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Abstract

We consider a semilinear parabolic partial differential equation in R+ × [0, 1]d, where

d = 1, 2 or 3, with a highly oscillating random potential and either homogeneous

Dirichlet or Neumann boundary condition. If the amplitude of the oscillations has the

right size compared to its typical spatiotemporal scale, then the solution of our equation

converges to the solution of a deterministic homogenised parabolic PDE, which is a

form of law of large numbers. Our main interest is in the associated central limit

theorem. Namely, we study the limit of a properly rescaled difference between the

initial random solution and its LLN limit. In dimension d = 1, that rescaled difference

converges as one might expect to a centred Ornstein-Uhlenbeck process. However, in

dimension d = 2, the limit is a non-centred Gaussian process, while in dimension

d = 3, before taking the CLT limit, we need to subtract at an intermediate scale the

solution of a deterministic parabolic PDE, subject (in the case of Neumann boundary

condition) to a non-homogeneous Neumann boundary condition. Our proofs make

use of the theory of regularity structures, in particular of the very recently developed

methodology allowing to treat parabolic PDEs with boundary conditions within that

theory.
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1 Introduction

Fix D = [0, 1]d with d ≤ 3, and consider the family of functions uε : [0, T ]×D → R

solving the PDE

∂tuε(t, x) = ∆uε(t, x)+H(uε(t, x))+G(uε(t, x))ηε(t, x), uε(0, x) = u0(x), (1.1)

endowed with either Dirichlet boundary conditions uε(t, x) = 0 for x ∈ ∂D or Neu-

mann boundary conditions 〈n(x),∇uε(t, x)〉 = 0, where n denotes the outward facing

unit vector normal to the boundary of D. The driving noise ηε appearing in this equa-

tion is given by

ηε(t, x) = ε−1η(ε−2t, ε−1x) ,

where η(t, x) is a stationary centred random field, which we do not assume Gaussian,

but with relatively good mixing properties (see Assumption 2.1 below for details) and

moments of all orders after testing against a test function. Note that ηε is scaled by ε−1

rather than ε−(d+2)/2, so the noise from [HP15a] (which was restricted to d = 1) has

been multiplied by εd/2.

Although we will allow η to be a generalised random field in d = 1, we as-

sume throughout that there exist locally integrable functions κp : (Rd+1)p → R that

are continuous outside of the big diagonal ∆p = {(z1, . . . , zp) ∈ (Rd+1)p : ∃i 6=
j with zi = zj} and such that, for any C∞

0 test functions ϕ1, . . . , ϕp, the joint cumu-

lant κp(ϕ1, . . . , ϕp) of η(ϕ1), . . . , η(ϕp) satisfies

κp(ϕ1, . . . , ϕp) =

∫

κp(z1, . . . , zp)ϕ1(z1) · · ·ϕp(zp) dz1 · · · dzp .

(By stationarity, the functions κp only depend on the differences of their arguments.)

Here and below, we always use the convention that z (resp. zi, z̄, etc) denotes a space-

time coordinate given by z = (t, x) (resp. zi = (ti, xi), z̄ = (t̄, x̄), etc). We furthermore

normalise our problem by assuming that the covariance of η integrates to 1 in the sense

that
∫

Rd+1

κ2(0, z) dz = 1 . (1.2)

In particular, we assume that κ2(0, ·) is absolutely integrable, but this will in any case

follow from Assumption 2.1 below. Define furthermore the constants

=

∫

P (z) κ2(0, z) dz, =

∫

P (z) xκ2(0, z) dz,
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=

∫

P (z)P (z′) κ3(0, z, z′) dz dz′, =

∫

P (z)P (z′ − z) κ3(0, z, z′) dz dz′,

where P denotes the heat kernel, i.e. the fundamental solution to the heat equation on

the whole space. Here and below, symbols drawn in red denote fixed constants, while

symbols drawn in blue will later denote basis vectors of a suitable regularity structure

associated to our problem. In dimension d = 1, our assumptions on κ2 will guarantee

that the integral converges absolutely, while in dimensions 2 and 3 our assumptions

on κ2 and κ3 will guarantee that all of these integrals converge absolutely.

The scaling ε−1 chosen in ηε is such that uε converges as ε → 0 to a limit u(0),

which is our first result. Indeed, writing

Hη(u) = H(u) + G′(u)G(u) , (1.3)

we have the following “law of large numbers”.

Theorem 1.1 Let uε be as above and let u(0) be the (local) solution to the deterministic

PDE

∂tu
(0) = ∆u(0) +Hη(u(0)) , (1.4)

with the same initial condition u0 ∈ Cα as (1.1) (for some arbitrary α ∈ (0, 1))

and with homogeneous Dirichlet (resp. Neumann) boundary condition. In the case

of Dirichlet boundary conditions, we impose that u0 vanishes on the boundary.

Assume that the functions G,H : R → R are of class C5 and C4 respectively, that

the driving field η satisfies Assumption 2.1 below, and let furthermore T > 0 be such

that the (possible) explosion time for u(0) is greater than T . Then, in probability and

uniformly over [0, T ] ×D, uε converges to u(0) as ε→ 0.

The proof of this result will be given in Section 3. Our main quantity of interest

however are the fluctuations of uε around its limit u(0). One interesting feature of this

problem is that in order to see these fluctuations, it is not sufficient to recenter around

u(0). Instead, as soon as d ≥ 2, a suitable first-order correction u(1) living at scale ε
has to be subtracted first. Our precise “central limit theorem” then takes the following

form.

Theorem 1.2 Let u0 be such that its extension to all of Rd by reflections1 is of class

C3, let uε and u(0) be as above and assume G, H , T and η are as in Theorem 1.1. Let

furthermore u(1) = 0 for d = 1 and, for d ∈ {2, 3}, let u(1) be the solution to

∂tu
(1) = ∆u(1) +H ′

η(u(0))u(1) +Ψ(u(0),∇u(0)) , (1.5)

Ψ(u, p) =
1

2
(G2G′′)(u) + (G(G′)2)(u) + (G′)2(u) 〈 , p〉 ,

with zero initial condition. (Note that is an Rd-valued constant.) In the case

of Neumann boundary condition, we furthermore impose that 〈∇u(1)(t, x), n(x)〉 =
c(x)GG′(u(0)(t, x)) for x ∈ ∂D, where c is an explicit function on the boundary of

D which is constant on each of its faces (the precise values of c on each face will be

given in (5.16) below), while we impose homogeneous Dirichlet boundary conditions

otherwise.

1Here we perform the reflections consistent with the reflection principle for our choice of boundary

conditions.
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Then, in law and in Cα([0, T ] ×D) for any α < 1− d
2

, one has

lim
ε→0

uε − u(0) − εu(1)

εd/2
= v , (1.6)

where v is the Gaussian process solving

∂tv = ∆v +H ′
η(u(0))v +G(u(0))ξ , (1.7)

endowed with homogeneous Dirichlet (resp. Neumann) boundary condition and 0 ini-

tial condition, and ξ denotes a standard space-time white noise.

Proof. Combining Proposition 4.18 with Proposition 4.16 and (4.1) shows that if we

set vε = ε−d/2(uε − u(0) − εu(1)) then we do indeed have limε→0 vε = v (weakly in

C(d−2)/2−κ on [0, T ]). The limit v is identified as the solution to (1.7) by combining

the second part of Proposition 4.16 with Lemma 4.10.

Remark 1.3 If all we were interested in is the law of large numbers, then the condi-

tions of Assumption 2.1 on η could easily be weakened.

Remark 1.4 In the case of Neumann boundary conditions, it may appear paradoxal

that, even though uε, u
(0) and v all satisfy homogeneous boundary conditions, u(1) does

not! This phenomenon is very similar to the presence of the “boundary renormalisation”

that can appear in the context of singular SPDEs [GH18]. There is no contradiction

since the convergence vε → v takes place in a very weak topology in which the notion

of “normal derivative at the boundary” is meaningless in a pointwise sense. (A very

simple example displaying a similar phenomenon is n−1/2 sin(nx), whose derivative

at the origin diverges like
√
n while that of its limit vanishes.)

Remark 1.5 Regarding the precise meaning of the equation fulfilled by u(1) in the case

of Neumann boundary condition, denote by δ∂D the distribution on R × ∂D given by

δ∂D(ϕ) =

∫

R

∫

∂D

ϕ(t, x) dx dt ,

where the integration over the faces of ∂D are performed against the two-dimensional

Lebesgue measure. With this notation, the solution to any equation of the form

∂tu = ∆u+ f in D, 〈∇u(t, x), n(x)〉 = g(x) on ∂D, u(0, x) = u0(x) , (1.8)

(and in particular the equation determining u(1)) is defined as the solution to the integral

equation

u(z) =

∫

D

PNeu(z, (0, x
′)) u0(x′) dx′ +

∫

R4

PNeu(z, z
′)(f1D+ + gδ∂D)(dz

′) , (1.9)

where PNeu denotes the homogeneous Neumann heat kernel, with the convention that

g(t, x) = 0 for t ≤ 0, and where 1D+(t, x) = 1{t≥0}1{x∈D}. Here, we used the notation
∫

ϕ(z) η(dz) for the usual pairing between a distribution η and a suitable test function

ϕ. To see that solutions to (1.9) and (1.8) do indeed coincide if f and g are sufficiently

regular for the solution to be differentiable up to the boundary, it suffices to note that

the mild formulation is equivalent to the weak formulation, see for example [Wal86],

with the term gδ∂D appearing as the boundary term when integrating by parts.
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Remark 1.6 In dimension d = 1, the term u(1) in (1.6) is of course redundant. In

dimension d = 2, it is still the case that ε−d/2(uε − u(0)) converges to a limit, but this

limit is not centred anymore. In higher dimensions, additional corrections appear. We

expect to have a result of the form

lim
ε→0

εd/2
(

uε −
⌊d/2⌋
∑

k=0

εku(k)
)

= v ,

where u(0) is as above and the ū(k) satisfy an equation of the type

∂tu
(k) = ∆u(k) +H ′

η(u(0))u(k) +Ψk ,

for some inhomogeneity Ψk depending on the u(ℓ) for ℓ < k and some of their deriva-

tives.

The most surprising part of Theorem 1.2 is surely the fact that even though v, uε and

u(0) have homogeneous boundary conditions, u(1) does not, which seems to contradict

(1.6). This is of course not a contradiction but merely suggests that if we write vε for

the expression appearing under the limit in (1.6), then vε exhibits a kind of boundary

layer. Note also that the statement that “v satisfies homogeneous boundary conditions”

only makes sense in terms of the integral equation that it solves since v itself is not

differentiable at the boundary. (It is not even a function!)

Before we proceed, let us give a heuristic explanation for the appearance of this

boundary layer. Consider the simplest case H = 0, G(u) = u and u0 > 0, in which

case we can consider the Hopf-Cole transform hε = loguε, yielding

∂thε = ∆hε + |∇hε|2 + ηε .

To leading order, one would expect the right hand side to behave like |∇hε|2 ≃
E|∇Zε|2, where Zε solves ∂tZε = ∆Zε + ηε. It turns out that one has

lim
ε→0

E|∇Zε|2 = ,

which allows one to “guess” the correct limit u(0). One does however expect E|∇Zε|2
to “feel” the presence of the boundary in such a way that E|∇Zε|2 − is of order

O(1) in a layer of width O(ε) around ∂D. When going to the next scale, this results in

a boundary correction of order O(ε−1) in this boundary layer, which precisely scales

like a surface measure on the boundary. Remark 1.5 shows that the net effect of this

correction is to modify the boundary condition.

The remainder of the article is structured as follows. First, in Section 2, we for-

mulate our main assumption on the driving noise η and we show that this assumption

is “reasonable” by exhibiting an explicit class of examples for which it is satisfied. In

Section 3, we then show that the law of large numbers holds. Although this could prob-

ably be shown by “classical” means without too much effort, we will use the theory of

regularity structures because it shortens the argument and allows us to introduce some

results and notation that will be of use later on. In Section 4, we then show that the

central limit theorem holds. The main tool in this proof is the convergence of a certain

“model” for an appropriate regularity structure as well as refinements of the type of

boundary estimates first considered in [GH18]. The convergence of the model is given

in Section 5. Appendix B is devoted to the proof of a result showing that the operations

of “convolution by a singular kernel” and “multiplication by a smooth function” almost
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commute, modulo a much smoother remainder, a fact that will undoubtedly sound fa-

miliar to anyone acquainted with microlocal analysis. Appendix C contains a version

of the reconstruction theorem that is purpose-built to allow us to deal with modelled

distribution that have very singular boundary behaviour and goes beyond the version

obtained in [GH18]. This appendix was written in collaboration with Máté Gerencsér.

Acknowledgements

The authors gratefully acknowledge financial support from the Leverhulme Trust through a lead-

ership award, from the European Research Council through a consolidator grant, project 615897,

and from the Royal Society through a research professorship. We are also grateful to Máté
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2 Assumptions on the Noise

In this section, we formulate our precise assumptions on the driving noise and we

show that they are satisfied for example by a mollified Poisson process. In a nutshell,

we want to assume that correlations are bounded by ‖z − z̄‖−2c at small scales and

‖z − z̄‖−2c at large scales with c = 1

2
− δ and c = d+2

2
+ δ for some δ ∈ (0, 1

2
).

However, we also want to encode the fact that higher order cumulants behave “better”

than what is obtained from simply using the Cauchy-Schwartz inequality. Note that our

assumptions are trivially satisfied by any continuous Gaussian process with correlations

that decay at least like ‖z − z̄‖−2c. Here and below, ‖ · ‖ will always denote the

parabolic distance between space-time points. It will be convenient (in particular in

Appendix A) to make sure that ‖ · ‖ is smooth away from the origin, so we set for

example ‖z‖4 = ‖(t, x)‖4 = |x|4 + |t|2.

2.1 Coalescence trees

In order to formulate this precisely, we need a simplified version of the construction of

[HQ15, Appendix A]. Given any configuration (z1, . . . , zp) of p points in Rd+1 with

all distances distinct, we associate to it a binary tree T in the following way. Con-

sider Kruskal’s algorithm [Kru56] for constructing the minimal spanning tree of the

complete graph with vertices {z1, . . . , zp} and edge-weights given by their (parabolic)

distances. One way of formalising this is the following. Consider the set Pp of par-

titions of Ωp = {1, . . . , p}. We define a distance dz between subsets of Ωp as the

Hausdorff distance induced by {z1, . . . , zp}, namely

dz(A,B) = max
{

sup
i∈A

inf
j∈B

‖zi − zj‖, sup
j∈B

inf
i∈A

‖zi − zj‖
}

.

We then define a map K : Pp → Pp in the following way. If π = {Ωp}, then

K(π) = π. Otherwise, let A 6= B ∈ π be such that dz(A,B) ≤ dz(C,D) for all

C,D ∈ π. Thanks to our assumption on the zi, this pair is necessarily unique. We then

set

K(π) = (π \ {A,B}) ∪ {A ∪B} ,

i.e. K(π) is obtained by coalescing the two sets A and B in the partition π. The

vertices of T are then given by VT =
⋃

n≥0
Kn({{1}, . . . , {p}}), i.e. VT consists of

all the blocks of those partitions. The set VT comes with a natural partial order given

by inclusion: A ≤ B if and only if A ⊃ B. The (directed) edge set ET ∈ VT × VT of

T is then given by the Hasse diagram of (VT ,≤): (A,B) ∈ ET if and only if A < B
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and there is no C ∈ VT such that A < C < B. It is easy to verify that T is a binary

tree and that its leaves are precisely given by the singletons. It will be convenient to

also add to VT a “point at infinity” � which is connected to Ωp by an edge (Ωp,�) and

to view � as the minimal element of VT .

We write V̊T = VT \ {{1}, . . . , {p},�} for the interior nodes. Each interior node

A ∈ V̊T has exactly two children A1 and A2 such that (A,Ai) ∈ ET for i = 1, 2.

We then define an integer labelling n : V̊T → Z by n(A) = −⌈log2 dz(A1, A2)⌉. We

will always view n as a function on all of VT with values in Z ∪ {±∞} by setting

n(�) = −∞ and n({i}) = +∞ for i = 1, . . . , p. Note now that if A, B and C are

three disjoint sets, then

dz(A,B) ≤ min{dz(A,C), dz(B,C)} ⇒ dz(A,B) ≤ dz(A ∪B,C) .

As a consequence, the map n is monotone increasing on VT . Furthermore, as in [HQ15,

Eq. A.15], there exist constants c, C depending only on p such that

c2−n({i}∧{j}) ≤ ‖zi − zj‖ ≤ C2−n({i}∧{j}) ,

for all i, j.
Given a configuration of points z = (z1, . . . , zp) ∈ (Rd+1)p, we now write tz =

(T, n) for the corresponding data constructed as above. We furthermore define a func-

tion ̺ : R+ → R+ by

̺(r) = r−c ∧ r−c .
(Beware that ̺ is an upper bound for the square root of the covariance between two

points.) We then assume that the following bound holds.

Assumption 2.1 With the notations as above, for any p ≥ 2 and any {ki}pi=1 ⊂ Zd+1
+ ,

the pth joint cumulant for η satisfies the bound

∣

∣

∣

(

p
∏

i=1

Dki
i

)

κp(z1, . . . , zp)

∣

∣

∣
. ̺(2−n(Ωp))

∏

A∈V̊T

̺(2−n(A))

p
∏

i=1

2|ki| n(i↑) , (2.1)

uniformly over all z ∈ (Rd+1)p. (Recall that Ωp is the root of the tree T .) Here

and below, the length of the multiindex k should be interpreted in the parabolic sense,

namely |k| = 2k0 +
∑d
i=1 ki.

In dimensions d ∈ {2, 3}, we furthermore assume that η : Ω × Rd+1 → R is a

measurable function with E|η(0)|p <∞ for p = (d+ 2)/c.

Remark 2.2 The additional condition that η takes values in Lp for sufficiently high p
is mainly technical and could probably be dropped with some additional effort. It will

be used to bound R̂(d)
ε in the proof of Proposition 4.16 below. The exponent (d+ 2)/c

is consistent with the condition on the correlation function in the sense that this is the

lowest value of p for which Lploc ⊂ C−c.

Note also that the cumulants κ(ε)
p of the rescaled process ηε satisfy

κ(ε)
p (z1, . . . , zp) = ε−pκp(Sεz1, . . . , Sεzp) , (2.2)

where Sε(t, x) = (t/ε2, x/ε).
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2.2 Justification

We claim that the assumption on the noise is rather weak on the ground that many

natural constructions yield stationary random processes that satisfy it. We provide

details for the following example.

Proposition 2.3 Let θ : Rd+1 → R be smooth away from 0 and such that for all k ∈
Zd+, |Dkθ(z)| . ‖z‖−2c−|k| for ‖z‖ > 1 and |Dkθ(z)| . ‖z‖−c−|k| for ‖z‖ ≤ 1. Let

µ be a Poisson point measure over Rd+1 with intensity 1 and set η = µ ⋆ θ, then η
satisfies the above assumption.

Before proving this proposition, let us first establish a property of joint cumulants of

integrals of deterministic functions with respect to a Poisson point measure.

Lemma 2.4 Let p ≥ 1 and let f1, . . . , fp be elements of L1(Rd+1) ∩ Lp(Rd+1), and

again µ be a Poisson point measure over Rd+1 with intensity 1. Then the joint cumulant

κp(µ(f1), . . . , µ(fp)) of the random variables µ(f1), . . . , µ(fp) satisfies

κp(µ(f1), . . . , µ(fp)) =

∫

Rd+1

f1(z) × · · · × fp(z) dz.

Proof. It is sufficient to prove the result in case there exist disjoint Borel subsets

A1, . . . , Ak of Rd+1 with finite Lebesgue measure such that for 1 ≤ i ≤ p,

fi(z) =

k
∑

j=1

ai,j1Aj (z).

But in that case the result follows readily from the fact that the joint cumulant is p-

linear, and that the joint cumulant of a collection of random variables which can be

split into two mutually independent subcollections vanishes, see e.g. property (iii) in

[PT11, p. 32].

Proof of Proposition 2.3. It follows from Lemma 2.4 that

κp(z1, . . . , zp) =

∫

Rd+1

θ(z1 − z) · . . . · θ(zp − z) dz , (2.3)

so it remains to obtain a bound on this integral. We now consider z1, . . . , zp to be fixed

and we shall make use of the labelled tree (T, n) built from these points as above. We

are first going to treat the simpler case with all ki vanishing and then show how the

argument can be modified to deal with the general case.

Case 1. The case with all ki = 0. For every edge e = (e, ē) ∈ ET and every n ∈ Z

with n(e) < n < n(ē), we define the domain

D(e,n) = {z ∈ Rd+1 : c−12−ni ≤ ‖z − zi‖ ≤ c2−ni , ∀i ∈ {1, . . . , p}} ,

where

ni =

{

n if {i} ≥ ē,
n({i} ∧ ē) otherwise.

It is possible to convince oneself that, provided that the constant c appearing in the

definition of D(e,n) is sufficiently large, one has

⋃

e∈ET

⋃

n(e)<n<n(ē)

D(e,n) = Rd+1 \ {z1, . . . , zp} , |D(e,n)| ≤ (2c)d+22−(d+2)n .
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As a consequence, the integral appearing in (2.3) is bounded by some constant times

∑

e∈ET

∑

n(e)<n<n(ē)

2−(d+2)n

p
∏

i=1

¯̺(2−ni) , ¯̺(r) = r−c ∧ r−2c . (2.4)

We first use the fact that ¯̺ is decreasing to conclude that, for n(e) < n < n(ē), one has

the bound

2−(d+2)n

p
∏

i=1

¯̺(2−ni) ≤ 2−(d+2)n ¯̺(2−n)
∏

v∈V̊T

¯̺(2−n(v)) . (2.5)

This can be seen as follows. Write {v1, . . . , vk} for the (possibly empty) set of nodes

in V̊T lying on the shortest path joining ē to � (not including ē and � themselves). We

then have, for every j = 1, . . . , k,

∏

i : {i}∧ē=vj

¯̺(2−ni) =
∏

i : {i}∧ē=vj

¯̺(2−n(vj )) ≤
∏

v∈V̊T : v∧ē=vj

¯̺(2−n(v)) ,

since the number of factors appearing in each term is the same. Similarly, we have

∏

i : {i}≥ē

¯̺(2−n) ≤ ¯̺(2−n)
∏

v∈V̊T : v≥ē

¯̺(2−n(v)) ,

hence (2.5). Since ¯̺≤ ̺ ∧ ̺2, it follows from (2.5) that

2−(d+2)n

p
∏

i=1

¯̺(2−ni) ≤ 2−(d+2)n ¯̺(2−n)̺(2−n(Ωp))
∏

v∈V̊T

̺(2−n(v)) .

It remains to observe that
∑

n∈Z 2−(d+2)n ¯̺(2−n) =
∑

n∈Z 2(c−d−2)n ∧ 2(2c−d−2)n <
∞, so that (2.4) is indeed bounded by the required expression.

Case 2. Note that we actually showed that the expression (2.3) with θ replaced by ¯̺
is bounded by the right hand side of (2.1) with ki = 0. To obtain the general case, it

therefore suffices to show that

∫

Rd+1

d
∏

i=1

Dkiθ(zi − z) dz .

p
∏

i=1

2|ki| n(i↑)

∫

Rd+1

d
∏

i=1

¯̺(zi − z) dz . (2.6)

Let χ ∈ C∞(Rd+2) be such that

χ(z) =

{

1, on B(0, 1/4);

0, on B(0, 1/2)c.

For 1 ≤ j ≤ p, we define χj(z) = χ(2n(j↑)(z − zj)), and χ0(z) = 1−∑p
j=1

χj(z). It

is clear that

∫

Rd+1

d
∏

i=1

Dkiθ(zi − z) dz =

p
∑

j=0

∫

Rd+1

χj(z)

d
∏

i=1

Dkiθ(zi − z) dz

=

∫

Rd+1

χ0(z)

d
∏

i=1

Dkiθ(zi − z) dz
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+

p
∑

j=1

∫

Rd+1

θ(zj − z)Dkj
(

χj(·)
∏

i6=j

Dkiθ(zi − ·)
)

(z) dz .

We note that for z in the support of χ0, for 1 ≤ i ≤ p, 2‖zi − z‖ ≥ 2−n(i↑),

|Dkiθ(zi − z)| . ¯̺(‖zi − z‖) · ‖zi − z‖−|ki|

. ¯̺(‖zi − z‖) · 2|ki|n(i↑),

thus yielding (2.6) as required.

To bound the final term, we note that its integrand can be written as a finite sum of

terms of the form

M (z) = θ(zj − z)Dkχj(z)
∏

i6=j

Dki+kj,iθ(zi − z),

where k, kj,i ∈ Zd+1
+ and k +

∑

i6=j kj,i = kj . Each of these terms is bounded above

by the indicator function of the support of χj times

¯̺(‖z − zj‖)2|k|n(j↑)
∏

i6=j

¯̺(‖z − zi‖)‖z − zi‖−|ki|−|kj,i| .

Since for z in the support of χj and i 6= j, 2‖z − zj‖ ≤ ‖zi − zj‖, so that

‖zi − zj‖ ≤ ‖zi − z‖+ ‖z − zj‖ ≤ ‖zi − z‖+ 1

2
‖zj − zi‖,

one has 2‖z− zi‖ ≥ ‖zj − zi‖ ≥ 2−n(i↑) ∧ 2−n(j↑). Combining all of these bounds, we

finally obtain

|M (z)| ≤ ¯̺(‖z − zj‖)2|k|n(j↑)
∏

i6=j

¯̺(‖z − zi‖)2−|ki|n(i↑)2−|kj,i|n(j↑)

≤
∏

i

¯̺(‖z − zi‖)2|ki|n(i↑) ,

at which point we apply again (2.6) to obtain the required bound.

3 Law of Large Numbers

The aim of this section is to use a simplified2 variant of the arguments in [HP15a] to

show that Theorem 1.1 holds. Although it would probably not be much more involved

to obtain this proof by usual techniques, we give a proof using regularity structures.

The main reason is that this allows us to introduce in a simpler setting a number of

notions and notations that will be useful in the proof of our main result later on.

Before we turn to the proof proper, let us comment on the way in which we deal

with the Neumann boundary conditions. Writing PNeu for the Neumann heat kernel

and using the notation z = (t, x) (and similarly for z′), we rewrite (1.1) as an integral

equation:

uε(z) =

∫

Dt

PNeu(z, z
′)(H(uε(z

′)) +G(uε(z
′))ηε(z

′)) dz′ +

∫

D

P Neu

t (x, x′)u0(x′) dx′ ,

2except for the treatment of the boundary conditions which leads to non-trivial complications
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where Dt = [0, t] × D and P Neu

t (x, x′) = PNeu((t, x), (0, x′)). We also fix an arbitrary

time horizon T ≤ 1 which is not a restriction since the argument can be iterated.

Following [GH18], we then construct two functionsK on Rd+1 andK∂ on Rd+1×
Rd+1 such that K is compactly supported, K∂ is supported on a strip of finite width

around the diagonal, and the identity

PNeu(z, z
′) = KNeu(z, z

′) ,

holds for z, z′ ∈ [0, 1] ×D, where we set

KNeu(z, z
′) = K(z − z′) +K∂(z, z′) . (3.1)

See Appendix A for more details on the construction of these kernels and a proof that

this can be done in a way that is compatible with the results of [Hai14, GH18] that we

will use in our argument.

Remark 3.1 We make no claim on the values of K and K∂ for arguments outside of

[0, 1] × D. This is because these will always be integrated against functions that are

supported on [0, 1]×D and only the values of the result inside the domain will matter.

We choose K in such a way that it coincides with the whole space heat kernel P
on the (parabolic) ball of radius 1 and is compactly supported in the ball of radius 2.

We furthermore choose K in such a way that it annihilates polynomials of degree up

to 3, is invariant under the transformation (t, x) 7→ (t,−x), and is such that the sum of

its reflections agrees with the Neumann heat kernel on [0, 1] × D. (See Appendix A

for more details.) For example, we can choose K as in [HP15a]. The kernel K∂

is a correction term that encodes the effect of the boundary condition. Regarding our

regularity structure, we then proceed as if there was no boundary condition whatsoever:

we construct models defined on the whole space that are translation invariant and we

use convolution with K as our integration operator. We then define an operator PNeu on

modelled distributions by setting

PNeu = K + K̃∂ , where K̃∂ = L2K∂R , (3.2)

and K is built in exactly the same way as in [Hai14, Sec. 4]. Note that K̃∂ encodes

the effect of the boundary condition. (There is a completely analogous definition in the

case of Dirichlet boundary conditions.)

Here, Lγ : Cγ → Dγ denotes the “Taylor lift” given by

(Lγf )(z) =
∑

|k|≤γ

f (k)(z)

k!
Xk , (3.3)

where z = (t, x) and k denotes a multiindex in N1+d.

We now have the preliminaries in place to turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. We use a strategy similar to that in [HP15a, HQ15], combin-

ing this with results from [GH18] to deal with the boundary conditions. We refer to

[Hai16, FH14, CW15] for introductions to the theory of regularity structures, as well as

to [Hai14] for details. In our present context, we use the regularity structure obtained

by extending the usual polynomial structure with parabolic scaling with a symbol Ξ1

of degree −1 − κ representing the driving noise ηε, as well as an abstract integration
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operator I of order 2 representing convolution with the (singular part of) heat kernel.

As usual, we will often use graphical representations for the basis vectors in our regu-

larity structure(s), and we decree that is our symbolic representation for Ξ1. (The

reason for introducing the “accent” representing the index “1” will become clear later

on where more general notations of this type are needed.) Although our goal is to con-

sider (1.1) on the bounded domainD ⊂ Rd, we construct the models for our regularity

structure on the whole of R × Rd.

With notations almost identical to those in [HP15a] and the formula (3.19) there, it

would then be natural to consider a fixed point problem of the type

U = PNeu1
D
+(Ĥη(U ) + Ĝ(U ) ) + PNeuu0 , (3.4)

where 1D+ denotes the indicator function of the space-time domain R+ × D. Leav-

ing considerations regarding the precise spaces of modelled distributions in which this

equation makes sense aside for the moment, it is straightforward to see as in [Hai14]

that if we solve (3.4) for the renormalised lift of ηε, i.e. the admissible model such that

Π̂ε = ηε , Π̂ε = ηε(K ⋆ ηε) − , (3.5)

then the function uε = RεU actually solves (1.1).

Indeed, iterating (3.4), we see that any solution U to such a fixed point problem is

necessarily of the form

U = u1 +G(u) +∇uX ,

for some continuous functions u and ∇u. (This is purely notational, ∇u is not the

gradient of u, but can be interpreted as a kind of “renormalised gradient”.) In particular,

the factor multiplying PNeu1
D
+ in the right hand side of (3.4) is given by

L
def
= Hη(u)1 +G(u) +G′(u)G(u) +G′(u)u′ , (3.6)

where we projected onto terms of negative (or vanishing) degree. At this point, it then

suffices to note that the application of the reconstruction operator to L yields

(RεL)(z) = (Π̂εzL(z))(z) = Hη(u(z)) +G(u(z))ηε(z) − (G′G)(u(z))

= H(u(z))+G(u(z))ηε(z) ,

as required.

The problem with the argument outlined above is that since deg < −1, the

behaviour of the modelled distribution 1D+L near ∂D is such that the reconstruction

operator is not a priori well-defined on it, see [GH18, Secs 4.1 & 4.2]. This is for

precisely the same reason why the restriction of a generic distribution ζ ∈ Cα to a

“nice” domain D is only well-defined if α > −1. (For α ≤ −1 there are non-zero

distributions with support contained in ∂D.)

Before we tackle this problem, recall the definition of the spaces Dγ,η as in [Hai14,

Sec. 6] (the hyperplane P being given by the time slice t = 0) as well as the spaces

Dγ,w as in [GH18, Sec. 4] (in which case P0 is again the time 0 slice while P1 =
R×∂D). These two spaces are distinguished by the fact that η is a real exponent while

w denotes a triple of exponents describing the singular behaviour near t = 0, ∂D and

the intersection of both regions respectively. It will be convenient to use the notation

(α)3 with α ∈ R as a shorthand for the triple (α, α, α).

The idea then is the following. First, we introduce a new symbol , also of degree

−1−κ, but representing the function ηε1R×D instead of representing ηε and we add to
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our regularity structure the symbols X and . Write then V for the sector spanned

by , , and X , V̂ for the sector spanned by , , and X , and ι : V → V̂ for

the linear map with ι = and similarly for the remaining basis vectors. We will

furthermore only ever consider models Π with the property that

(Πιτ)(ϕ) =

{

0 if suppϕ ⊂ R ×Dc,

(Πτ)(ϕ) if suppϕ ⊂ R ×D,
(3.7)

for all τ ∈ V . Since ι commutes with the structure group and preserves degrees,

it follows that F 7→ ιF is continuous from Dγ,w(V ) to Dγ,w(V̂ ) for all choices of

exponents γ and w and, for γ > 0, the local reconstruction operator R̃ (which yields a

distribution on R × (Rd \ ∂D) and is always well-defined) satisfies

(R̃ιF )(ϕ) =

{

0 if suppϕ ⊂ R ×Dc,

(R̃F )(ϕ) if suppϕ ⊂ R ×D.

The reason for the introduction of these extra symbols is that we would like to

interpret (3.4) as a fixed point problem in the space D1+2κ,(2κ)3 with values in V0 (for

small enough κ), where V0 is spanned by 1, , and X . The problem now is that,

for F ∈ D1+2κ,(2κ)3 , we have F ∈ Dκ,(κ−1)3 , but we lose some regularity at the

boundary when multiplying by the indicator function of our domain (see [GH18]), so

that we only have 1D+F ∈ Dκ,(−κ−1)3 . Since the boundary index is now below −1,

it follows that the reconstruction operator of [GH18] is not well-defined on 1D+F .

By Theorem C.5 below, it is however perfectly well-defined on 1+F = 1+ι(F )

since only the temporal singularity index is below −1 (but above −2). Furthermore,

one has the identity R(1+F ) = R̃(1D+F ) for test functions whose support does

not intersect the boundary of D.

Recall now that, given a modelled distribution F and a distribution ζ agreeing with

R̃F outside the boundary of D, [GH18, Lem 4.12] defines a modelled distribution

KζF with improved regularity and such that RKζF = K ⋆ ζ. Furthermore, the map

(ζ, F ) 7→ KζF is Lipschitz continuous in the natural topologies. This allows us to

define an operator PD : Dκ,(κ−1)3 (V ) → Dκ+2,(1−κ)3 (V ) by setting

PD : F 7→ KRιF 1D+F + K̃∂1+ιF .

Our discussion suggests that, instead of (3.4), we should consider the fixed point prob-

lem

U = PNeu1
D
+Ĥη(U ) + PDĜ(U ) + PNeuu0 , (3.8)

which admits unique local solutions in D1+2κ,(2κ)3 (V ) by [GH18], which are contin-

uous with respect to admissible models on the full regularity structure satisfying fur-

thermore the consistency condition (3.7). Here, we need to choose κ small enough to

guarantee that PNeuu0 does indeed belong to the space Cκ+2,(1−κ)3 , which is possible

thanks to our assumption that u0 itself is Hölder continuous for some positive exponent.

Retracing the discussion given at the beginning of the proof, but now with the

renormalised model Π̂ε such that, in addition to (3.5), one has Π̂ειτ = 1R×DΠ̂ετ for

τ ∈ V , we conclude that for ε > 0, solutions to (3.8) coincide with those of (1.1).

We now refer to Theorem 4.8 below which shows that the sequence of models Π̂ε

converges, as ε → 0, to a limiting model Π̂ such that Π̂ = Π̂ = 0, extended

canonically to the whole regularity structure. It follows immediately that the solution

Ū to (3.4) with the model Π̂ is such that u(0) = RŪ does indeed solve (1.4) as claimed.
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Remark 3.2 Note that (3.7) does not force us to set Π̂ε = 1R×DΠ̂ε = 1R×Dηε,
but we could have added a sufficiently regular distribution supported on ∂D. This

however would break the identity

RεPDG = PNeu1
D
+RεG ,

on [0, 1] × D and would therefore modify the boundary condition of the resulting

solution.

4 Central Limit Theorem

We now turn to the proof of the main result of this article, Theorem 1.2. We will mainly

focus on the case of Neumann boundary conditions in dimension d = 3, which is the

most interesting (and technically most difficult) case. We set

vε =
uε − u(0) − εu(1)

εd/2
, ξε = ε−d/2ηε , σε = εd/2ηε . (4.1)

With this notation, we then have in the case d ∈ {2, 3}

∂tvε = ∆vε +H ′
η(u(0))vε + ε−

d
2 (H(uε) −Hη(u(0)) −H ′

η(u(0))(uε − u(0)))

+G(uε)ξε − ε1−
d
2 Ψ(u(0),∇u(0))

= ∆vε +H ′
η(u(0))vε +G(u(0))ξε

+ ε−
d
2 (Hη(uε) −Hη(u(0)) −H ′

η(u(0))(uε − u(0)))− ε−
d
2 (GG′)(u(0))

− ε−
d
2 ((G′)2 +GG′′)(u(0))(uε − u(0)) +G′(u(0))(uε − u(0))ξε

+
1

2
G′′(u(0))(uε − u(0))2ξε − ε1−

d
2 Ψ(u(0),∇u(0)) +R1,ε ,

where, setting

wε = ε−
d
2 (uε − u(0)) = vε + ε1−

d
2 u(1) ,

we have the explicit expression for the remainder term

R1,ε = −εd/2w2
ε

∫ 1

0

(GG′)′′(u(0) + sεd/2wε)(1− s) ds

+
ε

3d
2

2
w3
ε

∫ 1

0

G(3)(u(0) + sεd/2wε)(1− s)2 ds ξε .

Furthermore, due to the non-vanishing boundary condition of u(1) in the Neumann case,

vε is then endowed with the inhomogeneous boundary condition

〈∇vε, n(x)〉 = −ε1−d/2c(x)GG′(u(0)(t, x)) .

We now also incorporate the first part of the second line into the remainder, so that we

can write

∂tvε = ∆vε +H ′
η(u(0))vε +G(u(0))ξε − ε−

d
2 (GG′)(u(0)) (4.2)

− (GG′)′(u(0))(vε + ε1−
d
2 u(1)) +G′(u(0))(vε + ε1−

d
2 u(1))ηε

+
1

2
G′′(u(0))(vε + ε1−

d
2 u(1))2σε − ε1−

d
2 Ψ(u(0),∇u(0)) + R̂(d)

ε (vε, ε
αξε) ,
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where the remainder term R̂(d)
ε is given by

R̂(d)
ε (v, ς) = R(d)

ε (v + ε1−d/2u(1), ς) ,

R(d)
ε (w, ς) = εd/2w2

∫ 1

0

H ′′(u(0) + sεd/2w)(1− s) ds (4.3)

+
ε

3d
2
−α

2
w3

∫ 1

0

G(3)(u(0) + sεd/2w)(1− s)2 ds ς .

Note that here we haveH appearing in (4.3) rather thanHη and that the two are related

by (1.3). In dimension d = 1, we set u(1) = 0 so that R̂(d)
ε = R(d)

ε and vε = (uε −
u(0))/

√
ε, and we obtain in the same way the slightly simpler expression

∂tvε = ∆vε +H ′
η(u(0))vε +G(u(0))ξε − ε−

1
2 (GG′)(u(0)) (4.4)

− (GG′)′(u(0))vε +G′(u(0))vεηε +
1

2
G′′(u(0))v2εσε + R̂(1)

ε (vε, ε
αξε) .

(The reason why the term containing Ψ does not appear in this expression is because

this was generated by ∂tu
(1) which vanishes by definition in dimension one.) The

exponent α appearing in this expression is of course arbitrary, but allowing to tune it

will be convenient when expressing this as a fixed point problem.

4.1 Decomposition of the solution

In order to show that vε converges to a limit, it will be convenient to break it into a sum

of three terms. The first term will be a straightforward approximation to the stochastic

heat equation with noise strength G(u(0)) and homogeneous boundary condition. The

second term will converge to 0, but incorporates the diverging boundary condition,

which is used to compensate a resonance appearing in its right hand side. The final

term will be a remainder that is sufficiently regular to be dealt with by the techniques

of [GH18]. For this, we write

vε = v(0)
ε + v(1)

ε + v̄ε ,

and, with the convention that G and its derivatives are always evaluated at u(0), we set

∂tv
(0)
ε = ∆v(0)

ε +Gξε , (4.5)

∂tv
(1)
ε = ∆v(1)

ε +G′
(

v(0)
ε ηε − ε−

d
2 G− ε1−

d
2G′ 〈 ,∇u(0)〉

)

(4.6)

+
1

2
G′′

(

(v(0)
ε )2σε − 2 Gv(0)

ε − ε1−
d
2 G2

)

,

endowed with the boundary conditions on ∂D

〈∇v(0)
ε , n〉 = 0 , 〈∇v(1)

ε , n〉 = −ε1−d
2 cGG′ ,

as well as vanishing initial conditions. The reason why v(1)
ε will actually converge to

0 despite the diverging boundary condition when d ≥ 2 is the following. Consider the

function Πε defined by

(Πε )(z) =

∫

R×D

KNeu(z, z
′)ξε(z

′) dz′ −
∫

Rd+1

K(z − z′)ξε(z
′) dz′ , (4.7)
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Then, we will see in (4.24) below that the behaviour of v(0)
ε is locally very well

described by that of

G(u(0))(Πε +Πε ) , (4.8)

whereΠε = K⋆ξε as usual. This implies that the behaviour of the termG′(u(0))v(0)
ε ηε

appearing in the right hand side of the equation for v(1)
ε is well described locally by that

of

(GG′)(u(0))(Πε +Πε ) , (4.9)

Where denotes multiplication by ηε as previously, while denotes multiplication

by ηε1R×D. (This will be formalised later on.) We will see that, up to vanishingly

small errors, Πε ≈ ε−
d
2 , while Πε ≈ ε1−

d
2 cδ∂D for a suitable constant c (in

fact a different constant for each face of ∂D in general), so that the first term in (4.9)

is cancelled up to small errors by the term −ε−d
2 (GG′)(u(0)) appearing in the equa-

tion for v(1)
ε , while the second term in (4.9) is cancelled by the term −ε1− d

2 cGG′δ∂D
created by the boundary condition.

Note that this argument does not see much of a difference between the Neumann

and Dirichlet cases. Indeed, if we want the right hand side of the equation for v(1)
ε

to converge to a limiting distribution for the latter, we also need to add a diverging

(when d = 3) term proportional to δ∂D. The difference is that KDir(z, z
′) vanishes for

z′ ∈ ∂D, so that this term has no influence on v(1)
ε in the Dirichlet case.

The idea now is to proceed as follows.

• In a first step, we describe in Section 4.2 a regularity structure that is sufficiently

rich to allow us to give precise control on the behaviour of v(0)
ε , v(1)

ε and vε.
As already alluded to, this will in particular include symbols representing non-

stationary space-time stochastic processes, but we will try to keep these to an

absolute minimum. We also describe there the renormalisation procedure which

allows us to construct a suitable (random) model.

• We then make precise the description (4.8) for v(0)
ε by expressing it as a mod-

elled distribution in this regularity structure, which in particular contains the two

symbols and . The main conclusion in (4.24) will be that the presence of

allows us to express v(0)
ε as a modelled distribution with a good behaviour near

∂D. (At this stage, we could of course also use one symbol only and define our

model using the Neumann heat kernel only, but the decompositions (4.8) and

(4.9) are convenient for the remainder of the argument and to be able to reuse

existing results.)

• In a second step, we show that if we set

Π̂ε = Πε − ε−
d
2 , Π̂ε = Πε − ε1−

d
2 cδ∂D ,

then Π̂ε converges to a limiting model as ε → 0, which furthermore has good

restriction properties to D, uniformly in ε. Furthermore, since Π̂ε is only sin-

gular near the boundary ofD, we can describe v(0)
ε by another modelled distribu-

tion with worse behaviour near the boundary, but which only uses “translation

invariant symbols” in its description, see Lemma 4.10, which allows us to give

a description of v(1)
ε in terms of such symbols in Lemma 4.12.

• We set up a sufficiently large regularity structure so that we can formulate a

fixed point problem for the remainder v̄ε and control its behaviour as ε → 0,

see Propositions 4.16 and 4.18. Combining this with the convergence of the

corresponding renormalised model which is performed in Theorem 4.8 but relies

crucially on the next section, we are finally able to conclude.
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4.2 Definition of the ambient regularity structure

We start by defining a regularity structure that is sufficiently large to allow us to perform

the steps mentioned above and in particular to formulate (4.2) as a fixed point problem

for a modelled distribution V . This fixed point problem will be chosen precisely in

such a way that if we take as our model the renormalised lift of the noise ηε, then the

corresponding counterterms are precisely such that if V solves the fixed point problem,

then RV solves (4.2).

Let Ξji be new symbols representing ξεε
α(i,j) with

α(i, j)
def
=

(

1− d

2

)

j +
d

2
i , 0 ≤ j ≤ i ≤ 2 . (4.10)

(Beware that j is simply a superscript in Ξji , not a power.) In the graphical notation

analogous to [HP15a], we will use “accents” to denote the upper and lower indices on

Ξ = Ξ0
0 = , so for example Ξ2 = , Ξ1

1 = , etc. We will also sometimes write
j
i instead of Ξji . The degree of these symbols is given by

degΞji =
δ − 1

2
∧
(

α(i, j) − d+ 2

2
− κ

)

. (4.11)

The main reason why we never consider these “noises” as having degree larger than
δ−1

2
is that we want to view them as “noise types” and so the structure group should

act trivially on them. A byproduct of this choice is that it allows us to deal with driving

noises η that are themselves unbounded.

We now build a regularity structure extending the one built in Section 3, in which

(4.35) can be formalised, by applying the framework of [BHZ16, Sec. 5]. We take as

our basic “noise types” the noises
j
i with 0 ≤ j ≤ i ≤ 2, as well as an additional

noise type which will be used to represent the noise ξε, restricted to R×D. We also

introduce two “edge types” I representing convolution by a suitable cutoff K of the

standard heat kernel in the whole space and III representing the integral operator with

kernel KNeu as in (3.1) (see Appendix A for a precise definition), both having degree

2. It will be convenient to also introduce edge types Ii and IIIi with i = 1, . . . , d of

degree 3 representing the integral operators with kernel Ki(x, y) = (yi − xi)K(y − x)

and KNeu,i(x, y) = (yi − xi)KNeu(y − x) respectively. Finally, we introduce a “virtual”

edge types Î of degree 2 which will allow us to produce a rule (in the technical sense

of [BHZ16, Sec. 5]) generating the relevant trees containing non-translation invariant

symbols III and , but without cluttering our regularity structure with unneeded sym-

bols.

The rule used to generate the regularity structure is then given by R(
j
i ) = {1}

and

R(I) = {1, I, Ii, Ii } ∪ {Ik j
i : k ≤ i− j} ,

R(Ii) = {1, } , R(III) = R(IIIi) = {1, } ,

R(Î) = {1, ,III ,III,IIIi, , , I, I , Ii } .
(4.12)

Recall that, given a collection L of “edge types” (in our case, these are the “integration”

types I , III, etc as well as the “noise” types
j
i and

j
i which are also interpreted

as edges for the purpose of this discussion), a “rule” is a map R : L → P(P̂(L)) \
{∅}, where P(A) denotes the powerset of a set A, P̂(L) denotes the set of non-empty

multisets with elements in L.3 In other words, an element R(t) is a collection of “node

3We ignore the possibility of having “derivatives” on our edges as in [BHZ16], as these do not occur in

this article.
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types”, with each node type being a collection of edge types, with repetitions allowed.

In (4.12), we use the identification between a multiset and a formal monomial, i.e. I2

denotes the multiset with one copy of and two copies of I .

The basis vectors for our regularity structure are rooted trees (V,E, ̺) with edges

e ∈ E labelled by L and nodes v ∈ V labelled by Nd, denoting polynomial factors,

with the convention that 0 ∈ N. By convention, edges are oriented away from the root.

Any node v ∈ V then has a “type” N (v) ∈ P̂(L) given by the collection of the types of

the outgoing edges adjacent to v. If v ∈ V \ {̺}, there is a unique edge coming into v
and we write t(v) ∈ L for the type of the incoming edge. A tree is said to “conform” to

a rule R if, whenever v ∈ V \ {̺}, one has N (v) ∈ R(t(v)), while N (̺) ∈ ⋃

t∈L
R(t).

Remark 4.1 Note that Î never appears inside any R(t), so that a tree conforming to

the rule R is not allowed to have any edge of type Î. The only reason for its presence

is to allow the root of a conforming tree to be of type N (̺) ∈ R(Î), since otherwise

the tree which will be used later on would not be conforming to our rule. Actually,

the symbol , which was introduced in a completely ad hoc manner so far, will then

be interpreted as = −

We assign degrees to the components appearing here by (4.11) as well as

deg = deg , deg = deg ,

degI = deg Î = degIII = 2 , degIi = degIIIi = 3 .

It is straightforward to verify that this rule is subcritical and complete. We henceforth

denote by (T ,G) the (reduced in the terminology of [BHZ16, Sec. 6.4]) regularity

structure generated by the rule R.

4.3 Description of the models

Throughout this article, we will use the notation Π (possibly with additional decora-

tions) for a continuous linear map Π : T → D′(Rd+1) such that there exists a (nec-

essarily unique) admissible model (Π,Γ) related to Π by [Hai14, Sec. 8.3]. Here, we

associate the kernel K to I and Î , Ki to Ii, and KNeu, KNeu,i to III, IIIi respectively.

We henceforth make a slight abuse of terminology and call Π itself a model. The

following notion of an “admissible” model is a slight strengthening of the usual one

to our context which essentially states that our “square” symbols are the restrictions of

the “round” symbols to R ×D.

Definition 4.2 A model Π for (T ,G) is admissible if it is admissible in the sense of

[Hai14, Def. 8.29] for the kernels listed above and furthermore, for any τ ∈ T and i, j
such that

j
i τ,

j
i τ ∈ T , one has

(Π j
i τ)(ϕ) = (Π j

i τ)(ϕ) ,

for test functions ϕ with suppϕ ⊂ R ×D and (Π j
i τ)(ϕ) = 0 for test functions with

suppϕ ⊂ R ×Dc.

Remark 4.3 Note furthermore that all basis vectors τ̂ ∈ T with deg τ̂ < −1 are

of the form τ̂ = j
i τ (or similar with replaced by ) for some i, j and τ as in

Definition 4.2. As a consequence, admissible models in our sense admit a canonical

decomposition Π = Π
+ + Π

− as in Assumption C.1 below by setting Π
+ j

i τ =

Π
j
i τ . This is a crucial fact which allows us to use Theorem C.5.



CENTRAL LIMIT THEOREM 19

We also define the following notion:

Definition 4.4 Consider the rule R given by R (
j
i ) = R (III) = R(IIIi) = {1} and

R (I) = {1, I, Ii, Ii } ∪ { j
iIk : k ≤ i− j} ,

R (Ii) = {1, } , R (Î) = {1, I} .
We write T ⊂ T for the sector spanned by trees conforming to R and we call T the

translation invariant sector.

Given any admissible model for (T ,G), we then write K, Ki, KNeu, KNeu,i for the

corresponding integration operators as defined in [Hai14, Sec. 5]. We now provide

a complete description of the renormalised models Π̂ε we will use for this regularity

structure. From now on, whenever we do not explicitly mention a model on (T ,G), we

assume that we talk about the specific (random) model Π̂ε, and not a general admissible

model. In particular, all the variants of the spaces Dγ used below will be the spaces

associated to this model. In order to specify the ε-dependence, we will write Rε for the

reconstruction operator associated to the model Π̂ε. Theorem 4.8 below shows that Π̂ε

converges to some limiting model Π as ε→ 0, giving rise to a reconstruction operator

R0. Whenever we simply write R, it denotes the reconstruction operator for a generic

admissible model.

Writing 1D for the indicator function of R × D, we first define a family of non-

renormalised (random) models Πε as the canonical lift for the “noise” given by

ΠεΞ
j
i = ξεε

α(i,j) , Πε = 1Dξε , Πε = 1Dηε ,

with α(i, j) as in (4.10). We then define an intermediate model Π̃ε related to Πε by

Π̃ε = Πε − ε−
d
2 1D −

d
∑

i=1

ε1−
d
2 (ci,0δ∂i,0D + ci,1δ∂i,1D) ,

Π̃ε = Πε − ε−
d
2 1D ,

Π̃ε = Πε − ε−
d
2 1DΠεX − ε1−

d
2 1D ,

(4.13)

as well as Π̃ε Ii( ) = Π̃ε( − ). We furthermore impose admissibility which

forces us to set Π̃εXτ = ΠεX · Π̃ετ . One can verify that the only remaining basis

vector of T of negative degree and not belonging to the translation invariant sector is

. However, this element will never be needed for our considerations, so we do not

need to specify the action of Π̃ε on it.

We now construct a renormalised model Π̂ε from Π̃ε by applying a slight mod-

ification of the BPHZ renormalisation procedure [CH16, BHZ16] to the translation

invariant sector (which can be viewed as a regularity structure in its own right, gener-

ated by the ruleR ). Writing T− for the subspace of T consisting of symbols of strictly

negative degree, we will define Π̂ε by an expression of the form

Π̂ετ = (gε ⊗ Π̃ε)∆
−τ ,

where ∆− is a certain linear operator from T into AlgT− ⊗ T , with AlgT− the free

unital algebra generated by T−, and gε is a character of AlgT−, which is canonically

identified with an element of the dual space T ∗
− . In the BPHZ renormalisation proce-

dure, one should choose gε of the form

gBPHZ

ε = (EΠ̃ε) ◦ A , (4.14)
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where A : AlgT− → Alg T is the “twisted antipode” [BHZ16] and EΠ̃ε is the charac-

ter of Alg T determined by (EΠ̃ε)(τ ) = E(Π̃ετ )(ϕ), for any fixed test function ϕ with
∫

zkϕ(z) dz = δk,0 for |k| small enough. (In our case |k| ≤ 1 suffices.)

Recall that ∆− is an “extraction / contraction” operator which iterates over all

possible ways of extracting divergent subsymbols of its argument, so for example

∆− = ⊗ 1 + 1 ⊗ + ⊗ + ⊗ .

The twisted antipode behaves in a somewhat similar fashion, in this case

A = − + + .

Remark 4.5 Inspection of the rule R and our degree assignment shows that the basis

vectors of T− are given by

T− = Vec
{

, , X2, , , , , , , , , , , , , , , (4.15)

, , , , , , , , , , , , , , ,
}

.

It will be convenient to have an alternative degree assignment deg on T which

better reflects the self-similarity properties of our objects given by setting

degΞji = α(i, j) − d+ 2

2
,

and then extending it as usual. Instead of choosing the character gε as in the BPHZ

specification (4.14), it will be convenient to choose it in a way such that, for some

constants C(τ ) that are independent of ε, one has

gε(τ ) =

{

0 if deg τ > 0,

−εdeg τC(τ ) if deg τ < 0.

For deg τ = 0, we choose gε(τ ) = −C(τ ) whenever the symbol τ contains an “accent”,

i.e. one of the noises Ξji with i + j > 0. The only symbols of negative degree without

accents that appear in the translation invariant sector of our regularity structure and

that contain at least two copies of the noise are and , which are of vanishing

degree deg in dimensions 2 and 3 respectively, and will be considered separately below.

The constants C(τ ) themselves are chosen to coincide with the ones appearing in

Theorems 1.1 and 1.2 with the convention that for any symbol τ the constant C(τ ) is

also written as the same symbol τ , but drawn in red and with its “accents” stripped. For

example, we set

C( ) = C( ) = C( ) = C( ) = .

We also set C(τ ) = 0 whenever τ contains only one instance of the noise, namely we

set

= = 0 . (4.16)

(In general, we should also set C(τ ) = 0 if τ is of the form τ = I(τ ′) for some τ ′,
but the only symbol of negative degree of this type appearing in this work is which

is already covered by (4.16).) Other constants that will be relevant for our analysis (in

dimension d = 3) are given by = 0 as well as

=

∫

P (z)P (z′)κ2(z, z′) dz dz′, =

∫

xP (z)P (z′)κ2(z, z′) dz dz′,
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=

∫

P (−z)P (−z′)P (z − z′′)κ3(z, z′, z′′) dz dz′ dz′′,

=

∫

P (−z)P (−z′)P (z′′)κ3(z, z′, z′′) dz dz′ dz′′.

The convergence of integrals corresponding to , and in dimension 3 can

easily be verified by using our assumption on the cumulants and the self-similarity of

the heat kernel. The convergence of the integral for is more subtle since deg =
0. As a consequence, although κ2(z, z′) decays fast enough when ‖z− z′‖ is large, the

function z 7→ xP 2(z) is homogeneous of (parabolic) degree −5 and is therefore not

absolutely integrable at large scales. However, since it is odd under (t, x) 7→ (t,−x),

additional cancellations occur and the integral should be interpreted as

=
1

2

∫

x (P (z′) − P (z))P (z)κ2(z, z′) dz dz′ , (4.17)

which does converge absolutely, so we set gε( ) = − in dimension 3.

In dimension 2, deg > 0, but deg = 0 and the expectation of Π̃ε di-

verges logarithmically and the expression given above fails to converge. We then

have no choice but to set

gε( ) = − ε , ε
def

=

∫

Kε(z)Kε(z
′)κ2(z, z′) dz dz′ ,

where Kε(t, x) = ε2K(ε2t, εx). We then have the following preliminary result.

Proposition 4.6 The model Π̂ε restricted to the translation invariant sector converges

as ε→ 0 to the BPHZ model Π̂ such that Π̂ = ξ and Π̂Ξji = 0 for i+ j > 0.

Proof. Consider the “BPHZ model” ΠBPHZ

ε on T given by

Π
BPHZ

ε τ = (gBPHZ

ε ⊗Πε)∆
−τ ,

with gBPHZ

ε defined as in (4.14). Thanks to Proposition 5.5 below, our noises are such that

the norm of [CH16, Def. A.18] is finite, uniformly in ε, for the cumulant homogeneity

described in (5.3).

It therefore follows from [CH16, Thm 2.33] that ΠBPHZ

ε converges to Π̂. Since fur-

thermore the action of the character group of T− on the space of admissible models is

continuous [BHZ16], it suffices to show that one can write

Π̂ε = (δgε ⊗Π
BPHZ

ε )∆− , (4.18)

for some δgε ∈ T ∗
− with limε→0 δgε = 0. For this, the following result is useful.

Lemma 4.7 Let g, ḡ ∈ T ∗
− such that furthermore g(τ ) = ḡ(τ ) = 0 for every τ of the

type (4.16). Then, one has the identity

(g ⊗ (ḡ ⊗ id)∆−)∆−τ = ((g + ḡ) ⊗ id)∆−τ ,

for all τ ∈ T .
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Proof. It was shown in [Hai14, BHZ16] that

(g ⊗ (ḡ ⊗ id)∆−)∆−τ = ((g ⊗ ḡ)∆− ⊗ id)∆−τ ,

where ∆− : AlgT− → AlgT− ⊗AlgT− is an extraction / contraction operator defined

just like above, but extended multiplicatively to AlgT− and such that only those terms

are kept that actually belong to AlgT− ⊗ AlgT− (i.e. every factor needs to be of neg-

ative degree on both sides of the tensor product). Inspection of the list (4.15) reveals

that in our case, the only situation in which we have a “subsymbol” of negative degree

appearing in any of our symbol in such a way that the contracted symbol is still of

negative degree is when the subsymbol contains only one noise. We conclude that

(g ⊗ ḡ)∆−τ = (g ⊗ ḡ)(τ ⊗ 1 + 1 ⊗ τ ) = g(τ ) + ḡ(τ ) ,

and the claim follows.

We conclude from Lemma 4.7 that (4.18) holds with δgε = gε − gBPHZ

ε , so that it

remains to show that limε→0 δgε(τ ) = 0 for every τ ∈ T−. For elements τ of the form

τ = XkΞji we have gε(τ ) = gBPHZ

ε (τ ) = 0. For all other elements τ with deg τ ≤ 0,

a simple scaling argument shows that gBPHZ

ε (τ ) is given by the exact same formula as

gε(τ ), except that all instances of the heat kernel P are replaced by Kε, where

Kε(t, x)
def
= εdK(ε2t, εx) .

Note that Kε coincides with P in a parabolic ball of radius O(1/ε) around the origin

and vanishes outside of another ball of radius O(1/ε).
This in particular shows that

δgε( ) = ε−d/2
∫

(P (z) −Kε(z))κ2(0, z) dz . (4.19)

Since κ2(0, z) decreases like ‖z‖−2c̄ = ‖z‖−(d+2+2δ) for large z and P decreases like

‖z‖−d, it follows that

|δgε( )| . εd/2+2δ ,

which of courses converges to 0. The symbols τ differing from only by the place-

ment of their accents then also converge since δgε(τ ) is given by the same expression

as (4.19), except for being multiplied by a higher power of ε.
Turning now to (which only appears when d ∈ {2, 3}), it follows from [HQ18,

Lem. 6.8] that δgε( ) is a sum of terms of the form

ε2−d
∫

(P (z) −Kε(z))G(z) dz ,

where |G(z)| . (1 + ‖z‖)2−2c̄ = (1 + ‖z‖)−(d+2δ). It follows that |δgε( )| .

ε2δ as desired, and δgε( ) is controlled in the same way by a higher power. In

dimension 3, deg = 0 and it was shown in (4.17) that converges absolutely,

which immediately implies that δgε( ) → 0.

To deal with the symbol (again with d ∈ {2, 3}), we first note that Assump-

tion 2.1 implies the bound

|κ3(z1, z2, z3)| . ̺(‖z1 − z2‖) ̺(‖z2 − z3‖) ̺(‖z1 − z3‖) .
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We also note that for any κ ∈ [0, d] one has the bound

|P (z) −Kε(z)| . εκ(1 ∧ ‖z‖κ−d) . (4.20)

This allows us to make use of [Hai18, Thm 4.3]. Since deg = 2−d
2

we apply the

bound (4.20) with κ = δ + d−2

2
which, in the notation of [Hai18], yields a bound of

the type

|δgε( )| ≤ εδ|ΠK̄,R̄Γ| ,

for some ε-dependent kernel assignment (K̄, R̄) ∈ K−
0 × K+

0 with bounds that are

independent of ε and the Feynman diagram

Γ =

(δ −
1

2
,−d− 2)

(δ − 1

2 ,−δ − d+2
2 )

(δ − d−
1

2
,−δ − 3d+2

2
) .

Here, the first coordinate of the label for each edge denotes its small-scale degree as-

signment while the second coordinate denotes its large-scale degree assignment. It

is straightforward to verify that the small-scale degree assignment for this diagram

satisfies the assumption of [Hai18, Prop. 2.3], so that it does not require renormalisa-

tion. Furthermore, the large-scale degree assignment is seen to satisfy the assumption

of [Hai18, Thm 4.3], which guarantees that the integral converges absolutely and is

bounded independently of ε, so that |δgε( )| ≤ εκ.

The symbols and (in dimension 3) which have vanishing degree deg, can

be dealt with using the same technique, leading to the bound |δgε( )|+ |δgε( )| .
ε1/2 by using the Feynman diagrams

(−3,−
3)

(−3,−3)

(δ − 1
2
,−δ − 5

2
)

(δ − 1
2 ,−δ − 5

2 )

(δ −
1
2
,−δ

− 5)

,

(−3,−
3)

(0,− 5
2 )

(δ − 1
2
,−δ − 5

2
)

(δ − 1
2 ,−δ − 5

2 )

(δ −
7
2
,−δ

−
11
2

)
,

for bounding and

(δ −
1
2
,−δ

−
5
2

)

(δ − 1
2 ,−δ − 5

2 )

(0,− 5
2

)
(−

3
,−

3
)

(−
3,
−
3
)

(δ − 1
2
,−δ − 5

2
) ,

for bounding . All three are easily seen to satisfy both the small-scale and large-

scale integrability conditions.

The remaining three symbols τ ∈ { , , } in the list (4.15) are all such that

deg τ > 0, so we need to show that gBPHZ

ε (τ ) → 0. This can in principle be shown again

by using the bounds from [Hai18]. A “cheaper” way of showing that gBPHZ

ε (τ ) → 0 is to
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note that in all three cases we can make use of a combination of Proposition 5.5 (used

in the same way as in the proof of Proposition 5.9) and (4.14) to conclude that one can

build a regularity structure T̂ extending T (by adding additional “noises” representing

η(α)
ε for suitable choices of α) such that, for every τ , one can find κ > 0 and a symbol

τ̂ ∈ T̂ such that deg τ̂ > 0 and such that

gBPHZ

ε (τ ) = εκE(ΠBPHZ

ε τ̂ )(ϕ) ,

for some suitable fixed test function ϕ. Since we know from [CH16, Thm 2.33] that

the BPHZ renormalised model ΠBPHZ

ε converges (so in particular remains uniformly

bounded), we conclude that gBPHZ

ε (τ ) → 0 as required.

Theorem 4.8 The random models Π̂ε converge weakly to a limiting admissible model

Π̂ which, on the translation invariant sector, is given by the BPHZ lift of

Π̂ = ξ , Π̂Ξji = 0 , i + j > 0 .

For the remaining symbols, it is given by the unique admissible model such that

Π̂ = ξ1R×D , Π̂ = 0 ,

as well as Π̂τ = 0 for any symbol τ containing the noise .

Remark 4.9 Note that only symbols Ξji with i ≥ j appear in our regularity structure.

Proof. Convergence on the translation invariant sector was already shown in Proposi-

tion 4.6, so it only remains to consider the non-translation invariant symbols of negative

degree. In dimension 3, these are , , , , , , , and . (There is also

the symbol Ii( ), but applying the model to it yields the exact same distribution as

when applying it to − .)

The convergence on the remainder of the regularity structure is shown in the next

section, but we collect the various parts of the proof here. Convergence of Π̂ε , Π̂ε

and Π̂ε to ξ1D and 0 in C− 5
2
−κ, C−1−κ and C− 3

2
−κ respectively follows from Corol-

lary 5.13 and Corollary 5.6.

Convergence of Π̂ε essentially follows from [CH16, Thm 2.31], noting that

the bound for τ = does not require any derivative of the test function in this

case, so that we immediately obtain the required bound by noting that (Π̂ε )(ϕ) =

(Π̂ε )(1R×Dϕ). The reason why this is so is that the only point in the proof where

derivatives of the test function could potentially appear is in the bound [CH16, Eq. A.29]

in the proof of [CH16, Thm A.32]. By the definition ofR(S), these derivatives can only

hit a test function in a situation where τ contains a connected subtree containing its root

and of degree less than − d+2

2
. This is not the case for .

Convergence of Π̂ε , Π̂ε and Π̂ε also follows in the same way. Regarding

, we note that = + by (4.23) and we already obtained convergence of

Π̂ε . Convergence of Π̂ε is the content of Theorem 5.20 below. The convergence

of Π̂ε follows from Corollary A.3, combined with the usual Schauder estimates for

integration against K .

Most of Section 5 is devoted to filling in the missing parts in the proof of Theo-

rem 4.8, namely the proofs of Theorem 5.11 and Theorem 5.20.



CENTRAL LIMIT THEOREM 25

4.4 Description of v(0)
ε

We now have the notation in place to formalise the discussion given above regarding

the local behaviour of v(0)
ε and v(1)

ε . Recall the definition (4.5) of v(0)
ε which we rewrite

in integral form as

v(0)
ε = KNeu(G(u(0)) 1D+ξε) . (4.21)

Depending on context, we will model v(0)
ε by three different modelled distributions

V (0)
ε , Ṽ (0)

ε and V̂ (0)
ε .

Regarding V (0)
ε , we use Proposition 6.1 which guarantees that one can find Φε ∈

C 3
2
−κ,− 1

2
−κ such that, setting4

V (0)
ε = Φε + LG(u(0))KNeu(1+ ) +G′(u(0))∂iu

(0) KNeu,i(1+ ) , (4.22)

where the integration operators KNeu, and KNeu,i should be interpreted as the natural

extensions of the corresponding integration operators described in Proposition 6.1, one

has

V (0)
ε ∈ D 3

2
−κ,− 1

2
−κ , RεV

(0)
ε ↾ R+ ×D = v(0)

ε ,

provided that we consider admissible models Π̂ε with Π̂ε = ξε1R×D . Note that V (0)
ε

depends on ε via the choice of model Π̂ε. Furthermore, Theorem 4.8 and Lemma 5.14

guarantee that the bounds on V (0)
ε are uniform over ε and that one has V (0)

ε → V (0) in

D 3
2
−κ,− 1

2
−κ with respect to the renormalised models Π̂ε and the limiting model Π̂.

It is natural at this stage, as already mentioned earlier, to define the symbol as

the element of T of degree − 1

2
− κ given by

= − , (4.23)

which is indeed consistent with (4.7). With this notation, Propositions A.2 and A.4

combined with (4.22) guarantee the existence of a function Φ̃ε ∈ C 3
2
−κ,w with w =

(− 1

2
− κ, 1

2
− κ,− 1

2
− κ) in the sense of [GH18, Def. 3.2] such that if we set Ṽ (0)

ε =

Ṽ (0,1)
ε + Ṽ (0,2)

ε with

Ṽ (0,1)
ε = LG(u(0)) ,

Ṽ (0,2)
ε = LG(u(0)) +G′(u(0))∂iu

(0) Ki( ) + LΦ̃ε ,
(4.24)

then we have Ṽ (0,1)
ε ∈ D 3

2
−κ, Ṽ (0,2)

ε ∈ D 3
2
−κ,w and (RεṼ

(0)
ε )(ϕ) = (RεV

(0)
ε )(ϕ) for

all test functions ϕ supported in R+ ×D. As before, all these objects converge in the

limit ε → 0 provided that the underlying models converge. To see this, we note that

we can choose

Φ̃ε = Φε + 1+G(u(0))KNeu((1+ − 1)1Dξε)

+ 1D+G
′(u(0))∂iu

(0) Ki ∗ ((1D+ − 1)ξε)

+ 1D+G
′(u(0))∂iu

(0) K∂,i(1
D
+ξε) ,

and then apply Proposition A.4 to bound the first term and Proposition A.2 to bound

the remaining two terms.

On the other hand, we define V̂ (0)
ε by setting

V̂ (0)
ε = K(L2G(u(0))1+ ) + L1D+

(

K∂(G(u(0))ξε1
D
+)−K(G(u(0))ξε1

Dc

+ )
)

,

4with the convention L = L1 for L1 the Taylor lift (3.3)



CENTRAL LIMIT THEOREM 26

where we use the convention that u(0) is extended outside of R+ ×D in any way that

makes it globally C3. (For positive times, this is possible since the extension of u0 to

the whole space by suitable reflections is of class C3 by our assumptions. For negative

times, this is possible by Whitney’s extension theorem [Whi34].) Here we made a

slight abuse of notation: the operator K should be interpreted in the sense of [GH18,

Sec. 4.5] with R̂(L2G(u(0))1+ ) = G(u(0))1+ξε, which converges as ε → 0 by an

argument very similar to that of Proposition 6.1, combined with the fact that G(u(0)) is

C3.

Note that we have

RεV̂
(0)
ε = RεṼ

(0)
ε = RεV

(0)
ε = v(0)

ε on R+ ×D .

The modelled distribution V̂ (0)
ε exhibits rather singular behaviour near the boundary of

the domain, but by Proposition A.2 it converges as ε→ 0 in D1,w withw = (− 1

2
−κ)

3

(we use again the notation (η)3 = (η, η, η)). It has the advantage however of not involv-

ing the integration map III and the restricted noise , so it is purely described in terms

of the “translation invariant” part of the regularity structure, i.e. the sector generated by

I and . We summarise the above discussion with the following statement.

Lemma 4.10 We have V̂ (0)
ε ∈ D1,(− 1

2
−κ)3

− 1
2
−κ

, RεV̂
(0)
ε = v(0)

ε on R+ ×D, and V̂ (0)
ε is of

the form

V̂ (0)
ε = 1+(G(u(0)) +G′(u(0))∇u(0) ) + Φ(0)

ε 1 ,

for some continuous function Φ(0)
ε . Furthermore, limε→0 V̂

(0)
ε = V̂ (0) ∈ D1,(− 1

2
−κ)3

with R0V̂
(0) = PNeu(1

D
+G(u(0))ξ).

4.5 Description of v(1)
ε

Recall that v(1)
ε was defined in (4.6) as the solution to an inhomogeneous linear equation

with inhomogeneous boundary conditions (et least in the Neumann case). Regarding

v(1)
ε , we would like to describe it by a modelled distribution V (1)

ε given by

V (1)
ε = 1D+PNeu1+(L(G′(u(0)))Ṽ (0)

ε ) + v(1,⋆)
ε 1 , (4.25)

with PNeu as in (3.2) and where v(1,⋆)
ε would be given by the solution to

∂tv
(1,⋆)
ε = ∆v(1,⋆)

ε +
1

2
G′′(u(0))W1,ε ,

W1,ε = (v(0)
ε )2σε − 2 G(u(0))v(0)

ε − ε1−
d
2 G2(u(0)) ,

(4.26)

endowed with homogeneous Neumann boundary conditions. The reason why the iden-

tity RεV
(1)
ε = v(1)

ε holds (on R+ ×D as usual) is as follows. By (4.24),

Ṽ (0)
ε = L(G(u(0)))( + ) +G′(u(0))∂iu

(0) Ki( ) + LΦ̃ε . (4.27)

It then follows from the definition (4.13) of the renormalised model and the fact that

Rε(Ṽ
(0)
ε ) = v(0)

ε that, applying the reconstruction operator to this expression yields

Rε(Ṽ
(0)
ε ) = 1Dv(0)

ε ηε −
d

∑

i=1

G(u(0))ε1−
d
2 (ci,0δ∂i,0D + ci,1δ∂i,1D)

− ε−
d
2 1DG(u(0)) − ε1−

d
2 1DG′(u(0)) 〈 ,∇u(0)〉 .
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We then note that the two terms appearing on the second line, when multiplied by

another factor of G(u(0)), are exactly the additional two terms appearing on the first

line of (4.6), while the singular term involving Dirac masses on the boundary of D,

when hit by KNeu, is responsible for the non-homogeneous boundary conditions.

The problem with such a definition is that it yields a description of V (1)
ε in terms

of symbols involving , while the general convergence results of [CH16] require

translation invariance of the noise objects, which is not the case here. If we were to try

to improve the situation by replacing 1+ by 1D+ in (4.25), then we immediately

run into the problem that the behaviour of this modelled distribution on the boundary

of D is too singular for the general results of [GH18] to apply. This is not just a

technicality: this singular behaviour is precisely what is responsible for the additional

boundary renormalisation!

Instead, we define V (1)
ε as a sum of terms that is “equivalent” to the definition (4.25)

in the sense that they reconstruct the same function, but such that each of the terms can

be controlled in a slightly different, situation-specific, way.

We first deal with the boundary correction by setting

V (1,0)
ε = 1D+LK∂(1+G

′(u(0))Rε(Ṽ
(0)
ε )) . (4.28)

Since Ṽ (0)
ε ∈ D 1

2
−2κ,w withw = (− 3

2
−2κ,− 1

2
−2κ,− 3

2
−2κ) and since it belongs

to a sector of regularity − 3

2
−2κ, its reconstruction belongs to C− 3

2
−2κ. It then follows

from Proposition A.2 that V (1,0)
ε ∈ D2,(0)3 .

We now break up Ṽ (0)
ε in (4.25) as in (4.24) and deal with the first term. By Propo-

sition 6.3, we can find V (1,1)
ε ∈ D2−2κ,w̄ with w̄ = ( 1

2
− 2κ, 1

2
− 2κ, 0) of the form

V (1,1)
ε = 1D+ G

′G(u(0))(Π̂ε ) +Φ(1,1)
ε , (4.29)

with Φ(1,1)
ε taking values in the classical Taylor polynomials, and such that

RεV
(1,1)
ε = K((G′G)(u(0))1+Π̂ε ) = RεK1+(L(G′(u(0)))Ṽ (0,1)

ε ) .

The second term is dealt with similarly. As a consequence of Proposition 6.4 with

g1 = G′G(u(0)), g2,i = G′(u(0))2∂iu
(1) and g3 = G′(u(0))Φ̃ε (with Φ̃ε as in (4.25)), we

can find V (1,2)
ε ∈ D2−2κ,w̄ such that

RεV
(1,2)
ε = K1+(G

′G(u(0))Π̂ε +G′(u(0))2∂iu
(1)Rε( Ki( ))+G′(u(0))Φ̃εΠ̂ε ) ,

and such that furthermore V (1,2)
ε takes values in the translation invariant sector and is

of the form

V (1,2)
ε = 1D+((G′G)(u(0)) + Φ̃ε ) + Φ(1,2)

ε , (4.30)

for some Φ(1,2)
ε taking values in the Taylor polynomials. In order to define V (1,3)

ε , we

make use of the following lemma.

Lemma 4.11 Let ϕε be such that on R+ ×D one has the identity

v(0)
ε = G(u(0)) Π̂ε + ϕε1 ,

and one has ϕε(t, x) = 0 for t < 0 or x 6∈ D. Then, for any α ∈ [0, 1), one has the

bound E‖ϕε‖α+ 1
2
−κ,w . ε−α with w = (α− 1

2
− κ)

3
.
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Proof. We decompose ϕε as

ϕε = K∂(1
D
+G(u(0))ξε) +G(u(0))K((1− 1D+ )ξε)

+
(

K(1D+G(u(0))ξε)−G(u(0))K(1D+ξε)
)

,

and we treat the three terms separately. The first two terms are estimated by combining

Proposition A.2 with Corollary 5.10.

The bound on the last term follows from combining Proposition 5.9 with Corol-

lary B.5. To apply the latter, we set θ = κ (small enough) and χ = α− 5

2
− κ, which

yields a bound in Cκ+2 on

K(1D+G(u(0))ξε)−G(u(0))K(1D+ξε)−
∑

i

G′(u(0))∂iu
(0)Ki(1

D
+ξε) .

Since Ki gains three derivatives, the term Ki(1
D
+ξε) itself satisfies the required bound

and we are done.

Recalling W1,ε as defined in (4.26), it follows from Lemma 4.11 combined with

the definition of the renormalised model that we can rewrite it as

W1,ε = G2(u(0))Π̂ε + 2G(u(0))ϕεΠ̂ε + ϕ2
εΠ̂ε . (4.31)

As a consequence of Proposition 5.9 below (with α = κ), combined with Lemma 4.11

(with α = 1

2
), we conclude that one has

lim
ε→0

‖W1,ε‖− 1
2
−3κ = 0 . (4.32)

Indeed, the reconstruction theorem [GH18, Thm 4.9] and the multiplication rules [GH18,

Lem. 4.3] imply that if g ∈ Cγ,(η)3 for η ≤ 0 and γ > 0, and ζ ∈ Cβ with β ≤ 0 and

γ+β > 0 then, provided that η+β > −1, one has gζ ∈ Cη+β . (View ζ as the constant

function in a regularity structure containing only one symbol of degree β and apply the

reconstruction theorem to gζ.)

Since − 1

2
−3κ > −1, we can multiply such a distribution by the indicator function

of R+ ×D. It follows that, setting

V (1,3)
ε

def

=
1

2
LKNeu(1

+
DG

′′(u(0))W1,ε) , (4.33)

we have limε→0 V
(1,3)
ε = 0 in D 3

2
−3κ and furthermore RεV

(1,3)
ε = v(1,⋆)

ε . Combining

these definitions, we set

V̂ (1)
ε = V (1,0)

ε + V (1,1)
ε + V (1,2)

ε + V (1,3)
ε .

Summarising this discussion, one has the following result.

Lemma 4.12 We have V̂ (1)
ε ∈ D 3

2
−3κ,(0)3 , RεV̂

(1)
ε = v(1)

ε and V̂ (1)
ε is of the form

V̂ (1)
ε = 1D+ G

′G(u(0)) + 1D+ G
′(u(0))Φ(0)

ε +Φ(1)
ε , (4.34)

for someΦ(1)
ε taking values in the Taylor polynomials, and whereΦ(0)

ε is as in Lemma 4.10.

Furthermore, limε→0 V̂
(1)
ε = V̂ (1) ∈ D 3

2
−3κ,(0)3 with R0V̂

(1) = 0.
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Proof. Collecting (4.28), (4.29), (4.30) and (4.33), we see that (4.34) holds, but with

Φ(0)
ε replaced by G(u(0))(Π̂ε ) + Φ̃ε. These two expression are seen to coincide on

R+ ×D by comparing Lemma 4.10 with (4.24).

The only statement we haven’t shown yet is that R0V̂
(1) = 0. Since we already

know by (4.32) that W1,ε converges to 0 and since RεV̂
(1)
ε = RεV

(1)
ε , it remains by

(4.25) to show that limε→0 Rε(Ṽ
(0)
ε ) = 0. This in turn is immediate from (4.27)

when combined with Theorem 4.8 which guarantees that the limiting model vanishes

on all accented symbols.

4.6 Formulation of the fixed point problem

Introduce now a modelled distribution Vε and, using the shorthand V̂ε = V̂ (0)
ε + V̂ (1)

ε +
Vε, consider the fixed point problem

Vε = PNeu1
D
+

(

H ′
η(u(0))V̂ε + L(G′(u(0)))(V̂ε − V̂ (0)

ε ) + L(G′(u(0))u(1))

+
1

2
L(G′′(u(0)))(V̂ 2

ε − (V̂ (0)
ε )2) + L(G′′(u(0))u(1))V̂ε (4.35)

+
1

2
L(G′′(u(0))(u(1))2)

)

+ LPNeu1
D
+(R̂(d)

ε (RεV̂ε, ς) + R̃(d)
ε (ς̄)) ,

where R̃(d)
ε = 0 for d = 1 and

R̃(2)
ε (ς̄) = εκ

1

2
G2G′′

ε ς̄ , (4.36)

R̃(3)
ε (ς̄) = εκ(G′′G)

(1

2
G+ εG′( G+ 〈 ,∇u(0)〉+ u(1))

)

ς̄ .

Remark 4.13 We will set this up as a fixed point problem in the space D 3
2
−3κ,(0)3 .

Since deg < −1 and deg < −1 (in d ∈ {2, 3} for the latter), this forces us to

rely on Theorem C.5 below for the reconstruction of the right hand side of (4.35) and

to combine this with [GH18, Lem. 4.12] to provide an interpretation for the integration

operator K appearing in the definition (3.2) of PNeu.

Remark 4.14 Recall that the definition (4.3) of the remainder R̂(d)
ε involves an arbi-

trary exponent α. We henceforth fix a choice α = α(d) depending on the dimension,

namely

α(1) =
5

4
, α(2) =

9

4
, α(3) =

11

4
. (4.37)

All further statements about R̂(d)
ε hold for this particular choice.

We claim that with this definition and provided that we consider the renormalised

model constructed in Section 4.3, (4.35) admits a unique solution in D 3
2
−3κ,(0)3 and,

provided that we set ς = εαξε and ς̄ = ε−1−κσε, one has vε = RεV̂ε. The reason for

the appearance of R̃(d)
ε is to cancel out some additional unwanted terms arising from

the renormalisation procedure. Before this, we formulate a technical lemma, where we

write ‖θ‖α for the Cα norm of the function / distribution θ on DT = [0, T ]×D with T
as in Theorem 1.2.

Lemma 4.15 Let w, w̄ with ‖w‖L∞ + ‖w̄‖L∞ ≤ ε−d/2 on the domain DT and let

κ ∈ (0, 1
4

). Writing X = ‖ς‖− 1
2
+2κ + 1, one has the bounds

‖R(1)
ε (w, ς)‖− 1

2
+2κ . ε1/4(1 + ‖w‖ 1

2
−κ)

3
X ,
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‖R(1)
ε (w, ς) −R(1)

ε (w̄, ς)‖− 1
2
+2κ . ε1/4‖w − w̄‖ 1

2
−κ(1 + ‖w‖ 1

2
−κ + ‖w̄‖ 1

2
−κ)

3
X ,

for some proportionality constants depending only on u(0), G and H . In dimensions 2
and 3, we set X = ‖ς‖Lp + 1 (for any fixed p ∈ [1,∞]) and we have the bounds

‖R(d)
ε (w, ς)‖Lp . εκ(1 + εβ‖w‖L∞)

3
X ,

‖R(d)
ε (w, ς) −R(d)

ε (w̄, ς)‖Lp . εκ+β‖w − w̄‖L∞(1 + εβ‖w‖L∞ + εβ‖w̄‖L∞)
3
X ,

with β(2) = 1

4
− κ

3
and β(3) = 7

12
− κ

3
for κ sufficiently small.

Proof. The case of dimensions 2 and 3 is straightforward to verify since all bounds are

uniform. In dimension 1, the first term of (4.3) is easy to bound. To bound the second

term, we use the fact that composition with a smooth function is a (locally) Lipschitz

continuous operation in C 1
2
−κ, combined with the fact that the product is continuous as

a bilinear map from C 1
2
−κ×C− 1

2
+2κ into C− 1

2
+2κ, see [BCD11] or [FH14, Thm 13.16].

Proposition 4.16 Fix an initial condition u0, a final time T < 1 and nonlinearities G
andH , all as in Theorem 1.2, as well as the random model Π̂ε as defined in Section 4.3.

Choose ς ∈ Lp with p = (d+2)/c (for d ∈ {2, 3}) or ς ∈ C2κ− 1
2 (for d = 1), as well as

ς̄ ∈ C− 1
2
−2κ (for d ∈ {2, 3}). Then, the the fixed point problem (4.35) admits a unique

local solution Vε in D 3
2
−3κ,(0)3 . Furthermore, bounds on the solution are uniform over

ε ∈ [0, 1] and over ς , ς̄ in bounded balls in their respective spaces.

Furthermore, for ε = 0 and Π̂ as in Theorem 4.8, the solution V is such that

v̄ = R0V solves

∂tv̄ = ∆v̄ +H ′
η(u(0))(v̄ +R0V̂

(0)) , (4.38)

with homogeneous boundary conditions, where V̂ (0) is as in Lemma 4.10. In particular,

limε→0 V̂ε = V̂ is such that R0V̂ coincides with the process v defined in (1.7).

Remark 4.17 In the case d = 1, there is no condition on ς̄ since the fixed point prob-

lem does not depend on it.

Proof. We first consider the case d = 3. Note first that, for any C4 function G̃, we

have L(G̃(u(0), u(1))) ∈ D2,(0)3 . Since V̂ (0)
ε ∈ D1,(− 1

2
−κ)3 by Lemma 4.10 and V̂ (1)

ε ∈
D 3

2
−3κ,(0)3 by Lemma 4.12, it then follows from [GH18, Lem. 4.3] that, for Vε ∈

D 3
2
−3κ,(0)3 , all the terms appearing after PNeu1

D
+ in the right hand side of (4.35) belong

to D 1
2
−4κ,(− 3

2
−2κ)3 , provided that κ is sufficiently small. In particular, the operator

K (defined as described in Remark 4.13) maps this continuously into D2,(0)3 , with

arbitrarily small norm for small time intervals.

Furthermore, the reconstruction operator of Theorem C.5 continuously maps the

space D 1
2
−4κ,(− 3

2
−2κ)3 into C− 3

2
−2κ, which is then mapped continuously into C2,(0)3

by K∂ by Proposition A.2, and therefore into D2,(0)3 by the Taylor lift L, again with

arbitrarily small norm for small time intervals as a consequence of the bound (A.3)

which also holds for K∂ .

Note now that by Corollary 5.6, we have E‖ξε‖κ−2 . ε−
1
2
−κ. As a consequence

of (4.21), we conclude from this that E|v(0)
ε |L∞ . ε−

1
2
−κ. Since β > 1

2
, it follows

from Lemma 4.15 that, for p = (d+ 2)/c,

‖R̂(d)
ε (RεV̂ε, ς)‖−c . ‖R(d)

ε (RεV̂ε + ε−
1
2u(1), ς)‖Lp . ‖ς‖Lp ,
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uniformly over bounded sets for the model Π̂ε and over bounded sets for Vε + V̂ (1)
ε in

D 3
2
−3κ,(0)3 . Since u(0) and u(1) are bounded in C1, it is immediate from (4.36) that one

has a bound of the type

‖R̃(3)
ε (ς̄)‖− 1

2
−2κ . ‖ς̄‖− 1

2
−2κ .

In particular, the argument of PNeu appearing in the last term on the right hand side of

(4.35) is mapped continuously by PNeu into C 3
2
−3κ,(0)3 , again with arbitrarily small norm

when considering a short enough time interval. Furthermore, all of these expressions

are locally Lipschitz continuous (with similar bounds) as a function of Vε in D 3
2
−3κ,(0)3

and of the model Π̂ε, uniformly over ε ∈ [0, 1] which yields the first claim over a

short enough time (but bounded from below independently of ε) interval. This can be

maximally extended as usual, and the claim follows from the fact that we know a priori

that solutions to (4.38) do not explode.

The second claim is straightforward by simply setting ε = 0 and applying the

reconstruction operator to both sides of (4.35). The case of d = 2 is virtually iden-

tical, noting in particular that even though ε diverges in this case, it only does so

logarithmically and is therefore compensated by the factor εκ in (4.36). We leave the

verification of the case d = 1 to the reader.

Proposition 4.18 Let ςε = εαξε, ς̄ε = ε2−d−κσε, and define Π̂ε as in Section 4.3.

Then, the assumptions of Proposition 4.16 are satisfied and we have ςε, ς̄ε → 0 in

their respective spaces. Furthermore, for any ε > 0, the modelled distribution V̂ε
constructed in Proposition 4.16 is such that RεV̂ε coincides with the process vε defined

in (4.1).

Proof. We first show that the assumptions of Proposition 4.16 are satisfied. The fact

that the random models Π̂ε are uniformly bounded (in probability) as ε → 0 and

converge in probability to Π̂ is the content of Theorem 4.8. By the second part of

Assumption 2.1 combined with stationarity, we furthermore see that

E‖ςε‖pLp = E‖εαξε‖pLp = εpα−
(d+2)p

2 TE|η(0)|p . εp/4 ,

when d ∈ {2, 3}. For d = 1, we have

E‖ςε‖2κ− 1
2
= ‖ε(1/4)

ε ‖2κ− 1
2
≤ ‖ε(1/2−3κ)

ε ‖2κ− 1
2

,

which converges to 0 in probability by Corollary 5.6. We also conclude from Corol-

lary 5.6 and our definitions that, for d ∈ {2, 3}, ‖ς̄ε‖− 1
2
−2κ = ‖η( d

2
−1+κ)

ε ‖− 1
2
−2κ → 0

in probability.

It remains to show that solutions coincide with vε. This is a special case of the

general result obtained in [BCCH17] and could in principle also be obtained in a way

similar to [HP15a]. We present a short derivation here in order to remain reasonably

self-contained.

The powercounting of the various symbols appearing in our structure depends on

the dimension, so we first restrict ourselves to the case d = 3, which is the one with

the largest number of terms of negative degree appearing. Combining (4.35) with Lem-

mas 4.10 and 4.12, we conclude that if we take for Vε any solution to (4.35), there

exist functions v and ∇v such that, for Φ(0)
ε and Φ(1)

ε as in Lemma 4.12, the following

identities hold on R+ ×D:

V̂ (0)
ε = G +Φ(0)

ε 1 +G′∇u(0) ,
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V̂ (1)
ε = Φ(1)

ε 1 +GG′ +G′Φ(0)
ε ,

V̂ε = G + v1 +GG′ +G′∇u(0) +G′u(1) +
G′′G2

2
+G′v +∇v X .

Developing the argument of PNeu1
D
+ in (4.35) up to order 0, we conclude that it is given

by

H ′
ηG +H ′

ηv1 +
1

2
G′′∇2u(0) ΞX2 +G′(v − Φ(0)

ε ) +G(G′)2

+ (G′)2∇u(0) + (G′)2u(1) + (G′)2v +G′∇v +
1

2
G2G′G′′

+GG′′∇u(0) +G′′v∇u(0) +G′u(1) +G′∇u(1) (4.39)

+G′′∇u(0)u(1) +
1

2
G2G′′ +

1

2
G′′v2 +

1

2
G′′(u(1))2 +GG′′u(1)

+GG′′∇u(1) +GG′′v +G′G′′(u(1))2 +G2G′G′′ +GG′G′′∇u(0)

+GG′G′′u(1) +G′′u(1)v +GG′G′′u(1) +G′G′′u(1)∇u(0) .

At this point, we apply the results of [BCCH17]. Comparing [BCCH17, Eq. 2.20] with

[BCCH17, Def. 3.20] and [BCCH17, Thm. 3.25], we see that each term appearing

on the right hand side generates a counterterm for the renormalised equation. Each

of these terms is of the form F̂ (v,∇v, u(0),∇u(0), u(1),∇u(1))τ for some function F̂
and some symbol τ . The counterterm generated by any such term is then obtained

precisely by simply replacing τ by the corresponding renormalisation constant and by

interpreting the first two arguments of F̂ as the value and gradient of the actual solution

(after reconstruction).

Remark 4.19 One may worry that we are not quite in the framework of [BCCH17] be-

cause of the special treatment of V̂ (0)
ε and V̂ (1)

ε . This however is due to purely analytical

reasons that only affect the boundary behaviour. The computation of the renormalisa-

tion terms on the other hand is a purely algebraic affair which is not affected by this.

The boundary conditions of vε however are affected by our decomposition and need to

be determined separately.

It follows that, in dimension 3, the solution vε = RεV̂ε to the fixed point problem

with the renormalised model satisfies in R+ ×D the PDE

∂tvε = ∆vε +H ′
ηvε +Gξε + (vε + ε−1/2u(1))G′ηε +

1

2
(vε + ε−1/2u(1))2G′′σε

− ε−3/2G′G − ε−1/2G(G′)2 − ε−1/2〈∇u(0), (G′)2 +GG′′ 〉

− (vε + ε−1/2u(1))(GG′)′ − ε−1/2

2
G2G′′ − ε−1

2
G2G′′ σε

−G′′(G2G′ +GG′〈 ,∇u(0)〉+GG′u(1) )σε

+ R̂(3)
ε (vε, ς) + R̃(3)

ε (ς̄) .

Furthermore, both RεV̂ε and v(0)
ε = RεV̂

(0)
ε have homogeneous boundary conditions,

so that the boundary conditions of vε coincide with those of v(1)
ε = RεV̂

(1)
ε .

By (4.36) and since we chose ς̄ = ε−1−κσε, there is a cancellation between R̃ε(ς̄)
and some of the other terms appearing in this equation. Since furthermore = 0, we

obtain

∂tvε = ∆vε +H ′
ηvε +Gξε + (vε + ε−1/2u(1))G′ηε +

1

2
(vε + ε−1/2u(1))2G′′σε
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− ε−3/2G′G − ε−1/2G(G′)2 − ε−1/2〈∇u(0), (G′)2 〉

− (vε + ε−1/2u(1))(GG′)′ − ε−1/2

2
G2G′′ + R̂(3)

ε (vε, ς) ,

which, when combining with the definition of Ψ given in (1.5) and the fact that ς =
εαξε, precisely coincides with (4.2). Since its initial condition and boundary condition

coincide as well, this completes the proof of the claim.

In dimension 2, a similar argument (but taking less terms into account) yields

∂tvε = ∆vε +H ′
ηvε +Gξε + (vε + u(1))G′ηε +

1

2
(vε + u(1))2G′′σε

− ε−1G′G −G(G′)2 − 〈∇u(0), (G′)2 +GG′′ 〉

− (vε + u(1))(GG′)′ − 1

2
G2G′′ − 1

2
G2G′′

ε σε + R̂(2)
ε (vε, ς) + R̃(2)

ε (ς̄) .

Again, the term R̃(2)
ε precisely cancels the term proportional to ε σε, so that this again

coincides with (4.2). In dimension 1, an even simpler argument shows that

∂tvε = ∆vε +H ′
ηvε +Gξε + vεG

′ηε +
1

2
v2εG

′′σε

− ε−1/2G′G − vε (GG′)′ + R̂(1)
ε (vε, ς) ,

which again coincides with (4.2), noting that in this case one has u(1) = 0.

5 Convergence of models

In order to show convergence of the models, we apply the general result of [CH16,

Thm 2.31]. This result shows that if one considers the “BPHZ lifts” of a sequence of

smooth and stationary stochastic processes ξn as given in [BHZ16, Thm 6.17] then, pro-

vided that one has uniform bounds of a suitable “norm” of ξn and under a few relatively

weak additional algebraic assumptions, the resulting sequence of models converges to

a limit, provided that ξn → ξ weakly in probability.

5.1 Cumulant homogeneity assignments

In this section, we define

η(α)
ε (t, x) = ε−αη(ε−2t, ε−1x) , (5.1)

and we often use z = (t, x) for space-time coordinates. The exponents α will always

be chosen in (c, d+2

2
]. Our aim is to obtain a suitable bound independent of ε for joint

cumulants of the form

κp(η
(α1)
ε (z1), . . . , η(αp)

ε (zp)) .

Given a finite collection of at least two space-time points z = {za}a∈A, we again

consider the corresponding labelled binary tree tz = (T, n) as in Section 2.1, with the

leaves of T identified with the index set A. Recall that the nodes VT of T are given by

subsets of A, with inner nodes V̊T given by subsets with at least two elements and the

root of T given by A itself.

Recall from [CH16, Def. A.14] the following definition.

Definition 5.1 A “consistent cumulant homogeneity” consists, for each finite index set

A, each binary tree T over A as above, and each choice of indices α : A→ [c, d+2

2
], a

function c
(α)
T : V̊T → R+ satisfying furthermore
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• For every B ⊂ A,
∑

v∈V̊T :v∩B 6=∅ c
(α)
T (v) ≥ ∑

a∈B αa.

• For every u ∈ V̊T ,
∑

v∈V̊T :v⊂u c
(α)
T (v) ≤ ∑

a∈u αa.

• If |A| ≥ 3, then for every u ∈ V̊T with |u| ≤ 3, one has
∑

v∈V̊T :v⊂u c
(α)
T (v) <

(d+ 2)(|u| − 1).

Remark 5.2 Applying the first two conditions with B = A and u = A respectively

implies in particular that
∑

v∈V̊T
c

(α)
T (v) =

∑

a∈A αa.

We will now display a consistent cumulant homogeneity such that, for every finite

set A, space-time points {za}a∈A, and choices α : A→ [c, d+2

2
], We have the bound

|κA({η(αa)
ε (za)}a∈A)| .

∏

u∈V̊T

2c
(α)
T (u)n(u) , (T, n) = tz . (5.2)

We claim that one possible choice is obtained by setting

c
(α)
T (u) =

∑

a∈A

αa2
−d(u,a) , (5.3)

where

d(u, a) =







|{v ∈ V̊T : a ∈ v ⊂ u}| if a ∈ u and u 6= A,

|{v ∈ V̊T : a ∈ v}| − 1 if u = A,

+∞ if a 6∈ u.

(5.4)

Proposition 5.3 The choice (5.3) is a consistent cumulant homogeneity.

Proof. The first two conditions of Definition 5.1 follow immediately from the structure

of the formula (5.3), in particular the facts that 2−d(u,a) is positive, vanishes for a 6∈ u,

and is such that
∑

u∈V̊T
2−d(u,a) = 1.

Regarding the last condition, the case |u| = 3 follows from the fact that the second

condition holds and αa ≤ d+2

2
. The case |u| = 2 follows from the condition |A| ≥ 3

which guarantees that the corresponding sum is bounded by d+2

2
since d(u, a) = 1 in

this case.

Lemma 5.4 Setting α = infa∈A αa and α = supa∈A αa, one has c
(α)
T (u) ∈ [α, α] for

u ∈ V̊T \ {A} and c
(α)
T (A) ∈ [2α, 2α].

Proof. By convexity of (5.3), it suffices to consider the case where αa = 1 for all a.

We proceed by induction on the size of A. When |A| = 2, one has V̊T = {A}, so that

d(A, a) = 0 and therefore c
(α)
T (A) = 2 as claimed.

Assume now that |A| > 2 and fix a binary tree T over A. Write A1 and A2 for the

children of A in V̊T , so that A = A1 ⊔ A2. We distinguish two cases. In the first case,

|A1| ∧ |A2| ≥ 2, so that the tree T can naturally be thought of as two trees T1, T2 over

A1, A2 joined by their roots. By (5.4) (in particular the fact that there is an additional

−1 at the root), we then have

c
(α)
T (A1) =

1

2
c

(α)
T1

(A1) , c
(α)
T (A2) =

1

2
c

(α)
T2

(A2) , c
(α)
T (A) =

1

2
(c(α)
T1

(A1) + c
(α)
T2

(A2)) ,

while c
(α)
T (u) = c

(α)
Ti

(u) for all other u ∈ V̊T , with i ∈ {1, 2} depending on whether

u ⊂ A1 or u ⊂ A2. We conclude by using the induction hypothesis, which implies

that c
(α)
T1

(A1) = c
(α)
T2

(A2) = 2.
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In the second case, we have |A1| = 1 and |A2| ≥ 2 (or vice-versa), the case |A| = 2
having already been dealt with. In this case, the tree T consists of a subtree T2 overA2

as before, with an additional root vertex A and single extra leaf. In this case, we have

c
(α)
T (A2) =

1

2
c

(α)
T2

(A2) , c
(α)
T (A) = 1 +

1

2
c

(α)
T2

(A2) ,

whence we conclude as before.

Proposition 5.5 Under Assumption 2.1, the bound (5.2) holds for the choice (5.3).

Proof. It follows from Assumption 2.1 and (5.1) that

|κA({η(αa)
ε (za)}a∈A)| . εcε(n(A))−

∑
a∈A αa2cε(n(A))n(A)

∏

u∈V̊T

εcε(n(u))2cε(n(u))n(u) ,

(5.5)

where

cε(n) =

{

c if n ≥ log2
1

ε ,

c otherwise.
(5.6)

Let now ĉ : V̊T → [c, c] be any map such that ĉ(A) +
∑

u∈V̊T
ĉ(u) =

∑

a∈A αa, and

rewrite (5.5) as

|κA({η(αa)
ε (za)}a∈A)| . εcε(n(A))−ĉ(A)2cε(n(A))n(A)

∏

u∈V̊T

εcε(n(u))−ĉ(u)2cε(n(u))n(u) .

(5.7)

We now note that (5.6) implies that

εcε(n)−ĉ2cε(n)n = (ε2n)cε(n)−ĉ2ĉn ≤ 2ĉn ,

for every ĉ ∈ [c, c], uniformly over n ∈ Z and ε ∈ (0, 1]. Inserting this into (5.7)

immediately yields that, uniformly in ε, one has

|κA({η(αa)
ε (za)}a∈A)| . 2ĉ(A)n(A)

∏

u∈V̊T

2ĉ(u)n(u) . (5.8)

Since the map c
(α)
T is of the desired type by Lemma 5.4 (modulo the additional factor 2

at the root which is taken care of explicitly in (5.8)), the claim follows.

Corollary 5.6 For any α ∈ (c, d+2

2
), one has η(α)

ε → 0 in probability in Cβ for every

β < −α. In particular, ηε → 0 in probability in Cβ for every β < −1 and ζε → 0 in

probability in Cβ for every β < d−2

2
. The same holds for η(α)

ε 1A for any fixed Borel set

A.

Proof. The first statement is an immediate consequence of [CH16, Thm 2.31]. The

fact that we can multiply η(α)
ε by an arbitrary indicator function follows from the fact

that these bounds do not involve the derivative of the test function in this case.
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5.2 Power-counting conditions

By (5.3)–(5.4), the quantity hc,D(A) defined in [CH16, Def. A.24] can be estimated by

hc,D(A) =
∑

a∈D

2−d(D,a)αa ≥ 2−(|D|−1)
∑

a∈D

αa . (5.9)

This is because for D ∈ V̊T with D 6= A, one always has d(D, a) ≤ |D| − 1. Further-

more, by [CH16, Rem. 2.28], one has jD(A) ≥ d+2

2
− κ for all typed sets A and D.

These observations allow us to conclude the following.

Lemma 5.7 All the decorated trees generated by the rule R of Definition 4.4 are c-

super regular in the terminology of [CH16, Def. A.27].

Remark 5.8 Since our scaling and degree assignment are fixed throughout and since

we consider all cumulants, i.e. we choose LCum to contain all possible cumulants, we

omit these from our notation.

Proof. We reduce ourselves to considering symbols of negative degree since the claim

then follows automatically for the remaining ones. These symbols are listed in (4.15).

Note also that the definition of c-super regularity is non-trivial only for trees that con-

tain at least three noises, so that it suffices to consider the symbols

, , , , , , , , . (5.10)

By (5.9), it is sufficient to verify that for every subtree τ containing k ≥ 2 instances of

a noise one has the bound

deg τ +
(d+ 2

2
∧ 2−(k−1)

k
∑

i=1

| degΞi|
)

− κ ≥ 0 ,

where Ξi denotes the ith noise appearing in τ . This can be seen simply by inspection

of the list (5.10).

5.3 Special bounds

For some of the symbols in our regularity structure, we will bounds that are stronger

than what is suggested by the degrees of the symbols in question. In this statement, ϕ
denotes an arbitrary measurable function with

sup
z

|ϕ(z)| ≤ 1 , suppϕ ⊂ B(0, 1) . (5.11)

Proposition 5.9 Let δ > 0 be as in Section 2. For α ∈ [−δ, 1] and β = − 1

2
− α, we

have the bounds

(Π̂ε )(ϕλz ) . εαλβ , (Π̂ε )(ϕλz ) . ε
1
2
+αλβ , (Π̂ε )(ϕλz ) . ε1+αλβ ,

where we write X . Y as a shorthand for the existence, for every p ≥ 1, of a constant

C such that E|X |p ≤ CY p, uniformly over all λ ≤ 1, ε ≤ 1 and ϕ as in (5.11).
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Proof. Recall that, by Proposition 5.5, we can view any η(θ)
ε as in (5.1) for θ ∈ [ 1

2
−δ, 5

2
]

as a “noise” of regularity −θ whose “norm”, as measured by [CH16, Def. A.18] with

respect to the cumulant homogeneity just described remains uniformly bounded as

ε→ 0.

In particular, we can write

Πε = εα(K ∗ η(2)
ε )2η

( 1
2
+α)

ε ,

and we can apply [CH16, Thm 2.31], showing that the BPHZ renormalisation of this

term satisfies the required bounds. Recall that Π̂ε doesn’t quite agree with the

BPHZ renormalisation, but the error between the two is given by 2ε3/2δgε( )Πε

with δgε as in (4.19), which is easily seen to satisfy the required bounds.

The other two terms can be dealt with similarly by writing

Πε = ε
1

2+α (K ∗ η(2)
ε )η

( 1
2
+α)

ε , Πε = ε1+αη
( 1
2
+α)

ε ,

thus concluding the proof.

Corollary 5.10 For every κ > 0, every α ∈ [0, 1), and every Borel set A ⊂ Rd+1, one

has the bound (E‖1Aξε‖pCw)
1/p

. ε−α with w = α− 5

2
− κ.

Proof. This follows from the third bound of Proposition 5.9 by Kolmogorov’s criterion,

using the fact that Π̂ε = ε3ξε and that we can move the multiplication by 1A onto

the test function.

5.4 Tightness and convergence for the noise

In this section, we show that the convergence announced in Theorem 4.8 holds. As

usual, convergence is obtained by first showing tightness and then identification of the

limiting distribution. More precisely, we prove the following.

Theorem 5.11 One has ξε → ξ weakly in Cα for every α < − d+2

2
.

It turns out that this statement is a relatively straightforward consequence of the

following proposition. Writing κp(X) for the pth cumulant of a real-valued random

variable X , one has the following.

Proposition 5.12 For p ≥ 2, we have the bound

|κp(〈η, ϕλ0 〉)| . (λ−cp + λ−(d+2)(p−1)) ∧ λ−cp ,

uniformly over all λ ∈ R+ and all ϕ as in (5.11).

Before we turn to the proof of Proposition 5.12, let us show how to deduce Theo-

rem 5.11 from it. First, we have the following corollary.

Corollary 5.13 For any κ ≤ 1

2
and p ≥ 2, one has the bounds

E|〈ξε, ϕλ0 〉|p . λ−
d+2

2
p ,

uniformly over λ ≤ 1, ε ≤ 1 and ϕ as in (5.11).
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Proof. By simple rescaling, it is straightforward to see that the required bound is equiv-

alent to the bound

E|〈η, ϕλ̄0 〉|p . λ̄−
d+2
2
p , (5.12)

uniformly over λ̄ ≤ 1/ε and ε ≤ 1.

For even integers p ≥ 2, Proposition 5.12 implies that |κp(〈η, ϕλ0 〉)| . λ−
d+2

2
p ∧

λ−cp, so that.

E|〈η, ϕλ0 〉|p . λ−
d+2

2
p ∧ λ−cp , (5.13)

It remains to observe that (5.13) implies that E|〈η, ϕλ̄0 〉|p . λ̄−cp, uniformly over all

λ̄ > 0, for any c ∈ [c, d+2

2
]. Since (5.12) is of this form and our assumptions guarantee

that the values of c appearing there fall into the correct interval, this concludes the

proof.

Proof of Theorem 5.11. Using [Hai14, Eq. 10.4] (which is nothing but an analogue of

Kolmogorov’s continuity criterion) and the compactness of the embeddings Cα ⊂ Cβ
for α > β (over any bounded domain), it follows from Corollary 5.13 that the laws ξε
are tight in Cα for every α < − d+2

2
.

It remains to show that every limit ξ of a convergent subsequence of ξε is space-

time white noise. It thus suffices to show that, for every ϕ ∈ C∞
0 with

∫

ϕ2(z) dz = 1,

ξ(ϕ) is centred normal with variance 1. Since all moments of 〈ξε, ϕ〉 remain bounded

as ε→ 0 by Corollary 5.13, one has

κp(ξ(ϕ)) = lim
ε→0

κp(〈ξε, ϕ〉) = lim
ε→0

ε−
(d+2)p

2 κp(〈η, ϕ1/ε
0 〉)

. lim
ε→0

ε−
(d+2)p

2 (εcp + ε(d+2)(p−1)) .

For p ≥ 3, this vanishes, thus showing that ξ(ϕ) is Gaussian. It clearly has zero mean

since this is already the case for 〈ξε, ϕ〉. Its variance is given by

E|〈ξε, ϕ〉|2 = ε−(d+2)

∫

κ2(z, z̄)ϕ
1/ε
0 (z)ϕ

1/ε
0 (z̄) dz dz̄ .

Note now that, for every ε > 0, every δ ∈ [0, 1] and any z, z̄ ∈ Rd+1, one has the

bound

|ϕ1/ε
0 (z) − ϕ

1/ε
0 (z̄)| . εd+2(ε‖z − z̄‖)δ .

Recalling that
∫

ϕ2 = 1 and that
∫

κ2(0, z) dz = 1 by (1.2), we thus obtain

|E|〈ξε, ϕ〉|2 − 1| =
∣

∣

∣
ε−(d+2)

∫

κ2(z, z̄)ϕ
1/ε
0 (z)(ϕ

1/ε
0 (z̄) − ϕ

1/ε
0 (z))dz dz̄

∣

∣

∣

. εδ
∫

∣

∣

∣
κ2(z, z̄)ϕ

1/ε
0 (z)

∣

∣

∣
‖z − z̄‖δ dz dz̄

. εδ
∫

(‖z′‖−2c ∧ ‖z′‖−2c)‖z′‖δ dz′ . εδ .

Here, we used the fact that the integral of ϕ
1/ε
0 is independent of ε, as well as our

assumptions (1.2) and (2.1) on the covariance function of η. In particular, we choose

δ as in the definition of c, see Section 2, whence 2c − δ > d + 2 which guarantees

integrability at infinity. (Integrability at 0 is guaranteed by 2c − δ = d − δ < d + 2.)
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Proof of Proposition 5.12. We expand the expression for the cumulant as

κp(〈η, ϕλ0 〉) =
∫

κp(z1, . . . , zp)ϕλ0 (z1) . . . ϕλ0 (zp) dz1 . . . dzp . (5.14)

In order to bound this integral, we use a simplified version of the type of multiscale

analysis used in [HS16, HQ15]. Let us recall how this works.

We now write t = (T, n) for a generic binary tree, together with a scale assignment

as above (i.e. we enforce the fact that n is monotone) and T for the set of all such

t. Given t ∈ T, we write Vt / Et for the vertex / edge set of the corresponding tree

and nt for the scale assignment. In particular, nt(Ωp) denotes the scale assignment for

the root, which controls the diameter of the set {z1, . . . , zp} in Rd+1. The number

p will always be considered fixed, so we do not include it explicitly in our notation.

Denoting by T the map T : (z1, . . . , zp) 7→ t ∈ T defined at the start of Section 2, we

set Dt = T −1(t) for the set of all configurations of points z ∈ (Rd+1)p giving rise to

a given combinatorial data. Then, it was shown in [HQ15, Lem. A.13] that, for every

bounded Borel set U ∈ Rd+1 one has the bound

|Dt ∩ {z : z1 ∈ U}| . |U |
∏

A∈V̊t

2−(d+2)nt(A) ,

where | · | denotes Lebesgue measure. Furthermore, by construction,
⋃

t∈T Dt is of full

Lebesgue measure.

Without loss of generality, we can restrict ourselves to the case where the support

of ϕ has diameter bounded by 1 in the parabolic distance. With all of this notation at

hand, we then bound (5.14) by

|κp(〈η, ϕλ0 〉)| . λ−(d+2)p
∑

t∈T

|Dt ∩ {z : zi ∈ suppϕλ0 ∀i}| sup
z∈Dt

|κp(z1, . . . , zp)| .

We simplify this expression as follows. First, we note that

Dt ∩ {z : zi ∈ suppϕλ0 ∀i} = ∅

as soon as 2−n(Ωp) ≥ λ, since the support of ϕλ0 is bounded by λ, so that we can restrict

the sum above to those t satisfying 2−n(Ωp) ≤ λ. Furthermore, one has

|Dt∩{z : zi ∈ suppϕλ0 ∀i}| ≤ |Dt∩{z : z1 ∈ suppϕλ0}| . λd+2
∏

A∈V̊t

2−(d+2)nt(A) .

Combining this with Assumption 2.1, we conclude that

|κp(〈η, ϕλ0 〉)| . λ(d+2)(1−p)
∑

t∈T

12−n(Ωp)≤λ 2
c(Ωp) nt(Ωp)

∏

A∈V̊t

2(c(A)−(d+2))nt(A) .

We treat separately the cases λ ≤ 1 and λ ≥ 1. In the former case, we can apply

[HQ15, Lem. A.10] with the distinguished vertex ν⋆ appearing there equal to the root

Ωp. The first condition appearing there is then satisfied by the fact that 2c− (d+2) < 0
by assumption, while the second condition is empty and therefore trivially satisfied.

Note that the shape T of the tree is fixed in [HQ15, Lem. A.10], while we also sum

over all possible shapes, but since there are finitely many of them for any fixed p, this

just yields an additional prefactor. We thus obtain the bound

|κp(〈η, ϕλ0 〉)| . λ(d+2)(1−p)
∑

t∈T

12−n(Ωp )≤λ 2
c nt(Ωp)

∏

A∈V̊t

2(c−(d+2))nt(A)
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. λ(d+2)(1−p)−c
∏

A∈V̊t

λd+2−c .

Since V̊t contains exactly p − 1 elements (the tree T is binary and has p leaves), we

finally obtain

|κp(〈η, ϕλ0 〉)| . λ−pc ,

as required.

The case λ > 1 is split into two subcases. If p ≥ 3, we use the fact that |κp(z)| .
κ̄p,c(z) uniformly over all z, so that, using [HQ15, Lem. A.10] as above, we have

|κp(〈η, ϕλ0 〉)| . λ(d+2)(1−p)
∑

t∈T

12−n(Ωp)≤λ 2
c nt(Ωp)

∏

A∈V̊t

2(c−(d+2))nt(A) . λ−pc .

Note that, in order to be able to apply that result, we need to verify that, for every

subtree t̂ of t spanned by some subset of its leaves satisfies
∑

A∈V̊̂t
α(A) < 0, where

α(A) = 2c− (d+ 2) if A = Ωp and α(A) = c− (d+ 2) otherwise. This is of course

trivially satisfied as soon as t̂ 6= t since c < d + 2 by assumption. The exponent at the

root however is given by 2c − (d + 2), which is positive, but since p ≥ 3, the sum of

all exponents is given by 2c− (d + 2) + (p− 2)(c− (d + 2)) = pc − (d + 2)(p− 1),

which is indeed negative for p ≥ 3 and δ < d+2

6
,which we assume w.l.o.g..

It remains to consider the case p = 2 and λ > 1. In this case, the above computation

reduces to

|κ2(〈η, ϕλ0 〉)| . λ−(d+2)
(

∑

1≤2−n≤λ

2(2c−(d+2))n +
∑

2−n<1

2(2c−(d+2))n
)

. λ−(d+2) ,

as required, thus concluding the proof.

We also use the following convergence results which do not strictly speaking fol-

low from Theorem 5.11 since multiplication by an indicator function (even that of a

hypercube) is not a continuous operation on Cβ for β < 0.

Lemma 5.14 Let ξε,D = ξε1R×D and ξ+ε,D = ξε1R+×D. Then, ξε, ξε,D , and ξ+ε,D
jointly weakly converge to limits ξ, ξD and ξ+D .

Proof. The proof is identical to that of Theorem 5.11, using the fact that all bounds

we used are uniform over test functions as in (5.11), so that multiplying them by the

indicator function of some domain changes nothing.

5.5 Boundary term

Recall that we have set

Π̂ε = Πε −
d

∑

i=1

ε1−
d
2 (ci,0δ∂i,0D + ci,1δ∂i,1D) , (5.15)

where ∂i,0D = {x ∈ D : xi = 0} and ∂i,1D = {x ∈ D : xi = 1} and the constants

are given by

ci,j =

∫

R+

Qi,j(s) ds , (5.16)
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where the function Qi,j is defined as follows. For i = 1, . . . , d, write ιi : R × Rd →
Rd+1 for the map given by

ι−1
i (t, x) = (xi, v) , v = (t, x(i)) ,

where x(i) ∈ Rd−1 denotes the vector obtained from x by deleting the ith coordinate.

With this notation, we then set

Qi,0(s) =

∫

R+×Rd

(P ◦ ιi)(s+ β, v)[(κ2 ◦ ιi)(s− β, v)− (κ2 ◦ ιi)(s+ β, v)]dβdv ,

Qi,1(s) =

∫

R+×Rd

(P ◦ ιi)(s+ β, v)[(κ2 ◦ ιi)(β − s, v)− (κ2 ◦ ιi)(−s− β, v)]dβdv .

Remark 5.15 We will show in Lemma 5.21 below that both the integrands in the defi-

nition ofQi,j and the functionsQi,j themselves are integrable, so that these expressions

are all finite.

Remark 5.16 The formula given above is valid for the case of Neumann boundary

conditions. In the case of Dirichlet boundary conditions, a similar formula holds, but

the precise values of the constants do not matter since they do not affect the solutions.

Note that although P ◦ιi 6= P , it does not depend on i, while κ2◦ιi does depend on

i in general, since we do not assume that the driving noise is isotropic. We henceforth

write P̂ = P ◦ ιi. One of the main results of this section is that the renormalised model

on vanishes in a suitable sense as ε→ 0. We first provide a bound on its expectation,

which requires the bulk of the work. For the formulation of this result, we write B1
0 for

the set of all test functionsϕ ∈ C1
0 with support contained in the parabolic ball of radius

1 and such that max{‖ϕ‖∞, ‖Dϕ‖∞} ≤ 1.

Proposition 5.17 With Π̂ε defined as in (5.15), one has for d ∈ {2, 3} and any

κ > 0 small enough,

|E(Π̂ε )(ϕλz )| . εκλ−
d
2
−κ , (5.17)

uniformly over ε, λ ≤ 1, z ∈ Rd+1, and ϕ ∈ B1
0.

Before we turn to the proof, we introduce a number of notations and preliminary

bounds. Write G for the reflection group generated by “elementary” reflections across

the 2d planes containing the faces ofD. The group G is naturally identified with Zd (as

a set, not as a group!) since for each k ∈ Zd there exists exactly one element Rk ∈ G
mapping k + D into D. We also write G ∋ R 7→ (−1)R ∈ {−1, 1} for the group

homomorphism mapping the elementary reflections to −1. We will write Λ: Rd+1 →
R ×D for the map such that Λ ↾ R × (k+D) = id×Rk and S : Rd+1 → {−1, 1} by

S ↾ R × (k +D) = (−1)Rk .

With these notations, it follows from Proposition A.1 that the truncated Neumann

and Dirichlet heat kernels are such that for z ∈ R ×D one has the identities
∫

R×D

KNeu(z, z
′)f (z′) dz′ =

∫

Rd+1

K(z − z′)f (Λ(z′)) dz′ ,

∫

R×D

KDir(z, z
′)f (z′) dz′ =

∫

Rd+1

S(z′)K(z − z′)f (Λ(z′)) dz′ .

(5.18)

(Note that S is ill-defined on the measure zero set consisting of the reflection planes,

but since it always appears in an integral this does not matter.)
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Lemma 5.18 Let U ⊂ Rd+1 and let Φ: U → Rd+1 be a diffeomorphism between U
and its image such that ‖DΦ−1‖ is bounded uniformly over Φ(U ). Assume furthermore

that z is such that ‖z − z′‖ ≥ λ for all z′ ∈ U . Then,

∫

U

K(z − z′) |κ(ε)
2 (z,Φ(z′))|dz′ . ε

d
2
+κλ−

d
2
−κ .

for all κ ∈ [0, d
2

].

Proof. We write U = U1 ⊔ U2 where

U1 = {z′ ∈ U : ‖z − z′‖ ≥ ‖z − Φ(z′)‖} .

Since ‖z−z′‖ ≥ λ for z′ ∈ U by assumption, we have the boundK(z−z′) . λ−d. On

U1, it follows from the definition that K(z − z′) . ‖z − Φ(z′)‖−d. As a consequence,

we obtain the bound
∫

U1

K(z − z′) |κ(ε)
2 (z,Φ(z′))|dz′ .

∫

Φ(U1)

(‖z − z′‖−d ∧ λ−d)|κ(ε)
2 (z, z′)| dz′

.

∫

Rd+1

(‖z′‖−d ∧ (λ/ε)−d)̺2(‖z′‖) dz′ . 1 ∧ εdλ−d

≤ ε
d
2
+κλ−

d
2
−κ ,

as claimed. On U2 on the other hand, we use the fact that ̺ is a decreasing function, so

that
∫

U2

K(z − z′) |κ(ε)
2 (z,Φ(z′))|dz′

. ε−2

∫

U2

(‖z − z′‖−d ∧ λ−d)̺2(‖Sε(z − Φ(z′))‖) dz′

. ε−2

∫

Rd+1

(‖z − z′‖−d ∧ λ−d)̺2(‖Sε(z − z′)‖) dz′ ,

which is then bounded exactly as above.

Lemma 5.19 For any fixed c > 0, one has
∫

‖z‖≥c

|κ(ε)
2 (0, z)| dz . εd+2δ ,

uniformly over ε ∈ (0, 1].

Proof. We can assume that ε < c, so that

|κ(ε)
2 (0, z)| . εd+2+2δ‖z‖−d−2−2δ

by Assumption 2.1, and the bound follows at once.

Proof of Proposition 5.17. We now consider the Neumann case, the Dirichlet case fol-

lows from a virtually identical calculation. We start by bounding the expectation of

(Π̂ε )(ϕλz ). By the reflection principle (5.18), the correction due to the Neumann

boundary conditions is given by
∫

R×D

KNeu(z, z
′)ξε(z

′)dz′ −
∫

Rd+1

K(z − z′)ξε(z
′)dz′
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=

∫

Rd+1

K(z − z′)(ξε(Λz
′) − ξε(z

′))dz′ .

It then follows from the definitions that

E(Π̂ε )(ψ) = ε−
d
2

∫

R×D

ψ(z)

∫

Rd+1

K(z − z′)(κ(ε)
2 (z,Λz′) − κ(ε)

2 (z, z′))dz′ dz .

(5.19)

Writing λ = λψ for the diameter of suppψ, we aim to give a bound of the form

|E(Π̂ε )(ψ)| . εκλ−
d
2
−κ(λd‖ψ‖∞ + λd+1‖Dxψ‖∞) , (5.20)

for any κ > 0 small enough, uniformly over ε, λ ≤ 1. We restrict ourselves to the case

λψ ≤ 1

8
and we set

Wψ = {z : ∃z′ ∈ suppψ ‖z − z′‖ ≤ λψ} .

We furthermore assume for the moment that

Wψ ⊂ R × [−3/4, 3/4]d (5.21)

and that, whenever Wψ ∩ ∂D = ∅, one has Wψ ⊂ D. We will see later that it is

always possible to reduce oneself to this case. Finally, for x ∈ Rd, we write |x|0 for

the number of vanishing coordinates of x and we set dψ = sup{|x|0 : (t, x) ∈ Wψ}.

We treat the different cases separately.

The case dψ = 0. In this caseWψ∩∂D = ∅, so that suppψ∩∂D = ∅ and in particular

(Π̂ε )(ψ) = (Πε )(ψ). We then have

|E(Π̂ε )(ψ)| ≤ ε−
d
2

∫

R×D

|ψ(z)|
∫

R×Dc

K(z−z′)(|κ(ε)
2 (z,Λz′)|+|κ(ε)

2 (z, z′)|)dz′ dz .
(5.22)

We break the inner integral into a finite sum of integrals over R× (k+D), since K has

compact support and z ∈ R ×D. Since we can restrict z to the support of ψ, we have

|x−x′| ≥ λ for all x′ ∈ k+D with k 6= 0 by the definition of Wψ. We can then apply

Lemma 5.18 with U = R× (k+D) and Φ = Λ for the first term, while Φ = id for the

second term. It follows that |E(Π̂ε )(ψ)| is bounded by

εκλ−
d
2
−κ

∫

|ψ(z)| dz , (5.23)

which is indeed bounded by the right hand side of (5.20).

The case dψ = 1. In this case, the support of ψ is located near one of the faces

of D (say ∂i,0D), but its distance to the other faces is at least λ. Write R for the

element of G which corresponds to reflection around the plane containing ∂i,0D and

πi : Rd+1 → Rd+1 for the orthogonal projection onto that plane. We also write Ei =
{(t, x) : xi < 0}.

We first note that

E(Πε )(ψ) = ε−
d
2

∫

R×D

ψ(z)

∫

Ei

K(z − z′)(κ(ε)
2 (z,Rz′) − κ(ε)

2 (z, z′))dz′ dz +R ,

(5.24)

where |R| is bounded by (5.23). Indeed, the integrands in (5.19) and (5.24) vanish on

D and coincide on RD. Their integral over the complement of these two regions is
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then bounded exactly as before by applying Lemma 5.18 to finitely many translates of

D. By Lemma 5.19, we can furthermore replace K by P so that

E(Πε )(ψ) = ε−
d
2

∫

R×D

ψ(z)

∫

Ei

P (z − z′)(κ(ε)
2 (z,Rz′) − κ(ε)

2 (z, z′))dz′ dz + R̃ ,

(5.25)

where |R̃| is bounded by (5.23). The reason for this is that P −K is supported outside

of an annulus of radius 1 and ψ is supported at a distance of at most 1/4 from the

reflection plane of R, and one has ‖z −Rz′‖ ≥ 1/2 for all z, z′ with z ∈ suppψ and

‖z − z′‖ ≥ 1.

On the other hand, we claim that

ε1−
d
2 ci,0δ∂i,0D(ψ) = ε−

d
2

∫

R×D

ψ(πiz)

∫

Ei

P (z−z′)(κ(ε)
2 (z,Rz′)−κ(ε)

2 (z, z′))dz′ dz .

To see that this is the case, we first perform the change of variables z = ιi(s, v) and

similarly for z′, and we note that πiιi(s, v) = ιi(0, v), so that the right hand side is

given by

ε−
d
2

∫

R+×Rd

ψ(ιi(0, v))

∫

R−×Rd

P (ιi(s− s′, v − v′))

(κ(ε)
2 (ιi(s+ s′, v − v′)) − κ(ε)

2 (ιi(s− s′, v − v′))) d(s′, v′) d(s, v)

= ε−
d
2

∫

Rd

ψ(ιi(0, v)) dv

∫

R+

∫

R−×Rd

P (ιi(s− s′, v′))

(κ(ε)
2 (ιi(s+ s′, v′)) − κ(ε)

2 (ιi(s− s′, v′))) d(s′, v′) ds

= ε1−
d
2

∫

Rd

ψ(ιi(0, v)) dv

∫

R+

∫

R−×Rd

P (ιi(s− s′, v′))

(κ2(ιi(s+ s′, v′)) − κ2(ιi(s− s′, v′))) d(s′, v′) ds

Performing the substitution s′ 7→ −β and comparing to the definition of Qi,0, we

conclude that

E(Π̂ε )(ψ) = ε−
d
2

∫

R+

Qi,0

(s

ε

)

∫

Rd

((ψ◦ιi)(s, u)−ψ◦ιi)(0, u))du ds+R̃ . (5.26)

By Lemma 5.21, the function Qi,0 satisfies the bounds

sup
s∈R+

|Qi,0(s)| <∞ ,

∫

R+

|Qi,0(s)|ds <∞ ,

∫

R+

|Qi,0(s)|s ds <∞ .

Note now that the integral over u is restricted to the projection of the support of ψ
which is of volume at most λd+1 (since u consists of d − 1 spatial variables and one

time variable). Bounding ψ by its supremum, it follows that

E(Π̂ε )(ψ) . ε1−
d
2 λd+1‖ψ‖∞

∫

R+

|Qi,0(s)| ds+ |R| .

On the other hand, we can bound |(ψ ◦ ιi)(s, u)− ψ ◦ ιi)(0, u)| by |s| ‖Dxψ‖∞, which

similarly yields

E(Π̂ε )(ψ) . ε2−
d
2 λd+1‖Dxψ‖∞

∫

R+

|Qi,0(s)|s ds+ |R| .
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Combining these and choosing ψ = ϕλz so that ‖ψ‖∞ . λ−d−2 and ‖Dxψ‖∞ .

λ−d−3 yields a bound of the order ε−
d
2 (ελ−1 ∧ ε2λ−2), which does imply (5.17) since

− d
2
− κ ∈ (−2,−1).

The case dψ = 2. We claim that this case can be obtained as a consequence of the

bounds for the cases dψ = 0 and dψ = 1. We consider the case of dimension d = 2
(but the computation below is done in a way that keeps track of dimension and applies

to d = 3 as well) so that by (5.21)

Wψ ∩ {(t, x) : x1 = x2 = 0} 6= ∅ .

We then fix a smooth function χ : R → R+ such that suppχ ⊂ [0, 2] and such that
∑

k∈Z χk(x) = 1, where χk(x) = χ(x − k). For some fixed constant c > 1 and

integers n, ki and ℓ, we then set

χn,k,ℓ(z) = χn(− log |x|/ log 2)χk1(c2nx1)χk2(c2nx2)χℓ(c
222nt) .

By choosing c sufficiently large, we can guarantee that, for every n, k and ℓ, the func-

tion χn,k,ℓ is such that dχn,k,ℓ
∈ {0, 1}. Furthermore, there are only finitely many val-

ues of k (independently of n and ℓ) for which χn,k,ℓ 6= 0. This is because χn,k,ℓ(S2nz)

is independent of n. Fix now a test function of the form ψ = ϕλz0 and write

ψn,k,ℓ(z) = ϕλz0 (z)χn,k,ℓ(z) .

By construction, one has ψn,k,ℓ = 0 for n such that 2−n ≥ 2λ, so that

λψn,k,ℓ
≤ 2−n , ‖Dmψn,k,ℓ‖∞ . λ−d−2 2n|m| .

Applying the bounds we already obtained for dψ ∈ {0, 1}, we conclude that

|E(Π̂ε )(ψn,k,ℓ)| . εκ2n( d
2
+κ)λ−d−22−n(d+2) .

For any given n, the number of values for k and ℓ leading to non-vanishing λψn,k,ℓ
is

of the order of (λ2n)d, so that we eventually obtain the bound

|E(Π̂ε )(ψ)| . εκ
∑

2−n≥2λ

(λ2n)d2n( d
2
+κ)λ−d−22−n(d+2)

= εκλ−2
∑

2−n≥2λ

2n( d
2
+κ−2) . εκλ−

d
2
−κ ,

as claimed. The case of dimension d = 3 is identical, the only difference being that

ℓ now has two components. Note that this calculation breaks in d = 4 where the sum

over n diverges. This suggests that in this case one would have to add to Π̂ε an

additional correction term that charges faces of codimension 2.

The case dψ = 3. This is relevant only for d = 3, we shall however keep track of d
in our calculation to illustrate how this would behave in higher dimensions. We then

proceed in the same way as for the case dψ = 2, making use this time of the fact that

we already have the required bound for all test functions with dψ < 3. This time, we

have

Wψ ∩ {(t, x) : x1 = x2 = x3 = 0} 6= ∅ ,

and we set similarly to above

χn,k,ℓ(z) = χn(− log |x|/ log 2)χk1(c2nx1)χk2 (c2nx2)χk3(c2nx3)χℓ(c
222nt) .
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This time, for any given n, the number of values for k and ℓ leading to non-vanishing

λψn,k,ℓ
is of the order of (λ2n)d−1, which then yields similarly to above

|E(Π̂ε )(ψ)| . εκ
∑

2−n≥2λ

(λ2n)d−12n(d
2
+κ)λ−d−22−n(d+2)

= εκλ−3
∑

2−n≥2λ

2n( d
2
+κ−3) . εκλ−

d
2
−κ .

Note that this time the series actually converges for all d < 6.

To conclude, we justify the assumption (5.21) and the fact that, for Wψ ∩ ∂D = ∅,

one has Wψ ⊂ D. Indeed, by our assumption on λψ, it is always possible to enforce

this by applying a finite number of reflections around the planes {x : xi = 1/2}. If

suppψ intersects ∂i,1D for example, then we reflect around xi = 1

2
to have suppψ

intersect ∂i,0D instead. The only effect of this reflection is that, in order to obtain the

same answer, we only need to reflect the noise η around that plane. The effect of this

operation on its covariance function is to change the sign of the ith spatial coordinate

of its argument, which is why how we obtain Qi,1 rather than Qi,0 in (5.26).

We now have the main ingredients in place to prove the main result of this section.

Theorem 5.20 With Π̂ε defined as in (5.15), one has for d ∈ {2, 3} and any κ > 0
small enough,

‖(Π̂ε )(ϕλz )‖Lp . εκλ−
d
2
−κ , (5.27)

uniformly over ε, λ ≤ 1, z ∈ Rd+1, and ϕ ∈ B1
0.

Proof. Writing ψ = ϕλz , the triangle inequality yields

‖(Π̂ε )(ψ)‖Lp ≤ ‖(Π̂ε )(ψ) − E(Π̂ε )(ψ)‖Lp + |E(Π̂ε )(ψ)| ,

and we already obtained the required bound on the second term in Proposition 5.17,

so we focus on the first one. Furthermore, Π̂ε differs from Πε by a deterministic

quantity, so that we only need to bound

‖(Πε )(ψ) − E(Πε )(ψ)‖Lp .

By (4.7) combined with (5.18), this random variable equals

ε−
d
2

∫

R×D

ψ(z)

∫

Rd+1

K(z − z′)(:ηε(z)ηε(Λz
′):− :ηε(z)ηε(z

′):)dz′ dz . (5.28)

This time, we will not need to exploit the cancellation between these two terms on

R×D, so we simply bound both terms separately. The second term equals (Π̂ε )(ψ),

which is bounded by the right hand side of (5.27) by Theorem 4.8.

For the first term, we use the fact that K is compactly supported, so that it can be

bounded by a finite sum of terms of the type

ε−
d
2

∫

R×D

ψ(z)

∫

R×D

K(z −Rz′) :ηε(z)ηε(z
′): dz′ dz ,

with R ∈ G.

The expectation of the pth power of this expression is given by a multiple integral

with the integrand given by a sum of terms, each of which is a product of heat kernels

and of cumulants. At this stage, we note that the bound in [CH16] does not exploit any

further cancellations, so we can put absolute values everywhere, boundK(z−Rz′) by

‖z − z′‖−d, and use the bounds from that paper.
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5.6 Bounds on the function Q

It remains to prove

Lemma 5.21 Under Assumption 2.1,

sup
s∈R+

|Qi,0(s)|+
∫

R+

|Qi,0(s)|(1 + s) ds <∞ ,

and similarly for Qi,1.

Proof. We fix i and we simply write Q instead of Qi,0. In all the estimates below we

will use repeatedly the inequality |(κ2 ◦ ιi)(s−β, v)| ∨ |(κ2 ◦ ιi)(s+β, v)| . t−c∧ t−c.
We first estimate sups∈R+

|Q(s)|. Here β ∈ R+, v = (t, x), with x ∈ Rd−1.

|Q(s)| .
∫ ∞

0

∫ ∞

0

∫

Rd−1

P̂ (s+ β, v)t−c ∧ t−cdβ dv

.

∫ ∞

0

∫ ∞

0

e−(s+β)2/(4t)

√
t

t−c ∧ t−cdβ dt

.

∫ ∞

s

∫ ∞

0

e−1/t

√
t

|a|
(

(a2t)
−c ∧ (a2t)

−c
)

da dt

.

∫ ∞

0

e−1/t

t1−δ
dt

∫ t−1/2

0

a2δda+

∫ ∞

0

e−1/t

tc+1/2
dt

∫ ∞

t−1/2

da

a2c−1

.

∫ ∞

0

e−1/t

t3/2
dt+

∫ ∞

0

e−1/t

t3/2
dt <∞ ,

and the bound does not depend upon s. Here, to go from the second to the third line,

we set a = s+ β and we performed the substitution t 7→ a2t/4.

It remains to estimate
∫

R+
|Q(s)|(1 + s)ds. Again v = (t, x), with x ∈ Rd−1.

∫

R+

|Q(s)|(1 + s)ds .

∫ ∞

0

∫ ∞

0

∫

Rd

(1 + s)P̂ (s+ β, v)t−c ∧ t−cdv dβ ds

.

∫ ∞

0

∫

Rd

(a+ a2)P̂ (a, v)t−c ∧ t−cdv da

.

∫ ∞

0

∫ ∞

0

(a2 + a3)
e−1/t

√
t

(

a2t
)−c ∧

(

a2t
)−c

dt da

.

∫ ∞

0

e−1/t

t1−δ
dt

∫ t−1/2

0

(a1+2δ + a2+2δ)da

+

∫ ∞

0

e−1/t

tc+1/2
dt

∫ ∞

t−1/2

(a2−2c + a3−2c)da

.

∫ ∞

0

(

1

t2
+

1

t5/2

)

e−1/tdt+

∫ ∞

0

(

1

t2
+

1

t5/2

)

e−1/tdt <∞ ,

thus concluding the proof.

6 Auxiliary results

In this section, we collect a number of results that are more or less straightforward

consequences of known results, specialised to our setting. Throughout this section, we
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assume that we are working with the regularity structure defined in Section 4.2 and that

ξε is defined as in (4.1) and satisfies Assumption 2.1.

We will write Cγ as a shorthand for Dγ(T̄ ), where T̄ is the sector spanned by the

Taylor polynomials, and similarly for Cγ,η, etc. Note that for γ 6∈ N this is consistent

with the usual definition of Cγ .

Proposition 6.1 Let ζ+, ζ ∈ C− 5
2
−κ be such that ζ+(ϕ) = 0 for ϕ supported in {t <

0} and ζ+(ϕ) = ζ(ϕ) for ϕ supported in {t > 0} and let Π be an admissible model

with Π = ζ. Write K1+ = Kζ̂1+ for Kζ̂ defined as in [GH18, Sec. 4.5]. Define

KNeu1+ , Ki1+ andKNeu,i1+ analogously and, givenΦ, let V (0) be given by (4.22)

for some u(0) ∈ C3−κ.

Then, setting γ̄ = 3

2
− κ and η̄ = − 1

2
− κ, there exists a choice Φ ∈ C γ̄,η̄ such

that RV (0) = KNeu(G(u(0))ζ+) and V (0) belongs to Dγ̄,η̄. In particular, if ζ+ ∈ Cα
for some α > −1 is supported in R+ × D then, for t ∈ [0, 1], RV (0) coincides with

the solution of ∂tv = ∆v + G(u(0))ζ+ with vanishing initial condition, endowed with

Neumann (respect. Dirichlet) boundary conditions.

If furthermore ζn → ζ in C− 5
2
−κ and Πn → Π as admissible models, then one

has |||V (0)
n ;V (0)|||γ̄,η̄ → 0.

Remark 6.2 In principle, the model Π does contain non-trivial information through

its action on . This is because the kernel K∂ is not 2-regularising (condition 5.5 in

[Hai14, Ass. 5.1] fails to be satisfied), so that the extension theorem [Hai14, Thm 5.14]

cannot be applied here.

Proof. We aim to apply Corollary B.6. Let γ = 1

2
− 2κ, η = − 5

2
− κ (so that in

particular γ − η = 3 − κ), and let B = Cγ−η (on which Cγ−η then acts canonically

by multiplication) with the injection ιg = (Lγ−ηg) 1+ ∈ Dγ,η. (This is actually

independent of the model Π.) Given g ∈ B, we set

R̂g = g ζ+ ,

which is consistent with the reconstruction operator by our assumption on ζ+. We are

therefore in the setting of Corollary B.6 provided that we set K0 = KNeu.

This guarantees that we can find Φ ∈ Cγ+2,η+2 with the desired properties. The

continuity as a function of ζ+ and the model Π follows from the corresponding conti-

nuity statement in Corollary B.6.

Proposition 6.3 For every g ∈ C2−κ one can find Φ taking values in the Taylor poly-

nomials such that, setting

V = 1D+ g(Π̂ε ) +Φ ,

one has V ∈ D2−2κ,w̄ with w̄ = (1
2
− 2κ, 1

2
− 2κ, 0), and RεV = K(1+gΠ̂ε ).

Proof. We make use of [GH18, Lem. 4.12] and Corollary B.6. For this, similarly to

above, we set B = C2−κ and, for g ∈ B, we set

ιg
def

= 1D+L2−κ(gΠ̂ε ) , R̂g def

= 1+ gΠ̂ε .

Note that as a consequence of Proposition A.2 one has Π̂ε ∈ C γ̃,w̃ for any γ̃ > 0

and for w̃ = ( − 1

2
− κ)

3
, where (η)3

def
= (η, η, η). Since deg = −1 − κ, it follows

from [GH18, Lem. 4.3] that ιg ∈ Dγ,w for γ = 1 − 2κ and for w = (− 3

2
− 2κ)

3
. It
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then follows from [GH18, Lem. 4.12] that one can find a modelled distribution V ∈
D2−2κ,w̄ with w̄ = ( 1

2
− 2κ, 1

2
− 2κ, 0) of the form

V = 1D+(gΠ̂ε ) + Φ̂ ,

with Φ̂ taking values in the Taylor polynomials and such that

RεV = KR̂g = K(1+gΠ̂ε ) ,

thus concluding the proof.

Proposition 6.4 Equip the regularity structure (T ,G) with an admissible model Π in

the sense of Definition 4.2 and let G be a modelled distribution of the form

G = (L(g1) + L(g2,i)Ki( ) + L(g3)) ,

for some functions g1, g2 ∈ C2−κ and g3 ∈ C 3
2
−κ,w with w = (− 1

2
− κ, 1

2
− κ, 1

2
− κ).

Then, there exists a unique modelled distribution which we call R( G) such that

R( G) = R̃( G) on test functions whose support does not intersect R × ∂D and

such that

(R( G) −Πx( G(x)))(ψλx ) . λ−
1
2
−2κ

locally uniformly over x ∈ R ×D and uniformly over λ ∈ (0, 1].

Furthermore, there exists V ∈ D2−2κ,w̄ with w̄ = (1
2
−2κ, 1

2
−2κ, 0) taking values

in the translation invariant sector, and such that RV = KR( G). The function V is

of the form

V = 1+I( G) +Φ ,

with Φ taking values in the Taylor polynomials, and the map (g1, g2, g3,Π) 7→ V is

uniformly Lipschitz continuous on bounded sets.

Proof. We use again the same strategy of proof as in Proposition 6.3, but this time we

take as our space B the space of triples g = (g1, g2,i, g3) as in the statement of the

proposition and we set

ιg = 1+ G , R̂g = R( G) ,

where R is the reconstruction operator given by Theorem C.5. This time, we have

deg = − 3

2
− 2κ and deg = −1−κ, so that it follows from [GH18, Lem. 4.3] that

ιg, G ∈ Dγ,w for γ = 1

2
− 2κ and w = (− 3

2
− 2κ,− 1

2
− 2κ,− 3

2
− 2κ).

This shows that Theorem C.5 can indeed be applied to this situation since further-

more our admissible models are such that Π̂ε( τ )(ϕ) = 0 as soon as ϕ is supported

outside of R × D. The remainder of the proof then follows from an application of

[GH18, Lem. 4.12] in the same way as in the proof of Proposition 6.3.

Remark 6.5 Note that the results of [GH18] do not apply here since deg and deg

are both strictly below −1. Our saving grace is that the coefficients are sufficiently

well-behaved near the boundary of the domain.
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Appendix A Extension of the kernel

We fix a function K : Rd+1 → R which is smooth, non-anticipative (i.e. which is

supported on positive times), even in the spatial variable, agrees with the heat ker-

nel on [0, 1] × [−1, 1]d, and is supported on [0, 2] × [−2, 2]d. As usual, we write

K =
∑

n≥0 K̃n with K̃n satisfying the conditions of Definition B.1 with β = 2. We

furthermore write

Ki(x, y) = (y − x)iK(y − x) .

In order to implement integration against the heat kernel with Neumann boundary

conditions, we set

KNeu(z, z
′) =

∑

n≥0

∑

R∈G

ϕ(2n‖z − z′‖) K̃n(z −R(z′)) , (A.1)

(recall that the reflection group G was defined in Section 4.1) where ψ : R+ → R+ is a

smooth function such that ϕ(r) = 1 for r ≤ 2 and ϕ(r) = 0 for r ≥ 3. The kernel KDir

is defined similarly.

Furthermore, it is obvious that Assumption B.1 is satisfied with β = 2, since this is

the case for K itself. Note that this would not be true if it weren’t for the presence of

the cutoff ϕ in (A.1) since the kernel without cutoff has singularities at z = R(z′) for

all reflections R ∈ G.

Proposition A.1 One has KNeu(z, z
′) =

∑

R∈G K(z−R(z′)) for z, z′ ∈ ([0, 1]×D)2.

Proof. Recall that K̃n is supported in the ball of radius 2−n and note that ‖z−R(z′)‖ ≥
‖z − z′‖ whenever both z and z′ belong to R × D. As a consequence, for every

z, z′ ∈ ([0, 1]×D)2, every n ≥ 0 and everyR ∈ G, one has either K̃n(z−R(z′)) = 0
or ϕ(2n‖z − z′‖) = 1, so that one can replace ϕ by 1 in (A.1).

In order to state the main result of this appendix, we write D̃ = R+ × D as a

shorthand.

Proposition A.2 Let K , K∂ , Ki and K∂,i be as above and let ζ, ζc ∈ Cα with α ≤
−2 be such that ζ is supported on D̃ and ζc is supported on its complement. Then,

restricted to D̃, both Kζc and K∂ζ belong to Cγ,w for w = (α + 2)
3

and any γ > 0.

Furthermore, when restricted to D̃c, Kζ belongs to Cγ,w.

The same statements hold when α ≤ −3 with K and K∂ replaced by Ki and K∂,i

respectively and w = (α+ 3)
3
.

Proof. Consider the case z 6∈ D̃, so that

(DkKζ)(z) =
∑

n≥0

〈ζ,DkK̃n(z − ·)〉 .

We now note that 〈ζ,DkK̃n(z − ·)〉 = 0 whenever 2−n ≤ d(z, D̃), while in general

|〈ζ,DkK̃n(z − ·)〉| . 2−n(α+2−|k|) , (A.2)

by definition of Cα. It immediately follows that one has

|(DkKζ)(z)| . d(z, D̃)α+2−|k| , (A.3)
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so that one has indeed Kζ ∈ Cγ,(α+2)3 for every γ > 0. The case of Kζc, Kiζ and

Kiζ
c is dealt with in exactly the same way.

Consider now the case z ∈ D̃ and define

K̃R
n (z, z′) = ϕ(2n|z − z′|) K̃n(z −R(z′)) .

We then have the identity

(DkK∂ζ)(z) =
∑

n≥0

∑

R∈G\{id}

〈ζ,DkK̃R
n (z, ·)〉 . (A.4)

It follows again from the definition of Cα that the bound (A.2) holds with K̃n(z − ·)
replaced by K̃R

n (z, ·).
We also note that K̃R

n (z, ·) = 0 unless there exists a point z′ such that one has on

one hand ‖z−z′‖ . 2−n and on the other hand ‖z−R(z′)‖ . 2−n. In particular, there

exists a constantC such that, if d(z, ∂D̃) ≥ C2−n, one has K̃R
n (z, ·) = 0 unlessR = id

(which is excluded from the sum (A.4)). If on the other hand d(z, ∂D̃) ≤ C2−n, then

K̃R
n (z, ·) is only non-zero for at most eight different reflections R. Combining these

observations shows as before that the bound (A.3) holds with Kζ replaced by K∂ζ.

The proof for K∂ replaced by K∂,i is virtually identical.

Corollary A.3 For α ∈ (−3,−2] and ζ ∈ Cα supported on R+ ×D, one has K∂ζ ∈
Cα+2.

Proof. This follows immediately from Proposition A.2, combined with the fact that

Cγ,(η)3 ⊂ Cη whenever γ ≥ η > −1.

Proposition A.4 Let ζ ∈ Cα with α ≤ −2 be supported on R− ×Rd. Then, restricted

to R+ × Rd, KNeuζ belongs to Cγ,w for w = (α+ 2, γ, α+ 2) and any γ > 0.

Proof. With the same notations as above, we have for z = (t, x),

(DkKNeuζ)(z) =
∑

n≥0

∑

R∈G

〈ζ,DkK̃R
n (z, ·)〉 .

As before, the summand vanishes as soon as 2−n .
√

|t| and, for all z ∈ R+ × Rd

and n ≥ 0, only at most a fixed number of test functions K̃R
n (z, ·) are non-vanishing,

so that we obtain for t > 0 the bound

|(DkKNeuζ)(t, x)| . t
α+2

2
−k0 .

This then implies the required bound by the definition of the spaces Cγ,w.

Appendix B Integration and multiplication by smooth functions al-

most commute

We will use a form of the multilevel Schauder theorem of [Hai14, Sec. 5] with slightly

weaker assumptions on the kernel K . In this section, we fix a space-time scaling s as

in [Hai14]. (In our case this would be the parabolic scaling s = (2, 1, . . . , 1).)
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Definition B.1 A function K : Rd × Rd → R is said to be β-regularising if it can be

decomposed as

K(x, y) =
∑

n≥0

K̃n(x, y) , (B.1)

where the functions K̃n have the following properties:

• For all n ≥ 0, the map K̃n is supported in the set {(x, y) : ‖x− y‖s ≤ 2−n}.

• For any two multiindices k and ℓ, there exists a constant C such that the bound

|Dk
xD

ℓ
yK̃n(x, y)| ≤ C2(|s|−β+|ℓ|s+|k|s)n , (B.2)

holds uniformly over all n ≥ 0 and all x, y ∈ Rd.

Remark B.2 This is identical to [Hai14, Ass. 5.1], but with the last condition absent.

It turns out that the only place where the third condition of [Hai14, Ass. 5.1] is ever

used in [Hai14, Sec. 5] is in the proof of [Hai14, Lemma 5.19], which in turn is only

used for the proof of the extension theorem, [Hai14, Thm 5.14].

We assume that we are given a regularity structure of the type studied in [Hai14,

BHZ16], endowed with a family of integration maps Ik for multiindices k ∈ Nd. We

also assume that we are given a model (Π,Γ) which is admissible for the collection of

kernels Kk such that

Kk(x, y) = (y − x)kK0(x, y) . (B.3)

We will furthermore assume that our regularity structure contains the polynomial struc-

ture on Rd (for some fixed scaling) and that admissible models satisfy the usual identity

ΠxX
kτ = (• − x)kΠxτ for every τ ∈ T . Assuming that I0 is of order β, we assume

that Ik is of order β + |k|s, which is compatible with (B.3) in the sense that if K0 is

β-regularising in the sense of Definition B.1, then Kk is (β + |k|s)-regularising.

Lemma B.3 Let K0 be a β-regularising kernel for some β > 0 and let (Π,Γ) be an

admissible model for the collection of kernels Kk given in (B.3). Then, one has the

identities

ΠxIk(Xℓτ ) =
∑

m≤ℓ

(

ℓ

m

)

ΠxX
ℓ−mIk+m(τ ) , (B.4)

ΓxyIk(Xℓτ ) − Ik(Γxy(Xℓτ )) =
∑

m≤ℓ

(

ℓ

m

)

ΓxyX
ℓ−m(ΓxyIk+m(τ ) − Ik+m(Γxyτ )) .

Proof. We first consider the identity for Πx. We can assume that k = 0 since the

general case then follows at once by simply setting Ĩℓ = Ik+ℓ. We also assume

without loss of generality that τ is homogeneous of degree α, so that

(ΠxI0(Xℓτ ))(y) =

∫

(z − x)ℓK(y, z) (Πxτ)(dz) (B.5)

−
∑

k

1

k!

∫

(z − x)ℓ(y − x)kDk
xK(x, z) (Πxτ)(dz) ,

where the sum is constrained by |k|s < α+ β + |ℓ|s. On the other hand, one has

∑

m

(

ℓ

m

)

(ΠxX
mIn(τ )))(y) =

∑

m

(

ℓ

m

)

(y − x)m
∫

(z − y)ℓ−mK(y, z) (Πxτ)(dz)
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−
∑

m,k

(

ℓ

m

)

(y − x)m
∫

(y − x)k

k!
Dk
x((z − x)ℓ−mK(x, z)) (Πxτ)(dz) ,

where the sum this time is constrained by |k|s < α + β + |ℓ − m|s. The first term

in this expression clearly equals the first term of (B.5) by the binomial theorem, so we

only need to consider the second term. The integrand can be written as

∑

m,k

(

ℓ

m

)

(y − x)m
(y − x)k

k!
Dk
x((z − x)ℓ−mK(x, z))

=
∑

m,k,p

(−1)pℓ!

m!(ℓ−m− p)!p!(k − p)!
(y − x)k+m(z − x)ℓ−m−pDk−p

x K(x, z) ,

where p is constrained by p ≤ k ∧ (ℓ−m). Setting q = k− p and r = k+m, this can

be written as

∑

q,r,p

(−1)pℓ!

(r − q − p)!(ℓ− r + q)!p!q!
(y − x)r(z − x)ℓ−r+qDq

xK(x, z) ,

where the sum is constrained by the fact that all three variables are positive mutiindices

and furthermore

|r|s < α+ β + |ℓ|s , p+ q ≤ r , r ≤ ℓ+ q .

It follows that for any fixed values of q and r the above sum vanishes, except when

r − q = 0, so that it equals

∑

q

1

q!
(y − x)q(z − x)ℓDq

xK(x, z) ,

constrained by |q|s < α + β + |ℓ|s, which is precisely the integrand appearing in the

second term of (B.5).

The second identity immediately follows from the first one. Indeed, both sides take

values in the Taylor polynomials by the definition of an admissible model. Furthermore,

the first identity implies that

ΠxI(Γxy(Xℓτ )) =
∑

p≤ℓ

(

ℓ

p

)

(x− y)ℓ−pΠxI(XpΓxyτ ) (B.6)

=
∑

p≤ℓ

∑

m≤p

(

ℓ

p

)(

p

m

)

(x− y)ℓ−pΠxX
p−mIm(Γxyτ )

=
∑

m≤ℓ

∑

n≤ℓ−m

(

ℓ

m

)(

ℓ−m

n

)

(x− y)ℓ−m−nΠxX
nIm(Γxyτ )

=
∑

m≤ℓ

(

ℓ

m

)

Πx((ΓxyX
ℓ−m)Im(Γxyτ )) .

As a consequence of combining this with the first identity of (B.4), both sides of the

second identity of (B.4) are equal after applying Πx to them. Since furthermore both

sides belong to the space of Taylor polynomials on which Πx is injective, the claim

follows.
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Corollary B.4 In the context of Lemma B.3, write Kk for the integration operator

associated to Ik as in [Hai14] and write Lγ for the Taylor lift Cγ → Dγ . Then, for

every F ∈ Dγ
χ with χ ≤ 0 < γ and g ∈ Cθ−χ with θ ∈ (0, γ] (and such that θ+β 6∈ Z),

one can find a function ϕ ∈ Cθ+β such that, setting

G = Lθ+βϕ+
∑

|ℓ|s<θ−χ

1

ℓ!
Lθ−χ−|ℓ|s(Dℓg)Kℓ(F ) , (B.7)

one has G ∈ Dθ+β and RG = K(gRF ).

Proof. A straightforward calculation virtually identical to (B.6) shows that, as a conse-

quence of the first identity of Lemma B.3, one has

ΠxI(Lθ−χ(g)(x)F (x)) =
∑

|ℓ|s<θ−χ

1

ℓ!
Dℓg(x)ΠxIℓ(F (x)) . (B.8)

For F ∈ Dγ
χ, write Nk(F ) = Kk(F ) − Ik(F ), so that Nk(F ) takes values in the

Taylor polynomials of degree at most γ + β, and set

Φ = N0(Lθ−χ(g)F ) −
∑

|ℓ|s<θ−χ

1

ℓ!
Lθ−χ−|ℓ|s(Dℓg)Nℓ(F ) .

We then set

G = Φ +
∑

|ℓ|s<θ−χ

1

ℓ!
Lθ−χ−|ℓ|s(Dℓg)Kℓ(F )

= N0(F ) +
∑

|ℓ|s<θ−χ

1

ℓ!
Lθ−χ−|ℓ|s(Dℓg) Iℓ(F ) .

Combining this with (B.8), it follows that, setting Ḡ = K0(Lθ−χ(g)F ), one has

ΠxG(x) = ΠxN0(Lθ−χ(g)F )(x) +ΠxI(Lθ−χ(g)(x)F (x)) = ΠxḠ(x) . (B.9)

Combining this with the second identity of Lemma B.3 and writing Q̄ for the projection

onto the Taylor polynomials, we conclude that

Q̄(G(x) − ΓxyG(y)) = Q̄(Ḡ(x) − ΓxyḠ(y)) .

Since furthermore Ḡ and each of the terms Lθ−χ−|ℓ|s(Dℓg)Kℓ(F ) belong to Dθ+β ,

we conclude that one necessarily has G ∈ Dθ+β . This in turn implies that Φ ∈ Dθ+β ,

so that it is the lift of a function ϕ ∈ Cθ+β . By (B.9), we furthermore have RG =
RḠ = K(gRF ), thus concluding the proof.

One simple but very useful corollary of this result can be formulated as follows.

Corollary B.5 Let ζ ∈ Cχ with χ ≤ 0, let K and Kk be as above, and let g ∈ Cθ−χ
with θ > 0 and θ + β 6∈ Z. Then,

K(gζ) −
∑

|ℓ|s<θ−χ

Dℓg

ℓ!
Kℓζ ∈ Cθ+β .
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Proof. It suffices to consider the case of a regularity structure with symbol Ξ (plus

Taylor polynomials and their products with Ξ) and model mapping Ξ to ζ. We then

apply the reconstruction operator to both sides of (B.7) with F = Ξ.

In our context, we will need an analogous result, but for the spaces Dγ,η of [Hai14,

Sec. 6]. Furthermore, we will need to be able to cover situations in which [Hai14,

Prop. 6.16] does not apply because we consider elements taking values in a sector

of regularity below −2, so that the reconstruction theorem [Hai14, Prop. 6.9] fails.

We therefore make use instead of [GH18, Lem. 4.12] which, given F ∈ Dγ,η(V )

with V of regularity α ≥ η, allows us to specify a distribution ζ ∈ Cη such that

(RF )(ϕ) = ζ(ϕ) for every test function ϕ whose support does not intersect the plane

P = {(t, x) : t = 0}. We then have the following result.

Corollary B.6 Let γ > 0, let V be a sector of regularity α ≤ 0, and let w = (η, σ, µ)

with η, σ, µ ≤ α and η ≤ σ∧µ, η+β > −2, σ+β > −1. For each admissible model

Π, let B be a Banach space equipped with a bounded map ι : B → Dγ,w(V ). (Since the

latter depends on Π in general, this can also be the case for B and / or ι. In this case,

we assume that ι is bounded independently of the underlying model.) Let furthermore

R̂ : B → Cη be a continuous linear operator such that (R̂F )(ϕ) = (RιF )(ϕ) for every

F ∈ B and every test function ϕ whose support does not intersect the two boundaries.

We furthermore assume that we have a continuous bilinear map

Cγ−η × B → B (g, F ) 7→ g F

such that ι(gF ) = Lγ−η(g)ιF and such that

R̂(g F ) = g R̂(F ) ,

where the right hand side is meaningful thanks to the fact that γ > 0. Then, with γ̄ and

w̄ as in [GH18, Lem. 4.12], one can find ϕ ∈ C γ̄,w̄ such that the modelled distribution

G given by (B.7) (with suitably defined Kℓ, see the proof) belongs to Dγ̄,w̄ and satisfies

RG = K0(gR̂F ).

If furthermore one has a sequence of models Πn → Π with associated subspaces

Bn ⊂ Dγ,w(V ) and reconstruction operators R̂n, as well as a sequence Fn ∈ Bn
such that |||Fn;F |||γ,w → 0 and ‖R̂nFn − R̂F‖η → 0, then the sequence of modelled

distributions Gn constructed in the first part of the statement converges to G in the

sense that |||Gn;G|||γ̄,w̄ → 0.

Proof. The proof is virtually identical to that of Corollary B.4. The only difference

is that we use [GH18, Lem. 4.12] to define maps Kk : B → Dγ̄k,w̄k (with γ̄k and w̄k
defined like γ̄ and w̄, but with β replaced by β + |k|s) such that RKkF = KkR̂F .

(Since η + β > −2 by assumption, the assumptions of that lemma are satisfied and

RKkF is always well-defined as a distribution on the whole space-time.)

Appendix C Reconstruction theorem

In this section, we present a version of the reconstruction theorem that allows to bypass

to some extent the condition ν > −1 appearing in [GH18]. This appendix was written

in collaboration with Máté Gerencsér. In this section we assume that P0 = {0} × Rd,

P1 = R×∂D, and P = P0∪P1, and we write |x|Pi for the parabolic distance between

x and Pi. Generic points x, y, etc are space-time points.
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Throughout this section, we fix a regularity structure (T,G) containing the poly-

nomial structure and such that the product with elements of the polynomial struc-

ture T̄ is well-defined in T . We also only consider models such that Γx,y acts on

T̄ by translations by y − x. Let us recall from [Hai14, Sec 8] that, given any reg-

ularity structure (T,G), a model (Π,Γ) can alternatively be described by a linear

map Π : T → D′, together with a continuous map F : Rd → G such that, setting

Πx = ΠFx, Γxy = (Fx)−1Fy , the analytic bounds for models are satisfied. The main

assumption we impose on our models in the present setting is the following.

Assumption C.1 Setting T< =
⊕

α≤1
Tα, there exist linear maps Π+,Π− : T< →

D′ with Π
+ +Π

− = Π ↾ T< and such that

• (Π+τ)(ψ) = 0 for all τ ∈ T< and allψ supported in R×Dc and (Π−τ)(ψ) = 0
for all ψ supported in R ×D;

• Setting Π+
x = Π

+Fx, Π−
x := Π

−Fx the pairs (Π+,Γ) and (Π−,Γ) are models

on (T<, G) in the sense of [Hai14]. (But they are not admissible in general!)

We will always write α for the lowest degree appearing in our ambient regularity

structure T . We also fix γ > 0 as well as exponents η and σ on which we make the

following assumption.

Assumption C.2 The exponents satisfy the condition

0 > σ > −1 ≥ α ≥ η > −2 . (C.1)

We also use the shorthand w = (η, σ, η) similarly to [GH18] (except that we make

the simplifying assumption that the “corner exponent” coincides with η which is not

essential but simplifies our argument). One crucial ingredient for our result is the fol-

lowing.

Lemma C.3 For every f ∈ Dγ,w, there exist f± ∈ Dσ,η such that f+(x) = f (x) for

x ∈ R ×D and f−(x) = f (x) for x ∈ R ×Dc.

Proof. It follows from the definition of the spaces Dγ,w that the restriction of Q<σf
to either R × D̄ or R ×Dc belongs to Dσ,η . In particular, components of f of degree

below σ can be extended continuously to (R\{0})×D. (Note that σ < 0 though!) The

claim then follows from an adaptation of Whitney’s extension theorem to the setting of

regularity structures, see for example [Mar18, Thm 5.3.16].

Remark C.4 In general there is no reason for f+ and f− to coincide on R × ∂D.

We define spaces Cα,η with η ≤ α < 0 as consisting of those distributions ζ ∈
Cη(R1+d) ∩ Cα(R1+d \ P0) such that

|ζ(ψλx )| . λα|x|η−αP0
,

uniformly over x in compacts away from P0, 2λ ∈ (0, 2 ∧ |x|P0
], and test functions

ψ ∈ B. Here and below we write B for the set of functions supported in the centred

(parabolic) ball of radius 1 and with r derivatives bounded by 1, where r is some fixed

sufficiently large value. Note that if η > −2, ζ ∈ Cα,η is uniquely determined by its

action on test functions supported outside P0, see [Hai14].
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Theorem C.5 Under Assumptions C.1 and C.2, there then exists a unique continuous

linear operator R : Dγ,w
P → Cα,η such that Rf (ψ) = R̃f (ψ) for all ψ supported in

Rd \ P , and such that one has the bound

(Rf −Π+
x f+(x) −Π−

x f−(x))(ψλx ) . λσ|x|µ−σP0
(C.2)

uniformly over x ∈ P1 \ P0 (in compacts), over λ ∈ (0, 1] such that 2λ ≤ |x|P0
, and

over ψ ∈ B.

Remark C.6 We did not specify the continuity of the map R with respect to different

models. We will continue to omit continuity statements in the sequel, on one hand for

the sake of easing the presentation, and on the other hand due to the fact that since all

the operations discussed here are linear, the “linearisation trick” of [HP15b, Prop 3.11]

automatically implies all the required continuity properties.

Proof. The proof is very similarly to that of [GH18, Thm 4.10], but due to the central

role of the statement in our proof, we provide some detail. The uniqueness part is quite

straightforward: take two Cα,η distributions ξ1, ξ2 that have the properties claimed

for Rf in the theorem. Their difference then vanishes away from P , and thanks to

the bound (C.2), must belong to Cα,η. Since η > −2 however, such a distribution

necessarily vanishes.

To construct R, we use essentially the same construction as in the proof of [Hai14,

Prop. 6.9]. Similarly to the construction of the functions ϕx,n performed there, we can

find, for every n ∈ N, a countable index set Ξn and functions ϕx,n with n ∈ N and

x ∈ Ξn with the following properties. There exist constants ci > 0 such that:

(i) For every n ∈ N and x ∈ Ξn there exists ψ ∈ B, y ∈ Rd+1 with |y|P1
= 2−n

such that, setting λ = 2−n−1, one has ϕx,n = c1λ
d+2ψλy .

(ii) For every ball B of (parabolic) radius λ, there exist at most c2λ
d+1 elements

x ∈ Ξn with suppϕx,n ∩B 6= ∅.

(iii) For every y ∈ Rd+1 with 0 < |y|P1
≤ 1, one has

∑

n∈N

∑

x∈Ξn
ϕx,n(y) = 1.

(Note that the sum appearing in the last claim always converges since, by the first two

properties, it is guaranteed to only contain finitely many terms.)

We now write R± for the reconstruction operators for Dγ spaces with γ < 0
associated to the models Π± as in the second part of [Hai14, Thm 3.10], we fix y ∈
Rd+1 \ P0, λ ≤ 1∧ |y|P0

/C for some large enough (but fixed) constant C, and ψ ∈ B,

and we define

(Rf )(ψλy ) = (R+f+ +R−f−)(ψ
λ
y ) +

∑

n≥0

∑

x∈Ξn

(R̃f −R+f+ −R−f−)(ϕx,nψ
λ
y ) .

If one also has λ ≤ |y|P1
/2, then the second sum only contains finitely many terms

and one has (Rf )(ψ) = (R̃f )(ψ). Since in this case it follows from [GH18, Def. 3.1]

combined with [Hai14, Lem. 6.7] that one has the bound

|(R̃f )(ψλy )| . |y|η−αP0
λα ,

it remains to consider the convergence of the second term. Since we can restrict our-

selves to the case |y|P1
≤ 2λ, we can assume without loss of generality that y ∈ P1\P0.

In particular, the terms in the sum vanish unless 2−n . λ.

We also note that for these terms, one can write

ϕx,nψ
λ
y = λ̄d+2λ−d−2ψ̃λ̄z ,
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for some z, some ψ̃ ∈ B, and λ̄ = 2−n−1. Provided that C is sufficiently large,

properties (i) and (ii) guarantee furthermore that z is such that λ̄ ≃ |z|P1
≤ |z|P0

. It

follows from this that, when restricted to the support of ψ̃λ̄z , one has ‖Q<δf‖Dδ .
|z|η−σP0

λ̄σ−δ , provided that δ ∈ [σ, γ], so that [Hai14, Lem. 6.7] yields again

|(R̃f −Πzf (z))(ψ̃λ̄z )| . |z|η−σP0
λ̄σ ,

|(R±f± −Π±
z f±(z))(ψ̃λ̄z )| . |z|η−σP0

λ̄σ .

Finally, since the support of ψ̃ is either fully contained in R ×D or fully contained in

R ×Dc, it follows that

|(Πzf (z) −Π+
z f+(z) −Π−

z f−(z))(ψ̃λ̄z )| =
∑

σ≤α<γ

|(ΠzQαf (z))(ψ̃λ̄z )|

. |z|η−σP0

∑

σ≤α<γ

|z|σ−αP1
λ̄α . |z|η−σP0

λ̄σ ,

and we conclude that

|(R̃f −R+f+ −R−f−)(ϕx,nψ
λ
y )| . |z|η−σP0

λ−d−22−(σ+d+2)n .

Since there are at most 2n(d+1) such terms and since σ > −1 by assumption, both the

convergence of the sum and the required bound (C.2) follow.
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