b is of class C1

and ∇b is bounded, as N →∞, zN (t)→ z(t) uniformly for 0 ≤ t ≤ T , where z(t) solves
the linearized ODE near the endemic equilibrium 0 :

z(t) = z +

∫ t

0

∇b(0)z(s)ds . (4.1)

EJP 0 (2012), paper 0.
Page 8/28

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.vVOL-PID
http://ejp.ejpecp.org/


Moderate Deviations and Epidemics

We want to study the moderate deviations of the process ZNt solution of the SDE
(3.1) with the initial condition zN := {z∗+N−αz}N − z∗. This amounts to study the large
deviations of ZN,αt := NαZNt at speed aN = N2α−1. We define

Y Nt =
1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(Z
N
s )

0

Mj(ds, du), and Y N,αt = NαY Nt .

With these notations, the SDE for ZN,αt reads

ZN,αt = Nα
(
{z∗ +N−αz}N − z∗

)
+

∫ t

0

Nαb
(
N−αZN,αs

)
ds+ Y N,αt

= Nα
(
{z∗ +N−αz}N − z∗

)
+

∫ t

0

∇b(0)ZN,αs ds+

∫ t

0

V N,αs ds+ Y N,αt , where

V N,αs = Nαb
(
N−αZN,αs

)
−∇b(0)ZN,αs =

[∫ 1

0

(
∇b
(
θN−αZN,αs

)
−∇b(0)

)
dθ

]
ZN,αs .

If we let K := supz ‖∇b(z)‖, we have

‖ZN,αt ‖ ≤ ‖z‖+
√
dNα−1 +K

∫ t

0

‖ZN,αs ‖ds+ ‖Y N,αt ‖.

This combined with Gronwall’s Lemma yields

‖ZN,αt ‖ ≤ eKt
(
‖z‖+

√
dNα−1 + sup

0≤s≤t
‖Y N,αs ‖

)
. (4.2)

From the boundedness and Lipschitz property of ∇b, and the formula for V N,α, we
deduce te following (here and in the rest of the paper, xN . yN means that there exists
a constant C which is independent of N , such that xN ≤ CyN ).

‖V N,αt ‖ . ‖ZN,αt ‖, and ‖V N,αt ‖ . N−α‖ZN,αt ‖2 .

We deduce from the last three inequalities

∥∥∥V N,αt

∥∥∥.Nα−1 +

(
‖z‖+ sup

0≤s≤t
‖Y N,αs ‖

)
∧N−α

(
‖z‖+ sup

0≤s≤t
‖Y N,αs ‖

)2

. (4.3)

We now define

Ỹ N,αt =

∫ t

0

V N,αs ds+ Y N,αt , t ≥ 0,

so that

ZN,αt = Nα
(
{z∗ +N−αz}N − z∗

)
+

∫ t

0

∇b(0)ZN,αs ds+ Ỹ N,αt . (4.4)

We will see below that the large deviations of ZN,α will follow from those of Ỹ N,α by
a variant of the contraction principle. We first consider the simpler processes

Y
N

t :=
1

N

k∑
j=1

hj

∫ t

0

∫ Nβj(0)

0

Mj(ds, du), and Y
N,α

t = NαY
N

t (4.5)

which are similar to Y N and Y N,α, but with ZNs replaced by 0.
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4.2 The limiting logarithmic moment generating function of Y
N,α

We note that writing the integral over [0, Nβj(0)] as the sum from ` = 1 to ` = N of

integrals over ((`− 1)βj(0), `βj(0)], we can rewrite Y
N,α

as follows.

Y
N,α

t =
1

N1−α

N∑
`=1

Q`(t), where

Q`(t) =

k∑
j=1

hj

∫ t

0

∫ `βj(0)

(`−1)βj(0)

Mj(ds, du).

The processes Q1, Q2, . . . , QN are i.i.d., and their law is that of

Q(t) = Q1(t) =

k∑
j=1

hj

∫ t

0

∫ βj(0)

0

Mj(ds, du). (4.6)

Now let ν = (ν1, . . . , νd) be a vector of signed measures on [0, T ].

Lemma 4.1. As N →∞,

aN logE exp
{
a−1
N ν(Y

N,α
)
}
→ 1

2
E
(
ν(Q)2

)
.

Proof. We use in an essential way the above decomposition of Y
N,α

.

aNΛN (a−1
N ν) = N2α−1 logE exp{N1−αν(Y

N
)}

= N2α logE exp{N−αν(Q)}

= N2α logE{1 +N−αν(Q) +
N−2α

2
ν(Q)2 +N−3αRN3 }

= N2α log

{
1 +

N−2α

2
E[ν(Q)2] +N−3αE[RN3 ]

}
→ 1

2
E[ν(Q)2],

provided
sup
N≥1
|E[RN3 ]| <∞, (4.7)

which we will check below. From this it follows that the argument of the logarithm on
the before last line is greater than or equal to 1, at least for N large enough, and the
final conclusion follows easily from the fact that for any x ≥ 0, x− x2/2 ≤ log(1 + x) ≤ x.
Let us now check (4.7). It follows from an exact Taylor formula that

|RN3 | ≤
|ν(Q)|3

6
exp(N−α|ν(Q|).

But ν(Q) is an affine combination of mutually independent Poisson random variables, so
that (4.7) follows easily by an explicit computation.

4.3 The limiting logarithmic moment generating function of Ỹ N,α

We want to study the large deviations of Ỹ N,α. The main step will be to prove that

Lemma 4.1 remains valid if we replace Y
N,α

by Ỹ N,α, which will follow from the next
Proposition.

Proposition 4.2. For any C > 0, ν = (ν1, . . . , νd) a vector of signed measures, as N →∞,

aN logE exp
[
Ca−1

N ν(Ỹ N,α − Y N,α)
]
→ 0 . (4.8)
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Before we establish that Proposition, let us first prove that it yields the wished result.

Proposition 4.3. Given Lemma 4.1, if Proposition 4.2 holds true, then for any signed
measure ν on [0, T ], as N →∞,

aN logE exp
{
a−1
N ν(Ỹ N,α)

}
→ 1

2
E[ν(Q)2] .

Proof. For any δ > 0, we deduce from Hölder’s inequality

aN logE exp{a−1
N ν(Ỹ N,α)}

= aN logE
[
exp{a−1

N ν(Y
N,α

)} exp{a−1
N ν(Ỹ N,α − Y N,α)}

]
≤ aN

1 + δ
logE exp{(1 + δ)a−1

N ν(Y
N,α

)}

+
aNδ

1 + δ
logE exp

{
1 + δ

δaN
ν(Ỹ N,α − Y N,α)

}
,

so that, if we combine Lemma 4.1 and Proposition 4.2, we deduce that

lim sup
N

aN logE exp{ν(a−1
N Ỹ N,α)} ≤ (1 + δ)

2
E[ν(Q)2],

and letting δ → 0, we conclude that

lim sup
N

aN logE exp{ν(a−1
N Ỹ N,α)} ≤ 1

2
E[ν(Q)2].

For the inequality in the other direction, we note that, by similar arguments,

aN logE exp

{
a−1
N

1 + δ
ν(Y

N,α
)

}
≤ aN

1 + δ
logE exp{a−1

N ν(Ỹ N,α)}

+
aNδ

1 + δ
logE exp{(δaN )−1µ(Ỹ N,α − Y N,α)},

with µ = −ν, which implies that

lim inf
N

aN logE exp{a−1
N ν(Ỹ N,α)} ≥ 1

2(1 + δ)
E[ν(Q)2],

hence, letting δ → 0 we conclude that

lim inf
N

aN logE exp{a−1
N ν(Y N,α)} ≥ 1

2
E[ν(Q)2].

The remaining of this subsection will be devoted to the proof of Proposition 4.2.
We note that Proposition 4.2 is a consequence of the following two Propositions.

Proposition 4.4. For any C > 0, as N →∞,

aN logE exp
[
Ca−1

N ν(Y N,α − Y N,α)
]
→ 0 . (4.9)

Proposition 4.5. For any C > 0, as N →∞,

aN logE exp

[
Ca−1

N sup
0≤t≤T

∥∥∥∥∫ t

0

V N,αs ds

∥∥∥∥]→ 0 . (4.10)

We start with the
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Proof of Proposition 4.4. The exponents in the expressions entering (4.9) are sums over
the indices 1 ≤ i ≤ d and 1 ≤ j ≤ k. Using repeatedly Schwartz’s inequality, it is sufficient
to prove the results with the sum replaced by each of the summands. Therefore in this
proof we do as if d = 1, we fix 1 ≤ j ≤ k and for the sake of simplifying the notations, we
drop the index j. We note that

a−1
N (Y N,α − Y N,α) = N−α

∫ t

0

∫ N [β(ZNs )∨β(0)]

Nβ(0)

M(ds, du)

−N−α
∫ t

0

∫ N [β(ZNs )∨β(0)]

Nβ(ZNs )

M(ds, du)

It is not hard to see that one can treat each of the two terms on the right separately,
and we treat only the first term, the treatment of the second one being quite similar. We
note that there exists a compensated standard Poisson process M(t) on R+ such that
the factor of N−α in this first term can be rewritten as

WN
t := M

(
N

∫ t

0

(β(ZNs )− β(0))+ds

)
.

We need to estimate E exp[CN−αν(WN )]. If we decompose the signed measure ν as the
difference of two measures as follows ν = ν+ − ν−, we again have two terms, and it
suffices to treat one of them, say ν+. Of course it suffices to treat the case where ν+ 6= 0.
Since the positive constant C is arbitrary, we can w.l.o.g. assume that ν+ is a probability
measure on [0, T ]. It is then clear that

exp

[
CN−α

∫ T

0

WN
t ν+(dt)

]
≤ exp

[
CN−α sup

0≤t≤T
WN
t

]
.

We choose a new parameter 0 < γ < α, and we write the expression whose expecta-
tion needs to be estimated as a sum of two terms as follows.

exp

{
CN−α sup

0≤t≤T
WN
t

}
= exp

{
CN−α sup

0≤t≤T
WN
t

}
1sup0≤t≤T ‖ZNt ‖≤N−γ

+ exp

{
CN−α sup

0≤t≤T
WN
t

}
1sup0≤t≤T ‖ZNt ‖>N−γ .

(4.11)

We now estimate the first term on the right hand side of (4.11). For that sake, we define
the stopping time

σN = inf{0 ≤ t ≤ T ; ‖ZNt ‖ > N−γ}

and note that

exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZNs )− β(0))+ds

)}
1sup0≤t≤T ‖ZNt ‖≤N−γ

≤ exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t∧σN

0

(β(ZNs )− β(0))+ds

)}
Consequently the expectation of the first term on the right of (4.11) is bounded from
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above by

E exp

{
CN−α sup

0≤t≤T
M

(
N

∫ t∧σN

0

(β(ZNs )− β(0))+ds

)}
≤ E exp

{
(e2CN−α − 1− 2CN−α)N

∫ T∧σN

0

(β(ZNt )− β(0))+dt

}
≤ exp

{
CN1−2α−γ} ,

where the first inequality follows from Proposition 5.1 in the Appendix below, and the
second one exploits the Lipschitz property of β. Consider now the second term on the
right hand side of (4.11).

E

(
exp

{
N−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZNs )− β(0))+ds

)}
1sup0≤t≤T ‖ZNt ‖>N−γ

)

≤
(
E exp

{
2N−α sup

0≤t≤T
M

(
N

∫ t

0

(β(ZNs )− β(0))+ds

)})1/2

× P
(

sup
0≤t≤T

‖ZNt ‖ > N−γ
)1/2

≤ exp
{
CN1−2α

}
P

(
sup

0≤t≤T

∥∥Y Nt ∥∥ > cN−γ
)1/2

,

for some c, C > 0, where the second inequality follows from Proposition 5.1 and the
boundedness of β. Estimating the second factor in the last expression amounts to
estimating the two probabilities (with another c > 0)

P

(
sup

0≤t≤T
M

(
N

∫ t

0

β(ZNs )ds

)
> cN1−γ

)
and

P

(
sup

0≤t≤T

(
−M

(
N

∫ t

0

β(ZNs )ds

))
> cN1−γ

)
.

(4.12)

We estimate the first probability. For any a > 0,

P

(
sup

0≤s≤t
M

(
N

∫ s

0

β(ZNr )dr

)
> cN1−γ

)
= P

(
sup

0≤s≤t
exp

{
aM

(
N

∫ s

0

β(ZNr )dr

)}
> exp{acN1−γ}

)
≤ e−acN

1−γ
E

(
sup

0≤s≤t
exp

{
aM

(
N

∫ s

0

β(ZNr )dr

)})

. e−acN
1−γ
(
E exp

{
(e2a − 1− 2a)N

∫ t

0

β(ZNs )ds

})1/2

≤ exp{−acN1−γ + (e2a − 1− 2a)NCt}

≤ exp

{
− c2

8Ct
N1−2γ

}
,

(4.13)

where the second inequality follows from Proposition 5.1 and the last inequality by
optimizing over a > 0. One can easily convince oneself that a similar result holds for
the second line of (4.12), making use of Proposition 5.1 with a negative a. Note also for
further use that the same result also holds in case γ = 0. In that case, the probability on
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the second line of (4.12) is zero for large enough c, in which case the anounced estimate
is of course true.

The expectation of the second term of the right hand side of (4.11) is thus dominated
by (with c1 and c2 two positive constants)

exp{c1N1−2α − c2N1−2γ} → 0, as N →∞.

Finally

E exp

{
N−α sup

0≤s≤t
M

(
N

∫ t

0

(β(ZNs )− β(zs))
+ds

)}
≤ exp

{
CN1−2α−γ}+ exp{c1N1−2α − c2N1−2γ}

It follows readily from the inequality log(a + b) ≤ log(2) + log(a ∨ b) that for N large
enough

aN logE exp

{
N−α sup

0≤s≤t
M

(
N

∫ t

0

(β(ZNs )− β(0))+ds

)}
≤ aN log(2) + CN−γ ,

which establishes (4.9).

We now turn to the second proof.

Proof of Proposition 4.5. Recalling assumption (H.1), we now define, with βj := supz∈Rd βj(z),

ξN,jt :=
1

N

∫ t

0

∫ Nβj

0

Mj(ds, du) 1 ≤ j ≤ k,

the event

ANb :=

{
sup

0≤t≤T

∥∥∥Y Nt ∥∥∥ ≤ b}⋂ k⋂
j=1

{
sup

0≤t≤T
ξN,jt ≤ (1 + b′)βjT

}
,

and the stopping time

τ̄b := inf
{
t > 0,

∥∥∥Y Nt ∥∥∥ > b
}∧ k∧

j=1

inf
{
t > 0, ξN,jt > (1 + b′)βjT

}
,

where the constant b > 0 will be chosen below, and the constant b′ > 0 is arbitrary. From
the estimate (4.3),

aN logE

[
exp

{
a−1
N C sup

0≤t≤T

∥∥∥∥∫ t

0

V N,αs ds

∥∥∥∥}]
. Nα−1 + aN logE

[
exp

{
a−1
N C

(
‖z‖+Nα sup

0≤t≤T
‖Y Nt ‖

)
1(ANb )c

}]
(4.14)

+ aN logE

[
exp

{
a−1
N C

(
N−α‖z‖2 +Nα sup

0≤t≤T
‖Y Ns ‖2

)
1ANb

}]
, (4.15)

We take the limit successively in the two terms of the above right hand side. Step 1 :
Estimate of (4.14) We have

E

[
exp

{
a−1
N C

(
‖z‖+Nα sup

0≤t≤T
‖Y Nt ‖

)
1(ANb )c

}]
. exp

{
CN1−2α‖z‖

}
P
(
(ANb )c

)
+ E

[
exp

{
CN−α sup

0≤t≤T
‖NY Ns ‖

}
1(ANb )c

]
+ 1,
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We first note that the arguments used in the proof of (4.13), in the particular case γ = 0,
yield

P(
(
ANb )c

)
≤ P

(
sup

0≤t≤T

∥∥∥Y Nt ∥∥∥ > b

)
+

k∑
j=1

P

(
sup

0≤t≤T
(ξN,jt − β̄t) > b′β̄T

)
. e−CN , (4.16)

for some constant C > 0. We next estimate the product

E

[
exp

{
CN−α sup

0≤t≤T
‖NY Ns ‖

}]
P
(
(ANb )c

)
.

For the same reason as in the previous proof, we need only consider the case d = k = 1.
It follows from Proposition 5.1 that the first factor satisfies

E

[
exp

{
CN−α sup

0≤t≤T

∣∣∣∣∣
∫ t

0

∫ Nβ(ZNs )

0

M(ds, du)

∣∣∣∣∣
}]

. eCN
1−2α

.

Finally there exist two positive constants C1 and C2 such that

E

[
exp

{
a−1
N C

(
‖z‖+Nα sup

0≤t≤T
‖Y Nt ‖

)
1(ANb )c

}]
. 1 + exp{C1N

1−2α − C2N}

≤ 2 ,

for N large enough. So aN log of the above tends to 0, as N →∞.
Step 2 : Estimate of (4.15) We first note that

aN logE

[
exp

{
a−1
N C

(
N−α‖z‖2 +Nα sup

0≤t≤T
‖Y Ns ‖2

)
1ANb

}]
≤ CN−α‖z‖2 + aN logE

[
exp

{
a−1
N CNα sup

0≤t≤T
‖Y Ns ‖21ANb

}]
.

The first term on the right tends to 0 as N →∞. It remains to take care of the second
term. Since Y Nt is a martingale, it is clear that the process{

exp

(
a−1
N

C

2
Nα‖Y Nt ‖2

)
, t ≥ 0

}
is a submartingale. Consequently, from Doob’s L2 submartingale inequality,

E

[
sup

0≤t≤T
exp

{
a−1
N CNα‖Y Nt ‖21ANb

}]
≤ E

[
sup

0≤t≤T∧τ̄b
exp

{
a−1
N CNα‖Y Nt ‖2

}]
≤ 4E

[
exp

{
a−1
N CNα‖Y NT∧τ̄b‖

2
}]

Next

E
[
exp

{
CN1−α‖Y NT∧τ̄b‖

2
}]
≤
√
E
[
exp

{
CN1−α

(
‖Y NT∧τ̄b‖

2 − ‖Y NT∧τ̄b‖2
)}]

×
√
E
[
exp

{
CN1−α‖Y NT∧τ̄b‖2

}]
(4.17)

Consider first the first factor on the right hand side of (4.17). We deduce from the
definition of τ̄b that

‖Y NT∧τ̄b‖
2 − ‖Y NT∧τ̄b‖

2 =
(
Y NT∧τ̄b + Y

N

T∧τ̄b , Y
N
T∧τ̄b − Y

N

T∧τ̄b

)
≤ (cT + b+ 2N−1 sup

j
‖hj‖)

∥∥∥Y NT∧τ̄b − Y NT∧τ̄b∥∥∥ ,
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with cT =
∑k
j=1 ‖hj‖(1 + b′)βjT . Consequently the square of the first factor on the right

of (4.17) is bounded from above by

E
[
exp

{
CN1−α

∥∥∥Y NT∧τ̄b − Y NT∧τ̄b∥∥∥}] ≤ E [exp
{
CN1−α

∥∥∥Y NT − Y NT ∥∥∥}] ,
where we have used Doob’s optional sampling theorem for submartingales. From the
same argument as above,we do as if d = 1, note that

exp
{
CN1−α

∣∣∣Y NT − Y NT ∣∣∣} ≤ exp
{
CN1−α

(
Y NT − Y

N

T

)}
+ exp

{
CN1−α

(
Y
N

T − Y NT
)}

and exploit Proposition 4.4 in order to conclude concerning aN log of the first factor on
the right of (4.17).

We next note that

∥∥∥Y NT∧τ̄b∥∥∥2

≤
∥∥∥Y NT ∥∥∥2

1{‖Y NT ‖≤b}
+ (b+N−1 sup

j
‖hj‖)21{τ̄b<T}.

Hence the square of the second term on the right of (4.17) satisfies

E

[
exp

{
CN1−α

∥∥∥Y NT∧τ̄b∥∥∥2
}]
≤
√
E
[
exp

{
CN1−α1{τ̄b<T}

}]
×

√
E

[
exp

{
CN1−α

∥∥∥Y NT ∥∥∥2

1{∥∥∥Y NT ∥∥∥≤b}
}] (4.18)

Consider first the second factor on the right of (4.18). We have

∥∥∥Y NT ∥∥∥2

≤ k
k∑
j=1

‖hj‖2

N2

∣∣∣∣∣
∫ T

0

∫ βj(0)

0

Mj(ds, du)

∣∣∣∣∣
2

.

Using the Cauchy–Schwartz inequality several times, it is clear that it is sufficient to do
as if we had (dropping the index j)

Y
N

T =
1

N

∫ T

0

∫ Nβ(0)

0

M(ds, du) =
√
a/N ξN ,

with a = β(0)T and ξN = θN−aN√
aN

, where θN ∼ Poi(aN). We now choose b = a/3. We have
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E exp
{
CN−α|ξN |21{|ξN |≤

√
aN/3}

}
=

b4aN/3c∑
k=d2aN/3e

exp

{
CN−α

(k − aN)2

aN

}
e−aN

(aN)k

k!

.
∫ √aN/3
−
√
aN/3

exp
{
CN−αx2

}
e−aN

(aN)aN+x
√
aN

(aN + x
√
aN)!

√
aNdx

.
1√
2π

∫ √aN/3
−
√
aN/3

exp
{
CN−αx2

}
ex
√
aN

(
1 +

x√
aN

)−(aN+x
√
aN)

dx

≤ 1√
2π

∫ √aN/3
−
√
aN/3

exp
{
CN−αx2

}
× exp

{
x
√
aN − (aN + x

√
aN)

[
x√
aN
− x2

2aN
+

x3

2(aN)3/2
1x<0

]}
dx

≤ 1√
2π

∫ √aN/3
−
√
aN/3

exp

{
CN−αx2 − x2

2
+

x3

2
√
aN

1x>0

}
dx

≤ 1√
2π

∫ √aN/3
−
√
aN/3

exp

{
CN−αx2 − x2

3

}
dx

We have proved that the second factor on the right of (4.18) remains bounded, as N →∞.
We next consider the first factor on the right of (4.18). We first note that

exp
{

4C ′N1−α1{τb<T}
}
≤ 1 + exp

{
4C ′N1−α}1{τb<T}

But from (4.16), P (τ̄b < T ) . e−CN .

It follows that the left hand side of (4.18) is bounded from above by a constant times

1 + exp{C1N
1−α − C2N},

where C1 and C2 are two positive constants. This last expression is bounded by 2, as
soon as N is large enough. Finally aN log of the left-hand side of (4.18) tends to 0, as
N →∞.

Remark 4.6. We note that the full strength of (4.3) is necessary for the proof of Propo-
sition 4.5. Indeed, while aN logE exp{CN1−α sup0≤t≤T ‖Y Nt ‖} certainly does not con-
verge to 0 as N → ∞, clearly with high probability ‖Y Nt ‖2 is smaller than ‖Y Nt ‖, but
E exp{CN1−α‖Y Nt ‖2} =∞.

4.4 Large deviations of Ỹ N,α

We first define the Fenchel–Legendre transform of

Λ(ν) =
1

2
E[ν(Q)2]

=

k∑
j=1

βj(0)

2

∫
[0,T ]2

s ∧ t 〈hj , ν〉(ds)〈hj , ν〉(dt),

where Q has been defined by (4.6), ν = (ν1, . . . , νd) is a vector of signed measures
and 〈hj , ν〉(dt) =

∑d
i=1 h

i
jνi(dt), h

i
j being the i–th coordinate of the vector hj . We have
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exploited the fact that ν(Q) is the sum over j of zero mean mutually independent random
variables. For each φ ∈ D([0, T ];Rd), we define

Λ∗(φ) = sup
ν∈(D([0,T ];Rd))∗

{ν(φ)− Λ(ν)} .

The next step will consist in proving that the sequence of processes {Ỹ N,α}N≥1 satisfies
a Large Deviation Principle.

Theorem 4.7. The sequence {Ỹ N,α, N ≥ 1} satisfies the Large Deviation Principle in
D([0, T ];Rd) equipped with the supnorm topology, with the convex, good rate function
Λ∗ and with speed aN , in the sense that for any Borel subset Γ ⊂ D([0, T ];Rd),

− inf
φ∈Γ̊

Λ∗(φ) ≤ lim inf
N

aN logP(Ỹ N,α ∈ Γ)

≤ lim sup
N

aN logP(Ỹ N,α ∈ Γ) ≤ − inf
φ∈Γ

Λ∗(φ) .

Since there is a difficulty with having a topology on D([0, T ];Rd) which makes it a
topological vector space, and allows for a simple characterization of the class of compact
sets, we shall use a small detour for the proof of the above Theorem. Recall that

Ỹ N,αt = Y N,αt +

∫ t

0

V N,αs ds,

where Y N,αt is piecewise constant, with jumps of size hjNα−1. Let Y N,α,ct denote the
continuous piecewise linear approximation of Y N,αt , which is defined as follows. Let
0 = τN0 < τN1 < τN2 < · · · denote the successive jump times of the process Y N,αt . For
i ≥ 0, on the interval [τNi , τ

N
i+1],

Y N,α,ct =
τNi+1 − t
τNi+1 − τNi

Y N,α
τNi

+
t− τNi

τNi+1 − τNi
Y N,α
τNi+1

.

Next we define ˜̃
Y
N,α

t = Y N,α,ct +

∫ t

0

V N,αs ds .

We note that

sup
0≤t≤T

∥∥∥∥Ỹ N,αt − ˜̃Y N,αt

∥∥∥∥ ≤ sup
j
‖hj‖Nα−1, (4.19)

hence for any δ > 0, for N large enough,

P

(
sup

0≤t≤T

∥∥∥∥Ỹ N,αt − ˜̃Y N,αt

∥∥∥∥ ≥ δ) = 0 .

This implies clearly

Lemma 4.8. The two sequences {Ỹ N,α}N≥1 and
{˜̃
Y
N,α}

N≥1
are exponentially equiv-

alent in D([0, T ];Rd), equipped with the supnorm topology, in the sense that for each
δ > 0,

lim sup
N→∞

aN logP

(
sup

0≤t≤T

∥∥∥∥Ỹ N,αt − ˜̃Y N,αt

∥∥∥∥ ≥ δ) = −∞.

We shall prove below the following.
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Proposition 4.9. The sequence
{˜̃
Y
N,α}

N≥1
is exponentially tight in C0([0, T ];Rd), the

space of continuous functions from [0, T ] into Rd, which start from 0 at t = 0, in the sense
that for any R > 0, there exists a compact subset KR ⊂⊂ C0([0, T ] : Rd) such that

lim sup
N→∞

aN logP

(˜̃
Y
N,α

6∈ KR

)
≤ −R.

Let us now turn to the proof of the above Theorem.

Proof of Theorem 4.7. From (4.19), we deduce that

aN logE exp

{
Ca−1

N ν

(
Ỹ N,αt − ˜̃Y N,αt

)}
≤ CNα−1 → 0,

as N → ∞. Consequently, again by the argument of Proposition 4.3, we deduce from
that same Proposition that for any signed measure ν on [0, T ], as N →∞,

aN logE exp

{
a−1
N ν

(˜̃
Y
N,α
)}

→ 1

2
E[ν(Q)2] .

This, together with Proposition 4.9, allows us to apply Corollary 4.6.14 from [2], to

conclude that the sequence
{˜̃
Y
N,α}

N≥1
satisfies a LDP in C0([0, T ];Rd) with the good

rate function Λ∗, and speed aN . Since C0([0, T ];Rd) is closed in D([0, T ];Rd) equipped
with the supnorm topology, it follows from Lemma 4.1.5 in [2] that the same LDP holds in
the latter space, with the same rate function Λ∗, extended to that space by Λ∗(φ) = +∞
for φ ∈ D([0, T ];Rd)\C0([0, T ];Rd). The result now follows from Lemma 4.8, in view of
Theorem 4.2.13 from [2].

We now turn to the

Proof of Proposition 4.9. Clearly it suffices to prove both that

lim
R→∞

lim sup
N→∞

aN logP

(
sup

0≤t≤T
‖V N,αt ‖ ≥ R

)
= −∞ , (4.20)

and that the sequence {Y N,α,c}N≥1 is exponentially tight in C0([0, T ];Rd). Let us first
establish (4.20). It follows from (4.3) that

‖V N,αt ‖ ≤ C
(
‖z‖+ 1 + sup

0≤t≤T
‖Y N,αt ‖

)
.

Consequently, if R > 2C(‖z‖+ 1), with R′ = (2C)−1R,

aN logP( sup
0≤t≤T

‖V N,αt ‖ > R) ≤ aN logP( sup
0≤t≤T

‖Y N,αt ‖ > R′)

≤ aN log

(
e−a

−1
N R′E sup

0≤t≤T
exp{a−1

N ‖Y
N,α
t ‖}

)
≤ −R′ + aN logE

(
sup

0≤t≤T
exp{a−1

N ‖Y
N,α
t ‖}

)
.

It follows from Doob’s submartingale inequality and a combination of Lemma 4.1 and
Proposition 4.4 that the lim sup as N →∞ of the second term of the last right hand side
is finite. (4.20) clearly follows.
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It remains to consider Y N,α,c. Define the modulus of continuity of an element x ∈
C0([0, T ];Rd) as wx(δ) = sup0≤s,t≤T,|s−t|≤δ ‖x(t)− x(s)‖. It follows from Ascoli’s theorem
that for any sequence {δ`, ` ≥ 1} of positive numbers, the following is a compact subset
of C0([0, T ];Rd): ⋂

`≥1

{x : wx(δ`) ≤ `−1} .

Suppose that for each ` ≥ 1, R > 0, we can find δR,` > 0 such that for all N ≥ 1,

P(wY N,α,c(δR,`) ≥ `−1) ≤ exp{−a−1
N (R+ `)} . (4.21)

From this we deduce that

P(∪`≥1{wY N,α,c(δR,`) ≥ `−1}) ≤
∑
`≥1

e−a
−1
N (R+`) ≤ e−a

−1
N R,

so that
lim sup
N→∞

aN logP(∪`≥1{wY N,α,c(δR,`) ≥ `−1}) ≤ −R,

from which the result follows. A sufficient condition for (4.21) to be true is that for any
b > 0,

lim
δ→0

lim sup
N→∞

aN logP (wY N,α,c(δ) > b) = −∞ .

In turn a sufficient condition for this is that

lim
δ→0

lim sup
N→∞

aN logP (wY N,α(δ) > b) = −∞ , (4.22)

which we now prove. It is not hard to see that

P (wY N,α(δ) > b) ≤ 2

(
T

δ
+ 1

)
sup

0≤t≤T
P

(
sup

t≤s≤t+2δ
‖Y N,αs − Y N,αt ‖ ≥ b/2

)
≤ 2

(
T

δ
+ 1

)
sup

0≤t≤T
P

(
sup

t≤s≤t+2δ
exp{a−1

N δ−1/2‖Y N,αs − Y N,αt ‖} ≥ exp{ba−1
N /2

√
δ}
)

≤ 2

(
T

δ
+ 1

)
exp{−ba−1

N /2
√
δ} sup

0≤t≤T
E exp{a−1

N δ−1/2‖Y N,αt+2δ − Y
N,α
t ‖},

where we have used Doob’s submartingale inequality at the last step. Clearly

exp{a−1
N δ−1/2‖Y N,αt+2δ − Y

N,α
t ‖} ≤

k∏
j=1

exp

{
N−αδ−1/2‖hj‖

∣∣∣∣∣
∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

∣∣∣∣∣
}

Using repeatedly Cauchy–Schwartz’s inequality, we see that it suffices to estimate for
each j

E exp

{
CN−αδ−1/2

∣∣∣∣∣
∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

∣∣∣∣∣
}

≤ E exp

{
CN−αδ−1/2

∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

}

+ E exp

{
−CN−αδ−1/2

∫ t+2δ

t

∫ Nβj(Z
N
s )

0

Mj(ds, du)

}
≤ 2 exp{8C2N1−2αβ̄j},
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where β̄j = supz βj(z), we have used Proposition 5.1 and the inequality ex − 1− x ≤ x2,
valid for x ≤ log(2), which we have applied with x = 2CN−αδ−1/2 and x = −2CN−αδ−1/2

(recall that we will first let N →∞). Putting together the last estimates yields

lim sup
N→∞

aNP (wY N,α(δ) > b) ≤ − b

2
√
δ

+ C.

(4.22) follows, and the Proposition is proved.

4.5 Computation of the rate function Λ∗

Let us compute Λ∗ in the three examples which we discussed above in section 2.
Here we do not translate z∗ to the origin.

4.5.1 Computation of Λ∗ for the SIS model

Recall that in this case d = 1, k = 2, h1 = 1, β1(z) = λz(1 − z), h2 = −1, β2(z) = γz. If
λ > γ, there is a unique stable endemic equilibrium z∗ = 1− γ/λ. We first compute

Λ(ν) =
1

2
E

∫
[0,T ]×[0,T ]

Q(s)Q(t)ν(ds)ν(dt),

where

Q(t) =

∫ t

0

∫ β1(z∗)

0

M1(ds, du)−
∫ t

0

∫ β2(z∗)

0

M2(ds, du) .

It is easy to check that E[Q(t)Q(s)] = σ2(z∗) s ∧ t, where

σ2(z∗) = β1(z∗) + β2(z∗) = 2
γ

λ
(λ− γ).

Consequently

Λ(ν) =
σ2(z∗)

2

∫
[0,T ]×[0,T ]

s ∧ t ν(ds)ν(dt) .

We now need to compute Λ∗(φ) in case φ ∈ C2([0, T ]). We should take the supremum
over the signed measures ν on [0, T ] of the quantity∫

[0,T ]

φ(t)ν(dt)− σ2(z∗)

2

∫
[0,T ]×[0,T ]

s ∧ t ν(ds)ν(dt) .

The supremum is achieved at the signed measure ν which makes the gradient with
respect to ν of the above zero, if any. We first note that for such a ν to exist, we need
that φ(0) = 0, unless Λ∗(φ) = +∞. Now the optimal ν must satisfy

φ(t) = σ2(z∗)

∫
[0,T ]

s ∧ t ν(ds)

= σ2(z∗)

∫
[0,t]

s ν(ds) + σ2(z∗)t

∫
(t,T ]

ν(dt).

So necessarily

ν(dt) = − φ′′(t)

σ2(z∗)
dt+

φ′(T )

σ2(z∗)
δT (dt).

Substituting this signed measure ν in the above formula, we obtain that∫
[0,T ]

φ(t)ν(dt) =
φ′(T )

σ2(z∗)
φ(T )−

∫ T

0

φ′′

σ2(z∗)
(t)φ(t)dt

=
1

σ2(z∗)

∫ T

0

|φ′(t)|2dt .
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Consequently

Λ∗(φ) =

{
1

2σ2(z∗)

∫ T
0
|φ′(t)|2dt, if φ(0) = 0 and φ is absolutely continuous;

+∞, otherwise.

4.5.2 Computation of Λ∗ for the SIRS model

In this model, d = 2 and k = 3. We have h1 =
(

1
−1

)
, β1(z) = λz1z2, h2 =

(−1
0

)
, β2(z) = γz1,

and h3 =
(

0
1

)
, β3(z) = ρ(1− z1 − z2). In the case λ > γ, there is a unique stable endemic

equilibrium, namely z∗ =
( ρ
γ+ρ (1− γλ )

γ
λ

)
. In order to simplify the notations, we shall write

a = β1(z∗), b = β2(z∗), c = β3(z∗) and A = ab+ ac+ bc. We have

Λ(ν) =
a

2

∫
[0,T ]×[0,T ]

s ∧ t(ν1 − ν2)(ds)(ν1 − ν2)(dt)

+
b

2

∫
[0,T ]×[0,T ]

s ∧ tν1(ds)ν1(dt) +
c

2

∫
[0,T ]×[0,T ]

s ∧ tν2(ds)ν2(dt)

The functional to be maximized with respect to ν is

〈ν1, φ1〉+ 〈ν2, φ2〉 −
a

2

∫
[0,T ]×[0,T ]

s ∧ t(ν1 − ν2)(ds)(ν1 − ν2)(dt)

− b

2

∫
[0,T ]×[0,T ]

s ∧ tν1(ds)ν1(dt)− c

2

∫
[0,T ]×[0,T ]

s ∧ tν2(ds)ν2(dt)

Writing that the gradient w.r.t. ν1 and ν2 of this functional is zero leads to the identities

φ1(t) = a

∫
[0,T ]

s ∧ t(ν1 − ν2)(ds) + b

∫
[0,T ]

s ∧ tν1(ds),

φ2(t) = a

∫
[0,T ]

s ∧ t(ν2 − ν1)(ds) + c

∫
[0,T ]

s ∧ tν2(ds).

This implies the identities

ν1(dt) = −
(
a+ c

A
φ′′1(t) +

a

A
φ′′2(t)

)
dt+

(
a+ c

A
φ′1(T ) +

a

A
φ′2(T )

)
δT ,

ν2(dt) = −
(
a

A
φ′′1(t) +

a+ b

A
φ′′2(t)

)
dt+

(
a

A
φ′1(T ) +

a+ b

A
φ′2(T )

)
δT .

Finally we deduce that Λ∗(φ) is +∞ unless φ is absolutely continuous and φ(0) = 0, in
which case

Λ∗(φ) =
a

2A

∫ T

0

|φ′1(t) + φ′2(t)|2dt+
c

2A

∫ T

0

|φ′1(t)|2dt+
b

2A

∫ T

0

|φ′2(t)|2dt .

4.5.3 Computation of Λ∗ for the SIR model with demography

In this case, d = 2, k = 4, h1 =
(

1
−1

)
, β1(z) = λz1z2, h2 =

(−1
0

)
, β2(z) = (γ +µ)z1, h3 =

(
0
1

)
,

β3(z) = µ and h4 =
(

0
−1

)
, β4(z) = µz2. In the case λ > γ + µ, there is a unique stable

endemic equilibrium, namely z∗ =
(µ( 1

γ+µ−
1
λ )

γ+µ
λ

)
. We shall use the notations a = β1(z∗),

b = β2(z∗), c = β3(z∗) + β4(z∗) and A = ab+ ac+ bc We have

Λ(ν) =
a

2

∫
[0,T ]×[0,T ]

s ∧ t(ν1 − ν2)(ds)(ν1 − ν2)(dt)

+
b

2

∫
[0,T ]×[0,T ]

s ∧ tν1(ds)ν1(dt) +
c

2

∫
[0,T ]×[0,T ]

s ∧ tν2(ds)ν2(dt)
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Formally the functional Λ(ν) has exactly the same form as in the case of the SIRS model,
only the constants have different values. The same computations as in the previous
subsection lead to the same result, namely that Λ∗(φ) is +∞ unless φ is absolutely
continuous and φ(0) = 0, in which case

Λ∗(φ) =
a

2A

∫ T

0

|φ′1(t) + φ′2(t)|2dt+
c

2A

∫ T

0

|φ′1(t)|2dt+
b

2A

∫ T

0

|φ′2(t)|2dt .

4.6 Moderate deviations of ZN

We again equip D([0, T ];Rd) with the supnorm topology. Let for z ∈ Rd Fz :

D([0, T ];Rd) 7→ D([0, T ];Rd) be the continuous map which to x associates y solution
of the ODE

y(t) = z +

∫ t

0

∇b(0)y(s)ds+ x(t),

and for each N ≥ 1 Fz,N : D([0, T ];Rd) 7→ D([0, T ];Rd) be the continuous map which to
x associates yN solution of the ODE

yN (t) = Nα({z∗ +N−αz}N − z∗) +

∫ t

0

∇b(0)yN (s)ds+ x(t).

We have

Fz,N (x)(t)− Fz(x)(t) = exp[∇b(0)t]
(
Nα({z∗ +N−αz}N − z∗)− z

)
, (4.23)

which converges to 0 as N → ∞, uniformly in t ∈ [0, T ] and x ∈ D([0, T ];Rd). We
want to study the moderate deviations of ZN , or in other words the large deviations
of ZN,α = NαZN . In what follows, we shall denote by ZN,αz the process ZN,α starting
from ZN,α(0) = z. Since from (4.4), ZN,αz , which from now on denotes the process ZN,α

starting from ZN,α(0) = z, is given as ZN,αz = Fz,N (Ỹ N,α), the following statement is a
consequence of Theorem 4.7, (4.23) and Corollary 4.2.21 from [2].

Theorem 4.10. Assume that (H.1) and (H.2) hold. The collection of processes {ZN,αz (t), 0 ≤
t ≤ T}N≥1 satisfies a large deviations principle with speed aN and the good rate function

Iz,T (φ) = Λ∗(F−1
z (φ))

=

{
Λ∗
(
φ(·)− z −∇b(0)

∫ ·
0
φ(s)ds

)
if φ(0) = z;

+∞, otherwise.

More precisely, for any Borel subset Γ ⊂ D([0, T ];Rd),

− inf
φ∈Γ̊

Iz,T (φ) ≤ lim inf
N

aN logP(ZN,αz ∈ Γ)

≤ lim sup
N

aN logP(ZN,αz ∈ Γ) ≤ − inf
φ∈Γ

Iz,T (φ) .

Since the mapping Fz has the nice property that Fz(x)(t)−Fz′(x)(t) = exp[∇b(0)t](z−
z′), it follows readily again from Corollary 4.2.21 in [2] that the above result can be
extended to the following statement.

Theorem 4.11. Assume that (H.1) and (H.2) hold. For any closed set F ⊂ D([0, T ];Rd),
for any sequence zN → z,

lim sup
N→∞

aN logP(ZN,αzN ∈ F ) ≤ − inf
φ∈F

Iz,T (φ) .

For any open set G ⊂ D([0, T ];Rd), for any sequence zN → z,

lim inf
N→∞

aN logP(ZN,αzN ∈ G) ≥ − inf
φ∈G

Iz,T (φ) .
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From this last Theorem, we can deduce, with the same proof as that of Corollary
5.6.15 in [2], the following Corollary.

Corollary 4.12. Assume that (H.1) and (H.2) hold. Let K denote an arbitrary compact
subset of Rd.

For any closed set F ⊂ D([0, T ];Rd),

lim sup
N→∞

aN log sup
z∈K

P(ZN,αz ∈ F ) ≤ − inf
φ∈F,z∈K

Iz,T (φ) .

For any open set G ⊂ D([0, T ];Rd),

lim inf
N→∞

aN log inf
z∈K

P(ZN,αz ∈ G) ≥ − sup
z∈K

inf
φ∈G

Iz,T (φ) .

4.7 Wentzell–Freidlin theory and extinction of an epidemic

We now define

V (z, z′, t) = inf
φ, φ(0)=z,φ(t)=z′

Iz,t(φ),

V (z, z′) = inf
t>0

V (z, z′, t),

V a = inf
z, z1=−a

V (0, z),

where a > 0, and we recall that we have translated the endemic equilibrium z∗ at the
origin.

We can now state our main result.

Theorem 4.13. Assume that (H.1) and (H.2) hold. For some a > 0, let TNz,a := inf{t >
0, ZN,αz,1 (t) ≤ −a}, where ZN,αz,1 (t) denotes the first coordinate of the process ZN,αz (t). The
following hold.

For any z ∈ Rd such that z1 > −a, and any η > 0,

lim
N→∞

P
(
ea
−1
N (V a−η) < TNz,a < ea

−1
N (V a+η)

)
= 1 ,

and
lim
N→∞

aN logE(TNz,a) = V a .

Given Corollary 4.12, the proof of the above result follows the exact same steps as
that of Theorem 5.7.11 in [2], with some minor modifications, to adapt to the fact that
our processes have discontinuous trajectories, see the proof of Theorem 7.14 in [5], or
of Theorem 4.2.17 in [1].

Recall that a−1
N = N1−2α. In the CLT regime, α = 1/2, a−1

N = 1, while in the LD
regime, α = 0, a−1

N = N .

4.7.1 Interpretation. The critical population size

Going back to the original coordinates, i.e. z∗ 6= 0, we should interpret ZN,α(t) as
ZN,α(t) = Nα(ZN (t) − z∗). So (dropping the index for the starting point in order to
simplify our notations), TNa is the first time when ZN1 (t) ≤ z∗1 −aN−α. For TNa to be finite,
we need to have z∗1 − aN−α ≥ 0, since ZN1 (t) cannot become negative. This is of course
no problem for the limit theorem, since aN−α → 0 as N →∞, while z∗1 is fixed. However,
a deviation of the order of −aN−α is enough for ZN1 (t) to hit zero, if z∗1 is of the order of

N−α, which means that N is of the order of (z∗1)−1/α. eN
1−2αV a is the order of magnitude

of the time needed for ZNt − zt to make a deviation of size aN−α. This is sufficient to
extinguish an epidemic, provided z∗1 is of the same order, so that the corresponding
critical size is Nα ∼ (1/z∗1)1/α, which is roughly the CLT critical population size raised to
the power 1/2α.
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4.7.2 The value of V a in the SIS model

In the particular case of the SIS model, we can compute explicitly the value of the quasi–
potential V a. In this case, d = 1, the linearized ODE around the endemic equilibrium
translated at 0 reads

ẋ = −(λ− γ)x+ u,

and the cost functional to minimize is

IT (u) =
λ

4γ(λ− γ)

∫ T

0

u(t)2dt .

We are looking for the minimal cost for driving x from 0 to −a. We now exploit the
Pontryagin maximum principle, see [9]. The Hamiltonian reads

H(x, p, u) = −(λ− γ)px+ pu− λ

4γ(λ− γ)
u2 .

The optimal control û must maximize the Hamiltonian, so it satisfies û = 2γ(λ−γ)
λ p. Since

the final time is free and the system is autonomous, the Hamiltonian vanishes along the
optimal trajectory, so that along such a trajectory, either p = 0, in which case û = 0, or
else x = γ

λp, hence û = 2(λ− γ)x. Finally the pieces of optimal trajectory which move
towards the origin correspond to u ≡ 0, those which move away from the origin (this is
the case we are interested in) satisfy the time reversed ODE ẋ = (λ− γ)x. There is no
optimal trajectory from x = 0 to x = −a. However, if we start from x = −ε, the optimal
trajectory is x(t) = −e(λ−γ)tε, so û(t) = −2(λ− γ)e(λ−γ)tε, the final state −a is reached
at time (λ − γ)−1 log(a/ε), and the optimal cost is λ

2γ (a2 − ε2). A possible sub–optimal
control starting from 0 is as follows. Choose u = −1 for a time of order ε, until x(t)

reaches −ε, which costs or the order of ε, and then choose the optimal feedback, until
−a is reached. Letting ε→ 0, the cost converges to

V̄a =
λ

γ

a2

2
.

4.8 Comparison between the CLT, MD and LD

We do that comparison in case of the SIS model, for which we have explicit expres-
sions for the rate functions and the quasi–potentials. We still translate z∗ at the origin,
and start our process at the origin : ZN0 = 0. We fix a > 0 and want to compare (for t
large) the upper bounds for P(NαZNt ≥ a) in the three cases α = 1/2 (the central limit
theorem), 0 < α < 1/2 (moderate deviations) and α = 0 (large deviations).

We start with the central limit theorem. It is easy to see that Ut = limN→∞
√
NZNt

is an Ornstein–Uhlenbeck process (in particular it is a Gaussian process), which solves
the SDE

Ut = −(λ− γ)

∫ t

0

Usds+
√

2γ(λ− γ)/λBt,

so that the asymptotic variance of Ut is γ/λ. Consequently for a > 0 fixed and any η > 0,
there exist t and N large enough such that we have the following upper bound for the
probability of a positive deviation of

√
NZNt

P(
√
NZNt ≥ a) ≤ exp

{
−λa

2

2γ
+ η

}
.

Consider next the moderate deviations. Theorem 4.10 combined with the compu-
tation from the last subsection indicates that for 0 < α < 1/2, any η > 0, there exists t
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and N large enough such that

P(NαZNt ≥ a) ≤ exp

{
−N1−2α

(
λa2

2γ
− η
)}

.

We finally consider the large deviations. Here we need to assume that a < γ/λ.
We exploit the computations from sections 4.2.6 and A.6 in [1]. The optimal trajectory
to go from ε to a is the original ODE, but time reversed, i.e. it follows the ODE ẋt =

β2(xt)− β1(xt). The running cost is (β2(xt)− β1(xt)) log
(
β2(xt)
β1(xt)

)
, so the total cost is∫ Ta

Tε

log

(
β2(xt)

β1(xt)

)
(β2(xt)− β1(xt))dt =

∫ Ta

Tε

log

(
β2(xt)

β1(xt)

)
ẋtdt

=

∫ a

ε

log

(
β2(x)

β1(x)

)
dx

→ a+
(γ
λ
− a
)

log

(
1− aλ

γ

)
, as ε→ 0.

Consequently, from Theorem 3.5, for any η > 0, there exists t and N large enough such
that

P(ZNt ≥ a) ≤ exp

{
−N

[
a+

(γ
λ
− a
)

log

(
1− aλ

γ

)
− η
]}

.

We note that Moderate Deviations resembles much more the CLT than Large Deviations.
The fact that the discontinuity in the form of the rate function is exactly at α = 0 is
typical of random variables with light tails. The situation would be quite different with
heavy tails, see e. g. section VIII.4 in Petrov [8].

Note however that for small a,

a+
(γ
λ
− a
)

log

(
1− aλ

γ

)
∼ λa2

2γ
,

which is not too surprising, and in a sense reconcile Large Deviations and Moderate
Deviations.

5 Appendix

In this Appendix, we establish the following technical result.

Proposition 5.1. LetM be a standard Poisson random mesure on R2
+, andM(dt, du) =

M(dt, du)− dt du the associated compensated measure. If ϕ is an R+–valued predictable

process such that
∫ T

0
ϕtdt has exponential moments of any order, and a ∈ R, then for any

0 ≤ t ≤ T ,

E

[
sup

0≤s≤t
exp

{
a

∫ s

0

∫ ϕr

0

M(dr, du)

}]
.

(
E exp

{
(e2a − 1− 2a)

∫ t

0

ϕsds

})1/2

.

Proof. Consider with b ≥ 0 the process

Xt = a

∫ t

0

∫ ϕs

0

M(ds, du)− b
∫ t

0

ϕsds . (5.1)

It follows from Itô’s formula that

eXt = 1− b
∫ t

0

eXsϕsds+ a

∫ t

0

∫ ϕs

0

eXs−M(ds, du)

+ (ea − 1− a)

∫ t

0

∫ ϕs

0

eXs−M(ds, du) .
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From Lemma 5.2 below, Mt =
∫ t

0

∫ ϕs
0

eXs−M(ds, du) is a martingale. Hence eX is a
martingale if b = (ea−1−a), a submartingale if we replace = by <, and a supermartingale
if we replace = by >. Consequently if b ≥ (ea − 1− a), EeXt ≤ 1. Now, using first Doob’s
L2 inequality for submartingales, and later Schwartz’s inequality, we have

E

[
sup

0≤s≤t
exp

{
a

∫ s

0

∫ ϕr

0

M(dr, du)

}]
. E exp

{
a

∫ t

0

∫ ϕs

0

M(ds, du)

}
= E

(
exp

{
a

∫ t

0

∫ ϕs

0

M(ds, du)− b
∫ t

0

ϕsds

}
exp

{
b

∫ t

0

ϕsds

})
≤
(
E exp

{
2a

∫ t

0

∫ ϕs

0

M(ds, du)− 2b

∫ t

0

ϕsds

})1/2

×
(
E exp

{
2b

∫ t

0

ϕsds

})1/2

If 2b = e2a − 1 − 2a, it follows from the previous argument that the first factor on the
second right hand side is less than or equal to 1, hence the result follows.

In order to complete the proof of Proposition 5.1, we still need to establish

Lemma 5.2. The process ϕ satisfying the same assumptions as in Proposition 5.1, and
Xt being given by (5.1), Mt =

∫ t
0

∫ ϕs
0

eXs−M(ds, du) is a martingale.

Proof. It is plain that Mt is a local martingale, whose predictable quadratic variation is
given as

〈M〉t =

∫ t

0

e2Xsϕsds

≤ exp
{

2a
∫ t

0

∫ ϕs
0
M(ds, du)

}∫ t
0
ϕsds, if a > 0 ;

≤ exp
{
−2(a+ b)

∫ t
0
ϕsds

}∫ t
0
ϕsds, if a ≤ 0 .

All we need to show is that the above quantity is integrable. It is clearly a consequence
of the assumption in case a < 0. In case a > 0, the second factor of the right hand side
has finite exponential moments, so is square integrable, and it remains to show that

E exp

{
4a

∫ t

0

∫ ϕs

0

M(ds, du)

}
<∞. (5.2)

Using Itô’s formula we have

Yt = exp

{
8a

∫ t

0

∫ ϕs

0

M(ds, du)− (e8a − 1)

∫ t

0

ϕsds

}
= 1 + (e8a − 1)

∫ t

0

∫ ϕs

0

Ys−M(ds, du).

The same computation with ϕs replaced by ϕns = ϕs ∧ n, and then Ys replaced by Y ns
would show that Y nt is a martingale satisfying EY nt = 1. But 0 ≤ Y nt → Yt a.s., hence
Fatou’s Lemma implies that EYt ≤ 1. Since

4a

∫ t

0

∫ ϕs

0

M(ds, du) = 4a

∫ t

0

∫ ϕs

0

M(ds, du)− e8a − 1

2

∫ t

0

ϕsds+
e8a − 1

2

∫ t

0

ϕsds,

it follows from Schwartz’s inequality that

E exp

{
4a

∫ t

0

∫ ϕs

0

M(ds, du)

}
≤
√
EYt

√
E exp

{
(e8a − 1)

∫ t

0

ϕsds

}
,

and the result follows from our assumption on ϕ.
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