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1 Introduction 

We consider the quasi-linear stochastic partial differential equation 

0U 0 2 0 2 
0~ (t, x) = ~x 2 u(t, x) + f(u)(t, x) + ~ W(t, x) (Eq(f)) 

with Neumann boundary condition 

u(t,O)= ~xxU(t, 1)=O t e [ 0 ,  r ]  

and the initial condition 
u(O,x) = Uo(X) x e [ 0 ,  1] 

02 
where ~ W is a space time white noise, and f(u)(t, x) denotes f(t, x, u(t, x)) for 

a function 
f :  [0, T ]  x [0, 1] x R--+ R. 
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The solution is understood in the generalized sense defined in Walsh [10]. It is 
well-known from [10] that the above problem admits a unique solution if fsatisfies 
a linear growth and a Lipschitz condition. In [2] we prove that there exists 
a unique solution even in the case when f i s  locally bounded and only measurable. 
Moreover a comparison theorem for the solutions of such equations is obtained, 
which generalizes the comparison theorem of [1]. In the present paper we extend 
these results to the case when f is not even locally bounded, but it satisfies only 
some integrability condition. We use the methods of our paper [2]. The important 
point is that we can extend our estimate from [2] on the distributions of the 
solutions of Eq(f) to the case when an appropriate power of f is locally integrable. 
Moreover we show also that the solution depends continuously on the initial value 
Uo, and we approximate it in C([0, T] x [0, I]). This implies, in particular, that the 
solution is a C[0, 1J-valued Markov process. We remark that using the exponen- 
tial estimate of Theorem 3.2.1 of the present paper one can also show its germ-field 
Markov property by the method of [7]. 

In the last section we adapt the results obtained for (Eq(f)) with Neumann 
boundary condition to the case of the same equation with Dirichlet condition. 

We note that for measurable locally unbounded f the equation (Eq(f)) without 
the space-time white noise may not have a solution, or it may not be unique (and 
the continuous dependence on the initial value may fail). Obviously our results are 

0 2 0 2 
also valid for Eq(f) with c ~ W(t, x) instead of ~ W if c # 0. That means 

arbitrary small space-time white noise regularizes the quasi-linear PDEs with 
irregular non-linearity of above type. 

In the proof we make use of the fact that the solution of Eq(0) is a Gaussian 
random field of which density has the estimate given by Proposition 3.2.3 below. 

02 
Getting similar estimates one can extend our results to the case where ~ is 
replaced by the more general operator 

~  o)A a(t, x, co) ~ + b(t, x, Ox + c(t, x, co), 

provided a, b, c are progressively measurable, bounded and a(t, x, co) > 2 > O. 
Finally we note that the solutions we deal with are strong solutions in the sense 

the distinction between strong and weak solutions is made in the theory of SDEs. 
Analogous results for weak solutions of finite dimensional SDEs are obtained in 
Portenko [8], in Stummer [9] proving Girsanov theorem with locally unbounded 
drifts, and in [-4] using deep estimates from [5]. (See also the references of these 
papers.) 

2 Formulation of the problem and the results 

Let (f2, f ,  (fit)t>__o, P) be a stochastic basis carrying a space time white noise W on 
R + x [ 0 , 1 ] .  That means we are given an application W : ~ ( R + x [ 0 , 1 ] )  
~ L2(O, f ,  P) such that 

(i) VA, BeN(R+ x [0, 1]) with A ~ B = 0, W(A) and W(B) are independent 
Gaussian random variables: 

(ii) VC~N[0,1] ,  { W ( [ O , t ] x C ) : t > O }  is an f t -Brownian motion with 
covariance t2(C) where 2 is Lebesgue measure. 
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Let also be given an Yo-measurable C([0, 1])-valued random variable Uo and 
a function 

f : R +  x [0, 1] x R ~ R  

which is ~(R+ x [0, 1] x R)-measurable. 
We use the notation M(V) for the Borel o--algebra on V (for a topological 

space V) and N for the progressively measurable subsets of R + x P,. 
We now give a rigorous meaning to Eq(f)  from the Introduction. 
We say that a N |  1J-measurable and continuous random field 

u = {u(t, x ) : t  ~ [0, T], x s [-0, 1] } is a solution (on the interval [-0, T]) of Eq(uo;f) 
if for any g0e Ca(J0, t])  s.t. q;(0) = ~0'(1) = 0, 

f u(t, x)~o(x)dx = uo(x)~o(x)dx + f u(s, x) ~o(x) +f(u)(s, x)q~(x) dxds 
0 0 0 

t 1 

+ f f ~o(x) W(ds, dx) te [-0, r ]  (a.s.) 
0 0 

where the last integral is a Wiener integral, and 

f (u)(s, x) : = f (s, x,u(s, x) ) . 

W h e n f i s  bounded then u is a solution of Eq(uo;f) iff u satisfies 

1 

u(t, x) = f G~(x, y)uo(y)dy 
0 

t i t i 

+ f f G,_s(x, y)f(u)(s, y)dyds + f f Gt-Ax, y) W(ds, dy) (2.1) 
0 0 0 0 

t > 0 ,  0 < x < l  (a.s.) 

where 

Gt(x, y) - ~ ,=-~o exp 4t + exp 4t  

is the fundamental solution of the heat equation on R+ x [0, 1] with Neumann 
boundary condition (see [10]). It is well known from [10] that Eq(uo;f) admits 
a unique solution whenf is  Lipschitz in r and satisfies the linear growth condition. 
Moreover in this case one has the following comparison of the solutions: If u and 
v are solutionsto Eq(uo;f) and Eq(vo; F)  respectively where Uo, Vo are C([0, 1])- 
valued ~o-measurable random fields and f, F are Lipschitz functions in r s.t. 

Uo(X) < Vo(X) (a.s.) for all x~[0,  1] 

f ( t ,  x, r) < F (t, x, r) d t |  dx a.e. (t, x) for all r, 

then u(t, x) < v(t, x) a.s. for all t, x. (See [1].) 
In [-2] we extended these results to the case of locally bounded f, which are only 

Borel measurable. In the present paper we show that an existence and uniqueness 
theorem and a comparison theorem hold even without assuming that f is locally 
bounded. Instead of the local boundedness of f we assume a condition on local 
integrability off. 
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To formulate the results let 
functions f :  [0, T] x [0, 1] x R 

] f l p , p ,  oo : =  sup ( 
x e [ 0 ,  1] \ 

If f does not depend on x~[0,  1] 
Iflp,~ instead Iflp,~,oo. 

Lp,~,~o denote the space of Borel measurable 
R s.t. 

/? 1 

0 

then we write f ~Lp,~ instead o f f  e Lp,~, co and 

The main result (Theorem 2.7 below) is an existence and uniqueness result for 
Eq(uo;f+ g), where f is in some Lp,~,~o and g is locally bounded and satisfies 
a growth condition with respect to r. We now state our results. The proof of 
Theorem 2.1 and Theorem 2.5 will be given in the last section, while the other 
results (except for Theorem 2.6, whose proof is very close to the uniqueness proof in 
[2], and which we therefore do not repeat) will be deduced below from Theorem 2.1. 

Let {Uo,} be a sequence of C([0, 1])-valued fro-measurable random variables 
and let {f,} be a sequence of Borel functions f ,  : [0, T] x [0, 1] x R ~ R, s.t, the 
following conditions hold: 

(i) Uo, --* Uo almost surely in C([0, 1]); 
(ii) f,(t, x, r) ~ f( t ,  x, r) dt | dx | dr a.e. 

(iii) there exist a constant C and a function F eLp,~,oo, for some p > 1, 
fl > 4p/(4p - 1), such that 

[f,(t,x,r)[Z < C + F( t ,x , r )  d t | 1 7 4  a.e. 

Theorem 2.1 Assume (i)-(iii). Suppose that f ,  is Lipschitzian in r ~ R for each n, 
uniformly in (t, x, r) ~ [0, T] x [0, 1] x [ - R, R] for each R. Then the solution u, of 
Eq(uo,;f,) converges almost surely to a random field {u(t, x); (t, x)~ [0, T] x [0, 1] } 
uniformly in (t, x)~ [0, T] x [0, 1]. Moreover u is uniquely determined by Uo and f 
and it is a solution to Eq(uo;f). 

This theorem motivates the following temporary definition: 

Definition 2.2 A solution u to Eq(uo;f) constructed by Theorem 2.1 is called 
a constructable solution of Eq(uo;f). 

Thus Theorem 2.1 implies the following existence and uniqueness result: 

Theorem 2.3 Let Uo be an fro-measurable C([0, 1])-valued random variable and let 
f be a Borel measurable function s.t. 

[f(t, x, r)l  2 ~ C 4- F(t, x, r) dt|  dx | dr a.e. 

where C is a constant and F ~ Lv,p, oo for some p > 1, fi > 4p/(4p - 1). Then Eq(u0 ; f )  
has a unique constructable solution u. 

Proof For non-negative integers m, k we set 

fm,k(t,x,r):= mf~(mz) f (k ) ( t , x , r - - z )dz ,  f(k):= k A ( f v  ( - k ) )  (2.2) 
R 

where ~ is a non-negative smooth C~ kernel. Then one can choose some sequences 
{m(k)}~=l, {k(n)}~~ of non-negative integers, such that [ F -  F.lp,~,oo == 2-"  for 
every n and f ,  --+f d t |  dx | dr a.e. as n --, oo, where f ,  :=f,,(kt,~),k~,) and F, is 
obtained from F by smoothing it with the kernel ~c,(z) := m(k(n))~c(m(k(n))z). Then 

[f,[2 =< 2C + 2F, =< 2C + 2F'  
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with the constant  C and with F '  : = F + Z,  iF - F ,  [, which belongs t.o Lp,p, oo. Thus 
we can apply Theorem 2.1 to the sequence of Eq(uo;fn). 

Theorem 2.1 implies also the following result on compar ison of constructable 
solutions: 

Theorem 2.4 Let u (1) and U (2) be constructable solutions of Eq(u(ol);f (1)) and 
Eq(u(o2);f (2)) respectively where U(o i) is an ~o-measurable C([0, 1])-valued random 
field and f (~ is a Borel function s.t. 

]f(i)(t, x, r)l 2 < C + F(i)(t, x, r) dt | dx | dr a.e. 

with a constant C and a function F (i) e Lp,,~,, oofor some Pl > 1, fii > 4pi/(4pi - 1)for 
i = 1, 2. Assume that 

U(ol)(x) < U(o2)(x) a.s.for a.e. x e [ 0 ,  1] 

f(1)(t, x, r) <f(2)  (t, x, r) dt | dx|  dr a.e 

Then almost surely u(1)(t, x) < u(2)(t, x) for all t, x. 

Proof Define f ~ )  and fm ~2) by (2.2). Then  there are some sequences {m(k)}~~ 
{k(n)},~176 1, such that  f ,  (i) . _  r satisfy the conditions of Theorem 2.1. Since - -  J m ( k ( n )  ) , k ( n )  

f~i) is Lipschitzian in r for every n, we have 

u~.~(t, x) < (~t,  x) = u, , a.s. for all t, x 

for the solutions u, ~1) and",,(2) of Eq(u(ol);f, (1)) and Eq(u(o2); f(2)) respectively. Hence, 
taking n ---> oo we obtain Theorem 2.4 by Theorem 2.1. 

Using Theorem 2.4 Theorem 2.1 can be generalized as follows: 

Theorem 2.5 Let U,o be a sequence of ~o-measurable C([0, 1])-valued random 
variables and let f ,  be a sequence of Borel functions, satisfying (i)-(iii). Then the 
solution u, of Eq(u, o; f , )  converges almost surely to a random field {u(t, x) : t ~ [0, T] ,  
x e [0, 1] }, uniformly in (t, x) ~ [0, T ]  x [0, 1]. Moreover u is uniquely determined by 
Uo and f and it is the unique constructable solution of Eq(uo;f). 

Next  one may ask the following question: Is there a nonconstructable  solution? 
For  this we have the following answer. 

Theorem 2.6 Assume the conditions of Theorem 2.3. Then every solution is construct- 
able. 

Proof One can repeat our  theorem on uniqueness from [-2] (Th. 4.2) without  
essential changes. 

Finally we note  that  one can weaken the conditions on the d r i f t f a s  follows. Let  

9:R+ x [0, 1] x R  ~ R  

be a Borel function which is locally bounded,  and has one-sided linear growth, i.e., 
there exists a constant  L such that  

rg(t,x,r) <= L(l  + r2); t >= O, 0 _ < x _ < l ,  r s R .  

Then our  existence and uniqueness theorem can be formulated as follows: 

Theorem 2.7 Let g be as above. Assume the conditions of Theorem 2.3. Then there 
exists a unique solution to E q ( u o ; f +  g). 
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Proof Repeating the truncation procedure for g from Sect. 5 of [2] we get this 
result from Theorems 2.3 and 2.6. 

3 Preliminary results 

In this section we establish the basic tools of the paper. 

3.1 Girsanov transformation 

Let (~2, ~-, Nt=>0, P) be a stochastic basis carrying a space-time white noise W on 
[0, T1 x D where D is a Borel set of R a. That means the conditions (i) and (ii) from 
paragraph 2 are satisfied with D in place of [-0, 1]. 

Let {g(t, x): t > O, xeO}  be a N ( R + ) |  ~ | ~(D)-measurable random field, 
such that g(t, x) is ~t-measurable for every t > 0 xeD, and 

T 

f f g2(t,x)dxdt < oo a.s. 
0 D 

Define the measure fi by 

dP ZdP, Z = exp o~ D f g(t, x)W(dt, dx) - ~ o J 

The following result is proved e.g. in [31. 

Theorem 3.1.1 Assume that P is a probability measure. Then under ff the application 
fir: N([0, T] x D) --> L2(f2, ~ ,  P) defined by 

T 

ff:(C) = W(C)- f f llcg(t, x)dtdx for C e N ( [ 0 ,  T] x D) 
0 D 

is a space-time white noise on [0, T] x D. 

Corollary 3.1.2 Let u = (u(t, x)) be a ~ | N([0, 1]) measurable random field on 
[0, T]  x [0, 11 and let f :  R+ x f2 x [0, 1] x R --* R be a ~ | ~([0 ,  1] x R) measur- 
able function such that for every q) e C2([0, 1]) with ~o'(0) = :p'(1) = O,for dt | P a.e. 
(t, co) e [0, T] x O 

1 oo11[  ~ x  282 ] fu(t,  x)~o(x)dx = f u ( 0 ,  x)~o(x)dx + f  f u(s, x ) ~ o ( x )  +f(u)(s, x)~o(x) dxds 
0 0 

t 1 

+ f f cp(x)W(ds, dx). d t |  a.e. (t, co)~[0, T l x O .  (3.1.1) 
0 0 

Assume that u(0)eC([0,  1]) a.s., and that 

1 1 j  f f2 (u ) ( s , x )dxd  s = 1 .  (3.1.2) Eexp -- f f f(u)(s, x) W(ds, dx) - 
0 0 

Then u has an a.s. continuous modification which solves Eq(u(0); f )  on [0, T]. 
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Proof Define the measure P by 

-o 
Then/~ is a probability measure by (3.1.2) and by virtue of Theorem 3.1.1 for every 
q)~ C2([0, 1]) with r = ~0'(1) = 0, for d t |  P a.e. (t, co) 

~2 

0 0 0 0 

+ t ) 
0 0 

with the/~-white noise 17/(ds, dx) " = f(u)(s, x)dsdx + W(ds, dx). Hence 

1 t 1 

u(t, x) = f G,(x, y)u(O, y)dy + f f G,_=(x, y) ffZ(ds, dy) (3.1.3) 
0 0 0 

for dt | P | dx a.e. (t, co, x) ~ [0, T] • I2 x [0, 1]. Define now i(t, x) by the right 
side of (3.1.3). Then ~ is P-almost surely in C([0, T]  x [0, 1]). Hence /~-almost 
every co ~ f2 (3.1.1) holds for all t ~ [0, T] with i in place of u. Then P-almost every 
coet2 (3.1.1) also holds for all t~[0,  T]  with fi in place of u. Consequently i is 
a solution of Eq(u(0);f). 

3.2 A priori estimates 

In the next theorem we formulate the important estimates we use for the solutions 
of Eq(uo;f). We recall that the Borel functions 

F:[0 ,  T]  x [0, 1] x R-~ R, h:[0, T] x R - ~ R  

are said to belong to Lp . . . .  and to Lp,~ respectively, if 

~t 

] F ] : = ] F ] p  . . . .  :=  sup ]F(t,x,r)lPdr dt < oc 
x~[O, 1] 0 - ~  

lh[p.~:= lh(t,r)l"dr dt < oo . 

For v~ C([0, 1]) we use the notation NvN := sup Iv(x)]. The basic assumption on 
x~[O, 1] 

the Borel function f is the following: 

(E) For d t |  dx | dr a.e. (t, x, r) ~ [t3, T] x [0, 1] x R 

If(t, x, r)l 2 < C + F(t, x, r) 

where C is a constant and F~Lp,p,o~ for some p > 1 and fl > 4p/(4p - 1). 
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Theorem 3.2.1 Assume (E). Let  u be the solution to Eq(uo;f). Then the following 
estimates hold: 

(i) for every , />  1, (~ > 0 and T > 0 

E { ( e x p ( -  6lluoll) I u(t, x)[ ~} =< K 

for all t e [0, T], x e [0, 1] where K is a constant depending on C, p, fl, I F ]p,~, ~ from 
(E) and on 6, ~; 

(ii) for every BoreIfunction h : R+ • R ~ R 

T 

E f h(t, u(t, x))dt  < glhlq,~ 
0 

for every x E ]-0, II for every q > 1 and ~ > 4q/(4q - 1), where K is a constant 
depending on C, p, fl, I F Ip,~, ~ and on q, cr 

(iii) there exists a real analytic function A such that for every Borel function h: 
R+ x R - ~ R  

(i ) Eexp  ]h(s,u(s,x))lds <=A(lhlq,~ ) 

for every x~[0,  1], and for every q > 1 and c~ > 4q/(4q - 1). 
The proof will follow after some propositions. 

Proposition 3.2.2 For every solution u of  Eq(uo; 0) the statements (i)-(ii) of Theorem 
3.2.1 hold. 

Proof  By (2.1) we have u ( t , x ) =  t l ( t , x )+  ~(t,x) for every t~[0,  T], x e [ 0 ,  1] 
where 

~(t, x ) : =  f Gt-~(x, y)W(ds,  dy) 
0 

is a Gaussian random variable with E~(t, x) = 0, variance 

x): ) y)dyds, 
0 0 

and 
1 

~/(t, x ) : =  f G~(x, y )uo(y )dy .  
o 

Note that o-2(t, x) N K and I~/(t, x)l < Kl]uoll for all re[0 ,  T], x s [ 0 ,  1] where 
K = K ( T )  is a constant for each T e R + .  Hence (i) and (ii) are obvious. 

Proposition 3.2.3 I f  u is a solution of  Eq(uo; 0) and h : R +  x R ~ R is a Borel 
function then 

1 

E h(s, u(s, x)) ~to (= C (t - to) 1/4 dt 
to to 

for every x ~ [0, 11, to e [0, T] and q > 1 where C is a constant depending only on 
q and T~R+.  
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Proof We have the decomposi t ion u(t, x) = tl(t, x) + ~(t, x) for every t e  [to, T] ,  
x e [0, 1] where 

t 

~(t, x) : =  f Gt-=(x, y) W(ds, dy) 
to 

is a Gaussian random variable which is independent  of ~to .  In particular,  ~(t, x) is 
independent  of the variable 

1 

f G~_to(X, y)u(to, y) dy. 
0 

(t, x ) :=  

Note  that  E~(t, x) = 0 and 

t 1 o-2(t, X) "= E~2(t, x) = f f G2=(x, y)dyds 
to 0 

>,=~ 1 t~t~ ) {exp( o So  2s + e x p (  (Y+x-2n)2)}-2s dyds 

> 1  ,o1_ exp - 2 s  dzds= ~ t - t o  
= 2 g  o s -oo 

for every x ~ [0, 1] and t ~ [to, T] .  Note  also that  t/(t, x) is @to-measurable for every 
t ~ [to, T] ,  x E [0, 1]. Hence 

( r x))ds ) T E f h(s, u(s, ~to = f E(h(s, tl(s, x) + ~(s, x))l ~to)  ds 
to tO 

x / ~  f ~ -o~ ~f h(s,q(s,x)+ r )exp 2aZ(s,x) drds 

1 1 

1 f ( 1  (f y ( f  ( 1 r2p_ ~ )P} 
< ~ / ~  to ~ Ih(s'r)lqdr exp 2a2(s,x)/dr ds 

1 

< C Ih(t, r)lqdr dt 
tO --o0 

1 - - q  

by H61der's inequality for every q > 1 where C "= , and - + - = 1. 
P q 

Corollary 3.2.4 Ifu is a solution of Eq(uo; 0) on [0, T ]  and h : R+ x R ~ R is a Borel 
function, then for every q > 1 and c~ > 4q/4q - 1 

E f h(s, u(s, x))dsl < K Ih(s, r)l"dr ds b 
tO tO 

for every x ~ [0, 1], to ~ [0, T ]  where K is a constant depending on q, c~, T. 

Proof. By H61der's inequality for every q > 1 

f ~ f l h ( t ,  rllqdr ~dt<=K Ih(s,r)lqdr ~ds 
to R to 
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where 
1 (; ,), K : =  (t - t o ) - N d t  

to 

is finite if e > 4q/(4q - 1). 

Proposition 3.2.5 I f  u is a solution of  Eq(uo; 0) and h is a Borel function then for every 
T >  O, q > 1, c~ > 4q/(4q - 1) there is a real analytic function A s.t. 

(" ) Eexp f h( s ,u ( s , x ) )d s  < A(lhla,~, ) (3.2.1) 
0 

for  every x ~ [0, 1] where 

(;(~ / /  Ihlq,~:= Ih(s,r)lqdr ds 
0 - - o o  

Proof. (Similar method of getting exponential estimates is used may be first by 
Khasminskii.) We fix x e [0, 1] and for the sake of notational convenience we omit 
the arguments of u below. Clearly 

Eexp o [h(s,u(s))lds = 1 + = o Ih(s,u(s))lds 

= I + ~. Ih(sl, u(sl))ids~ = 1 + I ,  
n = l  i = 1  0 n = l  

(3.2.2) 

where 
T T T 

I , : =  E f f ... f h(sl,  u(sl)) ... h(s,, u(s,))ds,  ... ds~. 
0 S l  S n -  1 

By Corollary 3.2.4 

where 

Hence 
T T 

I , < C E f  f ... 
0 s l  

1 

E Ih ( s . , u ( s . ) ) l d s . l~ . . _ ,  <=C Ih(s.)l~ds. 
S n -  1 S 1 

1 ( j ) ~  Ih(s)lq'= Ih(s,r)lqdr . 
- oo 

1 ; ( ; ) ~  h(sl, u(sl)) ... h(s . . . .  u(s,_,)) Ih(s,)l~ ~/s~ ... dS ,_ l .  
s n -  1 Sn 1 

Applying this argument again, conditioning by -,~s . . . .  then by ~s~_3 and so on, 
finally by o~, ,  we get 

1 ( " ;  / I ,  < C" f f ... Ih(shl~ ... Ih(s,)l~ds, ... dsl 
0 s l  s n  1 

n 

'(o;, ,,~)~ = C"(n!)- ;  h(s (3.2.3) 
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from every n, where C is the constant from Corollary 3.2.4. Hence, defining the 
function A by 

A(z):= 1 + C"(n!)-Tz" z eC  
n = l  

we get (3.2.1) from (3.2.2) and (3.2.3). 

Proposition 3.2.6 Assume (E) and let u be a solution of Eq(uo;f). Then 

Z ' = e x p  - o o f f ( u ) ( s ' x ) W ( d s ' d x ) - ~ ?  ?f2(u)(s ,x)dxds 

defines a random variable such that the measure P defined by dP = ZdP is a probabil- 
ity measure which is equivalent to P. Moreover for every 7 ~ R there is a constant K~ 
dependino on 7, T, p, B and on Iflv,~,~ s.t. 

/~lZl' _-< K ,  (3.2.4) 

E[Z[ ~ < K~ (3.2.5) 

where E denotes the expectation w.r. to P. 

Proof Assume fir~ that f is bounded. Then Z and fi are defined, under fi the 
random measure W(dt, dx) =f(u)(t, x) dtdx + W(dt, dx) is a white noise, and u is 
a solution of Eq(uo; 0) with l~ in place of W. Hence 

T 1 

f f [f(u)(s,x)iZdxdt <= C T +  K[F[v.p.~ 
0 0 

by Corollary 3.2.4 where C is the constant from (E) and K is the constant from 
Corollary 3.2.4. Moreover 

1 7 t.f2(u)(s, /~IZ[ ~ = /~exp  - 7 o f f(u)(s,  x) W(ds, dx) - 
0 0 

( ; 1  ; 1  ) 
=/~exp  - 7 f f(u)(s, x) ffl(ds, dx) - 72 f f2(u)(s, x)dxds 

0 0 0 0 
T 

x e x p ( 7 2 + 2  ?f2(u)(s,x)dxds ) 

1 

< /~exp 2 72 + f f2(u)(s ,x)dxds  
0 0 

1 

< e x p  C + ~  A 2 7 2 +  I flv,~,oo (3.2.6) 

by H61der's inequality and by Proposition 3.2.5. Consequently (3.2.,1.) and hence 
(3.2.5) are valid for b o u n d e d f  Hence 

1 

0 0 0 
1 1 1 1 

< (K_r)7(CT+ KtFlv~,aa, oo)~ VO > 1,~ + -  = 1 (3.2.7) 
7 
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Now we can finish the proof of this proposition by taking 6 sufficiently close to 
1 and applying (3.2.6) wi thf ,  :=fill::__, in place o f f  and letting n ~ 0o . 

Proof of Theorem 3.2.1 We define Z and P as in Proposition 3.2.6. Then /~ is 
a probability measure and by H61der's inequality for every Q > 1 

1 

E ( e x p ( -  ~lluoll lu(t, x)l') < C(Q)(/~(exp(- Q6 IlUoll)lu(t, x)lQ'))~ 
1 

E(exp( -6] ]Uo]] ) : ( J ]u ( t , x ) [dx ) ' d t )<=C(Q) (E( : ( J lu ( t , x ) ]dx ) ' d t )O)  ~ 

1 

E f h ( t ' u ( t ' x ) ) d t < C ( o ) T ~ - l ( E f l h ( t ' u ( t ' x ) F l d t )  ~ o  o 

1 (: ) ( (: g e x p  Ih(s,u(s,x)lds < C(0) /~exp olh(s,u(s,x)lds 
0 

8 - 1  

where C ( Q ) =  E I Z I - ~  and /~ denotes expectation w.r. to/~. Note that 

under/~ the random field u solves Eq(uo; 0) with the/~-white noise 

I~(dt, dx) -- f (t, x)dtdx + W(dt, dx) 

in place of W. Hence we can finish the proof, taking ~) close to 1 and applying 
Proposition 3.2.2, Corollary 3.2.4 and Proposition 3.2.5. 

3.3 Passage to the limit in the equations 

Here we describe the technique of taking the limit of functions of converging 
sequences of random variables, when the functions are only measurable. Such 
a technique was used first by N.V. Krylov [6] in constructing the weak solutions of 
finite dimensional SDEs with measurable coefficients. 

Let {f,}~=l and {h,},%1 be sequences of Borel functions f , ' R +  
x [0, 1] x R ~ R and h," R+ x R ~ R satisfying the following conditions: 

(A) There exist some constants C1, C2 and functions F (1)E Lp,r ~, F (2)~ Lq,~ 
for some p > 1,/~ > 4p/(4p - 1), q > 1, c~ > 4q/(4q - 1) such that for all n 

If,(t,x,r)! 2 <= C1 + F(1)(t,x,r) d t | 1 7 4  a.e. 

Lh,(t, r)l < C2 + F(Z)(t,r) dt | dr a.e. 

(B) Suppose there exists a solution u, of Eq(uo,;f,) s.t. for every t s [0, T],  
x e [ 0 ,  1] 

lim un(t, x) = u(t, x) 
n ~ o o  

for almost every co e f2, where u is some random field. 
(C) For  each R > 0 the set { h,} is relatively compact in 

Lq,~([0, T]  x [ - R, R]). First we extend the estimates of Theorem 3.2.1: 

Proposition 3.3.1 Assume (A) and (B). Then Theorem 3.2.1 and Proposition 3.2.6 hold 
with u := l im,_~ u,. 
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Proof. By Theorem 3.2.1 the estimates (i)-(iv) hold with a constant K independent 
of n. Therefore (i)-(ii) hold also for u := lim u,. The estimates (iii) and (iv) hold also 
for u for continuous functions h and hence for every measurable h by the monotone 
class theorem. We can similarly show that u satisfies Proposition 3.2.6. 

The following Proposition and Corollary are very similar to Proposition 3.3 
and Corollary 3.4 of [-2]. Although the proofs follow with minor changes those 
from [2], for convenience of the reader we present them below. 

Proposition 3.3.2 Assume (A)-(C). Then 
T 

lim sup E f [hg(t, u,(t, x)) - hk(t, U(t, x))ldt = 0 
n ~ c ~  k 0 

for every x ~ [0, 1]. 

Proof. Let ~ : R --* R be a smooth function such that 0 < ~c(r) < 1 for every r, 
~(r) = 0 for Irl > 1 and to(0) = t. Let us fix x e R .  For  a given e > 0 and 6 > 1 let 
R > 0 be such that 

1 

( E i ' l - ~ ( u ( t , x ) / R ) f d t ) ~ < ~ .  

We can find finitely many bounded smooth functions H~, . . . ,  HN such that for 
each k 

( f ( "~[hk(t 'r)-H~(t 'r)[Vdr)~dt)  -n 

for some H~. Clearly 

T 

I(n, k):= E f [hk(U.) -- hk(U)[ at <= Is(n, k) + I3(n) + Ia(k) 
0 

where 
T 

Ia(n, k) :=  E f Ih~(u.) - Hi(u.)[ dt 
0 

N T 

I3(n):= ~ E f [Hi(u.) - Hi(u)[ dt 
j = l  0 

T 

I2(k) := E f ]hk(u) - Hg(ull dr. 
0 

(For notational convenience we omit the variables t, x of the integrands.) By 
Theorem 3.2.1, using H61der's inequality 

T T 

Ii(n , k) = E f K(u./R)lhk(U.) -- H~(u.)[ dt + E f 11 - K(u./R)llhk(U.) -- H~(u.)I dt 
0 0 

(i(f ; < = K 1  Ihk(t,r)--Hi(t,r)l~ dt + L 1 E  f [1--~c(u. /R)ldt  
- R  0 

1 1 
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1 1 
where L1, K1 are constants, F (z) is from (A), 6, 7e(0, 1) s.t. ~ + ~ = 1. Hence, 
choosing 7 sufficiently close to 1, 

1 

where the constants K1, L,, M 1 are independent of n and k. Consequently 

1 T ( ;  ) 
l i m s u p s u p l l ( n , k ) < = K l e + L i E  f l l - ~ ( u / R ) [ d t  + M  1 E I I - x ( u / R ) f d t  ~ 

n--* oo k 0 0 

Similarly, 

< (K + Li + M1)e �9 

sup I2(k) _-< (K2 + L'2 + M2)e 
k 

with constants Ka, C2, L2. It is clear that 

lira I3(n) = 0 .  
n.--~ oo 

Consequently 
2 

lim sup sup I(n, k) < ~ (K~ + LI + Mi)e ,  
n--* oo k i = 1  

and the proof is complete, since we can take e > 0 arbitrary small. 

Corollary 3.3.3 Assume (A) and (B) and suppose that for n ~ oo 

h , ~ h  in L p , ~ ( [ O , T ] x [ - R , R ] )  

for every R > O. Then 

T 

lim E f lh , ( t ,  u,(t, x)) - h(t, u(t, x))]dt = 0 
n'-~ oo 0 

for every x E [0, 1]. 

Proof Clearly 

where 

T 

E f Ih,(u,) - h(u)ldt < Yl(n) + Jz (n ) ,  
0 

T 

J-l(n) := sup E f Ihk(U.) - hk(U)l dt 
k 0 

T 

J-2(n) := E f [hn(u)- h(u)l dr. 
0 
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Note that lim.-~oo ~-l(n) = 0 by Proposition 3.3.2 and 
T T 

Y-z(n) = E f ~(u/R)lh.(u) - h(u)l dt + 2C2E f ll - K(u/R)[ dt 
0 0 

1 1 

+ ( E ] t l - t c ( u / R ) ] a d t ) ~  

B 1 

< K  ]h~(t,r)-h(t,r)lPdr dt +2C~e f I1-~,(u/R)Idt 
- R  0 

1 

+ 2L E l1 - K(u/R)fdt 

by Theorem 3.2.1 if? > 1 is sufficiently close to 1, where K, L are constants, C2 and 
F (2) are from (A). Letting here first n ~ oo then R ~ oo we finish the' proof of the 
corollary. 

Corollary 3.3.4 Let {uo,} be a sequence of Jo-measurable C([0, 1])-valued random 
variables. Let {fn}n~=t be a sequence of measurable functions f , : [0 ,  T] 
x I-0, 1] x R ~ R satisfying (A). Assume that 

O) uo, converges in C([0, 1]) to a random field Uo almost surely, and 

lim f,(t, x, r) =f(t, x, r) dt | dx | dr a.e. 
n---~ oo 

where f is a Borel function; 

(ii) Eq(uo,;f,) admits a solution u, s.t. almost surely l im,_~ u,(t, x) = u(t, x) for 
every t e [0, T], x s [0, 1], where u is some random field. Then u solves Eq(uo;f). 

Proof By (ii) of Theorem 3.2.1 the sequence of u, is uniformly integrable on 
with respect to e x p ( -  IlUoll)dPdtdx. By Corollary 3.3.3, if ~2 x [0, T] x [0, 1] 

ee  c~176 1]) 

E~)f . (Un)(S,x)- f (u)(s ,x)~o(x)dxds 

1 T 

< f I~o(x)lE f If~(u.)(s, x) -f(u)(s,  x)ldsdx -~0 
0 0 

for n ~ or. Thus letting n ~ oo in the equation 

0 0 0 0 

+ f"(un)(s' x)q~(x)ldxds + o ) o) O(x) W(ds' dx) 

one easily gets 

f u(t,x)q~(x)dx = f uo(x)~o(x)dx + u(s,x)~SxZ ~O(x) +f(u)(s,x)q~(x) dxds 
0 0 0 0 

t 1 

+ f f ~o(x) W(ds, dx) 
0 0 
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for every q)e C~176 1]). By Propos i t ion  3.3.1 the condi t ion (3.1.2) of Corol la ry  
3.1.2 holds. Hence by Corol la ry  3.1.2 we have a cont inuous modificat ion o fu  which 
solves Eq(uo;f) .  

4 The proof of Theorem 2.1 and Theorem 2.5 

Set for non-negat ive  integers n < k 

k k 

f,k :=  A f  "= m i n ( f , , L + l  . . . . .  fk) ~0,k :=  /~  Uoi 
i=n i=n 

k k 

F,k :=  V f / :  = m a x ( f , , f , + l ,  ... ,fk) U0,k "= V Uoi 
i=n i=n 

oo oo 

Y,.,= A Y,. F(.,.= V 
i=n i=n 

Thenf,,k, F.k are Lipschitz in r. Moreover ,  Fnk is increasing (f~k is decreasing) for 
k T Go, and 

F,k > F,,k > f,,k > f,k for n < m < k 

UOnk > {link > fiOmk > Unk 

Therefore Eq(fiO.k; f.k) and Eq(~o.k; F.k) admit  the unique solutions U,,k and 
Wnk respectively for every n < k. Moreove r  by the wel l -known theorem on compar i -  
son U.k is decreasing (W,,k is increasing) for k 1" Go and 

Wnk = > Wink = > Umk > = u,k for n = < m = < k . (4.1) 

Note  also that  by Theorem 3.2.1 we have constant  K such that  for all n < k and 
(t, x)~ [0, T] • [0, 13 

E{exp(  - []fiOnkll)[Unk(t, X)] 2 } < K 

E{exp(  - I[~o,k]l)lW,k(t, X)] 2 } < K .  

Therefore  we can construct  the r a n d o m  fields 

u(,)(t, x ) ' =  lim U,k(t, X), W(,)(t, X):=  lim W,k(t, X) 
k---~ ~ k-'-rot? 

u(t, x ) ' =  lim u(,)(t, x) w(t, x ) : =  lim w(,)(t, x) 
n--+ oo t~-+ co 

a o , ( X ) ' =  lim ~O,k(X) f f 0 , ( x ) ' =  lim ~ ] O . k ( X )  

n---~ ~3 k ~ o o  

(4.2) 

By Corol la ry  3.3.4 we can see first that  u(,) is a solution of Eq(~o,;f,))/w(,) is 
a solution of Eq(ho,; F(,))/, and afterwards that  u and w are solutions of Eq(uo;f) .  
Hence by Dini 's  theorem the above convergences are uniform in 
(t, x ) e [ 0 ,  T ]  x [0, 1]. F r o m  (4.1) we get w > u a lmost  surely for all t, x. Hence  
u = w, because Gi rsanov  t ransformat ion  yields that  the solutions of Eq(uo ; f )  have 
the same law. Using the wel l -known compar i son  theorem again we have 

w.~ > ~.k > ~.k > u.k 
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where 
k k 

~lnk : =  V l'li' l~nk : =  A ui ' 
i=n i=n 

and ul is the solution of Eq(uol;J~). Letting here first k --, ~ and then n -~ Go we get 

w __> lira sup u, => lira inf u, _> u = w. 

That  means almost surely u, converges to u = w for every t, x. Moreover since the 
convergences in (4.2) are uniform in (t, x) e [0, T]  x [0, 1], the convergence 

u . ( t , x ) - - + u ( t , x )  f o r n ~  oo 

is also uniform in (t, x )e[0 ,  T]  x [0, 1]. Let now Vo., Vo be C([0, 1])-valued ~-o- 
measurable random fields and g., 9 be Borelian functions. We assume that they 
satisfy the same conditions as Uo., Uo a n d f . , f i n  Theorem 2.1. Let S(wo; h) denote 
the solution of Eq(wo; h) for an Wo-measurable C([0, 1]) valued random variable 
Wo and a Borel measurable bounded function h satisfying the Lipschitz condition in 
r e R. We are going to show that v. : = S(vo.; g.) converges also to the same random 
field u constructed above. By the well-known comparison theorem 

S(uo.  v Vo.;f. v g.) > u. v v.  > u.  A v.  > S(uo.  A Vo.;f. A g.) .  

Hence v. converges to u because f .  v g. --+f f .  A g. ~ f  imply (as we have seen 
above) the convergence of S(uo.  v Vo.;f. v 9.) and of S(uo.  A V0.;f. A 9.) to some 
solutions of Eq(uo;f), which have the same law and are comparable, i.e. are equal 
to one another. The proof of Theorem 2.1 is complete. 

To obtain Theorem 2.5 we repeat the above proof with obvious changes. 
Namely, instead of saying solution we say constructable solution and instead of 
using the "well-known comparison theorem" we use Theorem 2.4. 

5 The case of Dirichlet boundary conditions 

With a slight modification the above results remain true for Eq(uo;f) with the 
Neumann boundary condition replaced by the Dirichlet condition 

u( t , o )  = u(t,  1) = 0, t~ [0 ,  r ] ,  

where we assume that uo(0) = Uo(1) -- 0. Namely, one needs only to substitute the 
space Lv,~, ~o (considered for p > 1, fl > 4p/(4p - 1)) in the assumptions by the 

4p 
spaces L v'v'p with p > 1, ~ > P fl > - -  where L p'v'~ is the Banach space 

p - l '  4 p - 1 '  
of functions 

f :  [0, T]  x [0, 1] x R ~ R  

with the norm 
fl 1 

? ; [[fllp, v,p'= [ f ( t , x , r ) l P d r  dx  dt < oo. 
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We now explain the minor changes which need to be made in Sect. 3. The difference 
is that the lower bound for o-2(t, x) which is derived in the proof of Proposition 
3.2,3 is no longer valid. Following Lemma 6.1 in [2] we have that 

a2(t, x) > c2(t, x)x/ t  -- to 

and there exists a constant c > 0 such that 

c(t, x) > c inf P~(v > s l ~ B s  = y) 
s<=t_to 

~<y<=~ 

where under P~ the process {B~ ' s  > O} is a standard Brownian motion starting 

from x and ~ is the first exit time from (0, 1) for the process { ~ B s : s  > to}, For  
x close to 0 the above quantity is bounded from below, up to a multiplicative 
constant by 

Po(  sup B ~ < x ) = P o ( ] B t _ , o , < X ) .  
\ s < t - t o  

Hence there exist three constants a, b, e such that 0 < a < b < 1, ~ > 0 and 

a2(t,x) >= e x 2 x / t -  to i f 0 _ < x _ < a ,  

a2(t, x) > ~x//[ - t o if a _< x _< b ,  

a2(t, x) >= e(1 - x)2x/t - to if b _< x _< 1 . 

Consequently, 

a( t , x )>_CrX(1- -X)~ / t - - t  o for x ~ [0,1],  0 = t o < t - - <  T 

where CT > 0 is a constant depending on T. Thus it follows from the computations 
in the proof  of Proposition 3.2.3 that 

1 

___ c x) 
to 

for every q > 1 and Borel function h : [0, T]  x [0, 1] x R --* R where C is a constant 
depending on q and T. Hence 

1 

E h(s,x,u(s, fifo <-CC~C2 f[]h(t)][~,vdt 
to 0 to 

q 4q 
by H61der's inequality for every q > l, V > and c~ > - -  where 

q - 1  4 q - l '  
1 

I[h(t)l'q,,:= ( i ( f ] h ( t , x , r ) ' q d r ) ~ d x )  7 
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and  
1 7 

C 1 : =  f (x(1 - x ) ) ~  dx < oo 
0 

T 

C2 := f t4q~r-co dt < oo . 

o 

Next  (3.2.1) in P r o p o s i t i o n  3.2.5 should  be replaced by 

( i i )  E exp h(s,x,u(s,x))dxds <A([[htlq,~,=) 

and  the p r o o f  of tha t  follows exact ly  the same a rgumen t  as the one there. The 
changes in the rest of  the proofs  are obvious  and are left to the reader.  

References 

1. Buckdahn, R., Pardoux, E.: Monotonicity methods for white noise driven SPDEs. In: 
Diffusion processes and related problems in analysis, Vol. I, pp. 219-233. Pinsky, M. (ed.) 
Basel: Birkhfiuser 1990 

2. Gy6ngy, I., Pardoux, E.: On quasi-linear stochastic partial differential equations. Probab 
Theory Relat. Fields 94, 413-425 (1993) 

3. Gy6ngy, I., Pardoux, E.: Weak and strong solutions of white noise driven SPDEs. (submitted 
for publication) 

4. Gy6ngy, I.: On stochastic differential equations with irregular drift. Technical Report. 
Carleton University Ottawa 1986 

5. Krylov, N.V.: On estimates of the maximum of a solution of a parabolic equation and 
estimates of the distribution of a semimartingale. Mathematics of the USSR--Sbornik 58, 
207-221 (1987) (English translation) 

6. Krylov, N.V.: On the stochastic integral of Ito. Theor. Probab. Appl. 14, 33(~336 (1969) 
7. Nualart, D., Pardoux, E.: Markov field properties of solutions of white noise driven quasi- 

linear parabolic PDEs (to appear) 
8. Portenko, N.I.: Generalized diffusion processes. Kiev: Naukova Dumka 1982 
9. Stummer, W.: The Novikov and entropy conditions of diffusion processes with singular drift. 

Thesis, Zfirich 1990 
10. Walsh, J.B.: An introduction to stochastic partial differential equations. In: Hennequin, P.L. 

(ed.) Ecole d'&~ de Probabilit& de St. Flour XIV. (Lect. Notes Math., vol. 1180, pp. 265437) 
Berlin Heidelberg New York: Springer 1986 


