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Abstract In this article, we consider the problem of homogenising the linear heat
equation perturbed by a rapidly oscillating random potential. We consider the situation
where the space-time scaling of the potential’s oscillations is not given by the diffusion
scaling that leaves the heat equation invariant. Instead, we treat the case where spatial
oscillations are much faster than temporal oscillations. Under suitable scaling of the
amplitude of the potential, we prove convergence to a deterministic heat equation
with constant potential, thus completing the results previously obtained in Pardoux
and Piatnitski (Ann Probab, 40(3):1316–1356, 2012).
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1 Introduction

We consider the parabolic PDE with space-time random potential given by

∂t u
ε(x, t) = ∂2

x uε(x, t)+ ε−βV

(
x

ε
,

t

εα

)
uε(x, t),

uε(x, 0) = u0(x), (1.1)

where x ∈ R, t ≥ 0 and V is a stationary centred random field. The homogenisation
theory of equations of this type has been studied by a number of authors. The case
when V is time-independent was considered in [1,8]. The articles [4,5] considered a
situation where V is a stationary process as a function of time, but periodic in space.
Purely periodic/quasiperiodic operators with large potential were also studied in [3,9].
The case of a time-dependent Gaussian V was considered in [2], where also a Central
Limit Theorem was established.

For α ≥ 2 and β = α
2 , (1.1) was studied in [10], where it was shown that its

solutions converge as ε → 0 to the solutions to

∂t u(x, t) = ∂2
x u(x, t)+ V̄ u(x, t), u(x, 0) = u0(x), (1.2)

where the constant V̄ is given by

V̄ =
∞∫

0

�(0, t) dt, (1.3)

in the case α > 2 and

V̄ =
∞∫

0

∞∫
−∞

e− x2
4t

2
√
π t
�(x, t) dx dt, (1.4)

in the case α = 2. Here, �(x, t) = EV (0, 0)V (x, t) is the correlation function of V
which is assumed to decay sufficiently fast.

In the case 0 < α < 2, it was conjectured in [10] that the correct scaling to use in
order to obtain a non-trivial limit is β = 1/2 + α/4, but the corresponding value of
V̄ was not obtained. Furthermore, the techniques used there seem to break down in
this case. The main result of the present article is that the conjecture does indeed hold
true and that the solutions to (1.1) do again converge to those of (1.2) as ε → 0. This
time, the limiting constant V̄ is given by

V̄ = 1

2
√
π

∞∫
0

�(t)√
t

dt, (1.5)

where we have set �(s) := ∫R �(x, s)dx .
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Remark 1.1 One can “guess” both (1.3) and (1.5) if we admit that (1.4) holds. Indeed,
(1.3) is obtained from (1.4) by replacing �(x, t) by �(δx, t) and taking the limit
δ → 0. This reflects the fact that this corresponds to a situation in which, at the
diffusive scale, the temporal oscillations of the potential are faster than the spatial
oscillations. Similarly, (1.5) is obtained by replacing�(x, t) with δ−1�(δ−1x, t) and
then taking the limit δ → 0, reflecting the fact that we are in the reverse situation
where spatial oscillations are faster. These arguments also allow to guess the correct
exponent β in both regimes.

The techniques employed in the present article are very different from [10]: instead
of relying on probabilistic techniques, we adapt the analytical techniques from [6].
Note that the techniques used here seem very well to be able to tackle the cases treated
in [10]. Both methods necessitate quite involved estimates, and the results are not
strictly equivalent. The range of application of the method of this paper seems to be
wider. However, it is good also to have several possible methods for certain cases.

From now on, we will rewrite (1.1) as

∂t u
ε(x, t) = ∂2

x uε(x, t)+ Vε(x, t)uε(x, t), uε(x, 0) = u0(x),

where Vε is the rescaled potential given by

Vε(x, t) = ε−(1/2+α/4)V
(

x

ε
,

t

εα

)
.

Before we proceed, we give a more precise description of our assumptions on the
random potential V .

1.1 Assumptions on the potential

Besides some regularity and integrability assumptions, our main assumption will be
a sufficiently fast decay of maximal correlations for V . Recall that the “maximal
correlation coefficient” of V , subsequently denoted by 	, is given by the following
definition where, for any given compact set K ⊂ R2, we denote by F K the σ -algebra
generated by {V (x, t) : (x, t) ∈ K }.
Definition 1.2 For any r > 0, 	(r) is the smallest value such that the bound

E
(
ϕ1(V )ϕ2(V )

) ≤ 	(r)
√

Eϕ2
1(V )Eϕ2

2(V ),

holds for any two compact sets K1, K2 such that

d(K1, K2)
def= inf

(x1,t1)∈K1
inf

(x2,t2)∈K2
(|x1 − x2| + |t1 − t2|) ≥ r,

and any two random variables ϕi (V ) such that ϕi (V ) is FKi -measurable and Eϕi

(V )=0.
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Note that 	 is a decreasing function. With this notation at hand, we then make the
following assumption:

Assumption 1.3 The field V is stationary, centred, continuous, and C1 in the x-
variable. Furthermore,

E
(|V (x, t)|p + |∂x V (x, t)|p) < ∞

for every p > 0.

For most of our results, we will furthermore require that the correlations of V decay
sufficiently fast in the following sense:

Assumption 1.4 The maximal correlation function 	 from Definition 1.2 satisfies
	(R) � (1 + R)−q for every q > 0.

Remark 1.5 Retracing the steps of our proof, one can see that in order to obtain our
main result, Theorem 1.8, we actually only need this bound for some sufficiently large
q. Similarly, the assumption on the x-differentiability of V is not absolutely necessary,
but simplifies some of our arguments.

Let us first give a few examples of random fields satisfying our assumptions.

Example 1.6 Take a measure space (M, ν)with some finite measure ν and a function
ψ : M × R2 → R such that

sup
m∈M

sup
x,t

|ψ(m, x, t)| + |∂xψ(m, x, t)|
1 + |x |q + |t |q < ∞,

for all q > 0. Assume furthermore that ψ satisfies the centering condition

∫
R

∫
R

∫
M
ψ(m, y, s) ν(dm) dy ds = 0.

Consider now a realisation μ of the Poisson point process on M × R2 with intensity
measure ν(dm) dy ds and set

V (x, t) =
∫
M

∫
R

∫
R

ψ(m, y − x, s − t) μ(dm, dy, ds).

Then V satisfies Assumptions 1.3 and 1.4.

Example 1.7 Take for V a centred Gaussian field with covariance � such that

sup
x,t

|�(x, t)| + |∂2
x�(x, t)|

1 + |x |q + |t |q < ∞,
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for all q > 0. Then V does not quite satisfy Assumptions 1.3 and 1.4 because V and
∂x V are not necessarily continuous. However, it is easy to check that our proofs still
work in this case.

The advantage of Definition 1.2 is that it is invariant under the composition by
measurable functions. In particular, given a finite number of independent random fields
{V1, . . . , Vk} of the type of Examples 1.6 and 1.7 (or, more generally, any mutually
independent fields satisfying Assumptions 1.3 and 1.4) and a function F : Rk → R
such that

1. EF(V1(x, t), . . . , Vk(x, t)) = 0,
2. F , together with its first partial derivatives, grows no faster than polynomially at

infinity.

Then, our results hold with V (x, t) = F(V1(x, t), . . . , Vk(x, t)).

1.2 Statement of the result

Consider the solution to the heat equation with constant potential

∂t u(x, t) = ∂2
x u(x, t)+ V̄ u(x, t), t ≥ 0, x ∈ R;

u(x, 0) = u0(x), (1.6)

where V̄ is defined by (1.5). Then, the main result of this article is the following
convergence result:

Theorem 1.8 Let V be a random potential satisfying Assumptions 1.3 and 1.4, and
let u0 ∈ C3/2(R) be of no more than exponential growth. Then, as ε → 0, one has
uε(t, x) → u(t, x) in probability, locally uniformly in x ∈ R and t ≥ 0.

Remark 1.9 The precise assumption on u0 is that it belongs to the space C3/2
e� for some

� ∈ R, see Sect. 2.1 below for the definition of this space.

Remark 1.10 The fact that EV = 0 is of course not essential, since one can easily
subtract the mean by performing a suitable rescaling of the solution.

To prove Theorem 1.8, we use the standard “trick” to introduce a corrector that
“kills” the large potential Vε to highest order. The less usual feature of this problem
is that, in order to obtain the required convergence, it turns out to be advantageous
to use two correctors, which ensures that the remaining terms can be brought under
control. These correctors, which we denote by Y ε and Z ε, are given by the solutions
to the following inhomogeneous heat equations:

∂t Y
ε(x, t) = ∂2

x Y ε(x, t)+ Vε(x, t),

∂t Z ε(x, t) = ∂2
x Z ε(x, t)+ ∣∣∂x Y ε(x, t)

∣∣2 − V̄ε(t), (1.7)
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where we have set V̄ε(t) = E |∂x Y ε(x, t)|2. In both cases, we start with the flat (zero)
initial condition at t = 0. Writing

vε(x, t) = uε(x, t) exp
[− (Y ε(x, t)+ Z ε(x, t)

)]
,

Theorem 1.8 is then a consequence of the following two claims:

1. Both Y ε and Z ε converge locally uniformly to 0.
2. The process vε converges locally uniformly to the solution u of (1.6).

It is straightforward to verify that vε solves the equation

∂tv
ε = ∂2

x v
ε + V̄ε v

ε + 2
(
∂x Y ε + ∂x Z ε

)
∂xv

ε +
(∣∣∂x Z ε

∣∣2 + 2∂x Z ε∂x Y ε
)
vε,

(1.8)

with initial condition u0. The second claim will then essentially follow from the first
(except that, due to the appearance of nonlinear terms involving the derivatives of the
correctors, we need somewhat tighter control than just locally uniform convergence),
combined with the fact that the function V̄ε(t) converges locally uniformly to the
constant V̄ .

Remark 1.11 One way of “guessing” the correct forms for the correctors Y ε and Z ε is
to note the analogy of the problem with that of building solutions to the KPZ equation.
Indeed, performing the Cole-Hopf transform hε = log uε, one obtains for hε the
equation

∂t h
ε = ∂2

x hε + (∂x hε
)2 + Vε,

which, in the case where Vε is replaced by space-time white noise, was recently
analysed in detail in [6]. The correctors Y ε and Z ε then arise naturally in this analysis
as the first terms in the Wild expansion of the KPZ equation.

This also suggests that it would be possible to find a diverging sequence of constants
Cε such that the solutions to

∂t u
ε(x, t) = ∂2

x uε(x, t)+ ε−
1+α

2 V

(
x

ε
,

t

εα

)
uε(x, t)− Cεu

ε(x, t),

converge in law to the solutions to the multiplicative stochastic heat equation driven
by space-time white noise. In the non-Gaussian case, this does still seem out of reach
at the moment, although some recent progress can be found in [7].

The proof of Theorem 1.8 now goes as follows. In a first step, which is rather long
and technical and constitutes Sect. 2 below, we obtain sharp a priori bounds for Y ε

and Z ε in various norms. In a second step, which is performed in Sect. 3, we then
combine these estimates in order to show that the only terms in (1.8) that matter are
indeed the first two terms on the right hand side.

Remark 1.12 Throughout this article, the notation X � Y will be equivalent to the
notation X ≤ CY for some constant C independent of ε.
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2 Estimates of Yε and Zε

In this section, we shall prove that both Y ε and Z ε tend to zero as ε → 0, and establish
further estimates on those sequences of functions which will be needed for taking the
limit of the sequence vε. But before doing so, let us first introduce some technical
tools which will be needed both in this section and in the last one.

2.1 Weighted Hölder continuous spaces of functions and the heat semigroup

First of all, we define the notion of an admissible weightw as a functionw : R → R+
such that there exists a constant C ≥ 1 with

C−1 ≤ w(x)

w(y)
≤ C, (2.1)

for all pairs (x, y) with |x − y| ≤ 1. Given such an admissible weight w, we then
define the space Cw as the closure of C∞

0 under the norm

‖ f ‖w = ‖ f ‖0,w = sup
x∈R

| f (x)|
w(x)

.

We also define Cβw for β ∈ (0, 1) as the closure of C∞
0 under the norm

‖ f ‖β,w = ‖ f ‖w + sup
|x−y|≤1

| f (x)− f (y)|
w(x)|x − y|β .

Similarly, for β ≥ 1, we define Cβw recursively as the closure of C∞
0 under the norm

‖ f ‖β,w = ‖ f ‖w + ‖ f ′‖β−1,w.

It is clear that, if w1 and w2 are two admissible weights, then so is w = w1w2.
Furthermore, it is a straightforward exercise to use the Leibniz rule to verify that there
exists a constant C such that the bound

‖ f1 f2‖β,w ≤ C‖ f1‖β1,w1‖ f2‖β2,w2 , (2.2)

holds for every fi ∈ Cβi
wi , provided that β ≤ β1 ∧ β2.

We now show that a similar inequality still holds if one of the two Hölder exponents
is negative. Forβ ∈ (−1, 0), we can indeed define weighted spaces of negative “Hölder
regularity” by postulating that Cβw is the closure of C∞

0 under the norm

‖ f ‖β,w = sup
|x−y|≤1

| ∫ y
x f (z) dz|

w(x)|x − y|β+1 .
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In other words, we essentially want the antiderivative of f to belong to Cβ+1
w , except

that we do not worry about its growth.
With these notations at hand, we then have the bound:

Proposition 2.1 Let w1 and w2 be two admissible weights and let β1 < 0 < β2 be
such that β2 > |β1|. Then, the bound (2.2) holds with β = β1.

Proof We only need to show the bound for smooth and compactly supported elements
f1 and f2, the general case then follows by density. Denote now by F1 an antiderivative
for f1, so that

y∫
x

f1(z) f2(z) dz =
y∫

x

f2(z) d F1(z),

where the right hand side is a Riemann–Stieltjes integral. For any interval I ⊂ R, we
now write

||| f |||β,I = sup
{x,y}⊂I

| f (x)− f (y)|
|x − y|β .

It then follows from Young’s inequality [12] that there exists a constant C depending
only on the precise values of the βi and on the constants appearing in the definition
(2.1) of admissibility for the weights wi , such that

∣∣∣∣∣∣
y∫

x

f2(z) d F1(z)

∣∣∣∣∣∣ ≤ | f2(x)|
∣∣F1(y)− F1(x)

∣∣

+C ||| f2|||β2,[x,y] ||||F1|||β1+1,[x,y]|x − y|β1+β2+1

≤ w(x)|x − y|β1+1(‖ f2‖0,w2‖ f1‖β1,w1 + C‖ f2‖β2,w2‖ f1‖β1,w1

)
,

which is precisely the requested bound. �
There are two types of admissible weights that will play a crucial role in the sequel:

e�(x)
def= exp(−�|x |), pκ(x)

def=1 + |x |κ ,
where the exponent κ will always be positive, but � could have any sign. One has of
course the identity

e� · em = e�+m . (2.3)

Furthermore, it is straightforward to verify that there exists a constant C such that the
bound

pκ(x)e�(x) ≤ C�−κ , (2.4)

holds uniformly in x ∈ R, κ ∈ (0, 1], and � ∈ (0, 1].
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Finally, we have the following regularising property of the heat semigroup:

Proposition 2.2 Let β ∈ (−1,∞), let γ > β, and let �, κ ∈ R. Then, for every t > 0,
the operator Pt extends to a bounded operator from Cβe� to Cγe� and from Cβpκ to Cγpκ .
Furthermore, for every �0 > 0 and κ0 > 0, there exists a constant C such that the
bounds

‖Pt f ‖γ,e� ≤ Ct−
γ−β

2 ‖ f ‖β,e� , ‖Pt g‖γ,pκ ≤ Ct−
γ−β

2 ‖g‖β,pκ ,

hold for every f ∈ Cβe� , every g ∈ Cβpκ , every t ∈ (0, 1], every |�| ≤ �0, and every
|κ| ≤ κ0.

Proof The proof is standard: one first verifies that the semigroup preserves these
norms, so that the case γ = β is covered. The case of integer values of γ can easily be
verified by an explicit calculation. The remaining values then follow by interpolation.�
We close this section with a quantitative version of Kolmogorov’s continuity criterion,
which will be used a couple of times in this paper.

Lemma 2.3 Let R be a compact subset of Rd (for us d will be either 1 or 2), and
let for each ε > 0 {ξεu , u ∈ R} be a stochastic process such that for some positive
constants C, γ , and δ, 	 ∈ R, all u; v ∈ R,

E
[|ξεu − ξεv |γ

] ≤ Cε	|u − v|d+δ.

Then there exists a continuous modification of ξε (which, as an abuse, we still write
ξε), and for all 0 ≤ β < δ/γ, ε > 0, there exists a positive random variable ζβ,ε such
that

E
[
(ζβ,ε)

γ
] ≤ Cβε

	,

where Cβ depends only upon C, β, d, γ, δ and the diameter of R, and

|ξεu − ξεv | ≤ ζβ,ε|u − v|β,

for all u, v ∈ R a.s.

Proof The result follows readily from an application of Theorem 0.2.1 in [11] to the
process ε−	/γ ξε. The claim about the constant Cβ can be easily deduced from the
proof of that Theorem. �

2.2 Bounds and convergence of Y ε

The main results of this section are Lemma 2.12 and Corollary 2.13 below. For any
integer k ≥ 2, define the k-point correlation function �(k) for x, t ∈ Rk by

�(k)(x, t) = E
(
V (x1, t1) . . . V (xk, tk)

)
.
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(In particular, �(2)(x1, t1, x2, t2) = �(x1 − x2, t1 − t2), where � is the correlation
function of V defined above.) With these notations at hand, we have the following
bound which will prove to be useful:

Lemma 2.4 The function �(4) given by

�(4)(x, t) = �(4)(x, t)−�(x1 − x2, t1 − t2)�(x3 − x4, t3 − t4),

satisfies the bound

|�(4)(x, t)| ≤ η(|x1 − x3| + |t1 − t3|)η(|x2 − x4| + |t2 − t4|)
+η(|x1 − x4| + |t1 − t4|)η(|x2 − x3| + |t2 − t3|), (2.5)

where the function η : R+ → R+ is defined by

η(r) = √K	(r/3), with K = 4
(‖V (x, t)‖2‖V 3(x, t)‖2 + ‖V 2(x, t)‖2

2

)
,

where we write ‖ · ‖2 for the L2(�) norm of a real-valued random variable.

Remark 2.5 In the Gaussian case, one has the identity

�(4)(x, t) = �(x1 − x3, t1 − t3)�(x2 − x4, t2 − t4)

+�(x1 − x4, t1 − t4)�(x2 − x3, t2 − t3),

so that the bound (2.5) follows from the fact that 	 dominates the decay of the corre-
lation function �.

Proof For the sake of brevity denote ξ j = (x j , t j ). We set

R1 = max
1≤i≤4

dist

⎛
⎝ξi ,

⋃
j �=i

{ξ j }
⎞
⎠ , R2 = max dist

(
{ξi1, ξi2}, {ξi3, ξi4}

)
,

where the second maximum is taken over all permutations {i1, i2, i3, i4} of {1, 2, 3, 4}.
Consider first the case R1 ≥ R2. Without loss of generality we can assume that

R1 = dist(ξ1,
⋃
j �=1

{ξ j }). It is easily seen that, in the case under consideration,

dist((ξi , ξ j ) ≤ 3R1, i, j = 1, 2, 3, 4. (2.6)

Then the functions�(4) and�(ξ1 − ξ2)�(ξ3 − ξ4) admit the following upper bounds:

|�(4)(ξ1, ξ2, ξ3, ξ4)| = |E(V (ξ1)V (ξ2)V (ξ3)V (ξ4))|
≤ 	(R1)‖V (ξ1)‖2‖V (ξ2)V (ξ3)V (ξ4)‖2

≤ 	(R1)‖V (ξ)‖2‖(V (ξ))3‖2,
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and

�(ξ1 − ξ2)�(ξ3 − ξ4) ≤ 	(R1)‖V ‖2
2 ‖V ‖2

2

Therefore,

|�(4)(x, t)| ≤ 	(R1)
(

‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4
2

)

From (2.6) and the fact that 	 is a decreasing function we derive

K	(R1) = η(3R1)η(3R1) ≤ η(|ξ1 − ξ3|)η(|ξ2 − ξ4|).

This yields the desired inequality.
Assume now that R1 < R2 and dist({ξ1, ξ2}, {ξ3, ξ4}) = R2. In this case

dist(ξ1, ξ2) < R2 and dist(ξ3, ξ4) < R2. (2.7)

Indeed, if we assume that dist(ξ1, ξ2) ≥ R2, then dist(ξ1, {ξ2, ξ3, ξ4}) ≥ R2 and, thus,
R1 ≥ R2 which contradicts our assumption. We have

∣∣�(4)(ξ1, ξ2, ξ3, ξ4)
∣∣ = ∣∣�(4)(ξ1, ξ2, ξ3, ξ4)−�(ξ1 − ξ2)�(ξ3 − ξ4)

∣∣
= ∣∣E([V (ξ1)V (ξ2)− E(V (ξ1)V (ξ2))][V (ξ3)V (ξ4)

−E(V (ξ3)V (ξ4))]
)∣∣

≤ 	(R2)‖(V (ξ))2‖2
2. (2.8)

In view of (2.7), dist(ξ1, ξ3) ≤ 3R2 and dist(ξ2, ξ4) ≤ 3R2. Therefore,

K	(R2) ≤ η(|ξ1 − ξ3|)η(|ξ2 − ξ4|),

and the desired inequality follows.
It remains to consider the case R1 < R2 and dist({ξ1, ξ3}, {ξ2, ξ4}) = R2; the case

dist({ξ1, ξ4}, {ξ2, ξ3}) = R2 can be addressed in the same way. In this case

dist(ξ1, ξ2) ≥ R2, dist(ξ1, ξ4) ≥ R2, dist(ξ1, ξ3) < R2.

Therefore, dist(ξ1, {ξ2, ξ3, ξ4}) = dist(ξ1, ξ3), and we have

|�(4)(ξ1, ξ2, ξ3, ξ4)| ≤ 	(|ξ1 − ξ3|)‖V (ξ)‖2‖(V (ξ))3‖2

|�(ξ1 − ξ2)�(ξ3 − ξ4)| ≤ 	(R2)‖V ‖4
2 ≤ 	(|ξ1 − ξ3|)‖V ‖4

2.

This yields

|�(4)(ξ1, ξ2, ξ3, ξ4)| ≤ 	(|ξ1 − ξ3|)
(‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4

2

)
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In the same way one gets

|�(4)(ξ1, ξ2, ξ3, ξ4)| ≤ 	(|ξ2 − ξ4|)
(‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4

2

)

From the last two estimates we obtain

|�(4)(ξ1, ξ2, ξ3, ξ4)| ≤ √	(|ξ1 − ξ3|)
√
	(|ξ2 − ξ4|)

(‖V (ξ)‖2‖(V (ξ))3‖2 + ‖V ‖4
2

)
≤ η(|ξ1 − ξ3|)η(|ξ2 − ξ4|).

This implies the desired inequality and completes the proof of Lemma 2.4. �
In order to prove our next result, we will need the following small lemma:

Lemma 2.6 Let F : R+ → R+ be an increasing function with F(r) ≤ rq . Then,∫∞
0 (1 + r)−pd F(r) < ∞ as soon as p > q > 0.

Proof We have
∫∞

0 (1 + r)−pd F(r) ≤ 1 + ∫∞
1 r−pd F(r), so we only need to bound

the latter. We write

∞∫
1

r−pd F(r) ≤
∑
k≥0

2k+1∫

2k

r−pd F(r) ≤
∑
k≥0

2−pk

2k+1∫

2k

d F(r) ≤
∑
k≥0

2−pk2q(k+1).

This expression is summable as soon as p > q, thus yielding the claim. �
Lemma 2.7 Fix t > 0 and let ϕ : R × R+ → R+ be a smooth function with compact

support. Define ϕδ(x, t) = δ−3ϕ
(

x
δ
, t
δ2

)
. Then, for all p ≥ 1, ε, δ > 0, one has the

bound

⎡
⎣E

∣∣∣∣∣∣
t∫

0

∫
R

ϕδ(x − y, t − s)Vε(y, s) dy ds

∣∣∣∣∣∣
p⎤
⎦

1/p

≤ Cϕ
(
ε−1/2−α/4 ∧ δ−1/2ε−α/4 ∧ δ−3/2εα/4

)
,

where Cϕ depends on p, on the supremum and the support of ϕ, and on the bound of
Assumption 1.3.

Proof We consider separately the cases δ > max(ε, εα), δ < min(ε, εα), as well as
min(ε, εα) ≤ δ ≤ max(ε, εα).

Assume first that δ > max(ε, εα). Without loss of generality we also assume that
p is even, that is p = 2k with k ∈ N. Then

J ε,δ
p : = E

∣∣∣∣∣∣
t∫

0

∫
R

ϕδ(x − y, t − s)Vε(y, s) dy ds

∣∣∣∣∣∣
p

=
t∫

0

. . .

t∫
0

∫
R

. . .

∫
R

2k∏
i=1

ϕδ(x − yi , t − si )E

(
2k∏

i=1

Vε(yi , si )

)
d �yd�s,
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where d �y = dy1 . . . dy2k and d�s = ds1 . . . ds2k . Changing the variables ỹi = ε−1 yi

and s̃i = ε−αsi , and considering the definition of ϕδ and Vε, we obtain

J ε,δ
p =δ−6kε−k− αk

2 ε2k+2αk
∫

[0,t/εα]2k

∫

R2k

2k∏
i=1

ϕ
( x−ε ỹi

δ
,

t−εα s̃i

δ2

)
E

(
2k∏

i=1

V (ỹi , s̃i )

)
d �̃yd �̃s.

The support of the function
2k∏

i=1
ϕ
( x−ε ỹi

δ
,

t−εα s̃i
δ2

)
belongs to the rectangle (x−k δ

ε
sϕ, x+

k δ
ε
sϕ)2k ×(t −k δ

2

εα
sϕ, t +k δ

2

εα
sϕ)2k , where sϕ is the diameter of support of ϕ = ϕ(y, s).

Denote �1
δ,ε = (0, 2k δ

ε
sϕ)2k and �2

δ,ε = (0, 2k δ
2

εα
sϕ)2k . Since V (y, s) is stationary,

we have

J ε,δ
p ≤ δ−6kε−k− αk

2 ε2k+2αk‖ϕ‖2k
C

∫

(0,2k δ
ε

sϕ)2k

∫

(0,2k δ
2
εα

sϕ)2k

∣∣∣∣∣E
(

2k∏
i=1

V (ỹi , s̃i )

)∣∣∣∣∣ d �̃yd �̃s.

(2.9)

For any R ≥ 0 we introduce a subset of R4k

Vδ,ε(R)

=
⎧⎨
⎩(ỹ, s̃)∈�1

δ,ε×�2
δ,ε : max

1≤ j≤2k
dist(ỹ j ,

⋃
i �= j

ỹi )≤ R, max
1≤ j≤2k

dist(s̃ j ,
⋃
i �= j

s̃i )≤ R

⎫⎬
⎭,

and denote by |Vδ,ε|(R) the Lebesgue measure of this set. It is easy to check that the
set Vδ,ε(0) is the union of sets of the form

{
(ỹ, s̃) ∈ �1

δ,ε ×�2
δ,ε : ỹi1 = ỹi2 , . . . , ỹi2k−1 = ỹi2k , s̃ j1 = s̃ j2 , . . . , s̃ j2k−1 = s̃ j2k

}

with il �= im and jl �= jm if l �= m, that is, Vδ,ε(0) is the union of a finite number
of subsets of 2k-dimensional planes in R4k . The 2k-dimensional measure of this set
satisfies the following upper bound

|Vδ,ε(0)|2k ≤ C(k)
(δ
ε

)k( δ2

εα

)k
,

Therefore,

|Vδ,ε|(R) �
(δ
ε

)k( δ2

εα

)k
R2k, (2.10)
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For each (ỹ, s̃) ∈ Vδ,ε(R) we have

∣∣∣E(
2k∏

i=1

V (ỹi , s̃i )
)∣∣∣ ≤ 	(R)C1(k)‖V ‖L2(�)‖V 2k−1‖L2(�). (2.11)

Combining (2.9), (2.10) and (2.11) yields

J ε,δ
p � δ−6kε−k− αk

2 ε2k+2αk

∞∫
0

	(R) d|Vδ,ε|(R) � δ−3kε
αk
2 .

Here, the last inequality holds due to Assumption 1.4, combined with (2.10) and
Lemma 2.6. Therefore, recalling that p = 2k, we have the bound(

J ε,δ
p

)1/p
� δ−3/2εα/4. (2.12)

In the case δ < min(ε, εα) we have

J ε,δ
p =

∫
[0,t]2k

∫
R2k

2k∏
i=1

ϕδ(x − yi , t − si )E

(
2k∏

i=1

Vε(yi , si )

)
d �y d�s

≤
∫

[0,t]2k

∫
R2k

2k∏
i=1

|ϕδ(x − yi , t − si )|
∣∣∣∣∣E
(

2k∏
i=1

Vε(yi , si )

)∣∣∣∣∣ d �y d�s

≤ E
(
(Vε(y1, s1)

2k) ∫
[0,t]2k

∫
R2k

2k∏
i=1

|ϕδ(x − yi , t − si )|d �y d�s

� ε−k− αk
2 ‖ϕ‖2k

L1 ,

so that

(J ε,δ
p )1/p � ε−1/2−α/4. (2.13)

Finally, if we are in the regime ε < δ < εα/2, then

J ε,δ
p = δ−6kεk+ 3α

2 k
∫

[0,t/εα ]2k

∫

R2k

2k∏
i=1

ϕ

(
x−ε ỹi

δ
,

t−εα s̃i

δ2

)
E

(
2k∏

i=1

V (ỹi , s̃i )

)
d �̃y d �̃s

≤ δ−6kεk+3αk/2 ‖ϕ‖2k
L∞

∫

(0,2k δ
2
εα

sϕ)2k

∫

(0,2k δ
ε

sϕ)2k

∣∣∣∣∣E
(

2k∏
i=1

V (ỹi , s̃i )

)∣∣∣∣∣ d �̃y d �̃s

� δ−6kεk+3αk/2 ‖ϕ‖2k
L∞

∫

(0,2k δ
2
εα

sϕ)2k

‖V ‖L2(�)‖V 2k−1‖L2(�) d �̃s
(
δ

ε

)k ∞∫
0

	(R)Rk−1 d R

� δ−kε−αk/2.
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Hence,

(J ε,δ
p )1/p � δ−1/2ε−α/4 (2.14)

so that, combining (2.12), (2.13) and (2.14), the desired estimate holds. �

Lemma 2.8 Fix t > 0 and let ϕ : R × R+ → R+ be a function which is uniformly
bounded and decays exponentially in x, uniformly over s ∈ [0, t].

Then, for all p ≥ 1, ε > 0, one has the bound

⎡
⎣E

∣∣∣∣∣∣
t∫

0

∫
R

ϕ(x − y, t − s)Vε(y, s) dy ds

∣∣∣∣∣∣
p⎤
⎦

1/p

≤ Cϕ
(
ε−1/2−α/4 ∧ ε−α/4 ∧ εα/4

)
.

Here, the proportionality constant depends on p, on t, on the bounds on ϕ, and on the
bounds of Assumption 1.3.

Proof The proof of this lemma is similar (with some simplifications) to that of the
previous statement. We leave it to the reader. �

In the proof of the next Lemma, we shall exploit in an essential way the fact that

Y ε(x, t) =
t∫

0

∫
R

pt−s(x − y)Vε(y, s)dyds.

The fact that this integral converges follows readily from Assumption 1.3. Indeed

E

t∫
0

∫
R

pt−s(x − y)|Vε(y, s)|dyds =
t∫

0

∫
R

pt−s(x − y)E[|Vε(y, s)|]dyds

≤ Cε−(1/2+α/4)
t∫

0

∫
R

pt−s(x − y)dyds < ∞,

hence

t∫
0

∫
R

pt−s(x − y)|Vε(y, s)|dyds < ∞

a.s., and all the operations done in the next proof are valid a.s. in ω.
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Lemma 2.9 For each p ≥ 1, there exists a constant C p such that for all ε > 0, t ≥
0, x ∈ R,

[
E
(∣∣Y ε(x, t)

∣∣p)]1/p ≤ C p(1 + √
t)εα/4 (2.15)[

E
(∣∣∂x Y ε(x, t)

∣∣p)]1/p ≤ C p (2.16)[
E
(∣∣∣∂2

x Y ε(x, t)
∣∣∣p)]1/p ≤ C pε

−1. (2.17)

Proof Our main ingredient is the existence of a function ψ : R+ → [0, 1] which is
smooth, compactly supported in the interval [1/2, 2], and such that

∑
n∈Z

ψ(2−nr) = 1,

for all r > 0.
As a consequence, we can rewrite the heat kernel as

pt (x) =
∑
n∈Z

2−2nϕn(x, t), (2.18)

where

ϕn(x, t) = 23nϕ(2n x, 22nt), ϕ(x, t) = pt (x)ψ(
√

x2 + t). (2.19)

The advantage of this formulation is that the function ϕ is smooth and compactly
supported. The reason why we scale ϕn in this way, at the expense of still having a
prefactor 2−2n in (2.18) is that this is the scaling used in Lemma 2.7 (setting δ = 2−n).

We use this decomposition to define Y εn by

Y εn (x, t) = 2−2n

t∫
0

∫
R

ϕn(x − y, t − s) Vε(y, s) dy ds, (2.20)

so that, by (2.18), one has Y ε = ∑
n Y εn . Setting ϕ̃(x, t) = ∂xϕ(x, t) and defining

ϕ̃n(x, t) = 23nϕ̃(2n x, 22nt) as in (2.19), the derivative of Y ε can be decomposed in
the same way:

∂x Y εn (x, t) = 2−n

t∫
0

∫
R

ϕ̃n(x − y, t − s) Vε(y, s) dy ds. (2.21)

We first bound the derivative of Y ε. Since ϕ̃ is smooth and compactly supported,
the constants appearing in Lemma 2.7 do not depend on t and we have

(
E|∂x Y εn (x, t)|p)1/p � 2n/2εα/4 ∧ 2−n/2ε−α/4 = 2−| n

2 + α
4 log2 ε|.
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Since the sum (over n) of this quantity is bounded independently of ε, (2.16) now
follows by the triangle inequality.

Note that (2.17) follows from the same argument, if we integrate by parts (hence
differentiate Vε).

In order to finally establish (2.15), we bound Y ε in a similar way. This time however,
we combine all the terms with n < 0 into one single term, setting

p−
t (x) =

∑
n≤0

2−2nϕn(x, t), Y ε−(x, t) =
t∫

0

∫
R

p−
t−s(x − y) Vε(y, s) dy ds,

so that Y ε =∑n>0 Y εn + Y ε−. Similarly to before, we obtain

(
E|Y εn (x, t)|p)1/p � 2−n/2εα/4. (2.22)

In order to bound Y ε−, we apply Lemma 2.8 with ϕ = p− and ε ≤ 1, which yields

(
E|Y ε−(x, t)|p)1/p � εα/4.

Combining this with (2.22), summed over n > 0, yields the desired bound. �
We deduce from Lemma 2.9 and Eq. 1.7

Corollary 2.10 As ε → 0, sup(x,t)∈D |Y ε|(x, t) → 0 in probability, for any bounded
subset D ⊂ R × R+.

Proof It follows from Lemma 2.9 and Eq. 1.7 that for some a, b > 0 and all p ≥ 1,
all bounded subsets D ⊂ R+ × R,

sup
(x,t)∈D

E
[|Y ε(x, t)|p] � ε pa, (2.23)

sup
(x,t)∈D

E
[|∂x Y ε(x, t)|p] � ε−pb, sup

(x,t)∈D
E
[|∂t Y

ε(x, t)|p] � ε−pb. (2.24)

We deduce from (2.23) that for all (x, t), (y, s) ∈ D, p ≥ 1,

E
[|Y ε(x, t)− Y ε(y, s)|p] � ε pa,

and from (2.24), writing Y ε(x, t)− Y ε(y, s) as the sum of an integral of ∂x Y ε and an
integral of ∂t Y ε, we get

E
[|Y ε(x, t)− Y ε(y, s)|p] � (|x − y| + |t − s|)pε−pb.

Hence from Hölder’s inequality

E[∣∣Y ε(x, t)− Y ε(y, s)|α+β] ≤ (|x − y| + |t − s|)βεαa−βb.
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Provided β > 2 and α > βb/a, we obtain an estimate which allows us to deduce the
result from a combination of (2.23) and Kolmogorov’s Lemma 2.3. �

We will also need

Lemma 2.11 The function t → V̄ε(t) is continuous, and, for each ε > 0, there exists
a positive constant V̄ 0

ε such that

V̄ε(t) → V̄ 0
ε , as t → ∞.

Furthermore,

lim
ε→0

V̄ 0
ε = V̄ :=

∞∫
0

∫
R

�(y, t)

2
√
π t

dy dt,

and V̄ε(t) → V̄ as ε → 0, uniformly in t ∈ [1,+∞].
Proof Writing�ε for the correlation function of Vε and using the definition of V̄ε(t),
we have

V̄ε(t) = E

⎡
⎢⎣
⎛
⎝ ∂

∂x

t∫
0

∫
R

pt−s(x − y)Vε(y, s) dy ds

⎞
⎠

2
⎤
⎥⎦

= E

⎡
⎢⎣
⎛
⎝

t∫
0

∫
R

p′
t−s(x − y)Vε(y, s) dy ds

⎞
⎠

2
⎤
⎥⎦

= E

⎡
⎣

t∫
0

t∫
0

∫
R

∫
R

p′
t−s(x − y)p′

t−r (x − z)Vε(y, s)Vε(z, r) dy dz ds dr

⎤
⎦

=
t∫

0

t∫
0

∫
R

∫
R

p′
t−s(x − y)p′

t−r (x − z)�ε(y − z, s − r) dy dz ds dr

=
t∫

0

t∫
0

∫
R

∫
R

p′
s(y)p

′
r (z)�ε(y − z, s − r) dy dz ds dr.

It is easy to check that, for each ε > 0, this integral is a continuous function of t and
that it converges, as t → +∞. Performing the change of variables y′ = y

ε1/2+α/4 , z′ =
z

ε1/2+α/4 , s′ = s
ε1+α/2 , r ′ = r

ε1+α/2 , renaming the new variables and setting Tε =
ε−1−α/2t , we obtain

V̄ε(t) = 1

16π

Tε∫
0

Tε∫
0

∫
R

∫
R

y

s3/2

z

r3/2 e− y2

4s − z2
4r �

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr.
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We represent the integral on the right-hand side as

V̄ε(t) = 1

16π

Tε∫
0

Tε∫
0

∫
R

∫
R

z2

s3/2r3/2 e− z2
4s − z2

4r �

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr + rε(t).

(2.25)

The further analysis relies on the following limit relation:

lim
ε→0

sup
0<t≤+∞

|rε(t)| = 0. (2.26)

In order to justify it we denote � = 1
2 − α

4 and �1 = �
10 , and divide the integration

area into four parts as follows

�1 =
{
(y, z, s, r) ∈ R2 × (R+)2 : s ≤ ε�1, r ≤ ε�1

}
,

�2 =
{
(y, z, s, r) ∈ R2 × (R+)2 : ε�1 < s ≤ Tε, r ≤ ε�1

}
,

�3 =
{
(y, z, s, r) ∈ R2 × (R+)2 : s ≤ ε�1, ε�1 < r ≤ Tε

}
,

�4 =
{
(y, z, s, r) ∈ R2 × (R+)2 : ε�1 < s ≤ Tε, ε

�1 < r ≤ Tε
}
.

In �1 we have

∫
�1

|y| |z|
s

3
2 r

3
2

e− y2

4s − z2
4r �

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr ≤ C2

ε�1∫
0

ε�1∫
0

dsdr

s
1
2 r

1
2

= 4C2ε�1 .

(2.27)

To estimate the integral over �2 we first notice that there exists a constant C1 such
that

|y|
s

1
2

e− y2

4s ≤ C1

uniformly over all s > 0 and y ∈ R. Then,

∫
�2

|y| |z|
s

3
2 r

3
2

e− y2

4s − z2
4r �

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr

≤ C1

Tε∫
ε�1

ε�1∫
0

∫
R

|z| dz dr ds

s r
3
2

e− z2
4r

∫
R

�

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy
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= C1ε
�

Tε∫
ε�1

ε�1∫
0

∫
R

e− z2
4r �

(
s−r

ε
α
2 −1

) |z| dz dr ds

s r
3
2

= CC1ε
�

Tε∫
ε�1

ε�1∫
0

�

(
s−r

ε
α
2 −1

)
dr ds

s r
1
2

≤ CC1ε
�

Tε∫
ε�1

ε�1∫
0

�̂

(
s

ε
α
2 −1

)
dr ds

s r
1
2

= 2CC1ε
�ε

�1
2

Tε∫
ε�1

�̂

(
s

ε
α
2 −1

)
ds

s
≤ 2CC1ε

�ε
�1
2

∞∫

ε�1+2�

�̂(s)
ds

s

≤ C2(�1 + 2�)ε�+ �1
2 | log ε|; (2.28)

here�(t) = ∫R �(x, t)dx , and �̂(t) stands for max{�(s) : t −1 ≤ s ≤ t}. A similar
estimate holds true for the integral over �3. Therefore,

lim
ε→0

sup
0<t≤+∞

∣∣∣∣∣∣∣
∫

�1∪�2∪�3

y

s3/2

z

r3/2 e− y2

4s − z2
4r �
( y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr

∣∣∣∣∣∣∣
= 0.

(2.29)

We also have

∫
�1∪�2

z2

s3/2r3/2 e− z2
4s − z2

4r �

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr

= Cε�
Tε∫

0

ε�1∫
0

�
( s − r

ε−2�

) ds dr

(s + r)
3
2

= C

ε2�Tε∫
0

ε�1+2�∫
0

�(s − r)
ds dr

(s + r)
3
2

≤ C

1∫
0

ε�1+2�∫
0

�(s − r)
ds dr

(s + r)
3
2

+ C

∞∫
1

ε�1+2�∫
0

�(s − r)
ds dr

(s + r)
3
2

≤ C4ε
�

(2.30)

Combining this estimate with a similar estimate for the integral over �1 ∪ �3, we
obtain

lim
ε→0

sup
0<t≤+∞

∣∣∣∣∣∣∣
∫

�1∪�2∪�3

z2

s3/2r3/2 e− z2
4s − z2

4r �

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr

∣∣∣∣∣∣∣
= 0.

(2.31)
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In order to justify (2.26) it remains to show that

lim
ε→0

sup
0<t≤+∞

∫
�4

∣∣yze− y2

4s − z2
4r − z2e− z2

4s − z2
4r
∣∣

s3/2r3/2 �

(
y−z

ε
1
2 − α

4

,
s−r

ε
α
2 −1

)
dy dz ds dr

∣∣∣ = 0

(2.32)

We first estimate

Jε(t) : =
∫
�4

|yz|
s3/2r3/2 e− z2

4r
∣∣e− y2

4s − e− z2
4s
∣∣�( y−z

ε�
,

s−r

ε−2�

)
dy dz ds dr

≤ 1

4

∫
�4

|yz| |z2 − y2|
s5/2r3/2

e− z2
4r

(
e− y2

4s + e− z2
4s

)
�
( y−z

ε�
,

s−r

ε−2�

)
dy dz ds dr

� ε�
∫
�4

( |y|3 + |y−z|3
s5/2r3/2

e− y2

4s + |z|3 + |y−z|3
s5/2r3/2

e− z2
4s

)

× e− z2
4r �1

( y−z

ε�
,

s−r

ε−2�

)
dy dz ds dr (2.33)

with�1(x, t) = |x |�(x, t); here we have used the inequality |ea −eb| ≤ |b−a|(ea +
eb) and the estimates |yz||y+z| ≤ C(|y|3+|y−z|3) and |yz||y+z| ≤ C(|z|3+|y−z|3)
that follow from the Young inequality. Let us estimate the integral

ε�
∫
�4

|y|3
s5/2r3/2

e− y2

4s e− z2
4r �1

( y−z

ε�
,

s−r

ε−2�

)
dy dz ds dr

≤ C3ε
�

∫
�4

1

sr3/2 e− z2
4r �1

( y−z

ε�
,

s−r

ε−2�

)
dy dz ds dr

≤ C4ε
2�

∞∫
ε�1

∞∫
ε�1

1

sr
�1

( s−r

ε−2�

)
ds dr

= C4ε
2�

∞∫

ε�1+2�

∞∫

ε�1+2�

�1
(
s−r

)ds dr

sr
≤ C5ε

2�(log ε)2;

here C3 = max(x3e−x2
), and �1(t) stands for

∫
R �1(x, t)dx . Other terms on the

right-hand side of (2.33) can be estimated in a similar way. Thus we obtain

lim
ε→0

sup
0<t≤∞

Jε(t) = 0. (2.34)
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The inequality

∫
�4

|yz − z2|
s3/2r3/2 e− z2

4r e− z2
4s �

(
y−z

ε�
,

s−r

ε−2�

)
dy dz ds dr ≤ Cε�(log ε)2

can be obtained in the same way with a number of simplifications. This yields (2.26).
It remains to notice that

Tε∫
ε�1

Tε∫
ε�1

∫
R

∫
R

z2

s3/2r3/2 e− z2
4s − z2

4r �
( y−z

ε�
,

s−r

ε−2�

)
dy dz ds dr

= ε�

Tε∫
ε�1

Tε∫
ε�1

∫
R

z2

s3/2r3/2 e− z2
4s − z2

4r �
( s−r

ε−2�

)
dz ds dr

= C0ε
�

Tε∫
ε�1

Tε∫
ε�1

�
( s−r

ε−2�

) ds dr

(s + r)3/2
= C0

ε−α t∫

ε�1+2�

ε−α t∫

ε�1+2�

�(s−r)
ds dr

(s + r)3/2

= C0

∞∫
0

∞∫
0

�(s−r)
ds dr

(s + r)3/2
+ Rε(t)

with C0 = ∫R z2e−z2/4 dz, and

lim
ε→0

sup
1≤t≤+∞

|Rε(t)| = 0.

Combining the last two relations with (2.25) and (2.26), we obtain the desired state-
ment. �
Lemma 2.12 For any T > 0, any even integer k ≥ 2, any 0 < β < 1/k, any p > k
and any κ > 0, there exists a constant C such that for all 0 ≤ t ≤ T, ε > 0,

(
E‖Y ε(t)‖p

0,pκ

)1/p ≤ C ε
α
4 (1−κ),

(
E‖∂x Y ε(t)‖p

0,pκ

)1/p ≤ C ε−κ ,
(

E‖∂x Y ε(t)‖p
β,pκ

)1/p ≤ Cε−κ .

Proof We establish the estimates of the norms of ∂x Y ε(t) only. The norm of Y ε(t) is
estimated similarly. Let q > 1 and p = qk. For any x < y, we have the identity

|∂x Y ε(t, y)− ∂x Y ε(t, x)|k = k

y∫
x

(∂x Y ε(t, z)− ∂x Y ε(t, x))k−1∂2
x Y ε(t, z)dz.
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Raising this to the power q and taking expectations, we obtain

E(|∂x Y ε(t, y)− ∂x Y ε(t, x)|p)

≤ kq

∣∣∣∣∣∣
y∫

x

(∂x Y ε(t, z)− ∂x Y ε(t, x))k−1∂2
x Y ε(t, z)dz

∣∣∣∣∣∣
q

� (y − x)q−1

y∫
x

E
(∣∣∣(∂x Y ε(t, z)− ∂x Y ε(t, x))k−1∂2

x Y ε(t, z)
∣∣∣q) dz

� (y − x)q
√

E
(|∂x Y ε(t, x)|2q(k−1))E (∣∣∂2

x Y ε(t, x)
∣∣2q
)

� (y − x)qε−q ,

(2.35)

where we have used the stationarity (in z) of the processes ∂x Y ε(t, z) and ∂2
x Y ε(t, z),

as well as the estimates (2.16) and (2.17) from Lemma 2.9.
As a consequence of (2.16) and Kolmogorov’s Lemma 2.3, there exists a stationary

sequence of positive random variables {ξn}n∈Z such that for every n ∈ Z, the bound

sup
x∈[n,n+1]

|∂x Y ε(t, x)| ≤ ξn,

holds almost surely, and such that
(
E|ξn|p

)1/p � ε−1/k for every p ≥ 1. The bound
on ‖∂x Y ε(t)‖0,pκ then follows as follows. Choose p > 1/κ .

‖∂x Y ε(t)‖0,pκ ≤ 2 sup
n∈Z

ξn

1 + |n|κ

≤ 2 + 2
∑
n∈Z

(
ξn

1 + |n|κ
)p

E(‖∂x Y ε(t)‖0,pκ ) ≤ 2 + 2E(|ξn|p)
∑
n∈Z

(1 + |n|κ)−p

≤ Cε−p/k .

The bound on ‖∂x Y ε(t)‖β,pκ follows in virtually the same way, using the fact that
(2.35) also yields the bound

sup
x,y∈[n−1,n+1]

|∂x Y ε(t, x)− ∂x Y ε(t, y)|
|x − y|β ≤ ξ̃n,

for some stationary sequence of random variables ξ̃n which has all of its moments
bounded in the same way as the sequence {ξn}. �

We further obtain the following bound on the “negative Hölder norm” of ∂x Y ε:
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Corollary 2.13 For any T > 0, k being any even integer, p > k and κ = 1/k, there
exists a constant CT,p,κ such that

(
E‖∂x Y ε(t)‖p

− 1
4 ,pκ

)1/p

≤ CT,p,κ ε
α/16−κ ,

for all 0 ≤ t ≤ T, ε > 0. �
Proof We note that

‖∂x Y ε(t)‖− 1
4 ,pκ

= sup
|x−y|≤1

|Y ε(t, x)− Y ε(t, y)|
pκ(x)|x − y|3/4 ,

‖Y ε(t)‖0,pκ = sup
x

|Y ε(t, x)|
pκ(x)

, ‖∂x Y ε(t)‖0,pκ = sup
x

|∂x Y ε(t, x)|
pκ(x)

.

We have, for |x − y| ≤ 1,

|Y ε(t, x)−Y ε(t, y)|
pκ(x)|x−y|3/4 =

( |Y ε(t, x)−Y ε(t, y)|
pκ(x)

)1/4 ( |Y ε(t, x)−Y ε(t, y)|
pκ(x)|x−y|

)3/4

≤
( |Y ε(t, x)|

pκ(x)
+Cκ

|Y ε(t, y)|
pκ(y)

)1/4 (
Cκ sup

x≤z≤y

|∂x Y ε(t, z)|
pκ(z)

)3/4

.

It remains to take supremums and apply Hölder’s inequality. �
Remark 2.14 By interpolating in a similar way between the first and the third bound
of Lemma 2.12, one could actually strengthen the second bound to obtain a bound
on E‖∂x Y ε(t)‖p

0,pκ
by some positive power of ε. This is however not required for our

main result.

2.3 Bounds and convergence of Z ε

The main result of this subsection is Lemma 2.18, which follows essentially from a
combination of Lemma 2.15 and Lemma 2.17.

Lemma 2.15 For any T > 0, there exists a constant CT such that for all ε > 0, 0 ≤
t ≤ T and x ∈ R,

[
E
(∣∣Z ε(x, t)

∣∣2)]1/2 ≤ CT ε
α.

Proof The main ingredient in the proof is a bound on the correlation function of the
right hand side of the equation for Z ε, which we denote by

�ε(z, z′) = Cov
(|∂x Y ε(z)|2, |∂x Y ε(z′)|2).
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Inserting the definition of Y ε, we obtain the identity

�ε(z, z′) =
∫

· · ·
∫

P̃(z−z1)P̃(z−z2)P̃(z
′−z3)P̃(z

′−z4)�
(4)
ε (z1, . . . , z4) dz1 . . . dz4,

where

P̃(z) = P̃(x, t) = ∂x pt (x),

with pt the standard heat kernel and

�(4)ε (z1, . . . , z4) = ε−2−α�(4)
( x1

ε
, . . . ,

x4

ε
,

t1
εα
, . . . ,

t4
εα

)
.

Here, we used the shorthand notation zi = (xi , ti ), and integrals over zi are understood
to be shorthand for

∫ t
0

∫
R dxi dti . We now make use of Lemma 2.4, which allows to

factor this integral as

|�ε(z, z′)| �
(
ε−1− α

2

∫ ∫
P̃(z − z1)P̃(z

′ − z3)	ε(z1 − z3) dz1 dz3

)2def= 	̃2
ε (z, z′),

where we used the shorthand notation

	ε(x, t) = 	
( x

ε
,

t

εα

)
.

We will show below that the following bound holds:

Lemma 2.16 For any γ ≥ 2
2−α ,

	̃ε(z, z′) �
(

1 ∧ εαγ/2

dγp (z, z′)

)
+ (1 + t + t ′)εα/2 def= ζε(z − z′)+ (1 + t + t ′)εα/2,

where dp denotes the parabolic distance given by

dp(z, z′)2 = |x − x ′|2 + |t − t ′|.

Taking this bound for granted, we write as in the proof of Lemma 2.9 Z ε = Z ε− +∑
n>0 Z εn with

Z εn(z) = 2−2n
∫
ϕn(z − z′)

(|∂x Y ε(z′)|2 − V̄ε(t
′)
)

dz′,
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and similarly for Z ε−. Squaring this expression and inserting the bound from
Lemma 2.16, we obtain

E|Z εn(z)|2 � 2−4n
∫ ∫

ϕn(z − z′)ϕn(z − z′′)
(
ζ 2
ε (z

′ − z′′)+(1+t ′+t ′′)2εα
)

dz′ dz′′

� 2−n
∫
ζ 2
ε (z

′) dz′ + 2−4n(1 + t)4εα,

where we made use of the scaling of ϕn given by (2.19). Performing the corresponding
bound for Z ε−, we similarly obtain

E|Z ε−(z)|2 � t
∫
ζ 2
ε (z

′) dz′ + (1 + t)4εα.

The claim now follows from the bound

∫
ζ 2
ε (z

′) dz′ ≤
t∫

0

∫
R

εαγ(|x |2 + |s|)γ ∧ 1 dx ds � εαγ + ε2α.

Consequently, for ε ≤ 1, we get on the right hand side the power (2 ∧ γ )α of ε, and
this for any γ ≥ − 2

α
, so clearly the above right–hand side should be ε2α . �

Proof of Lemma 2.16 Similarly to the proof of Lemma 2.9, we write

	̃ε(z, z′) =
∑
n1≥0

∑
n2≥0

	̃n1,n2
ε (z, z′),

with

	̃n1,n2
ε (z, z′) = ε−1− α

2 2−n1−n2

∫ ∫
ϕ̃n1(z − z1)ϕ̃n2(z

′ − z2)	ε(z1 − z2) dz1 dz2.

Here, for n ≥ 1, ϕ̃n is defined as in the proof of Lemma 2.9, whereas ϕ̃0 is different
from what it was there and is defined as

ϕ̃0(x, t) = ∂x p−
t (x).

By symmetry, we can restrict ourselves to the case n1 ≥ n2, which we will do in the
sequel. In the case where n2 > 0, the above integral could be restricted to the set of
pairs (z1, z2), such that their parabolic distance satisfies

dp(z1, z2) ≥ (dp(z, z′)− 22−n2
)
+,

where (· · · )+ denotes the positive part of a number.
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Replacing ϕ̃n2 by its supremum and integrating out ϕ̃n1 and 	ε yields the bound

	̃n1,n2
ε (z, z′) �

(
1 + δn2,0(t + t ′)

)
22n2−n1εα/2

∫
Aε(n2)

	(z3) dz3,

where Aε(0) = R2 and

Aε(n2) = {z3 : dp(0, z3) ≥ ε−α/2
(
dp(z, z′)− 22−n2

)
+
}
,

for n2 > 0. (Remark that the prefactor 1 + t + t ′ is relevant only in the case n1 =
n2 = 0.) It follows from the integrability of 	 that one always has the bound

	̃n1,n2
ε (z, z′) �

(
1 + δn2,0(t + t ′)

)
22n2−n1εα/2. (2.36)

Moreover, we deduce from Assumption 1.4 that, whenever n2 > 0 and d(z, z′) ≥
23−n2 , one has the improved bound: for any γ > 0,

	̃n1,n2
ε (z, z′) � 22n2−n1εα/2

(
1 ∧ εαγ/2

dγp (z, z′)

)
. (2.37)

The bound (2.36) is sufficient for our needs in the case n2 = 0, so we assume that
n2 > 0 from now on.

We now obtain a second bound on 	̃n1,n2
ε (z, z′) which will be useful in the regime

where n2 is very large. Since the integral of ϕ̃n1 is bounded independently of n1, we
obtain

	̃n1,n2
ε (z, z′) � ε−1− α

2 2−n1−n2 sup
dp(z1,z)≤21−n1

∫
ϕ̃n2(z

′ − z2)	ε(z1 − z2) dz2.

(2.38)

We now distinguish between three cases, which depend on the size of z − z′.
Case 1: dp(z, z′) ≤ εα/2. In this case, we proceed as in the proof of Lemma 2.7, which
yields

	̃n1,n2
ε (z, z′) � ε−1− α

2 2−n1−n2 sup
z1

∫
ϕ̃n2(z2)	ε(z2 − z1) dz2

� ε−1− α
2 2−n1−n2 sup

x1

∫
R

sup
s
	ε(x2 − x1, s)

t∫
0

ϕ̃n2(x2, t2) dt2 dx2

� ε−1− α
2 2−n1

∫
R

sup
s
	ε(x2, s) dx2 � ε−

α
2 2−n1 . (2.39)
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Case 2: |x − x ′| ≥ dp(z, z′)/2 ≥ εα/2/2. Note that in (2.38), the argument of 	ε can
only ever take values with |x1 − x2| ∈ Bε(n2) where

Bε(n2) =
{

x̄ : |x̄ | ≥ (|x − x ′| − 22−n2
)}
.

As a consequence, we obtain the bound

	̃n1,n2
ε (z, z′) � ε−1− α

2 2−n1−n2 sup
x̄∈Bε(n2)

sup
s∈R

	ε(x̄, s).

The case of interest to us for this bound will be 26−n2 ≤ εα/2, in which case we deduce
from this calculation and Assumption 1.4 that

	̃n1,n2
ε (z, z′) � ε−1− α

2 2−n1−n2

(
ε

dp(z, z′)

)γ
,

where γ is an arbitrarily large exponent. Choosing γ ≥ 2
2−α , we conclude that one

also has the bound

	̃n1,n2
ε (z, z′) � ε−

α
2 2−n1

(
1 ∧ εα/2

dp(z, z′)

)γ
, (2.40)

which will be sufficient for our needs.
Case 3: |t − t ′| ≥ d2

p(z, z′)/2 ≥ εα/2. Similarly, we obtain

	̃n1,n2
ε (z, z′) � ε−

α
2 2−n1

∫
R

sup
s∈B′

ε(n2)

	ε(x2, s) dx2,

where

B ′
ε(n2) = {s : |s| ≥ ε−α

(|t − t ′| − 28−2n2
)}
.

Restricting ourselves again to the case 26−n2 ≤ εα/2, this yields as before

	̃n1,n2
ε (z, z′) � ε−

α
2 2−n1

(
1 ∧ εα/2

dp(z, z′)

)γ
. (2.41)

It now remains to sum over all values n1 ≥ n2 ≥ 0.
For n2 = 0, we sum the bound (2.36), which yields

∑
n1≥0

	̃n1,0
ε (z, z′) ≤ (1 + t + t ′)εα/2.
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In order to sum the remaining terms, we first consider the case dp(z, z′) < εα/2. In
this case, we use (2.36) and (2.39) to deduce that

∑
n1≥n2

	̃n1,n2
ε (z, z′) � 2n2εα/2 ∧ 2−n2ε−α/2,

so that in this case 	̃ε(z, z′) � 1 + (1 + t + t ′)εα/2.
It remains to consider the case dp(z, z′) ≥ εα/2. For this, we break the sum over

n2 in three pieces:

N1 = {
n2 ≥ 1 : 2−n2 ≥ d(z, z′)/8

}
,

N2 =
{

n2 ≥ 1 : 2−6εα/2 ≤ 2−n2 < d(z, z′)/8
}
,

N3 =
{

n2 ≥ 1 : 2−n2 < 2−6εα/2
}
.

For n2 ∈ N1, we only make use of the bound (2.36). Summing first over n1 ≥ n2 and
then over n2 ∈ N1, we obtain

∑
n2∈N1

∑
n1≥n2

	̃n1,n2
ε (z, z′) � εα/2

dp(z, z′)
.

For n2 ∈ N2, we only make use of the bound (2.37). Summing again first over n1 ≥ n2
and then over n2 ∈ N1, we obtain

∑
n2∈N2

∑
n1≥n2

	̃n1,n2
ε (z, z′) � εαγ/2

dγp (z, z′)
.

In the last case, we similarly use either (2.40) or (2.41), depending on whether |x−x ′| ≥
dp(z, z′)/2 or |t − t ′| ≥ d2

p(z, z′)/2, which yields again

∑
n2∈N3

∑
n1≥n2

	̃n1,n2
ε (z, z′) � εαγ/2

dγp (z, z′)
.

Combining the above bounds, the claim follows. �
Lemma 2.17 For any T > 0, p ≥ 1, κ > 0, 0 ≤ γ < 1, there exists a constant
CT,p,κ,γ such that for all 0 ≤ t ≤ T, ε > 0,

(
E‖∂x Z ε(t)‖p

γ,pκ

)1/p ≤ (E‖Z ε(t)‖p
γ+1,pκ

)1/p ≤ CT,p,κ,γ ε
−2κ .

Proof The first inequality is obvious from the definition. For the second one, we use
successively the second statement of Proposition 2.2 with β = 0, and γ replaced by
γ + 1, and the second estimate from Lemma 2.12. As a consequence, we have indeed
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‖Z ε(t)‖γ+1,pκ ≤
t∫

0

‖Pt−sv
ε(s)‖γ+1,pκds ≤ Ct1−(γ+1)/2ε−2κ ,

where we set vε(s) := |∂x Y ε(t)|2 − E(|∂x Y ε(t)|2). �
Combining this result with Lemma 2.15, we deduce

Lemma 2.18 For any T > 0, κ, κ̄ > 0, and p > 2/κ , there exists a constant C such
that for all 0 ≤ t ≤ T, ε > 0,

E‖Z ε(t)‖p
0,pκ

≤ Cε
αp

p+1 −κ̄
, E‖∂x Z ε(t)‖p

0,pκ
≤ Cε

αp
2(p+1)−κ̄ .

Proof We first derive the bound on E‖Z ε(t)‖p
0,pκ

. For this, we set xk = kεγ with
k ∈ Z, as well as Ik = [xk, xk+1]. For any fixed function Z : R → R, we then have

‖Z‖L∞(Ik ) ≤ |Z(xk)| + εγ ‖∂x Z‖L∞(Ik ) ≤ |Z(xk)| + εγ (1 + |xk |κ)‖∂x Z‖0,pκ ,

so that

‖Z ε(t)‖p
0,pκ

� εγ p‖∂x Z ε(t)‖p
0,pκ

+ sup
k∈Z

|Z ε(t, xk)|p

(1 + |xk |κ)p
, (2.42)

with a proportionality constant depending only on p. Using the Cauchy–Schwartz
inequality, we furthermore obtain the bound

E sup
k∈Z

|Z ε(t, xk)|p

(1 + |xk |κ)p
≤
√√√√E

∑
k∈Z

|Z ε(t, xk)|2
1 + |xk |2

√
E sup

k∈Z

|Z ε(t, xk)|2p−2

(1 + |xk |κ)p− 2
κ

� εα

√∑
k∈Z

1

1 + |xk |2
√

E‖Z ε(t)‖2p−2
0,pκ̂

,

where we have set

κ̂ = κp − 2

2p − 2
,

and we used Lemma 2.15 to get E|Z ε(t, xk)|2 ≤ Cε2α . If κ̂ > 0 (which explains
the requirement on p in our assumptions), then it follows from Lemma 2.17 that the
second factor in this expression is bounded by Cε−κ̄ . On the other hand, one has

∑
k∈Z

1

1 + |xk |2 � ε−γ ,

so that the expectation of the second term in (2.42) is bounded by Cεα−γ−κ̄ . Using
again Lemma 2.17, the first term in (2.42) is bounded by Cε pγ−κ̄ . Optimising over γ
yields the required bound on ‖Z ε(t)‖0,pκ .
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Concerning the bounds on ‖∂x Z ε(t)‖0,pκ , we use the easily verifiable fact that any
function f defined on an interval I satisfies the bound

‖ f ′‖L∞ ≤ 2‖ f ‖L∞

|I | + ‖ f ′‖β |I |β.

Cutting the real line into intervals of size εγ as before, we deduce that

‖ f ′‖0,pκ � ε−γ ‖ f ‖0,pκ + εβγ ‖ f ′‖β,pκ .

Choosing β very close to 1 and combining this with the bound just obtained on
E‖Z ε(t)‖p

0,pκ
as well as Lemma 2.17, we have

E‖∂x Z ε(t)‖p
0,pκ

� ε
−γ p+ αp

p+1 −κ̄ + εγ p−κ̄ .

Optimising over γ allows us to conclude. �
We will need moreover

Corollary 2.19 As ε → 0, Z ε(x, t) → 0 in probability, locally uniformly in (x, t).

Proof It follows from estimate (2.16) that for any p > 1 and any bounded subset
K ⊂ R × R+, there exists a constant C p,K such that

E

⎛
⎝∫

K

∣∣|∂x Y ε(x, t)|2 − V
ε∣∣pdxdt

⎞
⎠ ≤ C p,K .

Then, by the Nash estimate, we obtain

E‖Z ε‖Cγ (K ) ≤ CK , (2.43)

where the Hölder exponent γ > 0 and CK do not depend on ε. As a consequence of
the first estimate of Lemma 2.18, we have for p sufficiently large the bound

E‖Z ε‖p
L p(K ) ≤ C p,K ε

δ, (2.44)

for some exponent δ > 0. Combining (2.43) and (2.44) one can easily derive the
required convergence. �

3 Proof of the main result

Before concluding with the proof of our main theorem, we prove a result for a parabolic
heat equation with coefficients which live in spaces of weighted Hölder continuous
functions.
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We consider an abstract evolution equation of the type

∂t u = ∂2
x u + F ∂x u + G u, (3.1)

where F and G are measurable functions of time, taking values in C−γ
pκ for some

suitable κ > 0 and γ < 1
2 . The main result of this section is the following:

Theorem 3.1 Let γ and κ be positive numbers such that γ + 2κ < 1
2 and let F and

G be functions in L p
loc(R+, C−γ

pκ ) for every p ≥ 1.

Let furthermore � ∈ R and u0 ∈ C3/2
e� . Then, there exists a unique global mild

solution to (3.1). Furthermore, this solution is continuous with values in C3/2
em for every

m < � and, for every set of parameters �,m, κ, γ satisfying the above restrictions,
there exists a value p such that the map (u0, F,G) �→ u is jointly continuous in these
topologies.

Proof We will show a slightly stronger statement, namely that for every δ > 0 suf-

ficiently small, the mild solution has the property that ut ∈ C
3
2
e�−δt for t ∈ [0, T ] for

arbitrary values of T > 0. We fix T, δ and � from now on.
We then write

|||u|||δ,�,T def= sup
t∈[0,T ]

‖ut‖ 3
2 ,e�−δt

,

and we denote by Bδ,�,T the corresponding Banach space. With this notation at hand,
we define a map MT : Bδ,�,T → Bδ,�,T by

(MT u
)

t =
t∫

0

Pt−s
(
Fs ∂x us + Gs us

)
ds, t ∈ [0, T ].

It follows from Proposition 2.2 that we have the bound

∥∥(MT u
)

t

∥∥ 3
2 ,e�−δt

≤ C

t∫
0

(t − s)−
3+2γ

4
∥∥Fs ∂x us + Gs us

∥∥−γ,e�−δt ds.

Combining Proposition 2.1 with (2.3) and (2.4), we furthermore obtain the bound

∥∥Fs ∂x us
∥∥−γ,e�−δt ≤ C

(
δ|t − s|)−κ‖Fs‖−γ,pκ

∥∥∂x us
∥∥ 1

2 ,e�−δs

≤ C
(
δ|t − s|)−κ‖Fs‖−γ,pκ |||u|||δ,�,T ,

where the proportionality constant C is uniformly bounded for δ ∈ (0, 1] and bounded
� and s. A similar bound holds for Gsus so that, combining these bounds and using
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Hölder’s inequality for the integral over t , we obtain the existence of constants ζ > 0
and p > 1 such that the bound

|||MT u|||δ,�,T ≤ Cδ−κT ζ
(‖F‖L p(C−γ

pκ )
+ ‖G‖L p(C−γ

pκ )

)|||u|||δ,�,T ,

holds. Since the norm of this operator is strictly less than 1 provided that T is small
enough, the short-time existence and uniqueness of solutions follow from Banach’s
fixed point theorem. The existence of solutions up to the final time T follows by
iterating this argument, noting that the interval of short-time existence restarting from
u(t) at time t can be bounded from below by a constant that is uniform over all
t ∈ [0, T ], as a consequence of the linearity of the equation.

Actually, we obtain the bound

‖ut‖ 3
2 ,e�−δt

� exp

(
Ct
(
‖F‖L p(C−γ

pκ )
+ ‖G‖L p(C−γ

pκ )

)1/ζ
)

‖u0‖ 3
2 ,e�
,

where the constants C and ζ depend on the choice of � and δ.
The solutions are obviously linear in u0 since the equation is linear in u. It remains

to show that the solutions also depend continuously on F and G. Let ū be the solution
to the equation

∂t ū = ∂2
x ū + F̄ ∂x ū + Ḡ ū, (3.2)

and write 	 = u − ū. The difference 	 then satisfies the equation

∂t	 = ∂2
x	 + F ∂x	 + G 	 + (F − F̄) ∂x ū + (G − Ḡ) ū,

with zero initial condition. Similarly to before, we thus have

	t = (MT 	
)

t +
t∫

0

Pt−s
(
(Fs − F̄s) ∂x ūs + (Gs − Ḡs) ūs

)
ds.

It follows from the above bounds that

|||	|||δ,�,T � |||MT	|||δ,�,T +Cδ−κT ζ
(‖F − F̄‖L p(C−γ

pκ )
+‖G − Ḡ‖L p(C−γ

pκ )

)|||ū|||δ,�,T .

Over short times, the required continuity statement thus follows at once. Over fixed
times, it follows as before by iterating the argument. �
Remark 3.2 In principle, one could obtain a similar result for less regular initial con-
ditions, but this does not seem worth the additional effort in this context.

We now have finally all the ingredients in place to give the proof of our main result.
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Proof of Theorem 1.8 We apply Theorem 3.1 with γ = 1
4 and κ = 1

10 . Note that the
equation (1.8) for vε is precisely of the form (3.1) with

F = Fε = 2∂x Y ε + 2∂x Z ε, G = Gε = |∂x Z ε|2 + 2 ∂x Z ε∂x Y ε.

It follows from Corollary 2.13 and Lemma 2.18 that, for every p > 0 there exists
δ > 0, such that one has the bound

∣∣∣∣∣∣E
T∫

0

‖Fε‖p
−γ,pκ dt

∣∣∣∣∣∣ � εδ.

Similarly, it follows from Lemmas 2.12 and 2.18 that one also has the bound

∣∣∣∣∣∣E
T∫

0

‖Gε‖p
0,pκ

dt

∣∣∣∣∣∣ � εδ,

for a possibly different constant δ > 0. These estimates imply that for every
p > 0, ‖Fε‖L p(C−γ

pκ )
+ ‖Gε‖L p(C−γ

pκ )
tends to zero in probability as ε → 0. As

a consequence of Theorem 3.1, this shows immediately that vε → u in probability,
locally uniformly both in space and in time. We conclude by recalling that from Corol-
lary 2.10 and 2.19, the correctors Y ε and Z ε themselves converge locally uniformly
to 0 in probability. �
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