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Epidemic models with varying infectivity on a refining spatial
grid. I. The SI model

ANICET MOUGABE-PEURKOR1, ÉTIENNE PARDOUX2, AND TÉNAN YEO1

Abstract. We consider a space-time SI epidemic model with infection age dependent infectivity
and non-local infections constructed on a grid of the torus Td = (0, 1]d, where the individuals may
migrate from node to another. The migration processes in either of the two states are assumed
to be Markovian. We establish a functional law of large numbers by letting jointly N the initial
approximate number of individuals on each node go to infinity and ε the mesh size of the grid go
to zero. The limit is a system of parabolic PDE/integral equations. The constraint on the speed of
convergence of the parameters N and ε is that Nεd → ∞ as (N, ε) → (+∞, 0).

Key words. epidemic model, varying infectivity, non-local infections, law of large numbers, inte-
gral equations, space-time.

1. Introduction

We consider an epidemic model on a refining grid of the d dimensional torus Td. Like in the earlier
work [8], the individuals move from one patch to its neighbors according to a random walk. The
first novelty of this paper is that the infectivity of each individual is a random function, which
evolves with the time elapsed since infection, as first considered in [6], and recently studied in [3]
and [4]. The second novelty is that we allow infection of a susceptible individual by infectious
individuals located in distinct patches, and we use a very general rate of infections.
There are two parameters in our model, N which is the order of the number of individuals in each
patch, and ε, which is the distance between two neighboring sites. The total number of patches is
ε−d, and the total number of individuals in the model is Nε−d. Our goal is to study the limit of
the renormalized stochastic finite population model as both N → ∞ and ε → 0. In this paper we
obtain a convergence result in L∞ under the restriction that Nεd → ∞. In [8], the restriction was
much weaker, thanks to clever martingale estimates due to Blount [2]. However, in contradiction
with the model in [8], our model is non Markovian, and several of the fluctuating processes are not
martingales. As a result, it does not seem possible to extend the techniques of [2] to the situation
studied in the present paper.
There are three models in the present paper. The stochastic SDE model parametrized by the pair
(N, ε), the deterministic model which is an ODE parametrized by ε on the patches (and is the LLN
limit of the first model when N → ∞ with ε fixed), and the PDE model on the torus T

d, which
is the limit of the ODE model as ε → 0. The convergence of the ODE model to the PDE model
exploits standard arguments on semigroup and their approximation, based on some result in [5].
The main new argument in the present paper consists in showing that the difference in L∞ between
the stochastic and the ODE models, which tends to zero as N → ∞ while ε is fixed according to
[4], tends also to zero when (N, ε) → (+∞, 0), provided Nεd → ∞.
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In this paper, we consider the SI model, S as susceptible, I as infected. An infected individual has
an age of infection dependent infectivity, which we suppose to vanish after some random time. It
would be natural to decide that at that time the individual leaves the I compartment, and enters
the R compartment, R as recovered. For the sake of simplifying our model, we decide that after
being infected, an individual remains in the I compartment for ever. This does not affect the
evolution of the epidemic, since when its infectivity remains zero, an individual does not contribute
anymore to the propagation of the illness, exactly as an individual in the R compartment of an
SIR model. However, there are two drawbacks of the present model. First, we do not follow the
evolution of the number of infectious individuals, since we have so to speak merged the I and the
R compartments. Second, while we distinguish the rate of movements of the S type and the I type
individuals we do not distinguish that rate between the infectious and the recovered individuals.
The reason for studying the SI model separately is that, in our “Varying Infectivity” model the
techniques for proving the convergence as ε→ 0 of the ODE model to the PDE model which we are
using in the SI case will not be available in the SIR case. One is forced to use different techniques.
We will study the extension of the present results to the SIR model in a future publication. But
our conviction is that it is worth to present the results in the SI case, due to the possibility in this
case of using classical semigroup techniques.
Let us finally comment on the assumptions on the age of infection dependent infectivity. We assume
that to each individual who gets infected is attached a random infectivity function, the functions
attached to the various individuals being i.i.d., all having the law of a random function λ (the
law is different for the initially infected individuals). In this paper, as in [4], we only assume that
λ belongs a.s. to the Skorohod space of càlàg function D, and satisfies 0 ≤ λ(t) ≤ λ∗, for some
λ∗ > 0. This is weaker than the assumptions made in [3]. The proof in [4] is quite different from
the proof in [3]. Here we use a proof similar to that in [3]. The limitation is that we obtain only
the pointwise convergence of the renormalised total infectivity function, while we obtain uniform
in t convergence of the proportions of susceptible and infected individuals. We believe that this
proof is interesting, due to its simplicity.

Note that there is some literature on similar models, but mainly without movements of the various
individuals, see in particular [1] for a SIS Markov model, and [9] for a SIR varying infectivity model.
Our previous publication [8] treats a Markov SIR model with movements and only local infections.

The paper is organized as follows. We describe our model in detail in section 2, in particular the
complex form of the rate of infection. In section 3, we state the law of large numbers limit as
N → ∞, with ε fixed, referring to [4] for the proof. In section 4, we take the limit as ε → 0 in
the ODE model. Finally, in section 5, we study the difference between the stochastic and the ODE
model, as (N, ε) → (+∞, 0), and conclude our main result.

2. Model description

We consider a total population size Nε−d initially distributed on the ε−d nodes of a refining spatial
grid Dε := [0, 1)d ∩ εZd, in which an infection is introduced. Here ε is the mesh size of the grid
(we assume that ε−1 ∈ N\{0}). We focus our attention to the periodic boundary conditions on the
hypercube [0, 1]d, that is, our domain is the torus Td := [0, 1]d. Our results can be extended to a
bounded domain of Rd with smooth boundary, and Neumann boundary conditions.

2.1. Set-up and notations.

We split the population in two subsets SN,ε and IN,ε. SN,ε stands for the susceptible individuals,
who do not have the disease and who can get infected, while IN,ε is referred to the subset of those
individuals who are suffering from the illness or have recovered from the disease.
We shall denote by xε the nodes of the grid Dε. SN,ε(t, xε) denotes the number of susceptible
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individuals at site xε at time t. Let BN,ε(t, xε) be the total number of individuals at site xε at time
t, i.e. BN,ε(t, xε) := SN,ε(t, xε) + IN,ε(t, xε). We define SN,ε(t) (resp. IN,ε(t)) as the total number
of susceptible individuals (resp. infected individuals) at time t in the whole population, that is:

SN,ε(t) :=
∑

xε

SN,ε(t, xε), and IN,ε(t) :=
∑

xε

IN,ε(t, xε) , ∀t ≥ 0.

We have BN,ε(t) :=
∑

xε

BN,ε(t) = Nε−d , ∀t ≥ 0.

To each individual j is attached a random infection-age dependent infectivity process {λ−j(t) : t ≥
0} or {λj(t) : t ≥ 0}. λ−j(t) is the infectivity at time t of the j-th initially infected individual. The

initially susceptible individual j who is infected at a random time τN,ε
j , has at time t the infectivity

λj(t − τN,ε
j ), i.e. λj(t) is the infectivity at time t after its time of infection of the j-th initially

susceptible individual. We assume that λj = 0 on R− and that {λ−j : j ≥ 1} and {λj : j ≥ 1} are
two mutually independent sequences of i.i.d R+-valued random functions.

We define the infected periods of newly and initially infected individual j > 0 and j < 0 respectively,
by the random variables

ηj := sup{t > 0 : λj(t) > 0}, j ∈ Z\{0}.

We define F (t) := P (η1 ≤ t), , F0(t) := P (η−1 ≤ t), the distributions functions of λj for j ≥ 1 and
for j ≤ −1 respectivelly. Let F c(t) := 1− F (t) and F c

0 (t) := 1− F0(t). We moreover define

λ(t) := E [λ1(t)] and λ0(t) := E [λ−1(t)] .

Note that, under the i.i.d. assumption of the random variables {λj(.)}j≥1, the sequence of random
variables {ηj}j≥1 is i.i.d. Also, the sequence of random variables {ηj}j≤−1 is i.i.d.

We assume that susceptible individuals move from patch to patch according to a time-homogenous
Markov process X(t) with jump rates νS/ε

2 and transition function

pxε,yε
ε (s, t) = P (X(t) = yε|X(s) = xε) ,

and while infectious individuals move from patch to patch according to a time-homogeneous Markov
process Y (t) with jump rates νI/ε

2 and transition function

qxε,yε
ε (s, t) = P (Y (t) = yε|Y (s) = xε) .

νS and νI are positive diffusion coefficients for the susceptible and infected subpopulations, respec-
tively. We assume that those movements of the various individuals are mutually independent.
In addition, we use Xs,xε

j (t) (resp. Y s,xε

j (t)) to denote the position at time t of the individual j if it

is susceptible (resp. infected) during the time interval (s, t), and was in location/node xε at time
s.
For all xε ∈ Dε, let Vε(xε) be the cube centered at the site xε with volume εd. Let Hε ⊂ L2(Td)
denote the space of real valued step functions that are constant on each cell Vε(xε).
∆ε is the discrete Laplace operator defined as follows

∆εf(xε) =

d∑

i=1

ε−d
[
f(xε + εei)− 2f(xε) + f(xε − εei)

]
, f ∈ Hε

and we define the operators ∆S
ε f := νS∆εf and ∆I

εf := νI∆εf , f ∈ Hε.

∆ denotes the d-dimensional Laplace operator. Let TS,ε (resp. TI,ε) be the semigroup acting on
Hε generated by νS∆ε (resp. νI∆ε). Similary, we denote by TS (resp. TI) the semigroup acting on
L2(Td) generated by νS∆ (resp. νI∆).
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2.2. Model formulation.
All random variables and processes are defined on a common complete probability space (Ω,F ,P).
We consider a SI epidemic model where each infectious individual has an infectivity that is randomly
varying with the time elapsed since infection. We assume that a susceptible individual in patch xε
has contacts with infectious individuals of patch yε at rate βxε,yε

ε (t) at time t.
Given a site xε, the total force of infection at each time t at site xε is the aggregate infectivity of
all the individuals that are currently infectious in this site:

FN,ε(t, xε) =

IN,ε(0)∑

j=1

λ−j(t)1Yj(t)=xε

+
∑

yε

∫ t

0

∫ ∞

0

∫

D

∫

D

λ(t− s)1
u≤SN,ε(s−,yε)Γ

N,ε
(s−,yε)

1Y s,yε(t)=xε
Qyε(ds, du, dλ, dY ),

where

Γ
N,ε

(t, yε) :=
1

N1−γ [BN,ε(t, yε)]γ

∑

xε

βyε,xε
ε (t)FN,ε(t, xε)

is the force of infection exerted on each susceptible individual in patch xε, and {Qyε , yε ∈ Dε} are
i.i.d. standard Poisson random measures (PRM) on R

2
+ ×D2 with intensity ds⊗ du⊗ dPλ ⊗ dPY .

D denotes the space of càdlàg paths from R+ into R+, which we equip with the Skorohod topology.
We assume that γ ∈ [0, 1]. By an abuse of notation, we denote by Qxε(ds, du) the projection of

Qxε(ds, du, dλ, dY ) on the first two coordinates. Let, with ΥN,ε(t, xε) := SN,ε(t, xε)Γ
N,ε

(t, xε),

AN,ε(t, xε) :=

∫ t

0

∫ ∞

0
1u≤ΥN,ε(s−,xε)Q

xε(ds, du).

In what follows, xε ∼ yε means that the nodes xε and yε are neighbors (each point of Dε has 2d
neighbors).

The epidemic dynamic of the model can be described by the following equations

SN,ε(t, xε) = SN,ε(0, xε)−AN,ε(t, xε)−
∑

yε∼xε

P xε,yε
S

(∫ t

0

νS
ε2
SN,ε(s, xε)ds

)
+
∑

yε∼xε

P yε,xε

S

(∫ t

0

νS
ε2
SN,ε(s, yε)ds

)

IN,ε(t, xε) = IN,ε(0, xε) +AN,ε(t, xε)−
∑

yε∼xε

P xε,yε
I

(∫ t

0

νI
ε2
IN,ε(s, xε)ds

)
+
∑

yε∼xε

P yε,xε

I

(∫ t

0

νI
ε2
IN,ε(s, yε)ds

)
,

(2.1)
where P xε,yε

S , P xε,yε
I , xε , yε ∈ Dε are mutually independent standard Poisson processes.

In the above equations P xε,yε
S (resp. P xε,yε

I ) is the counting process of susceptible (resp. infected)
individuals that migrate from the patch xε to yε.

In the sequel of this paper we may use the same notation for different constants (we use the generic
notations c, C for positive constants). These constants can depend upon some parameters of the
model, as long as these are independent of ε and N , and we will not necessarily mention this
dependence explicitly. The exact value may change from line to line.

3. Law of large numbers as N → ∞, ε being fixed

We consider the renormalized model by dividing the number of individuals in each compartment
and at each patch by N . Hence, we define

S
N,ε

(t, xε) :=
1

N
SN,ε(t, xε), I

N,ε
(t, xε) :=

1

N
IN,ε(t, xε), and F

N,ε
(t, xε) :=

1

N
FN,ε(t, xε).

Assumption 3.1 We make the following assumptions on the initial conditions. We assume that:
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(i) there exists a collection of positive numbers {S
ε
(0, xε), I

ε
(0, xε), xε ∈ Dε } such that

∑

xε

[
S
ε
(0, xε) + I

ε
(0, xε)

]
= ε−d ,

and
∣∣∣SN,ε(0)−NS

ε
(0)
∣∣∣ ≤ 1 ,

∣∣∣IN,ε(0)−NI
ε
(0)
∣∣∣ ≤ 1;

(ii) there exists two continuous functions S, I : Td −→ R+ such that c ≤ S(x) ≤ C, I(x) ≤ C

for all x ∈ T
d,
∫
Td

[
S(x) + I(x)

]
dx = 1 and

S
ε
(0, xε) = ε−d

∫

Vε(xε)
S(x)dx, I

ε
(0, xε) = ε−d

∫

Vε(xε)
I(x)dx .

(iii) {Xj(0) , 1 ≤ j ≤ SN,ε(0)} and {Yj(0) , 1 ≤ j ≤ IN,ε(0)} are two mutually independent col-

lections of i.i.d. random variables satisfying P (Xj(0) = xε) =
S

ε
(0, xε)

S
ε
(0)

, and P (Yj(0) = xε) =

I
ε
(0, xε)

I
ε
(0)

for all xε ∈ Dε, where S
ε
(0) :=

∑

xε

S
ε
(0, xε) and I

ε
(0) :=

∑

xε

I
ε
(0, xε). More-

over SN,ε(0, xε) =

SN,ε(0)∑

j=1

1Xj(0)=xε
and IN,ε(0, xε) =

IN,ε(0)∑

j=1

1Yj(0)=xε
.

Assumption 3.2 (i) We assume that βxε,yε
ε (t) = βt(xε, Vε(xε)), where βt(x,A) is a transition

kernel and there exists a constant β∗ such that βt(x,T
d) ≤ β∗, for all x ∈ T

d and t ≥ 0.
(ii) there exists a positive constant λ∗ > 0 such that 0 ≤ λj(t) ≤ λ∗, for all j ∈ Z\{0} and

t ≥ 0.

Under 3.1 and 3.2, we have the

Theorem 3.1 (Law of Large Numbers: N → ∞, ε being fixed)

As N → ∞,
(
S
N,ε

(t, xε), F
N,ε

(t, xε), I
N,ε

(t, xε), t ≥ 0, xε ∈ Dε

)
converges in D3ε−d

in probability,

to the unique solution
(
S
ε
(t, xε), F

ε
(t, xε), I

ε
(t, xε), t ≥ 0, xε ∈ Dε

)
of the following system of

integral equations





S
ε
(t, xε) = S

ε
(0, xε)−

∫ t

0
S

ε
(s, xε)Γ

ε
(s, xε)ds +

∫ t

0

[
∆S

ε S
ε]
(s, xε)ds

F
ε
(t, xε) = λ0(t)

∑

yε

I
ε
(0, yε)q

yε,xε(0, t) +
∑

yε

∫ t

0
λ(t− s)S

ε
(s, yε)Γ

ε
(s, yε)q

yε,xε(s, t)ds

I
ε
(t, xε) = I

ε
(0, xε) +

∫ t

0
S

ε
(s, xε)Γ

ε
(s, xε)ds+

∫ t

0

[
∆I

εI
ε]
(s, xε)ds,

t ≥ 0, xε ∈ Dε,

(3.1)

where

Γ
ε
(t, xε) =

1[
B

ε
(t, xε)

]γ
∑

yε

βxε,yε
ε (t)F

ε
(t, yε) and B

ε
(t, xε) = S

ε
(t, xε) + I

ε
(t, xε).

This Theorem is a special case of Theorem 3.1 in [4], whose proof written for a multi-patch multi-
group SIR model is easily adapted to our case.
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4. Limit as ε→ 0 in the deterministic model

Before letting ε go to zero in the limit system (3.1) extended on the whole space Td, we prove some
technical lemmas.

Lemma 4.1 Let T > 0. There exists a positive constant C such that
∥∥Sε

(t)
∥∥
∞

≤ C and
∥∥Iε(t)

∥∥
∞

≤
C, for all ε > 0 and t ∈ [0 , T ].

Proof. Using the Duhamel formula, we have ‖S
ε
(t)‖∞ ≤ sup

xε

S
ε
(0, xε) ≤ C.

We now consider the term I
ε
. First using the previous estimate, we obtain

S
ε
(s, xε)(

B
ε
(s, xε)

)γ =

(
S
ε
(s, xε)

B
ε
(s, xε)

)γ [
S
ε
(s, xε)

]1−γ
≤ C(T, γ).

Next we have
∑

yε

βxε,yε
ε F

ε
(s, yε) ≤ λ∗

wwIε(s)
ww

∞

∑

yε

βxε,yε
ε (s) ≤ λ∗β∗

∥∥Iε(s)
∥∥
∞
. Thus

wwIε(t)
ww

∞
≤
ww(TI,ε(t)Iε(0)

)ww
∞

+

∫ t

0
TI,ε(t− s)C

wwIε(s)
ww

∞
ds

≤ C + C

∫ t

0

wwIε(s)
ww

∞
ds.

The second statement then follows from Gronwall’s Lemma. �

Lemma 4.2 For any T > 0, there exists ε0 and c > 0 such that B
ε
(t, xε) ≥ c, for all 0 < ε ≤ ε0,

xε ∈ Dε and 0 ≤ t ≤ T .

Proof. Let c and C be two positive constants such that 0 < c ≤
infxε S

ε
(0, xε)

2
≤
C

2
, and let

T ε
c := inf{t > 0 , inf

xε

S
ε
(t, xε) < c}. On the interval [0 , T ε

c ], S
ε
(t, xε) ≥ c, ∀xε ∈ Dε. For t ≤ T ε

c ,

we have

Γ
ε
(t, xε) =

1[
B

ε
(t, xε)

]γ
∑

yε

βxε,yε
ε (t)F

ε
(t, yε) ≤

λ∗β∗

cγ
∥∥Iε(t)

∥∥
∞

:= c,

S
ε
(t, xε) ≤ S

ε
(0, xε)− c

∫ t

0
S
ε
(s, xε) +

∫ t

0

[
∆S

ε S
ε]
(s, xε)ds.

Hence ectS
ε
(t, xε) ≥ infyε S

ε
(0, yε) = 2c, and consequently T ε

c ≥ log 2/c. Then for all 0 ≤ t ≤ T ε
c ,

we have ectS
ε
(t, xε) ≥ 2c. So S

ε
(t, xε) ≥ 2e−ctc ≥ c iff e−ct ≥ 1

2

From 3.1 (ii) and the fact that I(0) 6= 0, there exists a ball B(x0, ρ) and a > 0 such that I(y) ≥ a,
for all y ∈ B(x0, ρ). Let us consider the following ODE

duε
dt

= νI∆εuε, uε(0) = a1B(x0,ρ).

We have that uε −→ u in L∞
(
[0, T ]× T

d
)
as ε→ 0, where u is the solution of

du

dt
= νI∆u, u(0) = a1B(x0,ρ).

For all
log 2

c
< t ≤ T , there exists a positive constant c , such that u(t, x) ≥ 2c, ∀x ∈ T

d. Then,

there exists ε0 > 0 such that ∀ε ≤ ε0, I
ε
(t, xε) ≥ uε(t, xε) ≥ c , for all

log 2

c
< t ≤ T .

We have shown that B
ε
(t, xε) ≥ c ∧ c, for all 0 ≤ t ≤ T , x ∈ Dε, ε0 ≤ ε.

�
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We now extend the solution of the system (3.1) to the whole space T
d. So, we define

S
ε
(t, x) :=

∑

xε

S
ε
(t, xε)1Vε(xε)(x), I

ε
(t, x) :=

∑

xε

I
ε
(t, xε)1Vε(xε)(x), F

ε
(t, x) :=

∑

xε

F
ε
(t, xε)1Vε(xε)(x),

X
ε
:= (S

ε
, F

ε
, I

ε
).

Theorem 4.1 For all T ≥ 0, sup
0≤t≤T

∥∥∥X ε
(t)−X(t)

∥∥∥
∞

−→ 0 as ε→ 0, where X := (S , F , I) is the

unique solution of the following system of parabolic PDE/integral equations.





S(t, x) = S(0, x) −

∫ t

0
S(s, x)Γ(s, x)ds +

∫ t

0

[
∆SS

]
(s, x)ds,

F(t, x) = λ0(t)
(
TI(t)I(0)

)
(x) +

∫ t

0
λ(t− s)TI(t− s)

(
S(s)Γ(s)

)
(x)ds,

I(t, x) = I(0, x) +

∫ t

0
S(s, x)Γ(s, x)ds +

∫ t

0

[
∆II

]
(s, x)ds,

with S(t, x)Γ(t, x) =
S(t, x)[
B(t, x)

]γ
∫

Td

F(t, y)β(x, dy), t ≥ 0, x ∈ T
d.

(4.1)

where TI denotes the semigroup generated by νI∆.

Before proving this theorem, we first establish two Propositions.

Proposition 4.1 Let T > 0. If (S , F , I) is a solution of (4.1), then for all 0 ≤ t ≤ T , there exists
C, c > 0 such that

∥∥S(t)
∥∥
∞

≤ C,
∥∥I(t)

∥∥
∞

≤ C and B(t, x) ≥ c , for all x ∈ T
d.

Proof. The arguments used in the proof of 4.1 and 4.2 are easy to transpose to the present
situation. �

Remark 4.1 Let H
(
S, I,F

)
(t, x) :=

[
S(t, x) ∨ 0

]
∧ C[

B(t, x) ∨ c
]γ

∫

Td

βt(x, dy)
[
F(t, y) ∧ λ∗C

]
where C is

the upper bound in Lemma 4.1, and c the lower bound in Lemma 4.2. Note
(
S , I , F

)
is a solution

of (4.1) iff it is a solution of the following system




S(t, x) =
(
TS(t)S(0)

)
(x)−

∫ t

0

(
TS(t− s)H

(
S(s), I(s),F(s)

) )
(x)ds,

F(t, x) = λ0(t)
(
TI(t)I(0)

)
(x) +

∫ t

0
λ(t− s)

(
TI(t− s)H

(
S(s), I(s),F(s)

) )
(x)ds,

I(t, x) =
(
TI(t)I(0)

)
(x) +

∫ t

0

(
TI(t− s)H

(
S(s), I(s),F(s)

) )
(x)ds, 0 ≤ t ≤ T, x ∈ T

d.

(4.2)

Note also that the map H :
(
L∞(Td)

)3
−→ L∞(Td) is bounded and globally Lispchitz.

Proposition 4.2 The system of equations (4.2) has a unique solution.

Proof. The uniqueness of the solution uses the contraction character of the semigroups TS and
TI on L∞(Td), and the fact that the map H is bounded and globally Lispchitz. The existence of
the solution can be proved using the Picard iteration procedure.

�

We introduce the canonical projection Pε : L
2(Td) −→ Hε given by

ϕ 7−→ Pεϕ(x) = ε−d

∫

Vε(xε)
ϕ(y)dy if x ∈ Vε(xε).
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Proof of Theorem 4.1.
Using the fact that the map H is bounded and globally Lispchitz, we have, provided that ε ≤ ε0,

∥∥∥X ε
(t)−X(t)

∥∥∥
∞

≤ C(λ∗, β∗)

∫ t

0

∥∥∥X ε
(s)−X(s)

∥∥∥
∞
ds + πε(t),

where πε(t) = πSε (t) + πIε(t) + πFε (t), with

πSε (t) =
wwTS,ε(t)S ε

(0)− TS(t)S(0)
ww

∞

+

∫ t

0

wwwwwPε
(

S(s)[
B(s)

]γ
∫

Td

F(s, y)βs(., dy)

)
−

S(s)[
B(s)

]γ
∫

Td

F(s, y)βs(., dy)

wwwww
∞

ds

+

∫ t

0

wwwwwTS,ε(t− s)Pε

(
S(s)[
B(s)

]γ
∫

Td

F(s, y)βs(., dy)

)
− TS(t− s)

(
S(s)[
B(s)

)γ
∫

Td

F(s, y)βs(., dy)

)wwwww
∞

ds,

πIε(t) is a quantity similar to πSε (t), with TI,ε (resp. TI , I
ε
and I) in place of TS,ε (resp. TS , S

ε
and

S), and

πFε (t) = λ∗
∥∥∥TI,ε(t)I ε(0) − TI(t)I(0)

∥∥∥
∞

+

∫ t

0

∥∥∥Pε
(

S(s)[
B(s)

]γ
∫

Td

F(s, y)βs(., dy)

)
−

S(s)[
B(s)

]γ
∫

Td

F(s, y)βs(., dy)
∥∥∥
∞
ds

+

∫ t

0

∥∥∥TI,ε(t− s)Pε

(
S(s)[
B(s)

]γ
∫

Td

F(s, y)βs(., dy)

)
− TI(t− s)

(
S(s)[
B(s)

]γ
∫

Td

F(s, y)βs(., dy)

)∥∥∥
∞
ds.

Then from Gronwall’s lemma, sup0≤t≤T

∥∥∥X ε
(t)−X(t)

∥∥∥
∞

→ 0 follows from sup0≤t≤T πε(t) → 0.

Since the maps x 7−→ S(0, x), x 7−→ I(0, x) and x 7−→ S(t,x)

[B(t,x)]
γ

∫
Td F(t, y)βt(x, dy) are continuous

on T
d, and the fact that TS,ε −→ TS and TI,ε −→ TI in L∞ as ε → 0, then sup

0≤t≤T
πε(t) −→ 0, as

ε→ 0 (see Kato [5], chapter 9, Section 3, Example 3.10).

�

5. Limit as N → ∞ and ε→ 0

In this section, we extend our stochastic model on the whole space T
d and let both N → ∞ and

ε→ 0 in such a way that Nεd → ∞. Before stating the main theorem of this section, we first prove
some lemmas and propositions.

Lemma 5.1 There exist two constants 0 < c < C such that for all t ≥ 0, ε > 0 and xε ∈ Dε,

cεd ≤ P(X(t) = xε) ≤ Cεd.

Proof. Define uε(t, xε) := P(X(t) = xε). We have that uε(t, xε) =

(
et
[
∆S

ε

]
∗

uε0

)
(xε). Using the

assumption on the initial condition P(X(0) = xε), then 0 < cεd ≤ uε(0, xε) ≤ Cεd, from which we

deduce that 0 < cεd ≤ et
[
∆S

ε

]
∗

uε(0, xε) ≤ Cεd, hence the result.

Lemma 5.2 There exits a positive constant C such that for all 0 ≤ s ≤ t, ε > 0 and xε ∈ Dε∑

yε

qyε,xε
ε (s, t) = 1 and P (Yj(t) = xε) ≤ Cεd.
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Proof. The uniform distribution on Dε is invariant for the process Y (t). So if we start Y at time
s with the uniform distribution i.e. P (Y (s) = xε) = εd, the law of Y at time t is also the uniform
law. But

P (Y (t) = xε) =
∑

yε

P (Y (s) = yε) q
yε,xε
ε (s, t) i.e εd = εd

∑

yε

qyε,xε
ε (s, t),

thus
∑

yε

qyε,xε
ε (s, t) = 1. Finally

P (Yj(t) = xε) =
∑

yε

P (Yj(0) = yε) q
yε,xε
ε (0, t)

≤ sup
yε

P (Yj(0) = yε)
∑

yε

qyε,xε
ε (0, t).

Hence the second result follows from the first one and Assumption 3.1 (ii) and (iii). �

Let define F
N,ε
0 (t, xε) :=

1

N

IN,ε(0)∑

j=1

λ−j(t)1Yj(t)=xε
and F

ε
0(t, xε) := λ0(t)

∑

yε

I
ε
(0, yε)q

yε,xε
ε (0, t).

We have the

Lemma 5.3 Let us assume that (N, ε) → (∞, 0), in such a way that Nεd → ∞. Then for all
T > 0,

sup
0≤t≤T

E

(∥∥∥FN,ε
0 (t)− F

ε
0(t)
∥∥∥
2

∞

)
−→ 0, as (N , ε) → (∞ , 0).

Proof. F
N,ε
0 (t, xε) can be decomposed as follows

F
N,ε
0 (t, xε) =

1

N

IN,ε(0)∑

j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε

+ λ0(t)
1

N

IN,ε(0)∑

j=1

1Yj(t)=xε
.

Let consider the first term. Since (λ−j(t))j are independent and identically distributed and inde-

pendent of Yj(t), then

E





 1

N

IN,ε(0)∑

j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε




2

 =

1

N2

IN,ε(0)∑

j=1

E

[∣∣λ−j(t)− λ0(t)
∣∣2 1Yj(t)=xε

]

≤
1

N2
C(λ∗)IN,ε(0)P (Y1(t) = xε) ≤

C(λ∗)

N
.

Now, since

E


 sup
xε∈Dε


 1

N

IN,ε(0)∑

j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε




2

 ≤

∑

xε

E





 1

N

IN,ε(0)∑

j=1

(
λ−j(t)− λ0(t)

)
1Yj(t)=xε




2



≤
C(λ∗)

N
ε−d → 0, (5.1)

provided Nεd → ∞. It remains to show that

sup
xε∈Dε

∣∣∣∣∣∣
λ0(t)

1

N

IN,ε(0)∑

j=1

1Yj(t)=xε
− λ0(t)

∑

yε

I
ε
(0, yε)q

yε,xε
ε (0, t)

∣∣∣∣∣∣
−→ 0, as (N, ε) −→ (∞, 0).
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We have

1

N

IN,ε(0)∑

j=1

1Yj(t)=xε
=

1

N

IN,ε(0)∑

j=1

[
1Yj(t)=xε

− P (Yj(t) = xε)
]
+

1

N

IN,ε(0)∑

j=1

P (Yj(t) = xε) .

E






 1

N

IN,ε(0)∑

j=1

[
1Yj(t)=xε

− P (Yj(t) = xε)
]



2




=
1

N2

IN,ε(0)∑

j=1

E

(∣∣∣1Yj(t)=xε
− P (Yj(t) = xε)

∣∣∣
2
)

≤
C

N
.

It follows that

E





sup
xε∈Dε


 1

N

IN,ε(0)∑

j=1

[
1Yj(t)=xε

− P (Yj(t) = xε)
]



2




≤
C

Nεd
→ 0, (5.2)

provided Nεd → 0.

Since λ0(t) is bounded, it remains to evaluate the quantity
1

N

IN,ε(0)∑

j=1

P (Yj(t) = xε)−
∑

yε

I
ε
(0, yε)q

yε,xε
ε (0, t).

We have

1

N

IN,ε(0)∑

j=1

P (Yj(t) = xε) =
1

N

∑

yε

IN,ε(0)∑

j=1

P (Yj(0) = yε) q
yε,xε
ε (0, t), thus

sup
xε

∣∣∣∣
1

N

IN,ε(0)∑

j=1

P (Yj(t) = xε)−
∑

yε

I
ε
(0, yε)q

yε,xε
ε (0, t)

∣∣∣∣ ≤
1

N
sup
xε

∑

yε

qyε,xε
ε (0, t)

∣∣∣∣
IN,ε(0)∑

j=1

P (Yj(0) = yε)−NI
ε
(0, yε)

∣∣∣∣

≤
1

N
sup
xε

∑

yε

qyε,xε
ε (0, t)

I
ε
(0, yε)

I
ε
(0)

∣∣∣∣I
N,ε(0)−NI

ε
(0)

∣∣∣∣

≤
C

N
−→ 0 . (5.3)

Combining (5.1), (5.2) and (5.3), we finally have

sup
0≤t≤T

E


 sup

xε∈Dε

∣∣∣∣∣∣
1

N

IN,ε(0)∑

j=1

λ−j(t)1Yj(t)=xε
− λ0(t)

∑

yε

I
ε
(0, yε)q

yε,xε
ε (0, t)

∣∣∣∣∣∣

2

 −→ 0 , (5.4)

provided Nεd → +∞.

�

Let σN,ε be the stopping time defined by

σN,ε(ω) := inf {t > 0 , ω /∈ At,δ ∩Bt,δ} , (5.5)

where for all t ≤ T , δ > 0,

At,δ =

{wwww
∫ t

0
TS,ε(t− s)dMN,ε

S (s)

wwww
∞

≤ δ

}
, Bt,δ =

{wwww
∫ t

0
TI,ε(t− s)dM̃ N,ε

I (s)

wwww
∞

≤ δ

}
,
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with

M
N,ε
S (t) =

∑

yε∼xε

1

N
Myε,xε

S

(
N

∫ t

0

νS
ε2
S
N,ε

(s, yε)ds

)
−
∑

yε∼xε

1

N
Mxε,yε

S

(
N

∫ t

0

νS
ε2
S
N,ε

(s, xε)ds

)
,

M̃
N,ε

I (t) = M
N,ε
I (t) + M

N,ε
SI (t), where

M
N,ε
I (t) =

∑

yε∼xε

1

N
Myε,xε

I

(
N

∫ t

0

νI
ε2
I
N,ε

(s, yε)ds

)
−
∑

yε∼xε

1

N
Mxε,yε

I

(
N

∫ t

0

νI
ε2
I
N,ε

(s, xε)ds

)
,

M
N,ε
SI (t) =

1

N

∫ t

0

∫ ∞

0
1
u≤SN,ε(s−,xε)Γ

N,ε
(s−,xε)

Q
xε
(ds, du).

Q
xε
(ds, du) := Qxε(ds, du) − dsdu is the compensated PRM associated with Qxε

ε (ds, du), and we
have used the notations

Mxε,yε
S (t) = P xε,yε

S (t)− t, Mxε,yε
I (t) = P xε,yε

I (t)− t.

Let ¯̄c :=
λ∗β∗

wwwIN,ε
(t)
www

∞

cγ
, where c stands for the bound in 4.2. We define the stopping time

τN,ε = inf

{
t > 0 ,

wwww
∫ t

0
e(t−s)(∆S

ε −¯̄cId)dM̃ N,ε
S (s)

wwww
∞

≥
c

8

}
,

where Id is the identity operator on Hε, and M̃
N,ε

S (t, xε) := M
N,ε
S (t, xε)− M

N,ε
SI (t, xε).

In the proof of the next Proposition, we shall need the following Lemma.

Lemma 5.4 As (N, ε) → (∞, 0) in such way that Nεd → ∞,
∥∥SN,ε

(0, .) − S
ε
(0, .)

∥∥
∞

−→ 0 in

L2(Ω) .

Proof. We have

S
N,ε

(0, xε)− S
ε
(0, xε) =

1

N

SN,ε(0)∑

j=1

1Xj=xε − P (X = xε)S
ε
(0)

= S
ε
(0)

1

NS
ε
(0)

SN,ε(0)∑

j=1

[
1Xj=xε − P (X = xε)

]
+

P (X = xε)

N

[
S
N,ε

(0) −NS
ε
(0)
]
.

E

[∣∣∣SN,ε
(0, xε)− S

ε
(0, xε)

∣∣∣
2
]

≤
2

N2

SN,ε(0)∑

j=1

V ar [1X=xε ] +
2 [P (X = xε)]

2

N2

≤
S
ε
(0)

N

C

c
εd +

Cε2d

N2
≤
C ′

N
+
Cε2d

N2
.

Then

E

[
sup

xε∈Dε

∣∣SN,ε
(0, xε)− S

ε
(0, xε)

∣∣2
]

≤
C ′

Nεd
+
Cεd

N2
.

The result follows. �

Proposition 5.1 For all T > 0, there exists C such that for N large enough if t ≤ σN,ε ∧ T , thenwwwSN,ε
(t)
www

∞
≤ C and

wwwIN,ε
(t)
www

∞
≤ C, for all ε > 0. Moreover there exists ε0 > 0 and c0 > 0

such that if t ≤ σN,ε ∧ τN,ε ∧ T , B
N,ε

(t, xε) ≥ c0, for all xε ∈ Dε, provided ε ≤ ε0.
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Proof. Let first treat the term
∥∥SN,ε

(t)
∥∥
∞
.

Using the Duhamel formula, we have

S
N,ε

(t, xε) ≤
(
TS,ε(t)S

N,ε
(0, .)

)
(xε) +

∫ t

0

(
TS,ε(t− s)dMN,ε

S (s, .)
)
(xε).

Since S
N,ε

(0, xε) ≤ C, for all xε ∈ Dε, we obtain that for t ≤ σN,ε ∧ T ,

‖S
N,ε

(t)
∥∥
∞

≤ C + δ .

We now consider the term
wwwIN,ε

(t)
www

∞
. Arguing as in the proof of Lemma 4.1, we have for

t ≤ σN,ε ∧ T ,

wwwIN,ε
(t)
www

∞
≤ eCt

(
C + sup

0≤t≤T

wwww
∫ t

0
TI,ε(t− s)dM̃ N,ε

I (s)

wwww
∞

)

≤ (C + δ) eCT .

We finally consider the term B
N,ε

(t, xε). It follows from Lemma 5.4 that
∥∥SN,ε

(0, .)−S
ε
(0, .)

∥∥
∞

−→

0 and from Lemma 4.2 that S
ε
(0, xε) ≥ c, for all xε ∈ Dε, then forN large enough, P

(
infxε S

N,ε
(0, xε) ≥

c
2

)

is close to 1. Let TN,ε
c = inf

{
t , inf

xε

S
N,ε

(t, xε) <
c

4

}
. On the interval [0 , TN,ε

c ), S
N,ε

(t, xε) ≥
c

4
,

∀xε ∈ Dε. For all t ≤ TN,ε
c ∧ σN,ε ∧ T , we have

Γ
N,ε

(t, xε) =
1

[
B

N,ε
(t, xε)

]γ
∑

yε

βxε,yε
ε (t)F

N,ε
(t, yε) ≤

4γλ∗β∗
wwwIN,ε

(t)
www

∞

cγ
= ¯̄c

and then, if moreover t ≤ τN,ε,

S
N,ε

(t, xε) ≥
(
e(∆

S
ε −¯̄cId)tS

N,ε
(0)
)
(xε) +

∫ t

0

(
e(t−s)(∆S

ε −¯̄cId)dM̃ N,ε
S (s)

)
(xε)

≥
c

2
e−

¯̄ct −
c

8
. (5.6)

We note that c
2e

−¯̄ct ≥
c

4
iff t ≤ log 2

¯̄c = T¯̄c.

So, on the event τN,ε ∧ σN,ε ∧ T ≥ T¯̄c, S
N,ε

(t, xε) ≥
c

8
, ∀ 0 ≤ t ≤ T¯̄c .

For t > T¯̄c, I
N,ε

(t, xε) ≥
(
TI,ε(t)I

N,ε
(0)
)
(xε) +

∫ t

0

(
TI,ε(t− s)dMN,ε

I (s)
)
(xε).

We choose T > T¯̄c arbitrary. We know from the proof of Lemma 4.2 that there exists ε0 and c

such that I
ε
(t, xε) ≥ c for all ε ≤ ε0, xε ∈ Dε and

log 2
¯̄c

≤ t ≤ T . If we now choose δ =
c

2
in the

definition of σN,ε, we deduce that for any ε ≤ ε0, xε ∈ Dε, T¯̄c ≤ t ≤ σN,ε ∧ T , I
N,ε

(t, xε) ≥
c

2
.

�

From now, we decree that σN,ε = 0 whenever inf
xε

S
N,ε

(0, xε) <
c

2
, or ε > ε0.
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Lemma 5.5 Given T > 0, there exists C > 0 such that for any t < τN,ε ∧ σN,ε, we have

wwwSN,ε
(t)Γ

N,ε
(t)− S

ε
(t)Γ

ε
(t)
www

∞
≤ C

(wwwSN,ε
(t)− S

ε
(t)
www

∞

+
wwwFN,ε

(t)− F
ε
(t)
www

∞
+
wwwIN,ε

(t)− I
ε
(t)
www

∞

)
.

(5.7)

Proof. Note that, using the map H defined in Remark 4.1, with a slight modification of the
constants, we have

S
N,ε

(t, xε)Γ
N,ε

(t, xε)− S
ε
(t, xε)Γ

ε
(t, xε) = H

(
S
N,ε
, I

N,ε
,F

N,ε
)
(t, xε)− H

(
S
ε
, I

ε
,F

ε
)
(t, xε),

and the result the follows from the fact that H is bounded and globally Lipschitz.

�

We define ωN,ε(t) = ωN,ε
S (t) + ωN,ε

I (t) + ωN,ε
F

(t), with

ωN,ε
S (t) =

wwwSN,ε
(0)− S

ε
(0)
www

∞
+

wwww
∫ t

0
TS,ε(t− s)dM̃ N,ε

S (s)

wwww
∞

,

ωN,ε
I (t) =

wwĪN,ε(0)− I
ε
(0)
ww

∞
+

wwww
∫ t

0
TI,ε(t− s)dM̃ N,ε

I (s)

wwww
∞

,

ωN,ε
F

(t) =
wwwFN,ε

0 (t)− F
ε
0(t)
www

∞
+
wwwM

N,ε
F

(t)
www

∞
,

(5.8)

where

M
N,ε

F
(t, xε) =

1

N

∑

yε

∫ t

0

∫ ∞

0

∫

D

∫

D

λ(t− s)1
u≤SN,ε(s−,yε)Γ

N,ε
(s−,yε)

1Y s,yε(t)=xε
Q

yε
(ds, du, dλ, dY ).

Note that M
N,ε

F
is not a martingale.

Lemma 5.6 As (N, ε) → (∞, 0), in such a way that Nεd → ∞,

sup
0≤t≤T

E
(
1t≤σN,ε∧τN,ε∧T [ωN,ε(t)]2

)
→ 0.

Proof. We shall use the following notation

∥∥Φε
∥∥
H
ε :=

[
∑

xε

∣∣Φε
xε

∣∣2
]1/2

,

for any step function Φε (Φε
xε

denoting the value of Φε on the cell Vε(xε)).
Thanks to Theorem 2.1 in P. Kotelenez [7], we have

E

[
sup

t≤σN,ε∧τN,ε∧T

wwww
∫ t

0
TS,ε(t− s)dMN,ε

SI (s)

wwww
2

H
ε

]
≤ CE

[wwwM
N,ε
SI (σN,ε ∧ τN,ε ∧ T )

www
2

H
ε

]

≤
C

N

∑

xε

E

(∫ T

0
S
N,ε

(s ∧ σN,ε ∧ τN,ε, xε)Γ
N,ε

(s ∧ σN,ε ∧ τN,ε, xε)ds

)
.

Provided t ≤ σN,ε ∧ τN,ε ∧ T , Γ
N,ε

(t, xε) ≤ C(λ∗, β∗) and S
N,ε

(t, xε) ≤ C. Then

E

[
sup

t≤σN,ε∧τN,ε∧T

wwww
∫ t

0
TS,ε(t− s)dMN,ε

SI (s)

wwww
2

H
ε

]
≤ C(λ∗, β∗)

1

Nεd
.
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Since the L∞ norm is bounded by the H
ε
horm, as (N, ε) → (∞, 0), provided Nεd → 0,

E

[
sup

t≤σN,ε∧τN,ε∧T

wwww
∫ t

0
TS,ε(t− s)dMN,ε

SI (s)

wwww
2

∞

]
−→ 0. (5.9)

The same argument can be used for the term

wwww
∫ t

0
TS,ε(t− s)dMN,ε

S (s)

wwww
∞

. We conclude that as

(N, ε) −→ (∞, 0), in such a way that Nεd → 0,

sup
t≤σN,ε∧τN,ε∧T

ωN,ε
S (t) −→ 0 in L2(Ω) . (5.10)

A similar proof establishes that

sup
t≤σN,ε∧τN,ε∧T

ωN,ε
I (t) −→ 0 in L2(Ω) . (5.11)

We now consider ωN,ε
F

(t) The convergence to zero of the first term has been established in Lemma
5.3. We now consider the second term. We have

sup
t≤T

E

(
1t≤σN,ε∧τN,ε∧T sup

xε

∣∣∣M N,ε
F

(t, xε)
∣∣∣
2
)

=
1

N2
sup
t≤T

E

[
1t≤σN,ε∧τN,ε∧T sup

xε

(
∑

yε

∫ t

0

∫ ∞

0

∫

D

∫

D

λ(t− s)1
u≤SN,ε(s−,yε)Γ

N,ε
(s−,yε)

× 1Y s,yε(t)=xε
Q

yε
(ds, du, dλ, dY )

)2]

≤
1

N2

∑

xε,yε

E

∫ σN,ε∧τN,ε∧T

0
λ2(t− s)SN,ε(s, yε)Γ

N,ε
(s, yε)q

yε,xε
ε (s, t)ds

≤
(λ∗)2

N

∑

xε

E

[∫ σN,ε∧τN,ε∧T

0
sup
yε

∣∣∣SN,ε
(s, yε)Γ

N,ε
(s, yε)

∣∣∣
∑

yε

qyε,xε
ε (s, t)ds

]

≤ C(λ∗)
T

Nεd
. (5.12)

The result follows. Note that since M
N,ε

F
(t, xε) is not a martingale, the result for ωN,ε

F
(t) is weaker

than (5.10) and (5.11). �

Lemma 5.6 clearly implies

Lemma 5.7 As (N, ε) −→ (∞, 0) in such way that Nεd → ∞, 1t≤σN,ε∧τN,ε∧T

∫ t

0
ωN,ε(s)ds −→ 0

in probability.

It remains to establish the next result.

Lemma 5.8 As (N, ε) → (∞, 0) , P
(
σN,ε < T

)
−→ 0 and P

(
τN,ε < T

)
−→ 0 .

Proof. We have

P
(
σN,ε < T

)
≤ P

(
sup

t≤σN,ε∧T

wwww
∫ t

0
TS,ε(t− s)dMN,ε

S (s)

wwww
∞

≥ δ/2

)

+ P

(
sup

t≤σN,ε∧T

wwww
∫ t

0
TI,ε(t− s)dM̃ N,ε

I (s)

wwww
∞

≥ δ/2

)
.

(5.13)
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We consider the second term only. The first one is treated similarly.
wwww
∫ t

0
TI,ε(t− s)dM̃ N,ε

I (s)

wwww
∞

≤

wwww
∫ t

0
TI,ε(t− s)dMN,ε

SI (s)

wwww
∞

+

wwww
∫ t

0
TI,ε(t− s)dMN,ε

I (s)

wwww
∞

,

from Proposition 3.2 of [8], we have

P

(
sup

t≤σN,ε∧T

wwww
∫ t

0
TI,ε(t− s)dMN,ε

I (s)

wwww
∞

≥
δ

2

)
≤ 4ε−d−2 exp

(
−a

δ2

16
N

)
(5.14)

Since we assume that Nεd −→ 0, the right side, hence also the left hand side of (5.14) tends to 0.
By Chebyshev’s inequality, we have

P

(
sup

t≤σN,ε∧T

wwww
∫ t

0
TI,ε(t− s)dMN,ε

SI (s)

wwww
H
ε

≥
δ

2

)
≤

4

δ2
E

[
sup

t≤σN,ε∧T

wwww
∫ t

0
TI,ε(t− s)dMN,ε

SI (s)

wwww
2

H
ε

]
.

The right hand side tends to 0 as shown in the proof of Lemma 5.6. Since the L∞ norm is bounded
by the H

ε
norm, this finishes the proof that P

(
σN,ε < T

)
→ 0. A similar proof establishes the same

result for τN,ε.

�

We now extend our stochastic process to the whole space T
d. So, we define

S
N,ε

(t, x) :=
∑

xε

S
ε
(t, xε)1Vε(xε)(x), I

N,ε
(t, x) :=

∑

xε

I
ε
(t, xε)1Vε(xε)(x)

B
N,ε

(t, x) :=
∑

xε

B
ε
(t, xε)1Vε(xε)(x), F

N,ε
(t, x) :=

∑

xε

F
ε
(t, xε)1Vε(xε)(x)

and set X
N,ε

:= (S
N,ε

, F
N,ε

, I
N,ε

).

Let us recall the following Gronwall’s lemma.

Lemma 5.9 Let φ and ψ be two nonegative Borel measurable locally bounded functions on an
interval [0, T ), with T < ∞ and C a non-negative constant. If for all t ∈ [0, T ), the following
inequality is satisfied :

φ(t) ≤ C

∫ t

0
φ(s)ds+ ψ(t), (5.15)

then φ(t) ≤ C

∫ t

0
eC(t−s)ψ(s)ds + ψ(t) for all t ≤ T .

Theorem 5.1 Let us assume that (N, ε) → (∞, 0), in such a way that Nεd → ∞. Then (N, ε) →
(∞, 0) wwwXN,ε

(t)−X
ε
(t)
www

∞
−→ 0, in probability, ∀ t ≥ 0. (5.16)

Proof. Since
wwwXN,ε

(t)−X
ε
(t)
www

∞
=
wwwX N,ε

(t)−X
ε
(t)
www

∞
, it suffices to show that

wwwX N,ε
(t)−X

ε
(t)
www

∞
−→ 0, in probability, for all t ≥ 0.

We first consider

F
N,ε

(t, xε) =
1

N

IN,ε(0)∑

j=1

λ−j(t)1Yj(t)=xε
+
∑

yε

∫ t

0
λ(t− s)S

N,ε
(s, yε)Γ

N,ε
(s, yε)q

yε,xε
ε (s, t)ds + M

N,ε
F

(t, xε),
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F
ε
(t, xε) = λ0(t)

∑

yε

I
ε
(0, yε)q

yε,xε
ε (0, t) +

∑

yε

∫ t

0
λ(t− s)S

ε
(s, yε)Γ

ε
(s, yε)q

yε,xε
ε (s, t)ds.

Exploiting Lemma 5.5, we have the following: for all t ≤ σN,ε ∧ τN,ε

∥∥∥FN,ε
(t)− F

ε
(t)
∥∥∥
∞

≤ ωN,ε
F

(t) + C

∫ t

0

(wwwSN,ε
(s)− S

ε
(s)
www

∞
+
wwwFN,ε

(s)− F
ε
(s)
www

∞

+
wwwIN,ε

(s)− I
ε
(s)
www

∞

)
ds. (5.17)

By writing S
N,ε

(t, xε)−S
ε
(t, xε) and I

N,ε
(t, xε)−I

ε
(t, xε) in their mild semigroup form, and using

estimates in Lemmas 4.1, 4.2, 5.1 and 5.5, we obtain, for t ≤ σN,ε ∧ τN,ε ∧ T
wwwX N,ε

(t)−X
ε
(t)
www

∞
≤ C

∫ t

0

wwwX N,ε
(s)−X

ε
(s)
www

∞
ds+ ωN,ε(t). (5.18)

Then, it follows from Gronwall’s Lemma (5.9) that
wwwX N,ε

(t)−X
ε
(t)
www

∞
≤ C

∫ t

0
eC(t−s)ωN,ε(s)ds + ωN,ε(t)

≤ CeCt

∫ t

0
ωN,ε(s)ds+ ωN,ε(t), ∀ t ≤ σN,ε ∧ τN,ε.

(5.19)

Consequently using lemmas 5.6, 5.7 and 5.8, for any t > 0, as (N, ε) → (∞, 0), in such a way that
Nεd −→ ∞, wwwX N,ε

(t)−X
ε
(t)
www

∞
−→ 0 in probability, ∀t ≥ 0.

�

Theorem 5.2 For all T > 0, as (N, ε) −→ (∞, 0) in such a way that Nεd → ∞, we have,

sup
0≤t≤T

(wwwSN,ε
(t)− S

ε
(t)
www

∞
+
wwwIN,ε

(t)− I
ε
(t)
www

∞

)
−→ 0 in probability.

Proof. In the proof of the theorem 5.1, we have established the following:
wwwS N,ε

(t)− S
ε
(t)
www

∞
≤ C

∫ t

0

wwwX N,ε
(s)−X

ε
(s)
www

∞
ds+ ωN,ε

S (t)

wwwIN,ε
(t)− I

ε
(t)
www

∞
≤ C

∫ t

0

wwwX N,ε
(s)−X

ε
(s)
www

∞
ds + ωN,ε

I (t).

(5.20)

It follows that

sup
0≤t≤σN,ε∧τN,ε∧T

wwwSN,ε
(t)− S

ε
(t)
www

∞
≤ sup

0≤t≤σN,ε∧τN,ε∧T

C

∫ t

0

wwwXN,ε
(s)−X

ε
(s)
www

∞
ds

+ sup
0≤t≤σN,ε∧τN,ε∧T

ωN,ε
S (t).

On the other hand, from (5.19), for all t ≤ σN,ε ∧ τN,ε,
wwwX N,ε

(t)−X
ε
(t)
www

∞
≤ CeCt

∫ t

0
ωN,ε(s)ds + ωN,ε(t). (5.21)

So we deduce from Lemmas 5.6, 5.7 and 5.8 and (5.10) that

sup
0≤t≤T

wwwSN,ε
(t)− S

ε
(t)
www

∞
−→ 0 in probability as (N, ε) −→ (∞, 0),
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and the same is true for I
N,ε

(t)− I
ε
(t). Thus the claim follows.

�

We can now state our main result.

Theorem 5.3 For all T > 0, as (N, ε) −→ (∞, 0) in such a way that Nεd → ∞, we have,

∀ t ∈ [0, T ],
∥∥∥FN,ε

(t)− F(t)
∥∥∥
∞

−→ 0, in probability,

and

sup
0≤t≤T

(wwwSN,ε
(t)− S(t)

www
∞

+
wwwIN,ε

(t)− I(t)
www

∞

)
−→ 0 in probability

as (N, ε) → (∞, 0) in such a way that Nεd → ∞.

Proof. By using the triangle inequality, the first statement follows from Theorem 4.1 and Theorem
5.1, and the second statement from Theorem 4.1 and Theorem 5.2.

�
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