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The Lenski experiment

The Lenski experiment (one day cycle)

. N ~5-10°

clonal reproduction random sampling
“during one day” “at the end of the day”

‘ N ~5.10°



The Lenski experiment

Relative fitness

Measuring adaptation

» A population of size Ag of the unevolved strain and a population of
size By of the evolved strain perform a direct competition.

» The respective population sizes at the end of the day are denoted by
Al and Bl.

» The (empirical) relative fitness F(B|A) of strain B with respect to
strain A is

|Og(Bl/Bo)

F(B|A) —Iog(Al/Ao)'



The Lenski experiment

Lenski, Travisano, PNAS, 1994
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F1G.4. Trajectory for mean fitness relative to the ancestor in one
population of E. coli during 10,000 generations of experimental
evolution. Each point is the mean of three assays. Curve is the best
fit of a hyperbolic model.



The Lenski experiment

Barrick, Yu, Yoon, Jeong, Oh, Schneider, Lenski, Kim,
Nature 2009
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The Lenski experiment

Wiser, Ribeck, Lenski, Science express 13-11-12

A Fig. 2. Comparison of hyperbolic and power-law models.
18 - (A) Hyperbolic (red) and power-law (blue) models fit to the
set of mean fitness values (black symbols) from all 12
16 populations. (B) Fit of hyperbolic (solid red) and power-law
(solid blue) models to data from first 20,000 generations only
141 (filled symbols), with model predictions (dashed lines) and
later data (open symbols). Error bars are 95% confidence
12 s : 5
limits based on the replicate populations.
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The Lenski experiment

» Which curve describes better the trajectory of the relative fitness?

» Why is the relative fitness decelerating?

Possible explanations

» Clonal interference

» Epistasis

» The design of the experiment



The Lenski experiment

Epistatic vs non-epistatic models

Epistasis by diminishing returns

The gain in the reproduction rate provided by the n-th successful mutation
is a decreasing function of n. (Wiser et al model)



The Lenski experiment

Epistatic vs non-epistatic models

Epistasis by diminishing returns

The gain in the reproduction rate provided by the n-th successful mutation
is a decreasing function of n. (Wiser et al model)

No epistasis a priori

The gain in the reproduction rate provided by the n-th successful mutation
is a constant o > 0.



An individual based model

The daily cycle model*

Information about the experiment

» At the beginning of each day there are N individuals.
» Within each day individuals split at constant rate.

» The reproduction process will stop when the glucose has been
consumed. (This happens when there are around 100N individuals).

» N individuals out of the ~ 100N are uniformly sampled without
replacement, to be starting individuals at the next day.

LAn individual-based model for the Lenski experiment, and the deceleration
of the relative fitness. Adrian Gonzalez Casanova, Noemi Kurt, Anton
Wakolbinger and Linglong Yuan. (2015) arXiv 1505.0175



An individual based model

Pruned Yule trees
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An individual based model

Inside a day

Let Y;j(t) be a pure birth process with rate r € RY, for every i € N and
Jj€{1,2,...,N}. (Yule Processes with parameter r).
The total population size at time t of day i is

N
Y Yii(t)
j=1

11



An individual based model

Stopping rule

Each day, the reproduction stops at time o , where

N
o =inf{t: E[Z Yij(t)] = yN}.
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Stopping rule

Each day, the reproduction stops at time o , where
N
o =inf{t: E[Z Yij(t)] = yN}.
j=1

Note that E[Zszl Y j(t)] = Ne™, so
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An individual based model

Stopping rule

Each day, the reproduction stops at time o , where
N
o =inf{t: E[Z Yij(t)] = yN}.
j=1

Note that E[Zszl Y j(t)] = Ne™, so

The total population size at the end of the day is
N

> Yij(o) ~N.

j=1
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An individual based model

Sampling rule

To go from one day to the next, we sample uniformly at random N

individuals (out of ~ /), and we say that each sampled individual is a
root of a Yule tree in the next day.

13









An individual based model

We are dealing with a Cannings process.

VI
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An individual based model

We are dealing with a Cannings process.
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An individual based model

Convergence to Kingman's coalescent

Let (B,-(N’n))l.GN be the ancestral process of a sample of n individuals, when
the population at the beginning of each day is N.

Theorem

B(Nﬂ")

[Nve/2(1-1)
converges weakly on the space of cadlag paths as N — oo to Kingman’s
n-coalescent.

For all n € N, the sequence of ancestral processes ( J)tZO

15



An individual based model

Introducing selective advantage

» Assume that some individuals reproduce at rate r + gy (mutants),
while other reproduce at rate r (basis population).

» Stopping rule: the reproduction stops when the expectation of the
total population is y/V.

» Let M;(t) be the number of mutants at time ¢ of day /.

» We are interested in the process
{Ki}tien := {Mi(0)}ien,

which is constructed recursively using uniform sampling.

16



An indivi | based model
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An individual based model

Selective advantage

Basic population reproduces at rate r.
Mutants reproduce at rate r + op.

lo
E[Ki|Ko =1] =1+ QN% + o(ew)-
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An individual based model

Race until the sun is gone

17-06-2015

Day
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An individual based model

Race until the sun is gone

17-06-2015 ‘

r+on
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An individual based model

Race until the sun is gone

17-06-2015

r+ON

exp(D) — Mﬁ%\
exP(d) exP(IDayl (v

N, i + ‘Do.gl e'\l
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An individual based model

Race until the sun is gone

17-06-2015
r+on
SAp(D) - EXPUOIr £
expP(d) ©XP(1Dayl (r
A 238
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An individual based model

Race until the sun is gone

r+oN

(D) — M@\
expP(d) EXP(10asl ()

~ L+ e
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An individual based model

The effective competition time, and its dependence on r

sl

Sampling
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An individual based model

Let mn :]P)(HIGNK,:N|K0:1), and TN Z:Té\)l(/\TN

ext"

Theorem (Probability and speed of fixation)

Under the assumptions of our model, as N — oo,

v onlogy

WNNy—l r

Moreover, for any § > 0 there exists N5 € N such that for all N > N

P(rV > o' ) < (7/8)% .

21



An individual based model

The weak mutation - moderate selection model (Assumption A)

i) Beneficial mutations add gy to the reproduction rate of the individual
that suffers the mutation.

ii) In each generation, with probability py there occurs a beneficial
mutation. The mutation affects only one (uniformly chosen)
individual, and every offspring of this individual also carries the
mutation.

iii) There exists 0 < b < 1/2, and a > 3b, such that uy ~ N~2 and
on ~ N=Pas N — oo.

pun << On
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The Lenski experiment

An individual based model

We define the fitness of the population at the beginning of day / with
respect to that at the beginning of day 0 as

F log + N Z € Rijt
o log efot
where R;;,j=1,..., N are the reproduction rates of the individuals

present at the beginning of day /i, and t is a given time for which the two
populations are allowed to grow together.

If the whole population reproduces at the same rate (R;), then

R;i
=
o

where ry := Ry.

23



An individual based model
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Figure: The number of attempts to go to fixation, when the reproduction rate of
the basic poulation is x, is distributed Geometric with parameter mpn ~ 9N¥.
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An individual based model

Theorem (Convergence of the relative fitness process)

Assume Ry j = ro for j=1,...,N, and let (F;)icn, be the process of
relative fitness. Then under Assumption A, the sequence of processes

(Fy( )1t |)e>0 converges in distribution as N — oo locally uniformly to
the deterministic function

25



An individual based model

Table: Our model compared with Wiser et al.

Our model Wiser et al
Clonal interference No Yes
Epistasis No Yes
Design of the experiment Yes No

F(t) = (1+ 212 w(t) = (1 + ct)1/%
0

26



An individual based model

Table: Our model compared with Wiser et al.

Our model Wiser et al
Clonal interference No Yes
Epistasis No Yes
Design of the experiment Yes No

F(t) = (1+ 212 w(t) = (1 + ct)1/%
0

If we include Epistasis in our model, by assuming that the selective
advantage provided by a single mutation to an individual that reproduce at
rate x is QS\);) = x99y , for some g > —1, then

21+ 0)C()

h(t) = (1+ 2

26



An individual based model

Main part of the proof:
Fixation probability and fixation/extinction time of one single mutant

(complemented by the proof of the absence of clonal interference
under the stated assumptions)

27



An individual based model

The “within days” process of the number of mutants
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An individual based model

The “within days” process of the number of mutants

A population starting with kK mutants with reproduction rate r + gy
and N — k non-mutants with reproduction rate r is modelled by :

y N0 ) 4 7 (N=R)

where (Mgk)) is a Yule process with rate r + gy
and (Zt(N_k)) is a Yule process with rate r.

MK) and (ZN~) are independent.
t
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An individual based model

The “within days” process of the number of mutants

A population starting with kK mutants with reproduction rate r + gy
and N — k non-mutants with reproduction rate r is modelled by :

y N0 ) 4 7 (N=R)

where (Mgk)) is a Yule process with rate r + gy
and (Zt(N_k)) is a Yule process with rate r.

(MK) and (Z)~F) are independent.
The population stops at time o defined by

E[Y{P ] =N,
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The “within days” process of the number of mutants

A population starting with kK mutants with reproduction rate r + gy
and N — k non-mutants with reproduction rate r is modelled by :

y N0 ) 4 7 (N=R)

where (Mgk)) is a Yule process with rate r + gy
and (Zt(N_k)) is a Yule process with rate r.
(MK) and (Z)~F) are independent.
The population stops at time o defined by

N,K)]

Then d )
M D Np(k, erenan), z8-k @ np(y — g, &),

NB(-,-): negative binomial distribution.
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An individual based model

The “within days” process of the number of mutants

A population starting with kK mutants with reproduction rate r + gy
and N — k non-mutants with reproduction rate r is modelled by :

y N0 ) 4 7 (N=R)

where (Mgk)) is a Yule process with rate r + gy
and (Zt(N_k)) is a Yule process with rate r.
(MK) and (Z)~F) are independent.
The population stops at time o defined by

N,K)]

Then d )
M D Np(k, erenan), z8-k @ np(y — g, &),

NB(-,-): negative binomial distribution.
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An individual based model

The “between days” process of the number of mutants

ks
i}

Sampling
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An individual based model

The “between days” process of the number of mutants

The transition of the number of mutants from day i — 1 to day i:

Given {Ki_1 = k, MY = m, Z{) = 71,
K; is a hypergeometric random variable with parameters M + Z, M, N.

31



An individual based model

Three phases of a sweep

Phase 3
1-€

Phase

Phase 1
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An individual based model

ODE approximation for the middle phase of the sweep

Proposition

The process (%KqutJ)po with Ko = |[xN], x € [0, 1]
" >
converges in distribution to a function g defined by

§(0) = g()(1 - g()EY, g(0) =~

Conclusion: For any 0 < &£ < 1/2 the number of mutants

increases from |eN] to [(1 — €)N] with high probability
in an order of op' days.

33



An individual based model

ODE approximation for the middle phase of the sweep

Proposition

The process (%KLglgltJ)tZO with Ko = |xN|, x € [0, 1]

converges in distribution to a function g defined by

§(0) = g()(1 - g()EY, g(0) =~

Conclusion: For any 0 < &£ < 1/2 the number of mutants
increases from |eN] to [(1 — €)N] with high probability

in an order of op' days.

Question: How about the onset and the final phase of the sweep?

33



An individual based model

A coupling with near-critical Galton-Watson processes

Assume at the end of one day there are M mutants, Z non-mutants.
Let [ :=MEZ (~ ).

Then, given I, each individual will be sampled with probability 1/T.
The difficulty

Exchangeable but not independent sampling!

Independent sampling—+independent reproduction=Galton-Watson process.

34



An individual based model

A coupling with near-critical Galton-Watson processes

Recall
k is the mutant number at the beginning of a day.
M (resp. Z) is the number of mutants (resp. non-mutants) at the end of

that day.
We index the mutants at the end of the day by j =1,2,..., M. Let

Xj = ljfth mutant is sampled-

35
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A coupling with near-critical Galton-Watson processes

Recall

k is the mutant number at the beginning of a day.
M (resp. Z) is the number of mutants (resp. non-mutants) at the end of

that day.
We index the mutants at the end of the day by j =1,2,..., M. Let

Xj = ljfth mutant is sampled-

Another way to represent the hypergeometric sampling:
Let (Uj)jen be i.i.d uniform variables on [0, 1].
Let X1 :=1y,<1/r and for any j > 1

Xj=1

Jj—1g

N— X
=1 7!
U<|—/\I—(])

35



An individual based model

A coupling with near-critical Galton-Watson processes

one can give uniform deterministic lower and upper bounds
Jj—1

which capture % with high probability.
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An individual based model

A coupling with near-critical Galton-Watson processes

one can give uniform deterministic lower and upper bounds
Jj—1

which capture % with high probability.

Independence arises!

36



An individual based model

A coupling with near-critical Galton-Watson processes

For given 0 < et < 1/2 let
= inf{j: m g1 —-N LNy
Consequence: for any j,
X; < X; < X; on the event {J > j}

where X : 1U<1 N—a and X; —IU< Lpn-e

37



An individual based model

A coupling with near-critical Galton-Watson processes

For given 0 < et < 1/2 let
= inf{j : m ¢[2— N2 N
Consequence: for any j,
X; < X; < X; on the event {J > j}
where X : 1U<1 N—a and X; =11 Lipy-e-

Lemma

Starting with k < eN mutants (0 < € < 1), there exists a constant ¢ > 0
independent of N, s.t.

P(J>M)>1—e N7 as N = oo.

37



An individual based model

A coupling with near-critical Galton-Watson processes

Using the “independent sampling” variables (X;) and (X]), one can define

two Galton-Watson processes (K;) and (K;) which obey the following

Theorem

Let TlN =inf{i >1: K >eN}.
FOI’0<6<1/’7, W()ZK()ZKO, K()SeN, andhENo,

]P)(Kmin{"yTlN} = K in{i,TlN} > Kmin{i,TlN]nv’. < h) > (]_ _ 2e—CN1_2°‘)h.

m

38



An individual based model

A coupling with near-critical Galton-Watson processes

Using the “independent sampling” variables (X;) and (X]), one can define
two Galton-Watson processes (K;) and (K;) which obey the following

Let TlN =inf{i >1: K >eN}.
FOI’0<€<1/’7, W()ZK()ZKO, K()S{-:N, andhENo,

]P)(Kmin{"yTlN} = K in{i,TlN} > Kmin{i,TlN}ﬂVi < h) > (]_ _ 2e—CN1_2°‘)h.

m

Consequence: Starting with 1 mutant, one can approximate the extinction
probability, as well as the hitting probability and hitting time to > eN
through the two (near-critical) Galton-Watson processes (K;) and (K;).

lo - = lo
E[Ki[Ko = 1] = 1+ =" on+o(ew), E[K1 Ko = 1] = 14 =" o+ o(on).

38



An individual based model

A coupling with near-critical Galton-Watson processes

Theorem (Phase 1)
Forany 0 <e <1/v, as N — oo

onlogy : onlogy

-— (1 - H<Pi(Fi:Ki>eN) < ——————— 1
. 7_1( e)+o(l) sPi(3i: Ki 2 eN) < = 7_1+0()

For any § > 0,

€
1—c¢

liminf P1(0 < Ki < eN,Vi < oy'7°) <
N—oco

39



An individual based model

A coupling with near-critical Galton-Watson processes

Theorem (Phase 1)
Forany 0 <e <1/v, as N — oo

onlogy v : onlogy v
T 1- 1)<Pi3i: K >eN)y< 222" T 1
p 7_1( €) + o(1) < Py(3i >elN) < p 7_1+0()
For any § > 0,
liminfP1(0 < K; < eN, Vi < ot %) < —=
N—oco ’ = =N —1—¢

Theorem (Phase 3)
Let m>1and0<e<1/my. Forany k> (1—¢)N and § >0,

lim inf Py (K reaches N in at most o'~ days) > 1—2/m.
N—o0

39



An individual based model

Résumé

Phase 1: Starting with 1,
the process (K;) reaches e with probability ~ Mﬂ_l
and the duration of extinction or reaching e is bounded by g;,l_‘s.
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Résumé

Phase 1: Starting with 1,
the process (K;) reaches e with probability ~ MTE
and the duration of extinction or reaching e is bounded by g;,l_‘s.

Phase 2: Reaching (1 —&)N from N has high probability,
and the duration is of order gﬁl.
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Résumé

Phase 1: Starting with 1,

the process (K;) reaches e with probability ~ MTE
5

and the duration of extinction or reaching e is bounded by g;,l_ .

Phase 2: Reaching (1 —&)N from N has high probability,
and the duration is of order gﬁl.

Phase 3: Reaching N from (1 — )N has high probability,
and the duration is bounded by gﬁl_‘;.
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An individual based model

As mutations arrive one by one...

... then, under Assumption A, as N — oo, the probability of temporal
interference of mutations in LTpNz/mlJ days tends to 0 for all T > 0.
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As mutations arrive one by one...

... then, under Assumption A, as N — oo, the probability of temporal
interference of mutations in LTpqu,lj days tends to 0 for all T > 0.

In particular:

The time to fixation or extinction of one mutation
is negligible on the time scale pﬁluﬁl,
in which successful mutations arrive in a Poissonian way.
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As mutations arrive one by one...

... then, under Assumption A, as N — oo, the probability of temporal
interference of mutations in LTpﬁuK,lj days tends to 0 for all T > 0.

In particular:

The time to fixation or extinction of one mutation
is negligible on the time scale pﬁluﬁl,
in which successful mutations arrive in a Poissonian way.

On the timescale pKﬂuNl there results a macroscopic increase
of relative fitness which is decelerating as time increases.
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An individual based model

As mutations arrive one by one...

... then, under Assumption A, as N — oo, the probability of temporal
interference of mutations in LTpﬁuK,lj days tends to 0 for all T > 0.

In particular:

The time to fixation or extinction of one mutation
is negligible on the time scale pﬁluﬁl,
in which successful mutations arrive in a Poissonian way.

On the timescale pr,uﬁl there results a macroscopic increase
of relative fitness which is decelerating as time increases.

This is because (i) each beneficial mutation

was assumed to add py to the individual reproduction rate r,
and (ii) the fixation probability turned out to decrease as r increases.
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An individual based model

Thank you for your attention!
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