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Abstract
We study epidemic models where the infectivity of each individual is a random func-
tion of the infection age (the elapsed time since infection). To describe the epidemic
evolution dynamics, we use a stochastic process that tracks the number of individuals
at each time that have been infected for less than or equal to a certain amount of time,
together with the aggregate infectivity process.We establish the functional law of large
numbers (FLLN) for the stochastic processes that describe the epidemic dynamics. The
limits are described by a set of deterministic Volterra-type integral equations, which
has a further characterization using PDEs under some regularity conditions. The solu-
tions are characterized with boundary conditions that are given by a system of Volterra
equations. We also characterize the equilibrium points for the PDEs in the SIS model
with infection-age dependent infectivity. To establish the FLLNs, we employ a useful
criterion for weak convergence for the two-parameter processes together with useful
representations for the relevant processes via Poisson random measures.
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1 Introduction

Kermack and McKendrick pioneered the introduction of PDE models to describe the
epidemic dynamics for models with infection-age dependent (variable) infectivity in
1932 [19]. The underlying assumption of their model is that the infectious periods
have a general distribution with density which is modeled through an infection-age
dependent recovery rate, the infectious individuals having an infection-age dependent
infectivity, and the recovered ones a recovery-age susceptibility. In the present paper,
we do not consider possible loss of immunity. We defer to a work in preparation
the study of variable susceptibility. In the present paper, we mainly consider the SIR
model (although we can allow for an exposed period, as will be explained below)
and the SIS model. This work is a continuation of our first work on non-Markov
epidemic models [25], and our work on varying infectivity models [10], see also [24].
In those papers, we show that certain deterministic Volterra type integral equations
are Functional Law of Large Numbers (FLLN) limits of adequate individual based
stochastic models. An important feature of our stochastic models is that they are
non-Markov (since the infectious duration need not have an exponential distribution),
and as a result the limiting deterministic models are equations with memory. Note
that as early as in 1927, Kermack and McKendrick introduced in their seminal paper
[18] a SIR model with both infection-age dependent infectivity and infection-age
dependent recovery rate, the latter allowing the infectious period to have an arbitrary
absolutely continuous distribution (the infection-age dependent recovery rate is the
hazard rate function of the infectious period). One part of that paper is devoted to the
simpler case of constant rates, and apparently most of the later literature on epidemic
models has concentrated on this special case, which leads to simpler ODE models,
the corresponding stochastic models being Markov models, at the price of the models
being less realistic. For example, the recent studies in Covid-19 [11, 30] indicates
that using the ODE models can lead to an underestimation of the basic reproduction
number R0.

In this paper, we go back to the original model of Kermack and McKendrick [18],
with two new aspects. First, as in our previous publications, we want to obtain the
deterministic model as a law of large numbers limit of stochastic models, and second,
we distribute the various infected individuals at time t according to their infection-
age, and establish a PDE for the “density of individuals” being infected at time t , with
infection-age x .

In our stochastic epidemicmodel, each individual is associatedwith a random infec-
tivity, which varies as a function of the age of infection (elapsed time since infection).
The random infectivity functions, effective during the infected period, are assumed to
be i.i.d. for the various individuals, and will also generate the infectious period. The
infectivity function is assumed to be càdlàg with a given number of discontinuities,
and upper bounded by a deterministic constant. In particular, the law of the infectious
period can be completely arbitrary. Our modeling approach allows the random infec-
tivity functions to have an initial period of time during which they take zero values,
corresponding to the exposed period. Thus our model generalizes both the classical
SIR and SEIRmodels. To describe the epidemic dynamics of themodel, we use a (two-
parameter or measure-valued) stochastic process that tracks at each time t the number
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of individuals that have been infected for a duration less than or equal to a certain
amount of time x , and an associated aggregate infectivity process which at each time t
sums up the infectivities of all individuals who are infected. From these processes, we
can describe the cumulative infection process, the total number of infected individu-
als as well as the number of recovered ones at each time. We use similar processes
to describe the epidemic dynamics for the SIS model with infection-age dependent
infectivity.

In the asymptotic regime of a large population (i.e., as the total population size N
tends to infinity), we establish the FLLN for the epidemic dynamics. The limits are
characterized by a set of deterministic Volterra-type integral equations (Theorem 2.1).
Under certain regularity conditions, the density function of the two-parameter (calen-
dar time and infection age) limit process can be described by a one-dimensional PDE
(Proposition 3.1 in the case where the distribution of the infectious period is absolutely
continuous). Its solution is characterized with a boundary condition satisfying a one-
dimensional Volterra-type integral equation. The aggregate infectivity limit process
can be described by an integral of the average infectivity function with respect to the
limiting two-parameter infectious process (Corollary 3.1, see also Remark 3.4). For
the classical SIR model, we recover the well-known linear PDE first proposed by Ker-
mack and McKendrick [19]. We further derive the PDE model when the distribution
of the infectious period need not be absolutely continuous (Proposition 3.2 and see
also Corollary 3.3 where the infectious periods are deterministic). These PDE models
are new to the literature of epidemiology. For the SIS model, we also describe the
limiting epidemic dynamics and the PDE representations, and derive the equilibrium
quantities associated with the PDE and total count limit (assuming convergence to the
equilibria).

1.1 Literature Review

Non-Markov stochastic epidemicmodels lead (via the FLLN) to deterministic models,
which are either low dimensional evolution equation with memory (i.e., Volterra type
integral equations), or else coupled ODE/PDE models, where the two variables are
the time and the age of infection (time since infection). The first paper of Kermack
and McKendrick [18] adopts the first point of view, and the two next [19, 20] the
second one. In our recent previous work on this topic [10, 25], we have adopted the
first description. The goal of the present paper is to show that in the limit of a large
population, our stochastic individual based model with age of infection dependent
infectivity and recovery rate converges as well to a limiting system of PDE/ODEs.

While the general model from [18] was largely neglected until rather recently, most
of the literature concentrating on the particular case of constant rates, there has been
since the 1970s some papers considering infection-age dependent epidemic models,
see in particular [14].More recently, several papers have introduced coupledPDE/ODE
models for studying age of infection dependent both infectivity and recovery rate, see
in particular [6, 16, 22, 28, 29] and Chapter 13 in [23]. In [8], the authors consider a
stochastic epidemic model with contract-tracing, tracking the infection duration since
detection for each individual, and use a measure-valued Markov process to describe
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the epidemic dynamics. They prove a FLLN with a large population and establish a
PDE limit, and also prove a FCLT with a SPDE limit process. Since the beginning of
the Covid-19 pandemic, a huge number of papers have been produced, with various
models of the propagation of this disease. Most of them use ODE models, but a few,
notably [9, 12, 13, 17] consider age of infection dependent infectivity, and possibly
recovery rate. The last two derive the ODE/PDE model as a law of large numbers
limit of stochastic individual based models. The article [12] considers a branching
process approximation of the early phase of an epidemic, and the way they model
the dependence of the rate of infection with respect to the age of infection is less
general than in our model. Recently, the authors in [9] study contact tracing in an
individual-based epidemicmodel via an “infection graph" of the population, and prove
the local convergence of the random graph to a Poisson marked tree and a Kermack
and McKendrick type of PDE limit for the dynamics by tracking the infection age.

Note also that one way that many authors have chosen in order to improve the
realism of ODE models is by increasing the number of compartments. For instance,
dividing the infectious compartment into subcompartments, each one corresponding
to a different infection rate, is a way to introduce a (piecewise constant) infection
age dependent infectivity. In a way, this means approaching a non-Markov process
of a given dimension by a higher dimensional Markov process, or approaching a
system differential equations with memory by a higher dimensional system of ODEs.
In the present paper, we show that the system of integral equations with memory
introduced in our earlier work [25] can be replaced by an ODE/PDE system, i.e., an
infinite dimensional differential equation.At the level of the stochastic finite population
model, this means replacing a non-Markov finite dimensional Markov process by a
high dimensional process (whose dimension is bounded by the total population size
N , which tends to infinity in our asymptotic). See Remarks 3.2 and 3.7 below.

We also like to mention the relevant work in queueing systems where the elapsed
service times are tracked using two-parameter or measure-valued processes. The most
relevant to us are the infinite-server (IS) queueing models studied in [1, 26, 27], where
FLLN and FCLT are established for two-parameter processes to tracking elapsed and
residual service times. However, the proof techniques we employ in this paper are very
different from those papers. Here we exploit the representations with Poisson random
measures and use a newweak convergence criterion (Theorem5.1). In addition, despite
similarities with the IS queueing models, the stochastic epidemic models have an
arrival (infection) process that depend on the state of the system. As a consequence,
the limits in the FLLNs result in PDEs while the IS queueing models do not.

1.2 Organization of the Paper

The paper is organized as follows. In Sect. 2, we describe the stochastic epidemic
model with infection-age dependent infectivity, and state the FLLN. In Sect. 3, we
present the PDE models from the FLLN limits, and also characterize the solution
properties of the PDEs. The limits and PDE for the SIS model are presented in Sect.
4, which also considers the equilibrium behavior. In Sect. 5, we prove the FLLN. The
Appendix gives the proof of the convergence criterion in Theorem 5.1.
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1.3 Notations

All random variables and processes are defined on a common complete probability
space (�,F ,P). The notation ⇒ means convergence in distribution. We use 1{·} for
the indicator function, and occasionally use 1{·} for better readability. Throughout
the paper, N denotes the set of natural numbers, and R

k(Rk+) denotes the space of
k-dimensional vectors with real (nonnegative) coordinates, with R(R+) for k = 1.
For x, y ∈ R, we denote x ∧ y = min{x, y} and x ∨ y = max{x, y}. Let D =
D(R+;R) denote the space of R-valued càdlàg functions defined on R+. Throughout
the paper, convergence in D means convergence in the Skorohod J1 topology, see
Chapter 3 of [4]. Also, Dk stands for the k-fold product equipped with the product
topology. Let C be the subset of D consisting of continuous functions. Let C1 consist
of all differentiable functions whose derivative is continuous. Let D↑ denote the set of
increasing functions in D. Let DD = D(R+; D(R+;R)) be the D-valued D space,
and the convergence in the space DD means that both D spaces are endowed with the
Skorohod J1 topology. The space CC is equivalent to C(R2+;R+). Let C↑(R2+;R+)

denote the space of continuous functions from R
2+ into R+, which are increasing as a

function of their second variable. For any increasing càdlàg function F(·) : R+ → R+,
abusing notation, we write F(dx) by treating F(·) as the positive (finite) measure on
R+ whose distribution function is F . For any R-valued càdlàg function φ(·) on R+,
the integral

∫ b
a φ(x)F(dx) represents

∫
(a,b] φ(x)F(dx) for a < b.

2 Model and FLLN

2.1 Model Description

We consider an epidemic model in which the infectivity rate depends on the age of
infection (that is, how long the individuals have been infected). Specifically, each
individual i is associated with an infectivity process λi (·), and we assume that these
random functions are i.i.d.. Let ηi = inf{t > 0 : λi (r) = 0, ∀r ≥ t} be the infected
period corresponding to the individual that gets infected at time τ N

i . The ηi ’s are i.i.d.,
with a cumulative distribution function (c.d.f.) F . Let Fc = 1 − F .

Individuals are grouped into susceptible, infected and recovered ones. Let the
population size be N and SN (t), I N (t) and RN (t) denote the numbers of the sus-
ceptible, infected and recovered individuals at time t . We have the balance equation:
N = SN (t) + I N (t) + RN (t), t ≥ 0. Assume that SN (0) > 0, I N (0) > 0 and
RN (0) = 0. Let IN (t, x) be the number of infected individuals at time t that have
been infected for a duration less than or equal to x . Note that for each t , IN (t, x) is non-
decreasing in x , which is the distribution of I N (t) over the infection-ages. Let AN (t)
be the cumulative number of newly infected individuals in (0, t], with the infection
times {τ N

i : i ∈ N}.
Let {τ N

j,0, j = 1, . . . , I N (0)} be the times at which the initially infected individuals

at time 0 became infected. Then τ̃ N
j,0 = −τ N

j,0, j = 1, . . . , I N (0), represent the
amount of time that an initially infected individual has been infected by time 0, that
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is, the age of infection at time 0. WLOG, assume that 0 > τ N
1,0 > τ N

2,0 > · · · >

τ N
I N (0),0

(or equivalently 0 < τ̃ N
1,0 < τ̃ N

2,0 < · · · < τ̃ N
I N (0),0

). Set τ̃ N
0,0 = 0. We define

IN (0, x) = max{ j ≥ 0 : τ̃ N
j,0 ≤ x}, the number of initially infected individuals that

have been infected for a duration less than or equal to x at time 0. Assume that there
exists 0 ≤ x̄ < ∞ such that I N (0) = IN (0, x̄) a.s.

Each initially infected individual j = 1, . . . , I N (0), is associatedwith an infectivity
process λ0j (·), and we assume that they are also i.i.d., with the same law as λi (·).
This is reasonable since it is for the same disease, and the infectivity for the initially
and newly infected individuals with the same infection age should have the same
law. The infectivity processes take effect at the epochs of infection. For each j , let
η0j = inf{t > 0 : λ0j (τ̃

N
j,0+r) = 0, ∀r ≥ t} be the remaining infectious period, which

depends on the elapsed infection time τ̃ N
j,0, but is independent of the elapsed infection

times of other initially infected individuals. In particular, the conditional distribution
of η0j given that τ̃ N

j,0 = s > 0 is given by

P

(
η0j > t |τ̃ N

j,0 = s
)

= Fc(t + s)

Fc(s)
, for t, s > 0. (2.1)

Note that the η0j ’s are independent but not identically distributed.

For an initially infected individual j = 1, . . . , I N (0), the infection age is given by
τ̃ N
j,0 + t for 0 ≤ t ≤ η0j , during the remaining infectious period. For a newly infected

individual i , the infection age is given by t − τ N
i , for τ N

i ≤ t ≤ τ N
i + ηi during the

infectious period. Note that λi (·) and λ0j (·) are equal to zero on R−.
The aggregate infectivity process at time t is given by

IN (t) =
I N (0)∑

j=1

λ0j

(
τ̃ N
j,0 + t

)
+

AN (t)∑

i=1

λi

(
t − τ N

i

)
, t ≥ 0. (2.2)

(Note that the notation IN was used for the infectivity process in [10, 24].) The
instantaneous infection rate at time t can be written as

ϒN (t) = SN (t)

N
IN (t), t ≥ 0. (2.3)

The counting process of newly infected individuals AN (t) can be written as

AN (t) =
∫ t

0

∫ ∞

0
1u≤ϒN (s−)Q(ds, du) , (2.4)

where Q is a standard Poisson random measure on R2+ (see, e.g., [7, Chapter VI]).
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Among the initially infected individuals, the number of individuals who have been
infected for a duration less than or equal to x at time t is equal to

IN
0 (t, x) =

I N (0)∑

j=1

1η0j>t1τ̃ N
j,0≤(x−t)+ =

IN (0,(x−t)+)∑

j=1

1η0j>t , t, x ≥ 0, (2.5)

Recall the age limit of the initially infected individuals x̄ at time zero. Thus, the number
of the initially infected individuals that remain infected at time t can be written as

I N0 (t) = IN
0 (t, x̄ + t) , t ≥ 0 . (2.6)

Among the newly infected individuals, the number of individuals who have been
infected for a duration less than or equal to x at time t is equal to

IN
1 (t, x) =

AN (t)∑

i=1

1(t−x)+<τ N
i ≤t1τ N

i +ηi>t =
AN (t)∑

i=1

1τ N
i +ηi>t −

AN ((t−x)+)∑

i=1

1τ N
i +ηi>t

=
AN (t)∑

i=AN ((t−x)+)+1

1τ N
i +ηi>t (2.7)

Thus, the number of newly infected individuals that remain infected at time t can
be written as

I N1 (t) = IN
1 (t, t). (2.8)

We also have the total number of individuals infected at time t that have been
infected for a duration which is less than or equal to x :

IN (t, x) = IN
0 (t, x) + IN

1 (t, x), t ≥ 0, x ≥ 0.

Note that for each t , the support of the measure IN
0 (t, dx) is included in [0, t + x̄] and

the support of the measure IN
1 (t, dx) is included in [0, t]. Thus

I N (t) = IN
0 (t, t + x̄) + IN

1 (t, t) = IN (t,∞), t ≥ 0.

Here we occasionally use∞ in the second component for convenience with the under-
standing that IN

0 (t, x) = IN
0 (t, t+ x̄) for x > t+ x̄ and IN

1 (t, x) = IN
1 (t, t) for x > t .

We also have for t ≥ 0,

SN (t) = SN (0) − AN (t), (2.9)

RN (t) =
I N (0)∑

j=1

1η0j≤t +
AN (t)∑

i=1

1τ N
i +ηi≤t . (2.10)
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We remark that the sample paths of IN (t, x) belong to the space DD , denoting
D(R+; D(R+;R)), the D-valued D space, but not in the space D(R2+;R). We prove
the weak convergence in the space DD where both D spaces are endowed with the
Skorohod J1 topology. Note that the space D(R2+;R) is a strict subspace of DD ,
although they are equivalent in the continuous cases, that is, C(R2+;R) = CC . See
more discussions on these spaces in [2, 3, 26, 27].

Remark 2.1 The SEIR model. Suppose that λi (t) = 0 for t ∈ [0, ξi ), where ξi < ηi ,
and denote I as the compartment of infected (not necessarily infectious) individuals.
An individual who gets infected at time τ N

i is first exposed during the time interval
[τ N

i , τ N
i + ζi ), and then infectious during the time interval (τ N

i + ζi , τ
N
i + ηi ). One

may state that the individual is infected during the time interval [τ N
i , τ N

i +ηi ). At time
τ N
i + ηi , he recovers. All what follows covers perfectly this situation. In other words,
our model accomodates perfectly an exposed period before the infectious period,
which is important for many infectious diseases, including the Covid-19. However, we
distinguish only three compartments, S for susceptible, I for infected (either exposed
or infectious), R for recovered.

In the sequel, the time interval [τ N
i , τ N

i + ηi ) will be called the infectious period,
although it might rather be the period during which the individual is infected (either
exposed or infectious).

2.2 FLLN

Define the LLN-scaled processes X̄ N = N−1XN for any processes XN . We make the
following assumptions on the initial quantities.

Assumption 2.1 There exists a deterministic continuous nondecreasing function
Ī(0, x) for x ≥ 0 with Ī(0, 0) = 0 such that ĪN (0, ·) → Ī(0, ·) in D in probability
as N → ∞. Let Ī (0) = Ī(0, x̄). Then ( Ī N (0), S̄N (0)) → ( Ī (0), S̄(0)) ∈ (0, 1)2 in
probability as N → ∞ where S̄(0) = 1 − Ī (0) ∈ (0, 1).

Remark 2.2 Recall that ĪN (0, ·) describes the distribution of the initially infected indi-
viduals over the ages of infection. The assumption means that there is a corresponding
limiting continuous distribution as the population size goes to infinity.

Suppose now that the r.v.’s {τ N
j,0}1≤ j≤N are not ordered, but rather i.i.d., with a

common distribution function G which we assume to be continuous. It then follows
from the law of large numbers that Assumption 2.1 holds in this case.

We make the following assumption on the random function λ.

Assumption 2.2 Let λ(·) be a process having the same law of {λ0j (·)} j and {λi (·)}i .
Assume that there exists a constantλ∗ such that for each 0 < T < ∞, supt∈[0,T ] λ(t) ≤
λ∗ almost surely. Assume that there exist an integer k, a random sequence 0 = ζ 0 ≤
ζ 1 ≤ · · · ≤ ζ k and associated random functions λ
 ∈ C(R+; [0, λ∗]), 1 ≤ 
 ≤ k,
such that
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λ(t) =
k∑


=1

λ
(t)1[ζ 
−1,ζ 
)(t). (2.11)

In addition, we assume that there exists a deterministic nondecreasing function ϕ ∈
C(R+;R+) with ϕ(0) = 0 such that |λ
(t) − λ
(s)| ≤ ϕ(t − s) almost surely for all
t, s ≥ 0 and for all 
 ≥ 1. Let λ̄(t) = E[λi (t)] = E[λ0j (t)] and v(t) = Var(λ(t)) =
E
[(

λ(t) − λ̄(t)
)2] for t ≥ 0.

Remark 2.3 Recall that the basic reproduction number R0 is the mean number of
susceptible individuals whom an infectious individual infects in a large population
otherwise fully susceptible. In the present model, clearly

R0 =
∫ ∞

0
λ̄(t)dt .

Suppose that λi (t) = λ̃(t)1t<ηi , where λ̃(t) is a deterministic function. Then

R0 =
∫ ∞

0
λ̃(t)Fc(t)dt .

In the standard SIR model with λ̃(t) ≡ λ and E[η] = ∫∞
0 Fc(t)dt , the formula above

reduces to the well known R0 = λE[η]. See, e.g., [5]. We obtain the same formula if
the deterministic function λ̃(t) is replaced by a process λi (t) independent of ηi , with
mean λ̃(t). More precisely, in that case the sequence (λi (t), ηi )i≥1 is assumed to be
i.i.d., and for each i , λi and ηi are independent.

The proof of the following Theorem, which is the main result of this section, will
be given in Sect. 5. For a function u(t, x) ∈ DD↑ , we use the equivalent notations
dxu(t, x) and ux (t, x) for the partial derivative w.r.t. x , while u(t, dx) denotes the
measure whose distribution function is x �→ u(t, x), which coincides with ux (t, x)dx
if that last map is differentiable. In particular, ux (t, 0) indicates the partial derivative
evaluated at x = 0.

Theorem 2.1 Under Assumptions 2.1 and 2.2, as N → ∞,

(
S̄N , IN

, ĪN , R̄N )→ (
S̄, I, Ī, R̄

)
in probability, locally uniformly in t and x,

(2.12)

where the limits are the unique continuous solution to the following set of integral
equations, for t, x ≥ 0,

S̄(t) = 1 − Ī (0) −
∫ t

0
ϒ̄(s)ds, (2.13)

I(t) =
∫ x̄

0
λ̄(y + t)Ī(0, dy) +

∫ t

0
λ̄(t − s)ϒ̄(s)ds , (2.14)
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Ī(t, x) =
∫ (x−t)+

0

Fc(t + y)

Fc(y)
Ī(0, dy) +

∫ t

(t−x)+
Fc(t − s)ϒ̄(s)ds, (2.15)

R̄(t) =
∫ x̄

0

(

1 − Fc(t + y)

Fc(y)

)

Ī(0, dy) +
∫ t

0
F(t − s)ϒ̄(s)ds, (2.16)

with

ϒ̄(t) = S̄(t)I(t) = Īx (t, 0) . (2.17)

The function Ī(t, x) is nondecreasing in x for each t. As a consequence, Ī N → Ī in
D in probability as N → ∞ where

Ī (t) = Ī(t, t + x̄) =
∫ x̄

0

Fc(t + y)

Fc(y)
Ī(0, dy) +

∫ t

0
Fc(t − s)ϒ̄(s)ds, t ≥ 0.

(2.18)

3 PDEModels

One can regard Ī(t, x) as the ‘distribution function’ of Ī (t) = Ī(t, t + x̄) over the
‘ages’ x ∈ [0, t + x̄) for each fixed t . If x �→ Ī(t, x) is absolutely continuous, we
denote by ī(t, x) = Īx (t, x) the density function of Ī(t, x) with respect to x . Note
that S̄(t) = 0 for t < 0 and ī(t, x) = 0 both for t < 0 and x < 0.

3.1 The Case F Absolutely Continuous

In this subsection, we assume that F is absolutely continuous, F(dx) = f (x)dx , and
we denote by μ(x) the hazard function of the r.v. η, i.e., μ(x) := f (x)/Fc(x) for x ≥
0. If the density function ī(t, x) exists, we obtain the following PDE representation.

Proposition 3.1 Suppose that F is absolutely continuous, with the density f , and
that Ī(0, x) is differentiable with respect to x, with the density function ī(0, x). Then
for t > 0, the increasing function Ī(t, ·) is absolutely continuous, and (t, x) a.e. in
(0,+∞)2,

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= −μ(x)ī(t, x) , (3.1)

with the initial condition ī(0, x) = Īx (0, x) for x ∈ [0, x̄], and the boundary condition

ī(t, 0) = S̄(t)
∫ t+x̄

0

λ̄(x)
Fc(x)

Fc(x−t)

ī(t, x)dx , (3.2)

with the convention that Fc = 1 on R−, and that the integrand in (3.2) is zero when
Fc(x) = 0.
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In addition,

S̄′(t) = −ī(t, 0), and S̄(0) = 1 − Ī (0) . (3.3)

Moreover, the PDE (3.1) has a unique solution which is given as follows. For x ≥ t ,

ī(t, x) = Fc(x)

Fc(x − t)
ī(0, x − t) , (3.4)

while for t > x,

ī(t, x) = Fc(x)ī(t − x, 0) , (3.5)

and the boundary function is the unique solution of the integral equation

ī(t, 0) =
(

S̄(0) −
∫ t

0
ī(s, 0)ds

)

×
(∫ x̄

0
λ̄(y + t)ī(0, y)dy +

∫ t

0
λ̄(t − s)ī(s, 0)ds

)

. (3.6)

Remark 3.1 The PDE (3.1) can be considered as a linear equation, with a nonlinear
boundary condition which is the integral Eq. (3.6).

It follows from (3.4) and (3.5) that Fc(x) = 0 implies that ī(t, x) = 0. This is
why we can impose that the integrand in the right hand side of (3.2) is zero whenever
Fc(x) = 0.

We remark that the PDE given in [19] resembles that given in (3.1), see Eqs. (28)–
(29), see also Eq. (2.2) in [15]. In particular, the function μ(x) is interpreted as the
recovery rate at infection age x . Equivalently, it is the hazard function of the infectious
duration.

Remark 3.2 In a sense, what we do in the present paper can be interpreted as follows:
we replace the two-dimensional systemof equationswithmemory (2.13)–(2.14) (with,
see (2.17), ϒ̄(t) replaced by S̄(t)I(t)) by the infinite dimensional system ofODE-PDE
(2.13)–(3.1)–(3.2) (with, see again (2.17), ϒ̄(t) replaced by ī(t, 0)).

At the level of our population of size N , we have a two-dimensional non-Markov
process (SN (t), IN (t)). For any t ≥ 0, let īN (t) denote the measure whose distri-
bution function is x �→ ĪN (t, x). Theorem 2.1 implies that locally uniformly in t ,
īN (t) converges weakly to the measure which has the density ī(t, x) w.r.t. Lebesque’s
measure. īN (t) is a point measure which assigns the mass N−1 to any x which is the
infection age of one of the individuals infected at time t . Clearly, from the knowl-
edge of īN (t), we can deduce the values of both I N (0) and AN (t), hence of SN (0)
and of SN (t) (see (2.9)). Note that the points of the measure īN (t) which are larger
than t are the {τ̃ N

j,0 + t, 1 ≤ j ≤ I N (0)}, and those which are less than t are the

{t − τ N
i , 1 ≤ i ≤ AN (t)}. Hence from (2.2), IN (t) is a function of both īN (t) and

the λi ’s. The same is true for ϒN (t). Conditionally upon the λi ’s, the process īN (t)
is a measure-valued Markov process, which evolves as follows. Each point x which

123



50 Page 12 of 45 Applied Mathematics & Optimization (2023) 87 :50

belongs to it increases at speed 1, dies at rate μ(x), and new points are added at rate
ϒN (t). īN (t) is determined by a sequence of at most N positive numbers; it can be
considered as an element of ∪N

k=1R
k . We have “Markovianized” the two-dimensional

non-Markov process (SN (t), IN (t)), at the price of increasing dramatically the dimen-
sion.

Note that the pair composedof īN (t) and the collection {λ0j , 1 ≤ j ≤ I N (0); λi , 1 ≤
i ≤ AN (t)} is a Markov process with values in∪N

k=1(R×D)k . īN (t) evolves as above,
and each newλi is a randomelement of Dwith the same law, independent of everything
else.

We expect to write and study the equation for the measure-valued Markov process
īN (t) in a future work.

Remark 3.3 Recall the special case in Remark 2.3 with λi (t) = λ̃(t)1t<ηi , where
λ̃(t) is a deterministic function. Then λ̄(t) = λ̃(t)Fc(t), and E

[
λ0(t)|τ̃ N

0 = y
] =

λ̃(t + y) F
c(t+y)
Fc(y) . In that case, the boundary condition in (3.2) becomes

ī(t, 0) = S̄(t)
∫ t+x̄

0
λ̃(x)ī(t, x)dx

This is usually how theboundary condition is imposed in the literature of PDEepidemic
models (see, e.g., [15, Eq. (2.5)], [22, Eq. (1.1)] and [12, Eq. (2)]). This expression has
clearly a very intuitive interpretation. ī(t, 0) is the instantaneous rate for an individual
to get infected at time t (resulting in a newly infectious individual with a zero age of
infection), while the right hand side is the instantaneous infection rate by the existing
infectious population at time t , which depends on all the infectious individuals with
all ages of infection. This of course includes time t = 0, which formulates a constraint
on the initial condition {Ī(0, x)}0≤x≤x̄ .

Proof By the fact that F has a density, we see that the two partial derivatives of Ī exist
(t, x) a.e. From (2.15), they satisfy

Īt (t, x) = −1x≥t
Fc(x)

Fc(x − t)
Īx (0, x − t) −

∫ (x−t)+

0

f (t + y)

Fc(y)
Īx (0, y)dy

+ Īx (t, 0) − 1t>x F
c(x)Īx (t − x, 0)

−
∫ t

(t−x)+
f (t − s)Īx (s, 0)ds, (3.7)

and

Īx (t, x) = 1x≥t
Fc(x)

Fc(x − t)
Īx (0, x − t) + 1t>x F

c(x)Īx (t − x, 0). (3.8)

Thus, summing up (3.7) and (3.8), we obtain for t > 0 and x > 0,

Īt (t, x) + Īx (t, x) = −
∫ (x−t)+

0

f (t + y)

Fc(y)
Īx (0, y)dy + Īx (t, 0)
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−
∫ t

(t−x)+
f (t − s)Īx (s, 0)ds . (3.9)

Denote Īx,t (t, x) = ∂2Ī(t,x)
∂x∂t = ∂

∂x Īt (t, x) and Īx,x (t, x) = ∂2Ī(t,x)
∂x∂x . By taking the

derivative on both sides of (3.9) with respect to x (possibly in the distributional sense
for each term on the left), we obtain for t > 0 and x > 0,

Īx,t (t, x) + Īx,x (t, x) = −1x≥t
f (x)

Fc(x − t)
Īx (0, x − t) − 1t>x f (x)Īx (t − x, 0).

(3.10)

Since ∂2Ī(t,x)
∂x∂t = ∂2Ī(t,x)

∂t∂x , we obtain the expression

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= −1x≥t

f (x)

Fc(x − t)
ī(0, x − t) − 1t>x f (x)ī(t − x, 0) . (3.11)

As concerns the boundary condition, we note that, given (3.3), (3.4) and (3.5), (3.2)
and (3.6) are equivalent. Hence we will establish (3.6), (3.3), (3.4) and (3.5).

For the boundary condition ī(t, 0), by (2.14) and (2.17), we have

ī(t, 0) = S̄(t)

(∫ x̄

0
λ̄(y + t)ī(0, y)dy +

∫ t

0
λ̄(t − s)ī(s, 0)ds

)

,

where by (2.13),

S̄(t) = S̄(0) −
∫ t

0
ī(s, 0)ds .

Thus we obtain the expression in (3.6). We next prove that equation (3.6) has a unique
non-negative solution. Observe that u(t) = ī(t, 0) is also a solution to

u(t) =
(∫ x̄

0
λ̄(y + t)ī(0, y)dy +

∫ t

0
λ̄(t − s)u(s)ds

)(

S̄(0) −
∫ t

0
u(s)ds

)+
,

(3.12)

and any non-negative solution of (3.6) solves (3.12).
First, note that since for any t ≥ 0, 0 ≤ λ̄(t) ≤ λ∗,

0 ≤
∫ x̄

0
λ̄(y + t)ī(0, y)dy ≤ λ∗ Ī (0), (3.13)

from which we conclude that
∫ t
0 u(s)ds ≤ S̄(0). Indeed, if that were not the case,

there would exist a time TS̄(0) < t such that
∫ TS̄(0)
0 u(s)ds = S̄(0), hence

∫ t
0 u(s)ds ≥

S̄(0) and from (3.12), we would have u(t) = 0 for any t ≥ TS̄(0), so that indeed
∫ t
0 u(s)ds ≤ S̄(0).
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Under Assumption 2.2, using (3.13), if u1(t) and u2(t) are two nonnegative inte-
grable solutions, then

|u1(t) − u2(t)| ≤ S̄(0)
∫ t

0
λ̄(t − s)|u1(s) − u2(s)|ds

+ λ∗( Ī (0) + S̄(0))
∫ t

0
|u1(s) − u2(s)|ds

≤ 2λ∗
∫ t

0
|u1(s) − u2(s)|ds ,

which, combined with Gronwall’s Lemma, implies that u1 ≡ u2. Now existence is
provided by the fact that the function ī(t, 0) is a non-negative solution of (3.12).

Note also that clearly, using a combination of an argument similar to that used for
uniqueness, and of the classical estimate on Picard iterations for ODEs, one could
establish that the sequence defined by u(0)(t) ≡ 0 and for n ≥ 0,

u(n+1)(t) =
(

S̄(0) −
∫ t

0
u(n)(s)ds

)(∫ x̄

0
λ̄(y + t)ī(0, y)dy +

∫ t

0
λ̄(t − s)u(n)(s)ds

)

,

given ī(0, ·), is a Cauchy sequence in C(R+), hence existence.
We next derive the explicit solution expressions in (3.4) and (3.5). It follows from

(3.11)Â that for x ≥ t , 0 ≤ s ≤ t ,

∂ ī

∂s
(s, x − t + s) = − f (x − t + s)

Fc(x − t)
ī(0, x − t),

while for t > x , 0 ≤ s ≤ x ,

∂ ī

∂s
(t − x + s, s) = − f (s)ī(t − x, 0) .

Integrating the first identity from s = 0 to s = t , we deduce that for x ≥ t ,

ī(t, x) = ī(0, x − t) − ī(0, x − t)

Fc(x − t)

∫ t

0
f (x − t + s)ds

= ī(0, x − t)

(

1 − F(x) − F(x − t)

Fc(x − t)

)

= Fc(x)

Fc(x − t)
ī(0, x − t) ,

so that for x ≥ t ,

f (x)

Fc(x − t)
ī(0, x − t) = f (x)

Fc(x)
ī((t, x) . (3.14)
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Now for t > x , we integrate the second identity from s = 0 to s = x , and get

ī(t, x) = ī(t − x, 0) − ī(t − x, 0)
∫ x

0
f (s)ds

= Fc(x)ī(t − x, 0) .

Hence for t > x ,

f (x)ī(t − x, 0) = f (x)

Fc(x)
ī(t, x) . (3.15)

Clearly, (3.4) is equivalent to (3.14), (3.5) is equivalent to (3.15), and (3.1) follows
from (3.11), (3.14) and (3.15). ��
Corollary 3.1 The formula (2.14) for I(t) can be rewritten

I(t) =
∫ t+x̄

0

λ̄(y)
Fc(y)

Fc(y−t)

Ī(t, dy), (3.16)

where Fc(z) = 1, for z ≤ 0.

Proof We first deduce from (2.15) that for t > x , x �→ Ī(t, x) is differentiable, and
Ī(t, dx) = Fc(x)ϒ̄(t − x), and for fixed t , on [0, x̄], the function y → Ī(t, t + y)
is of finite total variation and satisfies Ī(t, t + dy) = Fc(t+y)

Fc(y) Ī(0, dy). Inserting the

resulting formulas for Ī(0, dy) and ϒ̄ in the first and second integrals of the right hand
side of (2.14), we obtain

I(t) =
∫ x̄

0
λ̄(t + y)Ī(0, dy) +

∫ t

0

λ̄(x)

Fc(x)
Ī(t, dx)

=
∫ x̄

0
λ̄(t + y)

Fc(y)

Fc(t + y)
Ī(t, t + dy) +

∫ t

0

λ̄(x)

Fc(x)
Ī(t, dx) ,

from which the result follows. ��
Remark 3.4 In the special case λi (t) = λ̃(t)1t<ηi as discussed in Remark 3.3, (3.16)
reduces to the very simple formula

I(t) =
∫ t+x̄

0
λ̃(y)Ī(t, dy) . (3.17)

A similar formula holds if we replace the deterministic function λ̃(t) by a copy λi (t)
of a random function, which is independent of ηi , as discussed in Remark 2.3, and
whose expectation is λ̃(t). Then, we have

ϒ̄(t) = S̄(t)I(t) = S̄(t)
∫ t+x̄

0
λ̃(x)Ī(t, dx) = S̄(t)

∫ t+x̄

0
λ̃(x)ī(t, x)dx (3.18)
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Since ī(t, 0) = ϒ̄(t), the results above can be stated using this expression of ϒ̄ .

In the special case of exponentially distributed infectious periods, i.e. μ(x) ≡ μ,
we obtain the following well known results, see, e.g., [16, 22, 28].

Corollary 3.2 If the c.d.f. F(t) = 1 − e−μt , we have for t > 0 and x > 0,

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= −μī(t, x) (3.19)

with the initial condition ī(0, x) given for x ∈ [0, x̄] and the boundary condition for
ī(t, 0) as given in (3.6).

Proof In this case, the above proof simplifies. Indeed, we have for t ≥ 0 and x ≥ 0,

Ī(t, x) = 1x≥t e
−μt Ī(0, x − t) +

∫ t

(t−x)+
e−μ(t−s)ϒ̄(s)ds.

By taking derivative with respect to x when t > 0 and x > 0, we obtain that equation
(3.8) becomes

ī(t, x) = 1x≥t ī(0, x − t)e−μt + 1x<t e
−μx Īx (t − x, 0).

Taking derivatives of this equation with respect to t and x , we obtain for t > 0 and
x > 0,

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= −1x≥t ī(0, x − t)μe−μt − μe−μx Īx (t − x, 0)

= −μī(t, x).

The boundary conditions follow in the same way as in the general model. ��
Remark 3.5 If the remaining infectious periods of the initially infectious individuals
{η0j , j = 1, . . . , I N (0)} are i.i.d. with c.d.f. F0 instead of depending on the infection
age in (2.1), then we obtain the limits

Ī(t, x) = Ī(0, (x − t)+)Fc
0 (t) +

∫ t

(t−x)+
Fc(t − s)ϒ̄(s)ds,

R̄(t) = Ī (0)F0(t) +
∫ t

0
F(t − s)ϒ̄(s)ds,

(noting that they are not continuous unless F0 is continuous), and assuming the density
functions exist, we obtain the PDE:

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= − (1x>tμ0(t) + 1t>xμ(x)) ī(t, x),
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where μ0(t) = f0(t)/Fc
0 (t). As in the proof of Proposition 3.1, we obtain that the

PDE (3.1) has a unique solution which is given as follows. For x ≥ t ,

ī(t, x) = Fc
0 (t)ī(0, x − t) ,

while for t > x ,

ī(t, x) = Fc(x)ī(t − x, 0) ,

and the boundary function is the unique solution of the integral equation

ī(t, 0) =
(

S̄(0) −
∫ t

0
ī(s, 0)ds

)(∫ x̄

0
λ̄(y + t)ī(0, y)dy +

∫ t

0
λ̄(t − s)ī(s, 0)ds

)

.

3.2 The General Case

We now generalize the result of Proposition 3.1 to the case where the distribution F is
not absolutely continuous. We denote below by ν the law of η, i.e. the measure whose
distribution function is F . For reasons which will be explained in Remark 3.6 below,
we shall in this subsection use the left continuous versions of F and Fc. In order to
simplify notations, we define

G(t) = F(t−), Gc(t) = 1 − G(t) = Fc(t−) .

Proposition 3.2 Suppose that Ī(0, x) is differentiablewith respect to x,with the density
function ī(0, x). Then for t > 0, the increasing function Ī(t, ·) is absolutely continuous,
and the following identity holds:

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= − ī(t, x)

Gc(x)
ν(dx) , (3.20)

(i.e., the distribution which appears on the left hand side of (3.20) equals the measure

which has the density − ī(t,x)
Gc(x) with respect to the measure ν) with the initial condition

ī(0, x) = Īx (0, x) for x ∈ [0, x̄], and the boundary condition

ī(t, 0) = S̄(t)
∫ t+x̄

0

λ̄(x)
Gc(x)

Gc(x−t)

ī(t, x)dx , (3.21)

with the convention that Gc = 1 on R−, and that the integrand in (3.21) is zero
whenever Gc(x) = 0.

In addition,

S̄′(t) = −ī(t, 0), and S̄(0) = 1 − Ī (0) . (3.22)
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Moreover, the PDE (3.20) has a unique solution which is given as follows. For
x ≥ t ,

ī(t, x) = Gc(x)

Gc(x − t)
ī(0, x − t) , (3.23)

while for t > x,

ī(t, x) = Gc(x)ī(t − x, 0) , (3.24)

and the boundary function is the unique solution of the integral equation

ī(t, 0) =
(

S̄(0) −
∫ t

0
ī(s, 0)ds

)(∫ x̄

0
λ̄(y + t)ī(0, y)dy +

∫ t

0
λ̄(t − s)ī(s, 0)ds

)

.

(3.25)

Remark 3.6 The product ī(t,x)
Gc(x) ν(dx) can also be rewritten as

ī(t, x) × ν(dx)

Gc(x)
,

where the second factor can be thought of as the “hazard measure”, i.e., the general-
ization of the hazard function, of the r.v. η. The reason why we want to have Gc(x)
in the denominator, and not Fc(x) is the following. If the support of ν is [0, xmax ],
and ν({xmax }) > 0, then Fc(xmax ) = 0, while Gc(xmax ) > 0 and we need a positive
denominator at the point xmax , since ν({xmax }) > 0.

For consistency, in the present subsection we always choose the left continuous
version G (resp. Gc) of F (resp. Fc). Of course, in the case where F is absolutely
continuous this makes no difference.

Remark 3.7 Remark 3.2 can be extended to the present case of a general distribution
function F , replacing the infinite dimensional system of ODE-PDE (2.13)–(3.1)–(3.2)
by (2.13)–(3.20)–(3.21).

Proof We first rewrite Eq. (2.15) as

Ī(t, x) =
∫ (x−t)+

0

Īx (0, y)

Gc(y)
Gc(t + y)dy +

∫ t

(t−x)+
Īx (s, 0)G

c(t − s)ds .

Differentiating Ī(t, x) in x can be done exactly as in the proof of Proposition 3.1.
Concerning the differentiation in t , the differentiation with respect to t appearing in
the integrandsGc(t+ y) andGc(t−s) is now a bit more delicate: those functions have
not been assumed to be differentiable. Their derivatives in the distributional sense is
a measure, whose bracket with a measurable bounded function makes sense, so that

d

dt

∫ b

a

Īx (0, y)

Gc(y)
Gc(t + y)dy =

∫ b

a

Īx (0, y)

Gc(y)
ν(t + dy)
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=
∫ b+t

a+t

Īx (0, z − t)

Gc(z − t)
ν(dz),

d

dt

∫ b

a
Gc(t − s)Īx (s, 0)ds =

∫ b

a
Īx (s, 0)ν(t − ds)

=
∫ t−a

t−b
Īx (t − r , 0)ν(dr) .

As a consequence, the above modification in the proof of Proposition 3.1 yields

Īt (t, x) + Īx (t, x) = Īx (t, 0) −
∫ x∨t

t

Īx (0, z − t)

Gc(z − t)
ν(dz) −

∫ x∧t

0
Īx (t − r , 0)ν(dr) .

Differentiating with respect to x finally yields

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= −1x≥t

ī(0, x − t)

Gc(x − t)
ν(dx) − 1x<t ī(t − x, 0)ν(dx) .

We thus deduce that for x ≥ t , 0 ≤ s ≤ t ,

∂ ī

∂s
(s, x − t + s) = − ī(0, x − t)

Gc(x − t)
ν(x − t + ds),

while for t > x , 0 ≤ s ≤ x ,

∂ ī

∂s
(t − x + s, s) = −ī(t − x, 0)ν(ds) .

Let us integrate the first identity on the interval [0, t). We get

ī(t, x) = ī(0, x − t)

(

1 −
∫
[0,t) ν(x − t + ds)

Gc(x − t)

)

= ī(0, x − t)

(

1 − G(x) − G(x − t)

Gc(x − t)

)

= Gc(x)

Gc(x − t)
ī(0, x − t) .

We conclude that for x ≥ t ,

ī(0, x − t)

Gc(x − t)
ν(dx) = ī(t, x)

Gc(x)
ν(dx) .

123



50 Page 20 of 45 Applied Mathematics & Optimization (2023) 87 :50

We finally consider the case t > x , and integrate the second identity on the interval
[0, x), yielding:

ī(t, x) = ī(t − x, 0)

(

1 −
∫

[0,x)
ν(ds)

)

= Gc(x)ī(t − x, 0),

so that, for t > x ,

ī(t − x, 0)ν(dx) = ī(t, x)

Gc(x)
ν(dx),

and we have established (3.23), (3.24), as well as (3.20). The rest of the proof is the
same as that of Proposition 3.1. ��

The case of a deterministic duration η is a particular case of the last Proposition.

Corollary 3.3 Suppose that the infectious periods are deterministic and equal to ti ,
i.e., F(t) = 1t≥ti , G(t) = 1t>ti . Then we have

∂ ī(t, x)

∂t
+ ∂ ī(t, x)

∂x
= −δti (x)ī(t, x) , (3.26)

with δti (x) being the Dirac measure at ti , with the initial condition ī(0, x) = ∂x Ī(0, x)
for x ∈ [0, ti ], and the boundary condition

ī(t, 0) = S̄(t)
∫ (t+ti )∧ti

0
λ̄(x)ī(t, x)dx , (3.27)

Note also that the boundary function ī(t, 0) solves the following Volterra equation: if
0 < t < ti ,

ī(t, 0) =
(

S̄(0) −
∫ t

0
ī(s, 0)ds

)

×
(∫ ti

t
λ̄(y)ī(0, y − t)dy +

∫ t

0
λ̄(t − s)ī(s, 0)ds

)

, (3.28)

and if t ≥ ti ,

ī(t, 0) =
(

S̄(0) −
∫ t

0
ī(s, 0)ds

)∫ ti

0
λ̄(y)ī(t − y, 0)dy , (3.29)

The PDE (3.26) has a unique solution ī(t, x), which is given as follows. ī(t, x) = 0
if x ≥ ti . For t ≤ x < ti ,

ī(t, x) = ī(0, x − t) , (3.30)

123



Applied Mathematics & Optimization (2023) 87 :50 Page 21 of 45 50

while for x < t ∧ ti ,

ī(t, x) = ī(t − x, 0). (3.31)

Remark 3.8 The total fraction of the population infected during the epidemic is given
by

� =
∫ ∞

0
ī(t, 0)dt

where ī(t, 0) is the solution to (3.6).We also refer the reader to equation (12) in Kaplan
[17], based on his constructed “Scratch" model.

4 On the SIS Model with Infection-Age Dependent Infectivity

In the SIS model, the infectious individuals become susceptible once they recover.
Since SN (t) + I N (t) = N for each t ≥ 0 with a population size N , the epidemic
dynamics is determined by the process I N (t) alone, and we have the same represen-
tations of the processes IN

0 (t, x) and IN
1 (t, x) in (2.5) and (2.7), respectively, while in

the representations of AN in (2.4) and ϒN in (2.3), the process SN (t) is replaced by
SN (t) = N− I N (t). The aggregate infectivity processIN (t) is still given by (2.2). The
two processes (IN , IN ) determine the dynamics of the SIS epidemic model. Under
Assumptions 2.1 and 2.2,

(IN
, ĪN ) → (I, Ī) in probability, locally uniformly in t and x, as N → ∞,

(4.1)

where

I(t) =
∫ x̄

0
λ̄(y + t)Ī(0, dy) +

∫ t

0
λ̄(t − s)

(
1 − Ī(s,∞)

)Ī(s)ds , (4.2)

Ī(t, x) =
∫ (x−t)+

0

Fc(t + y)

Fc(y)
Ī(0, dy) +

∫ t

(t−x)+
Fc(t − s)

(
1 − Ī(s,∞)

)Ī(s)ds ,

(4.3)

for t, x ≥ 0. If I(0, x) is differentiable and F is absolutely continuous, then the density

function ī(t, x) = ∂Ī(t,x)
∂x exists and satisfies again (3.1). The same calculations as in

the case of the SIR model lead to (3.4), (3.5) and (3.2). However, the formula for S̄(t)
is different in the case of the SIS model, that is, (3.3) does not hold. Instead, we have

S̄(t) = 1 − Ī (t) = 1 −
∫ x̄

0

Fc(t + y)

Fc(y)
ī(0, y)dy −

∫ t

0
Fc(t − s)ī(s, 0)ds . (4.4)

123



50 Page 22 of 45 Applied Mathematics & Optimization (2023) 87 :50

Thus, the Volterra equation on the boundary reads

ī(t, 0) =
(∫ x̄

0
λ̄(t + y)ī(0, y)dy +

∫ t

0
λ̄(t − s)ī(s, 0)ds

)

×
(

1 −
∫ x̄

0

Fc(t + y)

Fc(y)
ī(0, y)dy −

∫ t

0
Fc(t − s)ī(s, 0)ds

)

, (4.5)

whose form is similar to the one for the SIR model.
It is also clear that if the c.d.f. F(t) = 1 − e−βt , we have the same PDE for ī(t, x)

as given in (3.19) with μ(x) = β and the boundary condition:

ī(t, 0) =
(∫ x̄

0
λ̄(t + y)e−β y ī(0, y)dy +

∫ t

0
λ̄(t − s)e−β(t−s) ī(s, 0)ds

)

×
(

1 −
∫ x̄

0
e−βt ī(0, y)dy −

∫ t

0
e−β(t−s) ī(s, 0)ds

)

.

If the c.d.f. F of the infectious period is not absolutely continuous, but I(0, x) is
differentiable, then we have essentially the same result as in Proposition 3.2, except
that (3.22) is replaced by (4.4), and (3.25) by (4.5).

Recall that the standard SIS model has a nontrivial equilibrium point Ī ∗ = 1−β/λ

if β < λ, where λ is the infection rate (the bar over λ is dropped for convenience), and
1/β is themean of the infectious periods. See Sect. 4.3 in [25] for the account of the SIS
model with general infectious periods. Here we consider the model in the generality
of infection-age dependent infectivity. Note that we provide the explicit expressions
for the equilibria below assuming they exist. We do not prove the existence of the limit
of Ī(t, x) as t → ∞, which we leave as future work.

Proposition 4.1 Suppose that lim Ī(t, x) → Ī∗(x) exists as t → ∞ and Ī ∗ = Ī∗(∞).
If R0 = ∫∞

0 λ̄(y)dy ≤ 1, Ī ∗ = 0 (the disease free equilibrium). In the complementary
case, R0 = ∫∞

0 λ̄(y)dy > 1, if Ī(0, x̄) > 0,

Ī ∗ = 1 −
(∫ ∞

0
λ̄(y)dy

)−1

= 1 − 1

R0
. (4.6)

The density function ī(t, x) has an equilibrium ī∗(x) in the age of infection x, given
by

ī∗(x) = dĪ∗(x)
dx

= Ī ∗βFc(x), (4.7)

where β−1 = ∫∞
0 Fc(t)dt ∈ (0,∞) is the expectation of the duration of the infectious

period. If F has a density f , then the equilibrium density ī∗(x) satisfies

d ī∗(x)
dx

= − Ī ∗β f (x), ī∗(0) = Ī ∗β.
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Proof The fact that Ī ∗ = 0 if R0 ≤ 1 and > 0 if R0 > 1 follows from branching
process arguments, and the fact that the start of the epidemic can be approximated by
a branching process, see e.g. Sect. 1.3 in [5]. Assume that the equilibrium Ī∗(x) :=
Ī(∞, x) exists. We deduce from (4.3), combined with (3.16), that Ī∗(x) must satisfy

Ī∗(x) = (1 − Ī∗(∞))

∫ x

0
Fc(u)du

∫ ∞

0

λ̄(y)

Fc(y)
Ī∗(dy)

= (1 − Ī ∗)β−1Fe(x)
∫ ∞

0

λ̄(y)

Fc(y)
Ī∗(dy),

where Fe(x) = β
∫ x
0 Fc(s)ds, the equilibrium (stationary excess) distribution. Letting

x → ∞ in this formula, we deduce

Ī ∗ = (1 − Ī ∗)β−1
∫ ∞

0

λ̄(y)

Fc(y)
Ī∗(dy) . (4.8)

Combining the last two equations, we obtain

Ī∗(x) = Ī ∗Fe(x) . (4.9)

Plugging this formula in the previous identity, we deduce that

Ī ∗ = (1 − Ī ∗) Ī ∗
∫ ∞

0
λ̄(y)dy .

Then the formula (4.6) can be directly deduced from this equation. The formula (4.7)
follows by taking the derivative with respect to x in (4.9). ��
Remark 4.1 If the distribution F is exponential, that is, F(x) = 1 − e−βx , then we
obtain

Ī∗(x) = Ī ∗(1 − e−βx ), ī∗(x) = Ī ∗βe−βx , and
d ī∗(x)
dx

= − Ī ∗β2e−βx = −β ī∗(x),

where Ī ∗ is given in (4.6).

Remark 4.2 Suppose that λi (t) = λ(t)1t<ηi , where λ(t) is a deterministic function,
as in Remark 3.4. Then λ̄(t) = λ(t)Fc(t). If λ(t) ≡ λ is a constant and F has mean
β−1, then Ī ∗ in (4.6)

Ī ∗ = 1 −
(

λ

∫ ∞

0
Fc(y)dy

)−1

= 1 − β/λ = 1 − 1

R0
, (4.10)

which reduces to the well known result for the standard SIS model with constant rates,
assuming β < λ.
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5 Proof of the FLLN

In this section, we prove Theorem 2.1. We will need the following theorem. A similar
pre-tightness criterion can be found in Theorem 3.5.1 in Chapter 6 of [21], which
extends that in the Corollary on page 83 of [4] to the space C([0, 1]k,R). Those
proofs can be easily extended to the space DD . For the convenience of the reader, we
give a proof of the following result in Sect. 6 below.

Theorem 5.1 Let {XN : N ≥ 1} be a sequence of random elements in DD. If the
following two conditions are satisfied: for any T , S > 0,

(i) for any ε > 0, supt∈[0,T ] sups∈[0,S] P
(|XN (t, s)| > ε

)→ 0 as N → ∞, and
(ii) for any ε > 0, as δ → 0,

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
s∈[0,S]

|XN (t + u, s) − XN (t, s)| > ε

)

→ 0,

lim sup
N→∞

sup
s∈[0,S]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

|XN (t, s + v) − XN (t, s)| > ε

)

→ 0,

then XN (t, s) → 0 in probability, locally uniformly in t and s, as N → ∞.

We shall also use repeatedly the following Lemma.

Lemma 5.1 Let f ∈ D(R+) and {gN }N≥1 be a sequence of elements of D↑(R+)which
is such that gN → g locally uniformly, where g ∈ C↑(R+). Then for any T > 0,

∫

[0,T ]
f (t)gN (dt) →

∫

[0,T ]
f (t)g(dt) .

Proof The assumption implies that the sequence of measures gN (dt) converges
weakly, as N → ∞, towards the measure g(dt). Since moreover f is bounded,
and the set of discontinuities of f is of g(dt) measure 0, this is essentially a minor
improvement of the Portmanteau theorem, see [4]. ��

5.1 Convergence of IN0 (t, x)

We first treat the process IN
0 (t, x) in (2.5).

Lemma 5.2 Under Assumption 2.1,

ĪN
0 (t, x) → Ī0(t, x) in DD as N → ∞, (5.1)

in probability, where the limit Ī0(t, x) is given by

Ī0(t, x) :=
∫ (x−t)+

0

Fc(t + y)

Fc(y)
Ī(0, dy), t, x ≥ 0. (5.2)
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Proof Recall that

ĪN
0 (t, x) = N−1

I N (0)∑

j=1

1η0j>t1τ̃ N
j,0≤(x−t)+ = N−1

IN (0,(x−t)+)∑

j=1

1η0j>t .

Note that the pair of variables (τ̃ N
j,0, η

0
j ) satisfies (2.1), andI

N (0, (x−t)+) = max{ j ≥
1 : τ̃ N

j,0 ≤ (x − t)+}. Let

ĨN
0 (t, x) = N−1

IN (0,(x−t)+)∑

j=1

Fc(t + τ̃ N
j,0)

Fc(τ̃ N
j,0)

=
∫ (x−t)+

0

Fc(t + y)

Fc(y)
ĪN (0, dy) . (5.3)

We will first show that ĨN
0 (t, x) → Ī0(t, x) (this will be step 1 of the proof), and

then that ĪN
0 (t, x)− ĨN

0 (t, x) → 0 (this will be step 2 of the proof), both in probability,
locally uniformly in t and x , as N → ∞.

Step 1 We show that, as N → ∞,

ĨN
0 (t, x) → Ī0(t, x) in probability, locally uniformly in t and x . (5.4)

From Lemma 5.1, Assumption 2.1 and the continuous mapping theorem, we deduce
that for any t, x ≥ 0, ĨN

0 (t, x) → Ī0(t, x) in probability, as N → ∞. It thus remains
to show that the sequence {XN := ĨN

0 −Ī0, N ≥ 1} satisfies condition (ii) in Theorem
5.1. In fact, it is easily seen that it is sufficient to verify condition (ii) with XN = ĨN

0 .
Indeed, both

sup
0≤u≤δ

sup
0≤x≤x̄

|Ī0(t + u, x) − Ī0(t, x)| and sup
0≤v≤δ

sup
0≤t≤T

|Ī0(t, x + v) − Ī0(t, x)|

tend to 0, as δ → 0, which is an easy consequence of the computations which follow.
Let us now consider XN = ĨN

0 . We have

ĨN
0 (t + u, x) − ĨN

0 (t, x)

=
∫ (x−t−u)+

0

Fc(t + u + y)

Fc(y)
ĪN (0, dy) −

∫ (x−t)+

0

Fc(t + y)

Fc(y)
ĪN (0, dy)

=
∫ (x−t−u)+

0

Fc(t + u + y) − Fc(t + y)

Fc(y)
ĪN (0, dy)

−
∫ (x−t)+

(x−t−u)+
Fc(t + y)

Fc(y)
ĪN (0, dy)

which gives

∣
∣̃IN

0 (t + u, x) − ĨN
0 (t, x)

∣
∣ ≤

∫ (x−t−u)+

0

Fc(t + y) − Fc(t + u + y)

Fc(y)
ĪN (0, dy)
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+
∫ (x−t)+

(x−t−u)+
Fc(t + y)

Fc(y)
ĪN (0, dy) .

Consequently,

sup
0≤u≤δ,0≤x≤x̄

|̃IN
0 (t + u, x) − ĨN

0 (t, x)| ≤
∫ (x̄−t)+

0

Fc(t + y) − Fc(t + δ + y)

Fc(y)
ĪN (0, dy)

+ sup
0≤x≤x̄

∫ (x−t)+

(x−t−δ)+
Fc(t + y)

Fc(y)
ĪN (0, dy) .

The limit in probability of the first term on the right of the last inequality equals

∫ (x̄−t)+

0

Fc(t + y) − Fc(t + δ + y)

Fc(y)
Ī(0, dy),

which tends to 0 as δ → 0, since Fc is continuous on the right and the integrand is
between 0 and 1. The second term on the right of the above inequality is nonnegative
and upper bounded by

sup
0≤x≤x̄

(
ĪN (0, (x − t)+) − ĪN (0, (x − t − δ)+)

)
,

which converges in probability towards

sup
0≤x≤x̄

(
Ī(0, (x − t)+) − Ī(0, (x − t − δ)+)

)
,

and this last expression tends to 0 as δ → 0. Combining the above arguments, we
deduce that for ε > 0, if δ > 0 is small enough,

lim sup
N

P

(

sup
0≤u≤δ,0≤x≤x̄

∣
∣̃IN

0 (t + u, x) − ĨN
0 (t, x)

∣
∣ > ε

)

= 0 .

We next consider

ĨN
0 (t, x + v) − ĨN

0 (t, x) =
∫ (x+v−t)+

(x−t)+
Fc(t + y)

Fc(y)
ĪN (0, dy)

≤ ĪN (0, (x + v − t)+) − IN (0, (x − t)+) .

Hence,

sup
0≤v≤δ,0≤t≤T

∣
∣̃IN

0 (t, x + v) − ĨN
0 (t, x)

∣
∣

= sup
0≤t≤T

(
ĪN (0, (x + δ − t)+) − IN (0, (x − t)+)

)
.
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The term on the right of the last inequality converges in probability as N → ∞,
towards

sup
0≤t≤T

(
Ī(0, (x + δ − t)+) − I(0, (x − t)+)

)
,

which tends to 0 as δ tends to 0. Again we easily deduce from these computations that
for any ε > 0, if δ > 0 is small enough,

lim sup
N

P

(

sup
0≤v≤δ,0≤t≤T

∣
∣̃IN

0 (t, x + v) − ĨN
0 (t, x)

∣
∣ > ε

)

= 0 .

We have established (5.4).
Step 2 We finally show that V N (t, x) := ĪN

0 (t, x) − ĨN
0 (t, x) satisfies the two

conditions of Theorem 5.1. We have

V N (t, x) = N−1
IN (0,(x−t)+)∑

j=1

(

1η0j>t − Fc(t + τ̃ N
j,0)

Fc(τ̃ N
j,0)

)

.

We first check condition (i) from Theorem 5.1. We have

E
[
V N (t, x)2

] = E

[

N−2
IN (0,(x−t)+)∑

j=1

(

1η0j>t − Fc(t + τ̃ N
j,0)

Fc(τ̃ N
j,0)

)2 ]

+ E

[

N−2
IN (0,(x−t)+)∑

j, j ′=1, j �= j ′

(

1η0j>t − Fc(t + τ̃ N
j,0)

Fc(τ̃ N
j,0)

)(

1η0
j ′>t − Fc(t + τ̃ N

j ′,0)

Fc(τ̃ N
j ′,0)

)]

= N−1
E

[ ∫ (x−t)+

0

Fc(t + s)

Fc(s)

(

1 − Fc(t + s)

Fc(s)

)

ĪN (0, ds)

]

where the second term in the first equality is equal to zero by the independence of
η0j and η0j ′ given the times τ̃ N

j,0 and τ̃ N
j ′,0 and by using a conditioning argument. This

implies that as N → ∞,

sup
t≥0

sup
x≥0

E
[
V N (t, x)2

]→ 0,

and thus condition (i) in Theorem 5.1 holds.
We next show condition (ii) from Theorem 5.1, that is, for any ε > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
x∈[0,T ′]

∣
∣V N (t + u, x) − V N (t, x)

∣
∣ > ε

)

→ 0, (5.5)
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and

lim sup
N

sup
x∈[0,T ′]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

∣
∣V N (t, x + v) − V N (t, x)

∣
∣ > ε

)

→ 0. (5.6)

We first prove (5.5). We have

∣
∣V N (t + u, x) − V N (t, x)

∣
∣

=
∣
∣
∣
∣N

−1
IN (0,(x−t−u)+)∑

j=1

(

1η0j>t+u − Fc(t + u + τ̃ N
j,0)

Fc(τ̃ N
j,0)

)

− N−1
IN (0,(x−t)+)∑

j=1

(

1η0j>t − Fc(t + τ̃ N
j,0)

Fc(τ̃ N
j,0)

)∣∣
∣
∣

≤
∣
∣
∣
∣N

−1
IN (0,(x−t−u)+)∑

j=1

(

1t<η0j≤t+u − Fc(t + τ̃ N
j,0) − Fc(t + u + τ̃ N

j,0)

Fc(τ̃ N
j,0)

)∣∣
∣
∣

+
∣
∣
∣
∣N

−1
IN (0,(x−t)+)∑

j=IN (0,(x−t−u)+)+1

(

1η0j>t − Fc(t + τ̃ N
j,0)

Fc(τ̃ N
j,0)

)∣∣
∣
∣

≤ N−1
IN (0,(x−t−u)+)∑

j=1

1t<η0j≤t+u +
∫ (x−t−u)+

0

Fc(t + s) − Fc(t + u + s)

Fc(s)
ĪN (0, ds)

+ ∣∣ĪN (0, (x − t)+) − ĪN (0, (x − t − u)+)
∣
∣ . (5.7)

For the first term,

P

(

sup
u∈[0,δ]

sup
x∈[0,T ′]

N−1
IN (0,(x−t−u)+)∑

j=1

1t<η0j≤t+u > ε/3

)

≤ P

(

N−1
IN (0,(T ′−t)+)∑

j=1

1t<η0j≤t+δ > ε/3

)

≤ P

(

N−1
IN (0,(T ′−t)+)∑

j=1

[

1t<η0j≤t+δ − Fc(t + τ̃ N
j,0) − Fc(t + δ + τ̃ N

j,0)

Fc(τ̃ N
j,0)

]

> ε/6

)

+ P

(∫ (T ′−t)+

0

Fc(t + s) − Fc(t + δ + s)

Fc(s)
ĪN (0, ds) > ε/6

)

(5.8)

By the conditional independence of the η0j ’s, the first term on the right of (5.8) is
bounded by
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36

ε2
N−1

E

[∫ (T ′−t)+

0

Fc(t + s) − Fc(t + δ + s)

Fc(s)

×
(

1 − Fc(t + s) − Fc(t + δ + s)

Fc(s)

)

ĪN (0, ds)

]

≤ 36

ε2
N−1

E

[∫ (T ′−t)+

0

Fc(t + s) − Fc(t + δ + s)

Fc(s)
ĪN (0, ds)

]

,

which converges to zero as N → ∞. Since by Assumption 2.1 Ī(0, ·) is continuous,
thanks to Lemma 5.1, lim supN of the second term is upper bounded by

1
{∫ (T ′−t)+

0

Fc(t + s) − Fc(t + δ + s)

Fc(s)
Ī(0, ds) ≥ ε/6

}

,

which is zero for δ > 0 small enough (clearly uniformly over t ∈ [0, T ]).
The second term on the right of (5.7) is treated exactly as the last term we have just

analyzed. Finally for the third term, we note that

P

(

sup
u∈[0,δ]

sup
x∈[0,T ′]

∣
∣ĪN (0, (x − t)+) − ĪN (0, (x − t − u)+)

∣
∣ > ε/3

)

= P

(

sup
x∈[0,T ′]

∣
∣ĪN (0, (x − t)+) − ĪN (0, (x − t − δ)+)

∣
∣ > ε/3

)

.

Thanks to Assumption 2.1, the lim supN of this probability is upper bounded by

1

{

sup
x∈[0,T ′]

∣
∣Ī(0, (x − t)+) − Ī(0, (x − t − δ)+)

∣
∣ ≥ ε/3

}

which is zero for δ > 0 small enough, since Ī(0, ·) is continuous. The uniformity over
t ∈ [0, T ] is obvious. Thus we have shown (5.5).

We next prove (5.6). Observe that

V N (t, x + v) − V N (t, x) = N−1
IN (0,(x+v−t)+)∑

j=IN (0,(x−t)+)+1

(

1η0j>t − Fc(t + τ̃ N
j,0)

Fc(τ̃ N
j,0)

)

from which we obtain

P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

∣
∣V N (t, x + v) − V N (t, x)

∣
∣ > ε

)

≤ P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

∣
∣ĪN (0, (x + v − t)+) − ĪN (0, (x − t)+)

∣
∣ > ε

)
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≤ P

(

sup
t∈[0,T ]

∣
∣ĪN (0, (x + δ − t)+) − ĪN (0, (x − t)+)

∣
∣ > ε

)

.

Then following the same argument as for the second term on the right of (5.7), we can
conclude (5.6). ��

5.2 Convergence of ĪN1

We first write the process AN as

AN (t) = MN
A (t) + �N (t), (5.9)

where

�N (t) :=
∫ t

0
ϒN (s)ds, (5.10)

and

MN
A (t) =

∫ t

0

∫ ∞

0
1u≤ϒN (s−)Q(ds, du), (5.11)

where Q(ds, du) = Q(ds, du) − dsdu is the compensated PRM.

Lemma 5.3 UnderAssumption 2.2, the process {MN
A (t) : t ≥ 0} is a square-integrable

martingale with respect to the filtration FN
A = {FN

A (t) : t ≥ 0} where

FN
A (t) := σ

{
I N (0), τ̃ N

j : j = 1, . . . , I N (0)
} ∨ σ

{
λ0j (·) j≥1, λi (·)i≥1

}

∨ σ

{∫ t ′

0

∫ ∞

0
1u≤ϒN (s−)Q(ds, du) : 0 ≤ t ′ ≤ t

}

.

The quadratic variation of MN
A (t) is given by

〈MN
A 〉(t) = �N (t), t ≥ 0. (5.12)

Proof It is clear that MN
A (t) ∈ FN

A (t), and E[|MN
A (t)|] ≤ 2E[�N (t)] ≤ 2λ∗Nt < ∞

for each t ≥ 0, under Assumption 2.2. It suffices to verify the martingale property:
for t2 > t1 ≥ 0,

E
[
MN

A (t2) − MN
A (t1)

∣
∣FN

A (t1)
] = 0

which can be checked using the above definition of the filtration. In addition,
E[(MN

A (t))2] = E[�N (t)] ≤ λ∗Nt < ∞ for each t ≥ 0. The rest is standard.
��
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Recall that ( ĀN , S̄N , ϒ̄N ) := N−1(AN , SN , ϒN ).

Lemma 5.4 Under Assumptions 2.1 and 2.2, the sequence of processes {( ĀN , S̄N ) :
N ∈ N} is tight in D2. The limit of each convergence subsequence of { ĀN }, denoted
by Ā, satisfies

Ā = lim
N→∞ ĀN = lim

N→∞

∫ ·

0
ϒ̄N (u)du, (5.13)

and

0 ≤
∫ t

s
ϒ̄N (u)du ≤ λ∗(t − s), w.p. 1 for 0 ≤ s ≤ t . (5.14)

Proof It is clear that under Assumption 2.2, if �̄N (t) := ∫ t
0 ϒ̄N (u)du, �̄N (0) = 0

and

0 ≤ �̄N (t) − �̄N (s) ≤ λ∗(t − s), w.p. 1 for 0 ≤ s ≤ t . (5.15)

Since

〈M̄N
A 〉t ≤ N−1λ∗t,

it follows from Doob’s inequality that M̄N
A (t) tends to 0 in probability, locally uni-

formly in t . The tightness of { ĀN : N ∈ N} in D follows. Since S̄N = S̄N (0) − ĀN

and S̄N (0) ⇒ S̄(0) from Assumption 2.1, we obtain the tightness of {S̄N : N ∈ N} in
D, and thus the claim of the lemma. ��

In the following of this section, we consider a convergent subsequence of ĀN .
Recall that

ĪN
1 (t, x) = N−1

AN (t)∑

i=AN ((t−x)+)

1τ N
i +ηi>t , t, x ≥ 0.

Lemma 5.5 Under Assumptions 2.1 and 2.2, along a subsequence of ĀN which con-
verges weakly to Ā,

ĪN
1 (t, x) ⇒ Ī1(t, x) in DD as N → ∞, (5.16)

where the limit Ī1(t, x) is given by

Ī1(t, x) :=
∫ t

(t−x)+
Fc(t − s)d Ā(s), t, x ≥ 0. (5.17)
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Proof Let

ĬN
1 (t, x) := N−1

AN (t)∑

i=AN ((t−x)+)

Fc(t − τ N
i ), t, x ≥ 0.

We can write (from now on,
∫ b
a stands for

∫
(a,b])

ĬN
1 (t, x) =

∫ t

(t−x)+
Fc(t − s)d ĀN (s). (5.18)

Then from Lemma 5.1, we deduce that for any t, x ≥ 0,

ĬN
1 (t, x) ⇒ Ī1(t, x) as N → ∞ . (5.19)

We will next show that for any ε > 0, there exists δ > 0 such that the following holds
for any (t, x):

lim sup
N

P

(

sup
t≤t ′≤t+δ,x≤x ′≤x+δ

∣
∣
∣ĬN

1 (t, x) − ĬN
1 (t ′, x ′)

∣
∣
∣ > ε

)

= 0, (5.20)

It is not hard to deduce from (5.19) and (5.20), by a two-dimensional extension of the
argument of the Corollary on page 83 of [4], that as N → ∞, ĬN

1 (t, x) ⇒ Ī1(t, x)
locally uniformly in t and x . Whenever t ≤ t ′ ≤ t + δ and x ≤ x ′ ≤ x + δ, we have

∣
∣ĬN

1 (t, x) − ĬN
1 (t ′, x ′)

∣
∣ ≤

∫ t

(t−x)+

[
Fc(t − s) − Fc(t ′ − s)

]
d ĀN (s)

+ 2 sup
0≤t2−t1≤2δ

[
ĀN (t2) − ĀN (t1)

]
.

Since ĀN (t) ⇒ ∫ t
0 ϒ̄(s)ds locally uniformly in t , and ϒ̄(s) ≤ λ∗, the limit in law of

the right hand side of the last inequality is bounded by

λ∗
∫ t

(t−x)+
sup

t≤t ′≤t+δ

[
Fc(t − s) − Fc(t ′ − s)

]
ds + 4λ∗δ,

which is less than ε for δ > 0 small enough. Hence, (5.20) follows.
Let now

Y N (t, x) := ĪN
1 (t, x) − ĬN

1 (t, x)

= N−1
AN (t)∑

i=AN ((t−x)+)

(
1τ N

i +ηi>t − Fc(t − τ N
i )
)
, t, x ≥ 0.
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To prove (5.16), it remains to show that, as N → ∞,

Y N → 0 in DD in probability. (5.21)

We apply Theorem 5.1. By Markov’s inequality and the decomposition of AN (t) in
(5.9) with E[MN

A (t)] = 0, we obtain

P

(
Y N (t, x) > ε

)
≤ 1

ε2
E

[
Y N (t, x)2

]

= 1

ε2N
E

[∫ t

(t−x)+
F(t − s)Fc(t − s)d ĀN (s)

]

= 1

ε2N
E

[∫ t

(t−x)+
F(t − s)Fc(t − s)ϒ̄N (s)ds

]

≤ 1

ε2N
λ∗
∫ t

(t−x)+
F(t − s)Fc(t − s)ds

sup
t∈[0,T ],x∈[0,T ′]

P

(
Y N (t, x) > ε

)
→ 0 as N → ∞.

The result then follows from the next two lemmas. ��
Lemma 5.6 Under the assumptions of Lemma 5.5, for ε > 0, as δ → 0,

lim sup
N

sup
t∈[0,T ]

1

δ
P

(

sup
u∈[0,δ]

sup
x∈[0,T ′]

∣
∣Y N (t + u, x) − Y N (t, x)

∣
∣ > ε

)

→ 0, (5.22)

Proof We have

∣
∣Y N (t + u, x) − Y N (t, x)

∣
∣

=
∣
∣
∣
∣N

−1
AN (t+u)∑

i=AN ((t+u−x)+)

(
1τ N

i +ηi>t+u − Fc(t + u − τ N
i )
)

− N−1
AN (t)∑

i=AN ((t−x)+)

(
1τ N

i +ηi>t − Fc(t − τ N
i )
)
∣
∣
∣
∣

=
∣
∣
∣
∣N

−1
AN (t+u)∑

i=AN ((t−x)+)

[(
1τ N

i +ηi>t+u − Fc(t + u − τ N
i )
)− (1τ N

i +ηi>t − Fc(t − τ N
i )
)]

− N−1
AN (t+u−x)+−1∑

i=AN ((t−x)+)

(
1τ N

i +ηi>t+u − Fc(t + u − τ N
i )
)

+ N−1
AN (t+u)∑

i=AN (t)+1

(
1τ N

i +ηi>t − Fc(t − τ N
i )
)
∣
∣
∣
∣

123



50 Page 34 of 45 Applied Mathematics & Optimization (2023) 87 :50

≤ N−1
AN (t+u)∑

i=AN ((t−x)+)

[
1t<τ N

i +ηi≤t+u + (Fc(t − τ N
i ) − Fc(t + u − τ N

i )
)]

+
∣
∣
∣
∣N

−1
AN (t+u−x)+−1∑

i=AN ((t−x)+)

(
1τ N

i +ηi>t+u − Fc(t + u − τ N
i )
)
∣
∣
∣
∣

+
∣
∣
∣
∣N

−1
AN (t+u)∑

i=AN (t)+1

(
1τ N

i +ηi>t − Fc(t − τ N
i )
)
∣
∣
∣
∣

≤ N−1
AN (t+u)∑

i=AN ((t−x)+)

1t<τ N
i +ηi≤t+u + N−1

AN (t+u)∑

i=AN ((t−x)+)

(
Fc(t − τ N

i ) − Fc(t + u − τ N
i )
)

+
(
ĀN ((t + u − x)+) − ĀN ((t − x)+)

)
+
(
ĀN (t + u) − ĀN (t)

)
.

Then we obtain

P

(

sup
u∈[0,δ]

sup
x∈[0,T ′]

∣
∣Y N (t + u, x) − Y N (t, x)

∣
∣ > ε

)

≤ P

⎛

⎝N−1
AN (t+δ)∑

i=AN ((t−T ′)+)

1t<τ N
i +ηi≤t+δ > ε/3

⎞

⎠

+ P

⎛

⎝N−1
AN (t+δ)∑

i=AN ((t−T ′)+)

(
Fc(t − τ N

i ) − Fc(t + δ − τ N
i )
)

> ε/3

⎞

⎠

+ 2P

(

sup
0≤s≤T

∣
∣ ĀN (s + δ) − ĀN (s)

∣
∣ > ε/6

)

. (5.23)

Let Q̆(ds, dr , dz) denote a PRM on R
3+ with mean measure ν(ds, dr , dz) =

dsdr F(dz) and Q̃ denote the associated compensatedPRM.By theMarkov inequality,
we obtain the first term is bounded by 9ε−2 times

E

⎡

⎢
⎣

⎛

⎝N−1
AN (t+δ)∑

i=AN ((t−T ′)+)

1t<τ N
i +ηi≤t+δ

⎞

⎠

2
⎤

⎥
⎦

= E

[(

N−1
∫ t+δ

(t−T ′)+

∫ ∞

0

∫ t+δ−s

t−s
1r≤ϒN (s−) Q̆(ds, dr , dz)

)2
]

≤ 2E

[(

N−1
∫ t+δ

(t−T ′)+

∫ ∞

0

∫ t+δ−s

t−s
1r≤N ϒ̄N (s−) Q̃(ds, dr , dz)

)2
]

+ 2E

[(∫ t+δ

(t−T ′)+

(
F(t + δ − s) − F(t − s)

)
ϒ̄N (s)ds

)2
]
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= 2N−1
E

[∫ t+δ

(t−T ′)+

(
F(t + δ − s) − F(t − s)

)
ϒ̄N (s)ds

]

+ 2E

[(∫ t+δ

(t−T ′)+

(
F(t + δ − s) − F(t − s)

)
ϒ̄N (s)ds

)2
]

≤ 2λ∗N−1
∫ t+δ

(t−T ′)+

(
F(t + δ − s) − F(t − s)

)
ds

+ 2

(

λ∗
∫ t+δ

(t−T ′)+

(
F(t + δ − s) − F(t − s)

)
ds

)2

,

where the last inequality follows from (5.14). The first term converges to zero as
N → ∞, and we note that

∫ t+δ

(t−T ′)+

(
F(t + δ − s) − F(t − s)

)
ds =

∫ t−(t−T ′)++δ

t−(t−T ′)+
F(r)dr −

∫ δ

0
F(r)dr ≤ δ ,

since F(r) ≤ 1. Hence

1

δ

(

λ∗
∫ t+δ

(t−T ′)+

(
F(t + δ − s) − F(t − s)

)
ds

)2

≤ λ∗δ → 0, as δ → 0. (5.24)

For the second term in (5.23), we have

E

[(∫ t+δ

(t−T ′)+

(
Fc(t − s) − Fc(t + δ − s)

)
d ĀN (s)

)2
]

≤ 2E

[(∫ t+δ

(t−T ′)+

(
Fc(t − s) − Fc(t + δ − s)

)
d M̄N

A (s)

)2
]

+ 2E

[(∫ t+δ

(t−T ′)+

(
Fc(t − s) − Fc(t + δ − s)

)
ϒ̄N (s)ds

)2
]

,

where the first term converges to zero as N → ∞ by the convergence M̄N
A (t) → 0 in

probability, locally uniformly in t , while the second term is bounded as in (5.24).
For the last term in (5.23), we use the martingale decomposition of ĀN and the

bound for ϒ̄N in (5.14), and obtain

sup
0≤t≤T

∣
∣ ĀN (t + δ) − ĀN (t)

∣
∣ ≤ 2 sup

0≤t≤T+δ

∣
∣M̄N

A (t)
∣
∣+ λ∗δ, (5.25)

which, since M̄N
A (t) → 0 locally uniformly in t , implies that, provided δ < ε/λ∗,

lim sup
N→∞

P

(

sup
0≤t≤T

∣
∣ ĀN (t + δ) − ĀN (t)

∣
∣ ≥ ε

)

= 0 .
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Thus we have shown that (5.22) holds. ��

Lemma 5.7 Under the assumptions of Lemma 5.5, for ε > 0, as δ → 0,

lim sup
N

sup
x∈[0,T ′]

1

δ
P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

∣
∣Y N (t, x + v) − Y N (t, x)

∣
∣ > ε

)

→ 0. (5.26)

Proof Observe that

Y N (t, x + v) − Y N (t, x) = N−1
AN ((t−x)+)∑

i=AN ((t−x−v)+)

(
1τ N

i +ηi>t − Fc(t − τ N
i )
)
,

from which we obtain

P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

∣
∣Y N (t, x + v) − Y N (t, x)

∣
∣ > ε

)

≤ P

(

sup
v∈[0,δ]

sup
t∈[0,T ]

∣
∣ ĀN ((t − x)+) − ĀN ((t − x − v)+)

∣
∣ > ε

)

≤ P

(

sup
t∈[0,T ]

∣
∣ ĀN ((t − x)+) − ĀN ((t − x − δ)+)

∣
∣ > ε

)

.

Then the claim follows from the same argument as the one used to treat the last term
in (5.23) in the end of the proof of the previous lemma. ��

5.3 Convergence of the Aggregate Infectivity Process

Recall IN in (2.2), and let IN := N−1IN . Define

ĨN (t) := N−1
I N (0)∑

j=1

λ̄(τ̃ N
j,0 + t) + N−1

AN (t)∑

i=1

λ̄(t − τ N
i ), t ≥ 0. (5.27)

Lemma 5.8 Under Assumptions 2.1 and 2.2, along a convergent subsequence of ĀN

which converges weakly to Ā, we have in probability,

IN − ĨN → 0 in D as N → ∞.

Proof We write

IN
(t) − ĨN (t) = �

N
0 (t) + �

N
1 (t),
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where

�
N
0 (t) = N−1

I N (0)∑

j=1

(
λ0j (τ̃

N
j,0 + t) − λ̄(τ̃ N

j,0 + t)
)

,

�
N
1 (t) = N−1

AN (t)∑

i=1

(
λi (t − τ N

i ) − λ̄(t − τ N
i )
)

.

We first consider �
N
0 (t). For each fixed t , by conditioning on σ {I N (0, y) : 0 ≤ y ≤

x̄} = σ {τ̃ N
j,0, j = 1, . . . , I N (0)}, we obtain

E
[(

�
N
0 (t)

)2] = N−1
E

[ ∫ x̄

0
v(y + t)dĪN (0, y)

]

→ 0 as N → ∞.

We then have for t, u > 0,

∣
∣�

N
0 (t + u) − �

N
0 (t)

∣
∣ ≤ N−1

I N (0)∑

j=1

∣
∣
∣λ0j (τ̃

N
j,0 + t + u) − λ0j (τ̃

N
j,0 + t)

∣
∣
∣

+ N−1
I N (0)∑

j=1

∣
∣
∣λ̄(τ̃ N

j,0 + t + u) − λ̄(τ̃ N
j,0 + t)

∣
∣
∣

=: �
N ,1
0 (t, u) + �

N ,2
0 (t, u) .

Then by Assumption 2.2, writing λ0j (t) =∑k

=1 λ

0,

j (t)1[ζ 
−1

j ,ζ 

j )
(t), we have

�
N ,1
0 (t, u) = N−1

I N (0)∑

j=1

∣
∣
∣
∣

k∑


=1

λ
0,

j (τ̃ N

j,0 + t + u)1[ζ 
−1
j ,ζ 


j )
(τ̃ N

j,0 + t + u)

−
k∑


=1

λ
0,

j (τ̃ N

j,0 + t)1[ζ 
−1
j ,ζ 


j )
(τ̃ N

j,0 + t)

∣
∣
∣
∣

≤ N−1
I N (0)∑

j=1

k∑


=1

|λ0,
j (τ̃ N
j,0 + t + u) − λ

0,

j (τ̃ N

j,0 + t)|1
ζ 
−1
j ≤τ̃ N

j,0+t≤τ̃ N
j,0+t+u≤ζ 


j

+ λ∗N−1
I N (0)∑

j=1

k∑


=1

1τ̃ N
j,0+t≤ζ 


j ≤τ̃ N
j,0+t+u

≤ ϕ(u) Ī N (0) + λ∗N−1
k∑


=1

I N (0)∑

j=1

1τ̃ N
j,0+t≤ζ 


j ≤τ̃ N
j,0+t+u . (5.28)
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Both terms on the right hand side are increasing in u, and thus, we have

sup
0≤u≤δ

�
N ,1
0 (t, u) ≤ ϕ(δ) Ī N (0) + λ∗N−1

k∑


=1

I N (0)∑

j=1

1τ̃ N
j,0+t≤ζ 


j ≤τ̃ N
j,0+t+δ .

Here for the second term, we have

N−1
k∑


=1

I N (0)∑

j=1

1τ̃ N
j,0+t≤ζ 


j ≤τ̃ N
j,0+t+δ

= N−1
k∑


=1

I N (0)∑

j=1

[

1τ̃ N
j,0+t≤ζ 


j ≤τ̃ N
j,0+t+δ − (F


(
τ̃ N
j,0 + t + δ

)− F


(
τ̃ N
j,0 + t

)))
]

+ N−1
k∑


=1

I N (0)∑

j=1

(
F
(τ̃

N
j,0 + t + δ) − F
(τ̃

N
j,0 + t)

))
,

hence

P

⎛

⎝N−1
k∑


=1

I N (0)∑

j=1

1τ̃ N
j,0+t≤ζ 


j ≤τ̃ N
j,0+t+δ > ε

⎞

⎠

≤
k∑


=1

P

⎛

⎝N−1
I N (0)∑

j=1

[

1τ̃ N
j,0+t≤ζ 


j ≤τ̃ N
j,0+t+δ

−(F
(τ̃
N
j,0 + t + δ) − F
(τ̃

N
j,0 + t)

))
]

> ε/2k

)

+
k∑


=1

P

⎛

⎝N−1
I N (0)∑

j=1

(
F
(τ̃

N
j,0 + t + δ) − F
(τ̃

N
j,0 + t)

))
> ε/2k

⎞

⎠ . (5.29)

The first term on the right of (5.29) tends to 0 as N → ∞, since by conditioning
on σ {IN (0, y) : 0 ≤ y ≤ x̄} = σ {τ̃ N

j,0, j = 1, . . . , I N (0)}, and since the ζ 

j ’s are

mutually independent and globally independent of the τ̃ N
j,0’s, we obtain

E

[(

N−1
I N (0)∑

j=1

(
1τ̃ N

j,0+t≤ζ 

j ≤τ̃ N

j,0+t+δ − (F
(τ̃
N
j,0 + t + δ) − F
(τ̃

N
j,0 + t)

))
)2]

= E

[

N−1
∫ x̄

0

(
F
(y + t + δ) − F
(y + t)

))

[
1 − (F
(y + t + δ) − F
(y + t)

))]
ĪN (0, dy)

]

.
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The second term on the right of (5.29) equals

k∑


=1

P

(∫ x̄

0

(
F
(y + t + δ) − F
(y + t)

))
ĪN (0, dy) > ε/2k

)

,

whose limsup as N → ∞ is bounded from above by

k∑


=1

1
{∫ x̄

0

(
F
(y + t + δ) − F
(y + t)

))
Ī(0, dy) ≥ ε/2k

}

.

Since for each 1 ≤ 
 ≤ k,

δ �→
∫ x̄

0

(
F
(y + t + δ) − F
(y + t)

))
Ī(0, dy)

is continuous and equals 0 at δ = 0, for any ε > 0, there exists δ > 0 small enough
such that the above quantity vanishes. Thus, we have shown that

lim sup
N→∞

sup
t∈[0,T ]

1

δ
P

(

sup
0≤u≤δ

�
N ,1
0 (t, u) > ε/3

)

→ 0, as δ → 0. (5.30)

Next, consider �
N ,2
0 (t, u), which is �

N ,1
0 (t, u), with the j-th term in the absolute

value being replaced by its conditional expectation given τ̃ N
j,0. The computationswhich

led above to (5.28) give

sup
0≤u≤δ

�
N ,2
0 (t, u)≤ϕ(δ) Ī N (0)+λ∗N−1

k∑


=1

I N (0)∑

j=1

(
F
(τ̃

N
j,0 + t + δ) − F
(τ̃

N
j,0 + t)

)
.

So the same arguments as those used above yield that (5.30) holds with �
N ,1
0 (t, u)

replaced by �
N ,2
0 (t, u).

Thuswehave shown that in probability,�
N
0 → 0 in D as N → ∞. The convergence

�
N
1 → 0 in D in probability follows from the proof of Lemma 4.6 in [10]. In fact, the

above proof of �
N
0 → 0 can be adapted to that proof by observing the similar roles

of AN and IN (0, ·). This completes the proof. ��

Lemma 5.9 Under Assumptions 2.1 and 2.2, along a convergent subsequence of ĀN

which converges weakly to Ā,

IN ⇒ Ĩ in D as N → ∞, (5.31)
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where Ĩ(t) is given by

Ĩ(t) =
∫ x̄

0
λ̄(y + t)Ī(0, dy) +

∫ t

0
λ̄(t − s)d Ā(s) , t ≥ 0. (5.32)

Proof By the above lemma, it suffices to show that

ĨN ⇒ Ĩ in D as N → ∞. (5.33)

The expression of ĨN in (5.27) can be rewritten as

ĨN (t) =
∫ x̄

0
λ̄(y + t)ĪN (0, dy) +

∫ t

0
λ̄(t − s)d ĀN (s). (5.34)

It follows from Lemma 5.1 that for any t > 0, as N → ∞, ĨN (t) ⇒ Ĩ(t). It remains
to show that the sequence ĨN is tight in D. For that purpose, exploiting the Corollary
on page 83 of [4], it suffices to show that for any ε > 0,

lim
δ→0

lim sup
N

1

δ
P

(

sup
0≤u≤δ

∣
∣
∣
∣

∫ x̄

0
λ̄(y + t + u)ĪN (0, dy) −

∫ x̄

0
λ̄(y + t)ĪN (0, dy)

∣
∣
∣
∣ > ε

)

= 0,

(5.35)

lim
δ→0

lim sup
N

1

δ
P

(

sup
0≤u≤δ

∣
∣
∣
∣

∫ t+u

0
λ̄(t + u − s)d ĀN (s) −

∫ t

0
λ̄(t − s)d ĀN (s)

∣
∣
∣
∣ > ε

)

= 0 . (5.36)

(5.35) follows from the fact that, with Gδ(s) := sup0≤u≤δ |λ̄(s + u) − λ̄(s)|,

lim sup
N

P

(

sup
0≤u≤δ

∣
∣
∣
∣

∫ x̄

0
(λ̄(y + t + u) − λ̄(y + t))ĪN (0, dy)

∣
∣
∣
∣ > ε

)

≤ 1
{∫ x̄

0
Gδ(y + t)Ī(0, dy) > ε

}

.

Now Ī(0, dy) a.e., Gδ(y + t) → 0, and since 0 ≤ Gδ(y + t) ≤ λ∗, it follows from
Lebesgue’s dominated convergence that

∫ x̄
0 Gδ(y + t)Ī(0, dy) → 0, as δ → 0,hence

for δ > 0 small enough, this quantity is less than ε, and the indicator vanishes.
It remains to establish (5.36). We have

∫ t+u

0
λ̄(t + u − s)d ĀN (s) −

∫ t

0
λ̄(t − s)d ĀN (s)

=
∫ t+u

t
λ̄(t + u − s)d ĀN (s)

+
∫ t

0
[λ̄(t + u − s) − λ̄(t − s)]d ĀN (s),
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hence

sup
0≤u≤δ

∣
∣
∣
∣

∫ t+u

0
λ̄(t + u − s)d ĀN (s) −

∫ t

0
λ̄(t − s)d ĀN (s)

∣
∣
∣
∣

≤ (λ∗)2δ + λ∗
∫ t

0
Gδ(t − s)ds + λ∗∣∣M̄N

A (t + δ) − M̄N
A (t)

∣
∣

+
∣
∣
∣
∣

∫ t

0
Gδ(t − s)d M̄N

A (s)

∣
∣
∣
∣

The result follows since the sum of the two first terms on the right are less than ε/2
for δ > 0 small enough, while the two last terms tend to 0, as N → ∞. ��

5.4 Completing the Proof of Theorem 2.1

By Lemmas 5.2 and 5.5, we have that, along a subsequence,

ĪN (t, x) = ĪN
0 (t, x) + ĪN

1 (t, x) ⇒ Ĩ(t, x) = Ī0(t, x) + Ī1(t, x) ∈ DD as N → ∞,

where Ī0(t, x) and Ī1(t, x) are given in (5.2) and (5.17), respectively. Also recall that
S̄N = S̄N (0) − ĀN by (2.9). We need to show the joint convergence

(S̄N , ĪN , IN
) ⇒ (S̄, Ĩ, Ĩ) in D × DD × D as N → ∞.

or equivalently,

( ĀN , ĪN , IN
) ⇒ ( Ā, Ĩ, Ĩ) in D × DD × D as N → ∞. (5.37)

Indeed, first thanks to Lemma 5.8, we can replace IN
by ĨN . Next we have the

decompositions

ĪN = ĪN
0 + ĪN

1 ,

ĨN = ĨN
0 + ĨN

1 ,

where ĨN
0 and ĨN

1 are respectively the first and the second term on the right of
the identity (5.34). By the independence of the quantities associated with initially
and newly infected individuals, it suffices to prove the joint convergence of the pro-
cesses (ĪN

0 , ĨN
0 ) and that of the processes ( ĀN , ĪN

1 , ĨN
1 ) separately. We have proved

in Lemma 5.2 that ĪN
0 → Ī0 in DD in probability, and it follows from the arguments

in the proof of Lemma 5.9 that ĨN
0 → Ĩ0 in D in probability, where Ĩ0 is the first term

on the right of the identity (5.32). Hence, the joint convergence (ĪN
0 , ĨN

0 ) → (Ī0, Ĩ0)
in D2 in probability is immediate.
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Exploiting again (5.21), we see that the joint convergence ( ĀN , ĪN
1 , ĨN

1 ) ⇒
( Ā, Ī1, Ĩ1) will be a consequence of

( ĀN , ĬN
1 , ĨN

1 ) ⇒ ( Ā, Ī1, Ĩ1) in D × DD × D as N → ∞. (5.38)

where Ĩ1 denotes the second term on the right of the identity (5.32). Since ĬN
1 (t, x) =∫ t

(t−x)+ Fc(t−s)d ĀN (s) and ĨN
1 (t) = ∫ t0 λ̄(t−s)d ĀN (s), the joint finite dimensional

convergence is a consequence of the continuous mapping theorem and Lemma 5.1.
Hence the result follows from tightness.Wehave proved the joint convergence property
in (5.37).

Recall the expression of ϒ
N
(t) = S̄N (t)IN

(t). Applying the continuous mapping
theorem again, we obtain that

ϒ
N
(t) ⇒ ϒ̄(t) = S̄(t)Ĩ(t) in D as N → ∞.

Thus by (5.13), we conclude that

ĀN ⇒ Ā =
∫ ·

0
ϒ̄(s)ds =

∫ ·

0
S̄(s)Ĩ(s)ds in D as N → ∞.

Therefore, the limit (S̄, Ĩ) satisfies the set of integral equations in (2.13), (2.14) and
the limit Ĩ coincides with I defined by (2.14). Then, the limit Ĩ coincides with Ī
in (2.15). The limits Ī in (2.18) and R̄ in (2.16) then follow immediately. The set of
integral equations has a unique deterministic solution. Indeed, it is easy to see that
the system of equations (2.13) and (2.14) (together with the first part of (2.17)) has a
unique solution (S̄, I), given the initial values Ī(0, ·). The other processes Ī, Ī , R̄ are
then uniquely determined. Hence the whole sequence converges in probability.

From (2.15), we deduce that for all t > 0,

Īx (t, 0) = lim
x→0

Ī(t, x) − Ī(t, 0)

x
= lim

x→0

Ī(t, x)

x
= ϒ̄(t).

This prove the second equality in (2.17).
It remains to prove the continuity. The continuity in t of S̄(t) is clear. Let us prove

that t �→ I(t) is continuous. Since λi is càdlàg and bounded, it is easily checked
that t �→ λ̄(t) = E[λ(t)] is also càdlàg. In fact it is continuous if all the F
’s for
1 ≤ 
 ≤ k are continuous. The points of discontinuity of λ̄(t) are the points where
one of the laws of the ζ 
 has some mass. The set of those points is at most countable.
Consequently, if tn → t , the set of y’s where λ̄(tn + y) may not converge to λ̄(t + y)
is at most countable, and this is a set of zero Ī(0, dy) measure. Since moreover
0 ≤ λ̄(tn + y) ≤ λ∗, t → ∫ x̄

0 λ̄(y + t)Ī(0, dy) is continuous. Let us now consider the
second term in (2.14). We first note that since λ̄(t − s) ≤ λ∗ and S̄(t) ≤ 1, it follows
from (2.14), (2.17) and Gronwall’s Lemma that I(t) ≤ λ∗eλ∗t . Let tn → t . We have

∣
∣
∣
∣

∫ t

0
λ̄(t − s)ϒ̄(s)ds −

∫ tn

0
λ̄(tn − s)ϒ̄(s)ds

∣
∣
∣
∣

123



Applied Mathematics & Optimization (2023) 87 :50 Page 43 of 45 50

≤
∫ t

0
|λ̄(t − s) − λ̄(tn − s)|ϒ(s)ds + (λ∗)2eλ∗(t∨tn)|t − tn|.

Clearly the above right hand side tends to 0, as n → ∞. A similar argument shows
that R̄ and Ī are continuous, and that (t, x) �→ Ī(t, x) is continuous. Finally, since the
convergence holds in D×D×DD ×D and the limits are continuous, the convergence
is locally uniform in t and x . This completes the proof of Theorem 2.1.
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6 Appendix: Proof of Theorem 5.1

Given δ > 0, we define the two sets

�T ,δ :=
{
0, δ, 2δ, . . . , �T

δ
�δ
}
,

�S,δ :=
{
0, δ, 2δ, . . . , � S

δ
�δ
}

.

For any t ∈ [0, T ], we define γT ,δ(t) to be the element of �T ,δ such that γT ,δ(t) ≤
t < γT ,δ(t) + δ, and for any s ∈ [0, S], we define γS,δ(s) to be the element of �S,δ

such that γS,δ(s) ≤ s < γS,δ(s) + δ.
Let (t, s) and (t ′, s′) be two points in [0, T ]×[0, S] such that |t − t ′|∨ |s− s′| ≤ δ.

We have

XN (t, s) − XN (t ′, s′) = XN (t, s) − XN (t, γS,δ(s)) + XN (t, γS,δ(s))

− XN (γT ,δ(t), γS,δ(s))

+ XN (γT ,δ(t), γS,δ(s)) − XN (γT ,δ(t
′), γS,δ(s))

+ XN (γT ,δ(t
′), γS,δ(s)) − XN (γT ,δ(t

′), γS,δ(s
′))

+ XN (γT ,δ(t
′), γS,δ(s

′)) − XN (t ′, γS,δ(s
′))

+ XN (t ′, γS,δ(s
′)) − XN (t ′, s′).

Hence

P

(

sup
0≤t,t ′≤T ;0≤s,s′≤S;|t−t ′|∨|s−s′|≤δ

|XN (t, s) − XN (t ′, s′)| > ε

)

≤ 3
∑

s∈�S,δ

P

(

sup
0≤t≤T ,u∈[0,δ]

|XN (t, s + u) − XN (t, s)| > ε/6

)
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+ 3
∑

t∈�T ,δ

P

(

sup
0≤s≤S,u∈[0,δ]

|XN (t + u, s) − XN (t, s)| > ε/6

)

≤ 3

(
1

δ
+ 1

)

sup
0≤s≤S

P

(

sup
0≤t≤T ,u∈[0,δ]

|XN (t, s + u) − XN (t, s)| > ε/6

)

+ 3

(
1

δ
+ 1

)

sup
0≤t≤T

P

(

sup
0≤s≤T ,u∈[0,δ]

|XN (t + u, s) − XN (t, s)| > ε/6

)

.

It then follows from (ii) that, as δ → 0,

lim sup
N

P

(

sup
0≤t,t ′≤T ;0≤s,s′≤S;|t−t ′|∨|s−s′|≤δ

|XN (t, s) − XN (t ′, s′)| > ε

)

→ 0.

This, combined with (i), implies the result. ��
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