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Abstract

This paper presents a new view of household epidemic models,
where we exploit the fact that the interaction between the households
is of mean field type. We thus obtain in the limit of infinitely many
households a nonlinear Markov process solution of a McKean–Vlasov
type Poisson driven SDE, and a propagation of chaos result. We also
define a basic reproduction number R0, and show that if R0 > 1,
then the nonlinear Markov process has a unique non trivial ergodic
invariant probability measure, whereas if R0 ≤ 1, it converges to 0 as
t tends to infinity.

1 Introduction

In this paper, we present a new view of household epidemic models.
Motivated by its simplicity, we present it in the particular case of the
SIS model, but the same approach can be developed for other types
of epidemic models, like the SIR, SIRS, SIR model with demography,
and others. We recall that S stands for susceptible, I for infected and
R for removed.

Household models, which have been mainly presented in the frame-
work of the SIR model so far, is a key example of two–level mixing
models. A very natural step in changing homogeneous epidemics mod-
els into more realistic models is to include households, which are small
groups of individuals who interact more frequently within their group
than with other individuals in the population. This describes both
the situation of human populations, but also of many domestic ani-
mal populations, where cages/sheds in poultry farms of pens/fields in
sheep/cattle farms play the role of households.
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Household models can be roughly described as follows. The total
population is the union of households of relatively small (and varying)
size. Each infectious individual infects any other individuals in the
same household at a “local rate” λL, and any other individual in the
total population at a “global rate” λG divided by the total population
size. In the last sentence, “any other” means “chosen uniformly at
random”. The infectious periods are i.i.d., in our case exponential
with a given parameter γ (since we want to have a Markov model).

The first papers on epidemics models with two level of mixing go
back to the 1950’s, with Rushton and Mautner [9] who study deter-
ministic models, Bartlet [3] and Daley [4] who study stochastic models.
We refer to Ball, Mollison and Scalia–Tomba [1] who give a deep study
of stochastic SIR epidemic models with two levels of mixing, as well
as to Ball and Sirl [2] for an up–to–date presentation of stochastic SIR
epidemics in structured populations, and for more references.

Our viewpoint in this paper is to study asymptotic results as the
number of households (and hence also the total population size) tends
to infinity, while the household sizes remain unchanged. It is easy to
see that the interaction between the various households in of mean field
type. This is reminiscent of the situation of particle systems which
was studied by Sznitman [10]. We establish a result of propagation of
chaos, and prove that in the limit of an infinite number of households,
the typical epidemic in a household is a so–called nonlinear Markov
process, whose transition depends not only upon the situation of the
epidemic in the household, but also upon its probability law (through
its mean, which is the limiting effect of the infections coming from the
other households). Similar non–linear Markov processes have a long
history, with in particular the work of McKean [7]. The SDE of those
nonlinear Markov processes are called McKean–Vlasov SDEs. Most of
the literature on that topic treats Brownian driven SDEs. However,
Léonard [6] considers an epidemic model where the infection is the
effect of a mean field interaction, and he obtains a McKean–Vlasov
type SDE of Poissonian type as a law of large numbers limit.

Should we assume that the household sizes were bounded, then
the existence and uniqueness of the nonlinear Markov process would
be very elementary. Indeed, the Fokker–Planck equation for the evo-
lution of its law would be a finite dimensional system of ODEs with
locally Lipschitz coefficients, whose solution cannot explode since it is
a probability distribution. Once all the marginal laws of the process
are specified, then the SDE for the nonlinear Markov process becomes
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a classical easy to solve Poisson driven SDE. However, we only assume
that the household size is a square integrable random variable. We
prove existence and uniqueness of a solution of the nonlinear Fokker–
Planck equation by a fixed point argument and approximation by both
a decreasing sequence of supersolutions, and an increasing sequence
of subsolutions.

We next study the large time behavior of our limiting SDE. We
define the basic reproduction number R0, which is the mean number of
households infected as a result of a local infection in a typical infected
household, started with one infectious. We give an explicit formula
for R0. If R0 ≤ 1, then the number of infectious individuals in a
typical household tends to 0 as t → ∞, whereas if R0 > 1, the law
of that number converges to an invariant measure which is not the
Dirac measure at zero. Our results extend well–known classical results
concerning the case where all households have size 1 (the homogeneous
model). Note that we shall study the fluctuations around the law of
large numbers obtained in the present paper in another publication.

The paper is organised as follows. The model is defined precisely
in section 2. Section 3 states the three main results of the paper,
namely Theorem 3.1 which gives the existence and uniqueness of the
nonlinear Markov process, Theorem 3.2 which states the propagation
of chaos result (which might be considered as a law of large numbers),
and finally Theorem 3.3 which gives the large time behavior of the
nonlinear Markov process. Section 4 studies what we call the “forced
process”, which is our nonlinear Markov process, where we replace the
unknown quantity IE[X(t)] by a given function m(t). In particular, we
establish the monotonicity property of the forced process as a function
of m. That property is exploited in an essential way in section 5 for
the proof of Theorem 3.1. Section 6 is devoted to the proof of Theorem
3.2 and finally section 7 to the definition and computation of R0, and
the proof of Theorem 3.3. In this last section, we use in particular a
comparison with a non–Markov continuous time branching process.

2 Definition of the model

We consider an SIS household epidemic model. In our model, the
population consists of N households, with sizes ν1, ν2, . . . , νN , where
the νi’s are i.i.d. IN–valued random variables. Let XN

i (t) denote the
number of infectious individuals in the i–th household at time t.
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We suppose that each infected individual can infect another indi-
vidual within the same household at rate λL, for some λL > 0 (the
infected individual is chosen uniformly from those in the household,
and if it is already infected, nothing happens). Moreover, each in-
fected individual can infect another individual chosen uniformly from
the whole population at rate λG, for some λG (again, if it is already
infected nothing happens). Finally, each infected individual becomes
suceptible at rate γ, for γ > 0. The parameters λL and λG are the
rates of local (respectively global) infections. We note that, for each
global infection, choosing an individual uniformly from the population
is equivalent to first choosing a household from the size-biased distri-
bution and then choosing an individual uniformly in this household.

Below is a more formal definition of this process. Let

X = {(n, k) ∈ IN× Z+ : n ≥ 1, 0 ≤ k ≤ n}.

Definition 2.1 (SIS household epidemic model). Fix λL > 0, λG > 0
and γ > 0. Let {(νi, Xi(0)), i ≥ 1} be i.i.d. X -valued random vari-
ables such that IE[ν21 ] < +∞ and let (Pinf,i(t), t ≥ 0, i ≥ 1) and
(Prec,i(t), t ≥ 0, i ≥ 0) be mutually independent standard Poisson pro-
cesses, which are also independent of {(νi, Xi(0)), i ≥ 1}. We define
νN = 1

N

∑N
i=1 νi. For N ≥ 1, let (XN

1 (t), . . . , XN
N (t), t ≥ 0) be the

solution of the following SDE:

(1)

XN
i (t) = Xi(0)+Pinf,i

∫ t

0

(
1− XN

i (s)

νi

)λLXN
i (s) + λG

νi

νN
1

N

N∑
j=1

XN
j (s)

 ds


− Prec,i
(
γ

∫ t

0
XN
i (s)ds

)
.

We call this process the SIS household model with N households.

The fact that there exists a unique solution to (1) follows from a
standard arguement which exploits the fact that the jumps are iso-
lated, and the process remains constant between its jumps. The dis-
tribution of the νi’s will be fixed throughout the paper, and we set

π(n) = IP(ν1 = n), π = IE[ν1].

We shall also use the size-biased distribution of the νi’s and its first
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moment, which we define as

π+(n) =
nπ(n)

π
, π+ =

∑
n≥1

nπ+(n) =
IE[ν2]

IE[ν]
.

We note that the different households only interact through the
mean number of infected individuals in the N households, i.e. it
is a mean-field interaction. We thus expect that, as the number of
households N becomes very large, any finite subset of households are
asymptotically mutually independent and each one evolves according
to the following SDE:

(2)

X(t) = X(0)+Pinf

(∫ t

0

(
1− X(s)

ν

)[
λLX(s) + λG

ν

π
IE[X(s)]

]
ds

)
− Prec

(
γ

∫ t

0
X(s)ds

)
,

where (ν,X(0)) has the same law as (ν1, X
N
1 (0)) and Pinf and Prec

are two independent standard Poisson processes which are also inde-
pendent of (ν,X(0)). This is what is called propagation of chaos [10],
and will be made more precise in Theorem 3.2 below.

This equation is a McKean-Vlasov Poisson driven SDE, because
the transition rates of (X(t), t ≥ 0) depend on the law of X(t) (specif-
ically on its expectation). We refer to McKean [7] for the study of
similar Brownian driven SDEs. As we will see later, this equation de-
fines a semigroup acting on probability distributions on IN× Z+ but,
contrary to ordinary Markov processes, this semigroup is non-linear
(because of the term IE[X(s)] appearing on the right hand side of
(2)). For this reason we will call (X(t), t ≥ 0) the non-linear Markov
process.

3 Main results

Existence and uniqueness of the non-linear process. It is
not clear a priori that there exists a process solving (2), much less
that it is unique.

Suppose for a moment that it exists and set

µn,k(t) = IP(X(t) = k, ν = n).
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Then, µ(t) = {µn,k(t), (n, k) ∈ X} is the law of (ν,X(t)) and

∀n ≥ 1,
n∑
k=0

µn,k(t) = π(n).(3)

Equation (2) then implies that {µn,k(t), t ≥ 0, (n, k) ∈ X} solves the
following non-linear Fokker-Planck equation:

(4)

dµn,k(t)

dt
= µn,k−1(t)

(
1− k − 1

n

)λL(k − 1) + λG
n

π

∞∑
i=1

i∑
j=1

jµi,j(t)


−µn,k(t)


(

1− k

n

)λLk + λG
n

π

∞∑
i=1

i∑
j=1

jµi,j(t)

+ γk

+µn,k+1(t)γ(k+1),

with the convention that µn,−1(t) = µn,n+1(t) = 0. Note that (4)
defines an infinite system of coupled ordinary differential equations.
We then have the following theorem.

Theorem 3.1. Assume that the second moment of the probability
distribution π is finite. Then, given a probability measure µ(0) =
{µn,k(0), (n, k) ∈ X} satisfying (3), there exists a unique time depen-
dent probability measure (µ(t), t ≥ 0) on X which solves the system of
ODEs (4). Moreover, given a random variable (ν,X0) which is such
that IP(X0 = k, ν = n) = µn,k(0) for (n, k) ∈ X , the SDE (2) has
a unique solution (X(t), t ≥ 0) which is such that for each t ≥ 0,
IP(X(t) = k, ν = n) = µn,k(t) for each (n, k) ∈ X .

We prove this theorem in Section 5.

Propagation of chaos. We now deal with the limiting behaviour
of the household model of Defintion 2.1 as the number of households
N tends to infinity. For T > 0, let P(D([0, T ],X )) denote the space of
probability measures on the sample paths space D([0, T ],X ). Also let
µ ∈ P(D([0, T ],X )) denote the law of the non-linear Markov process
((ν,X(t)), t ∈ [0, T ]), given by Theorem 3.1.

Theorem 3.2 (Propagation of chaos in the SIS household model).
Assume that {(νi, Xi(0)), i ≥ 1} are independent and identically dis-
tributed X -valued random variables such that IE[ν21 ] < +∞. For all
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N ≥ 1, let (XN
i (t), t ≥ 0, 1 ≤ i ≤ N) be the solution of equation (1).

Define µN ∈ P(D([0, T ],X )) by

µN =
1

N

N∑
i=1

δ(νi,XN
i (·)).

Then the random measure µN converges weakly to µ as N → ∞ in
probability. Moreover, for any k ≥ 1,

Law
(
(ν1, X

N
1 (·)), . . . , (νk, XN

k (·)
)
⇒ µ⊗k as N →∞

in P
(
D([0, T ],X k)

)
.

We prove Theorem 3.2 in Section 6. Note that by Proposition 2.2
in [10], the second part of the theorem follows from the convergence
of the empirical measures µN . Theorem 3.2 says two things: as N
becomes large, any finite subset of households behaves asymptotically
as independent copies of the non-linear Markov process (2), and the
global epidemic, as measured through the empirical measure µN , be-
comes asymptotically deterministic and equal to the law of the non-
linear Markov process. It is then natural to ask whether the epidemic
has an endemic equilibrium and if it is stable in the non-linear Markov
process.

Large time behaviour of the non-linear Markov process.
As is usual in SIS epidemic models, there is in our model a basic
reproduction number R0 such that if R0 > 1, there exists a unique
stable endemic equilibrium (i.e. the epidemic survives forever) and if
R0 ≤ 1, the disease free equilibrium is globally asymptotically stable
(the epidemic eventually dies out). This number is usually defined
as the number of secondary infections produced by a single infected
individual. Here, however, this number will be defined as the mean
number of households which are infected by a single household, in
which there is initially one infected individual and whose size is chosen
according to the size-biased distribution π+.

To do this, let (I(t), t ≥ 0) be the solution to the following SDE:

I(t) = I(0) + Pinf

(∫ t

0
λL

(
1− I(s)

ν

)
I(s)ds

)
− Prec

(∫ t

0
γI(s)ds

)
,

(5)

where ν is distributed according to the probability distribution π and
Pinf and Prec are two independent standard Poisson processes, which
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are independent of (ν, I(0)). Then (I(t), t ≥ 0) is the number of
infected individuals in an isolated household.

We then define

R0 = λG

∞∑
n=1

π+(n)IE

[∫ ∞
0

I(t)dt

∣∣∣∣ I(0) = 1, ν = n

]
.(6)

The large time behaviour of the non-linear process (X(t), t ≥ 0) of
Theorem 3.1 is then given by the following result.

Theorem 3.3 (Large time behaviour of the non-linear Markov pro-
cess). Let (X(t), t ≥ 0) be the unique solution to equation (2), and
assume that IE[ν2] < +∞.

i) If R0 > 1, then there exists a unique probability distribution µ∞
on X such that, if IP(X(0) ≥ 1) > 0, (ν,X(t)) converges in
distribution to µ∞ as t→∞. Moreover µ∞ is non-trivial in the
sense that µ∞ 6= π ⊗ δ0.

ii) If R0 ≤ 1, then X(t)→ 0 in probability as t→∞.

We prove Theorem 3.3 in Section 7. This result should be seen as
an analogue of the fact that the solution of the ODE

di(t)

dt
= λi(t)

(
1− i(t)

n

)
− γi(t)(7)

converges as t→∞ to n
(
1− γ

λ

)
if λ > γ and to 0 otherwise.

In the proof of Theorem 3.3, we shall also prove the following
formula for R0, which is of independent interest:

R0 =
λG
γ

∞∑
n=1

π+(n)

1 +

n−1∑
`=1

(
λL
γ

)` ∏̀
j=1

(
1− j

n

) ,(8)

(see in particular the proof of Lemma 7.4 in Subsection 7.3).

Remark 3.4. a) If π = δ1, every household is of size 1, and (1)
reduces to the homogeneous SIS epidemic model, with parameters
λG and γ (see [2]). We can then check that IE[X(t)] solves the
ODE (7) with λ = λG, and that (6) reduces to R0 = λG/γ, as
expected.

b) The same is true if we take λL = 0 and keep π very general, the
only infections in the system are global infections and the model
reduces to the standard SIS epidemic model.
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c) Another interesting case is when the size of all the households
is very large. In that case, if we approximate (I(t), t ≥ 0) by a
branching process, we see that R0 should be approximated by +∞
if λL ≥ γ and by λG/(γ−λL) if λL < γ, and we see that R0 > 1
is equivalent to λG + λL > γ.

4 The forced process

It is worth noting that if we replace IE[X(s)] in (2) by any deterministic
measurable function s 7→ m(s), then (X(t), t ≥ 0) becomes a time-
inhomogeneous Markov process.

Definition 4.1 (The forced process). Let m : IR+ → [0, π̄] be a mea-
surable function, (ν,X0) an X -valued random variable and Pinf and
Prec two independent standard Poisson processes which are also inde-
pendent of (ν,X0). Then the forced process (Xt(m), t ≥ 0) is defined
as the solution to

(9)

Xt(m) = X0+Pinf

(∫ t

0

[
λLXs(m) + λG

ν

π
m(s)

](
1− Xs(m)

ν

)
ds

)
− Prec

(∫ t

0
γXs(m)ds

)
.

We call this process the forced process because we fix the intensity
of global infections to be λGνm(t)/π. The fact that there exists a
unique strong solution to (9) follows from standard arguments similar
to that used in (1).

Comparing (2) and (9), we see that solving (2) is equivalent to
finding a measurable function m such that m(t) = IE[Xt(m)] for all
t ≥ 0.

4.1 Graphical construction of the forced pro-
cess

We are going to show that we can construct this process with the
following procedure. Let c(dk) denote the counting measure on IN.
Conditionally on (ν,X0), let Πrec, ΠL and ΠG be three mutually in-
dependent Poisson point processes such that
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• Πrec is a Poisson point process on IR+ × J1, νK with intensity
γdt⊗ c(dk),

• ΠL is a Poisson point process on IR+×J1, νK×J1, νK with intensity
λL
ν dt⊗ c(dk)⊗ c(dk),

• ΠG is a Poisson point process on IR+×J1, νK×[0, π] with intensity
λG
π dt⊗ c(dk)⊗ du.

Let us describe the effect of these different processes before formally
constructing the forced process. A point (t, i) in Πrec means that
if the individual i was infected at time t−, it becomes suceptible at
time t (it undergoes a remission). A point (t, i, j) in ΠL means that
individual i can infect individual j at time t. This occurs if i is infected
while j is suceptible at time t−. Finally a point (t, i, u) in ΠG means
that individual i can be infected from a global infection. We allow
this infection to take place only if i is suceptible at time t− and if
u ≤ m(t).

In fact, we can view the total set of infected individuals at any time
as the union of several local infections, each resulting from a previous
global infection or from the individuals infected at time 0. To do this,
note that ΠG is almost surely locally finite, so we can order its points
according to their time coordinate. Thus let

ΠG = {(tk, ik, uk), k ≥ 1, 0 < t1 < t2 < . . .}.

Let us then define a random set Ik(t) ⊂ J1, νK for all t ≥ 0 as follows.

• For t < tk, I
k(t) = ∅.

• At t = tk, we set Ik(tk) = {ik}.
• For each (t, i, j) ∈ ΠL, if i ∈ Ik(t−), then Ik(t) = Ik(t−) ∪ {j}.
• For each (t, i) ∈ Πrec, I

k(t) = Ik(t−) ∩ {i}c.
We define in the same way the local infection resulting from the ini-
tially infected individuals (I0(t), t ≥ 0), i.e. I0(0) = {i : 1 ≤ i ≤ X0}
and I0 evolves according to the same rules as Ik for k ≥ 1. We note
that, for all k ≥ 0, (Ik(t), t ≥ 0) is right-continuous with left limits.

Proposition 4.2. For all t ≥ 0, let

Xt(m) =

∣∣∣∣∣∣I0(t) ∪
⋃
k≥1
{Ik(t) : uk ≤ m(tk)}

∣∣∣∣∣∣ ,(10)

where |·| denotes the cardinal of a set. Then the process (Xt(m), t ≥ 0)
is a solution to the SDE (9).
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Proof. Clearly X0(m) = |I0(t)| = X0. It remains to check that the
waiting times between upward and downward jumps of Xt(m) are
distributed as exponential variables with the correct rates.

If the current value of Xt(m) is x, then the next remission takes
place at the next point (t, i) ∈ Πrec with i ∈ Ik(t−) for some k ≥ 0
with uk ≤ m(tk) (we can set u0 = π and t0 = 0). This happens at
instantaneous rate γx, as in (9).

Likewise, the next time an individual currently infected infects a
suceptible individual is given by the next point (t, i, j) ∈ ΠL such that
i ∈ Ik(t−) for some k ≥ 0 with uk ≤ m(tk) and j /∈ Ik(t−) for all such
k. This happens at rate λL

ν x(ν − x), as in (9).
Finally, the next time a suceptible individual becomes infected due

to a global infection is the next (t, i, u) ∈ ΠG such that i /∈ Ik(t−) for
all k ≥ 0 such that uk ≤ m(tk) and u ≤ m(t). This happens at
instantaneous rate λG

π (ν − x)m(t), as in (9).

4.2 Monotonicity of the forced process

With this construction, the next lemma is straightforward.

Lemma 4.3 (Monotonicity of the forced process). Suppose that X
(1)
0

and X
(2)
0 are two random variables such that X

(1)
0 ≤ X

(2)
0 almost

surely. Also let m1 and m2 be two measurable functions from IR+ to
[0, π] such that m1(t) ≤ m2(t) for almost every t ≥ 0. Then there
exists a process (Xt(m1), t ≥ 0) solving (9) with m = m1 and X0 =

X
(1)
0 , and a process (Xt(m2), t ≥ 0) solving (9) with m = m2 and

X0 = X
(2)
0 , defined on the same probability space, such that, almost

surely,

Xt(m1) ≤ Xt(m2), ∀t ≥ 0.

Proof. We use Proposition 4.2 to construct both processes with the
same Poisson point processes Πrec, ΠL and ΠG. We define (I0,i(t), t ≥
0) for i ∈ {1, 2} as above with

I0,i(0) = {k : 1 ≤ k ≤ X(i)
0 },

so that, almost surely, I0,1(0) ⊂ I0,2(0). Then, from the evolution of
(I0,i(t), t ≥ 0), we deduce that I0,1(t) ⊂ I0,2(t) for all t ≥ 0. Further-
more, since m1 ≤ m2,

{k : uk ≤ m1(tk)} ⊂ {k : uk ≤ m2(tk)}.
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It then follows from equation (10) that Xt(m1) ≤ Xt(m2).

The following lemma will also be useful in the proof of existence
and uniqueness of the non-linear process. For t ≥ 0, m : IR+ → [0, π]
measurable and µ0 a probability measure on X whose first marginal
is π, let

µt(m,µ0) = IE[Xt(m)],(11)

where (ν,X0) is distributed according to µ0.

Lemma 4.4. Suppose that µ0 is as above. If m1 and m2 are two
measurable functions from IR+ to [0, π] satisfying m1(t) ≤ m2(t) for
almost every t ≥ 0, then

0 ≤ µt(m2, µ0)− µt(m1, µ0) ≤ π+λG
∫ t

0
(m2(s)−m1(s))ds.

Proof. The fact that µt(m2) − µt(m1) ≥ 0 follows from Lemma 4.3.
To prove the second inequality, we construct (Xt(m1), t ≥ 0) and
(Xt(m2), t ≥ 0) as in Proposition 4.2. Then

0 ≤ Xt(m2)−Xt(m1) ≤
∣∣∣∪k≥1{Ik(t) : m1(tk) ≤ uk ≤ m2(tk)}

∣∣∣ .
Moreover, we can restrict the union to the values of k for which tk ≤ t.
Since |Ik(t)| ≤ ν for all t ≥ 0, we can write

0 ≤ Xt(m2)−Xt(m1) ≤ ν |{k ≥ 1 : m1(tk) < uk ≤ m2(tk), tk ≤ t}| .
(12)

Now, by the definition of ΠG, the right hand side is, conditionally on
ν, ν times a Poisson random variable with parameter

λG
ν

π

∫ t

0
(m2(s)−m1(s))ds.

As a result, taking expectations in (12) (first conditionally on ν and
then over the law of ν), we obtain

0 ≤ µt(m2, µ0)− µt(m1, µ0) ≤ λG π+
∫ t

0
(m2(s)−m1(s))ds,

and the lemma is proved.

We shall come back to the forced process in the proof of The-
orem 3.3, as it will be used to characterize the possible stationary
distributions of the non-linear process.
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5 Existence and uniqueness of the

non-linear Markov process

We now set out to prove Theorem 3.1. We note that finding a solution
to (4) is equivalent to finding a fixed point of

m(·) 7→ µ·(m,µ0).(13)

Indeed, if m∗ is a fixed point of this function, then (Xt(m∗), t ≥ 0) is
a solution to (2). We thus need to prove that, given µ0, there exists a
unique fixed point of (13).

Proof of Theorem 3.1. Fix µ0 and assume that (ν,X0) is distributed
according to µ0. Let (m+,k, k ≥ 0) and (m−,k, k ≥ 0) be two sequences
of functions defined by

m+,0(t) = π, m+,k+1(t) = µt(m
+,k, µ0),

m−,0(t) = 0, m−,k+1(t) = µt(m
−,k, µ0),

where µt(m,µ0) was defined in (11). Clearly, since 0 ≤ IE[Xt(m)] ≤ π,

m+,1(t) ≤ m+,0(t), m−,1(t) ≥ m−,0(t).

Then by induction, using Lemma 4.3, we obtain that, for all k ≥ 0,

m−,k(t) ≤ m−,k+1(t) ≤ m+,k+1(t) ≤ m+,k(t).

Hence m+,k and m−,k both converge pointwise. Let m+,∞ and m−,∞

be their respective limits. Then, using Lemma 4.4 with m1 = m+,∞

and m2 = m+,k,∣∣µt(m+,∞)−m+,∞(t)
∣∣ ≤ ∣∣∣m+,k+1(t)−m+,∞(t)

∣∣∣+ λG π
+

∫ t

0
(m+,k(s)−m+,∞(s))ds.

The integral on the right hand side vanishes as k → ∞ by domi-
nated convergence and the first term vanishes because m+,k converges
pointwise to m+,∞. As a result, m+,∞ (and also m−,∞ by the same
argument) is a fixed point of (13). This shows existence of solutions
to (4) (and thus to (2)).

To prove uniqueness, first note that, by induction and using
Lemma 4.3, any fixed point m∗ satisfies

m−,k(t) ≤ m∗(t) ≤ m+,k(t),

13



for all k ≥ 0 and t ≥ 0. Hence we also have

m−,∞(t) ≤ m∗(t) ≤ m+,∞(t).

To prove uniqueness, it is thus enough to prove that m+,∞(t) =
m−,∞(t) for all t ≥ 0. Using Lemma 4.4 with m1 = m−,0 and
m2 = m+,0, we obtain

0 ≤ m+,1(t)−m−,1(t) ≤ π π+λGt,

and by induction, we deduce that, for k ≥ 1,

0 ≤ m+,k(t)−m−,k(t) ≤ π (π+λGt)
k

k!
.

Leting k → ∞, it follows that m+,∞(t) = m−,∞(t) for all t ≥ 0 and
the theorem is proved.

6 Propogation of chaos for the SIS

household model

The aim of this section is to prove Theorem 3.2. As we have said
before, using Proposition 2.2 in [10], the second part of the statement
follows from the convergence of the empirical measures µN to the
law of the non-linear process µ. We establish this convergence by
showing that the sequence {µN , N ≥ 1} is tight in P(D([0, T ],X )),
and identifying its possible limit points.

Lemma 6.1. The sequence {µN , N ≥ 1} is tight in P(D([0, T ],X )).

Proof. By Proposition 2.2(ii) in [10], the sequence {µN , N ≥ 1} is tight
if and only if the laws of (ν1, X

N
1 (·)) are tight, but this is straightfor-

ward from (1) where we see that the rate of increase is bounded by
(λL + λG)νi, while the rate of decrease is bounded by γνi.

Next we note that equation (1) can be reformulated as follows.
Let {Minf,i, i ≥ 1} and {Mrec,i, i ≥ 1} be mutually independent
random Poisson measures on IR2

+ with intensity measure the Lebesgue
measure, which are also independent of {(νi, Xi(0)), i ≥ 1}. Then,
with the notation

µNt =
1

N

N∑
i=1

XN
i (t) ,

14



XN
i (t) = Xi(0) +

∫ t

0

∫ ∞
0

1
u≤
(
1−

XN
i

(s−)

νi

)[
λLX

N
i (s−)+λG

νi
νN

µN
s−

]Minf,i(ds du)

−
∫ t

0

∫ ∞
0

1u≤γXN
i (s−)Mrec,i(ds du).

Clearly, for any φ : X 7→ IR,

φ(νi, X
N
i (t)) = φ(νi, X

N
i (0))

+

∫ t

0
[φ(νi, X

N
i (s−)+1)−φ(νi, X

N
i (s−))]

∫ ∞
0

1
u≤
(
1−

XN
i

(s−)

νi

)[
λLX

N
i (s−)+λG

νi
νN

µN
s−

]Minf,i(ds, du)

+

∫ t

0
[φ(νi, X

N
i (s−)−1)−φ(νi, X

N
i (s−))]

∫ ∞
0

1u≤γXN
i (s−)Mrec,i(ds, du).

Let Minf,i and Mrec,i denote the compensated measures

Minf,i(ds, du) =Minf,i(ds, du)− dsdu,
Mrec,i(ds, du) =Mrec,i(ds, du)− dsdu.

Then setting

Mφ
i (t) =

∫ t

0
[φ(νi, X

N
i (s−)−1)−φ(νi, X

N
i (s−))]

∫ ∞
0

1u≤γXN
i (s−)Mrec,i(ds, du)

+

∫ t

0
[φ(νi, X

N
i (s−)+1)−φ(νi, X

N
i (s−))]

∫ ∞
0

1
u≤
(
1−

XN
i

(s−)

νi

)[
λLX

N
i (s−)+λG

νi
νN

µN
s−

]Minf,i(ds, du),

we have

φ(νi, X
N
i (t)) = φ(νi, X

N
i (0))

+

∫ t

0
[φ(νi, X

N
i (s)+1)−φ(νi, X

N
i (s))]

(
1− XN

i (s)

νi

)[
λLX

N
i (s) + λG

νi

νN
µNs

]
ds

+ γ

∫ t

0
[φ(νi, X

N
i (s)− 1)− φ(νi, X

N
i (s))]XN

i (s)ds+Mφ
i (t).

We rewrite this identity in the form
(14)

φ(νi, X
N
i (t)) = φ(νi, X

N
i (0)) +

∫ t

0
[Lφ](νi, X

N
i (s), νN , µNs )ds+Mφ

i (t)

where for n ≥ 1, x ∈ {0, 1, . . . , n}, y ≥ 0 and 0 ≤ m ≤ y,

Lφ(n, x, y,m) = [φ(n, x+ 1)− φ(n, x)]
(

1− x

n

)[
λLx+ λG

n

y
m

]
+ [φ(n, x− 1)− φ(n, x)]γx.
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Proof of Theorem 3.2. Let µ∞ be a limit point of the sequence µN .
First note that, by the classical law of large numbers, for any bounded
and measurable φ : X → IR,

IEµ∞ [φ(ν,X(0))] = IE[φ(ν1, X1(0))].

In order to identify the possible limit points of µN , we define, for
µ ∈ P(D([0, T ],X )) and 0 ≤ s ≤ t ≤ T ,

Φs,t(µ) = IEµ

[(
φ(ν,X(t))− φ(ν,X(s))−

∫ t

s
Lφ(ν,X(r), ν, µr)dr

)
ψs(ν,X(·))

]
,

where

µt = IEµ [X(t)] , ν = IEµ[ν],

and φ is any bounded function from X to IR and ψs is of the form

ψs(ν,X(·)) = φ1(ν,X(s1)) . . . φk(ν,X(sk))

with 0 ≤ s1 ≤ . . . ≤ sk ≤ s and φ1, . . . , φk are bounded functions from
X to IR. By Theorem 3.1, the result will be proved if we show that

Φs,t(µ∞) = 0,

almost surely for any such function Φs,t.
Using (14),

Φs,t(µ
N ) =

1

N

N∑
i=1

(Mφ
i (t)−Mφ

i (s))ψs(νi, X
N
i (·)).

From the definition of Mφ
i ,

〈Mφ
i ,M

φ
j 〉t = 0, ∀i 6= j,

and

〈Mφ
i 〉t =

∫ t

0
Gφ(νi, X

N
i (s), νN , µNs )ds,

where

Gφ(n, x, y,m) = [φ(n, x+ 1)− φ(n, x)]2
(

1− x

n

)[
λLx+ λG

n

y
m

]
+ [φ(n, x− 1)− φ(n, x)]2 γx.

16



Note that, for m ≤ y

Gφ(n, x, y,m) ≤ 4 sup
X
|φ|2 (λL + λG + γ)n.

As a result,

IE
[
Φs,t(µ

N )2
]

=
1

N2

N∑
i=1

IE
[
(〈Mφ

i 〉t − 〈M
φ
i 〉s)ψs(νi, X

N
i (·))2

]
≤ C

N
IE[ν1],

for some C > 0. It follows that

Φs,t(µ
N )→ 0,

in L2 as N → ∞, hence µ∞ is equal to µ, the distribution of the
non-linear process of (2). This proves Theorem 3.2.

7 Large time behaviour of the non-

linear Markov process

Let us start this section by noting that if the non-linear process of (2)
with initial distribution µ0 is stationary, then the forced process with
initial distribution µ0 and with m(t) = µ0 = IEµ0 [X(0)] is also station-
ary. Thus to study the possible stationary distributions of the non-
linear process, we first study the large-time behaviour of the forced
process.

7.1 The large-time behaviour of the forced
process

Suppose that we take m(t) = m for all t ≥ 0 for some m ∈ [0, π].
Then (Xt(m), t ≥ 0) becomes a homogeneous continuous-time Markov
process. On the event {ν = n}, it takes values in J1, nK. If m > 0,
then it is positive recurrent on this set, while if m = 0, 0 is the
only absorbing state for Xt(m). As a result, conditionally on ν = n,
(Xt(m), t ≥ 0) admits a unique stationary distribution. It follows that
((ν,Xt(m)), t ≥ 0) admits a unique stationary distribution µ∞(m).

This distribution can be obtained as in Proposition 4.2 in the fol-

lowing way. Let
←−
Π rec,

←−
ΠL and

←−
ΠG be independent Poisson point

17



processes as above, but on IR− instead of IR+ for the first coordinate.

We can then order the points in
←−
ΠG in decreasing order:

←−
ΠG = {(tk, ik, uk), k ≥ 1, 0 > t1 > t2 > . . .}.

The points in
←−
ΠG represent global infection which took place in the

past. We then perform the same construction of Ik(t), this time for
t ≤ 0, and we set

X∞(m) =
∣∣∣∪k≥1{Ik(0) : uk ≤ m}

∣∣∣ .
Proposition 7.1. For each m ∈ [0, π], X∞(m) is distributed accord-
ing to µ∞(m).

Proof. For t ≥ 0, let

X̃t(m) =
∣∣∣∪k≥1{Ik(0) : uk ≤ m, tk ≥ −t}

∣∣∣ .
In other words, we only consider the local epidemics which started
after time −t. Then from Proposition 4.2, we see that for each t ≥ 0,
X̃t(m) is distributed as Xt(m), where Xt(m) is the solution of (9)
with m(t) = m and X0 = 0. By the ergodic theorem for homogeneous
Markov processes, Xt(m), and hence X̃t(m), converge in distribution
as t→∞ to µ∞(m). At the same time, we see from the definition of
X̃t(m) and X∞(m) that

X̃t(m) =

ν∑
i=1

1{∃k≥1:i∈Ik(0),uk≤m,tk≥−t}, X∞(m) =

ν∑
i=1

1{∃k≥1:i∈Ik(0),uk≤m}.

Hence by monotone convergence,

X̃t(m)→ X∞(m) as t→∞,

almost surely, and the lemma is proved.

The next lemma says that m(t) → m∞ as t → ∞ is sufficient for
Xt(m) to converge in distribution to µ∞(m∞).

Lemma 7.2 (Large time behaviour of the forced process). Suppose
that m : IR+ → [0, π] is measurable and that

m∞ = lim
t→∞

m(t)

exists. Then Xt(m) converges in distribution to µ∞(m∞) as t tends
to infinity.

18



Proof. Suppose for now that 0 < m∞ < π. Then for all ε > 0, there
exists tε such that, for all t ≥ tε,

m∞ − ε ≤ m(t) ≤ m∞ + ε.

We choose ε small enough that 0 ≤ m∞ − ε and m∞ + ε ≤ π. We
then define two functions m+ and m− by

m+(t) = π1{t<tε} + (m∞ + ε)1{t≥tε}, m−(t) = (m∞ − ε)1{t≥tε}.

Then m− ≤ m ≤ m+, so by Lemma 4.3, we can construct jointly the
three processes (Xt(m

−), t ≥ 0), (Xt(m), t ≥ 0) and (Xt(m
+), t ≥ 0)

such that, almost surely,

Xt(m
−) ≤ Xt(m) ≤ Xt(m

+), ∀t ≥ 0.

It follows that, for each t ≥ 0 and each k ∈ IN,

IP
(
Xt(m

+) ≤ k
)
≤ IP (Xt(m) ≤ k) ≤ IP

(
Xt(m

−) ≤ k
)
.

Since m+ and m− are both constant after time tε (which is deter-
ministic), as t → ∞, Xt(m

+) and Xt(m
−) respectively converge in

distribution to µ∞(m∞ + ε) and µ∞(m∞ − ε). Thus, letting t → ∞
above,

µ∞(m∞ + ε) ({0, . . . , k}) ≤ lim inf
t→∞

IP (Xt(m) ≤ k)

≤ lim sup
t→∞

IP (Xt(m) ≤ k) ≤ µ∞(m∞ − ε) ({0, . . . , k}) .

But, as ε ↓ 0, the measure µ∞(m∞± ε) converges weakly to µ∞(m∞)
(in fact the construction in Proposition 7.1 gives a construction of
X∞(m ± ε) and X∞(m) such that X∞(m ± ε) → X∞(m) almost
surely as ε ↓ 0, using monotone convergence as in the proof of Propo-
sition 7.1). Hence letting ε ↓ 0 above, we obtain, for any k ≥ 0,

IP (Xt(m) ≤ k)→ µ∞(m∞) ({0, . . . , k}) as t→∞,

and the lemma is proved. If m∞ = 0, then we can take instead
m−(t) = 0, and if m∞ = π, then we take m+(t) = π, and the rest of
the proof is essentially identical.
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7.2 The stationary distribution of the forced
process

We now study in more detail the family of distributions µ∞(·). For
m ∈ [0, π], we set

µ∞(m) = IE [X∞(m)] .

Lemma 7.3. The function m 7→ µ∞(m) is continuous, non-
decreasing and strictly concave on [0, π].

Proof. Fix m1 ≤ m2. Then, using the construction in Proposition 7.1,
we have, almost surely,

X∞(m1) ≤ X∞(m2).

Taking expectations, we obtain

µ∞(m1) ≤ µ∞(m2).

Hence m 7→ µ∞(m) is non-decreasing.
The continuity follows from Proposition 7.1 and the monotone con-

vergence theorem.
To show that it is concave, we will construct two random vari-

ables Xδ
∞(m1) and Xδ

∞(m2) distributed according to µ∞(m1 + δ) and
µ∞(m2 + δ) such that

Xδ
∞(m1)−X∞(m1) ≥ Xδ

∞(m2)−X∞(m2),

almost surely. To do this, we will add the same set of global infections
(with rate λGδν/π) to both processes.

Fix δ > 0 and let Πδ
G be an independent Poisson point process on

IR− × J1, νK with intensity δ λGπ dt ⊗ c(dk). We then order the points
in Πδ

G as above,

Πδ
G = {(tδk, iδk) : k ≥ 1, 0 > tδ1 > tδ2 > . . .},

and we define Ik,δ(t) for t ≤ 0 as above, using the same Poisson point

processes of local infections and remission as before, i.e.
←−
Π rec and←−

ΠL. We then define

Xδ
∞(m) =

∣∣∣∪k≥1{Ik(0) : uk ≤ m}
⋃
∪k≥1{Ik,δ(0) : k ≥ 1}

∣∣∣ .
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From Proposition 7.1, Xδ
∞(m) is distributed according to µ∞(m+ δ).

Furthermore,

Xδ
∞(m)−X∞(m) =

∣∣∣∪k≥1{Ik,δ(0), k ≥ 1}
⋂(
∪k≥1{Ik(0) : uk ≤ m}

)c∣∣∣ .
Then, since m1 ≤ m2, we have

∪k≥1{Ik(0) : uk ≤ m1} ⊂ ∪k≥1{Ik(0) : uk ≤ m2},

and we deduce that, almost surely,

Xδ
∞(m1)−X∞(m1) ≥ Xδ

∞(m2)−X∞(m2).

Taking expectations, we obtain, for m1 ≤ m2,

µ∞(m1 + δ)− µ∞(m1) ≥ µ∞(m2 + δ)− µ∞(m2).

This shows that m 7→ µ∞(m) is concave. To show that it is strictly
concave, it is sufficient to show that the above inequality is strict
with positive probability for any δ > 0, which is obvious from our
construction. This concludes the proof of the lemma.

7.3 The basic reproduction number R0

Since the non-linear process solves (9) with m(t) = IE[Xt(m)], if it
admits a stationary distribution, we expect that it should be of the
form µ∞(m) with m satisfying

µ∞(m) = m.(15)

We note that m = 0 is always a solution to (15), but, given Lemma 7.3,
another solution may exist if

dµ∞
dm

(0) > 1.

Lemma 7.4. Recall the definition of R0 in (6), then

dµ∞
dm

(0) = R0.

Corollary 7.5. If R0 ≤ 1, then m = 0 is the unique solution to (15).
If R0 > 1, then there exists a unique m? ∈ (0, π] satisfying (15).
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Proof. This is straightforward from Lemma 7.4 and Lemma 7.3 and
the inequality X∞(m) ≤ ν.

Let us now prove Lemma 7.4.

Proof of Lemma 7.4. We prove this result by showing that both terms
are equal to the expression given in (8). If we set

µn,k∞ (m) = IP(ν = n,X∞(m) = k),

then the measure µ∞(m) is characterized by

n∑
k=0

Lφ(n, k, π,m)µn,k∞ (m) = 0.

Choosing φ(n, k) = 1{k≤`} for 0 ≤ ` ≤ n− 1 yields(
1− `

n

)[
λL`+ λG

n

π
m
]
µn,`∞ (m) = γ(`+ 1)µn,`+1

∞ (m).

This, together with the obvious condition
∑n

k=0 µ
n,k
∞ (m) = π(n) (see

(3)) leads to the following expression

µn,`∞ (m) = µn,0∞ (m)
1

γ`

`−1∏
k=0

{
1− k

n

k + 1

(
λLk + λG

n

π
m
)}

, 1 ≤ ` ≤ n,

µn,0∞ (m) = π(n)

(
1 +

n∑
`=1

1

γ`

`−1∏
k=0

{
1− k

n

k + 1

(
λLk + λG

n

π
m
)})−1

.

From this we deduce easily that

dµ∞
dm

(0) =
λG
γ

∞∑
n=1

π+(n)

1 +
n−1∑
`=1

(
λL
γ

)` ∏̀
j=1

(
1− j

n

) .

We now turn to the quantity R0 defined in (6). Note that, by the
definition of the process (I(t), t ≥ 0) in (5),

φ(ν, I(t))− φ(ν, I(0))−
∫ t

0
Lφ(ν, I(s), π, 0)ds(16)
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is a martingale with respect to the natural filtration of {(ν, I(t)), t ≥
0}. Thus if we find a function φ such that Lφ(n, x, π, 0) = x, we will
have

IE

[∫ T

0
I(s)ds

∣∣∣∣ I(0) = 1, ν = n

]
= n{φ(n, 0)− φ(n, 1)},(17)

where T = inf{t ≥ 0 : I(t) = 0} (to obtain this, take the expectation
of (16) at time t ∧ T and let t → ∞, using monotone convergence in
the integral and dominated convergence in the other term). Setting
ψ(n, x) = γ(φ(n, x− 1)− φ(n, x)), Lφ(n, x, π, 0) = x translates intoψ(n, x) = 1 +

λL
γ

(
1− x

n

)
ψ(n, x+ 1), 1 ≤ x ≤ n− 1,

ψ(n, n) = 1.

We deduce from this that

ψ(n, 1) = γ(φ(n, 0)− φ(n, 1)) = 1 +
n−1∑
`=1

(
λL
γ

)` ∏̀
j=1

(
1− j

n

)
.

Together with (17), this proves the lemma.

Let us quickly mention another avenue for proving Lemma 7.4,
which makes use of Proposition 7.1. For ε > 0, let us write

{k ≥ 1 : uk ≤ ε} = {1 ≤ k1(ε) < k2(ε) < . . .}.

Then we write

X∞(ε) =
∣∣∣Ik1(ε)(0)

∣∣∣+
∣∣∣∪j≥2Ikj(ε)(0) ∩ Ik1(ε)(0)c

∣∣∣ .
Then, noting that −tk1(ε) is distributed as an exponential variable
with parameter λGνε/π, it is possible to see that

IE
[∣∣∣Ik1(ε)(0)

∣∣∣∣∣∣ ν = n
]

= ελG
n

π

∫ ∞
0

IE
[∣∣I1(t1 + t)

∣∣∣∣ ν = n
]
dt+ o(ε),

and that

IE
[∣∣∣∪j≥2Ikj(ε)(0) ∩ Ik1(ε)(0)c

∣∣∣∣∣∣ ν = n
]

= o(ε).

We then finish by noting that I1(t1 + t) is distributed as I(t) condi-
tionally on I(0) = 1 and that

dµ∞
dm

(0) = lim
ε↓0

1

ε
IE[X∞(ε)].
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7.4 Large-time behaviour of the non-linear
Markov process

We now prove Theorem 3.3. We split the proof in two parts, first
dealing with the case R0 ≤ 1 and then with R0 > 1.

Proof of Theorem 3.3, R0 ≤ 1. Let m+
0 (t) = π and set, for k ≥ 0,

m+
k+1(t) = µt(m

+
k , µ0).

Clearly IE[X(t)] ≤ m+
0 (t) for all t ≥ 0. Since (IE[X(t)], t ≥ 0) is a fixed

point of m(·) 7→ µ·(m,µ0) and using Lemma 4.3, for every k ≥ 0,

0 ≤ IE[X(t)] ≤ m+
k (t).(18)

Furthermore, by Lemma 7.2, for all k ≥ 0,

lim
t→∞

m+
k (t) = µ◦k∞(π),

where µ◦k∞(·) = µ∞(µ∞(. . .)) is the k-th iterate of m 7→ µ∞(m). Let-
ting t→∞ in (18),

0 ≤ lim inf
t→∞

IE[X(t)] ≤ lim sup
t→∞

IE[X(t)] ≤ µ◦k∞(π).

But, by Lemma 7.3 and Lemma 7.4, since R0 ≤ 1,

µ◦k∞(π)→ 0 as k →∞.

As a result,

lim
t→∞

IE[X(t)] = 0,

and the result follows.

Before proving the result when R0 > 1, we state the following
lemma, whose proof we delay until Subsection 7.5.

Lemma 7.6. Suppose that R0 > 1 and that IE[X(0)] > 0, then

lim inf
t→∞

IE[X(t)] > 0.

Let us now finish the proof of Theorem 3.3.
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Proof of Theorem 3.3, R0 > 1. The strategy of the proof is similar to
the case R0 ≤ 1, but we now define two functions

m+
0 (t) = π, m−0 (t) = inf

s≥0
IE[X(s)].

Note that by Lemma 7.6, limt→∞m
−
0 (t) > 0. As before, we set, for

k ≥ 0,

m+
k+1(t) = µt(m

+
k , µ0), m−k+1(t) = µt(m

−
k , µ0).

By the same argument as before, since m−0 (t) ≤ IE[X(t)] ≤ m+
0 (t), we

have, for every k ≥ 0,

m−k (t) ≤ IE[X(t)] ≤ m+
k (t).

Using Lemma 7.2 and letting t→∞, we obtain

µ◦k∞(inf
t≥0

IE[X(t)]) ≤ lim inf
t→∞

IE[X(t)] ≤ lim sup
t→∞

IE[X(t)] ≤ µ◦k∞(π).(19)

But, by Lemma 7.3 and the fact that R0 > 1, we have

lim
k→∞

µ◦k∞(inf
t≥0

IE[X(t)]) = lim
k→∞

µ◦k∞(π) = m?,

where m? ∈ (0, π] is defined by Corollary 7.5 (also using Lemma 7.6
and the fact that IE[X(0)] > 0). Hence, letting k →∞ in (19),

IE[X(t)]→ m?,

as t → ∞. Finally by Lemma 7.2, since the non-linear process is the
forced process with m(t) = IE[X(t)],

(ν,X(t))→ µ∞(m?),

in distribution as t→∞, and the theorem is proved.

Note that, without Lemma 7.6, we would not have been able to
bound IE[X(t)] from below by anything useful, since µ∞(0) = 0.
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7.5 Branching process minoration

Proof of Lemma 7.6. Since R0 > 1, we can choose p, q ∈ Q such that
0 < q < p < 1 and

(1− p)R0 > 1.

Without loss of generality, we can assume that there exist N0, N1 in
IN such that p = 1/N0 and q = 1/N1. For the rest of this proof, we
restrict N to multiples of both N0 and N1.

Let ZNt denote the process of infections between households:

ZNt =
N∑
i=1

1XN
i ≥1

,

where {XN
i (t), t ≥ 0; 1 ≤ i ≤ N} is the solution of the model (1).

We now define a continuous-time non-Markovian branching pro-
cess of infections as follows. Start with Y N

0 = Nq infected house-
holds, each with a single infected individual, and whose sizes are cho-
sen according to the size-biased distribution π+. If there are cur-
rently k infected households with x1, . . . , xk infected individuals, at
rate (1− p)λG

∑k
i=1 xi, a new household, whose size is chosen accord-

ing to the size-biased distribution π+, is added to the process with a
single infected individual. Apart from this, each household undergoes
a local epidemic with rates λL and γ, independently from the others.
Then Y N

t denotes the number of infected households at time t ≥ 0.
The corresponding discrete time branching process is supercritical,

since the expected number of “offspring” of each household is (1 −
p)R0 > 1. Then from Lemma 2.1 in Doney [5], if r > 0 denotes the
real number such that

λG(1− p)
+∞∑
n=1

π+(n)

∫ ∞
0

e−rtIE1[I(t)|ν = n]dt = 1,

where (I(t), t ≥ 0) is the process defined in (5) and IE1 means that we
take the expectation under the initial condition I(0) = 1, then

IE[Y N
t ] ∼ Naert as t→∞,(20)

where a is given by the formula

a = q

∫∞
0 e−rtL(t)dt

λG
π (1− p)

∫∞
0 te−rtIE1[νI(t)]dt

,
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with L(t) = IP(I > t) and I denotes the duration of the infection of a
local household epidemic starting with one infectious, where the size
of the household is chosen according to the size-biased distribution
π+.

Suppose that Nq ≤ ZN0 and define

TN,p = inf

{
t ≥ 0 :

∑N
i=1 1XN

i (t)≥1∑N
i=1 νi

> p

}
.

Then we claim that, on the interval [0, TN,p), Z
N
t stochastically dom-

inates Y N
t (i.e. we can defined (Y N

t , t ≥ 0) such that Y N
t ≤ ZNt for

t ∈ [0, TN,p)). To see this, note that Y N
0 ≤ ZN0 and that, since each

household in Y N
t starts with a single infected individual, the num-

ber of infected individuals in each household is larger in ZN0 than in
Y N
0 . This stays true until the first time at which a new household

is infected in either process, since the local infection parameters are
the same in both processes, and in ZN , there are additional infections
due to global infections between already infected households. Fur-
thermore, in the process (ZNt , t ≥ 0), a new household is infected at
rate

λG
1

N

N∑
j=1

XN
j (t)

N∑
i=1

νi

νN
1XN

i (t)=0 = λG

(
1−

∑N
i=1 νi1XN

i (t)≥1∑N
i=1 νi

)
N∑
j=1

XN
j (t).

and for t ∈ [0, TN,p), this rate is larger than the rate at which a new
household is infected in the process (Y N

t , t ≥ 0). We can thus couple
the two processes in such a way that

Y N
t ≤ ZNt , ∀t ∈ [0, TN,p),

almost surely for all N ≥ 1.
Now, by Theorem 3.2, as N →∞, for any T > 0,

ZNt
N
→ p(t) := IP(Xt ≥ 1),(21)

and ∑N
i=1 νi1XN

i (t)≥1∑N
i=1 νi

→ 1

π
IE[ν1X(t)≥1],(22)
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uniformly on [0, T ], in probability. Furthermore, there exists a deter-
ministic function f : IR+ → IR+ such that

Y N
t

N
→ f(t),

uniformly on [0, T ] as N →∞, in probability. Furthermore, by (20),

f(t) ∼ aert as t→∞.(23)

For any p′ < p, let

Tp′ = inf

{
t ≥ 0 :

1

π
IE[ν1X(t)≥1] > p′

}
.

By (22), choosing T > Tp′ , for any t ≤ Tp′ , t < lim infN→∞ TN,p, and
consequently for N large enough,

ZNt
N
≥ Y N

t

N
, ∀t ≤ Tp′ .

Letting N →∞, we obtain

p(t) ≥ f(t), ∀t ≤ Tp′ .

Now define

T fb = inf{t ≥ 0 : f(t) > b}.

Then, if T fb < Tp′ , p(T
f
b ) ≥ b. If however Tp′ ≤ T fb , then, by the

Cauchy-Schwarz inequality,

IE[ν1X(t)≥1] ≤
√

IE[ν2]
√
p(t),

and thus,

p(Tp′) ≥ (p′)2
π

π+
.

As a consequence, if for some t ≥ 0, p(t) = q, then p(t + s) reaches

b ∧ (p′)2π/π+ for some s ≤ T fb . Moreover, by (23), f is uniformly
bounded away from 0. This proves the Lemma.
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