On the effects of migration in spatial Fleming-Viot models with selection and rare mutation

D. Dawson and A. Greven

In preparation 2009

Key object

Population in space under stochastic evolution

- resampling (pure genetic drift)
- mutation
- selection
- migration in geographic space

Phenomenon in focus:

- Invasion by rare fit mutants
- Successive hierarchically structured invasions drive evolution with increasing fitness in times of vastly different orders of time.
- Space determines a new faster speed of invasions.

Goal

- Model invasion by fitter rare mutants in a *spatial* context
- Exhibit stasis/punctuated equilibrium
- Exhibit longterm random effects of short scales on subsequent large scales
- Mathematical framework for quasi-equilibria

Mathematical Framework:

- Interacting collection of Fleming-Viot diffusions with selection and mutation
- Interaction via migration.

Scenario for stasis (punctuated equibrium)

Phase 0:

M types of *lower* fitness in selection-mutation "equilibrium"

Phase 1:

↑ rare mutation, *emergence* type of higher fitness

Phase 2:

Fixation on types of higher fitness

Phase 3:

Neutral equilibrium on types of higher fitness

Phase 4:

M types of *higher* fitness in selection-mutation, "equilibrium"

Phase 3,4: very long time spansPhase 1: long time span (spatial effect)Phase 0,2: short time spans

Focus: Phase 1,2.

Two-type model

Space: $\{1, \dots, N\}$ (hierarchical group) State space: $[0, 1]^N$ or Δ_2^N (1) $X(t) = \{(x_\ell^N(i, t))_{i=1, \dots, N}, \ell = 1, 2\}.$

Given are:

(2) $\{ (w_i(t))_{t \ge 0}, \quad i = 1, \cdots, N \}$ i.i.d.-standard Brownian motions,

the initial state X(0) with

(3) $x_2(i,0) = 0, \quad \forall i = 1, \cdots, N$

and parameters

(4) c, d, m, s > 0.

(5)

$$dx_{2}^{N}(i,t) = (c(\frac{1}{N}\sum_{j=1}^{N} x_{2}^{N}(j,t)) - x_{2}^{N}(i,t))dt + \frac{m}{N}x_{1}^{N}(i,t)dt + s(x_{2}^{N}(i,t)x_{1}^{N}(i,t))dt + \sqrt{d \cdot x_{2}(i,t)x_{1}(i,t)}dw_{i}(t), \quad i \in \mathbb{N},$$

(6)

$$dx_{1}^{N}(i,t) = \left(c\left(\frac{1}{N}\sum_{j=1}^{N}x_{1}^{N}(j,t)\right) - x_{1}^{N}(i,t)\right)dt \\ -\frac{m}{N}x_{1}^{N}(i,t)dt \\ -sx_{2}^{N}(i,t)x_{1}^{N}(i,t)dt \\ -\sqrt{d \cdot x_{2}^{N}(i,t)x_{1}^{N}(i,t)}dw_{i}(t), \quad i \in \mathbb{N}.$$

Global description:

(7)
$$\equiv_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_2^N(i,t)} \in \mathcal{P}([0,1])$$

Local description:

(8)

$$\{x_2^N(1,t),\cdots,x_2^N(L,t)\}$$
, L fixed, $L \subseteq \mathbb{N}$.

 $N \rightarrow \infty$, what do we expect for phase 1,2?

- O(1): Some of the components of size order 1
- $\frac{1}{\alpha}\log N$: positive fraction of sites reaches value ε
- O(1): If most components are $\geq \varepsilon$, then in finite (deterministic) time later fixation, meaning type-two mass $\geq 1 - \delta$.

Emergence - Fixation

Theorem 1

There exists $\alpha \in (0, s)$ such that:

(9)
$$\mathcal{L}[(\equiv_{\frac{1}{\alpha}\log N+t}^{N})_{t\in\mathbb{R}}] \xrightarrow{}_{N\to\infty} \mathcal{L}[(\mathcal{L}_{t})_{t\in\mathbb{R}}],$$

(10)

$$\mathcal{L}[(x_2^N(1, \frac{1}{\alpha} \log N + t), \cdots, x_2^N(L, \frac{1}{\alpha} \log N + t)_{t \in \mathbb{R}}]$$

$$\xrightarrow[N \to \infty]{} \mathcal{L}[(Y_t)_{t \in \mathbb{R}}].$$

Theorem 2

(11) $\mathcal{L}_t \underset{t \to -\infty}{\Longrightarrow} \delta_0$, $\mathcal{L}_t \underset{t \to \infty}{\Longrightarrow} \delta_1$, (emergence-fixation) $\mathcal{L}_t((0,1)) = 1$ a.s., (true time-scale) \mathcal{L}_t is truely random (*rare* mutation effect)

Random Emergence -Deterministic Fixation

Theorem 3

(a)
$$(e^{\alpha t} \int_{0}^{1} x \mathcal{L}_{t}(dx)) \underset{t \to -\infty}{\Longrightarrow} {}^{*}\mathcal{W}$$

 $0 <^{*}\mathcal{W} < \infty \text{ a.s.}$, $Var({}^{*}\mathcal{W}) > 0.$
(b) $\exists ! (\mathcal{L}_{t}^{*})_{t \in \mathbb{R}}$, $e^{\alpha t} \int x \mathcal{L}_{t}^{*}(dx) \underset{t \to -\infty}{\longrightarrow} 1,$
 $\mathcal{L}_{t} = \mathcal{L}_{t+{}^{*}\mathcal{E}}^{*}$ with ${}^{*}\mathcal{E} = \frac{\log^{*}\mathcal{W}}{\log \alpha}.$
 $(\mathcal{L}_{t}^{*})_{t \in \mathbb{R}}$: solves McKean-Vlasov equation,
 $\mathcal{L}_{t}^{*} = \text{Law} (\pi_{1} \circ Y^{*}(t)).$

Growth rate: α

Growth constant is random: $*\mathcal{W}$. Time shift is random: $*\mathcal{E}$.

 $^*\mathcal{E},^*\mathcal{W}$ reflect early events at time O(1) somewhere in space.

 α arises from interplay between migration and selection, which makes $\alpha < s$.

Propagation of chaos:

(12)
$$m = (m(t))_{t \in \mathbb{R}} : m(t) = \int_{0}^{1} x \mathcal{L}_{t}^{*}(dx)$$

(13)

$$Y^{*,m}(t) = (y(1,t), \cdots, y(L,t)),$$

$$\{(y(i,t)_{t\geq 0}, \quad i = 1, \cdots, L\} \text{ i.i.d.}$$

$$dy(i,t) = c(m(t) - y(i,t)dt$$

$$+s(y(i,t)(1 - y(i,t))dt$$

$$+\sqrt{d \cdot y(i,t)(1 - y(i,t))}dw_i(t).$$

(14)

$$\mathcal{L}[(Y^*(t))_{t\in\mathbb{R}}] = \int_{\mathsf{Path}} \mathcal{L}[(Y^{*,m}(t))_{t\in\mathbb{R}}]dm.$$

Theorem 4

(15) $\mathcal{L}[(Y_t)_{t\in\mathbb{R}}] = \mathcal{L}[(Y_{t+^*\mathcal{E}})_{t\in\mathbb{R}}].$

Droplet description

Droplet total mass:

(16)
$$\hat{x}_2^N(t) = \sum_{i=1}^N x_2^N(i,t)$$

Atomic random measure representation of droplet:

(17)
$$\exists_t^N = \sum_{i=1}^N x_2^N(i,t)\delta_{a(i)} \quad ,$$

 $\{a(\ell)\}_{\ell \in \mathbb{N}}$ i.i.d. [0, 1]-valued according to uniform distribution.

Palm measure:

Typical configuration, i.e. configuration seen from a typical type-2 individual.

(18)
$$\mu_t^N := \mathcal{L}[\{x^N(i,t), i = 1, \cdots, N\}]$$

Set

(19)

$$\widehat{\mu}_t(A) = \int \frac{x_2(1,t)}{\int x_2(1,t) d\mu_t(dX)} \mathbf{1}_A(X) d\mu(X).$$

Limiting droplet dynamic

Theorem 4

(20)
(a)
$$\widehat{\mu}_t^N \underset{N \to \infty}{\Longrightarrow} \widehat{\mu}_t^\infty$$
, $\forall t \ge 0.$
(b) $\mathcal{L}[(\widehat{x}_2^N(t))_{t \ge 0}] \underset{N \to \infty}{\Longrightarrow} \mathcal{L}[(\widehat{x}_2(t))_{t \ge 0}]$, $\forall t \ge 0.$
(c) $\mathcal{L}[(\beth_t^N)_{t \ge 0}] \underset{N \to \infty}{\Longrightarrow} \mathcal{L}[(\beth_t)_{t \ge 0}].$

Remark: $(J_t)_{t\geq 0}$ can be described by a stochastic equation using Ito's excursion theory of subcritical Feller diffusions.

Droplet growth

Theorem 5

There exists an $\alpha^* \in (0, s)$ such that: $\mathcal{L}[e^{-\alpha^* t}]_t([0, 1])], \underset{t \to \infty}{\longrightarrow} \mathcal{L}[\mathcal{W}^*],$ (21) $0 < \mathcal{W}^* < \infty \text{ a.s.},$

(22)

$$\widehat{\mu}_t^{\infty} \underset{t \to \infty}{\Longrightarrow} \widehat{\mu}_{\infty}^{\infty} , \quad \widehat{\mu}_{\infty}^{\infty} \text{ supported on } (0,1)^{\mathbb{N}}.$$

Theorem 6

Let $t_N = o(\frac{1}{\alpha^*} \log N)$. Then: (23) $\mathcal{L}[e^{-\alpha^* t_N} \beth_t^N([0,1])] \underset{N \to \infty}{\Longrightarrow} \mathcal{L}[\mathcal{W}^*].$

"Exit = entrance"

Theorem 7

(24) $\alpha^* = \alpha$

(25) $\mathcal{L}[^*\mathcal{W}] = \mathcal{L}[\mathcal{W}^*].$

Remark on 2M types

 ${\cal M}$ types on each of two levels:

- α gets smaller (Now effective fitness over lower order types is relevant).
- *random* frequencies of fitter types at fixation occurs

McKean-Vlasov equation:

(26)
$$\frac{d}{dt}\mathcal{L}_t = \mathcal{L}_t G^*$$

with:

(27)

 G^* adjoint operator to Generator G to (12), (13).

Limiting droplet dynamic

Theorem 8

(28)

$$\exists_{t} = \exists_{0,t} + \int_{0}^{t} \int_{0}^{1} \int_{W_{0}}^{q(s,a)} w(t-s)\delta_{a} N(ds, da, dq, dw)$$

$$q(s,a) = m + c \exists_{s^{-}}^{m}([0,1]) ,$$

and the intensity measure of the random measure N is:

(29) dsdaduQ(dw).

The excursion measure \boldsymbol{Q} arises from :

(30)

$$dy(t) = -cy(t)dt + sy(t)(1 - y(t))dt$$

$$+\sqrt{d \cdot y(t)(1 - y(t))}dw(t)$$

$$y(0) = \varepsilon$$

Branching Approximation

(31)

$$dy(t) = a - cy(t)dt + sy(t)(1 - y(t))dt$$

$$+\sqrt{dy(t)(1 - y(t))}dw(t)$$

(32) a small : May survive.

(33)
$$\approx a - cy(t)dt + sy(t) + \sqrt{d \cdot y(t)}dw(t)$$

(34)

s < c	subcritical branching	$\}$ extinction
s = c	critical branching	

s = c critical branching

(35)

survival with s > c supercritical branching $\begin{cases} pos. probability, \\ < 1 & for a construction \end{cases}$ < 1 for ε small enough.