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Abstract
We prove the existence and uniqueness of a quasi-stationary distribution for three
stochastic processes derived from the model of Muller’s ratchet. This model was
invented with the aim of evaluating the limitations of an asexual reproduction mode in
preventing the accumulation of deleterious mutations through natural selection alone.
The main considered model is non-classical, as it is a stochastic diffusion evolving
on an irregular set of infinite dimension with hard killing on a hyperplane. We are
nonetheless able to prove exponential convergence in total variation to the quasi-
stationary distribution even in this case. The parameters in this last convergence result
are directly related to the core parameters ofMuller’s ratchet. The speed of convergence
to the quasi-stationary distribution is deduced both for the infinite dimensional model
and for approximations with a large yet finite number of potential mutations. Likewise,
we give uniform moment estimates of the empirical distribution of mutations in the
population under quasi-stationarity.
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1 Introduction

1.1 General presentation

Since deleterious mutations occur much more frequently than beneficial ones, it is
crucial to understand how the fixation of these deleterious mutations is regulated.
Notably, it is very exceptional that a subsequent mutation reverts a deleterious one, so
that only natural selection can maintain some purity in the population. In this respect,
there is a major distinction to be made between sexual and asexual reproduction.
In a purely asexually reproducing population, a deleterious mutation can only be
purged when the lineages carrying it go extinct. In a sexually reproducing population,
such a deleterious mutation can be avoided through recombination, without getting
rid of the whole set of other mutations carried by the lineages. There is actually no
strong evidence that deleterious mutations are specifically targeted during this process
of recombination. For natural selection to effectively reduce the mutational load, it
appears sufficient that this random process of recombination prevents some lineages
from carrying themutation after a given time. This ability to better keep the population
purified from deleterious mutations is one of the main explanations of the success of
the sexual reproduction mode (see [1] for more details). Such an advantage for sexual
reproduction is to be confronted with the cost (in terms of reproduction efficacy) of
requiring two parents. The above scheme for purging deleterious mutations in asexual
populations is the main object of study of the current paper.

We plan to justify the existence and uniqueness of a metastable state in which selec-
tive effects are able to maintain a subpopulation free from any deleterious mutation.
At the time where this subpopulation goes extinct, we say that a click occurs in the
population. It has been shown in [2] that clicks happen in finite time a.s. even for
the infinite dimensional diffusion model (with infinitely many types of individuals).
Rigorous definitions of such a metastable state (characterized by the absence of click)
can be obtained in a broad generality by a conditioning of stochastic processes. We
refer to Sect. 2.1 for the definition of several crucial characteristic of metastability,
especially the notion of quasi-stationary distribution (abbreviated as QSD).

We treat in this paper three models of Muller’s ratchet: the first one is discrete
both in time and space, the second is a finite dimensional diffusion and the third
one is an infinite dimensional diffusion, see Sect. 1.2 below. We prove the existence
and uniqueness of a QSD for those three stochastic representations, see respectively
Theorems 2.2.2, 2.3.2 and 2.4.1. To our knowledge, the existence and uniqueness of a
QSD has not been rigorously proved until now except in the case of a finite state space.
This result was nonetheless implicitly exploited for the approximations provided in
[3].

We shall see that these QSD are concentrated on distributions with light tails,
meaning that the proportion of the population carrying a large number of mutations
remains negligible under the QSD. This claim is supported by our Proposition 2.3.4.

Wealso address the classical issueof specifying the conditions underwhichmetasta-
bility is observed in practice. A generally accepted answer is to compare the so-called
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relaxation time tR , which quantifies the rate at which the dependence in the past condi-
tions vanishes, and the average clicking time tC of the system. Metastability between
clicks would be the most common observation provided tR � tC , so that a sequence
of i.i.d. exponential law provides an accurate description of the sequence of intervals
between clicks. This is where the comparison with the clicks of a ratchet comes from.
If tR is of the same order as tC or larger, we a priori can not exclude that trains of
short interdependent intervals could alter this observed distribution of interval length.
But already if tR is of the same order as tC , there shall still be long realizations of
inter-click intervals after which we can say that the dependence in the past is forgotten.
This discussion is pursued in more details in Sect. 3.

The above mentioned theorems provide a proper definition of these two main quan-
tities. The typical clicking time tC is defined as the inverse of the extinction rate of
the QSD, or equivalently as the expected waiting time of the next click with the QSD
as the initial condition. On the other hand, the QSD is approached at an exponen-
tial rate by the marginal law of the process conditioned upon the fact that the click
has not occurred. We describe the inverse of this exponential rate (which should be
independent of the initial condition besides the QSD) as the typical relaxation time tR .

As compared to the other models that we have treated by similar techniques as in
the current paper, the proof of Theorem 2.4.1 is particularly difficult. It specifically
exploits the effect of selection to obtain practical bounds on the maximal number of
accumulatedmutations. The argument is technical because at any time an infinitesimal
proportion of heavily counter-selected mutants cannot be completely neglected.

A simplified version of such bounds is already needed for the proof of Theo-
rem 2.2.2. This concerns the process defined in Sect. 1.2.1. The fact that the process
describes a discrete population greatly simplifies the argument. We then extend the
justification of the relaxation time and the clicking rate for large population limiting
models. Note that the results of [3] or [4] already largely exploit the fact that the popu-
lation is large. In the diffusive limit defined in Sect. 1.2.2, an additional difficulty arises
in that the diffusion is degenerate on a non-smooth boundary that is partly absorbing
and partly repulsive. In order to present a simplified analysis, we introduce in a first
step a limitation in the number of carried mutations for the statement of Theorem 2.3.2
given in Sect. 2.3. In the last step given in Sect. 2.4with Theorem2.4.1, we establish the
existence and uniqueness of a QSD for the more natural infinite dimensional model.

The paper is organized as follows. In the next Sect. 1.2, we specify the stochastic
processes under consideration, first the individual-based model in Sect. 1.2.1 and then
its diffusive limits in Sect. 1.2.2. Our results of quasi-stationarity are presented in
Sect. 2. Starting in Sect. 2.1 with the general notion of exponential quasi-stationarity
that we aim to establish, we treat respectively in Sects. 2.2, 2.3 and 2.4 each of the
three stochastic processes mentioned above. The generic assumptions and theorems
on which these proofs rely are stated in Sect. 2.5. Next, we discuss more precisely
the interpretation of these results in Sect. 3. We justify in Sect. 3.1 to 3.3 under which
conditions quasi-stationarity can be observed. Finally, we motivate our choice for
not introducing a bound on the number of mutations in Sect. 3.4. The rest of the
paper is dedicated to the proofs. Sections4, 5 and 7 are devoted to the proofs of
quasi-stationarity for each of the three processes, while Sect. 6 is devoted to uniform
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moment estimates of the QSDs. The proofs in Sect. 7 take advantage of the lemmas
and propositions derived in the previous Sects. 5 and 6.

1.2 Themathematical model of Muller’s ratchet

1.2.1 The individual-basedmodel as a guideline

For the origin of the models which we study, we refer to the simplified mathematical
model which has been proposed by Guess as the multiplicative fitness model [5]
to quantify the regulation of deleterious mutations in an asexual population. The
interest for this type of simplified models stems from general considerations on the
evolutive advantage of recombination, as notably advanced by Muller in 1964 [6].
Since in any finite population, the ultimate fixation of deleterious mutations cannot
be avoided (unless by the extinction of the population), yet a form of metastability
can be observed. This “mechanism” of regulation has been called Muller’s ratchet,
notably by Haigh in [7].

Assuming a constant deleterious effect of mutations, at each time that the fittest
individuals disappear, the ratchet clicks in the sense that the new fittest individuals
carry an additional deleterious effect. The whole population is doomed after this time
to carry at least this additional effect. Since the population size is constant, natural
selection then acts as if the whole profile of mutations were translated by this value,
so that the fittest individuals at that clicking time now become the new reference
(at mutational burden 0). If the mutation rate is slow enough to allow these fittest
individuals to maintain the stability of the system for a while, the dynamics shall
rapidly follow the same behavior as before the click (taking into account that the
empirical distribution of the number of carried mutations is translated).

This first model with discrete generations and fixed population size N evolves
as follows. Mutations that occur are only deleterious and they occur at constant rate
λ > 0. The cost in fitness of eachmutation is quantified by α ∈ (0, 1). Assume that the
current population is distributed with Ni individuals carrying i mutations and consider
an individual from the next generation. Each one chooses its parent independently of
the others according to the same probability distribution, which is specified by the fact
that the chosen parent carries i mutations with probability:

Ni (1 − α)i
∑

k≥0 Nk · (1 − α)k
.

Remark that α = 0 corresponds to neutral mutations, which are not under purifying
selection. If α = 1 on the other hand, no individual could survive the burden of a
single mutation.

In addition to the mutations of its parent, each newborn gains ξ deleterious muta-
tions, where ξ is a Poisson random variable with mean λ, specific to the newborn. ξ
is drawn independently for each newborn and of the choice of the parent.

Existence and uniqueness for such a discrete-time Markov chain on a countable
state-space is a classical result, which we shall take for granted.
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Remark 1.2.1 Of course, the situation is more intricate in reality. Mutations certainly
do not have constant effect, and combination effects are frequent (i.e. epistasis). In
many asexual populations, there is evidence of the role of horizontal gene transfers, for
instance with plasmids [8–11], which can be seen as a weak form of recombination.
Moreover, the fact that mutations are deleterious is due to a change in the physiology
that may be compensated by other means. It might even happen that after subsequent
mutations, the carriers of an initially deleterious mutation become more adapted than
the wild types [12]. Neglecting these effects enables however to gain insight on the
main regulatory factor.

1.2.2 The stochastic diffusion under consideration

In the following, we also consider a description of the model that corresponds to a
limit of large population size, accelerated time-scale (for which time is continuous),
thus also small selective effect and small mutation rate. In the following statements,
d ∈ [[1,∞]] (i.e. d ∈ N ∪ {∞}) defines an upper-bound on the number of deleterious
mutations that can be carried by an individual. If d := ∞ in the following expression,
i ∈ [[0, d]] has to be understood as i ∈ Z+.

We are interested in the following Fleming-Viot system of Stochastic Differential
Equations (SDEs) for the X (d)

i (t)’s, i ∈ [[0, d]], where X (d)
i (t) denotes the proportion

of individuals in the population who carry exactly i deleterious mutations at time t
(with X (d)

−1 ≡ 0):

dX (d)
i (t) = α · (M (d)

1 (t) − i) · X (d)
i (t) dt + λ · (X (d)

i−1(t) − 1{i<d}X (d)
i (t)) dt

+
√

X (d)
i (t) dWi (t) − X (d)

i (t) dW(d)(s). (1.1)

In (1.1), (Wi )i≥0 denotes a family of mutually independent standard Brownian
motions, where Wi specifies the demographic fluctuations that are specific to the
subpopulations i . Secondly, the martingale process W(d) is defined as follows:

W(d)(s) :=
d∑

j=0

∫ t

0

√
X (d)

j (s)dWj (s), (1.2)

namely as an aggregated component according to which the fluctuations in the total
population sizes are corrected. Finally, the process M (d)

1 is defined as follows:

M (d)
1 (t) :=

d∑

i=0

i · X (d)
i (t),

namely as the aggregated component according to which the variations in the total
population sizes due to the selective effects are corrected. Unless otherwise specified,
theBrownianmotions thatwe introduce are all standard and this precisionwill possibly
be omitted.
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Remark 1.2.2 The martingale term is described by the following representation:

dN (d)
i (t) :=

√

X (d)
i (t) dWi (t) − X (d)

i (t) dW(d)(t)

which is actually equivalent to another commonly considered representation, namely:

dN (d)
i (t) =

∑

{ j �=i}

√
X (d)
i (t)X (d)

j (t) dWi, j (t)

for a sequence (Wi, j )i< j of independent Brownian motions, extended to any i �= j
by the symmetry property Wi, j (t) = Wj,i (t). As proved in Proposition A.0.1 of the
appendix, weak existence and uniqueness hold for both systems of SDEs and the
two representations have actually the same law. Since

∑d
i=0 X

(d) ≡ 1, and thanks to
Lévy’s caracterisation, the martingale W(d) has the law of a Brownian motion. Since

d〈N (d)
i 〉t = X (d)

i (t) · (1 − X (d)
i (t)) dt,

there exists for any i ∈ [[1, d]] a Brownian motion Bi (which depends upon d) such
that:

dN (d)
i (t) :=

√

X (d)
i (t) · (1 − X (d)

i (t)) dBi (t). (1.3)

However the (Bi ) are not mutually independent.

In [13], a closely related process with compensatory mutations is considered. We
refer to this article for a detailed presentation of the connection to related individual-
based models and only sketch next the interpretation of the parameters.

The selective effect of the deleterious mutations is the term proportional to α in the
drift term. As we assume that all deleterious mutations carry the same burden and that
the total population size is fixed, the growth rate of individuals carrying i mutations
is proportional to the difference between i and the average number of mutations, i.e.
M (d)

1 (t). The appearance of new mutations is modeled by the term proportional to λ

in the drift term. λ corresponds to the rate at which individuals carrying i mutations
give birth to individuals carrying i + 1 mutations. Finally, the neutral choice of the
individuals replaced at each birth events gives rise to the martingale term. Our time-
scale corresponds to the rescaling of time t �→ t ′/N , where N is the population
size.

1.2.3 Notations

For X a generic (Polish) space, hereafter B(X ) (respectively B+(X )) denotes the
space of bounded measurable (respectively nonnegative bounded measurable) func-
tions from X into R andM1(X ) (respectivelyM (X )) the space of Borel probability
(respectively signed) measures. For any f ∈ B(X ) and μ ∈ M(X ), we use the
abbreviation: 〈μ ∣

∣ f 〉 := ∫
X f (x)μ(dx).R+ (respectivelyR∗+) denotes the set of non-

negative (respectively positive) reals. For any integers m, n such that m ≤ n, [[m, n]]
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denotes the set of integers from m to n (included). We recall that d = ∞ is included
in the expression d ∈ [[1,∞]]. Z+ (respectively N) denote the set of non-negative
(respectively positive) integers.

2 Exponential quasi-stationarity results

2.1 Exponential quasi-stationarity

The conclusions of the following theorems are expressed in terms of the notion of
exponential quasi-stationarity that we borrow from [14].

Definition 2.1.1 For any linear, nonnegative, bounded and sub-conservative semi-
group (Pt )t≥0 acting on M(X ), we say that P displays a uniform exponential
quasi-stationary convergence (abbreviated as QSC) with characteristics (ν, h, ρ0) ∈
M1(X )×B+(X )×R+ if 〈ν ∣

∣ h〉 = 1 and there exists C, γ > 0 such that the following
inequality holds for any t > 0 and for any measure μ ∈ M(X ) with ‖μ‖T V ≤ 1:

∥
∥eρ0tμPt − 〈μ ∣

∣ h〉 ν
∥
∥
T V ≤ Ce−γ t . (2.1)

By the term of characteristics, we mean that the triple (ν, h, ρ0) is uniquely
defined, as stated in [14, Remark 2.7]. Thanks to [14, Corollary 2.9], this definition of
convergence for (Pt ) implies the following convergence result to ν.

Corollary 2.1.1 Assume (2.1). Then for any t ≥ 0 and μ ∈ M1(X ) such that 〈μ ∣
∣ h〉

> 0 :

‖ 〈μPt , 1〉−1 · μPt (dx) − ν(dx) ‖T V ≤ C
‖μ − ν‖T V

〈μ ∣
∣ h〉 e−γ t . (2.2)

Remark 2.1.2 Choosingμ = ν in (2.1), it is not hard to deduce the following relation:

∀ t ≥ 0, νPt = e−ρ0 t ν, (2.3)

and in particular 〈ν, 1〉 = e−ρ0 t , cf [14, Fact 2.7]. This relation is what characterizes
ν as a QSD since it implies that for any t ≥ 0, 〈νPt , 1〉−1 · νPt (dx) = ν(dx). By
restricting the convergence stated in (2.1) on the evaluation of the measure on X , we
obtain a similar characterization of h. This latter convergence is what makes us call h
the survival capacity.

There is an additional related notion thatwill be useful to describe the behavior of the
process with the requirement of a long inter-click interval. This process is generically
defined through the survival capacity h, on the state space:H := {x ∈ X ; h(x) > 0}.
In the following, we assume that (Pt )t≥0 is the sub-conservative semi-group of a strong
Markov process (�; (Ft )t≥0; (Xt )t≥0; (Px )x∈X ) defined up to its extinction time τ∂ ,
which is expresssed as follows for any initial distribution μ ∈ M1(X ):

μPt (dx) = Eμ

(
Xt ∈ dx; t < τ∂

)
.

123



M. Mariani et al.

Note that for such a semi-group (Pt ) displaying QSD with characteristics (ν, h, ρ0)

(in M1(X )× B+(X )×R+), ρ0 > 0 is equivalent to Pν(τ∂ < ∞) > 0, thanks to
Remark 2.1.2. Furthermore, Eμ

(
Xt ∈ dx | t < τ∂

) = 〈μPt , 1〉−1 · μPt (dx) in this
framework, which converges to ν(dx) according to (2.2).

Definition 2.1.2 We say that the Q-process exists if there exists a family (Qx )x∈H of
probability measures on � defined by:

lim
t→∞Px (�s

∣
∣ t < τ∂) = Qx (�s) (2.4)

for any Fs-measurable set �s . We also require the process
(�; (Ft )t≥0; (Xt )t≥0; (Qx )x∈H) to be a homogeneous strong Markov process.

With a slight adaptation of the proof of [15, Theorem 2.3], it was deduced in [14]
that such a property of existence of the Q-process is a consequence of QSC.

Remark 2.1.3 The transition kernel of the Q-process is given by:

q(x; t; dy) = eρ0 t h(y)

h(x)
p(x; t; dy),

where p(x; t; dy) is the transition kernel of the Markov process (X) under (Px ). Note
thatX \H is generally avoided by the process X underQx . For the examples considered
in this paper, h is positive, and the QSD ν is unique. No distinction has then to be
made between X and H regarding the Q-process.

Thanks to [14, Corollary 2.12], our justification for the proof of QSC actually
implies related results of convergence for theQ-process.Notablyβ(dx) := h(x) ν(dx)
is the unique invariant probability measure of this process.

Remark 2.1.4 The probability space � is usually not made explicit. For the purpose
of a following condition (namely Assumption (A3F ) as stated in Sect. 2.5.1), we will
require for the analysis of the diffusion processes X (d) that� is of path type. Following
[16] (to exploit Proposition 8.8 within), it means that � is the canonical space of a
strongMarkov process (X̂t )t∈R+ (with values on a Polish space X̂ ), while the filtration
(Ft ) is the one generated by the process X̂ . In other words, X̂ is exactly the identity
mapping, so that X̂t agrees with the evaluation map : ω �→ ωt for ω on the set of
measurable functions from R+ to X̂ , and (Ft ) is the smallest filtration that make this
applicationFt -measurable for any t ≥ 0. For our purposes, for any d ∈ [[1,∞]], it will
be sufficient to consider for �(d) and for the associated filtration (F (d)

t ) the canonical
choice generated by the process X (d).

Remark 2.1.5 Originally in the quantitative work of Champagnat and Villemonais, the
focus is more on estimates of convergence for the conditioned semi-group, as in (2.2).
There was notably an efficient and full characterization of the case where the upper-
bound can be taken asCe−γ t uniformly over the initial condition [17]. In amore recent
work [18], they also relate to the convergence of the semi-group scaled by eρ0t [18,
Corollary 2.4 and 2.6] and describe it as naturally adapted as well [18, Remark 5].
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As in [14], we found the formulation (2.2) more generally adapted to the dependency
over the initial condition due to the linearity of the semi-group Pt . A more general
form of convergence than (2.1) with a weighted norm is the object of [19], with a full
characterization as well.

2.2 The discrete population case

Let N ≥ 1 be the number of individuals in the population. For n ≤ N and t ∈ Z+,
let Dn(t) be the number of mutations carried by the n-th individual. We consider the
empirical measure at time t > 0 defined as follow:

ZN
t := 1

N

∑N

n=0
δDn(t), (2.5)

so that ZN
t (i) ∈ N−1 · [[0, N ]] specifies the proportion of individuals with exactly i

mutations (since everything is discrete, we identifyZN
t as a function from Z+ toR+).

From the rules describing the next generation from the previous one, see Sect. 1.2.1,
ZN is a strong Markov process evolving on MN

1 (Z+), where:

MN
1 (Z+) :=

⎧
⎨

⎩

1

N
·
∑

i≤N

δdi ; di ∈ Z+,
∑

i∈Z+
di = N

⎫
⎬

⎭

≡
{
z : Z+ �→ N−1 × [[0, N ]];

∑

{i∈Z+} z(i) = 1
}
.

(2.6)

This set MN
1 (Z+) is equipped with the Lévy-Prokhorov metric, which makes it a

Polish space, that is a separable and complete metric space. The clicking time under
consideration comes from the extinction of the fittest individuals, i.e.:

τ N
∂ := inf

{
t ≥ 0; ZN

t (0) = 0
}

= inf
{
t ≥ 0; ZN

t /∈ M(0),N
1 (Z+)

}
, (2.7)

where M(0),N
1 (Z+) =

{
z ∈ MN

1 (Z+); z(0) ≥ 1
N

}
.

Remark 2.2.1 Classical theory on quasi-stationarity can be exploited by interpreting
the clicking time τ N

∂ as an extinction time. We implicitly rely on the process Z̄N
t :=

1{t<τ N
∂

}ZN
t + 1{τ N

∂ ≤t
}∂ which is Markov and lives on M(0),N

1 (Z+) ∪ {∂}. For the
process Z̄N , τ N

∂ is the hitting time of the absorbing state ∂ (the cemetery).

Our main conclusion for this process is the following theorem:

Theorem 2.2.2 Consider for any α ∈ (0, 1), for any λ > 0 and for any N ≥ 1 the
Markov process Z N whose transitions are prescribed as in Sect. 1.2.1, with clicking
time τ N

∂ . Then, its semigroup PN displays QSC with characteristics (νN , hN , ρN
0 ) ∈

M1(M(0),N
1 (Z+))×B+(M(0),N

1 (Z+))×R∗+. Moreover, hN is uniformly bounded away
from 0.
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It implies that the convergence to νN given in (2.2) is uniform with respect to the
initial condition and that the Q-process exists on the whole state spaceM(0),N

1 (Z+).

Remark 2.2.3 The discreteness of the process is strongly involved in the proof of
Theorem 2.2.2, so that the derived convergence rate strongly depends on N .

2.3 The finite dimensional case

The system of SDEs for finite d evolves on the state space X̄d , where:

X̄d :=
{
(xk)k∈[[0,d]] ∈ [0, 1]d+1;

∑d

k=0
xk = 1

}
.

With the L1 distance, this set is also a Polish space. The solution to the system (1.1)
is unique as stated in the next proposition, as a corrolary of [20, Theorem 2.1], whose
proof is deferred for completeness to the appendix, Section A.

Proposition 2.3.1 For any d ∈ N, existence and weak uniqueness of solutions hold on
the state space X̄d for the system (1.1) of SDEs.

We denote by τ
(d)
∂ the clicking time of this process X (d), that is:

τ
(d)
∂ := inf

{
t ≥ 0; X (d)

0 (t) = 0
}
. (2.8)

The most natural state space for the process with extinction at time τ
(d)
∂ thus does not

include this boundary:

Xd :=
{
x ∈ X̄d; x0 ∈ (0, 1]

}
. (2.9)

Our main conclusion for this process is the following theorem:

Theorem 2.3.2 Consider the system of SDEs (1.1) for any α ∈ (0, 1), for any λ > 0
and for any d ∈ N, with clicking time τ

(d)
∂ . Then, its semigroup P(d) displays a QSC

with characteristics (ν(d), h(d), ρ
(d)
0 ) ∈ M1(Xd)×B+(Xd)×R

∗+. In addition, for any
y0 ∈ (0, 1), h(d) is bounded away from 0 on {x ∈ Xd; x0 ≥ y0}. In particular, the
associated Q-process exists on the whole state space Xd .

Remark 2.3.3 The fact that α is non-zero is actually not exploited in this proof. As in
[21], we rely mainly on Harnack’s inequality. The dependency in the dimension d is
roughly considered. Nonetheless, we have here to be cautious in the way we handle
jointly the absorbing and repulsive boundary conditions.

Moreover, we prove the following controls on the moments of the QSDs ν(d), for
d ∈ N:
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Proposition 2.3.4 For any α ∈ (0, 1), for any λ > 0 and for any k ≥ 1, we have
uniform tightness in d over the moments of order k of the unique QSDs ν(d) associated
with the solution to (1.1), which means that the following supremum tends to 0 as m
tends to infinity:

sup
{ ∫

Xd
1{Mk (x)≥m}ν(d)(dx); d ∈ N

}
,

where Mk(x) := ∑
i∈[[0,d]] i k xi . In particular, the sequence ν̂

(d)
k , where the values for

the coordinates larger than k + 1 are put to 0, is tight inM1(R
Z+).

Remark 2.3.5 This control on the moments is actually crucial for the proof of unique-
nesswhend = ∞. Given the above theorem,we expect the sequence (ν(d)) to converge
as d → ∞ to the unique QSD ν(∞) for the infinite system (for which the control
extends), though it is beyond the scope of the current paper.

2.4 The infinite dimensional case

We consider now the infinite dimensional case, for which we require the existence of
moments. Let us consider the following definition for any η ∈ (2,∞):

X̄ η :=
{

(xk)k∈Z+ ∈ [0, 1]∞;
∞∑

k=0

xk = 1,
∞∑

k=0

kηxk < ∞
}

.

As in [2], we consider for X̄ η the topology under which a probability xn =
(xnk , k ≥ 0) on Z+ converges to x = (xk, k ≥ 0) if both it converges weakly, and
supn

∑
k≥0 k

ηxnk < ∞. This topology is actually generated by the following metric,
defined for any x, y ∈ X η, which makes X̄ η Polish, that is separable and complete:

dη(x, y) = |x0 − y0| +
∑

{k≥1} k
η · |xk − yk |.

Thanks to [2, Theorem 3] (and to Proposition A.0.1 in the appendix to show that
the process under consideration is the same as ours), we know that for any η > 2
and for any initial condition x that belongs to X̄ η, (1.1) has a unique weak solution
X (∞) which is a.s. continuous with values in X̄ η. This process has been introduced
in [4] and it has also been shown in [2] that clicks occur a.s. in finite time, with the
same definition of τ

(∞)
∂ as in (2.8). We consider the state space without the boundary

{x0 = 0} as the state space with η = 6 for the process with extinction at time τ
(∞)
∂ :

X∞ := {x ∈ X̄ 6; x0 ∈ (0, 1]}. (2.10)

We now state the main theorem of the current paper:

Theorem 2.4.1 Consider for anyα ∈ (0, 1) and for any λ > 0 the system of SDEs (1.1)
with d = ∞, defined on X∞ with extinction at time τ

(∞)
∂ . Then, its semigroup P(∞)
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displays a QSC with characteristics (ν(∞), h(∞), ρ
(∞)
0 ) ∈ M1(X∞)×B+(X∞)×R

∗+.
In addition, for any y0 ∈ (0, 1), h(∞) is lower-bounded by a positive constant on
{x ∈ X∞ ; x0 ≥ y0}. In particular, the Q-process exists on the whole state space X∞.

Besides, there exist C, γ, d∨ > 0 such that the convergences stated in (2.1) and
(2.2) hold true with the constants C, γ for the processes given by (1.1) on Xd for any
d ∈ [[d∨,∞]].

By the notation, [[d∨,∞]], remark that we include ∞ besides all integers larger
than d∨.

Remark 2.4.2 The core of our proof is based on the intuition that the slower the decay
of the tail the more rapidly it gets erased and renewed. So we do not expect large tails
to play a significant role. In practice, we exploit the finiteness of moments of order 2η′
to control moments of order η′, and that η′ is strictly larger than 2 plays a significant
role. For simplicity, we restrict ourselves to initial condition within X 6 although our
proof could likely be generalized to X η provided at least that η > 4.

2.5 Some crucial sets of conditions ensuring exponential quasi-stationarity

The proof of QSC are exploiting the criteria given in [14, Subsection 2.3.1], with a
trajectorial approach. The methods and statements taken from [15] have actually been
adjusted in [14] with the current paper in mind. Thanks to Theorem 2.5.3 in Sect. 2.5.2
that summarizes these conclusions, it will remain to prove one of the following two
sets of assumptions, (A) or (AF), to complete the proofs of Theorems 2.2.2, 2.3.2 and
2.4.1. Assumptions (A) and (AF) are made up of four basic assumptions, three being
common to both. So first, we present these five basic assumptions in Sect. 2.5.1 in the
general context of a strong Markov process X with extinction at time τ∂ that makes it
exit the state space X .

X can here simply be thought to be a Polish space. The state spaces we consider
for our theorems, namely M(0),N

1 (Z+) for any N ≥ 1 (see (2.7)), Xd for any d ≥ 1
(see (2.9)), and X∞ (see (2.10)), are all Polish spaces.

2.5.1 Basic assumptions

The first assumption is on a sequence (D�)�≥1 that shall be exploited for the following
assumptions. int(D) denotes the interior of any set D.
(A0)[(D�)]: Specification on the state space with the sequence (D�)�≥1:

For any �, it holds both that D� is a closed subset of X and that D� ⊂ int(D�+1).

Remark 2.5.1 Originally in [15], this assumption is strengthened with ∪�≥1D� = X .
It was shown in [14] how to adapt the conclusions without this additional restriction.
The state spaces X that we consider include boundaries in the vicinity of which the
process X (d) is a degenerate diffusion (for instance the boundary corresponding to
x1 = 0). It is thus more convenient for some of our proofs not to assume∪�≥1D� = X
and if possible to keep the diffusion process non-degenerate on any D�.
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The sequence D� will serve as a reference in the following, and we also denote:

D := {D ⊂ X ; D = D , ∃ � ≥ 1, D ⊂ D�

}
, (2.11)

whereD denotes the closure of the subsetD ofX , so that the elements ofD are closed
subsets of X that are countained in D�, for � sufficiently large.

For this trajectorial approach, we strongly rely on the representation of the semi-
group (Pt ) in terms of a strong Markov process (Xt )t∈[0,τ∂ ) defined up to some
extinction time τ∂ . Recall Pt f (x) = Ex [ f (Xt ); t < τ∂ ] for any x ∈ X and f ∈ B(X ).
For the next statements, we will exploit the following notations for the exit and entry
times of any subset D of X :

TD := inf {t ≥ 0 ; Xt /∈ D} , τD := inf {t ≥ 0 ; Xt ∈ D} .

Besides this dependency on the sequence (D�) the next assumptions share as commom
parameters the probability measure ζ onX , the real number ρ > 0 and the set E ∈ D.
They are recalled in square brackets in the notations of the basic assumptions.
(A1)[ζ, (D�)]: Mixing property for the reference probability measure ζ ∈ M1(X )

according to the sequence (D�)�≥1:
For any integer � ≥ 1, there exist both an integer L > � and c, t > 0 such that the

following holds for any initial condition y ∈ D�:

Py

(
Xt ∈ dx ; t < τ∂ ∧ TDL

)
≥ c ζ(dx).

(A2)[ρ, E]: Escape from the Transitory domain with penalty-rate ρ > 0, where
the complementaty of this transitory domain is E ∈ D:

sup{x∈X } Ex
(
exp

[
ρ · (τ∂ ∧ τE )

])
< ∞.

ρ in the previous exponentialmoment is required to be strictly larger than the following
“survival estimate" ρS , which a priori depends on ζ :

ρS[ζ ] := sup
{
γ ≥ 0; sup{L≥1} lim inf{t>0} eγ t

Pζ

(
t < τ∂ ∧ TDL

) = 0
}

∨ 0.

Remark 2.5.2 It is proved in [14, Theorem 2.16] that ρS[ζ ] coincides with the
extinction rate ρ0 (and is thus independent of ζ ), provided the semi-group displays
QSC.

The next two assumptions are proposed as alternatives and each alternative will be
exploited in the current paper. The former is the assumption first introduced in [15,
Section 2.1]. The latter provides a way to ensure the former given (A0), (A1) and
(A2) as proved in [14, Theorem 2.3].
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(A3)[ζ, E] : Asymptotic comparison of survival on the set E ∈ D of initial
conditions, with reference probability measure ζ :

lim sup
t→∞

sup
x∈E

Px (t < τ∂)

Pζ (t < τ∂)
< ∞.

(A3F )[ζ, ρ, E] : Almost perfect harvest on the set E ∈ D of initial conditions, with
reference probability measure ζ and penalty-rate ρ:

For any ε ∈ (0, 1), there exist tF , c > 0 such that for any y ∈ E there exist two
stopping times UH and V with the following properties:

Py
(
X(UH ) ∈ dx ; UH < τ∂

) ≤ c Pζ

(
X(V ) ∈ dx ; V < τ∂

)
.

including the next conditions on UH :

{τ∂ ∧ tF < UH } = {UH = ∞} and Px (UH = ∞, t < τ∂) ≤ ε exp(−ρ tF ).

Furthermore, � is of path type.
As stated in [14, Proposition 2.2], the assumption that � is of path type ensures

sufficient regularity properties of stopping times with respect to iterative procedures
exploiting the strong Markov property.

2.5.2 General theorems of convergence

We exploit the following definitions of Assumptions (A) and (AF) from [14].

Assumption (A): “There exists ζ ∈ M1(X ) such that (A1)[ζ, (D�)] holds for a
specific sequence (D�) satisfying (A0). Moreover, there exists
ρ > ρS[ζ ] and E ∈ D such that Assumptions (A2)[ρ, E] and
(A3)[ζ, E] hold."

Assumption (AF) is exactly Assumption (A) with (A3)[ζ, E] replaced by
(A3F )[ζ, ρ, E].

Theorem 2.8 in [14] can be restated for our purpose as follows:

Theorem 2.5.3 Assume that either (A) or (AF) holds. Then, the semigroup P displays
QSC with characteristics (ν, h, ρ0) ∈ M1(X )×B+(X )×R+, h is bounded away from
0 on D� for any � ≥ 1 and the Q-process exists on H := {x ∈ X ; h(x) > 0}.
Remark 2.5.4 The proof of Theorem 2.5.3 is originally stated in continuous time. A
careful check of the arguments given in [14, Section 3] and in [15, Section 3] shows that
their extension to the discrete-time setting (exploited in the following Theorem 2.2.2)
does not raise any issue.

Since the exploited sequence (D�)�≥1 usually does not cover the whole state space,
we shall exploit [14, Proposition 2.10] to deduce some lower-bounds of h. The next
proposition recalls its statement.
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Proposition 2.5.5 Assume that (A) or (AF) holds. Then, the survival capacity h is
uniformly lower-bounded on any set H ⊂ X that satisfies the following condition:
(H0) : there exists t > 0, � ≥ 1 such that inf{x∈H} Px (τD�

≤ t ∧ τ∂) > 0.
It implies the following identification of H := {x ∈ X ; h(x) > 0}:

H =
{
x ∈ X ; ∃ � ≥ 1, Px (τD�

< τ∂) > 0
}
.

Thanks to Proposition 2.5.5, we shall prove in our models that h is actually positive.
Note that this property entails the uniqueness of the QSD thanks to Corollary 2.1.1.

3 Outlook

3.1 Interpretation of crucial parameters

For the infinite-dimensional process, no parameter other than α and λ is introduced.
We deduce from Theorem 2.4.1 that the QSD and the survival capacity depend only
on α and λ, as well as the real numbers C, γ > 0 in (2.1) and (2.2).

As alreadynotedbyHaigh in [7],α/λ is the average number of deleteriousmutations
that are established in the deterministic limit (neglecting neutral fluctuations). The
deterministic distribution of mutations is a function of α/λ, and actually follows a
Poisson distribution with this mean, as shown in [4]. To infer the level of fluctuations
around this deterministic equilibrium, we shall look at the coefficient in front of the
martingale term in a new time-scale such that the mutation rate is set to 1. This gives
1/λ, which we recall to scale as

√
1/Ne, where Ne is the population size. A large

population size thus corresponds to letting λ go to infinity, making the deviations
away from the deterministic distribution more unlikely.

A natural scale for the time between clicks can be directly derived from the notion of
QSC, with the definition tC := ρ−1

0 . On the other hand, we can propose the following
definition for the relaxation time:

tR := inf
{
tr > 0 ; ∃C > 0, ∀μ ∈ M1(X ), ∀ t > 0,

‖μAt − ν‖T V ≤ (C/〈μ ∣
∣ h〉) · e−t/tr

}
. (3.1)

Our results justify that this definition, which involves no ad-hoc parameters, leads to
a finite quantity (upper-bounded by 1/γ , where γ is the rate deduced in the proof of
Theorem 2.4.1). Remark also that the convergence to h and β also occurs at a rate that
is quicker than 1/tR , as one can check by adjusting the justification in [15].

By relying on the arguments of Theorem 2.4.1 and Proposition 2.3.4, we expect that
truncating the number of accumulated mutations is not likely to alter much this value
of tR provided the threshold is sufficiently large. Since we cannot evaluate tR precisely
and are only able to provide an upper-bound, this is still conjectural. But substantial
increase of these last components are proved to be rare thanks to Proposition 2.3.4 and
not so significant when we look at Sect. 7.5.
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Remark 3.1.1 The dependence on the initial condition in (3.1) is expected from the
linearity of the semi-group (Pt ), as observed in [14].More general dependencies could
nonetheless be imagined, relying for instance on Lyapunov functions as in [18] or in
[19]. We simply do not think it would change the value of tR because the confinement
is mainly due to extinction and immediate repulsion from the boundaries.

3.2 Previous estimations

The study of this quasi-stationary regime arises naturally when one wishes to estimate
the rate at which the ratchet clicks. To obtain quantitative estimates, several authors
have justified their approach by assuming that the typical clicking time tC is much
larger than the typical relaxation time tR of the system, usually with an empirical
reference for the latter [3, 4].

In [3], an estimation of tC in the context where tR � tC is obtained through the
characteristic equation of a certain QSD ν�, of the form Lν� = −λ · ν�, with L is
a certain infinitesimal generator and λ its main eigenvalue. This QSD ν� that they
study is not the general QSD ν(∞) that we describe. The detailed description of the
latter is reasonably argued to be too intricate. The former is in fact derived from a
one-dimensional approximation of the process under metastability. It is argued that
in the context of large populations, and given the number of fittest individuals, one
can approximate the rest of the distribution as an almost deterministic profile. The
dependence in this number of fittest individuals only occurs in the normalizing factor
of this distribution. This latter argument of concentration could probably be made
rigorous by using Large Deviation theory. Such results are beyond the scope of the
present paper.

Note that the validity of this approximation relies upon the fact that tR � tC , where
tR is to be related to the QSD ν(∞). The relaxation rate of ν� is only a partial indication,
although presumably carrying most of the information.

3.3 The quasi-stationary regime is generally observed for tR � tC

Provided tR � tC , we expect to generally observe the quasi-stationary regime between
clicks. It is classical that with the QSD as an initial condition, the extinction time and
extinction state are independent, the former being exponentially distributed, as it is
stated in [22, Theorem 2.6]. Assuming that we start the analysis at a new click after a
long time-interval without click, it implies that the profile of mutations just after the
click is distributed as the restriction of the QSD to the hyperplane {X0 = 0}.

Since having large values of M1 makes it actually harder for the process to reach
the hyperplane, we expect that, under the QSD restricted to {X0 = 0}, M1 tends to be
smaller than the prediction 1 + λ/α derived from the deterministic limit (under the
constraint that x0 = 0). Besides, the fittest individuals are altered by first changing
into the type with only one mutation. So we expect also that under the QSD restricted
to {X0 = 0}, there is an over-representation of the proportion of individuals carrying a
single mutation (the new optimal trait). Thus, we expect the distribution just after the
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click to be less prone to a future click than would be the QSD itself. Since tR � tC ,
the quasi-stationary regime is then rapidly reached.

Let us also imagine a dramatic situation where some clicks would rapidly follow
each others. Then, it would imply that these fittest classes of individuals are rapidly
wiped off, while not letting much time for the others to change much. Since we
have seen that we have very strong controls of moments under the QSD, cf notably
Proposition 2.3.4, such succession of clicks cannot hold for long. A class that is not
prone to a quick extinction should be reached quite early and generate a new quasi-
stationary regime. Such dramatic situations, which are very rare, are thus expected to
be very isolated and of limited impact.

Expecting an exponential law for the inter-click intervals and the independence
between them should be in conclusion a good approximation provided tR � tC .

As we discuss in [23, Subsection 2.3], one can also conclude whether or not the
QSD profile is likely to be observed without conditioning by comparing ν to the
survival capacityh. If quasi-stationarity is stable,wedonot expect that the conditioning
on having a click in the far future shall substantially alter the dynamics. In most
trajectories, the Q-process shall thus behave as the original process. So h should be
mostly constant on the support of β(dx) = h(x) ν(dx), implying h ≈ 1 where the
density of ν is large.

In practice, the QSD and the survival capacity are certainly quite difficult to specify
with simulations because they live on a large dimensional space. Likewise, the conver-
gence in total variation exploited in (3.1) is probably not very practical for numerical
estimation.

3.4 Motivation for an unbounded number of deleterious mutations

In order to prove quasi-stationarity results, the case where d < ∞ can be treated more
easily and provides an introduction to the case d = ∞. Nonetheless, the arguments
for having a convergence at a given rate becomes more and more artificial as d tends to
infinity. The constant involved in theHarnack inequalities goes to zero as the dimension
increases. By considering the case d = ∞, we actually handle as a whole the case
where d is sufficiently large. By these means, we are able to prove that the rate of
convergence can be upper-bounded by a quantity that does not depend on the specific
value of d. This is to be expected since, even when a large number of deleterious
mutations is permitted, we expect individuals carrying a large number of mutations to
remain negligible.

Referring for instance to [4], it is not difficult to prove that in the deterministic limit
of a large population, the empirical measure of the number of mutations in the popula-
tion tends to a Poisson distribution. The tail of the distribution is quickly disappearing.
This deterministic limit corresponds to a limiting time-change of Eq. (1.1) of the form
t ′ = t/ε with α = α′/ε, λ = λ′/ε as ε tends to 0. The Poisson distribution has a
mean of λ′/α′ = λ/α so that it may be possible to quantify much more precisely than
we do the threshold in the number of deleterious mutations after which differentiating
individuals is not so crucial. This could make it possible to obtain quantitative bounds
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from our arguments in the context of very large populations (in the vicinity of the
deterministic limit).

Proofs

All the following properties strongly depend on the values of α > 0 (α ∈ (0, 1) for
the discrete state-space) and λ > 0. For brevity since the line of proof holds for any
such values, this expected dependency is not recalled in the following statements. The
dependencies in N for the discrete state-space and in d for the finite dimensional SDE
are generally recalled (in the state spaces and the random times notably) because of
the interest of having statements that are uniform over these parameters. They may
still be omitted to avoid too heavy notations.

4 Proof of Theorem 2.2.2

The proof of Theorem 2.2.2 relies on the proof of Assumption (A) as stated in
Sect. 2.5.2. For any z ∈ M(0),N

1 (Z+), we denote byPN
z the law of the process ZN with

initial condition z, as defined in Sect. 1.2.1. This process is associated to the extinction
time τ N

∂ in (2.7). The first step deals with the mixing estimate, while we focus on the
persistence of large mutational burdens in the second step (for the estimate on the
escape from the transitory domain).

Step 1: access to any focal state
We first prove that any focal state of the population can be reached uniformly
in the initial condition with a non-neglible probability, as stated in the upcoming
Proposition 4.0.1:

Proposition 4.0.1 For any integer N ≥ 1 and any element z ∈ M(0),N
1 (Z+):

inf
{
P
N
z0(Z

N (1) = z)
∣
∣ z0 ∈ M(0),N

1 (Z+)
}

> 0.

Proof : We impose that all the individuals of the next generation are the offspring of
an individual without any mutation, and prescribe the number of mutations that they
get from the profile of z. For any initial condition z0 ∈ M(0),N

1 (Z+), the probability
of choosing a fittest individual as a parent is: z0(0)/(

∑
{i≥0} z0(i) · (1 − α)i ). This

probability is uniformly lower-bounded by 1/N . The number of mutations is then
chosen independently of z0, and there is indeed a positive probability that the sequence
of independent Poisson distributed random variables has an empirical law distributed
as z. This concludes the proof of Proposition 4.0.1. ��

Step 2: disappearance of any large mutational burden
With a probability close to 1, the sub-population of individuals carrying a large number
of mutations leave no progeny, as stated in the upcoming Proposition 4.0.2:
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Proposition 4.0.2 For any N ≥ 1 and ε > 0, there exists K ≥ 1 such that the
following inequality holds with EN := {

z ∈ M(0),N
1 (Z+) ; z([[K ,∞[[) = 0

}
for any

z ∈ M(0),N
1 (Z+):

P
N
z (ZN (1) /∈ EN ) ≤ ε.

Proof : Let k1 ≥ 1 for the threshold in the number of mutations. The probability
that an individual chooses a parent with more than k1 mutations is upper-bounded by
N · (1− α)k1 , since z(0) ≥ 1. For any ε > 0, we thus choose k1 ≥ 1 such that, with a
probability greater than 1 − ε/2, no individual in the next generation descends from
an individual with more than k1 mutations. Likewise, there exists k2 ≥ 1 such that,
with a probability greater than 1−ε/2, the number of additional mutations is less than
k2 (for any individual, independently of the initial condition z). We can then conclude
the proof of Proposition 4.0.2 in that:

∀ z ∈ M(0),N
1 (Z+), P

N
z (ZN (1) /∈ EN ) ≤ ε,

where EN is defined as in the Proposition 4.0.2 with K = k1 + k2. ��

Concluding the proof of Theorem 2.2.2
We simply set DN

� to be the whole space M(0),N
1 (Z+) for any �. Note that (A0) is

satisfied even for this degenerate case. Actually, the exit time are just infinite and the
entry times inDN

� always equal zero. Secondly, Proposition 4.0.1 implies Assumption
(A1). Concerning (A2), we exploit Proposition 4.0.2 inductively over k ≥ 1 to deduce
an upper-bound of the following form, thanks to the Markov property and with τ N

E the
hitting time of EN by the process ZN :

∀ z ∈ M(0),N
1 (Z+), P

N
z (k < τ N

∂ ∧ τ N
E ) ≤ 2−k · exp(−ρk).

It implies the upper-bound on the exponential moment for any z by splitting the
expectation depending on the interval of the form [k, k + 1) that contains τ N

∂ ∧ τ N
E ,

i.e.:

E
N
z (exp[ρ · (τ N

∂ ∧ τ N
E )]) ≤

∑

k≥0

exp[ρ · (k + 1)] · PN
z

(
τ N
∂ ∧ τ N

E ∈ [k, k + 1)
)

≤ eρ ∑
k≥0 2

−k = 2eρ < ∞.

For the last criterion (A3), we remark that EN as defined in Proposition 4.0.2 is
finite. Thanks to Proposition 4.0.1 and to the Markov property, we can thus choose
c = c(N ) > 0 such that the following comparisons of survival hold for any t ≥ 1:

P
N
δ0

(t < τ N
∂ ) ≥ c sup

z∈EN
P
N
z (t − 1 < τ N

∂ ) ≥ c sup
z∈EN

P
N
z (t < τ N

∂ ). (4.1)

This concludes (A3) and that Assumption (A) is satisfied.
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Thanks to Theorem 2.5.3, the semigroup PN displays QSC with characteristics
(νN , hN , ρN

0 ) ∈ M1(M(0),N
1 (Z+))×B+(M(0),N

1 (Z+))×R+. Moreover, hN is uni-
formly bounded away from 0. Besides, ρN

0 = − log
[
P
N
νN (1 < τ∂)

]
> 0 because

P
N
z (τ∂ = 1) > 0 holds for any z ∈ M(0),N

1 (Z+). This concludes the proof of
Theorem 2.2.2. ��
Remark 4.0.3 If we were to replace the law of ξ by a Bernoulli distribution (mutations
occurring one by one), Proposition 4.0.1 would still hold with the restriction of z = δ0,
which is the only case we need. It would extend to any z provided we change the time 1
by the maximal number of mutations in z. The proof would not be much more difficult
with overlapping generations, except that individuals should then be removed one by
one. The proof of the equivalent of Proposition 4.0.2 would merely be slightly more
difficult. The details are left to the interested reader.

5 Proof of Theorem 2.3.2

The proof of Theorem 2.3.2 also relies on the set (A) of criteria, as stated in Sect. 2.5.2.
The proofs of two of these criteria (especially the mixing estimate and the asymptotic
comparison of survival) are very much inspired by those of [15, Subsection 4.2.2].
Likewise, they exploit Harnack’s inequality –the following Property (H)– classically
deduced for elliptic diffusions, see Sect. 5.1.1. The estimate of escape on the other
exploits several comparisonswith one-dimensional diffusions to dealwith the behavior
of the process near the boundary of the domain, by exploiting the classical results
presented in Sect. 5.1.2.

The mixing estimate is then proved as the first step (in Sect. 5.2) and the asymptotic
comparison of survival as the second step (in Sect. 5.3). We turn next to the estimate
of the escape from the transitory domain (in Sect. 5.4), then to estimations of lower-
bound on the survival capacity (in Sect. 5.5) before we can conclude the proof of
Theorem 2.3.2 in Sect. 5.6.

We consider the following increasing closed subsets of Xd as a reference:

D(d)
� :=

{

x = (xi )i∈[[0,d]] ∈
[

1

2�d
, 1 − 1

2�d

]d
;

d∑

i=0

xi = 1

}

. (5.1)

Remark that T (d)

D�
∧ τ

(d)
∂ = T (d)

D�
holds for any �, where T (d)

D�
denotes the exit time

of the process X (d) out of D(d)
� . Similarly and for simplicity, the superscript (d) for

the set D(d)
� is dropped in the corresponding entry time, namely τ

(d)

D�
.

For any d ∈ [[1,∞]] and any x ∈ Xd , the process X (d) is solution under Px of the
system (1.1) with initial condition X (d)

i (0) = xi .
There is no real ambiguity in the dependency in d, especially since this depen-

dency shall be made visible for the process X (d) and the associated processes and
stopping times, By extension, for any probability measure ζ on Xd , Pζ (dω) =∫
Xd

Px (dω)ζ(dx). Note that P can be seen as specifying the law of the sequence
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(Wi )i∈Z+ while x ∈ Xd can be seen as an element of X∞ (with xi = 0 for any
i ≥ d + 1), so that a common notation makes sense as well.

5.1 First crucial properties

5.1.1 Harnack’s inequality

Property (H) is defined as follows for any process (Y (t))t≥0 on Y with generator L
(including possibly an extinction rate ρc):

For any two connected open relatively compact sets K∧,K∨ ⊂ Y with C∞ boundaries
such that K∧ ⊂ K∨ (where K denotes the closure of the set K), and any 0 < t1 < t2,
there exists C = C(L, t1, t2,K∧,K∨) > 0 such that the following properties hold for
any positive C∞ constraints: u∂K∨ : ({0}×K∨)∪ ([0, t2]×∂K∨) → R+. There exists
a unique positive strong solution u(t, x) to the following Cauchy problem:

∂t u(t, x) = Lu(t, x)

u(t, x) = u∂K∨(x)

on [0, t2] × K∨,

on ({0} × K∨) ∪ ([0, t2] × ∂K∨),

and u satisfies the following inequality:

infx∈K∧ u(t2, x) ≥ C supx∈K∧ u(t1, x).

For any d ∈ N and � ∈ N, thanks to Proposition A.0.1 in the appendix, we identify
the generator L(d) of the finite dimensional process X (d) in restriction to the set D(d)

�

to the following nondivergence form, for u ∈ C2(D(d)
� ) and x ∈ D(d)

� :

L(d)u(x) = 1

2

d∑

i, j=1

σ
(d)
i, j (x)∂2i, j u(x) +

d∑

i=1

b(d)
i (x)∂i u(x).

Lemma 5.1.1 Property (H) holds for any d ∈ N and any � ∈ N for the finite dimen-
sional process X (d) with generator L(d) in restriction to the set D(d)

� as defined in
(5.1).

Proof : For any d ∈ N and any � ∈ N, the diffusion matrix σ (d) is uniformly elliptic
on D(d)

� while σ (d) and the drift term b(d) are C∞ on D(d)
� . As noted in [15, Section

4.2.2], this entails Property (H). We sketch the argument for completeness, rather
referring to [24] for the clarity of its presentation. The existence and uniqueness of the
solution u, with the fact that u ∈ C∞, is a consequence of [24, Theorem 7]. Thanks to
[24, Theorem 8], this solution is positive. We can then apply [24, Theorem 10] on u
to deduce Harnack’s inequality and complete the proof of Property (H). ��

5.1.2 Boundary classification for one-dimensional diffusions

The following proofs rely on comparison principles with one-dimensional diffusions,
for which the boundary classification is well-described. We first present briefly in
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the upcoming Lemma 5.1.2 the conclusions from [25, Section 6, Chapter 15] for the
specific cases of solutions Y on the state-space (0, 1) to SDEs of the following form:

dY (t) = b · Y (t)dt + √
Y (t) · (1 − Y (t))dB(t), (5.2)

where B is a standard Brownian motion and b ∈ R.
To motivate this form of the diffusion coefficient, note that the martingale term of

each coordinate Xi taken separately takes actually this form, as one can check from
Proposition A.0.1 in the appendix. The vicinity of 0 will inform on the behavior of the
boundary for a linear drift and the vicinity of 1 for a nearly constant drift.

Lemma 5.1.2 (i) For any b ∈ R, the left-boundary 0 is accessible to the solution Y of
(5.2), which entails the following convergence for any t > 0:

lim
y→0

Py(τ
Y
0 < t) = 1.

0 is actually an exit boundary, so that Y gets absorbed at 0.
(i i)For any b > − 1

2 , the right-boundary 1 is accessible, which entails the following
convergence for any t > 0:

lim
y→1

Py(τ
Y
1 < t) = 1.

1 is actually an exit boundary iff b ≥ 0. If b ∈ (− 1
2 , 0), 1 is a regular reflecting

boundary, which implies that Y (t) < 1 holds a.s. for any t > 0.
(i i i) For any b ≤ − 1

2 , the right-boundary 1 is inaccessible and an entrance
boundary, in the following sense: for any y ∈ (0, 1),

lim
t→∞ inf

z∈(y,1)
Pz(τ

Y
y < t) = 1.

Remark 5.1.3 In the context of one-dimensional diffusions, there is a well-established
reformulation of the process that exploits the notions of scale function and speed
measure. This framework is particularly beneficial for studying the behavior of the
process close to its boundaries. This reformulation has also been exploited for the study
of quasi-stationarity of one-dimensional diffusions, be it with spectral techniques that
are specific and more classical for such diffusions (as in [26]) or recent extensions
more closely related to our approach (notably in [27]). Since we do not exploit further
the specific properties of an exit boundary and a regular reflecting boundary, these
definitions are not specified and the interested reader is deferred to [25, Section 6,
Chapter 15].

As a particular case of [28, Proposition 3.12], we have the upcoming Lemma 5.1.4,
that will often be exploited for our comparison estimates on the boundaries:

Lemma 5.1.4 Let b̂, b̌ : � × R+ × [0, 1] �→ R and L > 0 be such that
b̂(., ., y), b̌(., ., y) are measurable for any y ∈ [0, 1] and that b̂(ω, t, .), b̌(ω, t, .)
are L-Lispchitz continuous for all ω, t ∈ �×R+. Assume that b̂(ω, t, y) ≥ b̌(ω, t, y)
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holds for any (ω, t, y) ∈ � ×R+ × [0, 1] and that ŷ, y̌ ∈ [0, 1] are such that ŷ ≥ y̌.
Then the inequality Ŷ (t) ≥ Y̌ (t) holds for any t ∈ R+ for the solution Ŷ and Y̌ to the
following SDEs:

dŶ (t) := b̂t (Ŷ (t))dt +
√

Ŷ (t) · (1 − Ŷ (t))dB(t) Ŷ (0) = ŷ,

dY̌ (t) := b̌t (Y̌ (t))dt +
√

Y̌ (t) · (1 − Y̌ (t))dB(t) Y̌ (0) = y̌,

where B is a standard Brownian motion.

In practice, we will exploit the following corollary instead of Lemma 5.1.2(i i) several
times (the corollary being implied by this lemma together with Lemma 5.1.4).

Corollary 5.1.5 Consider for any ϕ,ψ ∈ R the solution Z to the following SDE:

dZ(t) = [
ϕ + ψ · Z(t)

]
dt + √

Z(t) · (1 − Z(t))dB(t),

where B is a standard Brownian motion. For any ϕ ∈ (0, 1/2) and ψ ∈ R, 0 is a
regular reflecting boundary for Z.

5.2 Step 1: mixing estimate

The aim of this subsection is exactly (A1), as stated in the upcoming Proposition 5.2.1:

Proposition 5.2.1 For any d ∈ N, there exists ζ (d) ∈ M1(Xd) with support in D(d)
2

such that the following property holds for any � ≥ 1. There exists c > 0 such that:

∀ x ∈ D(d)
� , Px

(
X (d)(1) ∈ dy ; 1 < T (d)

D�+1

)
≥ c ζ (d)(dy).

For the comparison with (A1), recall that T (d)

D�
= τ

(d)
∂ ∧ T (d)

D�
holds for any �.

Proof : Let � ≥ 1. We choose two connected bounded open sets K∧,K∨ ⊂ D(d)
�+1

with C∞ boundaries such that D(d)
� ⊂ K∧ and K∧ ⊂ K∨. Thanks to Lemma 5.1.1,

we apply Property (H) (see Sect. 5.1.1) to u(t, x) := Ex

(
f (X (d)(t)) ; t < T (d)

K∨
)
,

where f is any non-negative C∞ function with support in D(d)
2 ⊂ K∧, and T (d)

K∨ :=
inf{t ≥ 0 ; X (d)(t) /∈ K∨}. Since in addition T (d)

D2
≤ T (d)

K∨ ≤ T (d)

D�+1
, there exists a real

C (d)
� > 0 such that the following inequality holds for any x ∈ D(d)

� , z ∈ D(d)
1 :

Ex

(
f (X (d)(1)) ; 1 < T (d)

D�+1

)
≥ C (d)

� Ez

(
f (X (d)( 1

2 )) ; 1
2 < T (d)

D2

)
.

With the arbitrary choices of z(d) as the barycenter of D(d)
1 , we then define the

probability measure ζ (d) as follows:

ζ (d)(dx) := Pz(d)

(
X (d)( 12 ) ∈ dx

∣
∣ 1
2 < T (d)

D2

)
,
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which has support on D(d)
2 and is independent of �. Since the constant C (d)

� does

not depend on f , we deduce with c� = C (d)
� · Pz(d)

(
1
2 < T (d)

D2

)
> 0 the following

inequality between measures for any initial condition x ∈ D(d)
� :

Ex

(
X (d)(1) ∈ dy ; 1 < T (d)

D�+1

)
≥ c� ζ (d)(dy),

which concludes the proof of Proposition 5.2.1. ��

5.3 Step 2: asymptotic comparison of survival

The aim of this subsection is to prove the upcoming Proposition 5.3.1, thanks to which
we will deduce (A3):

Proposition 5.3.1 The following boundedness property holds for any d ∈ N and any
� ≥ 1:

lim sup
t→∞

sup
x,x ′∈D(d)

�

Px

(
t < τ

(d)
∂

)

Px ′
(
t < τ

(d)
∂

) < ∞.

The proof of Proposition 5.3.1 is similar to the one of Proposition 5.2.1. It is
nonethelessmore technical becausewe can no longer neglect trajectories exitingD(d)

�+1.

Proof :We can find two connected open relatively compact setsK∧,K∨ ⊂ Xd withC∞
boundaries such thatD(d)

� ⊂ K∧ andK∧ ⊂ K∨ ⊂ int(D(d)
�+1). Wewant to approximate

the function:

u(t, x) := Ex

(
f (X (d)(t)) ; t < τ

(d)
∂

)
, with t ≥ 1, x ∈ K∨

defined for some non-negative f ∈ C∞(Xd). Thanks to [29, Theorem 5.1.15], u
is continuous. It is clearly non-negative. However, it is a priori not regular enough to
applyHarnack’s inequality directly. Thus,we approximate it on the parabolic boundary
[1, ∞)×∂K∨ ⋃ {1}×K∨ by some family (Uk)k≥1 of non-negative smooth functions.
We then deduce approximations of u in [0, ∞)×K∨ by solutions uk to the following
Cauchy Problem:

∂t uk(t, x) − Luk(t, x) = 0,

uk(t, x) = Uk(t + 1, x),

for t ≥ 0, x ∈ int(K∨)

for t ≥ 0, x ∈ ∂K∨, or t = 0, x ∈ K∨.

Thanks to Property (H) (in Sect. 5.1.1), the constant involved in Harnack’s inequal-
ity does not depend on the values of Uk on the boundary. Thus, it applies with the
same constant for the whole family of approximations uk . With t1 := 1 and t2 := 2,
we can thus choose C (d)

� > 0 such that for any k and any x, x ′ ∈ D(d)
� :

uk(1, x) ≤ C (d)
� uk(2, x

′),
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where the constant C (d)
� does not depend on f either. Thanks to the proof in [21,

Section 4, step 4], the Harnack inequality extends to the approximated function u, with
the convergence of Uk on the parabolic boundary (and the time-shift of 1 taken into
account). Itmeans that the following inequality holds for any non-negative f ∈ C∞(Y)

and any x, x ′ ∈ D(d)
� :

Ex

(
f (X (d)(2)) ; 2 < τ

(d)
∂

)
≤ C (d)

� Ex ′
(
f (X (d)(3)) ; 3 < τ

(d)
∂

)
.

The inequality then extends to any measurable and bounded f . We now fix t ≥ 2
and apply this result to the function ft (x) := Px (t − 2 < τ

(d)
∂ ), so that, thanks to the

Markov property, the following comparison of survival holds for any x, x ′ ∈ D(d)
� and

any t ≥ 2:

Px

(
t < τ

(d)
∂

)
≤ C (d)

� Px ′
(
t + 1 < τ

(d)
∂

)

≤ C (d)
� Px ′

(
t < τ

(d)
∂

)
.

Note that, sinceC (d)
� does not depend upon f , it does not depend upon t . This concludes

the proof of Proposition 5.3.1. ��

5.4 Step 3: escape from the transitory domain

The aim of this subsection is to prove the upcoming Proposition 5.4.1, that entails
(A2):

Proposition 5.4.1 For any d ∈ N and ρ > 0, there exists � ≥ 1 such that:

sup
x∈Xd

Ex exp
[
ρ ·

(
τ

(d)

D�
∧ τ

(d)
∂

)]
≤ 16.

Two elementary steps
The proof is achieved with two forthcoming lemmas as intermediate steps. We first
prove that the click is very likely to happen when the size of the optimal subpopulation
is small, as stated in the upcoming Lemma 5.4.2:

Lemma 5.4.2 For any d ∈ N and any time t > 0, the following supremum tends to 0
as y0 tends to 0:

sup
{
Px

(
t < τ

(d)
∂

) ∣
∣
∣x ∈ Xd , x0 ≤ y0

}
.

Proof : Provided the initial condition x is such that x0 ≤ y0, the process X
(d)
0 , namely

the initial component of the solution to (1.1)-(1.3), is upper-bounded by the solution
Y to the following SDE, thanks to Lemma 5.1.4:

dY (t) = (αd) · Y (t) dt + √
Y (t) · (1 − Y (t)) dB0(t) , Y (0) = y0.
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Thanks to Lemma 5.1.2(i), 0 is an exit boundary of Y , which concludes the proof of
Lemma 5.4.2. ��

We then deal iteratively with each subclass size to prove that these sizes escape the
vicinity of 0, as stated in the upcoming Lemma 5.4.3.

Lemma 5.4.3 For any integer J ∈ [[1, d]], any y ∈ (0, 1), and any time t > 0, the next
infimum tends to 1 as the constant y′ ∈ (0, y) tends to 0:

inf
{
Px

(
τ
J ,(d)

y′ < t ∧ τ
(d)
∂

) ∣
∣
∣x ∈ Xd ,∀ j ≤ J − 1, x j ≥ y

}
,

where τ
J ,(d)

y′ := inf{s ≥ 0 ; ∀ j ≤ J , X (d)
j (s) ≥ y′}.

Proof : Let J ∈ [[1, d]], y ∈ (0, 1), ε, t > 0. The process X (d)
j , namely the j-th

component of the solution to (1.1)-(1.3) for any j ∈ [[0, J − 1]], is lower-bounded by
solutions Y j to SDEs of the following form, thanks to Lemma 5.1.4:

dY (t) = −(λ + α J ) dt + √
Y (t) · (1 − Y (t)) dB(t) , Y (0) = y,

where B is a standard Brownian motion. We then choose t ′ ∈ (0, t) such that Y stays
above y/2 on the time-interval [0, t ′] with probability greater than 1 − ε/(2J ). We
then exploit this property on Y j for any j ∈ [[0, J − 1]], so as to deduce the following
inequality for any d ∈ N and any x ∈ Xd such that x j ≥ y holds for any j ≤ J − 1:

Px

(
t < T J−1,(d)

y/2

)
≥ 1 − ε/2, (5.3)

where T J−1,(d)
y/2 := inf{s ≥ 0 ; ∃ j ≤ J − 1, X (d)

j (s) ≤ y/2}.
Let y1 := λ y/(4λ + 4α J ) and τ

J ,(d)
y1 defined as in Lemma 5.4.3. The following

inequalities thus hold for any s ≤ T J−1,(d)
y/2 ∧ τ

J ,(d)
y1 :

(α · M (d)
1 (s) − α J − λ) · X (d)

J (s) + λ · X (d)
J−1(s) ≥ −(α J + λ) · y1 + λ y/2

≥ λ y/4.

Thanks to Lemma 5.1.4, X (d)
J is thus a.s. lower-bounded on the time interval

[0, T J−1,(d)
y/2 ∧ τ

J ,(d)
y1 ] by the solution YJ to the following SDE:

dYJ (s) = (λ y) ∧ 1

4
dt + √

YJ (t) · (1 − YJ (t)) dBJ (t) , YJ (0) = 0,

where BJ is a standard BrownianMotion. Thanks to Corollary 5.1.5, the left-boundary
0 is regular reflecting for YJ . Therefore, there exists 0 < y′ ≤ y1 ∧ (y/2) such that:

P(sup{s≤t ′}YJ (s) < y′) ≤ ε/2. (5.4)
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Provided that the initial condition satisfies that x j ≥ y for any j ∈ [[0, J−1]], the prop-
erty τ

J ,(d)

y′ < t ∧ τ
(d)
∂ holds a.s. on the event

{
sups≤t ′ YJ (s) ≥ y′}∩

{
t ′ < T J−1,(d)

y/2

}
,

which occurs with probability greater than 1 − ε thanks to (5.3) and (5.4). This ends
the proof of Lemma 5.4.3. �
Concluding the proof of Proposition 5.4.1
Given ρ > 0, let t0 := log(2)/ρ. We can choose y0 ∈ (0, 1) thanks to Lemma 5.4.2
such that the probability of survival up to time t0 is small as follows for any initial
condition x = (xi ) such that x0 < y0:

Px

(
t0 < τ

(d)
∂

)
≤ exp(−ρ t0)/2 = 1

4 . (5.5)

Thanks to Lemma 5.4.3, we iteratively obtain lower-bounds for the different com-
ponents of X (d), so that for any 1 ≤ J ≤ d and any yJ−1 ∈ (0, 1), there exists
yJ ∈ (0, yJ−1) such that the following inequality holds:

inf
{
Px

(
τ J ,(d)
yJ < (t0/d) ∧ τ

(d)
∂

) ∣
∣
∣x ∈ Xd ,∀ j ≤ J − 1, x j ≥ yJ−1

}
≥ 1 − 1/(4d).

This property defines iteratively the sequence (yJ )J∈[[1,d]] in terms of y0.
Thanks to the strong Markov property at times τ

J ,(d)
yJ and by induction on 0 ≤ J ≤

d, we deduce that the following inequality holds for any x ∈ Xd such that x0 ≥ y0:

Px

(
τ J ,(d)
yJ ≤ (J · t0/d) ∧ τ

(d)
∂

)
≥ 1 − J/(4d).

Let E (d) = D(d)
� for some � ≥ yd/(2d), so that E (d) ∈ D(d) and τ

(d)
E ≤ τ

d,(d)
yd . Thanks

to the previous inequality, the following one holds for any x ∈ Xd such that x0 ≥ y0:

Px

(
t0 < τ

(d)
E ∧ τ

(d)
∂

)
≤ 1 − Px

(
τ d,(d)
yd ≤ t0 ∧ τ

(d)
∂

)

≤ 1
4 = exp(−ρ t0)/2,

which extends the inequality stated in (5.5) for any x such that x0 < y0.
By induction over k ≥ 1 thanks to the Markov property at times k t0, the following

inequality holds for any x ∈ Xd and any k ≥ 1:

Px (k t0 ≤ τ
(d)
∂ ∧ τ

(d)
E ) ≤ 2−k exp(−ρ k t0).

It entails the following upper-bound on the exponential moment:

sup
{x∈Xd }

Ex

[
exp

(
ρ · (τ

(d)
∂ ∧ τ

(d)
E )

)]

≤
∑

k≥0

exp(ρ · (k + 1) · t0) sup
{x∈Xd }

Px (k t0 ≤ τ
(d)
∂ ∧ τ

(d)
E )

≤ eρt0
∑

k≥0 2
−k = 4 < ∞.
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This concludes the proof of Proposition 5.4.1. ��

5.5 Step 4: Lower-bound of the survival capacity

The aim of this subsection is to prove the upcoming Lemma 5.5.1, which implies some
lower-bound of the survival capacity:

Lemma 5.5.1 For any y0 > 0, there exists t > 0 and � ≥ 1 such that the following
holds:

inf
{
Px

(
τ

(d)

D�
≤ t ∧ τ∂

) ∣
∣ x ∈ Xd ; x0 ≥ y0

}
> 0.

In other words, the sets H (d)
y0 := {x ∈ Xd ; x0 ≥ y0} satisfy (H0) as stated in

Proposition 2.5.5, so that, for any y0 > 0, h(d) is uniformly bounded away from 0 on
H (d)
y0 .

Proof : Let any y0 > 0. The process X (d)
0 , namely the initial component of the solution

to (1.1)-(1.3), is lower-bounded for any time a.s. under Px by the solution Y to the
following SDE, thanks to Lemma 5.1.4:

dY (s) = −λ ds + √
Y (s) · (1 − Y (s)) dB0(s) , Y (0) = y0.

We consider the extinction time for Y as follows: τY∂ := inf{s ; Y (s) = 0}. We deduce
that the probability of survival up to time 1 is uniformly lower-bounded as follows for
any d ≥ 1 and any x ∈ H (d)

y0 :

Px (1 < τ
(d)
∂ ) ≥ cS := Py0(1 < τY∂ ) > 0. (5.6)

The choice of 1 for the time is arbitrary. Thanks to Markov’s inequality and to the
exponential moment of τ

(d)

D�
∧ τ

(d)
∂ derived in Proposition 5.4.1, there exists � such

that for any d ∈ N and x ∈ Xd :

Px (1 < τ
(d)

D�
∧ τ

(d)
∂ ) ≤ cS/2.

This implies (H0) for H
(d)
y0 in the sense that the following holds for any x ∈ H (d)

y0 :

Px (τ
(d)

D�
≤ 1 ∧ τ

(d)
∂ ) ≥ Px (1 < τ

(d)
∂ ) − Px (1 < τ

(d)

D�
∧ τ

(d)
∂ ) ≥ cS/2. ��

Remark 5.5.2 Though this property (H0) holds uniformly in d, it remains unchecked
that the sequence (h(d)) of functions is uniformly bounded away from zero on the
sequence (H (d)

y0 ).
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5.6 Concluding the proof of Theorem 2.3.2

For this proof, we plan to exploit Theorem 2.5.3 and first ensure Assumption (A) (see
Sect. 2.5.2). Let d ∈ N. The sets D(d)

� , defined in (5.1), satisfy (A0).
Propositions 5.2.1, 5.3.1 and 5.4.1 ensure respectively (A1), (A3) and (A2).

Notably, for (A3), since ζ (d) has support in D(d)
2 , for any � ≥ 2, thanks to

Proposition 5.3.1:

lim sup
t→∞

sup
x∈D(d)

�

Px

(
t < τ

(d)
∂

)

Pζ (d)

(
t < τ

(d)
∂

) < ∞.

Thanks to Theorem2.5.3, the semi-group therefore displaysQSCwith some character-
istics (ν(d), h(d), ρ

(d)
0 ). Thanks to Lemma 5.5.1 and to Proposition 2.5.5, the survival

capacity h(d) is actually positive. Any QSD ν′ ∈ M1(Xd) must then satisfy both
〈ν′ ∣∣ h(d)〉 > 0. Since ν′ is a QSD, 〈ν′P(d)

t , 1〉−1 · ν′P(d)
t = ν′ holds for any t . Thanks

to Corollary 2.1.1, this implies that ν′ = ν(d), so that ν(d) is in fact the unique QSD.
With the upper-bound considered in Lemma 5.4.2, we deduce that Py(τ

(d)
∂ ≤ 1) > 0

holds for any y ∈ Xd . Thus, ρ
(d)
0 = − log[P(d)

ν(d) (1 < τ
(d)
∂ )] > 0. This concludes the

proof of Theorem 2.3.2. ��

6 Proof of Proposition 2.3.4

The proof of Proposition 2.3.4, concluded in Sect. 6.3, relies on two main steps,
handled uniformly over d. The first step in Sect. 6.2 is to ensure that descent from
large values of the moment quickly occurs with probability close to one; the second
step in Sect. 6.1 prove that a too large increase of the moment is unlikely to occur.

6.1 Step 1: descent of themoment

The aim of this subsection is the upcoming Proposition 6.1.1. The descent of the k-th
moment M (d)

k = Mk(X (d)) of the process X (d) is stated in terms of the hitting time

τ
(k|d)
m :

τ (k|d)
m := inf

{
t ≥ 0 ; M (d)

k (t) ≤ m
}
. (6.1)

Proposition 6.1.1 For any time t > 0 and any k ≥ 1, the following supremum tends
to 0 as m tends to infinity:

sup
{
Px

(
t < τ(k|d)

m ∧ τ
(d)
∂

) ∣
∣
∣d ∈ N, x ∈ Xd

}
.
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The proof of Proposition 6.1.1, as achieved in Sect. 6.1.4, relies on three steps
detailed in the three forthcoming subsections. The first step is focused on the vicinity
of {X0 = 0}, the second on the vicinity of {M1 = ∞}, the last one being iterated for
each moment between 2 and k.

6.1.1 Step 1.1: rare survival for small optimal subpopulation

The aim of this subsection is the upcoming Lemma 6.1.2, which states, provided that
the first moment is initially lower-bounded, that a click is very close to occurring when
the initial size x0 of the optimal subpopulation is very small:

Lemma 6.1.2 For any time t > 0, the following supremum tends to 0 as δ tends to 0:

sup
{
Px

(
t < τ

(d)
∂

) ∣
∣
∣ d ∈ N, x ∈ Xd , M1(x) ≥ 1, x0 · M1(x) ≤ δ

}
.

Proof : This proof is an extension of the one of [2, Proposition 3.8].
Let t > 0 be fixed and define δ∧ as follows:

δ∧ := 1

16α
∧ 1

4
.

We exploit two parameters m1 ≥ 1 and δ ∈ (0, δ∧): the upper-bound shall hold for
initial conditions x such that both m1 ≥ M1(x) and x0 m1 ≤ δ. m1 is freely chosen
and δ ≤ δ∧ is to be fixed below, according to (6.5). We will see nonetheless that the
choice of δ and the upper-bound can be stated independently of m1 provided m1 ≥ 1
(the larger is m1, the better is the estimate).

Step 1:We introduce a crucial minoration of the process X (d)
0 on the following event

E (d)
0 :

E (d)
0 :=

{
sup{s≤t} X

(d)
0 (s) · M (d)

1 (s) ≤ 2 δ∧
}

∩
{
sup{s≤t} X

(d)
0 (s) ≤ 1

2

}
.

On the event E (d)
0 , the next inequalities hold for any s ≤ t :

(α · M (d)
1 (s) − λ) · X (d)

0 (s) ≤ 2 α δ∧ ≤ 1 − X (d)
0 (s)

4
.

A.s. on the eventE (d)
0 , the process X (d)

0 is thus upper-bounded on the time-interval [0, t]
by the solution Y to the following SDE, with y0 := δ/m1 and thanks to Lemma 5.1.4:

dY (s) = 1 − Y (s)

4
ds + √

Y (s) · (1 − Y (s)) dB0(s) , Y (0) = y0.

The main interest of this upper-bound is that it is explicitly given. For any y > 0, we
denote τYy := inf{t ≥ 0 ; Y (t) = y}, i.e. the hitting time of y > 0 by the process Y .
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Metastability between the clicks of Muller’s ratchet

We consider the following martingale process, defined for any s ∈ [0, τY0 ):

dN (s) :=
√
1 − Y (s)

Y (s)
dB0(s), N (0) = 0.

Thanks to Itô’s lemma, Y (s) is expressed for any s ∈ [0, τY0 ) as follows in terms of
N :

Y (s) := y0 exp
(
N (s) − 〈N 〉s

4

)
.

Let us consider the random time change (ξu)u>0 as follows:

ξ(u) := inf
{
s ∈ [0, τY0 ); 〈N 〉s > u

}
, Gu := Fξu ,

with value ∞ if the above set is empty. Thanks to [16, Theorem 18.4], there exists a
BrownianmotionW with respect to a standard extension ofG such that a.s.W = N ◦ξ

on [0, 〈N 〉τY0 ) and N (s) = W (〈N 〉s) for any s ∈ [0, τY0 ). Note that 〈N 〉τY0 is here

defined as the left limit at τY0 of the non-decreasing process 〈N 〉. Since the process
〈N 〉 is actually increasing in the time-interval [0, τY0 ), 〈N 〉ξ(u) = u holds for any
u ∈ [0, 〈N 〉τY0 ). The following identity thus holds for any u ∈ [0, 〈N 〉τY0 ):

Y ◦ ξ(u) = y0 exp
(
Wu − u/4

)
.

Step 2: We prove that 〈N 〉τY0 = ∞ holds a.s. on the event {τY0 < τY1 }.
Assume by absurdum that there exists A > 0 such that P(〈N 〉τY0 ≤ A; τY0 < τY1 ) >

0 and let us denote this quantity ε ∈ (0, 1). Note that 0 is a regular reflecting boundary
for Y , while 1 is an exit boundary, thanks to Lemma 5.1.2(i i) and Corollary 5.1.5.
There exists r > 0 such that P(r ≤ τY0 < τY1 ) ≤ ε/2. We consider the following
sequence of stopping times, in terms of an integer �:

T� := inf{s ≥ 0; 〈N 〉s ≥ A or |N (s)| ≥ �}.

By continuity of 〈N 〉 that starts from 0, we know that the following property holds
for any s > 0 and any � ≥ 1:

E[〈N 〉s∧T�
] ≤ A.

On the other hand, the local martingale (N (s))s induces for any � a continuous martin-
gale (N (s∧T�))s whose predictible quadratic variation is exactly (〈N 〉s∧T�

)s . Thanks
to Doob’s inequality, the following inequalities thus hold for any s > 0, � ≥ 1 and
B > 0:

P(sup{u≤s} |N (u ∧ T�)| ≥ B) ≤ 4
E[〈N 〉s∧T�

]
B2 ≤ 4A

B2 .
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With B = 4
√
A/ε and any � ≥ B, it yields the following upper-bound:

P

(
sup{u∈ξ([0,A])} |N (u)| ≥ B

)
≤ ε/4.

By virtue of the properties of ε and r , it entails that the following event has a positive
probability, namely larger than ε/4:

E := {〈N 〉τY0 ≤ A} ∩ {τY0 < τY1 ∧ r} ∩ {sup{u∈ξ([0,A])} |N (u)| < B}.

Yet, on this event E , it holds for any s < τY0 that 〈N 〉s ≤ A and |N (s)| < B, so
that Y (s) ≥ y0 exp(−A/4 − B). Yet, since τY0 < ∞, the continuity of the process
Y implies that Y (τY0 −) = 0, which is in contradiction with the previous statement.
The event E is therefore empty, which contradicts that E has a positive probability. It
concludes that 〈N 〉τY0 = ∞ holds a.s. on the event {τY0 < τY1 }.

By the way, since 1 is an absorbing boundary for Y and by definition of 〈N 〉,
〈N 〉τY0 = 〈N 〉τY1 < ∞ holds a.s. on the complementary event {τY1 < τY0 }.
Step 3: We justify the choice of the constants involved in the definition of an event
A(d) on which survival of X (d) holds a.s. up to time t .

Let us consider some real number μ > 0, to be fixed below according to (6.4). On
the event {τY0 < τYy0+μ}, 〈N 〉τY0 = ∞ as a consequence of step 2, so that the following
inequality holds for any u ≥ 0:

y0 · exp(W (u) − u/4) = Y (ξ(u)) < y0 + μ.

It implies that the following inequality holds a.s. on the event {τY0 < τYy0+μ}:
∫ ∞

0

y0 exp [W (r) − r/4]

1 − y0 exp [W (r) − r/4]
dr ≤ y0

1 − y0 − μ

∫ ∞

0
exp [W (r) − r/4] dr .

Note also that τY0 = limu→∞ ξ(u) and the following expression for the derivative of
ξ :

ξ ′(r) = 1

〈N 〉′ ◦ ξ(r)
= y0 exp [W (r) − r/4]

1 − y0 exp [W (r) − r/4]
.

Therefore, the next inequality holds for any t ≥ 0:

Py0(t < τY0 < τYy0+μ) ≤ P

(
t · (1 − y0 − μ)

y0
<

∫ ∞

0
exp [W (r) − r/4] dr

)

.

(6.2)
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Metastability between the clicks of Muller’s ratchet

On the event {τYy0+μ < τY0 }, y0+μ = y0·exp(W (r)−r/4) for r = 〈N 〉τYy0+μ
∈ (0,∞).

We thus deduce the following upper-bound:

Py0

(
τYy0+μ < τY0

)
= P

(

(y0 + μ)/y0 ≤ sup
r≥0

exp [W (r) − r/4]

)

. (6.3)

Let ε > 0. Since the law of W is the one of a Brownian motion, W (r)/r → 0 as
t → ∞ holds a.s. We can thus choose c1, c2 > 1 such that:

P

(

c1 <

∫ ∞

0
exp

(
W (r) − r/4

)
, dr

)

≤ ε , P

(

c2 < sup
r≥0

exp [W (r) − r/4]

)

≤ ε.

Thanks to [2, Lemma 3.2], we can choose c3 > 0 such that the following inequality
holds for any x ∈ Xd :

Px

(
sup{s≤t} M

(d)
1 (s) − M (d)

1 (0) ≥ λ t + c3
)

≤ ε.

This motivates the following choices for m′
1 and μ:

m′
1 := m1 + λ t + c3 > 1, μ := δ∧

m′
1
. (6.4)

We then choose δ ≤ δ∧ sufficiently small to ensure the following two inequalities:

t · (1 − δ∧)

δ
− t ≥ c1,

δ∧
δ

· (1 + λ t + c3)
−1 ≥ c2. (6.5)

These conditions are prescribed in order to ensure the following two inequalities,
recalling that y0 = δ/m1 and m′

1 ≥ m1 ≥ 1:

t · (1 − y0 − μ)

y0
= tm1

δ
· (1 − δ∧

m′
1
) − t ≥ c1,

y0 + μ

y0
≥ δ∧

δ
· m1

m′
1

≥ c2.

Therefore, thanks to (6.2), to (6.3) and to the above choices of the constants,
Px (A(d)) ≥ 1 − 3 ε, where:

A(d) :=
{
sup{s≤t} M

(d)
1 (s) ≤ m′

1

}
∩
{
τY0 < t ∧ τYy0+μ

}
.

Step 4: We check that t < τ
(d)
∂ holds a.s. on the event A(d).

To check the upper-bound by Y , let T (d)
B := inf{s ≥ 0 ; X (d)

0 (s) ·M (d)
1 (s) ≥ 2 δ∧}.

Then, a.s. on the event A(d), both M (d)
1 (s) ≤ m′

1 and X (d)
0 (s) ≤ Y (s) ≤ y0 + μ hold
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for any s ≤ t∧T (d)
B . Sinceμ/y0 ≥ c2 > 1 andμ := δ∧/m′

1, the process X
(d)
0 ·M (d)

1 is

upper-bounded as follows, with the constant c4 := (y0+μ) ·m′
1 and for any s ≤ T (d)

B :

X (d)
0 (s) · M (d)

1 (s) ≤ c4 < 2δ∧.

By continuity of X (d)
0 ·M (d)

1 , the event {T (d)
B < t} has an empty intersection withA(d).

Therefore X (d)
0 (s) ≤ Y (s) holds for any s ≤ t , and in particular τ (d)

∂ ≤ τY0 ≤ t . So the
following inequality holds for any x ∈ Xd such that m1 ≥ M1(x) and x0 · m1 ≤ δ:

Px (τ
(d)
∂ ≤ t) ≥ Px (A(d)) ≥ 1 − 3 ε.

Though the eventA(d) shall be adjusted depending onm1, the choice of δ as a function
of ε (in (6.5)) ismade independently ofm1, which concludes the proof of Lemma6.1.2.

��

6.1.2 Step 1.2: quick descent of the first moment

Provided that the optimal subpopulation is still significant, the first moment is unlikely
to stay high for a significant time, as stated in the upcoming Lemma 6.1.3, whose proof
is the purpose of this Sect. 6.1.2:

Lemma 6.1.3 Given any t, y0 > 0, the following supremum tends to 0 as m1 > 0
tends to infinity:

sup
{
Px

(
t ≤ τ (1|d)

m1
∧ τ

(d)
∂

) ∣
∣
∣d ∈ N, x ∈ Xd , x0 ≥ y0

}
.

Proof : A.s. on the event {inf{s≤t} M (d)
1 (s) ≥ m1}, the process X (d)

0 , namely the initial
component of the solution to (1.1)-(1.3), is lower-bounded on [0, t] by the solution Y
to the following SDE, thanks to Lemma 5.1.4:

dY (s) = r(m1) Y (s) ds + √
Y (s) · (1 − Y (s)) dB0(s) , Y (0) = y0,

where r(m1) := αm1 − λ → ∞ as m1 → ∞.
Since M (d)

1 (s) = 0 whenever X (d)
0 (s) = 1, this lower-bound of X (d)

0 by Y must

have stopped before T Y
1 := inf{t ≥ 0 ; Y (t) ≥ 1}, so τ

(1|d)
m1 ∧ τ

(d)
∂ ≤ T Y

1 . We thus
only have to prove that P(t < T Y

1 ) tends to 0 as m1 tends to infinity.
Let ε, t1 > 0. Let us denote by N Y the following martingale process naturally

associated to Y :

N Y (t) :=
∫ t

0

√
Y (s) · (1 − Y (s)) dB0(s).
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The quadratic variation of N Y until time t1 ≤ t is upper-bounded by t1/4, so that
Doob’s inequality implies the following upper-bound:

Py0

(
sups≤t1 |N Y (s)| >

y0
2

)
≤ 16t1

y20
. (6.6)

By choosing t1 sufficiently small, we assume 16t1/y20 ≤ ε. On the complementary
event

{
sup{s≤t1} |N Y (s)| ≤ y0/2

}
, Y stays above y0/2 on the time-interval [0, t1].

The drift term can thus be lower-bounded by s · r(m1) · y0/2 for any s ≤ t1 ∧ T Y
1 .

Since it cannot exceed 1 − y0/2 before T Y
1 , it necessarily implies that for r(m1)

sufficiently large (that is m1 sufficiently large), we must have T Y
1 < t1 on the event{

sups≤t1 |N Y (s)| ≤ y0/2
}
. Thanks to (6.6) and since t1 ≤ t , this implies that P(t <

T Y
1 ) tends to 0 as m1 tends to ∞ and concludes the proof of Lemma 6.1.3. ��

6.1.3 Step 1.3: quick descent of the next moments

Provided that one of the moment is initially upper-bounded, it is unlikely for the next
moment to stay high on a significant time-interval afterwards, as stated in the upcoming
Lemma 6.1.4 (recall the notation (6.1)), whose proof is the purpose of this Sect. 6.1.3:

Lemma 6.1.4 Given any integer k ≥ 1 and any t, m > 0, the following supremum
tends to 0 as m′ > 0 tends to infinity:

sup
{
Px

(
t ≤ τ

(k+1|d)

m′ ∧ τ
(d)
∂

) ∣
∣
∣d ∈ N, x ∈ Xd , Mk(x) ≤ m

}
.

For the proof of Lemma 6.1.4, we exploit the following properties on the
semi-martingale decomposition of the process M (d)

k , summarised in the upcoming
Lemma 6.1.5.

Lemma 6.1.5 For any d ∈ [[1,∞]], k ∈ Z, and any x which belongs either to Xd if
d ∈ N or to X 2k if d = ∞, the process M (d)

k can be decomposed as follows under
Px :

dM (d)
k (t) = V (d)

k (t) dt + dM(d)
k (t), M (d)

k (0) = Mk(x),

where M(d)
k is a continuous local-martingale starting from 0, whose quadratic

variation is

〈M(d)
k 〉t =

∫ t

0
(M (d)

2 k (s) − M (d)
k (s)2) ds,

and V (d)
k is a bounded variation process. (M (d)

2k (t))t≥0 is a.s. locally upper-bounded. In
addition, there exists a universal constantCk > 0 such that the followingupper-bounds
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hold a.s. for any time-interval:

V (d)
k ≤ α · (M (d)

1 · M (d)
k − M (d)

k+1) + λ · (CkM
(d)
k + 1)

≤ λ · (CkM
(d)
k + 1).

Note that given the quadratic variation ofM(d)
k , it is a martingale provided d ∈ N.

Proof of Lemma 6.1.5 Given the definition of M (d)
k in terms of the solution (X (d)) to

the system of SDEs (1.1), we obtain the following expression:

V (d)
k := α · (M(d)

1 · M(d)
k − M(d)

k+1)

+λ

d−1∑

�=0

(� + 1)k X (d)
�

− λ · (M(d)
k − 1{d<∞}dk X (d)

d ). (6.7)

Thanks to Hölder’s inequality, the next inequalities hold for any x ∈ Xd :

M1(x) ≤ (Mk+1(x))
1/(k + 1), Mk(x) ≤ (Mk+1(x))

k/(k + 1),

thus M1(x) · Mk(x) ≤ Mk+1(x). It thus implies the inequality M (d)
1 · M (d)

k ≤ M (d)
k+1

between the stochastic processes involved in (6.7).
Exploiting that (� + 1)k ≤ 2k · �k for � ≥ 1, and that X (d)

0 ≤ 1 for � = 0, it yields
the following inequality, with Ck = 2k :

V (d)
k ≤ λ · (Ck · M (d)

k + 1).

On the other hand, the local martingale term is defined as follows:

dM(d)
k (t) :=

d∑

i=1

i k
√

X (d)
i (t)dWi (t) − M (d)

k (t)dW(d)(t), M(d)
k (0) = 0.

Thanks to the independence between the Brownian motions (Wi )i and to (1.2), its
quadratic variation satisfies the following identities:

d〈M(d)
k 〉t = (M (d)

2k (t) + [M (d)
k (t)]2) dt − 2M (d)

k (t)
d∑

i=1

i k
√

X (d)
i (t) d〈Wi ,W(d)〉t

= (M (d)
2k (t) − [M (d)

k (t)]2) dt .

In the case where d = ∞, since M (d)
2k (x) < ∞, we know thanks to [2, Theorem 3]

that (M (d)
2k (t))t≥0 is a.s. locally upper-bounded, i.e. that sups≤t M

(d)
2k (s) < ∞ holds

a.s. To be precise, this is not stated directly in [2, Theorem 3], yet visibly obtained
in the proof, first in the case where α = 0, then exended for any α > 0 because the
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Girsanov change of density is uniformly upper-bounded (see Proposition B.0.1 in the
appendix for completeness).

This expression for the quadratic variation is thus well-defined. This concludes the
proof of Lemma 6.1.5. ��

Proof of Lemma 6.1.4 Let k ≥ 1, t > 0, m > 0, and ε > 0. Note that M1(x) ≤ Mk(x)
holds for any d ∈ N and any x ∈ Xd . Thanks to [2, Lemma 3.2], we can thus choose
m1 > 0 such that the following inequality holds for any d ∈ N and any x ∈ Xd such
that Mk(x) ≤ m:

Px (T
(1|d)
m1

< t) ≤ ε, (6.8)

where T (1|d)
m1 := inf{t ≥ 0 ; M (d)

1 (t) ≥ m1}, namely T (1|d)
m1 is the hitting time of m1

by M (d)
1 .

Thanks to the analysis of the processM (d)
k conducted in Lemma 6.1.5, the following

inequality holds then with Čk = α · m1 + λCk for any d ∈ N and any x ∈ Xd :

Ex [M (d)
k (t ∧ T (1|d)

m1
)] ≤ Mk(x) − α · Ex

(∫ t

0
1{

s≤T (1|d)
m1

}M (d)
k+1(s) ds

)

+ Čk · Ex

(∫ t

0
1{

s≤T (1|d)
m1

}M (d)
k (s) ds

)

.

Since M (d)
k is a non-negative process, with C̄k = Čk/α, the following upper-bound on

the k + 1-th moment thus holds for any d ∈ N and any x ∈ Xd such that Mk(x) ≤ m:

Ex

(∫ t

0
1{

s≤T (1|d)
m1

}M (d)
k+1(s) ds

)

≤ m

α
+ C̄k · Ex

(∫ t

0
1{

s≤T (1|d)
m1

}M (d)
k (s) ds

)

.

By immediate induction over k, there exists Ĉk > 0 such that the following inequality
holds for any d ∈ N and any x ∈ Xd such that Mk(x) ≤ m:

Ex

(∫ t

0
1{

s≤T (1|d)
m1

}M(d)
k+1(s) ds

)

≤ (k − 1) · m
α

+ Ĉk · Ex

(∫ t

0
1{

s≤T (1|d)
m1

}M(d)
1 (s) ds

)

≤ (k − 1) · m
α

+ Ĉk · t · m1.

Thanks to Markov’s inequality, we can thus choose m′ > 0 such that the following
inequality holds for any d ∈ N and any x ∈ Xd such that Mk(x) ≤ m:

Px

(∫ t

0
1{

s≤T (1|d)
m1

}M (d)
k+1(s) ds ≥ t · m′

)

≤ ε. (6.9)
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Recalling (6.8), this concludes the proof of Lemma 6.1.4, since:

{
t > τ

(k+1|d)

m′
}

∩
{
t ≤ T (1|d)

m1

}
⊂

{∫ t

0
1{

s≤T (1|d)
m1

}M (d)
k+1(s) ds ≥ t · m′

}

.

��

6.1.4 Concluding the proof of Proposition 6.1.1

Let t, ε > 0. Thanks to Lemma 6.1.2, we choose an upper-bound δ ∈ (0, 1
(16α)

) for

the initial condition of the process X (d)
0 · M (d)

1 , so that the following inequality holds,
for any d ∈ N and any x ∈ Xd such that both M1(x) ≥ 1 and x0 · M1(x) ≤ δ:

Px

(
t < τ

(d)
∂

)
≤ ε. (6.10)

We consider the following exit time:

T B,(d)
δ := inf{t ≥ 0 ; X (d)

0 (t) · M (d)
1 (t) ≤ δ}. (6.11)

Let m∨
1 = (2 λ/α) ∨ 1. We consider τ

(1|d)
m1 := inf{t ≥ 0 ; M (d)

1 (Xt ) ≤ m1} for any
m1 ≥ m∨

1 (so that τ (1|d)
m1 ≤ τ

(1|d)

m∨
1

). Thanks to (6.10) and to the strongMarkov property

at time T B,(d)
δ , the following inequality holds for any x ∈ Xd and d ≥ 1:

Px

(
T B,(d)

δ ≤ t ≤ τ
(1|d)

m∨
1

, 2 t < τ
(d)
∂

)
≤ ε. (6.12)

On the event {t ≤ T B,(d)
δ ∧ τ

(1|d)

m∨
1

∧ τ
(d)
∂ }, recalling that m∨

1 ≥ 2 λ/α, the following

inequality holds for any s ≤ t :

(α · M (d)
1 (s) − λ) · X (d)

0 (s) ≥ α · δ

2
.

Thus, thanks to Lemma 5.1.4, X (d)
0 is lower-bounded by the solution Y to the

following SDE, a.s. on [0, t] on the event {t ≤ T B,(d)
δ ∧ τ

(1|d)

m∨
1

∧ τ
(d)
∂ }:

dY (s) = α · δ

2
· ds + √

Y (s) · (1 − Y (s)) dB0(s) , Y (0) = 0. (6.13)

Thanks to Corollary 5.1.5 the left-boundary 0 is regular reflecting for Y . Thus we
can choose y0 > 0 such that: P(Y (t) ≤ y0) ≤ ε. Recalling (6.12), this implies the
following inequalities for any d ∈ N and x ∈ Xd :

Px

(
X (d)
0 (t) ≤ y0 , t ≤ τ

(1|d)

m∨
1

, 2 t < τ
(d)
∂

)
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≤ Px

(
T B,(d)
δ ≤ t ≤ τ

(1|d)

m∨
1

, 2 t < τ
(d)
∂

)
+ Px

(
Y (t) ≤ y0 , t ≤ T B,(d)

δ ∧ τ
(1|d)

m∨
1

∧ τ
(d)
∂

)

≤ 2 ε. (6.14)

Thanks to Lemma 6.1.3, we can then choose m1 ≥ m∨
1 associated with y0. Thanks

to (6.14) and to the Markov property at time t , we deduce the following inequalities:

Px

(
2 t < τ

(1|d)
m1 ∧ τ

(d)
∂

)
≤ Px

(
X (d)
0 (t) ≤ y0 , t ≤ τ

(1|d)

m∨
1

, 2 t < τ
(d)
∂

)

+ Ex

[
PX (d)(t)

(
t ≤ τ

(1|d)
m1 ∧ τ

(d)
∂

) ; X (d)
0 (t) ≥ y0

]

≤ 3 ε.

(6.15)

Thanks to Lemma 6.1.4, we can choose m2 > 0 associated with m1 and m3 > 0
associated with m2 such that the following inequalities hold:

Px

(
3 t < τ(2|d)

m2
∧ τ

(d)
∂

)
≤ 4 ε , Px

(
4 t < τ(3|d)

m3
∧ τ

(d)
∂

)
≤ 5 ε.

Applying the same argument inductively over k ≥ 3, we can choosemk > 0 such that
the following inequality holds for any d ∈ N and any x ∈ Xd :

Px

(
(k + 1) · t < τ(k|d)

mk
∧ τ

(d)
∂

)
≤ (k + 2) · ε,

so as to treat any moment. This concludes the proof of Proposition 6.1.1. ��

6.2 Step 2: rare large increase of themoment

With a probability close to 1, the increase of the moments after their descent can be
upper-bounded uniformly over a given time-interval, as stated in the next proposition,
whose proof is the purpose of this Sect. 6.2. For any k ≥ 1 and m ≥ 1, let:

T (k|d)
m := inf

{
t ≥ 0; M (d)

k (t) ≥ m
}
. (6.16)

Proposition 6.2.1 For any k > 1, t,m > 0, the following supremum tends to 0 as
m′ > 0 tends to infinity:

sup
{
Px

(
T (k|d)

m′ ≤ t
) ∣
∣ d ∈ N, x ∈ Xd , Mk(x) ≤ m

}
.

Proof : Let k > 1, t > 0, m′ ≥ m, d ∈ N and x ∈ Xd such that Mk(x) ≤ m.
We aim at exploiting Doob’s inequality on a non-negative sub-martingale that is

an upper-bound of M (d)
k . Given the semi-martingale decomposition of Mk as stated in
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Lemma 6.1.5, we consider the solution M̂ (d)
k to the following SDE:

M̂ (d)
k (t) := m + λt + λCk

∫ t
0 M̂ (d)

k (s) ds + M(d)
k (t). (6.17)

Thanks to [28, Proposition 3.12] (as for Lemma 5.1.4), M̂ (d)
k (t) ≥ M (d)

k (t) holds for

any t ≥ 0. Since M (d)
k is non-negative, M̂ (d)

k is also non-negative. As the solution to

Eq. (6.17), M̂ (d)
k is a sub-martingale. Since Ex

[
M̂ (d)

k (s)
]
is upper-bounded by dk for

any s, Grönwall’s lemma implies the following inequality for any x ∈ Xd such that
Mk(x) ≤ m:

sup{s≤t} Ex

[
M̂ (d)

k (s)
]

≤ (m + λt) eCt . (6.18)

Exploiting Doob’s inequality on M̂ (d)
k , then (6.18) with CM := (1 + λt) eCt , we

obtain the following inequality for any x ∈ Xd such that M (d)
k (x) ≤ m:

Px

(
sup{s≤t} M

(d)
k (s) > m′) ≤ Px

(
sup{s≤t} M̂

(d)
k (s) > m′)

≤ Ex [M̂ (d)
k (t)]
m′ ≤ CM m

m′ .

This concludes the proof of Proposition 6.2.1. ��

6.3 Concluding the proof of Proposition 2.3.4

First of all, we show that we have a uniform upper-bound on the extinction rate ρ
(d)
0

associated with the system (1.1): sup{d∈N} ρ
(d)
0 < ∞. Indeed, whatever d ∈ N, we

can find x (d) ∈ Xd such that x (d)
0 ≥ 1

2 so that, thanks to Lemma 5.1.4, X (d)
0 is a.s.

lower-bounded under Px for any time by the solution Y to the following SDE:

dY (s) = −λ · Y (s)ds + √
Y (s) (1 − Y (s)) dB0(s) , Y (0) = 1

2 .

Thanks to Lemma 5.1.2(i), the left-boundary 0 is an exit boundary. The semi-group
governing Y , with extinction at τY0 , corresponds exactly to the system (1.1) with
d = 1, α = 0, X ′

0 = Y and X ′
1 = 1 − Y . Thanks to Theorem 2.3.2, the semigroup

thus displays QSC with extinction rate ρ∨. Denoting P
Y
1
2
the law of Y , it entails the

following inequality from the convergences of the survival capacities:

ρ
(d)
0 = lim

t→∞
−1
t logPx (d) (t < τ

(d)
∂ ) ≤ lim

t→∞
−1
t logPY

1
2
(t < τY0 ) := ρ∨.

Thanks to Proposition 6.1.1 (similarly to the way Proposition 5.4.1 was deduced), we
can choose m > 0 such that τ (1|d)

m satisfies the following inequality for any d ≥ 1 and
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any x ∈ Xd :

Ex exp
[
(ρ∨ + 1) · (τ (1|d)

m ∧ τ
(d)
∂ )

]
≤ C < ∞.

In particular, it implies the following inequality for any t > 0 and any d ∈ N:

Pν(d)

(
t < τ(1|d)

m ∧ τ
(d)
∂

)
≤ C exp

[
− (ρ∨ + 1) · t

]
. (6.19)

Then, for any ε > 0, consider t := − log(ε/(2C)). Thanks to Proposition 6.2.1,
the probability of large increase of the process M (d)

k can be made negligible. So we
can choose a constant m′ > 0 such that the following inequality holds for any initial
condition x ∈ Xd such that Mk(x) ≤ m:

Px

(
sup{s≤t} M

(d)
k (s) ≥ m′) ≤ ε/2 exp[−ρ∨ t]. (6.20)

By virtue of the definition of t , recalling (6.19) and (6.20), the following inequalities
thus hold for any d ∈ N:

ν(d)
({

Mk ≥ m′}) = exp[ρ(d)
0 t] · Pν(d)

(
M(d)
k (t) ≥ m′ ; t ≤ τ

(d)
∂

)

≤ exp[ρ∨ t] ·
(
Pν(d)

(
τ
(1|d)
m > t ; t < τ

(d)
∂

)

+ Eν(d)

[
P
X (d)(τ

(1|d)
m )

(
sup{s≤t} M(d)

k (s) ≥ m′) ; τ
(1|d)
m < t ∧ τ

(d)
∂

])

≤ C · ε/(2C) + ε/2 ≤ ε.

This concludes the proof of Proposition 2.3.4. ��
Remark 6.3.1 In fact, thanks to Lemma 6.1.4, we are thus able to upper-bound any
moment, with probability close to 1 and under the QSD ν(d) uniformly on d ∈ N.
These upper-bounds will extend to the limiting QSD on X∞.

7 Proof of Theorem 2.4.1: the infinite dimensional case

The proof of Theorem 2.4.1 is achieved in Sect. 7.6 by ensuring Assumption (AF)

as stated in Sect. 2.5.2. We will treat both the case of large yet finite values of d and
d = ∞, for which we recall that any x ∈ X∞ has a finite sixth moment (see (2.10)).

As one can imagine, the proof of Theorem 2.4.1 is much more technical than the
ones of Theorem 2.2.2, Theorem 2.3.2 and Proposition 2.3.4. For instance, there is no
explicit reference measure that seems to be exploitable as ζ (∞): the Lebesgue measure
cannot be extended on an infinite dimensional space!Many elements of these previous
proofs are however to be exploited with only slight adaptations, so that the reader is
really encouraged to read them before the next proof.
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The core idea behind the proof is still that the individuals carrying many mutations
are actually wiped out very rapidly, implying rapid shuffle of the last coordinates.
Quite unexpectedly, the criteria we developed to deal with jump events has proved to
be very effective in this context. Notably, we could exploit the Girsanov transform to
relate to the finite dimensional problem and deal with moments increasing too largely
as exceptional events.

7.1 Outline of the proof

We now consider d ∈ [[1,∞]], i.e. including the case d = ∞. For the purpose of
Theorem 2.4.1 in this Sect. 7, we replace the notation given in (5.1) by the following
one:

D(d)
� :=

{
x ∈ Xd ; x0 ≥ 1

2�

}
. (7.1)

In this approach, the family D(d)
� covers the whole state space:

∪�≥1D(d)
� = Xd .

Because it is close to the previous proof of Proposition 2.3.4, we will first focus
on the result of Theorem 7.2.1, which can be interpreted as the statement of escape
from the transitory domain (though the issue of the dependency in the parameter ε led
us to integrate the result into the following estimate of almost perfect harvest). The
sets E (d) that we will consider are defined through three parameters m, y, η > 0 as
follow:

E (d) :=
{
x ∈ Xd ; M3(x) ≤ m , ∀ j ≤ �m/η� + 1, x j ≥ y

}
. (7.2)

The reference probability measure ζ (d) on Xd is chosen to be especially adapted
for our arguments, in a way that makes it actually complex to express. Its specific
definition, stated in (7.59), is given in Sect. 7.4 that is dedicated to the mixing property
and the accessibility of the subsets of Xd . It relies on the notations and properties
introduced in Sect. 7.3, where we justify a close connection with the finite dimensional
SDEs. The estimate of almost perfect harvest is then conducted in Sect. 7.5, before
we finally conclude the proof of Theorem 2.4.1 in Sect. 7.6.

As stated at the beginning of Sect. 5, for any d ∈ [[1,∞]] and probability measure ζ

on Xd , the process X (d) is solution under Pζ of the system (1.1) with initial condition
X (d)(0) distributed as ζ .

7.2 Escape from the Transitory domain

We prove in this subsection that the process rapidly escape the sets E (d) as proposed
in (7.2), provided that the upper-bound on the moment is sufficiently large and the
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lower-bound on the optimal subpopulation size is sufficiently small, as stated in the
next theorem. We recall the notation τ

(d)
E as the entry time of E (d).

Theorem 7.2.1 For any t, η, ε > 0, there exist a couple m, y > 0 such that the
following inequality holds with E (d) = E (d)(m, y, η) as in (7.2) for any d ∈ [[1,∞]]
and x ∈ Xd:

Px

(
t < τ

(d)
∂ ∧ τ

(d)
E

)
≤ ε. (7.3)

Remark 7.2.2 With the same reasoning as in the proof of Proposition 5.4.1, (7.3) has
the following implication in terms of exponential moments. For any ρ, η > 0, there
exist a couple m, y > 0 such that the following inequality holds for any d ∈ [[1,∞]]
and x ∈ Xd :

Ex

(
exp[ρ · (τ

(d)
∂ ∧ τ

(d)
E )]

)
≤ 4.

The proof of Theorem 7.2.1 relies on the six forthcoming lemmas, mostly adapted
from the uniform escape and the uniform descent of the moments in the finite dimen-
sional systems. They are given in the order at which they will be exploited to conclude
the proof in Sect. 7.2.2.

We first show in the upcoming Lemma 7.2.3 that the click is very likely when the
growth of the optimal subpopulation size is initially very small, in the situation where
the first moment is large so the initial size itself is small.

Lemma 7.2.3 For any t > 0, the following supremum tends to 0 as δ tends to 0:

sup
{
Px

(
t < τ

(d)
∂

) ∣
∣
∣d ∈ [[1,∞]] , x ∈ Xd , M1(x) ∈ (1,∞) , x0 · M1(x) ≤ δ

}
.

Then, provided the optimal subpopulation size is non-negligible, we show that the first
moment is unlikely to stay very high, as stated in the upcoming Lemma 7.2.4.

Lemma 7.2.4 For any two real numbers t, y0 > 0, the following supremum tends to 0
as m1 tends to ∞:

sup
{
Px

(
t ≤ τ (1|d)

m1
∧ τ

(d)
∂

) ∣
∣
∣d ∈ [[1,∞]] , x ∈ Xd , x0 ≥ y0

}
,

where we recall τ (1|d)
m1 := inf{t≥0 ; M (d)

1 (t) ≤ m1}.
The proofs of Lemmas 7.2.3 and 7.2.4, can be adapted mutatis mutandis from the ones
of respectively Lemmas 6.1.2 (in Sect. 6.1.1) and 6.1.3 (in Sect. 6.1.2).

The next step is to handle the situation where both the first moment and the optimal
subpopulation size are initially small, as stated in the upcoming Lemma 7.2.5.

Lemma 7.2.5 For any two real numbers t,m1 > 0, the following supremum tends to
0 as δ tends to 0:

sup
{
Px

(
t < τ

(d)
∂

) ∣
∣
∣d ∈ [[1,∞]] , x ∈ Xd , M1(x) ≤ m1 , x0 ≤ δ

}
.
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Proof : As a generalization of Lemma 5.4.2, Lemma 7.2.5 is a consequence of the
fact that X (d)

0 is upper-bounded on the event {sups≤t M
(d)
1 (s) ≤ m′

1}, thanks to
Lemma 5.1.4, by the solution Y to the following SDE:

dY (t) = αm′
1 · Y (t) dt + √

Y (t) · (1 − Y (t)) dB0(t) , Y (0) = δ.

Thanks to Lemma 5.1.2(i), 0 is an exit boundary for Y . Thanks to [2, Lemma 3.2], we
know an upper-bound of Px (sups≤t M

(d)
1 (s) ≥ m′

1) that tends to 0 as m′
1 goes to ∞,

uniformly in the x ∈ Xd such that M1(x) ≤ m1. The combination of these two facts
concludes the proof. ��

As the next step,we justifywith the upcomingLemma7.2.6 that, once amoment has
descended, it is unlikely for the next moment to stay high on a significant time-interval
afterwards:

Lemma 7.2.6 Given any integer k ∈ {1, 2, 3} and any two real numbers t, m > 0, the
following supremum tends to 0 as m′ tends to ∞:

sup
{
Px

(
t ≤ τ

(k+1|d)

m′ ∧ τ
(d)
∂

) ∣
∣
∣ d ∈ [[k, ∞]] , x ∈ Xd , M2 k(x) < ∞ , Mk(x) ≤ m

}
.

Proof : The proof of Lemma 7.2.6 generalizes the one of Lemma 6.1.4 in Sect. 6.1.3.
We just sketch the localization argument for the case d = ∞, that is similar yet simpler
than the one presented for the proof of the forthcoming Lemma 7.2.8.

Thanks to Lemma 6.1.5, recall thatM (∞)
2k is a.s. locally upper-bounded.We can thus

introduce a sequence T�, � ≥ 1, of stopping times such that M (∞)
2k is upper-bounded by

� on [0, t ∧T�] and that goes to infinity as � tends to infinity. With the same arguments
as for Lemma 6.1.4:

Ex

(∫ t

0
1{

s≤T (1|d)
m1 ∧T�

}M (d)
k+1(s) ds

)

≤ (k − 1) · m
α

+ Ĉk · t · m1.

Taking � to infinity by monotone convergence, we can then proceed as previously and
conclude the proof of Lemma 7.2.6. ��

With the upcoming Lemma 7.2.7, we state that, on the event of its survival, the
process is bound to reach non-negligible subpopulation sizes for the (X (d)

j ) j∈[[0,J ]],
for any J ≤ d (that are the J -optimal classes).

Lemma 7.2.7 Given any integer J ∈ N, and any three real numbers t, m1, y0 > 0,
the following supremum tends to 0 as y tends to 0:

sup
{
Px

(
t ∧ τ

(d)
∂ < τ J ,(d)

y

) ∣
∣
∣d ∈ [[J ,∞]] , x ∈ Xd , x0 ≥ y0 , M1(x) ≤ m1

}
,

where we recall the notation τ
J ,(d)
y := inf

{
s ≥ 0 ; ∀ j ≤ J , X (d)

j (s) ≥ y
}
for any

y > 0 and any integer J ≥ 0.
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The above notation is to be understood as τ
J ,(d)
y = τ

d,(d)
y for any J ≥ d (for the case

d ∈ N). The proof of Lemma 7.2.7 is an adaptation mutatis mutandis of the one of
Lemma 5.4.3, as stated in Sect. 5.4.

7.2.1 Upper-bound on the probability of moment increase

Section 7.2.1 is devoted to the upcomingLemma7.2.8. In the time-interval between the
descent of the moment and the increase of the J -optimal population sizes (X (d)

j ) j≤J ,
we show that the control on the correspondingmoment stays tight. Recall the definition
of T (k|d)

m from (6.16).

Lemma 7.2.8 For any two real numbers k > 1 and t > 0, there exists C ≥ 1 such that
the following inequality holds for any m,m′ > 0, any d ∈ [[1,∞]] and any x ∈ X 2k

(x ∈ Xd for d ∈ N) such that Mk(x) ≤ m,

Px

(
T (k|d)

m′ ≤ t
)

≤ Cm

m′ .

Proof : The proof of Proposition 6.2.1 already implies the result provided d < ∞.
We justify in the following that it extends to the case where d = ∞ in which the
martingale part M(∞)

k in Lemma 6.1.5 is a priori only local.

The initial condition x ∈ X 2k is such that Mk(x) ≤ m. The expression of V (∞)
k in

(6.7) implies the following inequalities:

−αM (∞)
k+1 ≤ V (∞)

k ≤ λ · (CkM
(∞)
k + 1).

Thanks to Lemma 6.1.5 with the fact that x ∈ X 2k , the process M (∞)
k+1 is a.s.

locally upper-bounded (thus also M (∞)
k ). Since M(∞)

k (t) = M (∞)
k (t) − Mk(x) −

∫ t
0 V

(∞)
k (s)ds, M(∞)

k is thus also a.s. locally upper-bounded. Thanks to Duhamel’s

formula, this entails that the process M̂ (∞)
k is well-defined as a solution to the following

SDE, similar to (6.17):

M̂ (∞)
k (t) := m + λt + λCk

∫ t
0 M̂ (∞)

k (s) ds + M(∞)
k (t).

We localize this process thanks to the following sequence of stopping times T�, for
any � ≥ 1:

T� := inf
{
s ≥ 0 ; 〈M(∞)

k 〉s ≥ � , M (∞)
k (s) ≥ �

}
. (7.4)

The process (M̂ (∞)
k (t ∧ T�))t≥0 defines a non-negative submartingale such that the

following inequality holds for any t ≥ 0:

Ex [M̂ (∞)
k (t ∧ T�)] := m + λt + λCk

∫ t
0 Ex [M̂ (∞)

k (s ∧ T�)] ds.
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Thanks to Grönwall’s lemma (see for instance [28, Proposition 6.59]), since our
localization procedure entails an upper-bound on (M̂ (∞)

k (t ∧ T�))t≥0, the following
inequality holds for any t ≥ 0:

Ex

[
M̂ (∞)

k (t ∧ T�)
]

≤ (m + λt) · eλCkt ≤ C · m, (7.5)

with C := (1 + λt) · eλCkt (recall that m ≥ 1). Thanks to [28, Proposition 3.12],
M̂ (∞)

k ≥ M (∞)
k . Thanks to Doob’s inequality, the following inequalities thus hold for

any t ≥ 0 and m′ > 0:

Px

(
sup{s≤t∧T�} M

(∞)
k (s) ≥ m′) ≤ Px

(
sup{s≤t∧T�} M̂

(∞)
k (s) ≥ m′)

≤ Ex [M̂ (∞)
k (t ∧ T�)]
m′ .

Recalling (7.5) and thanks to the monotone convergence theorem letting � tend to
infinity, it entails the following inequality for any m,m′ > 0 and any x ∈ X 2k such
that Mk(x) ≤ m:

Px

(
T (k|∞)

m′ ≤ t
)

≤ Cm

m′ ,

which concludes the proof of Lemma 7.2.8. ��

7.2.2 Concluding the proof of Theorem 7.2.1

Let us consider any three real numbers t, η, ε > 0. We consider the following event
as a function of m1 > 0 that describes a failure in the descent of the first moment:

E (d)
1 := {

τ (1|d)
m1

> 2t
} ∩ {

2 t < τ
(d)
∂

}
.

With exactly the same reasoning as for Proposition 6.1.1, exploting Lemmas 7.2.3
and 7.2.4 instead of Lemmas 6.1.2 and 6.1.3, we can choose m1 > 0 such that
Px (E (d)

1 ) ≤ 3 ε holds for any x ∈ Xd .
The following event is stated as a function of m′

1 > 0 and describes a failure in
having the first moment contained on a significant time-interval:

E (d)
2 :=

{
τ (1|d)
m1

≤ 2t
}

∩
{
2t < τ

(d)
∂

}
∩
{
T̃ (1|d)

m′
1

≤ 5t
}
,

where T̃ (1|d)

m′
1

:= inf
{
s ≥ τ

(1|d)
m1 ; M (d)

1 (s) ≤ m′
1

}
. Thanks to [2, Lemma 3.2] and the

strong Markov property at time τ
(1|d)
m1 , we can choose m′

1 > 0 such that Px (E (d)
2 ) ≤ ε

holds for any x ∈ Xd .
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We then consider the following event as a function of y0 ∈ (0, 1), that describes a
failure in having X (d)

0 bounded away from 0:

E (d)
3 :=

{
τ (1|d)
m1

≤ 2t
}

∩
{
T̃ (1|d)

m′
1

> 5t
}

∩
{
T̃ 0,(d)
y0 ≤ 5t

}
∩
{
6 t < τ

(d)
∂

}
,

where T̃ 0,(d)
y0 := inf

{
s ≥ τ

(1|d)
m1 ; X (d)

0 (s) < y0
}
. Thank to Lemma 7.2.5 and the

strong Markov property at time T̃ 0,(d)
y0 (within the time-interval [τ (1|d)

m1 , T̃ (1|d)

m′
1

]), we
can choose y0 > 0 such that Px (E (d)

3 ) ≤ ε holds for any x ∈ Xd .
The following event is stated as a function of m3 > 0 and describes a failure in the

descent of the third moment:

E (d)
4 :=

{
τ (1|d)
m1

≤ 2t
}

∩
{
2t < τ

(d)
∂

}
∩
{
τ̃ (3|d)
m3

> 4 t
}
,

where τ̃
(3|d)
m3 := inf

{
s ≥ τ

(1|d)
m1 + t ; M (d)

3 (s) ≤ m3

}
. Thanks to Lemma 7.2.6 and the

strongMarkov property at time τ
(1|d)
m1 , we can choosem3 > 0 such that Px

(
E (d)
4

)
≤ ε

holds for any x ∈ Xd (with an implicit step for the second moment).
The failure in the containment of the thirdmoment is stated in terms of the following

event, as a function of m′
3 > 0:

E (d)
5 :=

{
τ (1|d)
m1

≤ 2t
}

∩
{
τ̃ (3|d)
m3

≤ 4 t
}

∩
{
T̃ (3|d)

m′
3

≤ 5 t
}

∩
{
5 t < τ

(d)
∂

}
,

where T̃ (3|d)

m′
3

:= inf
{
s ≥ τ

(3|d)
m3 ; M (d)

3 (s) ≤ m′
3

}
. Thanks to Lemma 7.2.8, we can

choose m′
3 > 0 such that Px

(
E (d)
5

)
≤ ε holds for any x ∈ Xd .

Now, we can define J := �m′
3/η�+1 (η being an imposed parameter in the statement

of Theorem 7.2.1). The failure in having the J -optimal subpopulation sizes bounded
away from 0 is stated in terms of the following event, as a function of y ∈ (0, 1):

E (d)
6 :=

{
τ (1|d)
m1

≤ 2t
}

∩
{
τ̃ (3|d)
m3

≤ 4 t
}

∩
{
T̃ (1|d)

m′
1

> 5t
}

∩
{
T̃ 0,(d)
y0 > 5t

}

∩
{
5t < τ

(d)
∂

}
∩
{
τ̃ J ,(d)
y > 5t

}
,

where τ̃
J ,(d)
y := inf

{
s ≥ τ̃

(3|d)
m3 ; ∀ j ≤ J , X (d)

j (s) ≥ y
}
. Thanks to Lemma 7.2.7,

we can choose y ∈ (0, 1) such that Px

(
E (d)
6

)
≤ ε holds for any x ∈ Xd .

Let E (d) take the following form, which agrees with (7.2):

E (d) :=
{
x ∈ Xd ; M3(x) ≤ m′

3 , ∀ j ≤ �m′
3/η� + 1, x j ≥ y

}
. (7.6)
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Firstly, τ (1|d)
m1 ≤ 2 t holds a.s. on the event {6t < τ

(d)
∂ } \ E (d)

1 . T̃ (1|d)

m′
1

≥ 5t thus holds

a.s. on the event {6t < τ
(d)
∂ } \ ∪2

i=1E (d)
i . Consequently, T̃ 0,(d)

y0 ≥ 5t holds a.s. on the

event {6t < τ
(d)
∂ }\ ∪3

i=1 E (d)
i . On the other hand, τ̃ (3|d)

m3 ≤ 4 t holds a.s. on the event

{6t < τ
(d)
∂ }\∪4

i=1E (d)
i . T̃ (3|d)

m′
3

≥ 5 t then holds a.s. on the event {6t < τ
(d)
∂ }\∪5

i=1E (d)
i .

Finally, τ̃
J ,(d)
y ≤ 5t holds a.s. on the event {6t < τ

(d)
∂ }\ ∪6

i=1 E (d)
i . By definition of

τ̃
J ,(d)
y and T̃ (3|d)

m′
3

, and since τ̃
J ,(d)
y ∈ [̃τ (3|d)

m3 , T̃ (3|d)

m′
3

], X (d)(̃τ
J ,(d)
y ) belongs to E (d)

a.s. on the event {6t < τ
(d)
∂ }\ ∪6

i=1 E (d)
i . This concludes the following inclusion

{6t < τ
(d)
∂ ∧τ

(d)
E } ⊂ ∪6

i=1E (d)
i , which entails the following upper-bound in probability

for any d ∈ [[1,∞]] and any x ∈ Xd :

Px

(
6 t < τ

(d)
∂ ∧ τ

(d)
E

)
≤ 8 ε.

This concludes the proof of Theorem 7.2.1 (by adjusting the initial choices of t and ε).
��

7.3 Aggregation of the last coordinates

The changes in the description of the system specified in this subsection will be crucial
for the proofs of both the estimates of mixing (in Sect. 7.4) and of almost perfect
harvest (in Sect. 7.5). Up to a multiplicative constant in the probabilities, they make it
possible to gather the last coordinates in one specific block while keeping aMarkovian
description. Our aim is then to prove that the dependency in the initial values of these
last coordinates vanishes very quickly.

More precisely, the current subsection is dedicated to the study of the law P
(J :d)
x ,

for any d ∈ [[1,∞]], any integer J ∈ [[1, d]] and any x ∈ Xd , of the solution to the
following set of equations, stated for any i ∈ [[0, d]]:

dX (d)
i (t) = α · (M (J :d)

1 (t) − i ∧ J ) · X (d)
i (t) dt + λ · (X (d)

i−1(t) − 1{i<d} X (d)
i (t)) dt

+
√

X (d)
i (t) dWi (t) − X (d)

i (t) dW(d)(t), X (d)
i (0) = x, (7.7)

with (Wi )i≥0 is still a family of mutually independent Brownian motions, W(d) is
expressed as in (1.1):

dW(d)(t) := ∑
j∈[[0,d]]

√
X (d)

j (t)dWj (t), W(d)(0) = 0, (7.8)

and the process M (J :d)
1 is the first moment saturated at value J :

M (J :d)
1 := ∑

i∈[[0,d]](i ∧ J ) X (d)
i = ∑

i≤J−1 i X
(d)
i + J

∑
i≥J X (d)

i . (7.9)
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The reason we do not include the obvious dependency in J in the solution X (d) to the
system (7.7) is that we want to connect this solution to the one to the system (1.1)
under Px with a change of probability density given by the Girsanov transform.

The main interest of this law lies in that it can be efficiently projected on a finite-
dimensional system, as stated and proved in Sect. 7.3.1 (see Proposition 7.3.1). In the
next Sect. 7.3.2, we will obtain comparison estimates relating P

(J :d) and P thanks to
the Girsanov transform (see Proposition 7.3.2). Finally, in Sect. 7.3.3, we handle the
probability of large increase of the moments (see Lemma 7.3.5).

7.3.1 Connexion between P(J:d) and P

Since the selection effect is identical on all the classes larger than J under P(J :d), this
law is naturally associated with the following projection πJ from Xd to XJ :

πJ (x)i =
⎧
⎨

⎩

xi , if i ≤ J − 1,
∑d

j=J
x j = 1 −

∑J−1

j=0
x j , if i = J .

(7.10)

The renormalized sequence of the tail classes under the projection will be described
in terms of the law of the solution X (F |d) to the following set of equations, where F
stands for “Final". We first denote its corresponding total size as the process X (d)

(J ),
with initial condition x(J ) := [πJ (x)]J :

X (d)
(J ) := 1 −

∑

{i≤J−1} X
(d)
i . (7.11)

This process affects both the entrance flux on the class J , the associated correction term
due to the renormalisation and the level of demographic fluctuations. For i ∈ [[J , d]],
for any t ≥ 0:

dX (F |d)
i (t) = V (F |d)

i (t)dt + dN (F |d)
i (t), X (F |d)

i (0) = xi
x(J )

, (7.12)

with the following definitions of the process V (F |d)
i :

V (F |d)
i = λ ·

[
X (d)
J−1

X (d)
(J )

· (1{i=J } − X (F |d)
i ) + 1{i≥J+1}X (F |d)

i−1 − 1{i<d} X (F |d)
i

]

,

(7.13)

and of the martingale N (d)
(J ) :

dN (F |d)
i (t) =

√
√
√
√ X (F |d)

i (t)

X (d)
(J )(t)

dW (F |d)
i (t) − X (F |d)

i (t)
√
X (d)

(J )(t)
dW (F |d)

(d) (t), N (F |d)
i (0) = 0,

(7.14)
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in terms of the sequence (W (F |d)
i )i∈[[J ,d]], which defines amutually independent family

of Brownian motions that are mutually independent of the family (Wi )i∈[[0,d]] and in

terms of the martingale W (F |d)

(d) :

dW (F |d)

(d) (t) :=
∑d

i=J

√

X (F |d)
i (t)dW (F |d)

i (t), W (F |d)

(d) (0) = 0.

We can then define the process X̄ (d)
i as X (d)

i for any i ∈ [[0, J −1]] and as X (d)
(J ) · X̄ (F |d)

i
for any i ∈ [[J , d]].
Proposition 7.3.1 For any J ≥ 1, πJ (X (d)) is by itself a Markov process under any
P

(J :d)
x , whose law is independent of d ∈ [[J , ∞]] and depends on x ∈ Xd only through

πJ (x). Under P
(J :d)
x , the process X̄ (d) on Xd has the same law as the process X (d).

Proof : By virtue of (7.9) and of (7.11):

M (J :d)
1 :=

∑J−1

i=0
i X (d)

i + J X (d)
(J ).

Under P(J :d)
x , for any x ∈ Xd , Itô’s lemma then entails that the process X (d)

(J ) is solution
to the following SDE, for any t ≥ 0:

dX (d)
(J )(t) = V (d)

(J ) (t)dt + dN (d)
(J ) (t) − X (d)

(J )(t) dW(d)(t), (7.15)

with the definition of W(d) from (7.8) and the following definitions of the process

V (d)
(J ) :

V (d)
(J ) = α · (M (J :d)

1 − J ) · X (d)
(J ) + λ · X (d)

J−1, (7.16)

and of the martingale N (d)
(J ) :

dN (d)
(J ) (t) =

∑d

j=J

√
X (d)

j (t) dWj (t), Ñ (d)
(J ) (0) = 0. (7.17)

Since the sequence (Wi )i∈[[0,d]] defines a mutually independent family of Brownian
motions, the following identity holds for any t ≥ 0:

d〈N (d)
(J ) 〉t =

∑d

j=J
X (d)

j (t)dt = X (d)
(J )(t)dt .

Thanks to [16, Theorem 18.12], we can define a Brownian motion W (d)
(J ) such that the

following SDE hold: dN (d)
(J ) (t) =

√
X (d)

(J )(t)dW
(d)
(J ) (t). Recalling (7.8), it yields the

following alternative identity for the Brownian motion W(d):

dW(d)(t) =
∑J−1

i=0

√

X (d)
i (t)dWi (t) +

√
X (d)

(J )(t)dW
(d)
(J ) (t). (7.18)
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The correlation between W (d)
(J ) and the (Wi )i≤J−1 remains zero, while they constitute

a system of Brownian motions under the same filtration. W (d)
(J ) is thus independent of

σ(Wi ; i ≤ J − 1), so that the system of equations satisfied by πJ (X) is equivalent for
any P

(J :d)
x .

Thanks to Itô’s lemma, the following identity holds for any t ≥ 0 and any i ∈
[[J , d]]:

d X̄ (d)
i (t) = V̄ (d)

i (t)dt + dN̄ (d)
i (t) + 1

2 d〈N (d)
(J ) ,N (F |d)

i 〉t , (7.19)

with N (d)
(J ) (t) and N (F |d)

i (t) defined respectively in (7.15) and (7.14), while the

martingale component N̄ (d)
i is expressed as follows after simplifications:

dN̄ (d)
i (t) = X (d)

(J )(t)dN̄ (F |d)
i (t) + X̄ (F |d)

i (t)dN (d)
(J ) (t)

=
√

X̄ (d)
i (t)dWi (t) − X̄ (d)

i (t)dW(d)(t), N̄ (d)
i (0) = 0,

and the process V̄ (F |d)
i (t) as follows, thanks to (7.16) and to (7.13) after simplifica-

tions:

V̄ (F |d)
i = X (d)

(J ) · V̄ (F |d)
i + X̄ (F |d)

i · V (d)
(J )

= α · (M (J :d)
1 − J ) · X̄ (d)

i + λ · (X̄ (d)
i−1 − 1{i<d} X̄ (d)

i ).

N (F |d)
i is defined in terms of the sequence (W (F |d)

i )i∈[[0,d]] of Brownian motions,
which is independent of the sequence (Wi )i∈[[0,d]] in terms of which the martingale

N (d)
(J ) is stated. Therefore, d〈N (d)

(J ) ,N (F |d)
i 〉 ≡ 0. The system of SDEs (7.19) satisfied

by (X̄ (d)
i )i∈[[0,d]] thus coincides with the system (1.1) satisfied by (X (d)

i )i∈[[0,d]]. By the
uniqueness of the whole system, cf Proposition A.0.1 in the appendix, X (d) coincides
with X̄ (d). This ends the proof of Proposition 7.3.1. ��

7.3.2 The connexion formula between P(J:d) and P

Thanks to the Girsanov transform, we will establish a relevant quantification for the
transfer between the original law of the process P and the law of P(J :d). For the
upcoming Proposition 7.3.2, we shall exploit a control on moments of order k. We
recall the definition of T (k|d)

m from (6.16) for any m > 0:

T (k|d)
m := inf

{
s ≥ 0 ; M (d)

k (s) ≥ m
}
.

Proposition 7.3.2 Given any t, ε > 0, k ≥ 2, there exists CM ,CG > 0 for which the
following holds. For any m ≥ 1, with m′ := CM ·m, for any d ∈ [[1,∞]], any J ≤ d,
and any x ∈ Xd ∩ X 2k such that Mk(x) ≤ m, there exists a coupling between P

(J :d)
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and P such that the following upper-bound holds a.s. on the event {t < T (k|d)

m′ }:

∣
∣
∣ log

(
dP(J :d)

x

dPx

∣
∣
∣
∣[0,t]

)
∣
∣
∣ ≤ CG

m

Jk−2 ,

while the event {t < T (k|d)

m′ } happens with a probability close to 1 in the following
sense:

Px

(
T (k|d)

m′ ≤ t
)

≤ ε.

Remark 7.3.3 In this article, we exploit Proposition 7.3.2 only for k = 3. The proof is
extended to any real number k ≥ 2 to explicit our motivation for choosing k > 2 (see
(7.76) below).

The explicit connexion formula
We express in this subsection the Girsanov transform that makes it possible to relate
P

(J :d) and P. It is expressed in the upcoming Lemma 7.3.4 in terms of the processes
R(J :d)
1 and R(J :d)

2 with the following definitions:

R(J :d)
1 :=

∑d

i=J+1
(i − J ) · X (d)

i , R(J :d)
2 :=

∑d

i=J+1
(i − J )2 · X (d)

i .

One can notice that they correspond to the expectation and variance of the vector
(Yi )i∈Z+ such that Y0 = ∑J

j=0 X
(d)
j and for any i ∈ N, Yi = X (d)

J+i .

Lemma 7.3.4 For any d ∈ [[1,∞]] and J ∈ [[1, d]], there exists a coupling between
P

(J :d) and P such that:

log
dP(J :d)

x

dPx

∣
∣
∣
∣[0,t] = α · R(J :d)

1 (0) − α · R(J :d)
1 (t) +

∫ t

0
G(J :d)(s)ds,

with the following definition of the process G(J :d):

G(J :d) := α2 (M (d)
1 − J ) R(J :d)

1 − α2 R(J :d)
2 + α λ (X (d)

(J ) − 1{d<∞}X (d)
d )

− α2

2

[
R(J :d)
2 − (R(J :d)

1 )2
]
.

Proof : We define as follows the martingale L(J :d), starting at 0:

dL(J :d)(t) := −α
∑

i≥J+1

(i − J )

√

X (d)
i (t) dWi (t) + α · R(J :d)

1 (t) dW(d)(t)

= −α
∑

i≥J+1

(i − J ) ·
[√

X (d)
i (t) dWi (t) − X (d)

i (t) dW(d)(t)

]

.
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By this choice, we obtain the following identities, for any i ∈ [[0, d]]:

d〈L(J :d),Wi 〉s = α ·
[
R(d)
1 (s) − (i − J )+

]
·
√

X (d)
i (s) ds,

d〈L(J :d),W(d)〉s = 0.
(7.20)

Recalling the systems of SDEs (1.1) and (7.7), it entails that the Girsanov transform
of the law P with respect to the exponential martingale of L(J :d) generates P(J :d), in
the sense that the following property holds for any t > 0 and x ∈ Xd :

log
dP(J :d)

x

dPx

∣
∣
∣
∣[0,t] = L(J :d)(t) − 1

2
d〈L(J :d)〉t . (7.21)

Thanks to (7.20), the quadratic variation d〈L(J :d)〉t satisfies the following identity:

d〈L(J :d)〉t = −α
∑

i≥J+1

(i − J )

√

X (d)
i (t)d〈L(J :d),Wi 〉t

= α2 ·
[
R(J :d)
2 (t) − R(J :d)

1 (t)2
]
.

(7.22)

On the other hand, we note the following identity for any s ≥ 0:

dR(J :d)
1 (s) = V (J :d)

1 (s)ds − 1

α
dL(J :d)(s), R(J :d)

1 (0) =
∑

i≥J+1

(i − J ) · xi ,

where the process V (J :d)
1 is defined as follows:

V (J :d)
1 = α ·

[
(M (d)

1 − J ) · R(J :d)
1 − R(J :d)

2

]
ds + λ · (X (d)

(J ) − 1{d<∞}X (d)
d ).

With this alternative expression for L(J :d), recalling (7.21) and (7.22), we conclude
the proof of Lemma 7.3.4. ��

Concluding the proof of Proposition 7.3.2
The aim is now to get uniform upper-bound on the expression given in Lemma 7.3.4.
We consider any k ≥ 2. Firstly, the following inequalities hold by definitions of
R(J :d)
1 ≥ 0 and M (d)

k :

R(J :d)
1 ≤ J−(k−1)

∑

{i≥J+1} i
k X (d)

i ≤ J−(k−1)M (d)
k .

Similarly for R(J :d)
2 ≥ 0 and X (d)

(J ) − 1{d<∞}X (d)
d (s) ≥ 0:

R(J :d)
2 ≤ J−(k−2)M (d)

k , X (d)
(J ) − 1{d<∞}X (d)

d (s) ≤ J−kM (d)
k .
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Thanks to the Cauchy–Schwarz inequality, (R(J :d)
1 )2 ≤ R(J :d)

2 . Thanks to Hölder’s

inequality, both M (d)
1 ≤ (M (d)

k )1/k and M (d)
k−1 ≤ (M (d)

k )(k−1)/k hold, which finally

yields the following inequalities about M (d)
1 · R(J :d)

1 ≥ 0:

M (d)
1 · R(J :d)

1 ≤ J−(k−2)M (d)
1 · M (d)

k−1 ≤ J−(k−2)M (d)
k ,

Thanks to Lemma 7.3.4, we can thus choose a constantC1 > 0 such that the following
inequality holds a.s. on the event {t < T (k|d)

m′ } for any m,m′ ≥ 1 such that m < m′,
any d ∈ [[1,∞]], any J ∈ [[1, d]], and any x ∈ Xd such that Mk(x) ≤ m:

∣
∣
∣ log

(dP(J :d)
x

dPx

∣
∣
∣
∣[0,t]

) ∣
∣
∣ ≤ C1

m′

J k−2 . (7.23)

Thanks to Lemma 7.2.8, we can choose C2 > 0 such that the following inequality
holds for any m,m′ ≥ 1 such that m < m′, any d ∈ [[1,∞]] and any x ∈ Xd such that
Mk(x) ≤ m:

Px

(
T (k|d)

m′ ≤ t
)

≤ C2m

m′ .

Let ε > 0. We thus define m′ = CM · m, where CM := C2/ε, so that the above
upper-bound is exactly ε. Thanks to (7.23) with CG = C1 · C2/ε, the following
inequality holds a.s. on the event {t < T (k|d)

m′ }, for any m ≥ 1, any d ∈ [[1,∞]], any
J ∈ [[1, d]], and any x ∈ Xd such that Mk(x) ≤ m:

∣
∣
∣ log

(dP(J :d)
x

dPx

∣
∣
∣
∣[0,t]

) ∣
∣
∣ ≤ CG

m

Jk−2 .

This concludes the proof of Proposition 7.3.2. ��
7.3.3 Upper-bound on the probability of moment increase for X (F|d)

Similarly as for Lemma 7.2.8, exploiting the decomposition in Proposition 7.3.1, we
define the third moment M (F |d)

3 of X (F |d):

M (F |d)
3 :=

∑d

i=J
i3 X (F |d)

i ∈ [J 3,∞),

and the corresponding hitting time T (F .3|d)
m of the value m > 0:

T (F .3|d)
m := inf

{
s ≥ 0 ; M (F |d)

3 (s) ≥ m
}
. (7.24)

The upper-bound is to be obtained up to the following hitting time τ
(J :d)
0 :

τ
(J :d)
0 := inf

{
t ≥ 0 ; X (d)

(J )(t) = 0
}
. (7.25)
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For clarity, we define F (J ) = σ
(
Wi : i ≤ J − 1 ; W (d)

(J )

)
. Recall that the process

X (F |d)
i is driven by Brownian motions (W (F |d)

i : i ≥ J ) that are independent of F (J ).
The inclusion σ(πJ (X)) ⊂ F (J ) is directly obtained through the autonomous set of
equation verified by πJ (X). The following control on M (F |d)

3 exploits the filtration

F (J )
t := F (J ) ∨ Ft .

Lemma 7.3.5 For any t > 0, there existsC ≥ 1 such that the following inequality holds
a.s. for any m,m′ > 0, any d ∈ [[1,∞]] and any x ∈ Xd such that M (F |d)

3 (x) ≤ m:

P
(J :d)
x

(
T (F .3|d)

m′ ≤ t ∧ τ
(J :d)
0

∣
∣F (J )

)
≤ Cm

m′ .

Proof : Under P(J :d), we exploit the Itô formula to express M (F |d)
3 as the solution to

the following SDE:

dM (F |d)
3 (t) := V (F |d)

3 (t)dt + dM(F |d)
3 (t), (7.26)

where V (F |d)
3 is a bounded variation process defined as:

V (F |d)
3 :=

λ ·
⎡

⎣
X (d)
J−1

X (d)
(J )

· (J3 − M(F |d)
3 ) +

∑

�≥J

(� + 1)3 · X (F |d)
�

− M(F |d)
3 + 1{d<∞}d3 · X (F |d)

d

⎤

⎦ .

Note that whatever the values of (X (d)
J−1/X

(d)
(J )), with the rough estimate (�+1)3 ≤ 8�3

for � ≥ 1, the inequality V (F |d)
3 ≤ 8λ M (F |d)

3 holds. On the other hand, the local

martingale processM(F |d)
3 is expressed as follows in terms of the martingalesN (F |d)

i
defined in (7.14):

dM(F |d)
3 (t) :=

∑

i≥J

i3 · N (F |d)
i (t), M(F |d)

3 (0) = 0. (7.27)

Relying on the same calculations as for M3, M(F |d)
3 is a continuous local martingale

starting from 0 for the filtrationF (J )
t whose quadratic variation satisfies the following

identity:

d〈M(F |d)
3 〉t = M (F |d)

6 (t) − (M (F |d)
3 (t))2

X (d)
(J )(t)

,
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where M (F |d)
6 (s) := ∑

i≥J i
6 X (F |d)

i (t). The definition of the localization time can be
adapted from (7.4) as follows for any positive integer �:

T� := inf{s ≥ 0 ; 〈M(F |d)
3 〉s ≥ � , M (F |d)

3 (s) ≥ �}. (7.28)

Thanks to Proposition 7.3.1, the following inequalities hold for any t such that
X (d)

(J )(t) > 0:

M (F |d)
3 (t) ≤ M3(t)

X (d)
(J )(t)

, M (F |d)
6 (t) ≤ M6(t)

X (d)
(J )(t)

.

Thanks to the proof of [2, Theorem 3] (see also Propositon B.0.1 in the appendix),
M (∞)

6 is locally upper-bounded, a.s. under P(J :d)
x for any x ∈ X∞ = X 6. It entails

that both M (F |d)
3 and 〈M(F |d)

3 〉 are also a.s. upper-bounded for any n ≥ 1 on the

time-interval [0, t ∧ τ
(J :d)
1/n ], where τ

(J :d)
1/n = inf{t ≥ 0 ; X (d)

(J )(t) = 1/n}. Taking the

limit with n tending to infinity, lim� T� ≥ t ∧ τ
(J :d)
0 holds a.s. The rest of the proof

of Lemma 7.3.5 can be taken mutatis mutandis from the one of Lemma 7.2.8 (with
C = exp[8λt] ∨ 1). ��

7.4 Mixing property and accessibility

Theorem 7.4.7, stated and proved in Sect. 7.4.4, is the main result of the current
Sect. 7.4. It establishes the mixing estimate (A2).

We consider three intermediate steps: first in Sect. 7.4.1, we justify that an interior
subset ofXd with convenient properties can be accessed, cf Lemma 7.4.3; secondly in
Sect. 7.4.2, we show a mixing estimate on the two optimal subpopulation sizes X (d)

0

and X (d)
1 , cf Lemma 7.4.4; thirdly in Sect. 7.4.3, we prove the existence of a uniform

lower-bound on the probability of the event on which we will condition to produce
ζ (d) as a probability measure, cf Lemma 7.4.3.

We recall the definition of D(d)
� from (7.1) for any integer �:

D(d)
� :=

{
x ∈ Xd ; x0 ≥ 1

2�

}
,

and the fact that T (d)

D�
denotes the exit time of X (d) out of D(d)

� .

Remark 7.4.1 It can be noted that for any x ∈ D(d)
� , T (d)

D�
< τ

(d)
∂ , so that T (d)

D�
=

τ
(d)
∂ ∧ T (d)

D�
.

Remark 7.4.2 In the current Sect. 7.4, we apply the decomposition introduced in
Sect. 7.3 for J = 2. The definitions (7.10) for πJ and (7.11) for X (d)

(J ) will be used
below in case J = 2. The proofs given in the next Sect. 7.5will exploit a generalization
of the argument for large values of J .
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7.4.1 Access to an interior point

Section 7.4.1 is devoted to the proof of the upcoming Lemma 7.4.3, in which we
justify the accessibility of H(d)

� , which is an interior subset of Xd with convenient

properties. These properties entail that any state x ∈ H(d)
� will constitute a suitable

initial condition in order to exploit Property (H).

Lemma 7.4.3 For any integer � ≥ 1, there exist four real numbers t,m, y > 0, such
that the following inequality holds for any d ∈ [[2,∞]] and any x ∈ D(d)

� :

Px

(
M (d)

3 (t) ≤ m , X (d)
0 (t) ∧ X (d)

1 (t) ∧ X (d)
(2) (t) ≥ y , t < T (d)

D2�

)
≥ c.

This lemma leads to the introduction of the following subset ofXd for any d ∈ [[2,∞]]
and any � ∈ N:

H(d)
� = H(d)(m�, y�) :=

{
x ′ ∈ Xd ; M3(x

′) ≤ m� , x ′
0 ∧ x ′

1 ∧
∑

{k≥2} x
′
k ≥ y�},

where m�, y� > 0 are the values of m and y associated to � through Lemma 7.4.3,
so that the lower-bounded probability can be expressed as Px

(
X (d)(t) ∈ H(d)

� ; t <

T (d)

D2�

)
. Without restriction, y� ≤ 1/4� can be assumed.

Proof : Let � ≥ 1.Wedefine y∧ = 1/4�. Theprocess X (d)
0 ,which is the initial component

of the solution to (1.1)-(1.3), is lower-bounded under Px for any d and x ∈ D(d)
� by

the solution Y0 to the following SDE, thanks to Lemma 5.1.4:

dY0(s) = −λ ds + √
Y0(s) · (1 − Y0(s)) dB0(s) , Y0(0) = 2y∧,

where B0 is aBrownianmotion.With c0 := P
(
inf t∈[0,1] Y0(t) > y∧

∣
∣ Y0(0) = 2y∧

)
>

0, we thus deduce the following inequality for any d ∈ [[2,∞]] and any x ∈ D(d)
� :

Px

(
1 < T (d)

D2�

)
≥ c0. (7.29)

Thanks to Lemmas 7.2.4 and 7.2.6 (similarly as in Sect. 7.2.2), there exists mD > 0
such that the following inequality holds for any d ∈ [[2,∞]] and any x ∈ D(d)

� :

Px

(
τ (3|d)
mD

≤ 1
3

)
≥

√

1 − c0
2

. (7.30)

Thanks to Lemma 7.2.8, there existsm ≥ mD such that the following inequality holds
for any d ∈ [[2,∞]] and any x ∈ Xd such that M3(x) ≤ mD:

gm[x] := Px

(
1 < T (3|d)

m

)
≥

√

1 − c0
2

. (7.31)
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Thanks to the strongMarkov property at time τ
(3|d)
m , recalling (7.29), (7.30) and (7.31),

the following inequalities hold for any d ∈ [[2,∞]] and any x ∈ D(d)
� :

Px

(
τ (3|d)
mD

≤ 1
3 , 1 < T (3|d)

m ∧ T (d)

D2�

)

≥ Px

(
1 < T (d)

D2�

)
−

[
1 − Ex

(
gm

[
X (d)(τ (3|d)

mD
)
] ; τ (3|d)

mD
≤ 1

3

)]

≥ c0
2

.

(7.32)

Let b1 := (λy∧) ∧ ( 14 ). Thanks to Lemma 5.1.4, the process X (d)
1 is lower-bounded

a.s. on the event {1 < T (d)

D2�
} under Px on the time-interval [ 13 , 1] by the solution Y1 to

the following SDE:

dY1(s) = ϕ1 ds − (α + λ) · Y1(s) ds + √
Y1(s) · (1 − Y1(s)) dB1(s) , Y1(

1
3 ) = 0.

(7.33)

Thanks to Corollary 5.1.5, since ϕ1 ∈ (0, 1
4 ), 0 is a regular reflecting boundary for

this process Y1. Therefore, there exists y1 ∈ (0, 1
2λ ) such that P(Y1(2/3) < 2y1) ≤ c0/4.

Recalling (7.32), the following inequality thus holds for any d ∈ [[2,∞]] and any
x ∈ D(d)

� :

Px

(
τ (3|d)
mD

≤ 1
3 , X (d)

1 (2/3) ≥ 2y1 , 1 < T (3|d)
m ∧ T (d)

D2�

)
≥ c0

4
. (7.34)

Thanks to Lemma 5.1.4, the process X (d)
1 is lower-bounded a.s. on the event {1 <

T (d)

D2�
} ∩ {X (d)

1 (2/3) ≥ 2y1} under Px on the time-interval [2/3, 1] by the solution Y I
1 to

the following SDE, where the difference with (7.33) lies in the initial condition at time
2/3:

dY I
1 (s) = ϕ1 ds − (α + λ) · Y I

1 (s) ds +
√
Y I
1 (s) · (1 − Y I

1 (s)) dB1(s) , Y I
1 (

2

3
) = 2y1.

We consider the two following stopping times T 1
y1 and T 1,(d)

y1 :

T 1
y1 := inf{s ≥ 2/3 ; Y I

1 (s) ≤ y1}, T 1,(d)
y1 := inf{s ≥ 2/3 ; X (d)

1 (s) ≤ y1},

namely the hitting time of y1 after time 2/3 by the processes respectively Y I
1 and X (d)

1 .
There exists t1 ∈ (0, 1

3 ) such that:

P

(
T 1
y1 ≤ 2/3 + t1

)
≤ c0

8
.
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Let t = 2/3 + t1. The following inequality thus holds for any d ∈ [[2,∞]] and any
x ∈ D(d)

� :

Px

(
τ (3|d)
mD

≤ 1
3 , X (d)

1 (2/3) ≥ 2y1 , t < T 1,(d)
y1 ∧ T (3|d)

m ∧ T (d)

D2�

)
≥ c0

8
. (7.35)

Let ϕ2 := λ y1. Thanks to Lemma 5.1.4, the process X (d)
2 is lower-bounded a.s. on

the event {X (d)
1 (2/3) ≥ 2y1} ∩ {t < T 1,(d)

y1 } under Px on the time-interval [2/3, t] by the
solution Y2 to the following SDE:

dY2(s) = ϕ2 ds − (2α + λ) · Y2(s) ds + √
Y2(s) · (1 − Y2(s)) dB2(s) , Y2(

2
3 ) = 0.

(7.36)

Thanks to Corrolary 5.1.5 since ϕ2 ∈ (0, 1
2 ), 0 is a regular reflecting boundary for this

process Y2. Therefore, there exists y2 ∈ (0, y1) such that P(Y2(t) < y2) ≤ c0/16.
Recalling (7.35), the following inequality thus holds for any d ∈ [[2,∞]] and any
x ∈ D(d)

� :

Px

(
M (d)

3 (t) ≤ m , X (d)
0 (t) ∧ X (d)

1 (t) ∧ X (d)
(2) (t) ≥ y2 , t < T (d)

D2�

)

≥ Px

(
τ (3|d)
mD

≤ 1
3 , X (d)

1 ( 23 ) ≥ 2y1 , X (d)
2 (t) ≥ y2 , t < T 1,(d)

y1 ∧ T (3|d)
m ∧ T (d)

D2�

)

≥ c0
16

. (7.37)

This concludes the proof of Lemma 7.4.3. ��

7.4.2 Mixing estimate on the two optimal subpopulation sizes

Section 7.4.2 is devoted to the proof of the upcoming Lemma 7.4.4, in which we both
establish a mixing property for the process (X (d)

0 , X (d)
1 ) and obtain a control on X (d)

1

and on X (d)
(2) . As a reference initial condition, we consider z

(d) ∈ Xd to be such that

z(d)
k = 2−k−1 for any k ∈ [[0, d − 1]] (that is k ∈ Z+ for d = ∞) and z(d)

d = 2−d (in

the case d < ∞). Note that z(d) ∈ D(d)
1 .

We introduce as follows some subsets Y2(y) of X2 in terms of some parameter
y ∈ (0, y�) that describes its gap to the boundary of X2:

Y2(y) :=
{
z ∈ X2 ; z0 ∧ z1 ∧ z2 ≥ y

}
.

There exist two connected open relatively compact sets K∧
2 (y),K∨

2 (y) with C∞-
boundaries with the following properties:

Y2(2y) ⊂ K∧
2 (y), K∧

2 (y) ⊂ K∨
2 (y) ⊂ Y2(y).
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The stopping time T 2,(d)
y is defined for any y ∈ (0, y�) as follows:

T 2,(d)
y := inf

{
t ≥ 0 ; π2(X

(d)(t)) /∈ K∨
2 (y)

}
, (7.38)

namely the exit time of π2(X (d)) outside of K∨
2 (y). Note that for any y > 0, there

exists an integer L such that T 2,(d)
y < T (d)

DL
.

Lemma 7.4.4 For any � ≥ 1 and yC ∈ (0, 1), there exists y ∈ (0, yC ] and four real
numbers cD, cZ ,mU ,mD > 0 such that the two following inequalities hold for any
d ∈ [[2,∞]] and any x ∈ H(d)

� :

1{z∈Y2(2y)}Px

(
π2(X

(d)(2)) ∈ dz ; 2 < T 2,(d)
y ∧ T (3|d)

mU

)

≥ cD 1{z∈Y2(2y)}Pz(d)

(
π2(X

(d)(1)) ∈ dz ; 1 < T 2,(d)
y ∧ T (3|d)

mD

)
,

and:

Z(d) := Pz(d)

(
X (d)(1) ∈ Ry , 1 < T 2,(d)

y ∧ T (3|d)
mD

)
≥ cZ ,

where the subset Ry of Y2(2y) is defined as follows:

Ry :=
{
z ∈ Y2(2y) ; z0 ∈ (1 − 5y, 1 − 4y) , z1 ∈ (2y, 3y)

}
. (7.39)

Proof : Let � ≥ 1, mH and yH be the constants associated to H(d)
� and yC be

given. Let y = yC ∧ (
yH
2 ) ∧ ( 17 ). Recall from Proposition 7.3.1 that the system

(X (d)
0 , X (d)

1 , X (d)
(2) ) = π2(X (d)) is autonomous under P(2:d)

x , whatever d ∈ [[2,∞]] and
x ∈ H(d)

� ,with a common infinitesimal generatorL(2) onX2.As stated inLemma5.1.1,

the process π2(X (d)) satisfies Property (H) on Y2(y). Since π2(H(d)
� ) ⊂ Y2(2y) ⊂

K∧
2 (y), we deduce as in the proof of Proposition 5.2.1 that there exists c1D > 0 such

that the following inequality holds for any d ∈ [[2,∞]] and x ∈ H(d)
� :

1{z∈Y2(2y)}P
(2:d)
x

(
π2(X

(d)(2)) ∈ dz ; 2 < T 2,(d)
y

)

≥ c1D 1{z∈Y2(2y)}P
(2:d)

z(d)

(
π2(X

(d)(2)) ∈ dz ; 1 < T 2,(d)
y

)
. (7.40)

To prepare for the second inequality, recall (7.39). The set Ry has a non empty
interior, so that we can find a smooth function f : K∨

2 (y) �→ [0, 1] with support on
Ry that is non-zero. We are led to consider the corresponding Cauchy problem on
R+ × K∨

2 (y) with the value at the boundary given by the function u∂K∨
2 (y) defined as

u∂K∨
2 (y)(0, z) = f (z) for any z ∈ K∨

2 (y) and as u∂K∨
2 (y)(t, z) = 0 for any t ≥ 0 and

z ∈ ∂K∨
2 (y). Thanks to Property (H), there exists a unique positive strong solution u
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to this Cauchy problem. Note that by construction π2(z(d)) = z(2) is independent of
d. As a consequence:

P
(2:d)

z(d)

(
π2(X

(d)(1)) ∈ Ry ; 1 < T 2,(d)
y

) ≥ E
(2:d)

z(d)

(
f
[
π2(X

(d)(1))
]
; 1 < T 2,(d)

y

)

= u(1, z(2)) > 0. (7.41)

So as to relate to the original dynamics prescribed by Px , we need upper-bounds of
the third moment that are given independently of π2(X (d)), by referring to Sect. 7.3.3.
Note that M (F |d)

3 (x) ≤ m� holds for any x ∈ H(d)
� and that T 2,(d)

y < τ
(2:d)
0 hold also

a.s. Thanks to Lemma 7.3.5, there exists m′
U > 0 such that the following inequality

holds for any d ∈ [[2,∞]] and any x ∈ H(d)
� :

P
(2:d)
x

(
T (F .3|d)

m′
U

≤ 2 ∧ T 2,(d)
y

∣
∣F (2)

)
≤ 1

2 . (7.42)

Similarly, there exists m′
D > 0 such that the following inequality holds for any d ∈

[[2,∞]]:

P
(2:d)

z(d)

(
T (F .3|d)

m′
D

≤ 1 ∧ T 2,(d)
y

∣
∣F (2)

)
≤ 1

2 . (7.43)

Thanks to (7.40) and to (7.42), the following inequality holds for any d ∈ [[2,∞]] and
any x ∈ H(d)

� :

1{z∈Y2(2y)}P
(2:d)
x

(
π2(X

(d)(2)) ∈ dz ; 2 < T 2,(d)
y ∧ T (F .3|d)

m′
U

)

≥ 2c1D 1{z∈Y2(2y)}P
(2:d)

z(d)

(
π2(X

(d)(1)) ∈ dz ; 1 < T 2,(d)
y

)
.

Thanks to Proposition 7.3.2, noting that M3(x) ≤ M (F |d)
3 (x) + 1 (it holds for any

d ≥ 2 and x ∈ Xd ), there exists cD > 0 such that the following inequality holds for
any d ∈ [[2,∞]] and any x ∈ H(d)

� , with mU = m′
U + 1 and mD = m′

D + 1:

1{z∈Y2(2y)}Px

(
π2(X

(d)(2)) ∈ dz ; 2 < T 2,(d)
y ∧ T (3|d)

mU

)

≥ cD 1{z∈Y2(2y)}Pz(d)

(
π2(X

(d)(1)) ∈ dz ; 1 < T 2,(d)
y ∧ T (3|d)

mD

)
,

which is the first inequality in Lemma 7.4.4.
Similarly, thanks to Proposition 7.3.2, recalling (7.41) and (7.43), there exists

cZ > 0 such that the following inequality holds for any d ∈ [[2,∞]]:

Pz(d)

(
π2(X

(d)(1)) ∈ Ry , 1 < T 2,(d)
y ∧ T (3|d)

mD

)
≥ cZ ,

which concludes the proof of Lemma 7.4.4. ��
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7.4.3 The event of a regular behavior happen with a lower-bounded probability

Section 7.4.3 is devoted to the proof of the upcoming Lemma 7.4.5, in whichwe justify
for well-prepared initial conditions that the dependency in the different components
of X (d)

(2) can be forgotten in an event of non-negligible probability.

Lemma 7.4.5 For any � ≥ 1, there exists yC > 0 such that the following property
holds for any y ∈ (0, yC ) and any m > 0. There exists c > 0 such that the following
inequality holds for any d ∈ [[2,∞]] and any x ∈ Xd such that π2(x) ∈ Ry and
M3(x) ≤ m:

Px

(
τ

(2:d)
0 < 1 < T (d)

D3

)
≥ c.

Proof : We wish to control the extinction of a uniform upper-bound of X (d)
(2) , that is to

be solution to the following SDE:

dZ(t) := dt

4
+ √

Z(t) · (1 − Z(t)) dB(2)(t) , Z(0) = y, (7.44)

where W is a standard Brownian motion. Note that 0 is an accessible boundary for
this process Z (it is actually regular refecting), thanks to Corollary 5.1.5.

To ensure that the flux of population into X (d)
(2) due tomutations remains lower than 1

4

in the time-interval [0, tB] for some tB > 0,wewish to impose that X (d)
1 remains upper-

bounded by 1
4λ on this time-interval. For practical reasons, the considered upper-bound

is actually slightly adjusted:

yM := 1

4λ
∧ 1

2
. (7.45)

Similarly as for X (d)
(2) , we thus consider an upper-bound for the process X (d)

1 , as the
solution to the following SDE:

dY (t) := (λ + α) dt + √
Y (t) · (1 − Y (t)) dB1(t) , Y (0) = yM/4, (7.46)

where B1 is a standard Brownian motion (recall that M (2:d)
1 ≤ 2 under P(2:d)

x ). We
consider the following stopping time T Y

yM (as a function of yM ):

T Y
yM := inf

{
t ≥ 0 ; Y (t) ≥ yM

}
, (7.47)

namely the hitting time of yM by the process Y . We consider also the martingale
process N1(t), defined as follows for any t > 0:

N1(t) :=
∫ t

0

[√
Y (t) · (1 − Y (t)) ∧ √

yM · (1 − yM )
]
dB1(t). (7.48)
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Its quadratic variation is upper-bounded as follows at time tB :

〈N1〉tB ≤ tB · yM · (1 − yM ).

Doob’s inequality thus entails the following upper-bound:

P

(
sup
t≤tB

|N1(t)| ≥ yM
2

)
≤ 16tB

yM
. (7.49)

Thanks to (7.46) and (7.48) since yM ≤ 1
2 , the following identity holds a.s. on the

event
{
t ≤ T Y

yM

}
, for any t ∈ [0, tB]:

Y (t) = yM
4

+ (λ + α) · t + N1(t).

On the event {T Y
yM ≤ tB}, the evaluationof this identity at timeT Y

yM entails the following
inequality a.s.:

sup
t≤tB

|N1(t)| ≥ 3yM
4

− (λ + α) · tB . (7.50)

On the other hand, thanks to Property (H) (see Sect. 5.1.1) and to Proposition 7.3.1
since the event {1 < T (d)

D2
} only depends on the process X (d)

0 , there exists c0 > 0 such
that the following inequality holds for any d ∈ [[2,∞]] and for any x ∈ Xd such that
x0 ∈ [ 12 , 1]:

P
(2:d)
x

(
1 < T (d)

D2

)
≥ c0. (7.51)

We then choose tB > 0 as follows:

tB :=
(c0 · yM

25

)
∧
( yM
4(λ + α)

)
∧ 1, (7.52)

which ensures thanks to (7.49) and to (7.50) the following inequality:

P

(
T Y
yM ≤ tB

)
≤ c0

2
. (7.53)

Recalling that 0 is an accessible boundary for the process Z defined in (7.44), we then
choose z ∈ (0, yM/4) sufficiently small for the following inequality to hold:

P

(
tB ≤ τ Z

∂

)
≤ c0

4
, (7.54)

where τ Z
∂ := inf{t ≥ 0 ; Zt = 0}.

123



M. Mariani et al.

The definition of yC > 0 is as follows:

yC = z

3
.

For any y ∈ (0, yC ), z ∈ Ry thus implies that z0 > 1 − 5yC > 1 − ( 5
12 ) · yM > 1

2
and z1 ∧ z2 < 3yC = z < yM/4. Thanks to Lemma 5.1.4, for any y ∈ (0, yC ), any
d ∈ [[2,∞]] and any x ∈ Xd such that π2(x) ∈ Ry , X

(d)
1 under the law P

(2:d)
x is

upper-bounded by the process Y , which entails with (7.53) the following inequality:

P
(2:d)
x

(
T 1,(d)
yM ≤ tB

)
≤ c0

2
, (7.55)

where the stopping time T 1,(d)
yM is defined as follows:

T 1,(d)
yM := inf

{
t ≥ 0 ; X (d)

1 ≥ yM
}
,

namely the hitting time of yM by the process X (d)
1 .

Thanks similarly to Lemma 5.1.4, X (d)
(2) under the law P

(2:d)
x is upper-bounded by

the process Z . Recalling (7.54) and (7.55), the following inequalities thus hold for any
y ∈ (0, yC ), any d ∈ [[2,∞]] and any x ∈ Xd such that π2(x) ∈ Ry :

P
(2:d)
x

(
τ
(2:d)
0 < tB

)
≥ P

(2:d)
x

(
τ
(2:d)
0 < tB < T 1,(d)

yM

)

≥ 1 − 3c0
4

.

(7.56)

Recalling (7.51), (7.55) and (7.56), the following inequality thus holds for any y ∈
(0, yC ), any d ∈ [[2,∞]] and any x ∈ Xd such that π2(x) ∈ Ry ,

P
(2:d)
x

(
τ

(2:d)
0 < tB ∧ T (d)

D2

)
≥ c0

4
. (7.57)

Since the event {τ (2:d)
0 < tB ∧ T (d)

D2
} belongs to the sigma-field F (2)

tB , we can follow
the same reasoning regarding the third moment as in Sect. 7.4.2 and find a constant
c1 > 0 such that the following inequality holds for any y ∈ (0, yC ), any d ∈ [[2,∞]]
and any x ∈ Xd such that both π2(x) ∈ Ry and M3(x) ≤ m:

Px

(
τ

(2:d)
0 < tB ∧ T (d)

D2

)
≥ c1. (7.58)

On the other hand, there exists c2 > 0 such that the following inequality holds for
any d ∈ [[2,∞]] and x ∈ D(d)

2 :

Px

(
1 < T (d)

D3

)
≥ c2.
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It is exactly (5.6) from Sect. 5.5, which extends to the case d = ∞. Thanks to the
strong Markov property at time τ

(2:d)
0 , it concludes the proof of Lemma 7.4.5 with

c = c1 · c2 > 0. ��

7.4.4 Main mixing estimate

After the proofs of the three Lemmas 7.4.3, 7.4.4 and 7.4.5, we are in conditions to
prove the mixing estimate, as stated in the next theorem that is the main result of
this Sect. 7.4. It exploits the following definition of ζ (d). In this formula, the two real
numbers y and mD are associated by Lemma 7.4.5 with the (arbitrary) choice t := 1.

ζ (d)(dx) :=
∫

Xd

Pz

(
X (d)(1) ∈ dx

∣
∣ τ

(2:d)
0 < 1 < T (d)

D3

)
ν(d)(dz) , (7.59)

where the measure ν(d) is defined as follows:

ν(d)(dz) := 1{z∈Ry}
Z(d)

Pz(d)

(
π2(X

(d)(2)) ∈ dz ; 1 < T 2,(d)
y ∧ T (3|d)

mD

)
,

while z ∈ Ry is seen as an element of Xd by defining zk = 0 for any k ∈ [[3, d]].
Note that ν(d) is related to the measure that appears in the lower-bound in

Lemma 7.4.4, with a restriction to the set Ry ⊂ Y2(2y) followed by its renormalisa-
tion. The second inequality in Lemma 7.4.4 ensures that the normalizing term Z(d) is
lower-bounded away from 0 uniformly in d ∈ [[2,∞]].
Remark 7.4.6 As exploited in the final Sect. 7.6, the constraint 1 < T (d)

D3
ensures that

ζ (d) is supported on D(d)
3 .

Theorem 7.4.7 For any � ≥ 1, there exist an integer L > � and two real number
t, c > 0 such that the following inequality holds for any d ∈ [[2,∞]] and any x ∈ D(d)

� ,
where ζ (d) is defined in (7.59):

Px

(
X (d)(t) ∈ dx ′ ; t < T (d)

DL

)
≥ c ζ (d)(dx ′).

Proof : Let � ≥ 1. Thanks toLemma7.4.3, the setH(d)
� , the two real numbers cH , tH >

0 and the integer LH ≥ 1 are such that the following inquality holds for any d ∈
[[2,∞]] and any x ∈ D(d)

� :

Px

(
X (d)(tH ) ∈ H(d)

� ; tH < T (d)

DLH

)
≥ cH . (7.60)

We then define yC > 0 according to Lemma 7.4.5. Thanks to Lemma 7.4.4, there
exists y ∈ (0, yC ] and four real numbers cD, cZ ,mU ,mD > 0 such that the two
following inequalities hold for any d ∈ [[2,∞]] and any x ∈ H(d)

� :

1{z∈Y2(2y)}Px

(
π2(X

(d)(2)) ∈ dz ; 2 < T 2,(d)
y ∧ T (3|d)

mU

)
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≥ cD 1{z∈Y2(2y)}Pz(d)

(
π2(X

(d)(1)) ∈ dz ; 1 < T 2,(d)
y ∧ T (3|d)

mD

)
, (7.61)

and:

Z(d) := Pz(d)

(
π2(X

(d)(1)) ∈ Ry , 1 < T 2,(d)
y ∧ T (3|d)

mD

)
≥ cZ . (7.62)

Note that there exists an integer L ≥ 3 ∨ LH such that T 2,(d)
y < T (d)

DL
(recall (7.38)).

Thanks to Lemma 7.4.5 with this value of y andmC = mD ∨mU , there exists cC > 0
such that the following inequality holds for any d ∈ [[2,∞]] and any x ∈ Xd such that
π2(x) ∈ Ry and M3(x) ≤ mC :

Px

(
τ

(2:d)
0 < 1 < T (d)

D3

)
≥ cC . (7.63)

Thanks to Proposition 7.3.1 since X (d)
j (τ

(2:d)
0 ) = 0 for any j ≥ 2, the following

identity holds for any d and any x, x ′ ∈ Xd such that π2(x) = π2(x ′):

P
(2:d)
x

(
X (d)(τ

(2:d)
0 ) ∈ dz , τ

(2:d)
0 ∈ dt ; τ

(2:d)
0 < 1 ∧ T (d)

D3

)

= P
(2:d)

x ′
(
X (d)(τ

(2:d)
0 ) ∈ dz , τ

(2:d)
0 ∈ dt ; τ

(2:d)
0 < 1 ∧ T (d)

D3

)
.

As in the proof given in Sect. 7.4.2, this entails that there exists cG > 0 such that the
following inequality holds for any d and any x, x ′ ∈ Xd such that π2(x) = π2(x ′),
M3(x) ≤ mU and M3(x) ≤ mD:

Px

(
X (d)(τ

(2:d)
0 ) ∈ dz , τ

(2:d)
0 ∈ dt ; τ

(2:d)
0 < 1 ∧ T (d)

D3

)

≥ cGPx ′
(
X (d)(τ

(2:d)
0 ) ∈ dz , τ

(2:d)
0 ∈ dt ; τ

(2:d)
0 < 1 ∧ T (d)

D3

)
.

Thanks to the strong Markov property at time τ
(2:d)
0 , the following inequality thus

holds for any d and any x, x ′ ∈ Xd such that π2(x) = π2(x ′), M3(x) ≤ mU and
M3(x) ≤ mD:

Px

(
X (d)(1) ∈ dz ; τ

(2:d)
0 < 1 < T (d)

D3

)
≥ cGPx ′

(
X (d)(1) ∈ dz ; τ

(2:d)
0 < 1 < T (d)

D3

)
.

Thanks to the Markov property at time 1, recalling (7.59), (7.61), (7.62) and (7.63),
we deduce the following inequality for any d ∈ [[2,∞]] and any x ∈ H(d)

� :

Px

(
X (d)(3) ∈ dx ′ ; 3 < T (d)

DLD

)
≥ (cD · cZ · cC · cG) · ζ (d)(dx ′).

Thanks to the Markov property at time tH , recalling (7.60) and that L ≥ LH , with
c = cH · cD · cZ · cC · cG > 0 and t = tH + 3, the following inequality thus holds for
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any d ∈ [[2,∞]] and any x ∈ D(d)
� :

Px

(
X (d)(t) ∈ dx ′ ; t < T (d)

DL

)
≥ c · ζ (d)(dx ′).

The proof of Theorem 7.4.7 is complete. ��
Remark 7.4.8 In the above proof of Theorem 7.4.7, Lemma 7.3.5 was exploited to
deduce upper-bounds of the third moments. Instead of third moments, we could have
concluded to a similar result by considering second moments instead. However, the
proof of Theorem 7.5.1 below strongly exploits a control of a moment with exponent
strictly greater than 2.

7.5 Almost perfect harvest

The crucial result of this subsection is the upcoming Theorem 7.5.1, whose conclusion
is very close to the property (A3F ) of “almost perfect harvest", see Sect. 2.5.

Theorem 7.5.1 Given any ρ,m, η, y > 0 and any ε ∈ (0, 1), there exists cV > 0 and
an integer J ≥ 1 such that the following property holds for any d ∈ [[J ,∞]] and any
x ∈ Xd . There exists two stopping times U (d)

H and V (d) such that the following three

conditions hold for any xζ ∈ D(d)
3 :

{
τ

(d)
∂ ∧ 1 < U (d)

H

}
=

{
U (d)

H = ∞
}

, Px (U
(d)
H = ∞, 1 < τ

(d)
∂ ) ≤ ε e−ρ

Px

(
X (d)(U (d)

H ) ∈ dy ; U (d)
H < τ

(d)
∂

)
≤ cV Pxζ

(
X (d)(V (d)) ∈ dy ; V (d) < τ

(d)
∂

)
.

In addition, the probability space � and the filtration Ft according to which U (d)
H

and V (d) are stopping times can be chosen to be the canonical representation of the
process X (d), see Remark 2.1.4.

Remark 7.5.2 The definition of ζ (d) in (7.59) makes it supported onD3. To emphasize
that this property is sufficient for our purposes, we consider for the upper-bound in
the last inequality Dirac initial conditions of the form xζ ∈ D3.

The proof of Theorem 7.5.1 is split into three parts: we start in Sect. 7.5.1 with
the choice of the parameters and the statement of the corresponding properties, then
introduce the definition of U (d)

H and V (d) with their intrinsic properties in Sect. 7.5.2

before we conclude with the comparison of densities at time U (d)
H versus V (d) in

Sect. 7.5.3.

7.5.1 Choice of the parameters

The choice of tF = 1 is made for simplicity. In the first time-interval of length 1
3 , we

justify the access to a suitable set E (d)(m, y, η) for η well-chosen as a function of ε,
according to (7.73), then m, 1/y sufficiently large according to Theorem 7.2.1. In the
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next time-interval of length tH ≤ 1
3 , we couple the first J coordinates between two

processes with different initial conditions. The duration tH is to be fixed below (in
(7.80)), sufficiently small to restrict on trajectories away from the boundaries. Then,
we impose that X (d)

(J ) gets extinct in the next time-interval of length tB , with a similar
approach as in Sect. 7.4.3 for Lemma 7.4.5. Remark that we rely for the two last time-
intervals on the notations and results of Sect. 7.3. Notably, we recall that the process
X (d) is solution under P(J :d) to (7.7), that X (d)

(J ) is defined in (7.11) and that the process

M (J :d)
1 is upper-bounded by J by virtue of its definition in (7.9).
Wewish to control the extinction of a uniform upper-bound (Z(t))t≥0 of the process(

X (d)
(J )(τ

(d)
E + tH + t)

)
t≥0, that is to be solution to the following SDE, analogous to

(7.44), with t ∈ [0, tB]:

dZ(t) := dt

4
+ √

Z(t) · (1 − Z(t)) dB(t) , Z(0) = z, (7.64)

where B is a standard Brownian motion. Note that 0 is an accessible boundary for this
process Z , thanks to Corollary 5.1.5.

Upper-bound on the incomming flux of population:
To ensure that the flux of population into X (d)

(J ) due to mutations remains lower than
1
4 in the time-interval of length tB that follows τ

(d)
E + tH , we wish to impose that the

process
(
X (d)
J−1(τ

(d)
E + tH + t)

)
t∈[0,tB ] remains upper-bounded by 1

4λ . As in (7.45), we
define:

yM := 1

4λ
∧ 1

2
. (7.65)

Similarly as in (7.46), we thus consider an upper-bound (Y (t))t≥0 for the process
(
X (d)
J−1(τ

(d)
E + tH + t)

)
t∈[0,tB ], as the solution to the following SDE with t ∈ [0, tB]:

dY (t) := (λ + α) dt + √
Y (t) · (1 − Y (t)) dB(−1)(t) , Y (0) = yM/4, (7.66)

where B(−1) is a standard Brownian motion (recall that M (J :d)
1 ≤ J and that X (d)

J−1 is

solution to (7.7) under P(J :d)
x ). Let T Y

yM denote the hitting time of yM by this process
Y (posterior to tH ). The definition of the martingaleN(−1)(t) is then slightly adapted
from (7.48) with a start at time tH with value 0, so that the two following inequalities
hold, generally for the first one and a.s. on the event {T Y

yM ≤ tB} for the second one:

P

(
sup
t≤tB

|N(−1)(t)| ≥ yM/2
)

≤ 16tB
yM

, (7.67)

sup
t≤tB

|N(−1)(t)| ≥ 3yM
4

− (λ + α) · tB . (7.68)
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Lower-bound on the survival with an initial condition in D3
Thanks to Lemma 5.1.4, for any initial condition xζ ∈ D3, X

(d)
0 is lower-bounded by

the solution Y0 to the following SDE:

dY0(s) = −λ ds + √
Y0(s) · (1 − Y0(s)) dB0(s) , Y0(0) = 1

6 .

Thus, denoting cζ := ( 1
2 )·P 1

6
(inf

t∈[0, 13 ] Y0(t) > 0) > 0, we deduce that the following

inequality holds for any d ∈ [[2,∞]] and any xζ ∈ D(d)
3 :

Pxζ (
1
3 < τ

(d)
∂ ) ≥ 2cζ . (7.69)

Choice of tB and z:
Let ε > 0, that we assume without loss of generality to be smaller than cζ . We then
choose tB > 0 as follows:

tB :=
(ε · yM

16

)
∧
( yM
4(λ + α)

)
∧
(1

3

)
, (7.70)

which ensures thanks to (7.67) and (7.68) the following upper-bound in probability:

P

(
T Y
yM ≤ tB

∣
∣ Y (0) = yM/4

)
≤ ε. (7.71)

Recalling that 0 is an accessible boundary for the process Z defined in (7.64), we then
choose z ∈ (0, yM/4) sufficiently small for the following inequality to hold:

P

(
tB ≤ τ Z

∂

∣
∣ Z(0) = z

)
≤ ε, (7.72)

where τ Z
∂ := inf{t ≥ 0 ; Zt = 0}.

Choice of η, m and y:
Now, with the constants CG,CM associated by Proposition 7.3.2 with the choices

of k = 3, ε > 0 and t = 1, we can choose η > 0 as follows:

η =
( z

CM

)
∧
( log(2)

CG

)
, (7.73)

where we recall that z is an implicit function of ε. Thanks to Theorem 7.2.1, given
ρ > 0,we can choose the two real numbersm, y > 0 such that the following inequality
holds for any d ∈ [[2,∞]] and any x ∈ Xd :

Px
( 1
3 < τ

(d)
E ∧ τ

(d)
∂

) ≤ ε, (7.74)

where we recall the definition of E (d) given in (7.2):

E (d) = E (d)(m, y, η) := {
x ∈ Xd ; M3(x) ≤ m , ∀ j ≤

⌊
m
η

⌋
+ 1, x j ≥ y

}
.
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Recalling (7.69) and that cζ ≥ ε, (7.74) has the following implication for any d ∈
[[2,∞]] and any initial condition xζ ∈ D3:

Pxζ (τ
(d)
E ≤ 1

3 < τ
(d)
∂ ) ≥ cζ . (7.75)

WithmM = CM ·m, recalling the definition of CM in relation to Proposition 7.3.2,
we deduce that the following inequalities hold for any d ∈ [[2,∞]] and any x ∈ E (d):

∣
∣
∣ log

(dP(J :d)
x

dPx

∣
∣
∣
∣[0,1]

) ∣
∣
∣ ≤ CG · m

J
≤ log(2), Px

(
T (3|d)
mM

≤ 1
)

≤ ε, (7.76)

with the following definition of the integer J :

J :=
⌊
m
η

⌋
+ 2. (7.77)

Since η ≤ z
CM

, recalling the definition of T (3|d)
m from (6.16), the following inequalities

hold a.s. on the event {1 < T (3|d)
mM }, for any tH ≤ 1

3 and any d ∈ [[J ,∞]]:

X (d)
(J−1)(tH ) ≤ CM · m

(J − 1)3
≤ z. (7.78)

Recalling that z < yM/4, we deduce that X (d)
J−1(tH ) ≤ yM/4 and that X (d)

(J )(tH ) ≤ z,
as intended for Y (see (7.66)) and for Z (see (7.64)) to be appropriate upper-bounds.

Choice of tH :
Note that πJ (x) ∈ YJ (y) holds for any d ∈ [[J ,∞]] and any x ∈ E (d), with the
following definition of YJ (y):

YJ (y) :=
{
x ∈ XJ ;

(∧
{i∈[[0,J ]]} xi

)
> y

}
,

and the projection πJ defined in (7.10). On YJ (y), the diffusion term in the system
(S(J )) of SDEs, i.e. the system (1.1) with d replaced by J , is uniformly elliptic. In
practice, we need a bit more space for Property (H) to hold (see Lemma 5.1.1), so
that we consider the following exit time T J ,(d)

y′ generally for any y′ ∈ (0, y):

T J ,(d)

y′ := inf
{
t ≥ 0 ; πJ (X

(d)(t)) /∈ YJ (y
′)
}

< τ
(d)
∂ . (7.79)

Theprobability of such an escape is required to be very small, uniformly ind ∈ [[J ,∞]]
and in x ∈ E (d), as stated in the upcoming Lemma 7.5.3, where P(J ) denotes the law
of the system given by (S(J )):

Lemma 7.5.3 The following supremum tends to 0 as tH tends to 0:

sup
{
P

(J )
πJ (x)

(
T J ,(d)
y/2 ≤ tH

) ∣
∣ d ∈ [[J ,∞]], x ∈ E (d)

}
.
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Proof : Since the system (S(J )) is uniformly elliptic on some connected open relatively
compact subset KJ of YJ (y/2) with C∞-boundary that contains YJ (y), and recalling
Proposition 7.3.1, Lemma 7.5.3 is deduced thanks to Lemma 5.1.1 (also thanks e.g.
to [30, Proposition V.2.5]). ��

Thanks to Proposition 7.3.1, we can thus choose tH ≤ 1
3 sufficiently small such

that the following inequality holds for any d ∈ [[J ,∞]], and any x ∈ E (d):

P
(J :d)
x

(
T J ,(d)
y/2 ≤ tH

)
≤ ε. (7.80)

7.5.2 Definition of U(d)
H with a control of exceptional events

For the definition of U (d)
H , the following extinction time τ̂

(J :d)
0 is considered for the

process X (d)
(J ) after time τ

(d)
E + tH :

τ̂
(J :d)
0 := inf

{
t ≥ τ

(d)
E + tH ; X (d)

(J )(t) = 0
}
.

In view of Theorem 7.5.1, we define U (d)
H := τ̂

(J :d)
0 on the following event:

{
τ
(d)
E < 1

3

}
∩
{
τ
(d)
E + tH < T̂ J ,(d)

y/2

}
∩
{
τ̂
(J :d)
0 < (τ

(d)
E + tH + tB) ∧ T̂ (3|d)

mM ∧ τ
(d)
∂

}

(7.81)

and otherwise U (d)
H := ∞, where the definitions of T̂ J ,(d)

y/2 and T̂ (3|d)
mM are as follows,

adjusted from those of T J ,(d)
y/2 and T (3|d)

mM with a specific time-shift:

T̂ J ,(d)
y/2 := inf

{
t ≥ τ

(d)
E ; πJ (X

(d)(t)) /∈ YJ (y/2)
}
,

T̂ (3|d)
mM

:= inf
{
t ≥ τ

(d)
E + tH ; M (d)

3 (t) ≥ mM

}
.

Since tH , tB ≤ 1
3 , we deduce that

{
1 ∧ τ

(d)
∂ < U (d)

H

} = {
U (d)

H = ∞}
. On the other

hand, the stopping time V (d) is defined as follows:

V (d) := inf
{
t ≥ τ

(d)
E + 2tH ; X (d)

(J )(t) = 0
}
. (7.82)

Remark that U (d)
H and V (d) are regularly expressed in terms of the process X (d), so

that they can be expressed as stopping times for a path space representation of � and
(Ft ), namely the canonical representation of X (d), as stated in Theorem 7.5.1.

Thanks to the strong Markov property at time τ
(d)
E , the following inequality holds

for any d ∈ [[J ,∞]] and x ∈ Xd :

Px

(
U (d)
H = ∞, 1 < τ

(d)
∂

)
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≤ Px

(
1
3 < τ

(d)
E ∧ τ

(d)
∂

)
+ Ex

[
g
(
X (d)(τ

(d)
E )

) ; τ
(d)
E < τ

(d)
∂

]
, (7.83)

where the function g is expressed as follows for any x ∈ E (d):

g(x) = Px

(
T (3|d)
mM

≤ 1
)

+ Px

(
T J ,(d)
y/2 ≤ tH , 1 < T (3|d)

mM

)

+Px

(
tH + tB < τ̃

(J :d)
0 , 1 < T (3|d)

mM

)
, (7.84)

where τ̃
(J :d)
0 := inf

{
t ≥ tH ; X (d)

(J )(t) = 0
}
. Recalling (7.76), the function g is

upper-bounded as follows in terms of the probability measure P(J :d)
x for any x ∈ E (d):

g(x) ≤ Px

(
T (3|d)
mM ≤ 1

)
+ 2P(J :d)

x

(
T J ,(d)
y/2 ≤ tH

)
+ 2P(J :d)

x

(
tH + tB < τ̃

(J :d)
0

)
.

(7.85)

Thanks to theMarkov Property at time tH and to Lemma 5.1.4 with (7.78), the follow-
ing upper-bound for the last term is expressed in terms of the processes Y (see (7.66))
and Z (see (7.64)) for any x ∈ E (d):

P
(J :d)
x

(
tH + tB < τ̃

(J :d)
0

)
≤ P

(
T Y
yM ≤ tB

∣
∣ Y (0) = yM/4

)
+ P

(
tB ≤ τ Z

∂

∣
∣ Z(0) = z

)
.

Recalling (7.71) and (7.72), this term is thus upper-bounded by 2ε. Injecting this upper-
bound in (7.85) and the similar ones deduced from (7.76) and (7.80), we deduce that
g(x) ≤ 7ε for any x ∈ E (d). Injecting this upper-bound and the one from (7.74) into

(7.83), the inequality Px

(
U (d)

H = ∞, 1 < τ
(d)
∂

)
≤ 8ε holds for any d ∈ [[J ,∞]] and

x ∈ Xd . To arrive at the upper-bound that Px (U
(d)
H = ∞, 1 < τ

(d)
∂ ) ≤ ε′ · e−ρ , as

stated in Theorem 7.5.1 for some ε′ > 0, we just have to choose ε = ε′ · e−ρ/8. Since
ε is freely chosen, so is ε′.

7.5.3 Comparison of densities

The core argument for this Sect. 7.5.3 isHarnack’s inequality (fromSect. 5.1.1) applied
on a reduction of the system to a finite dimensional projection. We need however
to handle carefully both the distance from the boundary of the finite dimensional
projection, since we need the diffusion to be elliptic, and the control of the third
moment, to convert P into P(J :d) and vice-versa.

For any d ∈ [[J ,∞]], let us first assume that x and xζ both belong to E (d), so that

τ
(d)
E = 0 for both initial conditions x and xζ . By virtue of the definition of U (d)

H (see
(7.81)), then thanks to (7.76):

Px

(
X (d)(U (d)

H ) ∈ dx ′ , U (d)
H < ∞

)
≤ 2P(J :d)

x

(
X (d)(̂τ

(J :d)
0 ) ∈ dx ′ , U (d)

H < ∞
)
. (7.86)
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Recall the definition of τ
(J :d)
0 from (7.25). Thanks to the Markov property at time tH ,

the following inequality holds:

P
(J :d)
x

(
X (d)(̂τ

(J :d)
0 ) ∈ dx ′ , U (d)

H < ∞
)

≤
∫

Xd

ν1x (dxH )ν2xH (dx ′), (7.87)

where:

ν1x (dxH ) := P
(J :d)
x

(
X (d)(tH ) ∈ dxH ; tH < T J ,(d)

y/2 ∧ T (J .3|d)
mM

)
,

so that ν1x (dxH ) describes the transition of the process X (d) during the time-interval

[0, tH ] on the event {tH < T J ,(d)
y/2 ∧ T (J .3|d)

mM }, while:

ν2xH (dx ′) := P
(J :d)
xH

(
X (d)(τ

(J :d)
0 ) ∈ dx ′ ; τ

(J :d)
0 < tB ∧ T (J .3|d)

mM
∧ τ

(d)
∂

)
, (7.88)

so that ν2xH (dx ′) describes the transition of X (d) during the time-interval [0, τ (J :d)
0 ] on

the event {τ (J :d)
0 < tB∧T (J .3|d)

mM ∧τ
(d)
∂ }. Note on this event that X (d)(τ

(J :d)
0 )i = 0 holds

for any i ≥ J , so that X (d)(τ
(J :d)
0 ) is directly expressed in terms of πJ (X (d)(τ

(J :d)
0 )).

The measure ν2xH only depends on πJ (xH ) thanks to Proposition 7.3.1, so that the
formula ν̄2πJ (xH ) = ν2xH produces a well-defined quantity. Therefore:

∫

Xd

ν1x (dxH )ν2xH (dx ′) =
∫

XJ

ν̄1x (dx
′
H )ν̄2x ′

H
(dx ′), (7.89)

where ν̄1x is the image of ν1x by the projection πJ : Xd �→ XJ , i.e.:

ν̄1x (dx
′
H ) := P

(J :d)
x

(
πJ (X

(d)(tH )) ∈ dx ′
H ; tH < T J ,(d)

y/2 ∧ T (J .3|d)
mM

)
.

Note that T J ,(d)
y/2 ∧ T (J .3|d)

mM corresponds to the exit time of πJ (X (d)) out of some
domainHJ (y/2,mM ). There exist two connected open relatively compact setsK∧

J ,K∨
J

with C∞-boundaries such that the following inclusions hold:

HJ (y/2,mM ) ⊂ K∧
J , K∧

J ⊂ K∨
J ⊂ HJ (y/4, 2mM ).

Considering Property (H) (see Sect. 5.1.1) with Dirichlet boundary conditions on K∨
J

(that is with u∂K∨
J
(z, t) ≡ 0 for any z ∈ ∂K∨

J and t ∈ [0, tH ]) amounts to the following
inequality, which holds with a fixed constant CH > 0 for any d ∈ [[J ,∞]] and any
x1, x2 ∈ K∧

J :

1{x ′∈K∧
J }P(J :d)

x1

(
πJ (X

(d)(tH )) ∈ dx ′ , tH < TK∨
J

)

≤ CH 1{x ′∈K∧
J }P

(J :d)
x2

(
πJ (X (d)(2tH )) ∈ dx ′ , 2tH < TK∨

J

)
.
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It implies in particular that ν̄1x ≤ CH · ν̌1xζ
, where the time tH and the constants y/2

and mM are slightly relaxed:

ν̌1xζ
(dx ′

H ) := P
(J :d)
xζ

(
πJ (X

(d)(2tH )) ∈ dx ′
H ; 2tH < T J ,(d)

y/4 ∧ T (J .3|d)
2mM

)
.

Thanks in addition to (7.86), (7.87), (7.89), we obtain as an intermediate step the
following inequality, which holds for any d ∈ [[J ,∞]] and any x, xζ ∈ E (d):

Px

(
X (d)(U (d)

H ) ∈ dx ′ , U (d)
H < ∞

)
≤ 2CH

∫

XJ

ν̌1xζ
(dx ′

H )ν̄2x ′
H
(dx ′). (7.90)

To go back to an upper-bound in terms of the original process, we want again
to exploit Proposition 7.3.2. So we need to again ensure upper-bounds on the third
moments for the last components for which we lost the information. We exploit the
representation given in Proposition 7.3.1, firstly on the time-interval [0, 2tH ]. Since
xζ ∈ E (d), we have M (F |d)

3 (0) ≤ m/y. Thanks to Lemma 7.3.5, we can thus define

mH > 0 such that the following inequality holds a.s. on the event {2tH < T J ,(d)
y/4 }, for

any d ∈ [[J ,∞]] and any xζ ∈ E (d):

P
(J :d)
xζ

(
T (F .3|d)
mH

≤ 2tH
∣
∣F (J )

)
≤ 1

2 .

With the fact that τ (d)
∂ > T J ,(d)

y/4 , it implies that ν̌1xζ
≤ 2ν̃1xζ

, where:

ν̃1xζ
(dxH ) := P

(J :d)
xζ

(
πJ

(
X (d)(2tH )

) ∈ dx ′
H ; 2tH < τ

(d)
∂ ∧ T (J .3|d)

2mM
∧ T (F .3|d)

mH

)
.

(7.91)

Recalling that the formula ν̄2πJ (xH ) = ν2xH produces a well-defined quantity, it implies

that
∫
XJ

ν̃1xζ
(dx ′

H )ν̄2x ′
H
(dx ′) = ∫

Xd
ν̂1xζ

(dxH )ν2xH (dx ′), where:

ν̂1xζ
(dxH ) := P

(J :d)
xζ

(
X (d)(2tH ) ∈ dxH ; 2tH < τ

(d)
∂ ∧ T (J .3|d)

2mM
∧ T (F .3|d)

mH

)
.

(7.92)

Note that this measure ν̂1xζ
is supported on the set

{
xH ∈ Xd ; M (F |d)

3 (xH ) ≤ mH
}
.

Thanks again to Lemma 7.3.5, we can thus define mF ≥ mH such that the following
inequality holds a.s. for any d ∈ [[J ,∞]] and any xH ∈ Xd such that M (F |d)

3 (xH ) ≤
mH :

P
(J :d)
xH

(
T (F .3|d)
mF

< tB ∧ τ
(J :d)
0

∣
∣F (J )

)
≤ 1

2 .

It entails that ν2xH ≤ 2ν̃2xH , where:

ν̃2xH (dx ′) := P
(J :d)
xH

(
X (d)(τ

(J :d)
0 ) ∈ dx ′ ; τ

(J :d)
0 < tB ∧ τ

(d)
∂ ∧ T (J .3|d)

mM
∧ T (F .3|d)

mF

)
.
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(7.93)

Since M (d)
3 (x) ≤ M (J :d)

3 (x) + M (F |d)
3 (x), and thanks to the Markov property at time

tH , recalling (7.90), (7.91), (7.92) and (7.93), the following inequality holds with V (d)

as defined in (7.82) and m̂ := [2mM + mH ] ∨ [mM + mF ], for any x, xζ ∈ E (d):

Px

(
X (d)(U (d)

H ) ∈ dx ′ , U (d)
H < ∞

)

≤ 8CH · P(J :d)
xζ

(
X (d)(V (d)) ∈ dx ′ ; V (d) < τ

(d)
∂ ∧ T (3|d)

m̂

)
.

Wecan then relate to the original lawPxζ thanks to Proposition 7.3.2with an additional
factor CG > 0 such that the following inequality holds for any x, xζ ∈ E (d):

Px

(
X (d)(U (d)

H ) ∈ dx ′ , U (d)
H < ∞

)

≤ 8CH · CG · Pxζ

(
X (d)(V (d)) ∈ dx ′ ; V (d) < τ

(d)
∂

)
. (7.94)

To conclude, we consider general initial conditions x̄ ∈ Xd and x̄ζ ∈ D3 and define:

νE
x (dx ′) := Px

(
X (d)(τ

(d)
E ) ∈ dx ′ ; τ

(d)
E < 1

3 ∧ τ
(d)
∂

)
.

We deduce from (7.75) that νE
x̄ζ

(E (d)) ≥ cζ while νE
x̄ (E (d)) ≤ 1. Thanks (twice) to

the strong Markov property at time τ
(d)
E and by virtue of the definitions of U (d)

H and
V (d) in (7.81) and (7.82), (7.94) is extended as follows for any d ∈ [[J ,∞]] to any
x̄ ∈ Xd and x̄ζ ∈ D3:

Px̄

(
X (d)(U (d)

H ) ∈ dx ′ , U (d)
H < ∞

)

=
∫

E (d)

νE
x̄ (dx)Px

(
X (d)(U (d)

H ) ∈ dx ′ , U (d)
H < ∞

)

≤ 8CH · CG · νE
x̄ (E (d))

νE
x̄ζ

(E (d))

∫

E (d)

νE
x̄ζ

(dxζ )Pxζ

(
X (d)(V (d)) ∈ dx ′ ; V (d) < τ

(d)
∂

)

≤ cV · Px̄ζ

(
X (d)(V (d)) ∈ dx ′ ; V (d) < τ

(d)
∂

)
,

where cV = 8CH CG/cζ > 0. This concludes the proof of Theorem 7.5.1. ��

7.6 Concluding the proof of Theorem 2.4.1

We plan to exploit Theorem 2.5.3 and ensure Assumption (AF) (recall Sect. 2.5).
Firstly, the setsD(d)

� satisfy Assumption (A0) (recall (7.1)). Thanks to Theorem 7.4.7,
Assumption (A1) holds true for the reference measure ζ (d) defined by (7.59). Thanks
to (A1) and [15, Lemma 3.0.2], ρS is upper-bounded by some real number ρ̃S that
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only depends on the constants involved in (A1), and can thus be chosen independent
of d. In order to satisfy ρ > ρS , we set ρ := 2ρ̃S . For this choice of ρ, we deduce
Assumption (A2) as a consequence of Theorem 7.2.1 (recall also Remark 7.2.2),
where the complementary to the transitory domain can be taken as the proposed set
E (d)(m, y, 1) for some m, y > 0 independent of d ∈ [[1,∞]], or simply D(d)

L with
L ≥ 1

y (we choose η = 1 for simplicity).
When d = ∞ we infer Assumption (A3F ) thanks to Theorem 7.5.1 (regardless

of the transitory domain that is chosen), for this choice of ρ and ζ (∞), noting that
ζ (∞) is supported on D(∞)

3 . Assumption (AF) thus holds true for d = ∞. Thanks to
Theorem 2.5.3, we then conclude the proof that the semi-group displays QSC and that
the Q-process exists on X∞.

In addition, recall that ρ(∞)
0 = − log[Pν(∞) (1 < τ

(∞)
∂ )] (see Remark 2.1.2). Since

∪�D(∞)
� = X∞ (recall (7.1)), there exists � such that ν(∞)(D(∞)

� ) > 0. With a slight

adaptation of the proof of Lemma 7.2.5, we deduce that P(∞)
x (τ

(∞)
∂ ≤ 1) is uniformly

bounded away from 0 for any x ∈ D(∞)
� . This concludes that ρ(∞)

0 > 0.
As noted in [14, Subsection 6.1], the statement of Assumption (A3F ) is actu-

ally required for a single value of ε defined in terms of the parameters involved in
Assumptions (A1) and (A2). Since these parameters can be chosen uniformly in d,
the corresponding value of ε can also be chosen uniformly so that the required prop-
erties in Assumption (AF) holds uniformly for any d larger than a given threshold
(see the definition of J in (7.77)). In addition and for the same reason, all parameter
involved in the convergences can be chosen independently of d sufficiently large. There
are indeed intricate yet explicit relations between all these parameters introduced in
[14] and the corresponding assumptions. This concludes the proof of Theorem 2.4.1.

��

Appendix A Two representations for the same process

In this Section A, we justify more precisely (see Proposition A.0.1) than we did in
Remark 1.2.2 that the process we consider is exactly the same as defined notably in
[2], though the representation has been adapted for our purposes.

Let us recall from (1.1) for any d ∈ [[2,∞]] the definition of our focal process X (d)

as follows for any i ∈ [[0, d]]:

dX (d)
i (t) = b(d)

i (X (d)(t)) dt + dN (d)
i (t), (A1)

where the vectorial function b encodes the drift term as follows for any x ∈ Xd and
i ∈ [[0, d]]:

b(d)
i (x) := α ·

(∑

{ j∈[[0,d]]} j · x j − i
)

· xi + λ ·
(
xi−1 − 1{i<d}xi

)
,
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while the martingale processN (d)
i , which starts at 0 for t = 0, is expressed as follows:

dN (d)
i (t) :=

d∑

j=0

(
δi j − X (d)

i (t)
)

·
√
X (d)

j (t) dWj (t)

=
√

X (d)
i (t) dWi (t) − X (d)

i (t) dW(d)(t).

(A2)

in terms of a family (Wi )i∈Z+ of mutually independent Brownian motions and an
aggregated martingale W(d) with the following definition:

dW(d)(t) := ∑d
j=0

√
X (d)

j (t)dWj (t), W(d)(0) = 0.

On the other hand, we next consider the more classical way that Muller’s ratchet
diffusion X̂ is defined, notably in [2]:

d X̂ (d)
i (t) = b(d)

i

(
X̂ (d)(t)

)
dt + dN̂ (d)

i (t),

where the martingale term N̂ (d)
i is now expressed as follows:

dN̂ (d)
i (t) =

∑

{ j �=i}

√
X̂ (d)
i (t) · X̂ (d)

j (t) dWi, j (t), N̂ (d)
i (0) = 0.

in terms of a family (Wi, j )i< j of independent Brownian motions, extended to any
i �= j by the symmetry property Wi, j (t) = Wj,i (t).

For the infinite-dimensional case, we recall the definition ofX η in 2.10 as the set of
probabilities on N with finite η-th moment (η = 6 being considered for simplicity in
our proofs). The upcoming Proposition A.0.1 summarises the result of this Section A
and notably implies Proposition 2.3.1.

Proposition A.0.1 The processes (X (d)
i ) and (X̂ (d)

i ) share the same law. Existence and
uniqueness in law holds, for processes onXd for any d ∈ N, and, for the case d = ∞,
on X η for any η > 2. For any d, the associated infinitesimal generator takes the
following nondivergence form, for any u ∈ C2(D(d)

� ) and x ∈ D(d)
� :

L(d)u(x) = 1

2

d∑

i, j=1

σ
(d)
i, j (x)∂2i, j u(x) +

d∑

i=1

b(d)
i (x)∂i u(x),

where the state-dependent diffusion matrix σ (d) is expressed as follows:

σ
(d)
i, j (x) :=

{
− xi · x j if i �= j,

xi · (1 − xi ) if i = j,
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and the state-dependent drift term b(d) is expressed as follows:

b(d)
i (x) := α ·

(
M (d)

1 (x) − i
)

· xi + λ ·
(
xi−1 − 1{i<d} · xi

)
.

Remark A.0.2 Recall that our representation of the martingale term corresponds to
the idea that internal demographic fluctuations Wi specific to each subpopulation
level i get compensated thanks to the process W . On the other hand, the classical
representation is associated to the principles of Moran models, where demographic
fluctuations are generated by choosing one parent at random whose offspring replaces
another inidividual also chosen at random. By distinguishing these contributions in
terms of the two involved types (i, j) (be it the parental type or the killed type), we

can derive the contribution
√
X̂ (d)
i (t) · X̂ (d)

j (t) dWi, j (t) to the fluctuations. It explains
why Wi, j = −Wj,i and how the previous term can be interpreted as a random flux,
which does not need to be compensated.

Proof : According to [20, Theorem 2.1], the existence and the uniqueness in law of
solutions hold for the system A1 of SDEs (for both finite and infinite d) provided that
the drift term b(d)

i satisfies the following three conditions:

• bi (x) ≥ 0 uniformly in x ∈ Xd ,
• ∑

i∈[[0,d]] bi (x) = 0,

• there exists a matrix (qi j )i, j∈[[0,d]] such that qi j ≥ 0 and supk∈[[0,d]]
∑d

i=0 qik <

+∞ for every i and j of [[0, d]], and such that the following inequality holds for
any x and x ′ of Xd (i ∈ [[0, d]]):

|b(d)
i (x) − b(d)

i (x ′)| ≤
∑

{ j∈S} qi j · |x j − x ′
j |.

The first two properties are satisfied for any d ∈ [[2,∞]]. For finite d ∈ N, the
following estimate on the drift term holds for any i ∈ [[0, d]] and x, x ′ ∈ Xd :

|bi (x) − bi (x
′)| ≤ (2α · d + λ) · ∑d

j=0 |x j − x ′
j |.

The corresponding choice of qi j ≡ 2α ·d +λ ensures for any d ∈ N the existence and
uniqueness in law for the system A1 of SDEs. Thanks to [2, Theorem 3] (which relies
on the above result of [20]), existence and uniqueness in law also hold on the set X η

for any η > 2. The associated infinitesimal generator is expressed in [20, Theorem
1.1] as stated in Proposition A.0.1.

For completeness and to check that the laws ofN (d)
i (t) and N̂ (d)

i (t) actually coin-
cide, we provide next the computations of the quadratic variations of these martingale
terms. We first consider the quadratic variation of each component i for the process
N (d)

i :

d〈N (d)
i 〉t = X (d)

i (t) d〈Wi 〉t + (X (d)
i (t))2 d〈W(d)〉t − 2

√

X (d)
i (t) · X (d)

i (t) d〈Wi ,W(d)〉t
= X (d)

i (t) · (1 − X (d)
i (t)) dt,
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then for the process N̂ (d)
i :

d〈N̂ (d)
i 〉t =

∑

{ j �=i} X̂
(d)
i (t) · X̂ (d)

j (t) dt

= X̂ (d)
i (t) · (1 − X̂ (d)

i (t)) dt .

We secondly consider the cross-variations for i �= j , which yields for the process
M (d):

d〈N (d)
i ,N (d)

j 〉t
=

√
X (d)
i (t) · X (d)

j (t) d〈Wi ,Wj 〉t −
√

X (d)
i (t) · X (d)

j (t) d〈Wi ,W(d)〉t
− X (d)

i (t) ·
√
X (d)

j (t) d〈W(d),Wj 〉t + X (d)
i (t) · X (d)

j (t) d〈W(d)〉t
=

[

0 −
√

X (d)
i (t) · X (d)

j (t) ·
√

X (d)
i (t) − X (d)

i (t)

·
√
X (d)

j (t) ·
√
X (d)

j (t) + X (d)
i (t) · X (d)

j (t)

]

dt,

= −X (d)
i (t) · X (d)

j (t) dt,

then yields for the process M̂ (d):

d〈N̂ (d)
i , N̂ (d)

j 〉t = −
∑

{k �=i}
∑

{��= j}

√

X̂ (d)
i (t) · X̂ (d)

k (t) · X̂ (d)
j (t) · X̂ (d)

�
(t) d〈Wi,k ,W�, j 〉t

= −X̂ (d)
i (t) · X̂ (d)

j (t) dt,

since d〈Wi,k,W�, j 〉t = 1{i=�, j=k}dt .
Since the quadratic variations are expressed in the same ways for the solutions

X (d) and X̂ (d) to the systems respectively A1 and A2, we conclude thanks to [20,
Theorem 1.1] that the laws of these two processes coincide. This concludes the proof
of Proposition A.0.1. ��

Appendix B Justification for the boundedness of themoments

In this Section B, we derive from the proof of [2, Theorem 3] the local boundedness
of the moment processes, as stated in this last Proposition B.0.1.

Proposition B.0.1 The process M (∞)
k is a.s. locally upper-bounded for any k ≥ 1, any

α, λ > 0 and any x ∈ X∞ ∩ X k under both Px and P
(J :d)
x , whatever J ∈ N.

Proof : Without loss of generality, we assume that k ≥ 3 and consider any x ∈ X k ,
any λ > 0 and any t > 0. The conclusion of the proof of [2, Proposition 2.2] can
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be restated as the following upper-bound, which holds in the case where α = 0 (as
indicated with the notation P

[0]):

P
[0]
x

(
sup{s≤t} M

(∞)
k (s) < ∞

)
= 1. (B1)

We consider any α > 0 and denote for clarity P
[α] instead of P(∞) for the law of the

process X (∞) solution to (1.1). Thanks to [2, Subsection 2.1, proof of Theorem 3],
P

[α] is related to P
[0] with a Girsanov transform, namely P

[α]
x |Ft = Zα(t) · P[0]

x |Ft

holds for any x ∈ X∞ and any t > 0, which involves the following martingale process
(Zα(s))s≥0:

Zα(s) := exp

(

−αM(∞)
1 (s) − (α2/2) ·

∫ s

0
M (∞)

2 (s)ds

)

,

≤ exp
(
−α · [M (∞)

1 (x) + λs]
)

.

In the above expression, M(∞)
1 (s) is the martingale component of M (∞)

1 (s), as
stated in Lemma 6.1.5. Since Zα(t) is uniformly upper-bounded, (B1) entails that
sup{s≤t} M

(∞)
k (s) < ∞ holds also a.s. under P[α]

x , provided x ∈ X k .

We next consider J ∈ N and the law P
[α],J
x = P

[α],(J :∞)
x as stated in Sect. 7.3.

Thanks to Proposition 7.3.1, and with the same arguments as above, P[α],J is related
to P

[0] with another Girsanov transform, namely P
[α],J
x |Ft = Z J

α (t) · P[0]
x |Ft holds

for any x ∈ X∞ and any t > 0, which involves the following martingale process
(Z J

α (s))s≥0:

Z J
α (s) := exp

(

−αM(J :∞)
1 (s) − (α2/2) ·

∫ s

0
M (J :∞)

2 (s)ds

)

,

≤ exp
(
−α · [(M (J :∞)

1 (x) ∧ J ) + λs
])

.

Similarly,M(J :∞)
1 (s) is the martingale component of M (J :∞)

1 (s). With the same argu-
ments as for the proof of Lemma 6.1.5, its quadratic variation involves the process
M (J :∞)

2 , which is the second moment saturated at value J , i.e.:

M (J :∞)
2 (t) :=

∑

i≤J−1

i2 · X (∞)
i (t) + J 2 · X (∞)

(J ) (t)

=
∑

i≥0

(
i ∧ J

)2 · X (∞)
i (t).

Since Z J
α (t) is uniformly upper-bounded, (B1) entails that sup{s≤t} M

(∞)
k (s) < ∞

holds a.s. underP[α],J
x , provided x ∈ X k . This concludes the proof of PropostionB.0.1.

��
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