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The Lenski experiment (one day cycle)

clonal reproduction

“during one day“

random sampling

“at the end of the day“

N ≈ 5 · 109

N ≈ 5 · 107
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Relative fitness

Measuring adaptation
I A population of size A0 of the unevolved strain and a population of

size B0 of the evolved strain perform a direct competition.
I The respective population sizes at the end of the day are denoted by

A1 and B1.

I The (empirical) relative fitness F (B|A) of strain B with respect to
strain A is

F (B|A) =
log(B1/B0)

log(A1/A0)
.
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Lenski, Travisano, PNAS, 1994

4



The Lenski experiment An individual based model

Barrick, Yu, Yoon, Jeong, Oh, Schneider, Lenski, Kim,
Nature 2009

ω(t) = 1 + at/(t + b)
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Wiser, Ribeck, Lenski, Science express 13-11-12
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Questions
I Which curve describes better the trajectory of the relative fitness?
I Why is the relative fitness decelerating?

Possible explanations
I Clonal interference
I Epistasis
I The design of the experiment
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Epistatic vs non-epistatic models

Epistasis by diminishing returns
The gain in the reproduction rate provided by the n-th successful mutation
is a decreasing function of n. (Wiser et al model)

No epistasis a priori
The gain in the reproduction rate provided by the n-th successful mutation
is a constant % > 0.
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The daily cycle model1

Information about the experiment
I At the beginning of each day there are N individuals.
I Within each day individuals split at constant rate.
I The reproduction process will stop when the glucose has been

consumed. (This happens when there are around 100N individuals).
I N individuals out of the ∼ 100N are uniformly sampled without

replacement, to be starting individuals at the next day.

1An individual-based model for the Lenski experiment, and the deceleration
of the relative fitness. Adrian Gonzalez Casanova, Noemi Kurt, Anton
Wakolbinger and Linglong Yuan. (2015) arXiv 1505.0175
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Pruned Yule trees
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Inside a day

Let Yi ,j(t) be a pure birth process with rate r ∈ R+, for every i ∈ N and
j ∈ {1, 2, ...,N}. (Yule Processes with parameter r).
The total population size at time t of day i is

N∑
j=1

Yi ,j(t)
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Stopping rule
Each day, the reproduction stops at time σ , where

σ = inf{t : E [
N∑

j=1
Yi ,j(t)] = γN}.

Note that E [
∑N

j=1 Yi ,j(t)] = Nert , so

σ =
ln(γ)

r .

The total population size at the end of the day is

N∑
j=1

Yi ,j(σ) ∼ γN.
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Sampling rule

To go from one day to the next, we sample uniformly at random N
individuals (out of ∼ γN), and we say that each sampled individual is a
root of a Yule tree in the next day.
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We are dealing with a Cannings process.
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Convergence to Kingman’s coalescent

Let
(
B(N,n)

i
)

i∈N be the ancestral process of a sample of n individuals, when
the population at the beginning of each day is N.

Theorem

For all n ∈ N, the sequence of ancestral processes
(
B(N,n)

bNt/2(1− 1
γ

)
c
)t≥0

converges weakly on the space of càdlàg paths as N →∞ to Kingman’s
n-coalescent.
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Introducing selective advantage
I Assume that some individuals reproduce at rate r + %N (mutants),

while other reproduce at rate r (basis population).
I Stopping rule: the reproduction stops when the expectation of the

total population is γN.
I Let Mi (t) be the number of mutants at time t of day i .
I We are interested in the process

{Ki}i∈N := {Mi (0)}i∈N,

which is constructed recursively using uniform sampling.
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Selective advantage

Basic population reproduces at rate r .
Mutants reproduce at rate r + %N .

E[K1|K0 = 1] = 1 + %N
log γ

r + o(%N).
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Race until the sun is gone

Day

17-06-2015
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Race until the sun is gone
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Race until the sun is gone
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Race until the sun is gone
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Race until the sun is gone
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The effective competition time, and its dependence on r

Sampling
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Let πN := P
(
∃i ∈ N : Ki = N |K0 = 1

)
, and τN := τN

fix ∧ τN
ext.

Theorem (Probability and speed of fixation)
Under the assumptions of our model, as N →∞,

πN ∼
γ

γ − 1
%N log γ

r .

Moreover, for any δ > 0 there exists Nδ ∈ N such that for all N ≥ Nδ

P(τN > %−1−3δ
N ) ≤ (7/8)%

−δ
N .
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The weak mutation - moderate selection model (Assumption A)
i) Beneficial mutations add %N to the reproduction rate of the individual

that suffers the mutation.
ii) In each generation, with probability µN there occurs a beneficial

mutation. The mutation affects only one (uniformly chosen)
individual, and every offspring of this individual also carries the
mutation.

iii) There exists 0 < b < 1/2, and a > 3b, such that µN ∼ N−a and
%N ∼ N−b as N →∞.

µN << %N
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We define the fitness of the population at the beginning of day i with
respect to that at the beginning of day 0 as

Fi :=
log 1

N
∑N

j=1 eRi,j t

log er0t

where Ri ,j , j = 1, . . . ,N are the reproduction rates of the individuals
present at the beginning of day i , and t is a given time for which the two
populations are allowed to grow together.

If the whole population reproduces at the same rate (Ri ), then

Fi =
Ri
r0

where r0 := R0.
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\
run mr

- -

Figure: The number of attempts to go to fixation, when the reproduction rate of
the basic poulation is x , is distributed Geometric with parameter πN ∼ %N

C(γ)
x .
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Theorem (Convergence of the relative fitness process)

Assume R0,j = r0 for j = 1, ...,N, and let (Fi )i∈N0 be the process of
relative fitness. Then under Assumption A, the sequence of processes
(Fb(%2

NµN )−1tc)t≥0 converges in distribution as N →∞ locally uniformly to
the deterministic function

f (t) =

√
1 +

γ log γ
γ − 1

2t
r2
0
, t ≥ 0 .
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Table: Our model compared with Wiser et al.

Our model Wiser et al
Clonal interference No Yes

Epistasis No Yes
Design of the experiment Yes No

f (t) = (1 + 2C(γ)t
r2
0

)1/2 w(t) = (1 + ct)1/2g

If we include Epistasis in our model, by assuming that the selective
advantage provided by a single mutation to an individual that reproduce at
rate x is %(x)

N = xq%N , for some q > −1, then

h(t) =
(

1 +
2(1 + q)C(γ)

r2
0

t
) 1

2(1+q)
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Main part of the proof:

Fixation probability and fixation/extinction time of one single mutant

(complemented by the proof of the absence of clonal interference
under the stated assumptions)
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The “within days” process of the number of mutants

t
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The “within days” process of the number of mutants
A population starting with k mutants with reproduction rate r + %N
and N − k non-mutants with reproduction rate r is modelled by :

Y (N,k)
t = M(k)

t + Z (N−k)
t

where (M(k)
t ) is a Yule process with rate r + %N

and (Z (N−k)
t ) is a Yule process with rate r .

(Mk
t ) and (Z N−k

t ) are independent.

The population stops at time σk defined by

E[Y (N,k)
σk ] = γN.

Then
Mk
σk

(d)
= NB(k, e−(r+%N )σk ), Z N−k

σk

(d)
= NB(N − k, e−rσk ).

NB(·, ·): negative binomial distribution.
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The “between days” process of the number of mutants

Samplingt
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The “between days” process of the number of mutants

The transition of the number of mutants from day i − 1 to day i :

Given {Ki−1 = k, M(k)
σk = M, Z (k)

σk = Z},
Ki is a hypergeometric random variable with parameters M + Z ,M,N.
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Three phases of a sweep

Phase 2

Phase 1

Phase 3
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ODE approximation for the middle phase of the sweep

Proposition
The process ( 1

N Kb%−1
N tc)t≥0 with K0 = bxNc, x ∈ [0, 1]

converges in distribution to a function g defined by

g ′(t) = g(t)(1− g(t))
log γ

r , g(0) = x .

Conclusion: For any 0 < ε < 1/2 the number of mutants
increases from bεNc to b(1− ε)Nc with high probability
in an order of %−1

N days.

Question: How about the onset and the final phase of the sweep?
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A coupling with near-critical Galton-Watson processes

Assume at the end of one day there are M mutants, Z non-mutants.
Let Γ := M+Z

N (∼ γ).
Then, given Γ, each individual will be sampled with probability 1/Γ.

The difficulty
Exchangeable but not independent sampling!

Independent sampling+independent reproduction=Galton-Watson process.
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A coupling with near-critical Galton-Watson processes

Recall
k is the mutant number at the beginning of a day.
M (resp. Z ) is the number of mutants (resp. non-mutants) at the end of
that day.

We index the mutants at the end of the day by j = 1, 2, . . . ,M. Let

Xj := 1j−th mutant is sampled.

Another way to represent the hypergeometric sampling:
Let (Uj)j∈N be i.i.d uniform variables on [0, 1].
Let X̃1 := 1U1<1/Γ and for any j > 1

X̃j := 1
Uj<

N−
∑j−1

l=1 X̃l
ΓN−(j−1)

.
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A coupling with near-critical Galton-Watson processes

Fact

(X̃j)
(d)
= (Xj), j = 1, 2, . . . ,M.

Advantage of using X̃j = 1
Uj<

N−
∑j−1

l=1 X̃l
ΓN−(j−1)

:

one can give uniform deterministic lower and upper bounds
which capture N−

∑j−1
l=1 X̃l

ΓN−(j−1) with high probability.

Independence arises!
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A coupling with near-critical Galton-Watson processes

For given 0 < α < 1/2, let

J := inf{j :
N−
∑j−1

l=1 X̃l
ΓN−(j−1) /∈ [ 1

γ − N−α, 1
γ + N−α]}.

Consequence: for any j ,

X j ≤ X̃j ≤ X j on the event {J > j}

where X j := 1Uj≤ 1
γ
−N−α and X j := 1Uj≤ 1

γ
+N−α .

Lemma
Starting with k ≤ εN mutants (0 < ε < 1), there exists a constant c > 0
independent of N, s.t.

P(J > M) ≥ 1− e−cN1−2α as N →∞.
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A coupling with near-critical Galton-Watson processes
Using the “independent sampling” variables (X j) and (X j), one can define
two Galton-Watson processes (K i ) and (K i ) which obey the following

Theorem
Let T N

1 := inf{i ≥ 1 : Ki ≥ εN}.
For 0 < ε < 1/γ, K 0 ≥ K0 ≥ K 0, K0 ≤ εN, and h ∈ N0,

P(K min{i ,T N
1 }
≥ Kmin{i ,T N

1 }
≥ K min{i ,T N

1 }
, ∀i ≤ h) ≥ (1− 2e−cN1−2α

)h.

Consequence: Starting with 1 mutant, one can approximate the extinction
probability, as well as the hitting probability and hitting time to ≥ εN
through the two (near-critical) Galton-Watson processes (K i ) and (K i ).

E[K1|K0 = 1] = 1+
log γ

r %N +o(%N),E[K 1|K 0 = 1] = 1+
log γ

r %N +o(%N).
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A coupling with near-critical Galton-Watson processes

Theorem (Phase 1)
For any 0 < ε < 1/γ, as N →∞

%N log γ
r

γ

γ − 1(1− ε) + o(1) ≤ P1(∃i : Ki ≥ εN) ≤ %N log γ
r

γ

γ − 1 + o(1)

For any δ > 0,

lim inf
N→∞

P1(0 < Ki < εN,∀i ≤ %−1−δ
N ) ≤ ε

1− ε

Theorem (Phase 3)
Let m ≥ 1 and 0 < ε < 1/mγ. For any k ≥ (1− ε)N and δ > 0,

lim inf
N→∞

Pk(K reaches N in at most %−1−δ
N days ) ≥ 1− 2/m.
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Résumé

Phase 1: Starting with 1,
the process (Ki ) reaches εN with probability ∼ %N log γ

r
γ
γ−1 ,

and the duration of extinction or reaching εN is bounded by %−1−δ
N .

Phase 2: Reaching (1− ε)N from εN has high probability,
and the duration is of order %−1

N .

Phase 3: Reaching N from (1− ε)N has high probability,
and the duration is bounded by %−1−δ

N .
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As mutations arrive one by one...

... then, under Assumption A, as N →∞, the probability of temporal
interference of mutations in bTρ−2

N µ−1
N c days tends to 0 for all T > 0.

In particular:
The time to fixation or extinction of one mutation
is negligible on the time scale ρ−1

N µ−1
N ,

in which successful mutations arrive in a Poissonian way.

On the timescale ρ−2
N µ−1

N there results a macroscopic increase
of relative fitness which is decelerating as time increases.

This is because (i) each beneficial mutation
was assumed to add ρN to the individual reproduction rate r ,
and (ii) the fixation probability turned out to decrease as r increases.
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Thank you for your attention!
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