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Abstract. In this survey paper, we review the recent advances in individual based non–Markovian
epidemic models. They include epidemic models with a constant infectivity rate, varying infectivity
rate or infection-age dependent infectivity, infection-age recovery rate (or equivalently, general law
of infectious period), as well as varying susceptibility/immunity. We focus on the scaling limits with
a large population, functional law of large numbers (FLLN) and functional central limit theorems
(FCLT), while the large and moderate deviations for some Markovian epidemic models are also
reviewed. In the FLLN, the limits are a set of Volterra integral equations, and in the FCLT, the limits
are stochastic Volterra integral equations driven by Gaussian processes. We relate our deterministic
limits to the results in the seminal papers by Kermack and McKendrick published in 1927, 1932
and 1933, where the varying infectivity and susceptibility/immunity were already considered. We
also discuss some extensions, including models with heterogeneous population, spatial models and
control problems, as well as open problems.

1. Introduction

Had this paper been written in 2019 or before, we would have needed, in order to drive the
interest of the reader, to recall the major pandemics of the previous centuries: the black plague
pandemic which killed between 30% and 50% of Europe’s population in the 14th century, the plague
epidemic which killed almost half of the population of Marseille and a quarter of the population of
Provence in 1720, the so–called Spanish flu which killed between 50 and 100 million people, not
forgetting HIV/AIDS, malaria and tuberculosis, which together killed more than 3 million humans
in 2011. This long list is not without a silver lining, thanks to the huge success of vaccination,
which in particular has reduced the number of deaths due to measles by 94% and has permitted the
eradication of smallpox in the late 20th century.

However, in 2021, everyone has heard about infectious diseases, the basic reproduction number,
herd immunity and the importance of vaccination. This is a result of the Covid–19 pandemic,
which started at the end of 2019 in China, and by spring 2020 had hit Europe and North America,
filling intensive care units in every country. During the spring of 2020, many countries implemented
drastic lockdown measures, which were decided after the leaders of those countries had learned the
predictions of mathematical models about the number of deaths that the epidemic was likely to
cause, if no such measures were taken. One year later, in the spring of 2021, most wealthy countries
are striving to vaccinate a large proportion of their population, in the hope that they can get rid of
the epidemic, or at least lower the pressure on hospitals to a manageable level.

The aim of this survey paper is not primarily to present all those notions, or to review all the
efforts aimed at modelling this particular pandemic, but rather to highlight some recent progress in
epidemic modelling to which the authors of this paper have contributed.

The use of mathematics and mathematical models as a tool to understand and control the
propagation of infectious diseases has a long history. Around 1760, Daniel Bernoulli, a member of a
famous family of mathematicians, who had also been trained as a physician, exploited a mathematical
model in order to convince his contemporaries of the advantage of inoculation (the ancestor of
vaccination) against smallpox, discussing already the balance between the benefit of inoculation
and the associated risk, a question which is much debated these days. The foundations of modern
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epidemic modelling was mainly the result of efforts of physicians, rather than mathematicians.
During the second half of the 19–th century, the Russian physician P. D. En’ko was probably the
first scientist who created a chain binomial stochastic model of epidemics, similar to the better
known Reed–Frost model, which was formulated in 1928, but published only in the 1950’s.

Most modern mathematical epidemic models are formulated as deterministic compartmental
models. Around 1910, Ross introduced the concept of the basic reproduction number R0, and argued
that malaria would stop if the proportion of mosquitos to humans were maintained under a certain
threshold. His arguments, which were based on the understanding of the large time behaviour of
dynamical systems, were not accepted by many of his contemporaries, who claimed that malaria
would continue as long as mosquitos would be present.

The description of the transmission of communicable diseases via compartmental models was
pioneered by Kermack and McKendrick in a series of three papers, published in 1927, 1932 and 1933,
see [51, 52, 53]. Their models were very refined. In their 1927 paper, they consider infection–age
dependent infectivity (i.e., the infectivity of an infectious individual depends upon the time elapsed
since he/she was infected), as well as infection–age dependent recovery rate which, as we shall
explain below, corresponds to the fact that the duration of the infectious periods can be very general
(any absolutely continuous distribution). In one section of the paper, they consider the case of
constant rates, i.e., constant infectivity, and constant recovery rate, the latter imposing that the
law of the duration of the infectious period be an exponential distribution. In this particular case,
the deterministic model is a system of ordinary differential equations (ODEs), instead of the more
complex system of Volterra type integro–differential equations in the general case. It is rather clear
that the general model considered in [51] can be made much more realistic by a proper choice of the
coefficients adapted to each particular situation (both to a specific illness and to a specific society
with its interactions) than the particular case of constant rates. However, almost all epidemic models
which were considered since 1927 treat the special case of ODE models, and when the seminal paper
[51] is quoted, most of the time reference is made only to the special case of constant rates.

Furthermore in their second and third papers [52, 53], Kermack and McKendrick considered the
loss of immunity (and study the endemic situations), again with a very realistic point of view: they
consider that loss of immunity is not sudden, but progressive. It is hard to find a recent work which
adopts that point of view (one exception is [46]). In their 1932 paper [52], they also pioneer the use
of PDE models for the description of epidemic models with infection-age dependent infectivity and
recovery rate and recovery-age dependent level of immunity.

The goal of the present survey paper is twofold. First, we want to draw the attention of the
readers to the complex models of Kermack and McKendrick, the more classical ODE models being
in our opinion a rather unrealistic approximation of the former, which should be used only when
both have a similar behaviour. We shall discuss that point below. Second we want to derive the
deterministic models (whether ODEs, integral equations or PDEs) as law of large numbers limits, in
the asymptotic of a large population, of individual based stochastic models. This can be seen as an
analogue of many recent works which establish certain equations of physics as limits of stochastic
particle systems, as the number of particles tends to infinity (see in particular the book by Kipnis
and Landim [54], and the references therein). We shall also discuss the difference between the
stochastic and the deterministic models, via the central limit theorem, moderate and large deviation
principles.

1.1. Literature review. The Markov models and their limiting ODE models have long been the
standard tools to study epidemics, see the recent survey [23] and monographs [5, 7, 60, 16, 21]. We
refer the readers to the above for the related literature. The functional law of large numbers (FLLN)
and functional central limit theorem (FCLT) results for Markov models can be found in [23], which
use the standard Poisson random measure representations and martingale convergence arguments
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in [30]. Most relevant results concerning the large deviation and moderate deviation principles in
Section 2 can be found in the recent works [70, 56, 71, 23, 69].

Since the seminal work by Kermack and McKendrick [51, 52, 53], Volterra integral equations
have been developed, without proving an FLLN rigorously, in various epidemic models with
general infectious periods, see, e.g., [20, 25, 27, 43, 78, 31, 21]. Also, PDE models have been
developed, again without proving an FLLN (with one exception [36]), for various epidemic models,
Markovian or non-Markovain, see, e.g., [76, 47, 59, 44, 58, 88, 50, 39]. This survey does not focus
on these various deterministic Volterra integral equations and PDE models, but on individual based
infectious models for which such equations arise as scaling limits, in particular, our recent works in
[64, 33, 32, 67, 65, 66, 34].

Let us also provide a brief literature review on some other existing methods and results on these
general models. Sellke [75] developed an approach, the so-called “Sellke construction”, to find the
distribution of the number of remaining uninfected individuals in an SIR/SEIR epidemic model
with a large population. Ball [9] developed a unified approach using a Wald’s identity to find the
distribution of the total size and the total area under the trajectory of infectious individuals. Ball
[10] further developed this approach to study multi-type epidemic models. Barbour [14] proved
limit theorems for the distribution of the duration from the first infection to the last removal in
a closed epidemic. The LLN and CLT results concerning the final number of infected individuals
are presented in [23]. Non–Markovian SIR epidemic models were studied as piecewise Markov
deterministic processes using the associated martingales in [24, 40] to analyze the distribution of
the number of survivors of the epidemic and the population transmission number and the infection
probability of a given susceptible individual.

We now review the existing literature on functional limit theorems for the non-Markovian epidemic
models preceding our recent works. Wang [81, 82, 83] proved FLLN and FCLT for some age and
density dependent stochastic population models, including the SIR model which has an infection rate
depending on the number of infectious individuals and allows an initial condition with infection-age
dependent infectivity. The strategy of the proof in [81, 82, 83] is different from ours, does not
make use of Poisson random measures, and also assumes a C1 condition on the distribution of the
infectious period for the FCLT. Some asymptotic properties of the limiting deterministic integral
equations were studied [84]. Reinert [74] used Stein’s method with a generalized Sellke construction
to prove a deterministic limit (LLN) for the empirical measure describing the system dynamics
of the generalized SIR model with the infection rate dependent upon time and state of infection;
however, no FCLTs have been establish using her approach. In developing a PDE model to study the
Covid-19 pandemic, [36] establishes the PDE model as a a law of large numbers limit of stochastic
individual based models.

The models and main results in our recent works are reviewed in this article, which are briefly
described in the next subsection.

1.2. Organization of the paper. The organization of the paper is as follows. In Section 2, we
consider the “special case” of constant rates, which leads to a Markov individual-based stochastic
model, an ODE model in the FLLN and a diffusion model in the FCLT. We also discuss the
large deviation and moderate deviation results in the Markov models, which draws upon [69].
In Section 3, we consider the case of a constant infectivity, but a general law of the infectious
period, or equivalently an infection age dependent recovery rate, in which case the stochastic
model is non-Markov, and the deterministic LLN limiting model is a system of integro–differential
equations, i.e., a system of equations with memory. The stochastic limiting processes in the FCLT
are Gaussian-driven Volterra integral equations. This section draws on our first paper in the series
in [64]. We also describe the discrete spatial model, i.e., a multi-patch non-Markov model with
constant infectivity, where individuals may migrate from one patch to another and individuals may
be infected locally within each patch or from some distance (which can be thought of as the result
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of infections taking place during short stays of individuals outside of their current patch). This part
draws upon [67]. In Section 4, we add the infection–age infectivity. At the level of the stochastic
model, we assume that the infectivity functions of the various individuals are i.i.d. copies of a
given càdlàg random function. It turns out that only the mean of this random function appears in
the limiting LLN deterministic model, which, as we shall see, is precisely the model introduced in
[51]. We then present the limiting Gaussian-driven stochastic integral equations obtained in the
FCLT. We also discuss the use of these models to model the Covid-19 epidemic. These results are
proved in [33, 32, 65]. We shall then discuss the PDE point of view of the same model in Section 5.
In addition to the total infectivity process, we use a stochastic process that tracks the number
of infected individuals at each time that have been infected for a certain amount of time. The
LLN limit is again a system of integro-differential equations, while the density of the more detailed
process with respect to the elapsed infectious time have a PDE representation that coincides with
the equations of [52] if the distribution of the infectious period is absolutely continuous. In addition,
we obtain a PDE for the models with a deterministic infectious period. These PDE results are
established in [66]. In Section 6 we discuss the case where the infectivity depends upon the age of
infection, the duration of the infectious period has a general distribution, and the loss of immunity
is a random function of the time elapsed since recovery. Again, those varying immunities of the
various individuals are i.i.d. copies of a given random function. It turns out that in this case, the
limiting deterministic model involves the whole distribution of this varying immunity function (and
not just its expectation), and in general our LLN model is very different from the model introduced
in [52], unless the loss of immunity is described by the same deterministic function of the time
elapsed since the random recovery time for all individuals. This result is proved in [34]. Finally, in
Section 7, we discuss various extensions, including models with heterogeneous population, spatial
models and control problems. We then discuss open problems.

Starting with Section 3, this paper describes recent results obtained by the authors, as the output
of a research effort which started in January 2020. Needless to say, our program has not yet been
completed. In particular, the moderate and large deviations results have so far been obtained only
in the Markov case, and little has been done until now on spatial model outside the Markov case.
We nevertheless believe that it is now a good time to put together a series of results which both
relate stochastic and deterministic results, and insist upon the rich and complex models which
Kermack and McKendrick introduced almost a century ago, and have been unfortunately largely
neglected and/or forgotten.

1.3. Basic vocabulary of epidemic models.
Compartments. In a compartmental model, each individual belongs to one of the following
compartments:

- S denotes the compartment of susceptible individuals: those who are not infected, but
are susceptible to the disease, which means that they might get infected if they meet an
infectious individual.

- E denotes the compartment of exposed individuals, who are infected, but not yet infectious.
- I denotes the compartment of infectious individuals, who are infected, and able to transmit

the disease to susceptible individuals. Note that when considering the models with varying
infectivity, we shall denote by I the compartment of infected individuals, whether they are
exposed or infectious. Their infectivity is ≥ 0, they are infectious when it is > 0.

- R denotes the compartment of removed or recovered individuals. Those who have been
infected, and have recovered from the disease. They are neither infected, nor susceptible,
and are immune to the disease. Often one includes in that compartment those who died
from the disease. In the model with varying immunity/susceptibility which we shall consider
in Section 6, we will merge the S and R compartments into the S compartment, each
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individual having a varying susceptibility. Whenever that susceptibility is 0, he/she cannot
be infected, as when he/she is in the R compartment.

The above compartments are the most commonly used ones, but certain models consider other
compartments, e.g., V for vaccinated. Also, in particular concerning the COVID–19, some authors
have decomposed the I compartment into several ones, distinguishing, e.g., the symptomatic and
the asymptomatic infectious individuals, creating a compartment for those who are hospitalized,
and another one for those in Intensive Care Units. We shall see below that our formalism allows
one to reformulate very general models with many compartments as non-Markov models with only
a few compartments.

Various types of models. The most classical model is the SIR model. In this model, when a
susceptible individual is infected, he/she leaves the S compartment and enters the I compartment.
While in that compartment, he/she is infectious and can infect susceptible individuals. After some
time, the infectious individual recovers, moves to the R compartment, and stays there for ever. This
means that he/she is immune and cannot be infected a second time.

A variant of the SIR model is the SEIR model, in which infected individual first enter the
E compartment. While in that compartment, the individual is not infectious. He/she becomes
infectious when entering the I compartment. As in the SIR model, the individual eventually
recovers when entering the R compartment.

Next we have the models where the recovered individuals lose their immunity after some time,
and become susceptible again. The simplest of those is the SIS (or the SEIS) model, where upon
recovery the individual becomes susceptible again, i.e., there is no period of immunity. Another
class of such models is the SIRS (or the SEIRS) model, where upon recovery the individual first
stays for some time in the R compartment, where he/she is immune and cannot be infected. Later
he/she loses immunity, and becomes susceptible again.

In the simplest models, the size of the population is fixed. This makes sense if the epidemic is
considered over a time interval during which there are not many births and deaths, and the deaths
due to the epidemic are possibly included in the R compartment. Quite a few models however
include the demography, and the total size of the population is allowed to fluctuate. The latter are
called S(E)IR(S) models with demography.

As already explained, contrary to the traditional approach, if we consider an infection–age
dependent infectivity, we need not distinguish the compartments E and I (while in E, the infectivity
is zero), and if we consider a recovery age dependent susceptibility, we need not distinguish the
compartments R and S (while in R, the susceptibility is zero). We shall also see that the non–Markov
models / models with memory allow to have a precise description of the propagation of the disease,
without increasing the number of compartments, as is commonly done with Markov / ODE models.

R0. A fundamental concept of infectious disease modeling is the so–called basic reproduction number,
denoted R0, which is the mean number of susceptible individuals whom an infectious individual
infects during its infectious period, at the beginning of the epidemic (i.e., while essentially all
members of the population are susceptible).

Note that when a significant fraction of the population has been hit by the disease, the mean
number of susceptible individuals whom an infectious individual infects during its infectious period
will be different, and is sometimes called the effective reproduction number, which depends upon
time, since it depends upon the evolution of the epidemic. More precisely, if S̄(t) denotes the
proportion of susceptible individuals in the population, Reff (t) = R0 × S̄(t). If Reff (t) < 1, the

epidemic regresses and eventually goes extinct. For that to occur, we need to have S̄(t) < R−1
0 , i.e.,

the proportion of immune individuals should be greater than 1−R−1
0 . In such a situation, one says

that herd immunity has been achieved.
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2. Markov and ODE models

In this section, we shall discuss stochastic Markov models, and their limiting ODE models. In this
case, the proof of the LLN is rather easy, and has been known for a long time. Also, the fluctuations
of the stochastic model around its law of large numbers limit has been fully studied. Not only do
we have a Central Limit Theorem, but also moderate and large deviations have been studied in this
simpler case.

2.1. The SIR Markov model and its LLN limit. We shall follow the recent presentation in
Section 2 of [23]. Let us first describe the stochastic individual based model. We shall use the
notions of a Poisson process and a Poisson Random Measure, two notions which are introduced in
Subsection 8.1 of the Appendix below.

Suppose that we have a population of fixed size N , which is distributed in the three compartments
S, I and R. Let SN (t) (resp. IN (t), resp. RN (t)) denote the number of susceptible (resp. infectious,
resp. recovered) individuals at time t. We have SN (t) + IN (t) +RN (t) = N . We assume that each
infectious individual meets others at rate β. If the encountered individual is susceptible, which at
time t happens with probability SN (t)/N (since we make the homogeneity assumption that the
individual who is met is chosen uniformly in the population), then the encounter results in a new
infection with probability p. Hence, if we use the notation λ = β×p, the rate at which one particular
infectious individual infects susceptibles is λSN (t)/N . Hence the total rate of new infections in the
population at time t is

ΥN (t) = λIN (t)
SN (t)

N
.

This means that the number of new infections on the time interval [0, t] is

Pinf

(∫ t

0
ΥN (s)ds

)
,

where Pinf (t) is a standard Poisson process. The fact that this process at time t involves Pinf up to
a random time creates sometimes technical problem. Therefore we shall use in further sections an
alternative description which we now introduce. Given a standard Poisson random measure Q on
R2

+, an alternative equivalent description of the counting process of infections is∫ t

0

∫ ∞
0

1u≤ΥN (s−)Q(ds, du) .

The crucial point now is that in the Markov model considered in this section, we assume that the
duration of the infection period is Exp(γ) (the durations for various individuals are independent,
and independent of the rest of the population), where γ−1 is the mean duration of this infectious
period. The end of the infectious period of a given individual is thus the first jump time of a rate γ
Poisson process. Since the sum of mutually independent Poisson processes is a Poisson process with
rate the sum of the rates, the counting process of the number of recoveries on the interval [0, t] (i.e.,
the number of jumps from the I to the R compartment) is

Prec

(
γ

∫ t

0
IN (s)ds

)
,

where Prec(t) is a standard Poisson process, independent of Pinf (t). Finally, we obtain the following
system of stochastic differential equations for the evolution of the numbers of susceptible, infectious
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and recovered individuals:

SN (t) = SN (0)− Pinf
(∫ t

0
ΥN (s)ds

)
,

IN (t) = IN (0) + Pinf

(∫ t

0
ΥN (s)ds

)
− Prec

(
γ

∫ t

0
IN (s)ds

)
,

RN (t) = RN (0) + Prec

(
γ

∫ t

0
IN (s)ds

)
.

(2.1)

Remark 2.1. Value of R0 It is easy to compute R0 in the present model. “At the beginning of the
epidemic”, means “while N−1SN (t) = 1”. In that case, each infectious individual infects a mean
λ susceptible individuals per time unit. The mean duration of the infectious period is 1/γ. Hence
R0 = λ/γ.

We next define (S̄N (t), ĪN (t), R̄N (t)) := N−1(SN (t), IN (t), RN (t)). We need to formulate one
assumption.

Assumption 2.1. We assume that as N →∞,

(S̄N (0), ĪN (0), R̄N (0))→ (S̄(0), Ī(0), R̄(0)) in probability,

where (S̄(0), Ī(0), R̄(0)) ∈ [0, 1]3 is such that S̄(0) + Ī(0) + R̄(0) = 1, S̄(0) > 0 and Ī(0) > 0.

Remark 2.2. If either S̄(0) = 0 or Ī(0) = 0, there would be no epidemic in the limiting LLN
deterministic model. Typically an epidemic starts with a small number of initially infectious
individuals, which is not of the order of N . The description of the first phase of the epidemic, until
the number of infectious reaches a “positive fraction of N” must be done by a stochastic model, the
deterministic model becomes valid once a significant fraction of the total population is infectious.
The stochastic model at the start of the epidemic can be well approximated by a branching process.
We shall explain this below in Section 4.

In the next LLN result, we shall denote by D the Skorokhod space of càdlàg real-valued functions
on R+, endowed with the usual topology. The reader is referred to Subsection 8.3 in the Appendix
below for its definition and properties.

Theorem 2.1. Under Assumption 2.1,

(S̄N , ĪN , R̄N )→ (S̄, Ī, R̄) in D3 as N →∞
in probability, where (S̄, Ī, R̄) is the unique solution of the system of ODEs

dS̄(t)

dt
= −λS̄(t)Ī(t),

dĪ(t)

dt
= λS̄(t)Ī(t)− γĪ(t),

dR̄(t)

dt
= γĪ(t),

(2.2)

with the initial condition specified by Assumption 2.1.

Note that (S̄(t), Ī(t), R̄(t)) are, respectively, the proportions of susceptible, infectious and recovered
individuals in the limit as N →∞.

Proof. Let us consider the proportions in the three compartments, i.e., we divide equation (2.1)
by N , and define Minf (t) := Pinf (t) − t, Mrec(t) := Prec(t) − t. We obtain, with the notation



8 RAPHAËL FORIEN, GUODONG PANG, AND ÉTIENNE PARDOUX

ῩN (s) = N−1ΥN (s),

S̄N (t) = S̄N (0)−
∫ t

0
ῩN (s)ds−N−1Minf

(
N

∫ t

0
ῩN (s)ds

)
,

IN (t) = IN (0) +

∫ t

0
ῩN (s)ds− γ

∫ t

0
ĪN (s)ds

+N−1Minf

(
N

∫ t

0
ῩN (s)ds

)
−N−1Mrec

(
γN

∫ t

0
ĪN (s)ds

)
,

RN (t) = RN (0) + γ

∫ t

0
ĪN (s)ds+N−1Mrec

(
γN

∫ t

0
ĪN (s)ds

)
.

(2.3)

It is not hard to show that N−1Minf (Nt)→ 0 and N−1Mrec(Nt)→ 0 a.s., uniformly for t ∈ [0, T ].
Indeed, the pointwise convergence follows directly from the classical law of large numbers, and
then the uniform convergence from the fact that the function t 7→ N−1P (Nt) is increasing, and
converges to the continuous function t 7→ t, thanks to the second Dini Theorem. This, combined
with Assumption 2.1, allows one to take the limit in (2.3), and deduce (2.2). More details can be
found in Section 2.2 of [23]. �

2.2. The Markov SIR model : Central Limit Theorem. Let us now rescale the differences
between the proportions in the N model and the limiting proportions. We define

(ŜN (t), ÎN (t), R̂N (t)) :=
√
N(S̄N (t)− S̄(t), ĪN (t)− Ī(t), R̄N (t)− R̄(t)) .

In order to obtain a limit of the above processes, we need to formulate an assumption concerning
(ŜN (0), ÎN (0), R̂N (0)).

Assumption 2.2. There exists a random vector (Ŝ(0), Î(0), R̂(0)) such that

(ŜN (0), ÎN (0), R̂N (0))⇒ (Ŝ(0), Î(0), R̂(0)) in R3 as N →∞ .

We have the following FCLT.

Theorem 2.2. Under Assumption 2.2,

(ŜN , ÎN , R̂N )⇒ (Ŝ, Î, R̂) in D3 as N →∞,
where (Ŝ(t), Î(t), R̂(t)) is the unique solution of the following linear SDE:

Ŝ(t) = Ŝ(0)− λ
∫ t

0
(S̄(s)Î(s) + Ŝ(s)Ī(s))ds−

∫ t

0

√
λS̄(s)Ī(s)dBinf (s),

Î(t) = Î(0) + λ

∫ t

0
(S̄(s)Î(s) + Ŝ(s)Ī(s))ds− γ

∫ t

0
Î(s)ds

+

∫ t

0

√
λS̄(s)Ī(s)dBinf (s)−

∫ t

0

√
γĪ(s)dBrec(s),

R̂(t) = R̂(0) + γ

∫ t

0
Î(s)ds+

∫ t

0

√
γĪ(s)dBrec(s),

(2.4)

where Binf (t) and Brec(t) are two mutually independent standard Brownian motions, which are

globally independent of (Ŝ(0), Î(0), R̂(0)). If (Ŝ(0), Î(0), R̂(0)) is Gaussian, then (Ŝ(t), Î(t), R̂(t)) is
a Gaussian process.

Note that the notion of a Brownian motion is defined in Section 8.2 in the Appendix below.
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Proof. We take the difference between (2.3) and (2.2), and multiply by
√
N . Hence

ŜN (t) = ŜN (0)− λ
∫ t

0
(ŜN (s)ĪN (s) + S̄(s)ÎN (s))ds−N−1/2Minf

(
N

∫ t

0
ῩN (s)ds

)
,

ÎN (t) = ÎN (0) + λ

∫ t

0
(ŜN (s)ĪN (s) + S̄(s)ÎN (s))ds− γ

∫ t

0
ÎN (s)ds

+N−1/2Minf

(
N

∫ t

0
ῩN (s)ds

)
−N−1/2Mrec

(
γN

∫ t

0
ĪN (s)ds

)
,

R̂N (t) = R̂N (0) + γ

∫ t

0
ÎN (s)ds+N−1/2Mrec

(
γN

∫ t

0
ĪN (s)ds

)
.

The result now follows from Theorem 2.1, the next Lemma and rather standard arguments, see for
the details Section 2.3 in [23]. �

Lemma 2.1. Let P (t) be a standard Poisson process, M(t) := P (t)− t. Then

N−1/2M(N ·)⇒ B in D as N →∞,
where B(t) is a standard Brownian motion.

Proof. Note that M(t) := N−1/2M(Nt) is a square integrable martingale, whose associated in-
creasing process is given as 〈M〉t = t. Hence tightness in D follows readily by the criterion
from Proposition 8.1 in the Appendix below. It thus suffices to show that for any n ≥ 1, any
0 = t0 < t1 < · · · < tn,

(M(t1),M(t2), . . . ,M(tn)⇒ (B(t1), B(t2), . . . , B(tn)).

By independence of the increments of both M and B, it suffices to show that for any t > 0,
M(t) ⇒ B(t). This is easily verified by a characteristic function computation. Indeed, for any
u ∈ R,

E
(

exp
[
iuN−1/2M(Nt)

])
= exp

(
Nt

[
e
i u√

N − 1− i u√
N

])
→ exp

(
−tu

2

2

)
.

�

2.3. Markovian SIS and SIRS models, and SIR model with demography. In the SIR
model, the number of susceptibles who can be infected is limited, and therefore, the epidemic
goes soon or later to an end. However, there are several models where there is a constant flux
of susceptibles, which allow the establishment of an endemic disease. Let us describe three such
models.

2.3.1. The SIS model. In this model, contrary to the SIR model, when an infectious individual
recovers, he/she becomes susceptible again. There is no immunity. The stochastic model reads:

SN (t) = SN (0)− Pinf
(∫ t

0
ΥN (s)ds

)
+ Prec

(
γ

∫ t

0
IN (s)ds

)
,

IN (t) = IN (0) + Pinf

(∫ t

0
ΥN (s)ds

)
− Prec

(
γ

∫ t

0
IN (s)ds

)
,

and the LLN limiting deterministic model reads:
dS̄(t)

dt
= −λS̄(t)Ī(t) + γĪ(t),

dĪ(t)

dt
= λS̄(t)Ī(t)− γĪ(t) .
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Note that exploiting the identities SN (t)+IN (t) = N , S̄(t)+ Ī(t) = 1, we can write in fact equations
for IN (t) and Ī(t) only, which read:

IN (t) = IN (0) + Pinf

(
λ

N

∫ t

0
(N − IN (s))IN (s)ds

)
− Prec

(
γ

∫ t

0
IN (s)ds

)
,

and

dĪ(t)

dt
= λ(1− Ī(t))Ī(t)− γĪ(t) .

Again in this model R0 = λ/γ. If R0 ≤ 1, the last equation has the unique equilibrium I∗ = 0,
while if R0 > 1, this disease–free equilibrium is unstable, and there is a stable endemic equilibrium
I∗ = 1− γ

λ = 1−R−1
0 .

2.3.2. The SIRS model. In this model, an individual is first removed (i.e., immune) when he/she
recovers, but he/she loses its immunity at a given rate ρ. This gives the following stochastic model
(which we write for the two quantities SN (t) and IN (t):

SN (t) = SN (0)− Pinf
(∫ t

0
ΥN (s)ds

)
+ Ploim

(
ρ

∫ t

0
(N − SN (s)− IN (s))ds

)
,

IN (t) = IN (0) + Pinf

(∫ t

0
ΥN (s)ds

)
− Prec

(
γ

∫ t

0
IN (s)ds

)
,

where “loim” is an abbreviation for “loss of immunity”, and the following deterministic model:
dS̄(t)

dt
= −λS̄(t)Ī(t) + ρ(1− S̄(t)− Ī(t)),

dĪ(t)

dt
= λS̄(t)Ī(t)− γĪ(t) .

Again R0 = λ/γ, if R0 ≤ 1, the only equilibrium is (1, 0), while if R0 > 1, we have an endemic
equilibrium (γ/λ, (1−R−1

0 )(γ + ρ)−1ρ).

2.3.3. The SIR model with demography. In this model, the recovered individuals do not lose their
immunity, but births produce a constant flux of susceptible individuals. The stochastic model reads:
SN (t) = SN (0)− Pinf

(∫ t

0
ΥN (s)ds

)
+ Pbirth (ρNt))− Pdeath−sus

(
µN

∫ t

0
SN (s)ds

)
,

IN (t) = IN (0) + Pinf

(∫ t

0
ΥN (s)ds

)
− Prec

(
γ

∫ t

0
IN (s)ds

)
− Pdeath−inf

(
µN

∫ t

0
IN (s)ds

)
,

and the deterministic model reads
dS̄(t)

dt
= µ− λS̄(t)Ī(t)− µS̄(t),

dĪ(t)

dt
= λS̄(t)Ī(t)− (γ + µ)Ī(t) .

Remark 2.3. We model the birth as a constant flux at rate µN , instead of µ times the number
of individuals in the population, in order to avoid the pitfall of critical branching processes, which
go extinct in finite time a.s. As a result, if the individuals in the R compartment die at rate µ as
well, the total population in the stochastic model remains close to N . Therefore we approximate the
proportion of susceptibles in the population by SN (t)/N .

This time, R0 = λ
γ+µ . If R0 > 1, the endemic equilibrium reads ((γ + µ)/λ, (1−R−1

0 )(γ + µ)−1µ).
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2.4. Deviations from the law of large numbers and extinction of an endemic disease.
In the above three models, the endemic equilibrium is stable whenever R0 > 1. This means that the
LLN deterministic model, starting from a positive value of Ī(0), will never go extinct. However,
if we consider the stochastic model, it is easily seen that for any N ≥ 1, disease free states are
accessible with positive probability. Since moreover they are absorbing, in the stochastic model the
epidemic stops soon or later. We would like to know how long we have to wait for this to happen.
One approach is to evaluate the time needed for the stochastic system to diverge enough from its
deterministic limit, so that IN (t) = 0. For that purpose, we shall exploit three tools that Probability
theory gives us, in order to estimate the difference between a stochastic process and its law of large
numbers limit, namely the Central Limit Theorem, Moderate Deviations and Large Deviations.

Let us first see what the CLT tells us. Consider first the SIR model with demography. In
that model, at the endemic equilibrium, Ī∗ = (1 − R−1

0 ) µ
γ+µ , where R0 = λ

γ+µ . It is clear that

γ is much larger than µ (in inverse of years, compare 52 to 1/75, since γ−1 is of the order of
1 week, and µ−1 is of the order of 75 years). Consequently we can consider that R0 ∼ λ

γ and

ε := µ
γ+µ ∼

µ
γ . Now the CLT tells us that IN (t) is approximately Gaussian, with mean Nε(1−R−1

0 )

and standard deviation
√
N/R0 (the asymptotic variance of Î(t) is close to R−1

0 , see [23] page 62).
If N is such that the standard deviation is at least the mean divided by 3, then it is likely that
IN (t) will hit zero in time of order 1. This leads to the idea of a critical population size Nc given by

Ncε(1−R−1
0 ) = 3

√
Nc/R0, that is

Nc =
9

ε2(1−R−1
0 )2R0

.

In the case of measles, R0 = 15. With the above approximations for µ and γ, we arrive at Nc

in the order of a few million. This confirms the empirical observation that, prior to vaccination,
measles was continuously endemic in countries like UK, and died out quickly in Iceland (and was
then reintroduced by infected visitors).

Remark 2.4. Would we consider the SIS model instead of the SIR model with demography, then
we would find a much smaller Nc. Indeed, the asymptotic variance in the CLT is about the same,
but Ī∗ is much larger. Indeed, if everyone who recovers becomes susceptible again, we are likely to
have a much larger proportion of infectious at equilibrium. In the SIR model with demography,
contrary to the situation in the SIS model, those who get infected are infected only once in their life.
The ratio between the two Ī∗’s is the above ε.

As explained above, sooner or later the stochastic process IN (t) will hit zero (and then stay there
for ever). The CLT allows us to guess for which population sizes extinction is likely to happen in
time of order 1. We will now discuss what large deviations tell us on this problem. In the three
above examples, we have an Rd–valued ODE of the form

dz(t)

dt
= b(z(t)), z(0) = x , (2.5)

which is the LLN limit of a sequence of SDEs of the form

ZN (t) = xN +

k∑
j=1

hj
N
Pj

(
N

∫ t

0
βj(Z

N (s))ds

)
, (2.6)

and we have b(z) =
∑k

j=1 βj(z)hj . Recall that P1, . . . , Pk are mutually independent standard

Poisson processes. Note that if we rewrite the SDE (2.6) in the form (with Mj(t) = Pj(t)− t)

ZN (t) = xN +

∫ t

0
b(ZN (s)ds+

k∑
j=1

hj
N
Mj

(
N

∫ t

0
βj(Z

N (s))ds

)
,
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from the fact that the last term on the right hand side of this equation tends to 0 as N →∞, we
may regard the SDE (2.6) as a “random perturbation of the dynamic system (2.5)”, Freidlin and
Wentzell have studied such perturbations as an application of large deviations theory, see [38].

Let us first state what kind of information large deviations give us, concerning the convergence of
ZN toward z. We shall state the results without giving the precise technical conditions under which
one can establish them, referring the reader to Section 4.2 of [23] for all the technical details and
proofs. Consider the function ` : R2d 7→ R defined by

`(x, y, θ) = 〈y, θ〉 −
k∑
j=1

βj(x)
(
e〈hj ,θ〉 − 1

)
.

We let

IT (φ) :=

∫ T

0
L(φ(t), ˙φ(t))dt, where L(x, y) = sup

θ∈Rd
`(x, y, θ) .

One essential property of this functional is that IT ≥ 0 and IT = 0 iff φ solves the ODE (2.5). One
may think of IT (φ) as a sort of measure of how much φ differs from being a solution to (2.5).

Large deviations theory gives us both

: • a lower bound: for any open subset O ⊂ D([0, T ];Rd),

lim inf
N

1

N
logP

(
ZN,xN ∈ O

)
≥ −IT,x(O),

where ZN,xN denotes the solution of (2.6) starting from ZN,xN (0) = xN , and IT,x(O) :=
infφ∈O,φ(0)=x IT (φ);

: • and an upper bound : for any closed subset F ⊂ D([0, T ];Rd), K compact subset of Rd,

lim sup
N

1

N
log sup

x∈K
P
(
ZN,xN ∈ F

)
≤ inf

x∈K
IT,x(F ) .

Note that, as is to be expected, those results give us information only in case O (resp. F ) does not
contain the solution of (2.5) starting from x.

Following the ideas of Freidlin and Wentzell, one can deduce from those two statements a rather
precise statement about the time taken by the random perturbations to drive the process ZN to a
disease free situation. Denote by A the subset of points of Rd+ which are accessible by our system.

Suppose that IN is the first component of ZN . We are interested in the time needed for ZN (t)
to reach the subset of Rd+ where its first component is 0. Let us denote by z∗ ∈ A the endemic
equilibrium, i.e., the point in A such that b(z∗) = 0 and z∗1 > 0, which we assume to be unique. We
now define the “quasi–potential” (DT,A stand for D([0, T ];A)):

V (z, z′, T ) = inf
φ∈DT,A, φ(0)=z, φ(T )=z′

IT (φ),

V (z, z′) = inf
T>0

V (z, z′, T ),

V = inf
z∈A, z1=0

V (z∗, z) .

For z ∈ A, we define the extinction time of the process ZN as

TN,zext := inf{t > 0, Z
N,[Nz]/N
1 (t) = 0} .

We have the result (see Theorem 4.2.17 in [23])

Theorem 2.3. For any η > 0 and z ∈ A,

lim
N

P
(

exp[N(V − η)] < TN,zext < exp[N(V + η)]
)

= 1,
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and lim
N

1

N
logE[TN,zext ] = V .

Note that V is the value function of an optimal control problem. It can be computed explicitly
in case of the SIS model, in which case V = logR0 − 1 +R−1

0 . Unless V is quite small, we expect

exp(V N) to be very large.
In between the CLT and Large Deviations, we have the theory of “moderate deviations”. Let

us explain what we can learn from this theory, concerning our problem. We will only give a brief
sketch of the ideas, referring the reader to [69] for the details.

Large Deviations discusses the probability of observing deviations from the LLN of the order of 1,
as well as the time we have to wait for observing such deviations. The CLT predicts deviations
from the LLN of the order of N−1/2. Moderate Deviations discusses deviations of the order of N−α,
for some 0 < α < 1/2: both the probability of observing such deviations, and the time we have to
wait to see such deviations. This should allow us to predict extinction in less time that what Large
Deviations predicts, with a critical population size larger than that associated to the CLT.

Since we want to discuss deviations from the endemic equilibrium z∗ of the order of N−α, let us
consider the process ZNz (t), starting from ZNz (0) = z∗ +N−αz, where z ∈ Rd is arbitrary. We want
to study the Moderate Deviations of that process, which amounts to studying the Large Deviations

of ZN,αz (t) := Nα(ZNz (t)− z∗). For some a > 0, the above Freidlin–Wentzell result tells us that if
we define (ZNz,1(t) stands for the first coordinate of ZNz (t))

TNz,a = inf{t > 0, ZN,αz,1 (t) ≤ −a} ,

we obtain, for a certain V a, any η > 0,

lim
N

P
(
exp[N1−2α(V a − η)] < TNz,a < exp[N1−2α(V a + η)]

)
= 1,

lim
N
N2α−1 logE[TNz,a] = V a .

The case α = 1/2 is covered by the CLT, the case α = 0 by Large Deviations. Moderate Deviations,
fills the gap between those two regimes. If the population size N is such that z∗1 is of the order of
N−α, for some 0 < α < 1/2, Moderate Deviations will predict extinction in time of the order of
exp[N1−2αV a], with a = Nαz∗1 .

3. Non–Markov and integro–differential models

3.1. The SIR model. In this section, we will still assume that the infectivity is constant, but
we shall let the infectious period have a general probability distribution. The way Kermack and
McKendrick assumed a general distribution for the infectious period in their 1927 paper [51] was to
choose an infection age dependent rate of recovery. Let us first show that this formulation covers all
absolutely continuous distributions for the duration of the infectious period.

Indeed, let X be an R+–valued random variable, F (t) = P(X ≤ t) its distribution function, and
F c(t) = 1 − F (t). If F has a density f(t) (i.e., f(t) = F ′(t)), then we define its hazard function
as the quantity γ(t) := f(t)/F c(t). Let P (t) be a standard Poisson process. Then the law of X

coincides with that of the first jump of the counting process P
(∫ t

0 γ(s)ds
)

, which follows from the

following computations.

P
[
P

(∫ t

0
γ(s)ds

)
= 0

]
= exp

(
−
∫ t

0
γ(s)ds

)
= exp

(∫ t

0

d

ds
[logF c(s)] ds

)
= F c(t) = P(X > t) .
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In other words, by choosing an infection age dependent recovery rate, Kermack and McKendrick
allowed a general absolutely continuous distribution for the duration of the infectious period. We
shall use a different formulation, and allow a completely arbitrary distribution for the infectious
period.

Concerning the infection process, we have the same infection rate as in Section 2.1, namely

ΥN (t) = λIN (t)
SN (t)

N
. (3.1)

Let AN (t) denote the cumulative counting process of newly infected individuals on the time interval
(0, t]. We have, as above,

AN (t) =

∫ t

0

∫ ∞
0

1u≤ΥN (s)Q(ds, du), t ≥ 0 . (3.2)

Clearly the following balance equations hold

SN (t) + IN (t) +RN (t) = N,

SN (t) = SN (0)−AN (t),

IN (t) = IN (0) +AN (t)−RN (t) .

To each newly infected individual i ∈ N, we associate a random variable ηi to represent the
infectious duration. We assume that ηi’s are i.i.d. with a cumulative distribution function (c.d.f.) F ,
and let F c := 1−F . For each initially infectious individual j = 1, . . . , IN (0), let η0

j be the remaining

infectious period. We also assume that η0
j ’s are i.i.d. with a c.d.f. F0, and let F c0 := 1− F0.

Remark 3.1. An initially infected individual is thought of as having been infected at some time
τ0 < 0. Assuming that the law of the duration of the infectious period of this individual is F , the
probability that he/she is still infectious at some time t > 0, given the time of infection, equals
F c(t − τ0)/F c(−τ0), the conditional law of still being infectious at time t, given that he/she was
still infectious at time 0. In the case where F is exponential, this is exactly F c(t), hence there is no
reason to choose an F0 different from F . But in all cases where F is not the exponential distribution,
it is quite natural to choose F0 6= F .

Remark 3.2. In this model it is clear that R0 = λ
∫∞

0 F c(t)dt, since
∫∞

0 F c(t)dt = E[η].

Denoting by τNi , i ≥ 1 the successive jumps times of AN , the dynamics of IN (t) can be described
by

IN (t) =

IN (0)∑
j=1

1η0
j>t

+

AN (t)∑
i=1

1τNi +ηi>t
, t ≥ 0. (3.3)

Define the fluid-scaled process X̄N := N−1XN for any process XN . We make the following
assumption on the initial quantities.

Assumption 3.1. There exists a deterministic constant (S̄(0), Ī(0), R̄(0)) ∈ (0, 1)3 such that
S̄(0) + Ī(0) + R̄(0) = 1, and as N →∞, (S̄N (0), ĪN (0), R̄N (0))→ (S̄(0), Ī(0), R̄(0)) in probability.

Theorem 3.1. Functional Law of Large Numbers Under Assumption 3.1,

(S̄N , ĪN , R̄N )→ (S̄, Ī, R̄) in D3

in probability as N →∞, where the limit process (S̄, Ī, R̄) is the unique solution to the system of
deterministic Volterra integral equations

S̄(t) = S̄(0)− λ
∫ t

0
S̄(s)Ī(s)ds, (3.4)
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Ī(t) = Ī(0)F c0 (t) + λ

∫ t

0
F c(t− s)S̄(s)Ī(s)ds, (3.5)

R̄(t) = R̄(0) + Ī(0)F0(t) + λ

∫ t

0
F (t− s)S̄(s)Ī(s)ds, (3.6)

for t ≥ 0. S̄ is in C. If F0 is continuous, then Ī and R̄ are in C; otherwise they are in D.

The limits (S̄, Ī) are uniquely determined by the two equations (3.4) and (3.5). Existence and
uniqueness for such a system is well–known. Given the solution (S̄, Ī), the limit R̄ is given by (3.6).
Assuming that F0 and F have densities f0 and f , by taking derivatives in (3.4), (3.5) and (3.6), we
obtain

S̄′(t) = −λS̄(t)Ī(t),

Ī ′(t) = −Ī(0)f0(t) + λ
(
S̄(t)Ī(t)−

∫ t

0
f(t− s)S̄(s)Ī(s)ds

)
,

R̄′(t) = Ī(0)f0(t) + λ

∫ t

0
f(t− s)S̄(s)Ī(s)ds .

Note that, as expected, S̄′(t) + Ī ′(t) + R̄′(t) = 0.
Let us now sketch the proof of Theorem 3.1.

Proof. Define Q̄(ds, du) = Q(ds, du)− dsdu the compensated measure. We have

ĀN (t) =

∫ t

0
ῩN (s)ds+ M̄N

A (t), (3.7)

where

M̄N
A (t) =

1

N

∫ t

0

∫ ∞
0

1u≤ΥN (s)Q̄(ds, du) .

Since 0 ≤ ῩN (s) ≤ λ, the first term on the right of (3.7) is an increasing process which is Lipchitz
continuous, with a Lipschitz constant bounded by λ. Hence that sequence is equi–continuous, hence
is tight in C, hence also in D. The second term is a martingale, which satisfies

E
[(
M̄N
A (t)

)2] ≤ λ

N
t,

hence from Doob’s maximal inequality, it converges to 0 in mean square, locally uniformly in t. As
a consequence, along a subsequence, ĀN ⇒ Ā in D, where for 0 ≤ s < t, 0 ≤ Ā(t)− Ā(s) ≤ λ(t− s),
and along the same subsequence, SN (·)⇒ S̄(0)− Ā(·) in D.

Let now IN (t) = IN0 (t) + IN1 (t), where

IN0 (t) =

IN (0)∑
j=1

1η0
j>t

, IN1 (t) =

AN (t)∑
i=1

1τNi +ηi>t
.

Consider first IN0 (t). Define

ĬN0 (t) :=

NĪ(0)∑
j=1

1η0
j>t

.

It is not too hard to deduce from the law of large numbers, see Theorem 14.3 in [15] that as N →∞,

ĬN → Ī(0)F c in D in probability. Next, as N →∞,

|ĪN0 (t)− ĬN0 (t)| ≤ |ĪN (0)− Ī(0)| → 0

in probability, thanks to Assumption 3.1.
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We finally consider IN1 (t). Let FNt := σ{ΥN (s), s ≤ t; τNi , i ≤ AN (t)} and define

ĬN1 (t) : = E[ĪN1 (t)|FNt ]

=
1

N

AN (t)∑
i=1

F c(t− τNi )

=

∫ t

0
F c(t− s)dĀN (s) .

It is not hard to deduce from a slight extension of the Portmanteau theorem (see e.g. Lemma 4.4 in
[32]) that along a subsequence along which ĀN ⇒ Ā, for each t > 0,

ĬN1 (t)⇒
∫ t

0
F (t− s)dĀ(s) .

From a tightness argument, we deduce that this convergence holds in fact in D. Finally we consider
V N (t) := ĪN1 − ĬN1 . We have

V N (t) =
1

N

AN (t)∑
i=1

κNi (t), where

κNi (t) = 1τNi +ηi>t
− F c(t− τNi ) .

It is easy to check that

E[κNi (t)|FNt ] = 0, and for i 6= j, E[κNi (t)κNj (t)|FNt ] = 0 .

Thus

E[V N (t)2|FNt ] =
1

N2

AN (t)∑
i=1

E[κNi (t)2|FNt ]

≤ ĀN (t)

N
,

E[V N (t)2] ≤ λ

N
t .

With some additional effort, one can show that in fact V N (t)→ 0 in probability, locally uniformly
in t, see the proof of Lemma 5.2 in [64]. Moreover one can show by similar arguments that R̄N ⇒ R̄,
and that the limiting equations have a unique deterministic solution, hence the whole sequence
converges, and the convergence is in probability. �

We next turn to the central limit theorem. For that sake, we need to state an appropriate
assumption concerning the initial quantities.

Assumption 3.2. There exists a random vector (Ŝ(0), Î(0), R̂(0)) such that

(ŜN (0), ÎN (0), R̂N (0))⇒ (Ŝ(0), Î(0), R̂(0)) .

In addition, we assume that supN E
(
|ŜN (0)|2 + |ÎN (0)|2 + |R̂N (0)|2

)
<∞.

We can now state the following result.

Theorem 3.2. Functional Central Limit Theorem Under Assumption 3.2,

(ŜN , ÎN , R̂N )⇒ (Ŝ, Î, R̂) in D3 as N →∞,
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where the limit (Ŝ, Î, R̂) is the unique solution to the following set of linear stochastic Volterra
integral equations driven by Gaussian processes:

Ŝ(t) = Ŝ(0)− λ
∫ t

0

(
Ŝ(s)Ī(s) + S̄(s)Î(s)

)
ds− M̂A(t), (3.8)

Î(t) = Î(0)F c0 (t) + λ

∫ t

0
F c(t− s)

(
Ŝ(s)Ī(s) + S̄(s)Î(s)

)
ds+ Î0(t) + Î1(t), (3.9)

R̂(t) = R̂(0) + Î(0)F0(t) + λ

∫ t

0
F (t− s)

(
Ŝ(s)Ī(s) + S̄(s)Î(s)

)
ds+ R̂0(t) + R̂1(t), (3.10)

with S̄(t) and Ī(t) given in Theorem 3.1. Here (Î0, R̂0), independent of (Ŝ(0), Î(0), R̂(0)), is a
mean-zero two-dimensional Gaussian process with the covariance functions: for t, t′ ≥ 0,

Cov(Î0(t), Î0(t′)) = Ī(0)(F c0 (t ∨ t′)− F c0 (t)F c0 (t′)),

Cov(R̂0(t), R̂0(t′)) = Ī(0)(F0(t ∧ t′)− F0(t)F0(t′)), (3.11)

Cov(Î0(t), R̂0(t′)) = Ī(0)
[
(F0(t′)− F0(t))1(t′ ≥ t)− F c0 (t)F0(t′)

]
.

If F0 is continuous, then Î0 and R̂0 are continuous. The limit process (M̂A, Î1, R̂1), is a con-

tinuous three-dimensional Gaussian process, independent of (Ŝ(0), Î(0), R̂(0), Î0, R̂0), and has the
representation

M̂A(t) = WF ([0, t]× [0,∞)), Î1(t) = WF ([0, t]× [t,∞)), R̂1(t) = WF ([0, t]× [0, t]),

where WF is a Gaussian white noise process on R2
+ with mean zero and

E
[
WF ((a, b]× (c, d])2

]
= λ

∫ b

a
(F (d− s)− F (c− s))S̄(s)Ī(s)ds,

for 0 ≤ a ≤ b and 0 ≤ c ≤ d. The limit process Ŝ has continuous sample paths and Î and R̂ have
càdlàg sample paths. If the c.d.f. F0 is continuous, then Î and R̂ have continuous sample paths. If
(Ŝ(0), Î(0), R̂(0)) is a Gaussian random vector, then (Ŝ, Î, R̂) is a Gaussian process.

Note that the notion of white noise in defined in Section 8.2 in the Appendix below.
From the representation of the limit processes (M̂A, Î1, R̂1) using the white noise WF , we easily

obtain their covariance functions: for t, t′ ≥ 0,

Cov(M̂A(t), M̂A(t′)) = λ

∫ t∧t′

0
S̄(s)Ī(s)ds,

Cov(Î1(t), Î1(t′)) = λ

∫ t∧t′

0
F c(t ∨ t′ − s)S̄(s)Ī(s)ds,

Cov(R̂1(t), R̂1(t′)) = λ

∫ t∧t′

0
F (t ∧ t′ − s)S̄(s)Ī(s)ds,

Cov(M̂A(t), Î1(t′)) = λ

∫ t∧t′

0
F c(t′ − s)S̄(s)Ī(s)ds,

Cov(M̂A(t), R̂1(t′)) = λ

∫ t∧t′

0
F (t′ − s)S̄(s)Ī(s)ds,

Cov(Î1(t), R̂1(t′)) = λ

∫ t

0
(F (t′ − s)− F (t− s))1(t′ > t)S̄(s)Ī(s)ds.

In the FCLT, the limits (Ŝ, Î) are the unique solution of the system of stochastic Volterra integral

equations (3.8) and (3.9). Once Ŝ and Î are specified, R̂ is given by the formula (3.10).
For the proof of Theorem 3.2, we refer the reader to Section 6 of [64].



18 RAPHAËL FORIEN, GUODONG PANG, AND ÉTIENNE PARDOUX

Remark 3.3. When the infectious periods are deterministic, that is, ηi is equal to a positive constant
η with probability one, the dynamics of IN (t) can be written as

IN (t) =

IN (0)∑
j=1

1(η0
j > t) +AN (t)−AN ((t− η)+), t ≥ 0.

We assume that η0
j ∼ U [0, η], that is, F0(t) = t/η for t ∈ [0, η], which is the equilibrium (stationary

excess) distribution of F (t) = 1t≥η, t ≥ 0. The fluid equation Ī(t) becomes

Ī(t) = Ī(0)(1− t/η)+ + λ

∫ t

(t−η)+

S̄(s)Ī(s)ds

which gives

Ī ′(t) = −1

η
Ī(0)1t<η + λS̄(t)Ī(t)− λ1t≥ηS̄(t− η)Ī(t− η).

In the FCLT, we have

Î(t) = Î(0)(1− t/η)+ + λ

∫ t

(t−η)+

(
Ŝ(s)Ī(s) + S̄(s)Î(s)

)
dsds+ Î0(t) + Î1(t), t ≥ 0, (3.12)

where Î0(t), t ∈ [0, η], is a continuous mean-zero Gaussian process with the covariance function

Cov(Î0(t), Î0(t′)) = Ī(0)(1− (t ∧ t′)/η − (1− t/η)(1− t′/η)), t, t′ ∈ [0, η],

and Î1(t), t ≥ 0, is a continuous mean-zero Gaussian process with the covariance function

Cov(Î1(t), Î1(t′)) = λ

∫ t∧t′

0
1t∨t′−s<ηS̄(s)Ī(s)ds, t, t′ ≥ 0.

Note that the effect of the initial quantities vanish after time η, that is, in the stochastic integral
equation (3.12) of Î(t), the components Î0(t) and Î(0)(1− t/η)+ vanish after η.

3.2. An alternative initial condition. In the model above, we have assumed the remaining
infectious periods have a different distribution F0. That modeling approach is mostly due to lack of
information of infections for these initially infected individuals. An alternative modeling approach
is to assume that the infection times of the initially infected individuals are known. We assume
the laws of the infectious durations of all individuals are the same, given by the c.d.f. F . This
is reasonable since the model is for the same disease. Of course, there is no difference in the two
modeling approaches in the Markovian setting due to the lack of memory property of exponential
distributions.

Suppose that the initially infected individuals are infected at times τNj,0, j = 1, . . . , IN (0). Then

τ̃Nj,0 = −τNj,0, j = 1, . . . , IN (0), represent the amount of time that an initially infected individual
has been infected by time 0, that is, the age of infection at time 0. WLOG, we can assume that
0 > τN1,0 > · · · > τN

IN (0),0
. We use the same notation η0

j to denote the remaining infectious duration

for j = 1, . . . , IN (0). Then the distribution of η0
j will naturally depend on the elapsed infectious

time τ̃Nj,0. In particular, the conditional distribution of η0
j given that τ̃Nj,0 = s > 0 is given by

P(η0
j > t|τ̃Nj,0 = s) =

F c(t+ s)

F c(s)
, for t, s > 0. (3.13)

Note that the η0
j ’s are independent but not identically distributed. Set τ̃N0,0 = 0. Let IN (0, x) =

max{j ≥ 0 : τ̃Nj,0 ≤ x}. Assume that there exists x̄ > 0 such that IN (0) = IN (0, x̄).
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We will have the same description of the dynamics of IN (t) in (3.3), however, the variables η0
j

implicitly depend on τ̃Nj,0. One can explicitly write IN (t) as

IN (t) =

IN (0)∑
j=1

1η0
j>t

1τ̃Nj,0≤x̄
+

AN (t)∑
i=1

1τNi +ηi>t
, t ≥ 0. (3.14)

Instead of Assumption 3.1, we assume the following holds.

Assumption 3.3. There exists a deterministic function Ī(0, ·) ∈ (0, 1) such that ĪN (0, ·)→ Ī(0, ·)
in D in probability as N →∞. Then ĪN (0)→ Ī(0) := Ī(0, x̄) ∈ (0, 1) in probability. In addition,
we assume that (S̄N (0), R̄N (0))→ (S̄(0), R̄(0)) such that S̄(0) + Ī(0) + R̄(0) = 1.

Then it can be shown that the FLLN in Theorem 3.1 holds with the same S̄(t) in (3.4), and

Ī(t) =

∫ x̄

0

F c(t+ y)

F c(y)
Ī(0, dy) + λ

∫ t

0
F c(t− s)S̄(s)Ī(s)ds, (3.15)

R̄(t) = R̄(0) +

∫ x̄

0

(
1− F c(t+ y)

F c(y)

)
Ī(0, dy) + λ

∫ t

0
F (t− s)S̄(s)Ī(s)ds. (3.16)

This recovers the result in [81], specialized to the SIR model. In addition to the FLLN limits, one
can also establish the FCLT and obtain the Gaussian limits. Instead of Assumption 3.2, we assume
the following holds.

Assumption 3.4. There exist a deterministic functionĪ(0, ·) ∈ (0, 1) and a stochastic process

Î(0, ·), and a constant vector (S̄(0), R̄(0)) ∈ [0, 1]2 and a random vector (Ŝ(0), R̂(0)) such that

(ŜN (0), ÎN (0, ·), R̂N (0)) ⇒ (Ŝ(0), Î(0, ·), R̂N (0)) in R × D × R as N → ∞, where ÎN (0, ·) :=√
N(ĪN (0, ·)− Ī(0, ·)).

Then it can be shown that the FCLT in Theorem 3.2 holds with the same Ŝ(t) in (3.8), and

Î(t) =

∫ x̄

0

F c(t+ y)

F c(y)
Î(0, dy) + λ

∫ t

0
F c(t− s)

(
Ŝ(s)Ī(s) + S̄(s)Î(s)

)
ds+ Î0(t) + Î1(t),

R̂(t) = R̂(0)+

∫ x̄

0

(
1− F c(t+ y)

F c(y)

)
Î(0, dy)+λ

∫ t

0
F (t−s)

(
Ŝ(s)Ī(s) + S̄(s)Î(s)

)
ds+R̂0(t)+R̂1(t),

with Ī(t) is given in (3.15), and the limits Î0(t) and R̂0(t) are as given in Theorem 3.2. However,

the limits (Î0, R̂0) are continuous Gaussian processes with covariance functions: for t, t′ ≥ 0,

Cov(Î0(t), Î0(t′)) =

∫ x̄

0

(
F c(t ∨ t′ + y)

F c(y)
− F c(t+ y)

F c(y)

F c(t′ + y)

F c(y)

)
Ī(0, dy), (3.17)

Cov(R̂0(t), R̂0(t′)) =

∫ x̄

0

[(
1− F c(t ∧ t′ + y)

F c(y)

)
−
(

1− F c(t+ y)

F c(y)

)(
1− F c(t′ + y)

F c(y)

)]
Ī(0, dy),

(3.18)

Cov(Î0(t), R̂0(t′)) =

∫ x̄

0

[(
F c(t+ y)

F c(y)
− F c(t′ + y)

F c(y)

)
1t≤t′ −

F c(t+ y)

F c(y)

(
1− F c(t′ + y)

F c(y)

)]
Ī(0, dy).

(3.19)

This recovers the result in [83], specialized to the SIR model.
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3.3. The SEIR model. In the SEIR model, the population is split into four groups of individuals:
Susceptible, Exposed, Infectious and Recovered/Immune. Let SN (t), EN (t), IN (t) and RN (t) be the
numbers of susceptible, exposed and infectious and removed/immune individuals. Infections happen
in the same way as the SIR model, that is, through contacts of infectious individuals and susceptible
ones according to a Poisson process with rate λ. Thus, the instantaneous infection rate ΥN (t) is
given as in (3.1). Then the cumulative process of newly infected individuals in (0, t], AN (t), has the
same expression as in (3.2). Let LN (t) be the number of individuals that have become infectious
after being exposed by time t. We have the following balance equations: for each t ≥ 0,

N = SN (t) + EN (t) + IN (t) +RN (t),

EN (t) = EN (0) +AN (t)− LN (t),

IN (t) = IN (0) + LN (t)−RN (t).

Each newly infected individual i is associated with the time epoch of being exposed τNi , exposing
duration ξi and infectious duration ηi. Each initially infectious individual j = 1, . . . , IN (0), is asso-
ciated with the remaining infectious period η0

j . Each initially exposed individual k = 1, . . . , EN (0),

is associated with the remaining exposing time ξ0
k and the infectious duration η0

k.

Then, we can represent the dynamics of (SN , EN , IN , RN ) as follows: for t ≥ 0,

SN (t) = SN (0)−AN (t)

EN (t) =

EN (0)∑
k=1

1ξ0
k>t

+

AN (t)∑
i=1

1τNi +ξi>t
,

IN (t) =

IN (0)∑
j=1

1η0
j>t

+

EN (0)∑
k=1

1ξ0
k≤t

1ξ0
k+ηk>t

+

AN (t)∑
i=1

1τNi +ξi≤t1τNi +ξi+ηi>t
,

RN (t) =

IN (0)∑
j=1

1η0
j≤t

+

EN (0)∑
j=1

1ξ0
j+ηj≤t +

AN (t)∑
i=1

1τNi +ξi+ηi≤t.

Assume that (ξi, ηi)’s are i.i.d. bivariate random vectors with a joint distribution H(du, dv),
which has marginal c.d.f.’s G and F for ξi and ηi, respectively, and a conditional c.d.f. of ηi, F (·|u)
given that ξi = u. Assume that (ξ0

j , ηj)’s are i.i.d. bivariate random vectors with a joint distribution

H0(du, dv), which has marginal c.d.f.’s G0 and F for ξ0
j and ηj , respectively, and a conditional c.d.f.

of ηj , F0(·|u) given that ξ0
j = u. (Note that the pair (ξ0

j , ηj) is the remaining exposing time and the

subsequent infectious period for the ith individual initially being exposed.) In addition, we assume
that the sequences {ξi, ηi, i ≥ 1}, {ξ0

j , ηj , 1 ≤ j ≤ EN (0)} and {η0
j , 1 ≤ j ≤ IN (0)} are mutually

independent. We use the notation Gc = 1−G, and similarly for Gc0, F c and F c0 . Define

Φ0(t) :=

∫ t

0

∫ t−u

0
H0(du, dv) =

∫ t

0

∫ t−u

0
F0(dv|u)dG0(u),

Ψ0(t) :=

∫ t

0

∫ ∞
t−u

H0(du, dv) =

∫ t

0

∫ ∞
t−u

F0(dv|u)dG0(u) = G0(t)− Φ0(t),

and

Φ(t) :=

∫ t

0

∫ t−u

0
H(du, dv) =

∫ t

0

∫ t−u

0
F (dv|u)dG(u),

Ψ(t) :=

∫ t

0

∫ ∞
t−u

H(du, dv) =

∫ t

0

∫ ∞
t−u

F (dv|u)dG(u) = G(t)− Φ(t).
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Note that in the case of independent ξi and ηi, e have F (dv) = F (dv|u), and

Φ(t) =

∫ t

0
F (t− u)dG(u), Ψ(t) =

∫ t

0
F c(t− u)dG(u) = G(t)− Φ(t).

Similarly, with independent ξ0
j and ηj , we have F0(dv) = F0(dv|u) = F (dv), and

Φ0(t) =

∫ t

0
F (t− u)dG0(u), Ψ0(t) =

∫ t

0
F c(t− u)dG0(u) = G0(t)− Φ0(t).

Assumption 3.5. There exists a deterministic constant (S̄(0), Ē(0), Ī(0), R̄(0)) ∈ [0, 1]4 such that
S̄(0)+Ē(0)+Ī(0)+R̄(0) = 1, and as N →∞, (S̄N (0), ĒN (0), ĪN (0), R̄N (0))→ (S̄(0), Ē(0), Ī(0), R̄(0))
in probability.

Define the fluid-scaled processes as in the SIR model.

Theorem 3.3. Functional Law of Large Numbers for the SEIR model. Under Assump-
tion 3.5, we have (

S̄N , ĒN , ĪN , R̄N
)
→
(
S̄, Ē, Ī, R̄

)
in D4

in probability as n→∞, where the limit process (S̄, Ē, Ī, R̄) is the unique solution to the system of
deterministic equations: for each t ≥ 0,

S̄(t) = S̄(0)− Ā(t) = S̄(0)− λ
∫ t

0
S̄(s)Ī(s)ds,

Ē(t) = Ē(0)Gc0(t) + λ

∫ t

0
Gc(t− s)S̄(s)Ī(s)ds,

Ī(t) = Ī(0)F c0 (t) + Ē(0)Ψ0(t) + λ

∫ t

0
Ψ(t− s)S̄(s)Ī(s)ds,

R̄(t) = R̄(0) + Ī(0)F0(t) + Ē(0)Φ0(t) + λ

∫ t

0
Φ(t− s)S̄(s)Ī(s)ds.

The limit S̄ is in C and Ē, Ī and R̄ are in D. If G0 and F0 are continuous, then they are in C.

For the proof of Theorem 3.3, as well as for the associated Functional Central Limit Theorem, we
refer the reader to [64].
An alternative initial condition. For the initially exposed individuals, let τNj,0, j = 1, . . . , EN (0)

be the time being exposed, that is, τ̃Nj,0 = −τNj,0 is the corresponding elapsed duration of being

exposed at time zero. For the initially infectious individual k = 1, . . . , IN (0), let ςNk,0 be the time

when an initially infectious individual becomes infectious, and thus ς̃Nk,0 = −ςNk,0 is the elapsed

time at time 0 since being infectious. WLOG, assume that 0 > τN1,0 > · · · > τN
EN (0),0

(equivalently,

0 < τ̃N1,0 < · · · < τ̃N
EN (0),0

). Set τ̃N0,0 = 0. Then we can write EN (0, x) = max{j ≥ 0 : τ̃Nj,0 ≤ x}.
Similarly, assume that 0 > ςN1,0 > · · · > ςN

IN (0),0
(equivalently, 0 > ς̃N1,0 > · · · > ς̃N

IN (0),0
) and set

ς̃N0,0 = 0. Then we can write IN (0, x) = max{k ≥ 0 : ς̃Nk,0 ≤ x}. We also assume that there exist

constants 0 ≤ x̄e <∞ and 0 ≤ x̄ <∞ such that EN (0) = EN (0, x̄e) and IN (0) = IN (0, x̄) a.s.
For the initially infectious individuals, given their elapsed infection times ς̃Nk,0, k = 1, . . . , IN (0),

we assume that their remaining infectious times are conditional independent and have distributions
dependent on their own infection ages, that is, given that the ς̃Nk,0 = s,

P(η0
k > t|ς̃Nk,0 = s) =

F c(t+ s)

F c(s)
, t, s ≥ 0.

For the initially exposed individuals, the pairs {(ξ0
j , η

E,0
j )} are assumed to be conditionally inde-

pendent given the elapsed exposed times {τ̃Nj,0}, and the distribution of (ξ0
j , η

E,0
j ) depends on the
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τ̃Nj,0. In particular, given that τ̃Nj,0 = s, the joint distribution of (ξ0
j , η

E,0
j ) is given by H0(du, dv|s).

Assume that the marginal distribution of ξ0
j given that τ̃Nj,0 = s is given by

Gc(t|s) = 1−G(t|s) = P(ξ0
j > t|τ̃Nj,0 = s) =

Gc(t+ s)

Gc(s)
, t, s ≥ 0.

and the conditional distribution of ηE,0j given τ̃Nj,0 = s and ξ0
j = u, and given by F0(·|u, s) = F0(·|s+u).

Thus, H0(du, dv|s) = G(du|s)F0(dv|u, s) = G(du|s)F0(dv|u+ s).
Let

Φ0(t|s) :=

∫ t

0

∫ t−u

0
H0(du, dv|s) =

∫ t

0

∫ t−u

0
F0(dv|u, s)G(du|s),

Ψ0(t|s) :=

∫ t

0

∫ ∞
t−u

H0(du, dv|s) =

∫ t

0

∫ ∞
t−u

F0(dv|u, s)G(du|s) = G(t|s)− Φ0(t|s).

Similarly, with independent ξ0
j and ηE,0j given that τ̃Nj,0 = s, we have

Φ0(t|s) =

∫ t

0
F0(t− u|s)G(du|s), Ψ0(t|s) =

∫ t

0
F c0 (t− u|s)G(du|s) = G(t|s)− Φ0(t|s).

If, in addition, F0(·|s) = F (·), then

Φ0(t|s) =

∫ t

0
F (t− u)G(du|s), Ψ0(t|s) =

∫ t

0
F c(t− u)G(du|s) = G(t|s)− Φ0(t|s).

Instead of Assumption 3.5, we assume that there exist deterministic continuous nondecreasing func-
tions Ē(0, x) and Ī(0, x) for x ≥ 0 with Ē(0, 0) = 0 and Ī(0, 0) = 0 such that

(
ĒN (0, ·), ĪN (0, ·)

)
→(

Ē(0, ·), Ī(0, ·)
)

in D2 in probability as N →∞. Then (S̄N (0), ĒN (0), ĪN (0), R̄(0))→ (S̄(0), Ē(0),

Ī(0), R̄(0)) in R4
+ in probability as N → ∞, where Ē(0) = Ē(0, x̄e) ∈ (0, 1) and Ī(0) = Ī(0, x̄) ∈

(0, 1), and S̄(0) + R̄(0) = 1− Ē(0)− Ī(0) ∈ (0, 1). We can then prove the FLLN with the limit S̄(t)
given in Theorem 3.3, and the limits

Ē(t) =

∫ x̄e

0

Gc(t+ y)

Gc(y)
Ē(0, dy) + λ

∫ t

0
Gc(t− s)S̄(s)Ī(s)ds,

Ī(t) =

∫ x̄

0

F c(t+ y)

F c(y)
Ī(0, dy) +

∫ x̄e

0

∫ t

0

∫ ∞
t−u

H0(du, dv|y)Ē(0, dy)

+ λ

∫ t

0
Ψ(t− s)S̄(s)Ī(s)ds,

R̄(t) = R̄(0) +

∫ x̄

0

(
1− F c(t+ y)

F c(y)

)
Ī(0, dy) +

∫ x̄e

0

∫ t

0

∫ t−u

0
H0(du, dv|y)Ē(0, dy)

+ λ

∫ t

0
Φ(t− s)S̄(s)Ī(s)ds.

An FCLT can be similarly proved, which we omit for brevity.

3.4. Multipatch SIR model. Unlike in the case of Markov models, the LLN and CLT for non–
Marvovian model in discrete space is not an immediate Corollary of the general result. Multi–patch
non Marvovian SEIR models have recently been studied in [67]. We now present the SIR version
of that model.

The patches may refer to populations in different locations, for example, a densely populated city
and a less populated rural area. Individuals in each patch are infected locally and from distance,
namely, infectious individuals in each patch may infect any susceptible inside the patch (locally),
and susceptible individuals in each patch may get infected from “short” visits to other patches, and
are counted as infected in its own patch (from distance). The rate of infection is different in the
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patches (because of the differences in the density of population or the use of public transportations),
while the law of the infectious period is the same (same illness).

Let N be the total population size and L be the number of patches. For each i = 1, . . . , L, let
SNi (t), INi (t) and RNi (t) denote the numbers of individuals in patch i that are susceptible, infectious
and recovered at time t, respectively. Then we have the balance equation:

N =
L∑
i=1

(
SNi (t) + INi (t) +RNi (t)

)
, t ≥ 0 .

Assume that SNi (0) > 0,
∑L

i=1 I
N
i (0) > 0 and RNi (0) = 0, i = 1, . . . , L.

Let λi be the infection rate of patch i, i = 1, . . . , L. The instantaneous infection rate process of
patch i is given by,

ΥN
i (t) =

λiS
N
i (t)

∑L
j=1 κijI

N
j (t)

N1−γ(SNi (t) + INi (t) +RNi (t))γ
, i = 1, . . . , L ,

where κii = 1 and 0 ≤ κij < 1 for i 6= j represent the infectivity from distance, and 0 ≤ γ ≤ 1. In
the case γ = 1, the rate of encounters of individuals in patch i by an infectious (either of the same
patch, or from another patch) is fixed, equal to λi, whatever the total population in patch i at time
t may be. In case γ = 0, the same rate is proportional to the total population of patch i at time t.
In the intermediate cases, the rate lies between those two extremes. The FLLN is proved for for any
value of γ ∈ [0, 1], and the FCLT is only for γ ∈ [0, 1) in the general case, and for all γ ∈ [0, 1] in
the case that infections are only local, i.e., κij = 0 for i 6= j. By convention, we shall assume that
ΥN
i (t) = 0 whenever SNi (t) + INi (t) +RNi (t) = 0 if γ < 1, and the same in case γ = 1, i.e., 0

0 = 0 (it
is of course 0 if patch i is empty).

Let ANi (t) be the cumulative counting process of individuals in patch i that become infectious
during (0, t]. Then we can give a representation of the process ANi (t) via the standard Poisson
random measure Qi on R2

+ (with mean measure dsdu):

ANi (t) =

∫ t

0

∫ ∞
0

1u≤ΥNi (s)Qi(ds, du) , t ≥ 0 . (3.20)

Equivalently, we can write

ANi (t) = Ai,∗

(∫ t

0
ΥN
i (s)ds

)
, t ≥ 0 , (3.21)

where Ai,∗ is a unit-rate Poisson process, and independent from each other for i = 1, . . . , L. We let
{τNj,i, j ≥ 1} denote the successive jump times of the process ANi , for i = 1, . . . , L.

For the initially infected individuals, let η0
k,i, k = 1, . . . , INi (0), denote their remaining infectious

periods. Assume that {η0
k,i} are independent and identically distributed (i.i.d.) with a cumulative

distribution function (c.d.f.) F0, for all i, k. For the newly infected individuals ANi (t), let ηk,i, k ∈ N,
denote their remaining infectious periods. Assume that {ηk,i} are i.i.d. with a c.d.f. F , for all i, k.
Let F c0 = 1− F0 and F c = 1− F . It is reasonable to assume the same distribution for the infectious
periods of individuals of the different patches since it is the same illness.

Susceptible (resp. infectious, resp. removed) individuals migrate from patch i to patch j at rate
νS,i,j (resp. at rate νI,i,j , resp. at rate νR,i,j)). Let X(t) denote the location (i.e., the patch) at time
t ≥ 0 of an infected individual. It is clear that X(t) is a Markov process which alternates between
states 1, . . . , L. Define pi,j(t) = P(X(t) = j|X(0) = i) for i, j = 1, . . . , L and t ≥ 0. (Note that the
probability is the same for any starting time, for example, pi,j(t) = P(X(r + t) = j|X(r) = i) for
any r, t ≥ 0.)

We will use X0,k
i and Xk

i to indicate the associated process for individual k in patch i, for the
initially and newly infected ones, respectively. Note that they are all mutually independent and
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have the same law as described for the process X(t) above. Also note that the processes Xk
i start

from the time becoming infected τNk,i while the processes X0,k
i start from time 0.

We now provide a representation of the epidemic evolution dynamics:

SNi (t) = SNi (0)−ANi (t)−
L∑

`=1,` 6=i
PS,i,`

(
νS,i,`

∫ t

0
SNi (s)ds

)
+

L∑
`=1,` 6=i

PS,`,i

(
νS,`,i

∫ t

0
SN` (s)ds

)
,

INi (t) =

L∑
`=1

IN` (0)∑
k=1

1η0
k,`>t

1
X0,k
` (t)=i

+

L∑
`=1

AN` (t)∑
j=1

1τNj,`+ηj,`>t
1
Xj
` (t−τNj,`)=i

, (3.22)

RNi (t) = RNi (0) +

L∑
`=1

IN` (0)∑
k=1

1η0
k,`≤t

1
X0,k
` (η0

k,`)=i
+

L∑
`=1

AN` (t)∑
j=1

1τNj,`+ηj,`≤t
1
Xj
` (ηj,`)=i

−
L∑

`=1,`6=i
PR,i,`

(
νR,i,`

∫ t

0
RNi (s)ds

)
+

L∑
`=1,`6=i

PR,`,i

(
νR,`,i

∫ t

0
RN` (s)ds

)
,

where PS,i,`, PR,i,` , i, ` = 1, . . . , L, are all unit-rate Poisson processes, mutually independent, and

also independent of PA,i. Here, the first term in INi (t) represents the number of initially infected
individuals from patch ` = 1, . . . , L that remain infected and are in patch i at time t, and the second
term represents the number of newly infected individuals from patch ` = 1, . . . , L that remain
infected and are in patch i at time t. The first term in RNi (t) represents the number of initially
infected individuals from patch ` = 1, . . . , L that have recovered by time t and were in patch i at
the time of recovery, and the second term represents the number of newly infected individuals from
patch ` = 1, . . . , L that have recovered by time t, and were in patch i at the time of recovery.

It is not easy to take the limit as N →∞ in the formula (3.22). We give another representation
of the process INi (t).

Lemma 3.1. We have

INi (t) = INi (0) +ANi (t)−
L∑
`=1

IN` (0)∑
k=1

1η0
k,`≤t

1
X0,k
` (η0

k,`)=i
−

L∑
`=1

AN` (t)∑
j=1

1τNj,`+ηj,`≤t
1
Xj
` (ηj,`)=i

−
∑
` 6=i

PI,i,`

(
νI,i,`

∫ t

0
INi (s)ds

)
+
∑
` 6=i

PI,`,i

(
νI,`,i

∫ t

0
IN` (s)ds

)
,

where PI,i,j, i, j = 1, . . . , L, are all unit-rate Poisson processes, mutually independent, and also
independent of PA,i, PS,i,j and PR,i,j.

Let us comment on this formula. The first term counts the number of initially infectious individuals
in patch i, and the second term adds the number of those who get infected in patch i on the time
interval (0, t]. The last two terms describe the movements of infectious individuals out of i, and into
i. The third terms subtracts the number of individuals initially infected in any patch, who have
recovered before time t in patch i, and the fourth term subtracts the number of individuals infected
on the time interval (0, t] in any patch, who have recovered before time t in patch i.

Define a PRM Q̃`(ds, du, dv, dθ) on R3
+ × {1, . . . , L}, which is the sum of the Dirac masses at the

points (τNj,`, U
N
j,`, ηj,i, X

j
` (ηj,`)) with mean measure ds× du×F (dv)×µ`(v, dθ), where for each v > 0,

µ`(v, {`′}) = p`,`′(v), and an infection occurs at time τNj,` in case UNj,` ≤ ΥN
` (τNj,`).

We can then write for `, `′ = 1, . . . , L,

AN` (t)∑
j=1

1τNj,`+ηj,`≤t
1
Xj
` (ηj,`)=`′

=

∫ t

0

∫ ∞
0

∫ t−s

0

∫
{`′}

1u≤ΥN` (s)Q̃`,inf (ds, du, dv, dθ).
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Remark 3.4. If we set some migration rates to zero, then the corresponding patches could be
considered as sub-groups (like age groups) of the population, which interact and infect one another.

For any process ZN = SNi , I
N
i , or RNi , i = 1, . . . , L, let Z̄N := N−1ZN .

Assumption 3.6. There exist constants 0 < S̄i(0) ≤ 1, 0 ≤ Īi(0) < 1, 0 ≤ R̄i(0) ≤ 1 with∑L
i=1 Īi(0) > 0 such that

∑L
i=1(S̄i(0) + Īi(0) + R̄i(0)) = 1 and (S̄Ni (0), ĪNi (0), R̄Ni (0) i = 1, . . . , L)→

(S̄i(0), Īi(0), R̄i(0), i = 1, . . . , L) in probability in R3L as N →∞. In addition, assume that F0 is
continuous.

Theorem 3.4. Under Assumption 3.6,

(S̄Ni , Ī
N
i , R̄

N
i , i = 1, . . . , L) → (S̄i, Īi, R̄i, i = 1, . . . , L) in D3L as N →∞ , (3.23)

in probability, locally uniformly on [0, T ], where (S̄i(t), Īi(t), R̄i(t), i = 1, . . . , L) ∈ C3L is the unique
solution to the following set of deterministic integral equations:

S̄i(t) = S̄i(0)−
∫ t

0
Ῡi(s)ds+

L∑
`=1,`6=i

∫ t

0

(
νS,`,iS̄`(s)− νS,i,`S̄i(s)

)
ds ,

Īi(t) = Īi(0)−
∫ t

0

L∑
`=1

Ī`(0)p`,i(s)F0(ds) +

∫ t

0
Ῡi(s)ds

−
∫ t

0

L∑
`=1

(∫ t−s

0
p`,i(u)F (du)

)
Ῡ`(s)ds+

∑
` 6=i

∫ t

0

(
νI,`,iĪ`(s)− νI,i,`Īi(s)

)
ds , (3.24)

R̄i(t) = R̄i(0) +

∫ t

0

L∑
`=1

Ī`(0)p`,i(s)F0(ds) +

∫ t

0

∑
`

(∫ t−s

0
p`,i(u)F (du)

)
Ῡ`(s)ds

+

L∑
`=1,` 6=i

∫ t

0

(
νR,`,iR̄`(s)− νR,i,`R̄i(s)

)
ds ,

with Ῡi defined by

Ῡi(t) =
λiS̄i(t)

∑L
j=1 κij Īj(t)

(S̄i(t) + Īi(t) + R̄i(t))γ
.

For any process ZN , let ẐN :=
√
N(Z̄N − Z̄) be the diffusion-scaled process where Z̄N is the

fluid-scaled process and Z̄ is its limit.

Assumption 3.7. There exist constants 0 < S̄i(0) ≤ 1, 0 ≤ Īi(0) < 1 , 0 ≤ R̄i(0) < 1 with∑L
i=1 Īi(0) > 0 such that

∑L
i=1(S̄i(0)+Īi(0)+R̄i(0)) = 1, and random variables Ŝi(0), Îi(0) and R̂i(0),

i = 1, . . . , L, such that (ŜNi (0), ÎNi (0), R̂Ni (0), i = 1, . . . , L) ⇒ (Ŝi(0), Îi(0), R̂i(0), i = 1, . . . , L) in
R3L as N →∞. In addition, for i = 1, . . . , L,

sup
N

E
[
(ŜNi (0))2 + (ÎNi (0))2 + (R̂Ni (0))2

]
<∞ .

Theorem 3.5. Under Assumption 3.7, in the two cases (i) γ ∈ [0, 1) or (ii) γ ∈ [0, 1] and∑
j 6=1 κij = 0,

(ŜNi , Î
N
i , R̂

N
i , i = 1, . . . , L) → (Ŝi(t), Îi(t), R̂i(t), i = 1, . . . , L) in D3L as N →∞,
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where the limits are the unique solution to the following set of stochastic Volterra integral equations
driven by Gaussian processes:

Ŝi(t) = Ŝi(0)−
∫ t

0
Υ̂i(s)ds+

L∑
`=1,`6=i

∫ t

0
(νS,`,iŜ`(s)− νS,i,`Ŝi(s))ds

− M̂A,i(t) +
L∑

`=1,` 6=i

(
M̂S,`,i(t)− M̂S,i,`(t)

)
,

Îi(t) = Îi(0)

(
1−

L∑
`=1

∫ t

0
p`,i(s)F0(ds)

)
+

∫ t

0
Υ̂i(s)ds−

L∑
`=1

∫ t

0

∫ t−s

0
p`,i(u)F (du)Υ̂`(s)ds

+
L∑

`=1,`6=i

∫ t

0
(νI,`,iÎ`(s)− νI,i,`Îi(s))ds−

L∑
`=1

(
Î0
`,i(t) + Î`,i(t)

)
+ M̂A,i(t) +

L∑
`=1,` 6=i

(
M̂I,`,i(t)− M̂I,i,`(t)

)
, (3.25)

R̂i(t) = R̂i(0) + Îi(0)
L∑
`=1

∫ t

0
p`,i(s)F0(ds) +

L∑
`=1

∫ t

0

∫ t−s

0
p`,i(u)F (du)Υ̂`(s)ds

+

L∑
`=1,` 6=i

∫ t

0
(νR,`,iR̂`(s)− νR,i,`R̂i(s))ds

+
L∑
`=1

(
Î0
`,i(t) + Î`,i(t)

)
+

L∑
`=1,`6=i

(
M̂R,`,i(t)− M̂R,i,`(t)

)
.

Here, with the notation Ī(i)(t) =
∑L

j=1 κij Īj(t),

Υ̂i(t) =
λi

(S̄i(t)+Īi(t)+R̄i(t))(1+γ)

(
[(1− γ)S̄i(t)+Īi(t)+R̄i(t)]Ī(i)(t)Ŝi(t)

+
[
S̄i(t)(S̄i(t)+Īi(t)+R̄i(t))−γS̄i(t)Ī(i)(t)

]
Îi(t)−γS̄i(t)Ī(i)(t)R̂i(t)

)
+

S̄i(t)
∑

j 6=i κij Îj(t)

(S̄i(t) + Īi(t) + R̄i(t))γ
,

M̂A,i(t) = BA,i

(∫ t

0
Ῡi(s)ds

)
, M̂S,i,j(t) = BS,i,j

(
νS,i,j

∫ t

0
S̄i(s)ds

)
,

M̂I,i,j(t) = BI,i,j

(
νI,i,j

∫ t

0
Īi(s)ds

)
, M̂R,i,j(t) = BR,i,j

(
νR,i,j

∫ t

0
R̄i(s)ds

)
, i 6= j ,

with BA,i, BS,i,j, BI,i,j, BR,i,j being mutually independent standard Brownian motions, and with

the deterministic functions S̄i, Īi, R̄i being the limits in Theorem 3.4. The processes Î0
i,j and Îi,j are

continuous Gaussian processes with mean zero and covariance functions:

Cov(Î0
i,j(t), Î

0
i′,j′(t

′)) =

{
Īi(0)

( ∫ t∧t′
0 pi,j(s)F0(ds)−

∫ t
0 pi,j(s)F0(ds)

∫ t′
0 pi,j(s)F0(ds)

)
, if i = i′, j = j′,

0 , otherwise,
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Cov(Îi,j(t), Îi′,j′(t
′)) =

{∫ t∧t′
0

∫ t∧t′−s
0 pi,j(u)F (du)Ῡi(s)ds , if i = i′ , j = j′ ,

0 , otherwise.

In addition, Î0
i,j and Îi,j are independent, and also independent of the Brownian terms.

Remark 3.5. The analysis can be easily extended to the multi-patch SIS model, where the population
in each patch has susceptible and infectious groups, and when infectious individuals recover, they
become susceptible immediately. The epidemic evolution dynamics is described as

SNi (t) = SNi (0)−ANi (t) +
L∑
`=1

IN` (0)∑
k=1

1η0
k,`≤t

1
X0,k
` (η0

k,`)=i
+

L∑
`=1

AN` (t)∑
j=1

1τNj,`+ηj,`≤t
1
Xj
` (ηj,`)=i

−
L∑

`=1,`6=i
PS,i,`

(
νS,i,`

∫ t

0
SNi (s)ds

)
+

L∑
`=1,` 6=i

PS,`,i

(
νS,`,i

∫ t

0
SNi (s)ds

)
,

INi (t) =

L∑
`=1

IN` (0)∑
k=1

1t<η0
k,`
1
X0,k
` (t)=i

+

L∑
`=1

AN` (t)∑
j=1

1τNj,`+ηj,`>t
1
Xj
` (t−τNj,`)=i

,

where Ani is given as in (3.20) with ΥN
i (t) =

λiS
N
i (t)

∑L
j=1 κijI

N
j (t)

(SNi (t)+INi (t))γ
, for i = 1, . . . , L. Thus, in the

FLLN, we obtain the same limit Īi in (3.24) as in the multi-patch SIR model, and the limit S̄i(t):

S̄i(t) = S̄i(0)−
∫ t

0
Ῡi(s)ds

∫ t

0

∑
`

p`,i(s)F0(ds) +

∫ t

0

∑
`

(∫ t−s

0
p`,i(u)F (du)

)
Ῡ`(s)ds

+
L∑

`=1,`6=i

∫ t

0

(
νS,`,iS̄j(s)− νS,i,`S̄i(s)

)
ds ,

where Ῡi(t) :=
λiS̄i(t)

∑
j=1 κij Īj(t)

(S̄i(t)+Īi(t))γ
. Similarly in the FCLT, we obtain the same limit Îi as in (3.25)

for the multi-patch SIR model, and the limit Ŝi(t):

Ŝi(t) = Ŝi(0)−
∫ t

0
Υ̂i(s)ds+

L∑
`=1

∫ t

0

∫ t−s

0
p`,i(u)F (du)Υ̂`(s)ds+

L∑
`=1

(
Î0
`,i(t) + Î`,i(t)

)
+

L∑
`=1,`6=i

∫ t

0
(νS,`,iŜ`(s)− νS,i,`Ŝi(s))ds− M̂A,i(t) +

L∑
`=1,` 6=i

(
M̂S,`,i(t)− M̂S,i,`(t)

)
,

where

Υ̂i(t) =
λi

(S̄i(t) + Īi(t))(1+γ)

{
[(1− γ)S̄i(t) + Īi(t)]Ī(i)(t)Ŝi(t) + [S̄i(t)(S̄i(t) + Īi(t))− S̄i(t)Î(i)(t)]Îi(t)

}
+
λiS̄i(t)

∑
j 6=i Îj(t)

(S̄i(t) + Īi(t))γ
.

4. Models with varying infectivity and limiting integro–differential models

4.1. Stochastic model with varying infectivity, LLN and CLT. In this section, we shall
consider the same model as in the original work of Kermack and McKendrick [51], except that we
shall formulate a continuous time stochastic individual based model, which as the size N of the
population tends to ∞, converges to their model (but our model is slightly more general, since we
do not assume that the law of the infectious period is absolutely continuous).
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As usual, the population consists of three groups of individuals, susceptible, infected and recov-
ered. Let N be the population size, and SN (t), IN (t), RN (t) denote the sizes of the three groups,
respectively. We have the balance equation N = SN (t) + IN (t) + RN (t) for t ≥ 0. Assume that
SN (0) > 0, IN (0) > 0 and RN (0) are such that SN (0) + IN (0) + RN (0) = N . Infections occur
through interactions of infected individuals with the susceptibles, as in the standard models.

Each initially infected individual is associated with an infectivity process λ0
j (t), j = 1, . . . , IN (0),

which are assumed to be i.i.d. Each newly infected individual is associated with an infectivity process
λi(t), i ∈ N, which are also assumed to be i.i.d. We assume moreover that (SN (0), IN (0), RN (0)),
{λ0

j}j≥1 and {λi}i≥1 are mutually independent. Assume that λ0
j (0) = 0 and λi(0) = 0 with

probability one. These processes are only taking effect during the infectious periods. Define

η0
j := inf{r > 0 : λ0

j (t) = 0, ∀ t ≥ r}, ∀ j = 1 = 1, . . . , IN (0),

ηi := inf{r > 0 : λi(t) = 0, ∀ t ≥ r}, ∀ i ≥ 1.

By the i.i.d. assumption of {λ0
j (t)}, the variables η0

j , j = 1, . . . , IN (0), are also i.i.d., representing
the remaining infectious durations of the initially infected individuals. Similarly, ηi, i ∈ N are i.i.d.,
also independent of {λ0

j (t)}, and represent the infectious periods of the newly infected individuals.

Let F0 and F be the c.d.f.’s of the variables η0
j and ηi, respectively, F c0 = 1− F0 and F c = 1− F .

The total force of infection which is exerted on the susceptibles at time t can be written as

FN (t) =

IN (0)∑
j=1

λ0
j (t) +

AN (t)∑
i=1

λi(t− τNi ) , t ≥ 0. (4.1)

Thus, the instantaneous infectivity rate function at time t is

ΥN (t) = FN (t)× SN (t)

N
, t ≥ 0. (4.2)

Observe that in comparison with the ΥN (t) in (3.1) of the standard model, we have replaced λIN (t)
by the total force of infection FN (t) in the generalized model. It is clear that the standard SIR
model is the particular case of the present result, where λ(t) = λ1t<η, η being the random duration
of the infectious period. The cumulative infection process AN (t) is expressed exactly as in (3.2) ,
using the instantaneous infectivity rate function ΥN (t) in (4.2).

The epidemic dynamics of the model can be described in the same way as the standard SIR
models, that is,

SN (t) = SN (0)−AN (t) ,

IN (t) =

IN (0)∑
j=1

1η0
j>t

+

AN (t)∑
i=1

1τNi +ηi>t
,

RN (t) =

IN (0)∑
j=1

1η0
j≤t

+

AN (t)∑
i=1

1τNi +ηi≤t .

Remark 4.1. The SEIR model. Suppose that λi(t) = 0 for t ∈ [0, ξi), where ξi < ηi, and denote
I as the compartment of infected (not necessarily infectious) individuals. An individual who gets
infected at time τNi is first exposed during the time interval [τNi , τ

N
i + ξi), and then infectious during

the time interval (τNi + ξi, τ
N
i + ηi). The individual is infected during the time interval [τNi , τ

N
i + ηi).

At time τNi + ηi, he recovers. All what follows covers perfectly this situation. In other words, our
model acomodates perfectly an exposed period before the infectious period, which is important for
many infectious diseases, including the Covid–19. However, we distinguish only three compartments,
S for susceptible, I for infected (either exposed or infectious), R for recovered. Note that we could
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also describe the evolution of the numbers of individuals in the four compartments S, E, I and R as
it is done in [32].

We make the following assumptions on λ0 and λ.

Assumption 4.1. The random functions λ(t) (resp. λ0(t)), of which λ1(t), λ2(t), . . . (resp. λ0
1(t), λ0

2(t),
. . .) are i.i.d. copies, satisfy the following assumptions. There exists a constant λ∗ <∞ such that
supt∈[0,T ] max{λ0(t), λ(t)} ≤ λ∗ almost surely, and in addition there exist a given number k ≥ 1, a

random sequence 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξk = η and random functions λj ∈ C, 1 ≤ j ≤ k such that

λ(t) =

k∑
j=1

λj(t)1[ξj−1,ξj)(t) . (4.3)

We assume that for any T > 0, there exists ϕT ∈ C such that ϕT (0) = 0 and for any 0 ≤ s < t ≤ T ,
sup1≤j≤k |λj(t)− λj(s)| ≤ ϕT (t− s).

Let λ̄0(t) = E[λ0(t)] and λ̄(t) = E[λ(t)] for t ≥ 0. Also, let v0(t) = Var(λ0(t)) and v(t) = Var(λ(t))
for t ≥ 0.

Remark 4.2. In this model, R0 =
∫∞

0 λ̄(t)dt.

Theorem 4.1. Under Assumptions 3.1 and 4.1,(
S̄N , F̄N , ĪN , R̄N

)
→
(
S̄, F̄, Ī, R̄

)
in D4 as N →∞,

in probability, locally uniformly in t. The limits S̄ and F̄(t) are the unique solution of the following
system of Volterra integral equations

S̄(t) = S̄(0)−
∫ t

0
S̄(s)F̄(s)ds , (4.4)

F̄(t) = Ī(0)λ̄0(t) +

∫ t

0
λ̄(t− s)S̄(s)F̄(s)ds , (4.5)

and the limits Ī and R̄ are given by the following integral equations:

Ī(t) = Ī(0)F c0 (t) +

∫ t

0
F c(t− s)S̄(s)F̄(s)ds ,

R̄(t) = R̄(0) + Ī(0)F0(t) +

∫ t

0
F (t− s)S̄(s)F̄(s)ds .

Suppose now that F and F0 have densities f and f0. Then we can rewrite the above deterministic
model as follows. For the convenience of the comparison with the model in [51], we replace the set of
variables (S̄(t), F̄(t), Ī(t), R̄(t)) by the set of variables (S̄(t), Ῡ(t), Ī(t), R̄(t)), where Ῡ(t) = S̄(t)F̄(t).

Ῡ(t) = −dS̄(t)

dt
dS̄(t)

dt
= −S̄(t)

[
λ̄0(t)Ī(0) +

∫ t

0
λ̄(t− s)Ῡ(s)ds

]
,

dĪ(t)

dt
= −Ī(0)f0(t) + Ῡ(t)−

∫ t

0
f(t− s)Ῡ(s)ds,

dR̄(t)

dt
= Ī(0)f0(t) +

∫ t

0
f(t− s)Ῡ(s)ds

Remark 4.3. Comparison with the Kermack–McKendrick model If we assume that F0 ≡ F ,
then the last system of equations is exactly the system of equations (12), (13), (15) and (14) on page
704 of [51]. Indeed, it follows from the computation at the start of Section 3.1 that the function Bt
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of [51] is our F c(t), while their Ct is our f(t). Moreover their At is our λ̄(t) (indeed, one can think
of our λ(t) as being the product of a deterministic function of t (their φt) multiplied by 1η>t, so
that λ̄(t) = φtF

c(t).

We now sketch the proof of Theorem 4.1.

Proof. Thanks to Assumption 4.1, it is clear that ῩN (t) ≤ λ∗. Hence the first step of the proof of
Theorem 3.1 remains valid here, i.e., we have the convergence, along a subsequence, of (S̄N , ĀN ).
We next consider the sequence

F̄N (t) =

IN (0)∑
j=1

λ0
j (t) +

AN (t)∑
i=1

λi(t− τNi ) = F̄N0 (t) + F̄N1 (t) .

Concerning the first term F̄N0 , as in the proof of Theorem 3.1, we first consider

F̆N0 (t) :=

NĪ(0)∑
j=1

λ0
j (t),

which converges thanks to a LLN for random elements in D, see Theorem 1 in [72]. The difference

F̄N0 (t)− F̆N0 (t) is treated as in the proof of Theorem 3.1. Concerning the term F̄N1 , we first consider

F̆N1 (t) := N−1

AN (t)∑
i=1

λ̄(t− τNi ) =

∫ t

0
λ̄(t− s)dĀN (s) .

The argument for the weak convergence of that sequence towards F̄(t) =
∫ t

0 λ̄(t− s)dĀ(s), along

any subsequence along which ĀN ⇒ Ā is similar to a similar result in the proof of Theorem 3.1,
with slightly more tricky arguments. For the details, as well as for the proof of the fact that
F̄N1 (t) − F̆N1 (t) → 0, we refer to Section 4 of [32]. It remains to prove that (ĪN (t), R̄N (t)) ⇒
(Ī(t), R̄(t)), which requires similar arguments as in the first steps of the proof. Finally, one can show
that the limiting equation has a unique deterministic solution, hence the whole sequence converges,
and the convergence is in probability. �

For the FCLT, we need the following additional conditions on the random infectivity functions.

Assumption 4.2. In addition to the conditions in Assumption 4.1, the random functions λ(t)
(resp. λ0(t)) satisfy the following conditions.

(i) There exist nondecreasing functions φ and ψ in C and α > 1/2 and β > 1 such that for all

0 ≤ r ≤ s ≤ t, denoting λ̆0(t) = λ0(t)− λ̄0(t),

(a) E
[(
λ̆0(t)− λ̆0(s)

)2] ≤ (φ(t)− φ(s))α ,

(b) E
[(
λ̆0(t)− λ̆0(s)

)2(
λ̆0(s)− λ̆0(r)

)2] ≤ (ψ(t)− ψ(r))β.

(ii) Either λ ∈ C and satisfies (4.6)–(4.7) below, or else it satisfies (4.3) and the additional
conditions below. There exists a nondecreasing function ϕ ∈ C satisfying

ϕ(r) ≤ Crα, with α > 1/2 and C > 0 arbitrary, (4.6)

such that
|λj(t)− λj(s)| ≤ ϕ(|t− s|), a.s., (4.7)

for all t, s ≥ 0, 1 ≤ j ≤ k. Also, if Fj denotes the c.d.f. of the r.v. ξj, then the exist C ′

and ρ > 0 such that for any 0 ≤ j ≤ k, 0 ≤ s < t,

Fj(t)− Fj(s) ≤ C ′(t− s)ρ ,
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and in addition, for any 1 ≤ j ≤ k, r > 0,

P(ξj − ξj−1 ≤ r|ξj−1) ≤ C ′rρ .

Theorem 4.2. Under Assumptions 3.2, 4.1 and 4.2,(
ŜN , F̂N , ÎN , R̂N

)
⇒
(
Ŝ, F̂, Î, R̂

)
in D4 as N →∞ .

The limit process (Ŝ, F̂) is the unique solution of the following system of stochastic integral equations:

Ŝ(t) = Ŝ(0)− M̂A(t) +

∫ t

0
Υ̂(s)ds, (4.8)

F̂(t) = Î(0)λ̄0(t) + F̂0(t) + F̂1(t) + F̂2(t) +

∫ t

0
λ̄(t− s)Υ̂(s)ds, (4.9)

where

Υ̂(t) = Ŝ(t)F̄(t) + S̄(t)F̂(t), (4.10)

and S̄(t) and F̄(t) are given by the unique solutions to the integral equations (4.4) and (4.5), M̂A,

F̂0, F̂1 and F̂2 are centered Gaussian processes which are globally independent of (Ê(0), Î(0)).

Moreover, the processes in (F̂0, F̂1, (F̂2, M̂A)) are independent, and the covariances of each of those
four processes (the last one being 2–dimensional) are given as follows :

Cov(F̂0(t), F̂0(t′)) = Ī(0)Cov(λ0(t), λ0(t′)),

Cov(F̂1(t), F̂1(t′)) =

∫ t∧t′

0
Cov(λ(t− s), λ(t′ − s))S̄(s)F̄(s)ds,

Cov(F̂2(t), F̂2(t′)) =

∫ t∧t′

0
λ̄(t− s)λ̄(t′ − s)S̄(s)F̄(s)ds,

Cov(M̂A(t), M̂A(t′)) =

∫ t∧t′

0
S̄(s)F̄(s)ds,

Cov(M̂A(t), F̂2(t′)) =

∫ t∧t′

0
λ̄(t′ − s)S̄(s)F̄(s)ds .

Concerning the pair (M̂A, F̂2), M̂A is a non–standard Brownian motion, and F̂2(t) =
∫ t

0 λ̄(t −
s)M̂A(ds). Ŝ has continuous paths, and if λ̄0 and λ̄0,I are in C, then F̂ is also continuous.

The limits (Î , R̂) are given by

Î(t) = Î(0)F c0 (t) + λ

∫ t

0
F c(t− s)Υ̂(s)ds+ Î0(t) + Î1(t), (4.11)

R̂(t) = R̂(0) + Î(0)F0(t) + λ

∫ t

0
F (t− s)Υ̂(s)ds+ R̂0(t) + R̂1(t), (4.12)

where (Î0, R̂0), independent of Î(0), is a mean-zero two-dimensional Gaussian process with the

covariance functions as given in (3.11), and the limits (Î1, R̂1), independent of (F̂0, Î0, R̂0) and Î(0),
are a continuous two-dimensional Gaussian process with mean zero and covariance functions, for
t, t′ ≥ 0,

Cov(Î1(t), Î1(t′)) =

∫ t∧t′

0
F c(t ∨ t′ − s)S̄(s)F̄(s)ds,

Cov(R̂1(t), R̂1(t′)) =

∫ t∧t′

0
F (t ∧ t′ − s)S̄(s)F̄(s)ds,
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Cov(Î1(t), R̂1(t′)) =

∫ t

0
(F (t′ − s)− F (t− s))1(t′ > t)S̄(s)F̄(s)ds.

In addition, for t, t′ ≥ 0,

Cov(M̂A(t), Î1(t′)) =

∫ t∧t′

0
F c(t′ − s)S̄(s)F̄(s)ds,

Cov(M̂A(t), R̂1(t′)) = λ

∫ t∧t′

0
F (t′ − s)S̄(s)F̄(s)ds,

and

Cov(F̂0(t), Î0(t′)) = Ī(0)
(
E
[
λ0(t)1η0>t′

]
− λ̄0(t)F c0 (t′)

)
,

Cov(F̂0(t), R̂0(t′)) = Ī(0)
(
E
[
λ0(t)1η0≤t′

]
− λ̄0(t)F0(t′)

)
,

Cov(F̂1(t), Î1(t′)) =

∫ t∧t′

0

(
E
[
λ(t− s)1η>t′−s

]
− λ̄(t− s)F c(t′ − s)

)
S̄(s)F̄(s)ds ,

Cov(F̂1(t), R̂1(t′)) =

∫ t∧t′

0

(
E
[
λ(t− s)1η≤t′−s

]
− λ̄(t− s)F (t′ − s)

)
S̄(s)F̄(s)ds ,

Cov(F̂2(t), Î1(t′)) =

∫ t∧t′

0
λ̄(t− s)F c(t′ − s)S̄(s)F̄(s)ds ,

Cov(F̂2(t), R̂1(t′)) =

∫ t∧t′

0
λ̄(t− s)F (t′ − s)S̄(s)F̄(s)ds .

An alternative initial condition. In the above formulation, we have assumed that for the initially
infected individuals, their infectivity functions λ0

j (·) are i.i.d., and may follow a different law from

those of the newly infected individuals λi(·), hence, the distribution F0 of the remaining infected
periods η0

j generated from λ0
j (·), is different from F of the infected periods ηi generated from λi(·).

However, we can assume that the random infectivity functions of all individuals, {λ0
j (·)}j and

{λi(·)}i are all i.i.d., while for the initially infected individuals, the time epochs of them becoming
infected before time 0 are known, τNj,0, j = 1, . . . , IN (0). Then τ̃Nj,0 = −τNj,0, is the elapsed time at

time 0 since infection. Set τ̃N0,0 = 0, and let IN (0, x) = max{j ≥ 0 : τ̃Nj,0 ≤ x}. Assume that there

exists x̄ ∈ R+, such that IN (0) = IN (0, x̄). Let λ̄(t) = E[λ0
j (t)] = E[λi(t)] for t ≥ 0.

The remaining infected period is given by η0
j = inf{t > 0 : λ0

j (τ̃
N
j,0 + r) = 0,∀r ≥ t}. It depends

on the elapsed infection time τ̃Nj,0, and independent from the remaining infected durations of the

other individuals due to the i.i.d. assumption of {λ0
j (·)}j . Given that τ̃Nj,0 = s > 0, the distribution

of η0
j is given as in (3.13), that is,

P(η0
j > t|τ̃Nj,0 = s) =

F c(t+ s)

F c(s)
, for t, s > 0.

Instead of (4.1), the total force of infectivity at time t can be written as

FN (t) =

IN (0)∑
j=1

λ0
j (τ̃

N
j,0 + t)1τ̃Nj,0≤x̄

+

AN (t)∑
i=1

λi(t− τNi ) , t ≥ 0.

All the other processes have the same representations. Recall that the process IN (t) is given as in
(3.14) with the variables η0

j implicitly depending on τ̃Nj,0.
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Under Assumption 3.3, we can show that the FLLN holds with S̄(t) in (4.4), and the limit F̄(t)
is given as

F̄(t) =

∫ x̄

0
λ̄(y + t)Ī(0, dy) +

∫ t

0
λ̄(t− s)S̄(s)F̄(s)ds , (4.13)

and the limits Ī and R̄ are given by

Ī(t) =

∫ x̄

0

F c(t+ y)

F c(y)
Ī(0, dy) +

∫ t

0
F c(t− s)S̄(s)F̄(s)ds,

R̄(t) = R̄(0) +

∫ x̄

0

(
1− F c(t+ y)

F c(y)

)
Ī(0, dy) +

∫ t

0
F (t− s)S̄(s)F̄(s)ds.

Under Assumption 3.4, we can show that the FCLT holds with the limit Ŝ(t) in (4.8), the limit

Ĝ(t) given by

F̂(t) =

∫ x̄

0
λ̄(y + t)dÎ(0, y) + F̂0(t) + F̂1(t) + F̂2(t) +

∫ t

0
λ̄(t− s)Υ̂(s)ds,

where Υ̂(t) is given in (4.10), and S̄(t) and F̄(t) are given by the unique solutions to the integral

equations (4.4) and (4.13), F̂0 is a continuous Gaussian process with mean zero and covariance
function: for t, t′ ≥ 0,

Cov(F̂0(t), F̂0(t′)) =

∫ x̄

0
Cov(λ(y + t), λ(y + t′))Ī(0, dy),

and the other limits M̂A, F̂1 and F̂2 are centered Gaussian processes as given in Theorem 4.2.
The limits (Î , R̂) are given by

Î(t) =

∫ x̄

0

F c(t+ y)

F c(y)
Î(0, dy) +

∫ t

0
F c(t− s)Υ̂(s)ds+ Î0(t) + Î1(t),

R̂(t) = R̂(0) +

∫ x̄

0

(
1− F c(t+ y)

F c(y)

)
Î(0, dy) +

∫ t

0
F (t− s)Υ̂(s)ds+ R̂0(t) + R̂1(t),

where (Î0, R̂0) are continuous Gaussian processes with covariance functions given in (3.17)–(3.19).

In addition, F̂0 and Î0(t), R̂0(t) have covariance functions: for t, t′ ≥ 0,

Cov(F̂0(t), Î0(t′)) =

∫ x̄

0
E[λ(y + t)1η0|τ0=y>t′ ]Ī(0, dy)−

∫ x̄

0
λ̄(y + t)Ī(0, dy)

∫ x̄

0

F c(t′ + y)

F c(y)
Ī(0, dy) ,

Cov(F̂0(t), R̂0(t′)) =

∫ x̄

0
E[λ(y + t)1η0|τ0=y≤t′ ]Ī(0, dy)

−
∫ x̄

0
λ̄(y + t)Ī(0, dy)

∫ x̄

0

(
1− F c(t′ + y)

F c(y)

)
Ī(0, dy) .

4.2. The early phase of the epidemic. In this subsection we follow again [32], to which we refer
the reader for the proofs. Theorem 4.1 shows that the deterministic system of equations (4.4)-(5.7)
accurately describes the evolution of the stochastic process defined in the previous subsection when
the initial number of infectious individuals is of the order of N . But epidemics typically start with
only a handful of infectious individuals, and it takes some time before the epidemic enters the regime
of Theorem 4.1. Exactly how long this takes depends on the population size N and on the growth
rate of the epidemic. To determine this growth rate, we study the behavior of the stochastic process
when the initial number of infectious individuals is kept fixed as N →∞.
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Recall that R0 =
∫∞

0 λ̄(t)dt, and let ρ ∈ R be the unique solution of∫ ∞
0

λ(t)e−ρtdt = 1. (4.14)

If R0 ≤ 1, the total number of infected individuals remains small as N → ∞, while if R0 > 1
(which we assume in what follows), with positive probability a major outbreak takes place, i.e., a
positive fraction of the N individuals is infected at some point during the course of the epidemic.
It is well–known, see e.g. section 1.2 in [23], that during its early stage, an epidemic can be well
approximated by a continuous time branching process. Indeed, each infectious infects individuals
in the population, and as long as almost all the individuals in the population are susceptible, the
probability that two distinct infectious individuals try to infect the same susceptible is close to 0.
As a result the “progenies” of the various infectious individuals are essentially independent, thus
the branching property. Of course, that approximation breaks down as soon as a significant number
of individuals have been hit by the disease. Using an approximation of the early phase by a (in
our case non–Markov) branching process, it has been shown in [32] that on the event that a major
outbreak takes place, for any ε < 1−R−1

0 , if TNε denotes the first time at which the proportion of
infected individuals is at least ε, as N →∞, TNε = 1

ρ log(N) +O(1), which means an exponential

growth with rate ρ.
Next one can show that, still at the start of the epidemic, our LLN deterministic model also

grows at the same rate ρ. More precisely, if we assume that we can replace S̄(t) by 1, the LLN
model becomes (after remultiplication by N) the following linear system:

F(t) = I(0)λ̄0(t) +

∫ t

0
λ̄(t− s)F(s)ds ,

I(t) = I(0)F c0 (t) +

∫ t

0
F c(t− s)F(s)ds ,

R(t) = R(0) + I(0)F0(t) +

∫ t

0
F (t− s)F(s)ds .

In the next statement, ρ is specified by (4.14).

Theorem 4.3. We assume that Assumption 4.1 is valid. In case ρ < 0, we suppose that E
[
e−ρη

]
<

∞ and define

i :=

∫ ∞
0

F c(s)ρe−ρsds, r := 1− i,

and

λρ(t) :=

∫∞
0 λ(t+ s)e−ρsds∫∞

0 F c(s)e−ρsds
, F cρ (t) :=

∫∞
0 F c(t+ s)e−ρsds∫∞

0 F c(s)e−ρsds
.

Suppose first that R0 > 1, hence ρ > 0. Then, if λ
0

= λρ and F0 = Fρ, the above linear system
admits the following solution

F(t) = ρ eρt, I(t) = i eρt, R(t) = r eρt t ≥ 0.

If, however, R0 < 1, hence ρ < 0, then the above linear system (with λ
0

= λρ and F0 = Fρ) admits
the following solution

I(t) = −ρeρt, I(t) = −ieρt, R(t) = R(0) + r(1− eρt), t ≥ 0.

Let us suppose that λ is only known up to a constant factor µ > 0, i.e.,

λ(t) = µ g(t), t ≥ 0,
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where µ is unknown but g is known (for example from medical data on viral shedding). We now
assume w.l.o.g. that g has been normalized in such a way that

∫∞
0 g(t)dt = 1. We can then estimate

µ (and R0) from the growth rate ρ, which can be measured easily at the beginning of the epidemic
(ρ = log(2)/d, where d is the doubling time of the daily number of newly infected individuals), using
the relation (4.14). The following is thus a corollary of Theorem 4.3.

Corollary 4.1. Let ρ be the growth rate of the number of infected individuals. Then

R0 = µ =

(∫ ∞
0

g(t)e−ρtds

)−1

. (4.15)

Note that R0 can be thought of as the growth rate of the epidemic from one generation to the
next, while ρ is the growth rate of the epidemic in real time. The formula (4.15) is formula (2.7) in
[80].

4.3. Application to the Covid–19 epidemic in France. We now explain how the type of model
described in this section can be used to model the Covid–19 epidemic. As we have seen, the increase
in realism with respect to the classical “Markovian” models (where the infectivity is constant
and fixed across the population, and the Exposed and Infectious periods follow an exponential
distribution) is paid by replacing a system of ODEs by a system of Volterra integral equations.
However, we have a small benefit in that the flexibility induced by the fact that the law of λ is
arbitrary allows us to reduce the number of compartments in the model, so that we can replace a
system of ODEs by a system of Volterra type equations of smaller dimension.

S E

U

R

RemI

S RI

Susceptible

Exposed

No longer infectious

Infectious

Figure 1. Flow chart of the SEIRU model of [57] and of our SIR model. We are able
to replace the six compartments of the SEIRU model with only three compartments
by using the equations described in Theorem 4.1.

To be more specific, let us describe the SEIRU model of [57]. An individual who is infected
is first “Exposed” E, then “Infectious” I. Soon after, the infectious individual either develops
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significant symptoms, and then will be soon “Reported” R, and isolated so that he/she does not
infect any more; while the alternative is that this infectious individual is asymptomatic: he/she
develops no or very mild symptoms, so remains “Unreported” U, and continues to infect susceptible
individuals for a longer period. Both unreported and reported cases eventually enter the “Removed”
(Rem) compartment. In this model, there are 6 compartments: S like susceptible, E like exposed,
I like infectious, R like reported, U like unreported, and Rem like removed.

Our approach allows us to have a more realistic version of this model with only 3 compartments
(see Figure 1): S like susceptible, I like infected (first exposed, then infectious), R like removed
(which includes the Reported individuals, since they do not infect any more, and will recover soon or
later). As already explained, we do not need to distinguish between the exposed and infectious, since
the function λ is allowed to remain equal to zero during a certain time interval starting from the time
of infection. More importantly, since the law of λ is allowed to be bimodal, we can accommodate in
the same compartment I individuals who remain infectious for a short duration of time, and others
who will remain infectious much longer (but probably with a lower infectivity). Moreover, since we
know, see [42], that the infectivity decreases after a maximum which in the case of symptomatic
individuals, seems to take place shortly before symptom onset, our varying infectivity model allows
us to use a model corresponding to what the medical science tells us about this illness. Note that
our version of the SEIRU model from [57] is the same as the one which we have already used in [33]
(except that there we had to distinguish the E and the I compartments). However, the main novelty
here is that the infectivity decreases after a maximum near the beginning of the infectious period.

ζ ζ+ η
time since infection

g(t)

Figure 2. Profile of the function g(t) used in our computation of R0 as a function
of ζ and η. The function increases linearly (up to a value 1 or α depending on
whether the individual is reported or unreported) on the interval [ζ, ζ + η/5] and
then decreases linearly on [ζ + η/5, ζ + η].

More precisely, we consider that t 7→ g(t) increases linearly on the time interval [ζ, ζ+η/5], from 0
to 1 for reported individuals, and from 0 to α for unreported individuals, and that it then decreases
linearly to 0 on the interval [ζ + η/5, ζ + η], as shown on Figure 2. We then take (X1, X2) a pair of
independent Beta random variables with parameters (2, 2) and we assume that

ζ = 2 + 2X1, η =

{
3 +X2 for reported individuals,

8 + 4X2 for unreported individuals.

This joint law of (ζ, η) is the one that was used in [33] to study the Covid–19 epidemic in France
(where the infectivity was assumed to be constant and uniform among individuals in this work),
and these values are compatible with the results described in [42].
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5. Models with varying infectivity and limiting PDE models

Kermack and McKendrick pioneered the introduction of PDE models to describe infection age
dependent infectivity and recovery age dependent susceptibility in their 1932 paper [52]. Here we
shall describe the PDE model for an infection age dependent infectivity, in the framework of a
SIR/SEIR, i.e., where the recovered individuals do not loose their immunity. As in the rest of
this paper, we shall obtain the deterministic (here PDE/integral equation) model as a LLN limit of
individual based stochastic models. The underlying assumptions are the same as in the previous
section, except for a slight modification concerning the initially infected individuals. But we shall
give a different description of the model, as we shall see now.

We have the same compartments as in Section 4.1, SN (t), IN (t) and RN (t) are as above, and
again SN (t) + IN (t) +RN (t) ≡ N . Let now IN (t, x) be the number of infected individuals at time
t that have been infected for a duration less than or equal to x. Note that for each t, IN (t, x) is
nondecreasing in x, which is the distribution of IN (t) over the infection-ages. Let AN (t) be the
cumulative number of newly infected individuals in (0, t], with the infection times {τNi : i ∈ N}.
Each individual who has been infected after time 0 has an infectivity process λi(·), and we assume
that these random functions are i.i.d.. Let ηi = inf{t > 0 : λi(r) = 0, ∀r ≥ t} be the infected period
corresponding to the individual that gets infected at time τNi . The ηi’s are i.i.d., with a cumulative
distribution function (c.d.f.) F . Let F c = 1− F .

Let {τNj,0, j = 1, . . . , IN (0)} be the times at which the initially infected individuals at time 0 were

infected. Then τ̃Nj,0 = −τNj,0, j = 1, . . . , IN (0), represents the age of infection of individual j at time

0. W.l.o.g., we assume that 0 > τN1,0 > τN2,0 > · · · > τN
IN (0),0

(or equivalently 0 < τ̃N1,0 < τ̃N2,0 < · · · <
τ̃N
IN (0),0

). Set τ̃N0,0 = 0. We define IN (0, x) = max{j ≥ 0 : τ̃Nj,0 ≤ x}, the number of initially infected

individuals that have been infected for a duration less than or equal to x at time 0. Assume that
there exists 0 ≤ x̄ <∞ such that IN (0) = IN (0, x̄) a.s.

To each initially infected individual j = 1, . . . , IN (0), is associated an infectivity process λ0
j (·),

and we assume that they are also i.i.d., with the same law as λi(·). For each j, let η0
j = inf{t > 0 :

λ0
j (τ̃

N
j,0 + r) = 0, ∀r ≥ t} be the remaining infectious period, which depends on the elapsed infection

time τ̃Nj,0, but is independent of the elapsed infection times of other initially infected individuals. In

particular, the conditional distribution of η0
j given that τ̃Nj,0 = s > 0 is given by

P(η0
j > t|τ̃Nj,0 = s) =

F c(t+ s)

F c(s)
, for t, s > 0.

Note that the η0
j ’s are independent but not identically distributed.

For an initially infected individual j = 1, . . . , IN (0), the infection age is given by τ̃Nj,0 + t for

0 ≤ t ≤ η0
j , during the remaining infectious period. For a newly infected individual i, the infection

age is given by t− τNi , for τNi ≤ t ≤ τNi + ηi during the infectious period. Note that λi(·) and λ0
j (·)

are equal to zero on R−.
The aggregate force of infection at time t is given by

FN (t) =

IN (0)∑
j=1

λ0
j (τ̃

N
j,0 + t) +

AN (t)∑
i=1

λi(t− τNi ), t ≥ 0. (5.1)

We have again (4.2) and (3.2). Moreover the total number of individuals infected at time t that
have been infected for a duration which is less than or equal to x:

IN (t, x) = IN0 (t, x) + IN1 (t, x), t ≥ 0, x ≥ 0,
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where IN0 (t, x) is the number of initially infected individuals who have been infected for a duration
less than or equal to x at time t, which is given as

IN0 (t, x) =

IN (0)∑
j=1

1η0
j>t

1τ̃Nj,0≤(x−t)+ =

IN (0,(x−t)+)∑
j=1

1η0
j>t

, t, x ≥ 0, (5.2)

and IN1 (t, x) is the number of newly infected individuals who have been infected for a duration less
than or equal to x at time t, which equals

IN1 (t, x) =

AN (t)∑
i=1

1(t−x)+<τNi ≤t
1τNi +ηi>t

=

AN (t)∑
i=1

1τNi +ηi>t
−
AN ((t−x)+)∑

i=1

1τNi +ηi>t

=

AN (t)∑
i=AN ((t−x)+)+1

1τNi +ηi>t
. (5.3)

Note that for each t, IN0 (t, ·) has support over [0, t+ x̄] and IN1 (t, ·) has support over [0, t]. Thus

IN (t) = IN0 (t, t+ x̄) + IN1 (t, t) = IN (t,∞), t ≥ 0.

The sample paths of IN (t, x) belong to the space DD, denoting D(R+;D(R+;R)), the D-valued
D space.

Define the fluid-scaled processes X̄N = N−1XN for any processes XN . We make the following
assumptions on the initial quantities.

Assumption 5.1. There exists a deterministic continuous nondecreasing function Ī(0, x) for
x ≥ 0 with Ī(0, 0) = 0 such that ĪN (0, ·) → Ī(0, ·) in D in probability as N → ∞. Let Ī(0) =
Ī(0, x̄). Then (ĪN (0), S̄N (0), R̄N (0))→ (Ī(0), S̄(0), R̄(0)) ∈ (0, 1)3 in probability as N →∞ where
S̄(0) + Ī(0) + R̄(0) = 1.

Remark 5.1. Suppose now that the r.v.’s {τNj,0}1≤j≤N are not ordered, but rather i.i.d., with a
common distribution function G which we assume to be continuous. It then follows from the law of
large numbers that Assumption 5.1 holds in this case.

We have the following Law of Large Numbers :

Theorem 5.1. Under Assumptions 4.1 and 5.1, as N →∞,(
S̄N ,F

N
, ĪN , R̄N

)
→
(
S̄,F, Ī, R̄

)
in probability, locally uniformly in t and x,

where the limits are the unique continuous solution to the following set of integral equations, for
t, x ≥ 0,

S̄(t) = S̄(0)−
∫ t

0
Ῡ(s)ds, (5.4)

F(t) =

∫ x̄

0
λ̄(y + t)Ī(0, dy) +

∫ t

0
λ̄(t− s)Ῡ(s)ds , (5.5)

Ī(t, x) =

∫ (x−t)+

0

F c(t+ y)

F c(y)
Ī(0, dy) +

∫ t

(t−x)+

F c(t− s)Ῡ(s)ds, (5.6)

R̄(t) = R̄(0) +

∫ x̄

0

(
1− F c(t+ y)

F c(y)

)
Ī(0, dy) +

∫ t

0
F (t− s)Ῡ(s)ds, (5.7)

with
Ῡ(t) = S̄(t)F(t) = Īx(t, 0) . (5.8)



39

The function Ī(t, x) is nondecreasing in x for each t, the integrals w.r.t. dxĪ(0, y) and dxĪ(t, x)
are Lebesgue-Stieltjes integrals with respect to the measure which coincides with the distributional
derivative ∂xĪ(0, ·) = Īx(0, ·) (resp. ∂xĪ(t, ·) = Īx(t, ·)). As a consequence, ĪN → Ī in D in
probability as N →∞ where

Ī(t) = Ī(t, t+ x̄) =

∫ x̄

0

F c(t+ y)

F c(y)
Ī(0, dy) +

∫ t

0
F c(t− s)Ῡ(s)ds, t ≥ 0. (5.9)

The proof of Theorem 5.1 is similar to the proofs of the FLLNs in the previous sections, with
the additional complications that we have one function of two parameters. We refer the reader to
Section 4 of [66] for that proof.

We now turn to deriving a Partial Differential Equation for the derivative with respect to x of
Ī(t, x), when it exists. In the next result, we shall denote by γ(x) = f(x)/F c(x) the hazard function
of the r.v. η, where f(x) = F ′(x).

Proposition 5.1. Suppose that F is absolutely continuous, with the density f , and that Ī(0, x) is
differentiable with respect to x, with the density function ī(0, x). Then for t > 0, the increasing
function Ī(t, ·) is absolutely continuous, and ī(t, x) := ∂xĪ(t, x) satisfies (t, x) a.e. in (0,+∞)2,

∂ ī(t, x)

∂t
+
∂ ī(t, x)

∂x
= −γ(x)̄i(t, x) , (5.10)

with the boundary conditions ī(0, x) = Īx(0, x) for x ∈ [0, x̄], and {̄i(t, 0) , t ≥ 0} is the unique
non–negative solution of the following Volterra equation

ī(t, 0) =

(
S̄(0)−

∫ t

0
ī(s, 0)ds

)(∫ x̄

0
λ̄(y + t)̄i(0, y)dy +

∫ t

0
λ̄(t− s)̄i(s, 0)ds

)
, (5.11)

with the initial condition ī(0, 0) = ∂xĪ(0, x)|x=0. In addition,

S̄′(t) = −ī(t, 0), and S̄(0) = 1− Ī(0) . (5.12)

Moreover, the PDE (5.10) has a unique solution which is given as follows. For x ≥ t,

ī(t, x) =
F c(x)

F c(x− t)
ī(0, x− t) , (5.13)

while for t > x,
ī(t, x) = F c(x)̄i(t− x, 0) . (5.14)

Remark 5.2. We remark that the PDE in [52] resembles (5.10), see equations (28)–(29), see also
equation (2.2) in [46]. In particular, the function γ(x) is interpreted as the recovery rate at infection
age x. Equivalently, it is the hazard function of the infectious duration.

Proof. By the fact that F has a density, we see that the two partial derivatives of Ī exist (t, x) a.e.
From (5.6), the sum of the two partial derivatives satisfies for t > 0 and x > 0,

Īt(t, x) + Īx(t, x) = −
∫ (x−t)+

0

f(t+ y)

F c(y)
Īx(0, y)dy + Īx(t, 0)−

∫ t

(t−x)+

f(t− s)Īx(s, 0)ds .

By taking the derivative on both sides of the last identity with respect to x (possibly in the
distributional sense for each term on the left), we obtain the expression

∂ ī(t, x)

∂t
+
∂ ī(t, x)

∂x
= −1x≥t

f(x)

F c(x− t)
ī(0, x− t)− 1t>xf(x)̄i(t− x, 0) . (5.15)

For the boundary condition ī(t, 0), by (5.5) and (5.8), we have

ī(t, 0) = S̄(t)

(∫ x̄

0
λ̄(y + t)̄i(0, y)dy +

∫ t

0
λ̄(t− s)̄i(s, 0)ds

)
,



40 RAPHAËL FORIEN, GUODONG PANG, AND ÉTIENNE PARDOUX

where by (5.12),

S̄(t) = S̄(0)−
∫ t

0
ī(s, 0)ds .

Thus we obtain the expression (5.11). We next prove that equation (5.11) has a unique non–negative
solution. Observe that x(t) = ī(t, 0) is also a solution to

x(t) =

(∫ x̄

0
λ̄(y + t)̄i(0, y)dy +

∫ t

0
λ̄(t− s)x(s)ds

)(
S̄(0)−

∫ t

0
x(s)ds

)+

, (5.16)

and any non–negative solution of (5.11) solves (5.16).

First, note that for any t ≥ 0, 0 ≤
∫ x̄

0 λ̄(y + t)̄i(0, y)dy ≤ λ∗Ī(0) and 0 ≤ λ̄(t) ≤ λ∗, from which

we conclude that
∫ t

0 ī(s, 0)ds ≤ S̄(0). Indeed, if that were not the case, there would exist a time

TS̄(0) < t such that
∫ TS̄(0)

0 ī(s, 0)ds = S̄(0), hence
∫ t

0 ī(s, 0)ds ≥ S̄(0) and from (5.16), we would have

x(t) = 0 for any t ≥ TS̄(0).

With those bunds, it is not hard to prove that the Volterra equation (5.16) has a unique non
negative solution.

We next derive (5.13) and (5.14). We first deduce from (5.15) that for x ≥ 0,

∂

∂s
ī(s, x+ s) = −f(x+ s)

F c(x)
ī(0, x),

while for t > 0,
∂

∂s
ī(t+ s, s) = −f(s)̄i(t, 0) .

(5.13) follows from the first identity, and (5.14) from the second. Finally it is immediate that (5.10)
follows from these expressions and (5.15). �

5.1. The SIS model with infection-age dependent infectivity. In the SIS model, the infec-
tious individuals become susceptible once they recover. Since SN (t) + IN (t) = N for each t ≥ 0, the
epidemic dynamics is determined by the process IN (t) alone, and we have the same representations
of the processes IN0 (t, x) and IN1 (t, x) in (5.2) and (5.3), respectively, while in the formula for ΥN

in (4.2), SN (t) = N − IN (t). The aggregate infectivity process FN (t) is still given by (5.1). The
two processes (FN , IN ) determine the dynamics of the SIS epidemic model. Under Assumption 5.1,

(F
N
, ĪN )→ (F, Ī) in probability, locally uniformly in t and x, as N →∞,

where

F(t) =

∫ x̄

0
λ̄(y + t)Ī(0, dy) +

∫ t

0
λ̄(t− s)

(
1− Ī(s,∞)

)
F̄(s)ds ,

Ī(t, x) =

∫ (x−t)+

0

F c(t+ y)

F c(y)
Ī(0, dy) +

∫ t

(t−x)+

F c(t− s)
(
1− Ī(s,∞)

)
F̄(s)ds ,

for t, x ≥ 0. The density function ī(t, x) = ∂Ī(t,x)
∂x , if it exists, satisfies again (5.10). The same

calculations as in the case of the SIR model lead to (5.13), (5.14) and

ī(t, 0) = S̄(t)

(∫ x̄

0
λ̄(y + t)̄i(0, y)dy +

∫ t

0
λ̄(t− s)̄i(s, 0)ds

)
.

However, the formula for S̄(t) is different in the case of the SIS model. We have

S̄(t) = 1− Ī(t) = 1−
∫ x̄

0

F c(t+ y)

F c(y)
ī(0, y)dy −

∫ t

0
F c(t− s)̄i(s, 0)ds .
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Thus, the Volterra equation on the boundary reads

ī(t, 0) =

(∫ x̄

0
λ̄(t+ y)̄i(0, y)dy +

∫ t

0
λ̄(t− s)̄i(s, 0)ds

)
×
(

1−
∫ x̄

0

F c(t+ y)

F c(y)
ī(0, y)dy −

∫ t

0
F c(t− s)̄i(s, 0)ds

)
,

whose form is similar to the one for the SIR model.
Recall that the standard SIS model has a nontrivial equilibrium point Ī∗ = 1 − µ/λ if µ < λ,

where λ is the infection rate (the bar over λ is dropped for convenience), and 1/µ is the mean of the
infectious periods. See Section 4.3 in [64] for the account of the SIS model with general infectious
periods. Here we consider the model in the generality of infection-age dependent infectivity.

Proposition 5.2. If R0 =
∫∞

0 λ̄(y)dy ≤ 1, the only equilibrium is Ī∗ = 0 (the disease free

equilibrium). In the complementary case, R0 =
∫∞

0 λ̄(y)dy > 1, there is a unique endemic equilibrium
with a proportion of infectious individuals equal to

Ī∗ = 1−
(∫ ∞

0
λ̄(y)dy

)−1

= 1− 1

R0
. (5.17)

The density function ī(t, x) has an equilibrium ī∗(x) in the age of infection x, given by

ī∗(x) =
dĪ∗(x)

dx
= Ī∗µF c(x), (5.18)

where µ−1 =
∫∞

0 F c(t)dt is the expectation of the duration of the infectious period. If F has a

density f , then the equilibrium density ī∗(x) satisfies

d ī∗(x)

dx
= −Ī∗µf(x), ī∗(0) = Ī∗µ.

Proof. Assume that the equilibrium Ī∗(x) := Ī(∞, x) exists. Then it must satisfy

Ī∗(x) = (1− Ī∗(∞))

∫ x

0
F c(u)du

∫ ∞
0

λ̄(y)

F c(y)
Ī∗(dy)

= (1− Ī∗)µ−1Fe(x)

∫ ∞
0

λ̄(y)

F c(y)
Ī∗(dy),

where Fe(x) = µ
∫ x

0 F
c(s)ds, the equilibrium (stationary excess) distribution. Letting x → ∞ in

this formula, we deduce

Ī∗ = (1− Ī∗)µ−1

∫ ∞
0

λ̄(y)

F c(y)
Ī∗(dy) .

Combining the last two equations, we obtain

Ī∗(x) = Ī∗Fe(x) . (5.19)

Plugging this formula in the previous identity, we deduce that

Ī∗ = (1− Ī∗)Ī∗
∫ ∞

0
λ̄(y)dy .

Then the formula (5.17) can be directly deduced from this equation. The formula (5.18) follows by
taking the derivative with respect to x in (5.19). �
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Figure 3. Cumulative number of infected individuals through time in two models:
an ODE model obtained as the limit of a Markov stochastic SEIR model and a model
with memory obtained as a limit of a non-Markov SEIR model. Both models have
the same mean exposed and infectious period, and are chosen so that they have the
same initial growth rate. After 28 days, the contact rate is reduced instantly, in
such a way that both models should have the same rate of decay of newly infected
individuals. We see that the epidemic in the model with memory “slows down” less
rapidly than in the ODE model, due to its greater inertia, which causes a larger
number of individuals to be infected.

5.2. On the comparison between the Markov/ODE and the non–Markov/integral equation–
PDE. The models – both stochastic and deterministic – which we have considered starting from
Section 3 differ from the models which are mostly used in epidemic modeling, although, at least
concerning the deterministic models, what we are doing is not new compared to the pioneering work
of Kermack and McKendrick [51] from 1927.

We believe that the SIR models considered in Sections 4 and 5 can be made, by a proper choice of
the parameters, much more realistic that the Markov / ODE models of Section 2. One may however
ask the question whether those “refined” models make a real difference, as compared to Markov /
ODE models. It is not clear that the large time behaviors of the two kind of models are significantly
different. Indeed, we note that the formula for the endemic equilibrium in the SIS model (5.17) in
Proposition 5.2 is exactly the same, when expressed in terms of the basic reproduction number R0,
as the formula obtained in Section 2.3.1.

On the other hand, the transitory behavior can be drastically different in the two types of models.
Indeed, we can implement in our “refined” model the memory of recent situations of the epidemic,
so that when the rate of contact between individuals changes drastically (e.g. when a government
enforces a lockdown), in the “refined” model the number of daily infections will take more time
to go down than in the ODE model, see Figure 3. Some authors who use ODE models correct
that behavior by making the contact rate change gradually after the time of lockdown, which does
not correspond to the behavior of the population. As observed several times and in various places
during the Covid-19 pandemic, daily infections, as well as hospital admissions and hospital deaths,
continue to grow for a relatively long time (up to several weeks) after strict preventive measures
are taken, a pattern that arises naturally in models with memory but is much harder to reproduce
using ODE models. This behavior has consequences both for inference methods and for decision
making, since ODE models can underestimate the inertia of the epidemic on the short term.



43

6. Models with varying infectivity and immunity

As in the previous sections, we start with a population of fixed size N , and we enumerate the
individuals in the population with the parameter k, 1 ≤ k ≤ N .

The model in this section is a sort of SIRS model, except that we do not really distinguish
between the states R and S. We shall only consider the compartments S and I, and formally
our model is a SIS model, although individuals experience immunity after recovery, before being
susceptible again. Each individual who is infected first draws a random infectivity function, as
in the previous section, and may infect other individuals as before. At the end of the infectious
period, the individual is first immune (i.e., its susceptibility is equal to zero), but this acquired
immunity then wanes with time, and we assume that the susceptibility of the individual increases
gradually according to some random function. When such a partially susceptible individual is the
target of an infectious contact, the probability that this individual becomes reinfected is given
by its susceptibility (so this quantity evolves between 0 and 1). Whenever an individual in the
compartment S has susceptibility 0, he/she is in fact immune.

Since each individual might get infected an arbitrary number of times, and the infectivity and
susceptibility functions of the infection age are a priori different after each new infection, we attach
to each individual a countable family of infectivity and susceptibility functions. More precisely,
we consider an independent family of elements of D2, (λk,i, γk,i)1≤k≤N, i≥0, which are such that
they are i.i.d. for 1 ≤ k ≤ N and i ≥ 1, but may have a different law with the (λk,0, γk,0)1≤k≤N .
Those last quantities represent the infectivity and susceptibility starting at time t = 0, while for
i ≥ 1, (λk,i, γk,i) represents the infectivity and susceptibility of the k–th individual after his/her
i–th infection (not counting a possible infection before time 0). Note that all λk,i take values in
[0, λ∗] and all γk,i take values in [0, 1].

At time 0, individual k can be susceptible (or “naive”). In that case, λk,0(t) ≡ 0 and γk,0(t) ≡ 1.
A second possibility is that individual k is infected. In that case λk,0 ≥ 0 and γk,0(0) = 0. A third
possibility is that individual k has recovered at time 0 from a past infection. In that case, λk,0(t) ≡ 0
and the function γk,0 is arbitrary.

In addition to what has been explained above, we assume that

sup{t ≥ 0, λk,i(t) > 0} ≤ inf{t ≥ 0, γk,i(t) > 0}.
We introduce the following notations:

ηk,0 = sup{t ≥ 0, λk,0(t) > 0},
Ī(0) = P(η1,0 > 0)

λ̄0(t) = E [λ1,0(t)|η1,0 > 0] ,

λ̄(t) = E [λ1,1(t)] .

Let us now describe our individual based stochastic model. Contrary to what we did in the
previous sections, we do not just count the number of infections in the population on the time
interval (0, t]. We shall denote by ANk (t) the number of times that the individual k has been infected

on the time interval (0, t]. Let σNk (t) denote the age of infection of the individual k at time t, i.e.,

σNk (t) := t− sup{s ∈ [0, t], ANk (s) = ANk (s−) + 1} ∨ 0 ,

where as usual the sup is 0 if the concerned set is empty. At time t, the infectivity of the individual
k is λk,ANk (t)(σ

N
k (t)), and its susceptibility is γk,ANk (t)(σ

N
k (t)). Note that in the case where ANk (t) = 0,

we recover the above description of the situation prior to the first (re)infection.
The total force of infection in the population at time t is

FN (t) :=

N∑
k=1

λk,ANk (t)(σ
N
k (t)) .
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According to the above description, we expect that the rate at which the individual k gets infected
is

ΥN
k (t) = N−1γk,ANk (t)(σ

N
k (t))FN (t) = γk,ANk (t)(σ

N
k (t))F̄N (t) ,

where F̄N (t) = N−1FN (t).
Let now {Qk, 1 ≤ k ≤ N} be a collection of mutually independent standard Poisson random

measures on R2
+. We assume that the number of infections endured by the individual k on the

interval (0, t] is given by

ANk (t) =

∫ t

0

∫ ∞
0

1u≤ΥNk (s−)Qk(du, ds) .

We finally define the average susceptibility in the population as

S̄N (t) = N−1
N∑
k=1

γk,ANk (t)(σ
N
k (t)) .

We will show that the pair (S̄N (t), F̄N (t)) converges to a deterministic pair (S̄(t), F̄(t)), locally
uniformly in time. Before we state this convergence result, let us study the limiting equation. Let
(x, y) ∈ D2 be a solution to the following set of equations:

x(t) = E
[
γ0(t) exp

(
−
∫ t

0
γ0(r)y(r)dr

)]
+

∫ t

0
E
[
γ(t− s) exp

(
−
∫ t

s
γ(r − s)y(r)dr

)]
x(s)y(s)ds,

y(t) = Ī(0)λ̄0(t) +

∫ t

0
λ̄(t− s)x(s)y(s)ds .

(6.1)

Proposition 6.1. Equation (6.1) has a unique solution in D2.

Proof. We first prove uniqueness. We need an a priori bound on the solutions. Suppose (x, y) is
a non negative solution of (6.1), i.e., a solution satisfying x(t) ≥ 0, y(t) ≥ 0 for all t ≥ 0. Since
γ0(t) ≤ 1 and γ(t) ≤ 1, we deduce from the first equation that

x(t) ≤ E
[
exp

(
−
∫ t

0
γ0(r)y(r)dr

)]
+

∫ t

0
E
[
exp

(
−
∫ t

s
γ(r − s)y(r)dr

)]
x(s)y(s)ds . (6.2)

If we multiply the first equation in (6.1) by y(t), we obtain an identity which shows that the
derivative with respect to t of the right hand side of the above inequality is zero, hence that upper
bound equals its value at time t = 0, which is 1. We have proved that x(t) ≤ 1. Next from the
second equation and Gronwall’s Lemma we deduce that y(t) ≤ exp(λ∗t). With the help of those
bounds, it is not very hard to show that (6.1) has at most one negative solution.

Existence can be shown using a Picard iteration procedure, thanks to the estimates which are
used for uniqueness. Note that the solution starts with x(0) > 0 and y(0) > 0, and it is not hard to
see that neither x nor y can hit 0 in finite time. �

We can now state the main result of this section.

Theorem 6.1. Under the above assumptions, as N →∞, (S̄N , F̄N )→ (S̄, F̄) in D2 in probability,
where (S̄, F̄) is the unique solution of (6.1).
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In other words, the pair (S̄, F̄) solves the system of integral equations

S̄(t) = E
[
γ0(t) exp

(
−
∫ t

0
γ0(r)F̄(r)dr

)]
+

∫ t

0
E
[
γ(t− s) exp

(
−
∫ t

s
γ(r − s)F̄(r)dr

)]
S̄(s)F̄(s)ds,

F̄(t) = Ī(0)λ̄0(t) +

∫ t

0
λ̄(t− s)S̄(s)F̄(s)ds .

(6.3)

Remark 6.1. The second equation in (6.3) is equation (4.5). In the particular case of the SIR
model, γ0(t) ≡ 1 if the individual is susceptible at time 0, and ≡ 0 otherwise. Moreover, γ(t) ≡ 0.
In that case, the first equation in (6.3) reduces to

S̄(t) = S̄(0) exp

(
−
∫ t

0
F̄(s)ds

)
,

which is the solution of (4.4). So our new result is consistent with Theorem 4.1.

We will sketch the proof of this Theorem, refering the reader to [34] for the details. The main
idea of this proof is to replace the collection {ANk , 1 ≤ k ≤ N} by an i.i.d. sequence of random
processes, which will be close to that collection in an appropriate sense. The idea of the construction
of that sequence is the following. ANk depends upon N only through F̄N , which is a mean field

interaction. Suppose we try to replace F̄N (t) by a deterministic function m(t), in such a way that

m(t) = E
[
λ
A

(m)
k (t)

(σ(m)(t))
]
. Then we would already have constructed the wished limit.

Let Q be a standard Poisson Random Measure on R2
+, and (λi, γi)i≥1 an i.i.d. sequence, each one

having the law of (λ1,1, γ1,1), and which is globally independent of Q. Also take (λ0, γ0) independent
of the previous sequence and distributed as (λ1,0, γ1,0). To each deterministic m ∈ D, we associate

the solution A(m)(t) of the following SDE:A
(m)(t) =

∫ t

0

∫ ∞
0

1u≤Υ(m)(s−)Q(ds, du),

Υ(m)(t) = γA(m)(t)(σ
(m)(t))×m(t) ,

(6.4)

where
σ(m)(t) := t− sup{s ∈ [0, t], A(m)(s) = A(m)(s−) + 1} ∨ 0 .

Let now
Ψ(m)(t) := E

[
λA(m)(t)(σ

(m)(t))
]
, Θ(m)(t) := E

[
γA(m)(t)(σ

(m)(t))
]
.

The next Lemma is crucial for our proof.

Lemma 6.1. The exists a unique m∗ ∈ D such that Ψ(m∗) = m∗. Moreover, (Θ(m),m) is the

unique solution of (6.1) iff Ψ(m) = m.

Proof. Let us denote by {τ (m)
i , i ≥ 1} the successive jump times of A(m). We have

Ψ(m)(t) = E
[
λA(m)(t)(σ

(m)(t))
]

= E

λ0(t) +

A(m)(t)∑
i=1

λi(t− τ (m)
i )


= Ī(0) + λ̄0(t) + E

[∫ t

0
λ̄(t− s)dA(m)(s)

]
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= Ī(0) + λ̄0(t) +

∫ t

0
λ̄(t− s)m(s)Θ(m)(s)ds

Moreover

Θ(m)(t) = E
[
γ0(t)1A(m)(t)=0

]
+
∑
i≥1

E
[
γi(t− τ (m)

i )1
τ

(m)
i ≤t1A(m)(t)=i

]
= E

[
γ0(t) exp

(
−
∫ t

0
γ0(r)m(r)dr

)]
+
∑
i≥1

E

[
γi(t− τ (m)

i )1
τ

(m)
i ≤t exp

(
−
∫ t

τ
(m)
i

γi(r − τ (m)
i )m(r)dr

)]

= E
[
γ0(t) exp

(
−
∫ t

0
γ0(r)m(r)dr

)]
+

∫ t

0

∫
D
γ(t− s) exp

(
−
∫ t

s
γ(r − s)m(r)dr

)
µ(dγ)m(s)Θ(m)(s)ds .

Let (x, y) denote the unique solution of (6.1). Let us choose m = y. Then comparing the last

identity to the first equation in (6.1), we deduce that Θ(y) = x, and comparing the previous identity

to the second equation of (6.1), we deduce that Ψ(y) = y. Conversely, if Ψ(m) = m, we have that

(Θ(m),m) solves (6.1), hence the result. �

We now exploit again the sequence of independent PRMs {Qk, k ≥ 1}, and for each k ≥ 1, we

let Ak be the A(m∗) associated to Qk. More explicitly, we define for each k ≥ 1,Ak(t) =

∫ t

0

∫ ∞
0

1u≤Υk(s−)Qk(ds, du),

Υk(t) = γAk(t)(σk(t))× F̄(t) ,

(6.5)

where
σk(t) := t− sup{s ∈ [0, t], Ak(s) = Ak(s

−) + 1} ∨ 0 .

Note that it follows from Lemma 6.1 that for each k ≥ 1, F̄(t) = E
[
λAk(t)(σk(t))

]
, hence F̄(t) ≤ λ∗.

The next step in the proof is the following Lemma.

Lemma 6.2. For any k ≥ 1 and T > 0, we have

E

[
sup

0≤t≤T
|ANk (t)−Ak(t)|

]
≤ E

∫ T

0
|ΥN

k (t)−Υk(t)|dt ≤
λ∗√
N
T exp(2λ∗T ) .

Proof. The first inequality is rather obvious. We now establish the second inequality. We will use
repeatedly the fact that the r.v. sup0≤r≤t |ANk (r)−Ak(r)| is either 0 or else ≥ 1. First note that

E
[
|ΥN

k (t)−Υk(t)|
]
≤ E

[
|ΥN

k (t)−Υk(t)|1ANk (t)=Ak(t),σNk (t)=σk(t)

]
+ λ∗E

(
sup

0≤r≤t
|ANk (r)−Ak(r)|

)
.

The first term on the right is bounded by

E

∣∣∣∣∣∣ 1

N

N∑
j=1

(λj,ANj (t)(σ
N
j (t))− E[λ1,A1(t)(σ1(t))])

∣∣∣∣∣∣


≤ E

∣∣∣∣∣∣ 1

N

N∑
j=1

(λj,ANj (t)(σ
N
j (t))− λj,Aj(t)(σj(t))])

∣∣∣∣∣∣
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+ E

∣∣∣∣∣∣ 1

N

N∑
j=1

(λj,Aj(t)(σj(t))− E[λ1,A1(t)(σ1(t))])

∣∣∣∣∣∣


By a standard computation, the second term on the right hand side is bounded by λ∗/
√
N , and the

first term by λ∗E
(
sup0≤r≤t |ANk (r)−Ak(r)|

)
. If we define δN (t) := E

(
sup0≤r≤t |ANk (r)−Ak(r)|

)
,

combining the above computations yields

δN (T ) ≤ λ∗√
N
T + 2λ∗

∫ T

0
δN (t)dt .

The result now follows from Gronwall’s Lemma. �

Completing the proof of Theorem 6.1. The remainder of the proof of Theorem 6.1 can be sketched
as follows. The r.v. whose expectation is close to 0 by Lemma 6.2 is 0 with probability close to 1
for large N . It is then not hard to deduce that both

sup
0≤t≤T

∣∣∣λk,ANk (t)(σ
N
k (t))− λk,Ak(t)(σk(t))

∣∣∣ and sup
0≤t≤T

∣∣∣γk,ANk (t)(σ
N
k (t))− γk,Ak(t)(σk(t))

∣∣∣
tend to 0 in probability. Since the sequence (Ak, σk)k≥1 is i.i.d., the result essentially follows from
the law of large numbers in D, see [72]. �

Remark 6.2. While the random infectivity appears in the limiting LLN deterministic equations only
through its mean function λ̄(t), a complicated mixed moment–exponential moment of the trajectory
of the random susceptibility γ(t) appears in the deterministic version of our varying infectivity /
varying susceptibility model. This is due to the possibility of reinfection of the individuals who are
experiencing a graduate loss of their immunity / gain of their susceptibility.

Using the same techniques, we can also obtain the limiting equations for the proportion of
susceptible and infectious individuals. As before, we let

ηk,i = sup{t ≥ 0, λk,i(t) > 0},
and

F c0 (t) = P(η1,0 > t), F c(t) = P(η1,1 > t).

Then define

IN (t) =
N∑
k=1

1σNk (t)<η
k,AN

k
(t)
,

i.e., the number of infectious individuals at time t (recall that ηk,0 = 0 if the k-th individual is
initially susceptible). Also set

SN (t) =

N∑
k=1

1σNk (t)≥η
k,AN

k
(t)

= N − IN (t).

Then, setting ĪN (t) = 1
N I

N (t) and S̄N (t) = 1
N S

N (t), we have the following convergence.

Corollary 6.1. Under the assumptions of Theorem 6.1, as N →∞, (S̄N , ĪN )→ (S̄, Ī) in D2 in
probability, where

Ī(t) = Ī(0)F c0 (t) +

∫ t

0
F c(t− s)S̄(s)F̄(s)ds,

S̄(t) = E
[
1t≥η0 exp

(
−
∫ t

0
γ0(r)F̄(r)dr

)]
+

∫ t

0
E
[
1t≥η exp

(
−
∫ t

s
γ(r − s)F̄(r)dr

)]
S̄(s)F̄(s)ds,

where (η0, γ0) is distributed as (η1,0, γ1,0) and (η, γ) as (η1,1, γ1,1).
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Note that we can recover the fact that Ī(t) + S̄(t) = 1 for all t ≥ 0 from the fact that γ(s) = 0
for all s < η (resp. γ0(s) = 0 for all s < η0) and the fact that the right hand side of (6.2) equals 1.

Proof of Corollary 6.1. This convergence follows from Lemma 6.2 in much the same way as the
convergence of S̄ and F̄. Lemma 6.2 implies that, for any fixed k,

sup
t∈[0,T ]

∣∣∣∣1σNk (t)≥η
k,AN

k
(t)
− 1σk(t)≥ηk,Ak(t)

∣∣∣∣
tends to zero in probability as N →∞, and the convergence of ĪN follows from arguments similar
to those in the proof of Theorem 6.1. The convergence of S̄N then follows from the fact that
S̄N (t) = 1− ĪN (t) and S̄(t) = 1− Ī(t). �

Let us now show how our equations take a more explicit form in a particular case, which allows
a comparison with the equations in Kermack and McKendrick [52]. Suppose that for i ≥ 1, our
function γ(t) = g(t− η), where g is deterministic and equals 0 on R−, and η is the duration of the
infectious period. We assume that he r.v. η has the density f(t).

We now need to specify γ0(t). Suppose we have a random variable χ, which is independent of all
other random sources, and takes the value S with probability S̄(0), the value I with probability Ī(0)
and the value R with probability R̄(0), where S̄(0) + Ī(0) + R̄(0) = 1. We assume that

γ0(t) = 1× 1χ=S + g(t− η0)× 1χ=I + g(t+ ξ)× 1χ=R,

where η0 has the density f0(t) and ξ has the density h(t).
Let us now rewrite the first equation of (6.3) in the just specified particular case. We get:

S̄(t) = S̄(0) exp

(
−
∫ t

0
F̄(s)ds

)
+ Ī(0)

∫ t

0
g(t− u) exp

(
−
∫ t

0
g(r − u)F̄(s)ds

)
f0(u)du

+ R̄(0)

∫ t

0
g(t+ u) exp

(
−
∫ t

0
g(r + u)F̄(s)ds

)
h(u)du

+

∫ t

0

∫ t−s

0
g(t− s− u) exp

(
−
∫ t

s
g(r − s− u)F̄(r)dr

)
S̄(s)F̄(s)f(u)duds .

(6.6)

Remark 6.3. It can be shown that (6.6) together with the second equation in (6.3) are equivalent
to the system of non local PDEs from [52], see [34] for the details of the calculations.

We thus see that (6.3) yields a more general deterministic model than the one proposed in [52],
in the case where the susceptibility is a random function of the time elapsed since the individual
has recovered.

7. Other types of models and open problems

7.1. Non homogeneous models. All the models presented so far are homogeneous, in the sense
that whenever one infectious individual meets someone else, anyone in the population has the same
chance to be met, and to be possibly infected if he/she was susceptible (with the exception of the
previous section, where the susceptibility of the various individuals plays a role in that choice, but
it does not contradict the homogeneity). There are many reasons why this is not realistic, and we
shall indicate several attempts to correct the homogeneous model, and make the epidemic models
more realistic. However, the reader should realize that too complicated models may not be really
useful, among other reasons because they involve too many parameters, which might not be easy to
estimate.

A first complexification of the above models is to distribute the population into age groups. This
is quite reasonable concerning the Covid – 19 epidemic, since the proportion of severe cases and
deaths among those who catch the disease depends very much upon the age. This is not too difficult
to implement, provided one can exploit informations about the contact rates between those age
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groups, which might be found in the sociology literature. Also, in several countries data concerning
the numbers of hospitalized patients, those in intensive care units, and those who die, are available
by age class. Note however that the health condition of the patients (and their weight) is almost as
important as their age.

It has been recently pointed out, see [22], that the heterogeneity in levels of social activity between
individuals has an impact on the herd immunity. Indeed, those who have a higher rate of social
contacts have more chances to get infected towards the beginning of the epidemic, and they will
infect more people than those with a lower rate of social contacts. Once most of the socially very
active individuals have been infected and become immune, one may think that the progress of the
epidemic might slow down. For that reason, an epidemic which infects a certain percentage of
the population will be more efficient towards building herd immunity than vaccinating the same
proportion of individuals. This raises also questions concerning a vaccination campaign. Should one
vaccinate first those more at risk, but who have few social contacts and do not contribute much to
the propagation of the epidemic, or rather those who have much social contacts?

The reason why reality is not homogeneous has to do with the fact that each individual has
frequent contact with those in his close environment (those who share the same household and
workplace), and much less frequent contact with people who are met in public transportation, shops,
various social activities. There has been a lot of effort to adapt the epidemic models to such situation
with various levels of contact rates. [11] contains a recent review of the works in that direction. See
also [35] for a mean field model approach to household epidemic models.

7.2. Spatial models. A good reason for non homogeneity is the spatial dispersion of the population.
There is of course a strong motivation for studying epidemics models for population distributed in
discrete or continuous space. There is a quite significant body of literature on deterministic models
in those two situation, see in particular [3], [4], [73] and reviews in Chapter 15 of [60] and Chapter
14 of [21]. Recently, some authors have proved law of large numbers and central limit theorems for
Markov epidemic models in continuous space, see in particular [63] and [19]. Concerning non–Markov
models, we have recently studied such a model in discrete space, see Section 3.4.

There is also an extensive literature on epidemic models on random graphs, including various
limit theorems and asymptotic results with large population, large graphs, and various network
topologies, see, e.g., [13, 6, 26, 12, 48, 61, 49, 37, 79], and also the recent survey [77]. As far as
we know, most of these works are for Markovian models. It would be interesting to investigate
non-Markovian epidemic transmissions on random graphs.

7.3. Control problems. Optimal control problems in the Markovian and limiting ODE epidemic
models have been studied extensively in the literature. Isolation, vaccination and immunization
strategies have been developed to minimize the epidemic size and costs associated with the imple-
mentation of them. For example, optimal isolation strategy to minimize the total number of infected
individuals [1] or to minimize the total infectious burden over an outbreak together with a cost for
implementing the control in [86, 62], optimal vaccination strategy [2, 86, 62], optimal immunization
strategy [85], optimal combined isolation-vaccination strategy with resource constraints [41], and
optimal control to minimize the total number of infectious and the time needed for the infection to
go extinct [18, 17]. To cope with Covid-19 pandemic, various lockdown, social distancing, testing and
vaccination strategies have been implemented by governments. Some studies have been conducted for
their effect, see, e.g., [28, 29, 87]. Incentives for individuals for participate in the mitigation process
are also studied from the game theory perspective, see, e.g., [45, 8, 55]. It would be interesting to
study how robust these control strategies with respect to the Markovian assumption, in particular,
when the infectious periods are assumed to have a general distribution rather than exponential.

7.4. Open problems. There is clearly a need for more work on non–Markovian spatial epidemic
models, both in discrete and continuous space. Also, endemic situations should be studied in the



50 RAPHAËL FORIEN, GUODONG PANG, AND ÉTIENNE PARDOUX

varying infectivity / varying susceptibility situation which we have exposed in section 6. Then
the study of large and moderate deviations from the limiting deterministic LLN model opens new
questions. We expect to address these questions in future work.

8. Appendix

8.1. Poisson processes and Poisson Random Measures. A standard Poisson process P (t) is
a counting process (a process which counts a number of events which has happened during the
interval [0, t]), which is such that P (0) = 0, P has independent increments1 and for any 0 ≤ s < t,
the law of P (t)−P (s) is Poi(t− s). Equivalently, for any t ≥ 0, the time after t until the next event
is independent of what happened before t and its law is Exp(1). If P (t) is a standard Poisson process
and λ > 0, P (λt) is a rate λ Poisson process (i.e., for s < t, Pinf (t)− Pinf (s) ' Poi(λ(t− s)), the
waiting time until the next event after t is Exp(λ). More generally, for a deterministic function λ(t),

P
(∫ t

0 λ(s)ds
)

is a rate λ(t) Poisson process.

A Poisson Random Measure (abbreviated PRM) Q on a measurable set E with mean measure
µ is a sum of Dirac measures at random points, which is such that the number of those points in
disjoint subsets are independent, and for any measurable set A, Q(A) ' Poi(µ(A)). A PRM Q on a
subset of Rd will be called standard if its mean measure is the Lebesgue measure. Note that what
we have called above a standard Poisson process is the distribution function of a standard PRM on
R+.

It is not very hard to show that if λ(t) is a measurable locally bounded R+–valued function, then
the two processes

P

(∫ t

0
λ(s)ds

)
and

∫ t

0

∫ ∞
0

1u≤λ(s)Q(ds, du),

where P is a standard Poisson process and Q a standard Poisson random measure on R2
+, have the

same law (i.e., the same finite dimensional distributions).

8.2. Brownian motion and space–time white noise. A standard Brownian motion {B(t), t ≥
0} is a Gaussian process with continuous paths and independent increments, and such that for any
t ≥ 0, B(t) ∼ N(0, t), i.e., B(t) is a Gaussian r.v. with mean 0 and variance t. A non standard
Brownian motion could have a non zero mean, and a different variance.

We use in the statement of Theorem 3.2 the notion of a white noise on R2. A standard white
noise W on R2 is a generalized Gaussian process {W (f), f ∈ L2(R2)} whose law is specified by
the fact that f 7→W (f) is linear, and W (f) ∼ N(0, ‖f‖2L2(R2). Equivalently, for any Borel subset

A ⊂ R2 with finite Lebesgue measure, W (A) := W (1A) ∼ N(0,Leb(A)). A non standard white
noise on R2 is associated with a measure µ on R2

+, such that W (A) ∼ N(0, µ(A)). The law of W (A)
is specified, provided µ(A) <∞.

8.3. The space D. In this paper, we denote by D := D([0,+∞)) the space of functions from
[0,+∞) into R which are right continuous and possess a left limit at any time t > 0. Such a
function is said to be càlàg, an acronym for continu à droite et limité à gauche. If x ∈ D, whenever
tn → t, with tn ≥ t for any n ≥ 1, x(tn)→ x(t), and we shall write x(t−) for the value of limn x(tn),
whenever tn < t for all n ≥ 1. It is not convenient to equip D with the supnorm topology, since we
want that after a small modification of the time of a jump, the resulting function be close to the
original one.

A sequence converges in D iff it converges in D([0, T ]) for all T > 0. It then suffices to discuss
the convergence in D([0, T ]). A distance on D([0, T ]) can be defined as follows. Let ΛT denote the
set of continuous strictly increasing functions from [0, T ] into itself, which map 0 into 0 and T into

1This means that for any n ≥ 1, any 0 = t0 < t1 < · · · < tn, P (t1), P (t2) − P (t1), . . . , P (tn) − P (tn−1) are
independent.
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T . If ‖ · ‖T denotes the supnorm on [0, T ] and I the identity mapping, a possible choice for the
distance is

d(x, y) = inf
λ∈Λ
{‖λ− I‖T ∨ ‖x− y ◦ λ‖T } .

The associated topology is sometimes called the Skorokhod J1 topology. That distance makes
D([0, T ]) separable. If we want D([0, T ]) to be complete, we better use a slightly different distance,

whose definition is given by replacing ‖λ− I‖T by sup0≤s<t≤T

∣∣∣log λ(t)−λ(s)
t−s

∣∣∣.
It is crucial for us to have conditions under which a sequence of stochastic processes with

trajectories in D is tight, which implies that such a sequence has a subsequence which converges
weakly for the topology of D. Let us formulate the celebrated Aldous tightness criterion. A sufficient
condition for a sequence Xn of random elements of D to be tight is that the two following conditions
are satisfied:

(i) For any T > 0, lim supn P (‖Xn‖T ≥ a)→ 0, as a→∞.
(ii) For any ε, η, T > 0, there exists δ0 > 0 and n0 such that if δ ≤ δ0 and n ≥ n0, for any

discrete Xn–stopping time τ ≤ T , P (|Xn(τ + δ)−Xn(τ)| ≥ ε) ≤ η.

A proof of this criterion can be found e.g. on pages 178-179 of [15].
In the case a-of a semi–martingale, we have a very simple criterion to verify Aldous’s condition.

The following is Proposition 37 in [68]:

Proposition 8.1. Let Xn be a sequence of semimartingales of the form

Xn(t) = XN
0 +

∫ t

0
ϕn(s)ds+Mn(t), and

〈Mn〉t =

∫ t

0
ψn(s)ds,

where Mn(t) is a martingale, and 〈Mn〉t its associated predictable increasing process (i.e., 〈Mn〉t is
predictable and |Mn(t)|2 − 〈Mn〉t is a martingale).

If both {Xn
0 }, and {sup0≤t≤T (|ϕn(t)|+ ψn(t))} are tight for all T > 0, then Xn is tight in D.

Tightness of semimartingales is usually not too hard to establish. With Markov processes are
always associated martingales. However, with our non–Markov processes, we do not necessary have
martingales to help us. This is why more delicate techniques are involved in the proofs for the
non–Markov processes.
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