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Epidemic models with varying infectiosity

RAPHAËL FORIEN, GUODONG PANG, AND ÉTIENNE PARDOUX

Abstract. We introduce an epidemic model with varying infectiosity and general exposed and

infectious periods, where the infectiosity of each individual is a random function of the elapsed

time since infection, those function being i.i.d. for the various individuals in the population. This

approach models infection-age dependent infectivity, and extends the classical SIR and SEIR models.

We focus on the infectiosity process (total force of infection at each time), and prove a functional

law of large number (FLLN). In the deterministic limit of this LLN, the infectiosity process and

the susceptible process are determined by a two-dimensional deterministic integral equation. From

its solutions, we then derive the exposed, infectious and recovered processes, again using integral

equations. We also use these equations to derive the basic reproduction number R0 during the early

stage of an epidemic, in terms of the average individual infectiosity function and the exponential

rate of growth of the epidemic.

1. Introduction

Most of the literature on epidemics models is based upon ODE models which assume that the

length of time during which a given individual is infectious follows an exponential distribution. More

precisely, those deterministic models are law of large numbers limits, as the size of the population

tends to infinity, of stochastic models where all transitions from one compartment to the next

have exponential distributions, see [5] for a recent account. However, it is largely recognized that

for most diseases, the durations of the exposed and infectious period are far from following an

exponential distribution. In the case of influenza, a deterministic duration would probably be a

better approximation. Recently in [14], the last two authors have obtained the functional law of

large numbers (FLLN) limit for SIS, SIR, SEIR and SIRS models where in the stochastic model the

duration of the stay in the I compartment (resp. both in the E and the I, resp. both in the I and the

R compartments) follow a very arbitrary distribution. Of course, in this case the stochastic model

is not a Markov model, which makes some of the proofs more delicate. Indeed, the fluctuating

part of a Markov process is a martingale, and many tools exist to study tightness and limits of

martingales, which are missing in the non–Markovian situation. Nevertheless, we were able in [14]

to use ad hoc techniques in order to circumvent that difficulty, and we proved not only FLLNs,

but also functional central limit theorems (FCLTs). While the classical “Markovian” deterministic

models are ODEs, our more general and more realistic “non–Markovian” deterministic models are

Volterra type integral equations of the same dimension as the classical ODE models. Recently in [7],
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the authors used the approach in [14] to describe the Covid-19 epidemic in France. The flexibility

of the choice for the law of the infectious period was very helpful in order to write a realistic model

with very few compartments, and our model follows better the data than Markov models.

The aim of the present paper is to go a step further in the direction of realistic models of

epidemics. It has been established in [9] that in the case of the Covid-19 disease, the infectiosity of

infectious individuals decreases after symptom onset. In fact it is believed that in most infectious

diseases, the infectiosity of infectious individuals depends upon the time since infection. This was

already argued in [12]. However, in this work the duration of the infectious period follows essentially

an exponential distribution. See also a recent paper in the study of Covid-19 pandemic [8], which

uses a transport PDE model (it is worth noting that following the original work in [12], PDEs have

been commonly used to capture the effect of age of infection in the epidemic literature, see, e.g.,

[10, 17, 11, 13]). While our paper was already written, we discovered that the same deterministic

model has already been described as an “age of infection epidemic model” in [2] and the recent book

[3, Chapter 4.5]. But the fact that it is the law of large numbers limit of a well specified stochastic

model, which is our main result, seems to be new. Section 4.5.1 of the same book also contains the

same SEIR model as in [14], but again without any rigorous connection with a stochastic model.

The most realistic assumption is probably that this infectiosity first increases continuously from 0,

and then decreases back to 0. We shall however allow jumps in the random infectiosity function, in

order in particular to include the classical case of a constant infectiosity during the infectious period.

And we want to allow a very arbitrary law for the infectious (or exposed/infectious) period(s), as

we did in [14]. In this work again, the FLLN limiting deterministic model is a Volterra type integral

equation, which is of the same dimension as the corresponding classical ODE model, see Theorem

2.1. We treat only the case of SIR and SEIR models (see also Remark 2.3 on the SIS and SIRS

models), but we intend to extend in later publications our approach to other types of models,

including models with age classes and spatial distribution, see [15] for multi–patch models with

general exposed and infectious durations. We will also establish in a further publication the FCLT

associated to the FLLN established in the present paper.

Our approach in this paper is to assume that in the original stochastic finite population model,

the infectiosity of each individual is a random function of the time elapsed since his/her infection,

those functions associated to various individuals being independent and identically distributed

(i.i.d.). The total force of infection at each time is the aggregate infectiosity of all the individuals

that are currently infectious. We assume that the infectiosity random functions can be piecewise

continuous with a finite number of discontinuities, which includes all the commonly seen examples,

in particular, constant infectiosity over a given time interval as a special case. They are also

allowed to start with a value zero for a period of time to generalize the SEIR model. These random

functions then determine the durations of the exposed and infectious periods, and therefore, their

corresponding probability distributions, which can be very general.

Under the i.i.d. assumptions of these infectiosity random functions of the various individuals,

we prove a functional law of large numbers for the infectiosity process, together with the counting

processes for the susceptible, exposed, infectious and recovered individuals. The infectiosity and
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susceptible functions in the limit are uniquely determined by a two-dimensional Volterra integral

equation. Given these two functions, the exposed, infectious and recovered functions in the limit

are given by Volterra integral equations. They generalize the integral equations in the standard

SIR/SEIR models with general exposed and infectious periods in [14]. Our proofs are based upon

Poisson random measures associated with the infectiosity process to facilitate the proof of tightness

and convergence, which further develops the techniques in [14].

Our limiting integral equations can be easily solved numerically. For the standard SIR/SEIR

model with general exposed and infectious periods, the integral equations are implemented to

estimate the state of the Covid-19 pandemic in France in [7]. We also refer the readers to another

recent work by Fodor et al. [19] which argues that integral equations (in the case of deterministic

infectious periods) should be used instead of ODEs since the latter may significantly underestimate

the initial basic reproduction number R0. We claim that our model may be used to better predict

the trajectory of the epidemic, especially at the beginning of the epidemic and when certain control

measures like lockdown and reopening are implemented.

We also study the linearized version of our model corresponding to the early phase of the epidemic,

during which the proportion of susceptible individuals essentially does not change, whose solution

is an exponential function (Theorem 2.2). We then deduce from that analysis a formula for the

basic reproduction number R0, as an explicit function of the average infectiosity function and the

exponential rate of growth ρ, which is obtained by observing the epidemic. This result extends

the well known result in the exponential case (see for example equation (1) in [4]), and also the

result recently established for the SEIR model with general exposed and infectious periods [7]. Note

however that our formula for R0 already appears on page 141 of the recent book [3].

The paper is organized as follows. In Section 2, we formulate our stochastic model, make precise

all assumptions, and state our two main results: the FLLN, which is stated as Theorem 2.1, and the

result concerning the linearized model for the early phase of the epidemic, Theorem 2.2. Section 3

is devoted to the proof of Theorem 2.2, and Section 4 to the proof of Theorem 2.1.

2. Model and Results

2.1. Model description. All random variables and processes are defined in a common complete

probability space (Ω,F ,P). We consider a generalized SEIR epidemic model where each infectious

individual has an infectiosity that is randomly varying with the time elapsed since infection. As

usual, the population consists of four groups of individuals, susceptible, exposed, infectious and

recovered. Let N be the population size, and SN (t), EN (t), IN (t), RN (t) denote the sizes of the

four groups, respectively. We have the balance equationN = SN (t)+EN (t)+IN (t)+RN (t) for t ≥ 0.

Assume that RN (0) = 0, SN (0) > 0 and EN (0)+ IN (0) > 0 such that SN (0)+EN (0)+ IN (0) = N .

Let AN (t) be the cumulative number of individuals that become infected in (0, t] for t ≥ 0 and

denote the associated event times as τNi , i = 1, . . . , AN (t).

Note that an infected individual is either exposed or infectious. More precisely, he/she is first

exposed, then infectious. Let us first consider those individuals who are infected after time 0 (i.e.

they are in the S compartment at time 0). The i–th infected individual is infected at time τNi .
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He/she is first Exposed during the time interval [τNi , τNi + ζi). Then he/she is infectious during the

time interval (τNi + ζi, τ
N
i + ζi + ηi), and finally removed on the time interval [τNi + ζi + ηi,+∞).

In fact, to this individual is attached an infectiosity process {λi(t) : t ≥ 0}, which is a random

right–continuous function such that

λi(t)











= 0, if 0 ≤ t < ζi,

> 0, if ζi < t < ζi + ηi,

= 0, if t ≥ ζi + ηi.

We shall formulate some assumptions on the functions λi below. Let us just say for now that the

collection of the functions {λi(·)}i≥1 are i.i.d. Since

ζi = inf{t > 0, λi(t) > 0}, and ζi + ηi = inf{t > 0, λi(r) = 0, ∀r ≥ t}, (2.1)

the collection of random vectors (ζi, ηi)i≥1 is also i.i.d.

Each initially exposed individual is associated with an infectiosity process λ0
j (t), j = 1, . . . , EN (0),

with càdlàg paths, which are assumed to be i.i.d. and be such that

ζ0j = inf{t > 0, λ0
j (t) > 0} > 0 a.s. and ζ0j + η0j = inf{t > 0, λ0

j (r) = 0, ∀r ≥ t}. (2.2)

Each initially infectious individual is associated with an infectiosity process λ0,I
k (t), k = 1, . . . , IN (0),

with càdlàg paths, which are also assumed to be i.i.d. and such that

inf{t > 0, λ0,I
k (t) > 0} = 0 a.s. and η0,Ik = inf{t > 0, λ0,I

k (r) = 0, ∀r ≥ t}. (2.3)

We will write (ζ, η) (resp. (ζ0, η0), resp. η0,I) for a vector which has the same law as (ζi, ηi) (resp.

(ζ0j , η
0
j ), resp. η

0,I
k ). Let H(du, dv) denote the law of (ζ, η), H0(du, dv) that of (ζ

0, η0) and F0,I the

c.d.f. of η0,I . We define moreover

Φ(t) :=

∫ t

0

∫ t−u

0
H(du, dv) = P(ζ + η ≤ t), Ψ(t) :=

∫ t

0

∫ ∞

t−u
H(du, dv) = P(ζ ≤ t < ζ + η),

Φ0(t) :=

∫ t

0

∫ t−u

0
H0(du, dv) = P(ζ0 + η0 ≤ t), Ψ0(t) :=

∫ t

0

∫ ∞

t−u
H0(du, dv) = P(ζ0 ≤ t < ζ0 + η0),

F0,I(t) := P(η0,I ≤ t) .

We shall also write

H(du, dv) = G(du)F (dv|u), H0(du, dv) = G0(du)F0(dv|u),

i.e., G is the c.d.f. of ζ and F (·|u) is the conditional law of η, given that ζ = u, G0 is the c.d.f.

of ζ0 and F0(·|u) is the conditional law of η0, given that ζ0 = u. In the case of independent

exposed and infectious periods, it is reasonable that the infectious periods of the initially exposed

individuals have the same distribution as the newly exposed ones, that is, F0 = F . Note that in the

independent case, Ψ(t) = G(t)−Φ(t) and Ψ0(t) = G0(t)−Φ0(t). Also, let G
c
0 = 1−G0, G

c = 1−G,

F c
0,I = 1− F0,I , and F c = 1− F .

The total force of infection which is exerted on the susceptibles at time t can be written as

I
N (t) =

EN (0)
∑

j=1

λ0
j(t) +

IN (0)
∑

k=1

λ0,I
k (t) +

AN (t)
∑

i=1

λi(t− τNi ) , t ≥ 0. (2.4)
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Thus, the instantaneous infectivity rate function at time t is

ΥN (t) =
SN (t)

N
I
N (t), t ≥ 0. (2.5)

The infection process AN (t) can be expressed by

AN (t) =

∫ t

0

∫ ∞

0
1u≤ΥN (s)Q(ds, du), t ≥ 0, (2.6)

where Q is a standard Poisson random measure (PRM) on R
2
+, and we use 1{·} for the indicator

function. One may observe that besides the PRM Q, the randomness in the epidemic dynamics

comes only from the infectiosity processes {λ0
j(t)}, {λ0,I

k (t)} and {λi(t)} (the infectious periods

{η0j }, (η
0,I
k ) and {ηi} are induced from them).

The epidemic dynamics of the model can be described by

SN (t) = SN (0) −AN (t) ,

EN (t) =

EN (0)
∑

j=1

1ζ0j >t +

AN (t)
∑

i=1

1τNi +ζi>t ,

IN (t) =

EN (0)
∑

j=1

1ζ0j ≤t<ζ0j+η0j
+

IN (0)
∑

k=1

1
η0,I
k

>t
+

AN (t)
∑

i=1

1τNi +ζi≤t<τNi +ζi+ηi
,

RN (t) =

EN (0)
∑

j=1

1ζ0j +η0j≤t +

IN (0)
∑

k=1

1
η0,I
k

≤t
+

AN (t)
∑

i=1

1τNi +ζi+ηi≤t .

(2.7)

In the case where ζ0j = 0 and ζi = 0, the model is a generalized SIR model, and EN (t) ≡ 0.

2.2. FLLN. We first make the following assumptions on the distribution functions, infectiosity

functions, and the initial quantities.

Assumption 2.1. The c.d.f. G satisfies the following assumption: G can be written as G = G1+G2,

where G1(t) =
∑

i ai1(t ≥ ti) for a finite or countable number of positive numbers ai and the

corresponding ti such that
∑

i ai ≤ 1 and t0 < t1 < . . . tk < . . . , and G2 is Hölder continuous with

exponent 1
2 + θ for some θ > 0, that is, G2(t+ δ)−G2(t) ≤ cδ1/2+θ for some c > 0. Moreover, the

conditional c.d.f. F (·|u) satisfies the same assumption, uniformly in u.

We now state our assumptions on λ0, λ0,I and λ.

Assumption 2.2. The random functions λ(t) (resp. λ0(t) and resp. λ0,I(t) ), of which λ1(t), λ2(t), . . .

(resp. λ0
1(t), λ

0
2(t), . . . and resp. λ0,I

1 (t), λ0,I
2 (t), . . .) are i.i.d. copies, satisfying the following proper-

ties. There exists a constant λ∗ < ∞ such that supt∈[0,T ]max{λ0(t), λ0,I(t), λ(t)} ≤ λ∗ almost surely.

In addition, there exist a given number k ≥ 1, a random sequence 0 = ξ0 ≤ ξ1 ≤ · · · ≤ ξk = η

and random functions λj ∈ C(R+;R+), 1 ≤ j ≤ k such that (ξ1, . . . , ξk) and (λ0,I , . . . , λk) are

independent and

λ(t) =

k
∑

j=1

λj(t)1[ξj−1,ξj)(t) . (2.8)
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Moreover, denoting by Fj the c.d.f. of ξj, we assume that each Fj satisfies assumption 2.1, and

that there exists a nondecreasing function ϕ ∈ C(R+;R+) with ϕ(0) = 0, such that |λj(t)−λj(s)| ≤

ϕ(|t− s|) almost surely, for all t, s ≥ 0, 1 ≤ j ≤ k. We also assume that the functions λ0
j and λ0,I

k

are càlàg.

Let λ̄0(t) = E[λ0(t)], λ̄0,I(t) = E[λ0,I(t)] and λ̄(t) = E[λ(t)] for t ≥ 0. It is easy to show that

λ̄(t) = E[λ(t)] =

k
∑

j=1

λ̄j(t)P(ξj−1 ≤ t < ξj) , t ≥ 0. (2.9)

It is clear that λ̄0(t), λ̄0,I(t) and λ̄(t) are all càdàg.

Remark 2.1. We think that λ(t) being continuous is a good model of reality. However, the early

phase of the function λ(t) is not well known, since patients are tested only after symptom onset,

and usually (this is the case in particular for the Covid–19) they may have been infectious (i.e.,

with λ(t) > 0) prior to that. Consequently we should not exclude the possibility that λ(t) jumps to

its maximum at time ζ, and the decreases continuously to 0.

Moreover, in order to include the “classical” models where λ(t) is first 0 during the exposed

period, and then equal to a positive constant during the infectious period, as well as possible models

of infectiosity that would be piecewise constant, we allow λ(t) to have a given number of jumps.

Let X̄N := N−1XN for any process XN . Let D = D([0, T ],R) denote the space of R–valued

càdlàg functions defined on [0, T ]. Throughout the paper, convergence in D means convergence in

the Skorohod J1 topology, see Chapter 3 of [1]. Also, Dk stands for the k-fold product equipped

with the product topology.

Assumption 2.3. Assume that there exist deterministic constants Ē(0), Ī(0) ∈ [0, 1] such that

0 < Ē(0) + Ī(0) < 1, and (ĒN (0), ĪN (0)) → (Ē(0), Ī(0)) ∈ R
2
+ in probability as N → ∞.

Theorem 2.1. Under Assumptions 2.1, 2.2 and 2.3,
(

S̄N , ĪN , ĒN , ĪN , R̄N
)

→
(

S̄, Ī, Ē, Ī, R̄
)

in D4 as N → ∞, (2.10)

in probability, locally uniformly in t. The limits S̄ and Ī(t) are the unique solution of the following

system of Volterra integral equations

S̄(t) = 1− Ī(0)−

∫ t

0
S̄(s)Ī(s)ds , (2.11)

Ī(t) = Ē(0)λ̄0(t) + Ī(0)λ̄0,I(t) +

∫ t

0
λ̄(t− s)S̄(s)Ī(s)ds , (2.12)

and the limit (Ē, Ī , R̄) is given by the following integral equations:

Ē(t) = Ē(0)Gc
0(t) +

∫ t

0
Gc(t− s)S̄(s)Ī(s)ds , (2.13)

Ī(t) = Ī(0)F c
0,I (t) + Ē(0)Ψ0(t) +

∫ t

0
Ψ(t− s)S̄(s)Ī(s)ds , (2.14)
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R̄(t) = Ī(0)F0,I(t) + Ē(0)Φ0(t) +

∫ t

0
Φ(t− s)S̄(s)Ī(s)ds . (2.15)

The limit S̄ is in C, and the limits Ī, Ē, Ī , R̄ are in D. If λ̄0 and λ̄0,I are continuous, then Ī is in

C, and if G0 and F0,I are continuous, then Ē, Ī , R̄ are in C.

Note that in the case where ζ = ζ0 = 0 a.s. (i.e., an infected individual is immediately infectious)

and EN (0) = 0, there is no exposed period, then we find the generalized SIR model, which reads

S̄(t) = 1− Ī(0)−

∫ t

0
S̄(s)Ī(s)ds ,

Ī(t) = Ī(0)λ̄0(t) +

∫ t

0
λ̄(t− s)S̄(s)Ī(s)ds ,

Ī(t) = Ī(0)F c
0,I (t) +

∫ t

0
F c(t− s)S̄(s)Ī(s)ds ,

R̄(t) = Ī(0)F0,I (t) +

∫ t

0
F (t− s)S̄(s)Ī(s)ds ,

where F is the c.d.f. of the infectious duration η of newly infected individuals and F0,I is the c.d.f.

of the infectious duration η0,I of initially infectious individuals.

Remark 2.2. The above result generalizes both our SIR and our SEIR FLLN results in [14].

The SIR model in [14] is the particular case of the present result, where λ(t) = λ1t<η, η being

the random duration of the infectious period. In this case, λ̄(t) = λF c(t), if F is the c.d.f. of η,

and F c = 1 − F . Note that in this case Ī(t) = λĪ(t). Therefore, if we divide the Ī equation by

λ, we find equation (2.14), which is also equation (2.4) in [14]. If we assume that the law of η is

exponential, then we are in the case of the classical SIR model.

The SEIR model in [14] corresponds to the situation where λ(t) = λ1ζ≤t<ζ+η, where ζ is the

duration of the exposed period (the time when the individual is infected, but not yet infectious), and

η is as above, while λ0(t) = λ1ζ0≤t<ζ0+η0 . Then λ̄(t) = λ[P(ζ ≤ t) − P(ζ + η ≤ t)] = λΨ(t). If we

divide the Ī equation by λ, we find equation (2.14), which is also (3.15) in [14]. If moreover ζ and

η are independent exponential random variables, then we are reduced to the classical SEIR model.

Remark 2.3. For the generalized SIS model, since S̄(t) = 1 − Ī(t), it is clear that the epidemic

dynamics in the FLLN is determined by the two–dimensional functions
(

Ī, Ī
)

via the following

integral equations:

Ī(t) = Ī(0)λ̄0(t) +

∫ t

0
λ̄(t− s)(1− Ī(s))Ī(s)ds ,

Ī(t) = Ī(0)F c
0,I(t) +

∫ t

0
F c(t− s)(1− Ī(s))Ī(s)ds .

Recall that as shown in Theorem 2.3 of [14], in the SIS with general infectious periods, Ī(s) = λĪ(s),

and the epidemic dynamics is determined by the one–dimensional integral equation for Ī.

For the generalized SIRS model, the variables (ζi, ηi) in our setup represent the infectious and

recovered/immune periods of newly infected individuals, and similarly the variables (ζ0j , η
0
j ) repre-

sent the infectious and immune periods of initially infectious individuals, and the variables η0,Ik
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represent the immune period of initially immune individuals. Let IN , RN be the processes count-

ing infectious and recovered/immune individuals (corresponding to the notation EN and IN in the

SEIR model). The random functions λ0
j , λ

0,R
k , λi correspond to the infectiosity processes of the ini-

tially infectious, initially recovered/immune and newly infected individuals, respectively (changing

notation λ0,I
k to λ0,R

k accordingly). The distribution functions G0, F0,R are for initially infectious

and immune periods, and G,F for newly infectious and immune periods, similarly for the notation

Ψ,Ψ0,Φ,Φ0. Then the epidemic dynamics of the generalized SIRS model in the FLLN is determined

by the three–dimensional functions
(

Ī, Ī, R̄
)

via the following integral equations:

Ī(t) = Ī(0)λ̄0(t) + R̄(0)λ̄0,R(t) +

∫ t

0
λ̄(t− s)

(

1− Ī(s)− R̄(s)
)

Ī(s)ds ,

Ī(t) = Ī(0)Gc
0(t) +

∫ t

0
Gc(t− s)

(

1− Ī(s)− R̄(s)
)

Ī(s)ds ,

R̄(t) = R̄(0)F c
0,R(t) + Ī(0)Ψ0(t) +

∫ t

0
Ψ(t− s)

(

1− Ī(s)− R̄(s)
)

Ī(s)ds .

Also recall that as shown in Theorem 3.3 of [14], in the SIRS model with general infectious and

recovered periods, Ī(s) = λĪ(s), and the epidemic dynamics is determined by the two–dimensional

integral equation for
(

Ī , R̄
)

.

2.3. Estimation of the parameters during the early phase of an epidemic. In this subsec-

tion, we rewrite the infectivity function λi(t) in the following form : µ× λi(t). Here λi(t) depends

on each individual. We assume that its mean is known. The better the specific disease is known,

the better this function λ̄(t) is known. It depends upon how the virus load evolves after infection

on average. Now the factor µ is of a different nature. It is related to social aspects: it is different in

densely population cities and in rural areas. It is affected by measures like lockdown, which have

been used during the spring of 2020 by many countries, in order to control the Covid–19 epidemic.

The factor µ is unknown. It is important to estimate µ, in order to be able to use the model for

predictions. We assume that µ and (λ, λ0) are independent, so that the mean of λ(t) equals µ̄× λ̄(t),

where µ̄ = E[µ], and as above λ̄(t) = E[λ(t)]. Similarly for λ0.

Now we simplify the formulation of our model. We do not change the model, but merge the two

classes E and I into a unique class I of infected individuals, infected meaning either exposed or

infectious. An individual who gets infected at time τNi is exposed on the time interval [τNi , τNi +ζi),

then infectious on the time interval [τNi +ζi, τ
N
i +ζi+ηi), then he/she moves into the compartment

R at time τNi +ζi+ηi. The model is the same as in the previous subsections, but we follow globally

the infected individuals, and do not distinguish in the dynamic of the epidemic between exposed

and infectious individuals. We denote by F (resp. F0) the c.d.f. of the r.v. ζ + η (resp. of the r.v.

ζ0 + η0). Hence our LLN limiting equations, rewritten with the new factor µ̄, become

S̄(t) = 1− Ī(0) −

∫ t

0
S̄(s)Ī(s)ds ,

Ī(t) = Ī(0)µ̄λ̄0(t) + µ̄

∫ t

0
λ̄(t− s)S̄(s)Ī(s)ds ,
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Ī(t) = Ī(0)F c
0 (t) +

∫ t

0
F c(t− s)S̄(s)Ī(s)ds ,

R̄(t) = R̄(0) + Ī(0)F0(t) +

∫ t

0
F (t− s)S̄(s)Ī(s)ds .

(Note that Theorem 2.1 can be easily extended to allow R̄(0) > 0.) In order to avoid any ambiguity,

note that Ī(t) is the limit of ĪN (t) = N−1
I
N (t), where

I
N (t) =

IN (0)
∑

j=1

µλ0
j (t) +

AN (t)
∑

i=1

µλi(t− τNi ) .

We will now linearize the above system. This means that we shall consider a phase of the epidemic

during which the proportion of susceptible individuals does not change significantly (since in par-

ticular we consider a large population). For simplicity, we assume that S(t) ≃ 1, but if we were

considering a second wave of an epidemic where part of the population is immunized, or consider

a situation where part of the population has been vaccinated, that constant (or frozen) proportion

could be smaller than one. Next we multiply the remaining quantities by N , the total population

size, so we suppress the bars (which in particular introduces a different notation for the linearized

system). In other words, we consider the system

I(t) = I(0)µ̄λ̄0(t) + µ̄

∫ t

0
λ̄(t− s)I(s)ds ,

I(t) = I(0)F c
0 (t) +

∫ t

0
F c(t− s)I(s)ds ,

R(t) = R(0) + I(0)F0(t) +

∫ t

0
F (t− s)I(s)ds .

(2.16)

The initial time and condition for the epidemic is typically unknown, so we assume that it has

started some time in the past, and we look for a solution of the linear system

I(t) = µ̄

∫ t

−∞
λ̄(t− s)I(s)ds ,

I(t) =

∫ t

−∞
F c(t− s)I(s)ds ,

R(t) =

∫ t

−∞
F (t− s)I(s)ds .

(2.17)

As is well known, the early phase of an epidemic is characterized by the fact that the above

quantities increase at exponential speed (which is to be expected in case of a linear system; at least

if they increase). Therefore we look for a solution of the form

I(t) = ιeρt, I(t) = ieρt, R(t) = reρt , (2.18)

with i+ r = 1. Note that this initial condition is very arbitrary, it means intuitively that we start

with all individuals susceptible, except one.

In the next theorem, we will not need that Assumptions 2.1 and 2.2 are valid, but only that

supt∈[0,T ]max{λ0(t), λ(t)} ≤ λ∗ almost surely for some finite constant λ∗, and in addition that
∫∞
0 λ̄(t)dt < ∞.
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Theorem 2.2. If µ̄ > 0 and ρ > 0 satisfy

µ̄ =

(∫ ∞

0
λ̄(t)e−ρtdt

)−1

, (2.19)

and if we choose

ι = ρ, i = E[1− e−ρ(ζ+η)], r = E[e−ρ(ζ+η)], (2.20)

then (I(t), I(t), R(t)) = (ιeρt, ieρt, reρt) solves (2.17) for all t ∈ R.

In addition, in case ρ > 0, if Θ denotes an independent exponential random variable with param-

eter ρ, then (I(t), I(t), R(t)) = (ιeρt, ieρt, reρt) solves (2.16) with

λ̄0(t) = E[λ(t+Θ)|Θ ≤ ζ + η] ,

F0(t) = P(Θ + t > ζ + η|Θ ≤ ζ + η) .
(2.21)

Moreover, we have

I(0) = i = P(Θ ≤ ζ + η), R(0) = r = P(Θ > ζ + η) .

In the case of ρ < 0, provided E[e−ρ(ζ+η)] < ∞, (I(t), I(t)) = (ιeρt, ieρt) solves the first two lines

of (2.17) for all t ∈ R if

ι = −ρ, i = E[e−ρ(ζ+η) − 1].

Note that the relation (2.19) between µ̄ and ρ is valid for ρ < 0, which might happen, for example,

during a lockdown period. On the other hand, since t → R(t) is increasing, the formula R(t) = reρt

can be true only when ρ > 0.

Corollary 2.1. The basic reproduction number is given by the formula

R0 =

∫∞
0 λ̄(t)dt

∫∞
0 λ̄(t)e−ρtdt

=
ρ
∫∞
0 λ̄(t)dt

E[λ(Θ)]
, (2.22)

where the second formula is valid only in the case ρ > 0, and in the case ρ < 0, E[e−ρ(ζ+η)] < ∞

implies that R0 > 0.

Remark 2.4. Note that the exponent ρ is a quantity which is deduced from the observation of the

epidemic (it is closely related to the “doubling time” of the number of cases). The above results give

us µ̄ and R0 in terms of ρ and the function λ̄(t). If λ(t) is deterministic, then η is also deterministic

and thus

R0 =

∫ ζ+η
ζ λ(s)ds

∫ ζ+η
ζ λ(s)e−ρsds

.

If in addition λ̄(t) ≡ λ > 0, then this simplifies to the well known result

R0 =
ρη

e−ρζ(1− e−ρη)
.

Remark 2.5. Theorem 2.2 and its Corollary generalize Proposition 2 and Corollary 3 in [7], in

the case λ(t) = λ1ζ≤t<ζ+η for some constant λ > 0, and the pair (ζ, η) is an arbitrary R
2
+–valued

random vector. In that case, our formulas for R0 reduces to

R0 =
ρE[η]

E[e−ρζ(1− e−ρη)]
.
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In the particular case where ζ and η are independent exponential random variables, with parameter

ν and γ, the above formula becomes

R0 =
(

1 +
ρ

ν

)

(

1 +
ρ

γ

)

.

From this we deduce the formula in the classical SIR case by choosing ν = +∞, i.e.,

R0 = 1 +
ρ

γ
.

3. Proof of Theorem 2.2 and Corollary 2.1

The Corollary follows readily from the Theorem and the fact that, from its definition,

R0 = µ̄

∫ ∞

0
λ̄(t)dt .

Let us now prove the Theorem. We deduce from the first equation in (2.17) that necessarily

µ̄ =

(
∫ ∞

0
λ̄(t)e−ρtdt

)−1

.

We first consider the case ρ > 0. We note that

I(t) = ieρt = ι

∫ t

−∞
F c(t− s)eρsds ,

which implies

i = ι

∫ ∞

0
F c(t)e−ρtdt = ιE

∫ ζ+η

0
e−ρtdt =

ι

ρ
E[1− e−ρ(ζ+η)] . (3.1)

In the same way, we find

r = ι

∫ +∞

0
F (t)e−ρtdt =

ι

ρ
E

[

e−ρ (ζ+η)
]

.

Together with the condition i+ r = 1, this yields (2.20).

Now plugging the expressions in (2.17) into the left hand sides of the equations in (2.16), we

obtain that

I(0)λ̄0(t) =

∫ 0

−∞
λ̄(t− s)I(s)ds ,

I(0)F c
0 (t) =

∫ 0

−∞
F c(t− s)I(s)ds , (3.2)

R(0) + I(0)F0(t) =

∫ 0

−∞
F (t− s)I(s)ds .

Substituting I(0) = i and I(s) = ρeρs in the first equation, we obtain

iλ̄0(t) =

∫ 0

−∞
λ̄(t− s)ρeρsds =

∫ ∞

0
λ̄(t+ s)ρe−ρsds = E[λ̄(t+Θ)] ,

that is

λ̄0(t) =
E[λ̄(t+Θ);Θ + t ≤ ζ + η]

P(Θ ≤ ζ + η)
,
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which gives the first line of (2.21). Substituting I(0) = i and I(s) = ρeρs in the second equation,

we obtain

iF c
0 (t) = ρ

∫ ∞

0
F c(t+ s)e−ρsds = P(Θ + t ≤ ζ + η) ,

that is

F c
0 (t) = P(Θ + t ≤ ζ + η|Θ ≤ ζ + η) ,

which implies the second line of (2.21).

When ρ < 0, we can check that (3.1) holds with ι = −ρ. This completes the proof.

4. Proof of the FLLN

4.1. Convergence of (S̄N , ĪN ). For the process AN (t), we have the decomposition

AN (t) = MN
A (t) +

∫ t

0
ΥN (s)ds, (4.1)

where

MN
A (t) =

∫ t

0

∫ ∞

0
1u≤ΥN (s)Q(ds, du),

with Q(ds, du) = Q(ds, du)−dsdu being the compensated PRM. It is clear that the process {MN
A (t) :

t ≥ 0} is a square-integrable martingale (see, e.g., [6, Chapter VI]) with respect to the filtration

{FN
t : t ≥ 0} defined by

FN
t := σ

{

EN (0), IN (0), {λ0
j (·)}j≥1, {λ

0,I
k (·)}k≥1, {λi(·)}i≥1,

∫ t′

0

∫ ∞

0
1u≤ΥN (s)Q(ds, du) : t′ ≤ t

}

.

It has a finite quadratic variation

〈MN
A 〉(t) =

∫ t

0
ΥN (s)ds, t ≥ 0.

Under Assumption 2.2, we have

0 ≤ N−1

∫ t

s
ΥN (u)du ≤ λ∗(t− s), w.p. 1 for 0 ≤ s ≤ t. (4.2)

Thus, this implies that, in probability as N → ∞,

〈M̄N
A 〉(t) = N−2

∫ t

0
ΥN (s)ds → 0 in D,

and by the FCLT for martingales (see, e.g., [18]),

M̄N
A → 0 in D. (4.3)

As a consequence, we obtain the following lemma.

Lemma 4.1. Under Assumptions 2.2 and 2.3, the processes {(ĀN , S̄N ) : N ∈ N} are tight in D2.

The limit of each convergence subsequence of {ĀN}, denoted by Ā, satisfies

Ā = lim
N→∞

ĀN = lim
N→∞

N−1

∫ ·

0
ΥN (u)du, (4.4)

and

0 ≤ Ā(t)− Ā(s) ≤ λ∗(t− s), w.p. 1 for 0 ≤ s ≤ t. (4.5)
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Given the limit Ā of a consequent subsequence of {ĀN}, S̄N → S̄ = S̄(0)− Ā = 1− Ī(0)− Ā in D

in probability as N → ∞.

Let

Ī
N
0,1(t) := N−1

IN (0)
∑

k=1

λ0,I
k (t), Ī

N
0,2(t) := N−1

EN (0)
∑

j=1

λ0
j (t), t ≥ 0.

Lemma 4.2. Under Assumptions 2.2 and 2.3,
(

Ī
N
0,1, Ī

N
0,2

)

→
(

Ī0,1, Ī0,2
)

in D2 as N → ∞, (4.6)

in probability, where

Ī0,1(t) := Ī(0)λ̄0,I(t), Ī0,2(t) := Ē(0)λ̄0(t), t ≥ 0.

Proof. Define the processes

Ĩ
N
0,1(t) := N−1

NĪ(0)
∑

k=1

λ0,I
k (t), Ĩ

N
0,2(t) := N−1

NĒ(0)
∑

j=1

λ0
j (t), t ≥ 0. (4.7)

By the i.i.d. assumptions for the sequences {λ0
j (t)} and {λ0,I

k (t)}, and their independence, and by

the LLN for random elements in D (see Theorem 1 in [16]), we directly obtain the joint convergence

in probability
(

Ĩ
N
0,1, Ĩ

N
0,2

)

→
(

Ī0,1, Ī0,2
)

in D2 as N → ∞.

It then suffices to show that in probability
(

Ĩ
N
0,1 − Ī

N
0,1, Ĩ

N
0,2 − Ī

N
0,2

)

→ 0 in D2 as N → ∞. (4.8)

We have

Ĩ
N
0,1 − Ī

N
0,1 = sign(Ī(0)− ĪN (0))N−1

N(ĪN (0)∨Ī(0)
∑

k=N(ĪN (0)∧Ī(0)

λ0,I
k (t),

and thus,

E



N−1

k=N(ĪN (0)∨Ī(0)
∑

k=N(ĪN (0)∧Ī(0)

λ0,I
k (t)

∣

∣

∣

∣

FN
0



 ≤ λ0,I
k (t)

∣

∣ĪN (0)− Ī(0)
∣

∣.

By the almost sure boundedness of λ0,I
k (t) in Assumption 2.2, and by the convergence ĪN (0)−Ī(0) →

0 in probability under Assumption 2.3, we obtain that λ0,I
k (t)

∣

∣ĪN (0)−Ī(0)
∣

∣→ 0 in probability. Thus

we have shown that ĨN0,1 − Ī
N
0,1 → 0 in probability. Similarly for the convergence Ĩ

N
0,2 − Ī

N
0,2 → 0 in

probability. This completes the proof. �

Let

Ī
N
1 (t) := N−1

AN (t)
∑

i=1

λi(t− τNi ), t ≥ 0.

Before we prove the convergence of ĪN1 → Ī1 in D, let us first establish a technical result which

will be useful in the next proof.
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Lemma 4.3. Let {XN}N≥1 be a sequence of random elements in D. If the two conditions

(i) for all ǫ > 0, sup0≤t≤T P
(

|XN (t)| > ǫ
)

→ 0, as N → ∞, and

(ii) for all ǫ > 0, lim supN sup0≤t≤T
1
δP
(

sup0≤u≤δ |X
N (t+ u)−XN (t)| > ǫ

)

→ 0, as δ → 0

are satisfied, then XN (t) → 0 in probability uniformly in t.

Proof. The Lemma is a direct consequence of the inequality (4.21) in [14], which we repeat here for

the reader’s convenience:

P

(

sup
0≤t≤T

|XN (t)| > ε

)

≤
T

δ
sup

0≤t≤T
P(|XN (t)| > ε/2)

+
T

δ
sup

0≤t≤T
P

(

sup
0≤u≤δ

|XN (t+ u)−XN (t)| > ǫ/2

)

.

�

Lemma 4.4. Under Assumptions 2.1 and 2.2, if Ā is the limit of the converging subsequence of

{ĀN},

Ī
N
1 → Ī1 in D as N → ∞, (4.9)

in probability, where

Ī1(t) :=

∫ t

0
λ̄(t− s)dĀ(s), t ≥ 0.

Proof. Let

Ĭ
N
1 (t) := N−1

AN (t)
∑

i=1

λ̄(t− τNi ) =

∫ t

0
λ̄(t− s)dĀN (s), t ≥ 0. (4.10)

Under Assumption 2.2, applying the continuous mapping theorem, we obtain that in probability,

Ĭ
N
1 → Ī1 in D as N → ∞. (4.11)

Then it suffices to show that in probability

V N := Ī
N
1 − Ĭ

N
1 → 0 in D as N → ∞. (4.12)

We have

V N (t) = N−1

AN (t)
∑

i=1

χN
i (t), χN

i (t) := λi(t− τNi )− λ̄(t− τNi ).

χN
i (t) clearly satisfies E

[

χN
i (t)

]

= 0 and E
[

χN
i (t)χN

j (t)] = 0. Thus,

E
[

V N (t)2
]

= N−2
E

[AN (t)
∑

i=1

ν(t− τNi )

]

= N−1
E

[
∫ t

0
ν(t− s)dĀN (s)

]

,

where ν(t) := E[(λi(t) − λ̄(t))2] and ν(t) < ∞ under Assumption 2.2. We easily obtain that for

each t ≥ 0,

V N (t) → 0 in probability, as N → ∞ .
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It remains to establish condition (ii) of Lemma 4.3, i.e., that for any ǫ > 0,

lim
δ→0

lim sup
N→∞

[T

δ

]

sup
t∈[0,T ]

P

(

sup
u∈[0,δ]

∣

∣V N (t+ u)− V N (t)
∣

∣ > ǫ

)

= 0. (4.13)

We have for t, u ≥ 0,

∣

∣V N (t+ u)− V N (t)
∣

∣ ≤

∣

∣

∣

∣

∣

∣

N−1

AN (t)
∑

i=1

(

λi(t+ u− τNi )− λi(t− τNi )
)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

N−1

AN (t)
∑

i=1

(

λ̄(t+ u− τNi )− λ̄(t− τNi )
)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

N−1

AN (t+u)
∑

i=AN (t)

(

λi(t+ u− τNi )− λ̄(t+ u− τNi )
)

∣

∣

∣

∣

∣

∣

= ∆1,N
t,u +∆2,N

t,u +∆3,N
t,u .

We first note that by (4.2),

sup
0≤u≤δ

∆N,3
t,u ≤ λ∗

(

ĀN (t+ δ)− ĀN (t)
)

≤ (λ∗)2δ + λ∗
(

M̄N
A (t+ δ)− M̄N

A (t)
)

,

so that by (4.3), for any T > 0, ǫ > 0, provided δ < ε/(6(λ∗)2),

P

(

sup
0≤u≤δ

∆N,3
t,u > ǫ/3

)

≤ P
(∣

∣M̄N
A (t+ δ) − M̄N

A (t)
∣

∣ > ε/λ∗
)

→ 0, as N → ∞,

and consequently,

lim sup
N→∞

[T

δ

]

sup
t∈[0,T ]

P

(

sup
u∈[0,δ]

∣

∣∆N,3
t,u

∣

∣ > ǫ

)

= 0. (4.14)

We now consider the first term

∆N,1
t,u ≤ N−1

AN (t)
∑

i=1

k
∑

j=1

|λj
i (t+ u− τNi )− λj

i (t− τNi )|1
ξj−1

i ≤t−τNi <t+u−τNi <ξji

+ λ∗N−1

AN (t)
∑

i=1

k
∑

j=1

1
t−τNi ≤ξji<t+u−τNi

≤ ϕ(u)ĀN (t) + λ∗
k
∑

j=1

N−1

AN (t)
∑

i=1

1
t−τNi ≤ξji<t+u−τNi

.

The right hand side being nondecreasing in u, we deduce that

sup
0≤u≤δ

∆N,1
t,u ≤ ϕ(δ)λ∗T + ϕ(δ)M̄N

A (t) + λ∗
k−1
∑

j=1

N−1

AN (t)
∑

i=1

1
t−τNi ≤ξji<t+δ−τNi

.
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So, provided δ > 0 is small enough such that ϕ(δ) < ε/(9λ∗T ),

P

(

sup
0≤u≤δ

∆N,1
t,u > ǫ/3

)

≤ P
(

ϕ(δ)M̄N
A (t) > ǫ/9

)

+ P



λ∗
k−1
∑

j=1

N−1

AN (t)
∑

i=1

1
t−τNi ≤ξji<t+δ−τNi

> ǫ/9



 .

The first term tends to 0 as N → ∞ thanks to (4.3), and the second term is bounded by

92

ǫ2
E









λ∗
k−1
∑

j=1

N−1

AN (t)
∑

i=1

1
t−τN

i
≤ξj

i
<t+δ−τN

i





2






≤
2× 92

ǫ2
E







λ∗
k−1
∑

j=1

N−1

∫ t

0

∫ ∞

0

∫ t+δ−s

t−s
1u≤ΥN (s)Qj(ds, du, dξ)





2



+
2× 92

ǫ2
E







λ∗
k−1
∑

j=1

N−1

∫ t

0

(

Fj(t+ δ − s)− Fj(t− s)
)

ΥN (s)ds





2

 ,

where Qj(ds, du, dξ) is a PRM on R+×R+×R+ with mean measure dsduFj(dξ), and Qj(ds, du, dξ)

is the corresponding compensated PRM. Observe that

E

[

(
∫ t

0

∫ ∞

0

∫ t+δ−s

t−s
1u≤ΥN (s)Qj(ds, du, dξ)

)2
]

= N−2
E

[∫ t

0

(

Fj(t+ δ − s)− Fj(t− s)
)

ΥN (s)ds

]

≤ N−1λ∗

∫ t

0

(

Fj(t+ δ − s)− Fj(t− s)
)

ds

and

E

[

(

N−1

∫ t

0

(

Fj(t+ δ − s)− Fj(t− s)
)

ΥN (s)ds

)2
]

≤

(

λ∗

∫ t

0

(

Fj(t+ δ − s)− Fj(t− s)
)

ds

)2

. (4.15)

The first term tends to 0 as N → ∞. The second term is treated as in the proof of Lemma 4.2 in

[14], since Fj satisfies the conditions in Assumption 2.1. We deduce that

lim sup
N→∞

[T

δ

]

sup
t∈[0,T ]

P

(

sup
u∈[0,δ]

∣

∣∆N,1
t,u

∣

∣ > ǫ

)

→ 0, as δ → 0. (4.16)

We next consider ∆N,2
t,u . We have

∣

∣λ̄(t+ u− τNi )− λ̄(t− τNi )
∣

∣

=

∣

∣

∣

∣

k
∑

j=1

{

λ̄j(t+ u− λ)[Fj−1(t+ u− τNj )− Fj(t+ u− τNi )]

− λ̄j(t− τNi )[Fj−1(t− τNj )− Fj(t− τNi )]
}

∣

∣

∣

∣
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≤ ϕ(u) + λ∗
k
∑

j=1

[Fj(t+ u− τNi )− Fj(t− τNi )] .

The right hand side being nondecreasing in u, we deduce that

sup
0≤u≤δ

∆2,N
t,u ≤ ϕ(δ)ĀN (t) + λ∗

k
∑

j=1

∫ t

0
[Fj(t+ δ − s)− Fj(t− s)]dĀN (s).

The first term on the right is the same as the one which appeared in the upper bound of ∆N,1
t,u . We

need only consider the second term. We note that
∫ t

0
[Fj(t+ δ − s)− Fj(t− s)]dĀN (s) =

∫ t

0
[Fj(t+ δ − s)− Fj(t− s)]dM̄N

A (s)

+

∫ t

0
[Fj(t+ δ − s)− Fj(t− s)]ῩN (s)ds .

Now,

E

[

(∫ t

0
[Fj(t+ δ − s)− Fj(t− s)]dĀN (s)

)2
]

≤ 2E
[

(

M̄N
A (t)

)2
]

+ 2E

[

(∫ t

0
[Fj(t+ δ − s)− Fj(t− s)]ῩN (s)ds

)2
]

.

The first term on the right tends to 0 as N → ∞. The second term can be bounded by 2(λ∗)2

times
(
∫ t

0
[Fj(t+ δ − s)− Fj(t− s)]ds

)2

.

which is again the bound in (4.15). The same argument again applies. Hence (4.16) holds with ∆N,1
t,u

replaced by ∆N,2
t,u . Therefore, we have proved (4.13). This completes the proof of the lemma. �

By Lemmas 4.1 and 4.4, we obtain in probability,
∫ ·

0
ῩN (s)ds =

∫ ·

0
S̄N (s)ĪN (s)ds →

∫ ·

0
S̄(s)Ī(s)ds in D as N → ∞. (4.17)

This implies that in probability,

ĀN → Ā =

∫ ·

0
S̄(s)Ī(s)ds in D as N → ∞. (4.18)

Therefore, the limits
(

S̄, Ī
)

satisfy the integral equations (2.11) and (2.12) in Theorem 2.1. Finally,

the existence and uniqueness of solution to the integral equations follow from applying Gronwall’s

inequality in a straightforward way, and the whole sequence converges. This completes the proof

of the joint convergence of
(

S̄N , ĪN
)

→
(

S̄, Ī
)

in D2 in probability.

4.2. Convergence of (ĒN , ĪN , R̄N ). The proof for the convergence of (ĒN , ĪN , R̄N ) follows es-

sentially the same argument as in Section 6 of [14]. We highlight the key steps and differences

below.
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For the initially exposed and infectious individuals, let

ĒN
0 (t) := N−1

EN (0)
∑

j=1

1ζ0j>t , ĪN0,1(t) := N−1

IN (0)
∑

k=1

1
η0,I
k

>t
, ĪN0,2(t) := N−1

EN (0)
∑

j=1

1ζ0j+η0j>t ,

R̄N
0,1(t) := N−1

IN (0)
∑

k=1

1
η0,I
k

≤t
, R̄N

0,2(t) := N−1

EN (0)
∑

j=1

1ζ0j+η0j≤t .

By the FLLN for empirical processes, we obtain the following lemma.

Lemma 4.5. Under Assumptions 2.2 and 2.3,
(

ĒN
0 , ĪN0,1, Ī

N
0,2, R̄

N
0,1, R̄

N
0,2

)

→
(

Ē0, Ī0,1, Ī0,2, R̄0,1, R̄0,2

)

in D5 as N → ∞, (4.19)

in probability, jointly with the convergence
(

Ī
N
0,1, Ī

N
0,2

)

→
(

Ī0,1, Ī0,2
)

in (4.6), where

Ē0(t) = Ē(0)Gc
0(t), Ī0,1(t) = Ī(0)F c

0,I (t), Ī0,2(t) = Ē(0)Ψ0(t),

R̄0,1(t) = I(0)F0,I(t), R̄0,2(t) = Ē(0)Φ0(t).

Proof. Recall the definition of
(

Ĩ
N
0,1, Ĩ

N
0,2) in (4.7). Similarly, define

(

ẼN
0 , ĨN0,1, Ĩ

N
0,2, R̃

N
0,1, R̃

N
0,2

)

by re-

placing EN (0) and IN (0) withNĒ(0) andNĪ(0), respectively, in the definitions of
(

ĒN
0 , ĪN0,1, Ī

N
0,2, R̄

N
0,1,

R̄N
0,2

)

. To prove the joint convergence of these newly defined processes, because of the independence

of the sequences {λ0
j}j≥1 and {λ0,I

k }k≥1, it suffices to show the joint convergence of
(

Ĩ
N
0,1, Ĩ

N
0,1, R̃

N
0,1

)

and
(

Ĩ
N
0,2, Ẽ

N
0 , ĨN0,2, R̃

N
0,2

)

, separately. By the FLLN for empirical processes, and by the i.i.d. as-

sumption of {λ0,I
k }k≥1 and the definition of η0,Ik from λ0,I

k in (2.3), we obtain the joint convergence

in probability
(

Ĩ
N
0,1, Ĩ

N
0,1, R̃

N
0,1

)

→
(

Ī0,1, Ī0,1, R̄0,1

)

in D3 as N → ∞.

Similarly, by he i.i.d. assumption of {λ0
j}j≥1 and the definition of (ζ0j , η

0
j ) from λ0

j in (2.2), we

obtain the joint convergence in probability
(

Ĩ
N
0,2, Ẽ

N
0 , ĨN0,2, R̃

N
0,2

)

→
(

Ī0,2, Ē0, Ī0,2, R̄0,2

)

in D4 as N → ∞.

Then it suffices to show that in probability, as N → ∞,
(

Ĩ
N
0,1 − Ī

N
0,1, Ĩ

N
0,2 − Ī

N
0,2, Ẽ

N
0 − ĒN

0 , ĨN0,1 − ĪN0,1, Ĩ
N
0,2 − ĪN0,2, R̃

N
0,1 − R̄N

0,1, R̃
N
0,2 − R̄N

0,2

)

→ 0 in D7.

The convergence of
(

Ĩ
N
0,1 − Ī

N
0,1, Ĩ

N
0,2 − Ī

N
0,2

)

→ 0 is proved in (4.8). For the other processes, see a

similar argument in (4.10) and (4.11) in Section 4 of [14]. This completes the proof. �

For the newly infected individuals, let

ĒN
1 (t) := N−1

AN (t)
∑

j=1

1τNi +ζi>t , ĪN1 (t) := N−1

AN (t)
∑

i=1

1τNi +ζi≤t<τNi +ζi+ηi
,

R̄N
1 (t) := N−1

AN (t)
∑

i=1

1τNi +ζi+ηi≤t .

Lemma 4.6. Under Assumptions 2.1, 2.2 and 2.3,
(

ĒN
1 , ĪN1 , R̄N

1

)

→
(

Ē1, Ī1, R̄1

)

in D3 as N → ∞, (4.20)
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in probability, jointly with the convergence of ĪN1 → Ī1 in (4.9), where

Ē1(t) :=

∫ t

0
Gc(t− s)S̄(s)Ī(s)ds , Ī1(t) :=

∫ t

0
Ψ(t− s)S̄(s)Ī(s)ds ,

R̄1(t) :=

∫ t

0
Φ(t− s)S̄(s)Ī(s)ds .

Proof. Let

ĔN
1 (t) := N−1

AN (t)
∑

j=1

Gc(t− τNi ) =

∫ t

0
Gc(t− s)dĀN (s) ,

ĬN1 (t) := N−1

AN (t)
∑

i=1

Ψ(t− τNi ) =

∫ t

0
Ψ(t− s)dĀN (s) ,

R̆N
1 (t) := N−1

AN (t)
∑

i=1

Φ(t− τNi ) =

∫ t

0
Φ(t− s)dĀN (s) .

Recall the definition of ĬN1 (t) in (4.10) and its convergence in (4.11).

Define the map Γ from a nondecreasing function x ∈ D to the following integral functions:
(

∫ ·

0
λ̄(· − s)dx(s),

∫ ·

0
Gc(· − s)dx(s),

∫ ·

0
Ψ(· − s)dx(s),

∫ ·

0
Φ(· − s)dx(s)

)

∈ D4.

Then given the convergence of AN in (4.18), and applying the continuous mapping theorem, we

obtain the joint convergence in probability:
(

Ĭ
N
1 , ĔN

1 , ĬN1 , R̆N
1

)

→
(

Ī1, Ē1, Ī1, R̄1

)

in D4 as N → ∞.

Then it suffices to show that in probability,
(

Ī
N
1 − Ĭ

N
1 , ĒN

1 − ĔN
1 , ĪN1 − ĬN1 , R̄N

1 − R̆N
1

)

→ 0 in D4 as N → ∞.

The convergence Ī
N
1 − Ĭ

N
1 → 0 is shown in Lemma 4.4 (see equation (4.12)). The convergence

ĒN
1 − ĔN

1 → 0 follows essentially the same argument as Lemma 4.2 in [14]. The convergence

ĪN1 −ĬN1 → 0 follows essentially the same argument as Lemma 6.1 in [14]. Similarly for R̄N
1 −R̆N

1 → 0.

This completes the proof. �

Finally, observing that the processes (ĒN , ĪN , R̄N ) can be written as sums of the processes in

(4.19) and (4.20), and thus applying the continuous mapping theorem, we directly obtain the joint

convergence (ĒN , ĪN , R̄N ) → (Ē, Ī , R̄) in D3 in probability.
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