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Abstract. Existence and uniqueness of strong solutions of stochastic partial
differential equations of parabolic type with reflection (e.g., the solutions are
never allowed to be negative) is proved. The problem is formulated as a
stochastic variational inequality and then compactness is used to derive the
result, but the method requires the space dimension to be one.

1. Introduction

The aim of this paper is to study reflected solutions of stochastic partial differential
equations of parabolic type. Specifically we prove existence and uniqueness
results for a process u(t) with values in L*(0,1) which is such that, roughly
speaking, at each point (¢, x) where u(, x) is positive, u obeys a stochastic partial
differential equation, and u is reflected at zero, i.e., u(, x) is nonnegative for all
(1, x). Moreover, we require that the force which is applied in order to keep u
nonnegative be minimal in a certain sense. In the case of finite-dimensional
equations, i.e., stochastic ordinary differential equations, reflected diffusions have
been studied notably by Tanaka [17], Lions and Sznitman [8], and Saisho [15],
and also by Stroock and Varadhan [16] who used a “submartingale problem”
formulation. On the other hand, there is a vast literature concerning reflected
solutions of (deterministic) partial differential equations which are studied under
the name of variational inequalities. We mention Lions and Stampacchia [7] and
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Brézis [2] among the pioneers, and Bensoussan and Lions [1] as a more recent
reference. Research in this field has been motivated by applications to mechanics
(see [3]) and to stochastic control theory (see [1]). Menaldi [9] and Bensoussan
and Lions [1] have used the framework of variational inequalities to study
finite-dimensional reflected diffusions thus introducing the notion of a stochastic
variational inequality. We use a similar framework for the case of a stochastic
partial differential equation.

Let us explain our results. Let V be an appropriate Sobolev space of functions
with V a subspace of L?(0, 1). Let (-, - ) denote the inner product in L*(0, 1) and
let {-, -) denote the pairing between V and its dual V'. A is a bounded linear
operator: V- V' and similarly B;: V- L*(0,1), i=1,...,d. {W,,..., W% is a
d-dimensional standard Brownian motion, M, is a continuous V-valued martin-
gale, f(1) is an L?*(0, 1)-valued process, and g;(t) is a V-valued process, i=
1,...,d ugis a suitably measurable V-valued random variable. We are looking
for a pair (u, ) such that

(i) u is a V-valued process and u(-, -) is continuous, u(f, x)=0 a.s.; 7 is
a finite, nonnegative random measure on [0, T] %[0, 1] a.s.;
(ii) forall t, 0<t=T, forall veV

t

(u(1), v)+J {Au(s), v) ds

= (up, v) + Jr(f(S), v)ds+ i Jr (Bu(s)+gi(s), v) dWi+(M,, v)

[¢]

-l—‘('J’ v(x)n(ds, dx) a.s.;

0

(iii) for all continuous, nonnegative functions v defined on [0, T]x[0, 1]

J Il (v(t, x) —ult, x))n(dt, dx) =0.

Heuristically we write (ii) as
du(t)+ Au(t) dt = (1) dt+ 3 (Bu(t)+g(1)) dW'+dM,+dn,

U(O) = Ug.

Intuitively, n represents the amount of pushing upward required to keep the
solution nonnegative, and (iii) says that the minimum pushing is performed, i.e.,
n{dt, dx)#0, only when u(z, x)=0. It is important to note that the measure
n(dt, dx) is absolutely continuous with respect to dx but rot with respect to dr.
This fact, which is due to the presence of the martingale terms in (ii), is well
known in finite dimensions where the analogue of L') n(ds, -) is the local time
of the solution u(t) at the boundary u =0. On the other hand, if g,=g,=-- .=
gs=0, M =0, and the operators B; are such that Bu>0if u=0,i=1,...,d,
then 7 is absolutely continuous with respect to (dt x dx).

We show under suitable hypotheses on the data that such a pair (u, n) exists,
that A maps such u into L*(0, 1), and that there is only one such pair (u, 7).
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In the case where B, = B,=---= B, =0, a weak formulation of the above
stochastic variational inequality (i.e., where the process 7 does not appear
explicitly) has been considered by Rascanu in [13] and [14] where he establishes
the existence of “weak” and “almost weak” solutions and the uniqueness of the
latter. This formulation seems somewhat unnatural to us; however, it imposes
fewer restrictions on the set where u assumes its values. A major difference in
our work is that we assume slightly more regularity (in x) of the data to obtain
continuity of the solution u# and hence uniqueness. Moreover, our solution is a
strong solution.

As far as the organization of this paper is concerned, in Section 2 we define
the problem precisely and state and prove the existence and uniqueness result,
modulo some technical lemmas which comprise Section 3.

2. Existence and Uniqueness

Notation 2.1. We set O=(0,1), 0=[0,1], and Q=(0, T)x O for some fixed
finite T>0. Set I'={0, 1}, the boundary of O and let [y, I'; be two possibly
empty subsets of I' such that I'=TI,uT;. Let H=L*0O) and

V={ue H(0): u(x)=0,xel,}.
Recall that
H'(O)={ue H:u\.e H},

where ul is the distributional derivative of u. Hence if u is in V, then it is square
integrable, has square integrable derivate, and, depending on Iy, u may satisfy
some Dirichlet-type boundary condition. We let || || and ((+, - )) denote the norm
and scalar product in V. On H we denote the norm and scalar product by |-|
and (-,-). V is a dense subspace of H with induced topology weaker than the
| - [-norm topology so the injection of V into H is continuous. Let V' denote the
dual of V (with the ||| norm topology) and denote this pairing by (-, *).
Identifying H with its dual H' we have

VeH=H'cV, (2.1)

where the two injections are continuous with dense range. From Sobolev’s
imbedding theorem we have

Ve C(0) (2.2)

with compact imbedding since O is one-dimensional and bounded.
We also make use of H™(Q), the set of functions in H which have m
derivatives in H, and we denote the norm in H™(O) by |- || ;;~, so that

-l =1~ 0
As usual V? denotes the product of d copies of V and
Wh(0)={ue L*(0): u.e L*(0)}.
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We write #(Q) for the Banach space of signed measures on Q with the
norm being the total variation ||- || 5. Let /(. (Q) denote the subset of nonnegative
measures on Q. If C(Q) denotes the set of continuous functions on @, then
M(D) can and will be identified with C(Q)".

We define

C.(Q)={veC(Q): v(t,x)=0,(t,x)e Q}.

We assume that we are given a stochastic basis (Q, &, P, {%,}¢=.=7) such that %,
contains all the P-null sets of &. Let M*(0, T; V) denote the set of a.s. continuous
V-valued martingales {M,: 0= 1= T} such that M;=0 and

E||My|? <co.

If M isin M*(0, T; V), then {| M,||’} is a real-valued continuous submartingale,
so there exists a continuous increasing process {{M),: 0=t =< T} such that | M, |’ -
(M), is a martingale (see p. 132 of [10]). (M), is called the quadratic variation
of M,. In addition there exists a process {Q,": 0= t= T} assuming values in the
set of positive symmetric elements of £(V, V) of trace class such that

trQM=1 a.s., a.e.

and M,®M, -, QM d(M), is a martingale (see [10] again). We call Q. the
normalized covariance of M,.

On the other hand, if M is in M*(0, T; V), then it is also in M*(0, T; H).
Let us denote the quadratic variation of M, in H by (M)F and the normalized
covariance in H by g. Observe that

0=<(M) =(M),.

If u is in H, then define
u (x)=max{0, —u(x)}.

If u is in H'(O), then so is u~ and for almost all x
(™) (%) = =u(X) Yo <o

see p. 145 of [4].

Finally, we remark that we use the convention that repeated indices are
summed-—the summation sign is omitted. For convenience of notation we
frequently write

u,=Vu, ut.=Au

The Stochastic Variational Inequality 2.2. We define a bilinear form a(u, v)
on V by

1

alu, v) =J a(x)ul(x)vi(x) dx+f b(x)u'{(x)v(x) dx

0

+J c(x)u(x)v(x) dx. - 2.3)
o]
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We assume that a, b, ¢ are in W"™(0) so that this bilinear form is continuous;
hence

(Au, v)=a(u, v)
defines a continuous linear mapping A of V into V', i.e., A is an element of
L(V; V). Now fori=1,...,d let a;, B; be elements of W"*(0) and define
(Bu)(x) = ai(x)us(x)+ Bi(x)u(x);  i=1,...,d (2.4)
Then B; is in £(V; H). Observe that if «; is also an element of V, i.e., that
a;(x)=0 for x in Ty, then B, is an element of £(V n H*(0); V).
Let us collect the hypotheses which we impose on the data:
a,b,ce W'(0);fori=1,2,...,d, a;, Bie W"(0)and a;(x) =0 for
x in I'g; there exists #>0 such that, for all x in O, 2a(x)~-
v, al(x)=6. (2.5)
(Q, F, P,{F }o=:=7) is a stochastic basis; { W,: 0= r= T} is a standard
d-dimensional Brownian motion on this basis; {M,: 0=t=T}e
M?*(0, T; V) such that E{(M)%<co and there exists me
L¥Qx(0, T)) such that dM)=m(t)dt; M and W are
independent. (2.6)
o€ L*(Q; V), ug(x) =0, dx dP a.e., u, is ¥, measurable, independent "
of M; feL*(Qx(0,T); H),gel*Qx(0,T); V')nL*(Qx
(0, T); H?) and f, g are {Z,} adapted. 2.7)
Observe that (2.2) implies that uy( ) is continuous a.s. The extension to the case,
when A and B are time-dependent, is standard.

We can now define precisely what is meant by a solution of a stochastic
variational inequality ((S.V.L.).

Definition 2.3. The pair (u, 1) solves the S.V.I.
du+ Audt=(Bu+g;) dWi+dM,+fdt+dn,

2(0) = g (2.8)

if
(i) ue LXQ; I_Jz((O, T), VInC.(Q)) and u is {%)} adapted, 7ne
LXQ; #(Q)),

(i) (u(r), 1))+J‘r a(u(s),v) ds
= (u, v)+J'(Biu(S)+gi(S), v) dWi+ (M, v)+Jl (f(s), v) ds

t 1
+J. J v(x)n(dt, dx),Vt as., VoeV,
0

o

(iii) j_ (v—u)dn=0as. Yve C.(Q).
ol
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Note that the double integral in (ii) makes sense by (2.2), and that from (iii) it
follows that a.s. n(w) € 4, (Q) and has support on {(¢, x): u(¢, x) =0}.

Theorem 2.4. Assume (2.5), (2.6), and (2.7). Then the S.V.1. (2.8) has at least
one solution.

Proof. With (2.8) we associate the following penalized equation for &> 0:

du (1) + Au,(t) dt =[Bu (1) + g(t)] AW+ dM,+ f(¢) dt + & " u7 (1) dt, 29)

u, (0) = Uyg.

According to Pardoux [11, p. 105], (2.9) has a unique adapted solution u, in
L*(Q; L*((0, T); V)~ C([0, T]; H)). However, we require more regularity of u,
in order to pass to the limit as £ » 0. We organize the rest of the proof into four
steps.

Step 1. Uniform (in €) bounds on u,.
There exists a complete orthonormal basis {e;} of H such that e, is a solution
of the eigenvalue problem:

ecV, A=,

(2.10)
(e, v)+(Ve, Vo) = Ai(e;, 1), VveV.

Note that each e¢; is either a sine or cosine depending on the boundary
conditions, hence is in C®(0). Alternatively, since Ae;=(1—A;)e; then e;¢
H™(O) implies ¢;e H™*(0); consequently ¢;c H™(0) for all m, hence is in
C®(0). Moreover, Ve;(x)=0 for x in T, so that

v{x)Vei(x)=0, VxerT, (2.11)

if v(x)=0 for x in T',.
Let {ul:n=1,2,...} be a Galerkin approximation of u, constructed as
follows:

wi()= 3 (ul(0), e)e, (212)

t

(uc(1), ej)+J- a(u;(s), ) ds

0

t

=(uo, ¢) +J (Bul(s)+gi(s), &) AW +(M,, &)

0
+J'r(f(s), e) ds+éjr(u2"(s), e;) ds, j=1,...,n (2.13)

Note that we have written u; for (u})”. After we substitute the right-hand side
of (2.12) for ug in (2.13) we find that (2.13) is a stochastic differential equation
with bounded, Lipschitz continuous coefficients for the n dependent variables
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(uz,¢),j=1,..., n; hence we can solve it uniquely and then use (2.12) to define
u,.

From Lemma 3.4 it follows that, for some constant ¢ depending on the data
but not on n or &,

T 2
s{sup fuzcol+( [ "o a)}=e

E{(j Juz- (O dt)z}SE%.

It follows that, for fixed e, the set {ul:n=1,2,...} is weakly sequentially
compact in L*(Q; L*((0, T); H)) and weak-* sequentially compact in
LYQ; L™((0, T); V)),and that {u"": n=1,2,...}is weakly sequentially compact
in L*(Q; L*((0, T); V)). Since we also know that {u?} converges weakly to u, in
L*(Q: L*((0, T); V)) (see p. 113 of [11]) then it must also converge to u, in the
above stronger sense and

T 2
E{sup |[u€(t)l|4+<J [l e (£)]| %2 dt) }s c (2.14)

0
Since the operator A from V into V' defined by
Au=Au-¢'u", ueV,
is monotone in the sense that
(Au—ﬁv,u—v)zo, u,vev,

it follows from the proof on pp. 116-119 of [11] that {Au”} converges weakly to
Au, in L*(Q; L*((0, T); V). It now follows from the above estimate that {ul"}
converges weakly to u, in L*(Q; L*((0, T); V)) and that moreover

E{(JOT luz ()| dt)z} =&’ (2.15)

This result tells us that u, /v lies in a bounded set in LQx(0,T); V) but
we require more: we will show that u_/¢ lies in a bounded set of L*(Q; LY(Q)).
Define

V'={uec HO): u(x)=0if xeTl,, Vu(x) =0 if xeI,}.
Although Ae £(V; V) it is easy to see that Ae #(¥; H) also. Hence if u, is
V-valued then Au, € H. In view of (2.14) to show that u, is ¥-valued all we need

to show is that Vu, (¢, x) =0 for x in T';. According to (2.9)

d(u.(1), v)+a(u.(t), v) dt=d®; (2.16)



170 U. G. Haussmann and E. Pardoux

for any ve V, where d®; represents the inner product of the right-hand side of
(2.9) and v. Since u, € H*(0), then for ve Hy(O) we have

d(u.(t), v)+(-V(aVu,)+bVu,+cu,,v) di=dd;. (2.17)

But H(O) is dense in H = L*(O) so (2.17) holds for all ve H. On the other
hand, from (2.16) for ve V

d(u.(1),v)+(-V(aVu,)+bVu, +cu., v)dt+ J aVupdxdt=d®;. (2.18)
r
Comparing (2.17) and (2.18), noting that v = O on I, but is arbitrary on I'; and
that a(x) >0 in view of (2.5), we see that u, € L*(Q; L*((0, T); ¥)).
As noted above, it now follows that Au, is H-valued, so (2.9) implies that

u, is an H-valued semimartingale. Then It6’s formula (see p. 19 of [11]) implies
that

() -1P+2 J' (Au,(5), u,(s)~1) ds
= [u—1]+2 J (Bata(s) + 8.(s), ()= 1) AW,
2 J (u,(5)— 1, dM,) +2 J (f(s), ua(s)—1) ds
26 J (WE(s), u(s) ~1) ds

+ i J’t |Bu.(s)+gi(s)]? ds+(M) [ (2.19)

i=1J0
Since A is in £(¥"; H) and since for any real number r we have
r(r=D=m—-r=-r7,

then there exist constants ¢y, ¢; such that

|u€(t)—1|2+25“1J luz () o) ds
0
t
s|u0—1|2+c0J. e ()| 2lue(s) — 1| ds
4]

2 f (Bt (5)+ 2:(5), . (5)—1) AW +2 J (ue(s)—1, dM,)

+2 J[ (f(s), u.(s)—1) ds+ i JI |Bu.(s)+gi(s)] ds+(M)/",
E{(e M u; |l 110

T 2
= clE{l +|uol* + (J llu.(s))) 32 ds) +OsupT lu()|*
0 ==

w3 ([ s as) ([ voras) +annr)

0 0
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The bounds of (2.14) now imply that for some ¢ <o
E{(e u()]lrvo)t=c (2.20)
We now have the required bounds: (2.14), (2.15), and (2.20).

Step 2. u, e L*(Q; C(Q)).

Let L°%Q;X) denote the measurable maps: Q->X If u.e
L°(Q; C([0, T]; H(0))), i.e., u. € L°Q; C([0, T]; C(D))), see (2.2), then u, €
L(Q; C(Q)). This follows from the Sobolev inequality:

u(t, x) —u(t, y)|
|x — y|'/?

suplu(t, x)|+sup = [u(®].
x xX#Ey

Then (2.14) implies that u, € L*(Q; C(Q)) and the desired result follows. Hence
it suffices to show that u, € L°(Q, C([0, T]; H'(0))).

Let us for the moment take V as the basic Hilbert space, so for convenience
we set & = V. Then identifying # with its dual ¥’ we have

VeXH=HcV"

the injections being continuous with dense range. Note that the norm on V" is
|| - | 42 The following result will be useful.

Lemma 2.5. H (under an equivalent norm) can be identified with V.

Proof. 1t is convenient to distinguish # and #' for the moment. For ve #,
uc i let

Lou=({(u,v)).

Then L, e 3 with |[L,|l% = |v|s%=|v]. But ¥ =¥ so L, ¥". For uec ¥ we
have vVu=0o0nT so

Lu=((u,v))=(u—Au,v).

Hence | L,|s~=<|v|, so the mapping L: v—> L, of ¥ into ¥ is continuous and
linear if we use the H-norm on &, i.e., L is a densely defined continuous linear
map of H into ¥”. Thus it can be extended to all of H. If we define a new norm
on H by

o] = Sup (4~ Au, ), (*)
then |v|'<|v|. The a priori estimate |u||+ =< «|u — Au| yields that |v] = «|o|' (in (*)

™ TM ™ M .
take u =u/|\ul|,- where u—Au=1v) so that |-| and || are equivalent norms on
H. Moreover, ||L,|y-=|v|, i.e., L: H-> ¥ is an isometry. Since L¥ = ¥’ is dense
in V" the result follows. 0
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We can rewrite (2.9) as

t

u(t)= uo(t)+J v(s) ds+ N;,

0
where uye L*(Q; #) and
v(s)=—Au,(s)+f(s)+ e u(s)
is in L%Q; L*((0, T); H))< L°(Q; L*((0, T); ¥)), see Lemma 2.5. Moreover,
t
N,= J [Biu,(s)+gi(s)] dW§+ M,

o

is in M0, T; V)= M?*0, T; %). Now a result of Pardoux [11, pp. 57-59,
Theorems 3.1 and 3.3] implies that u, € L%(Q; C([0, T1; %)).

Step 3. {u.}is Cauchy in L*(Q; C(Q)).
Again a preliminary lemma is helpful.

Lemma 2.6. If {u.} is Cauchy in LXQ; C([0, T); H)), then it is Cauchy in
L*Q; C(Q)).

Proof. From (2.2) it follows that for any n > 0 there exists a constant C, such
forall ueV

lull cor=nllul+ C,|ul
(see p. 58 of [6]). If u is in L*(Q; C([0, T]); V)) it now follows that

lull 2ascon=v2nllull @.cqo,rivn +V2Co Ul asc o3 (2.21)
Consequently for any n > 0 there exists C,, such that for all &, >0

lue — us || 20;c00n = V2nllu. = us | i20:c00,73:v0)

+V2C, |4, = sl Lo, 110

The result now follows from (2.14). O

To show that {u.} is Cauchy in L*(Q; C([0, T1; H)), let v=u, —us. Then
dv(t)+ Av(t) dt = Bo(t) dWi+ (e 'u; — 8 'uz) di,

v(0)=0.
Hence
lo()]*+2 Jr a(v(s), v(s)) ds =2 J” (Bw(s), v(s)) dW,+Y Jt |Bw(s) ds

+2 J” (e 'uz(s)— 8 'us(s), v(s)) ds.
0
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But
(u;’ u, — u8) = _(u;7 uE) = (us—s ug),
_(ugs U, — uB)S _(ugs us)s (ué_, u;)

so that

lo(t)P+2 J" a(v(s), v(s)) ds=2 J' (Bw(s), v(s)) dW:+Y Jn |Bw(s)| ds

0 i Jo
T

+2(e7'+87 f (uz(s), us(s)) ds.

0

By Lemma 3.5 it now follows that for some constant ¢

E sup |u.(t)~us(t)P<c(e'+8)E J (uz(t), us(t)) dt

1 A1 2 1/2
sc[E{(; llu,ZHL‘(Q)) }] [E{||uzl1=0)}]"

2 1/2
rel E{ (il ] it

= ¢ (JJucll :cont 14zl o)

where the last inequality follows from (2.20).

But by (2.14) {u,}, hence {u_.}, is bounded in L*(Q; C([0, T]; V)) and by
Lemma 3.6, u; - 0in L*(Q; C([0, T]; H)). Hence by (2.21) u; » 0in L*(Q; C(Q))
and {u.} is Cauchy.

Step 4. Convergence of u, and u,/e.
If we define 7, in #.,.(Q) by

n.(dt, dx) =& 'u.(t, x) dt dx,

then (2.20) says that {7,} is bounded in L*(Q; #(Q)), and since #(Q) can be
identified with the dual of C(Q) then we can extract a subsequence, again called
{n.}, which converges weak-* to an element 5 in L*(Q; #(Q)). Moreover,
the bound (2.14) allows us to assume (by taking a further subsequence if neces-
sary) that {u,} converges weakly in L*Q; L*((0,T); ¥)) and weak-* in
LYQ; L™((0, T); V)) to an element u, which is again adapted.

To relate u and 7 we observe, see (2.9), that for any ve V

f

(u.(1), v)+J‘

(]

a(u.(s), v) ds = (uo, v)+Jt (B (s)+gi(s), v) AW+ (M,, v)
0

+J.I (f(s),v) ds+j' J v(x)n,(ds, dx).
0 [{] 0
(2.22)
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For t< T fixed, 0< 8 =< T —1t, define

1 if s=1,
es(s)=3 (t+6~s5)/6 if t=s<t+5§,
0 if s=t+6.

Then @5 is continuous and

J'_fpavdm—f J_v(x) dn, SJ J_lv(x)l dn..
Q 0 JO t (o]

Since |v(+)|e V if ve V, then (2.22) implies that

ef([7 [esten) |

:sou>+cE{(j |h%u)th)-HvFj ()P ds

+|us(t+5)—us(t)lz} (2.23)

for some constant ¢ where o(1)-0 as § >0 and is independent of ¢ (but not of
v). The bound (2.14) implies that the two integral terms on the right-hand side
of (2.13) are also o(1) uniformly in . Since {u, } is Cauchy in L*(Q; C([0, T1; H))
then, for a subsequence &,-0, E{|u. (t+8)—u, (1)} is also o(1) as 80
uniformly in n.

We can now replace the last term in (2.22) by I@ osvdn,. +6(1), and pass to
the limit along &,~0, and then let - 0. Note that lim, sup, E|6(1)]>=0. This
shows that (u, ) satisfies Definition 2.3(ii).

Since {u,} is Caucby in L*(Q; C(Q)) then u lies in L*(Q; L*((0, T); V)
C(Q)). We shall now show that u=0 a.s., i.e., (4, n) satisfies Definition 2.3(i).
Since

T

—Ejﬂw;u»m»EJ|WW%n

0 Q

and since (2.15) implies that

SK\/E,

T

~E J ((ue, u)) dt
0

where k depends on u but not &, then ||u”[|>=0 a.e. drdP and so u(1,x)=0 as.

Finally, the strong convergence of u, to u in L*({; C(Q)) and the weak
convergence of 7, to n implies that

EJ‘ (v—u,)dn.>E j_(u—u)dn. (2.24)
G o}
But if ve C.(Q), then

EJ (v—u)u, dxdt=0
Q
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and now (2.24) implies that (u, n) satisfies Definition 2.3(iii), i.e., the proof is

complete. O
We saw in the proof that the solution u constructed above is ¥"-valued, so that
a(u(s), v) = (Au(s), v),

where Au(s) is in H. From Definition 2.3(ii) it now follows that

J Jt v(x)n(d6, dx)

[

=J v(x){u(t, x)~uo(x)~M,(x)+It[Au(s,x)—f(s, x)1ds

—J‘t [Bau(s, x)+g:(s, x)] dWi} dx

so that in fact
n(dt, dx) =n'(dt, x) dx,
where 7'(dt, x) is in L*(Q; L'(O; #.([0, T1))) since

E{<J. L n'(dt, x) dx) }=E{17(Q)2}<oo.

Hence we have

Corollary 2.7. Assume (2.5), (2.6), and (2.7). If (u, n) is a solution of (2.8) such
that u is in L*(Q; L*((0, T); V), then there exists n' in L*(Q; L'(O; #.([0, T1)))
such that

n(dt, dx) = n'(dt, x) dx.
We can now address the uniqueness question.

Theorem 2.8. Let (u, 1), (v, v) be two solutwns of (2.8) such that u, v are elements
of L*(Qx(0, T); V). Then

E suplu(t)—v(t)f=0, E|n-v|g=
t

Proof. Letid=u—-v,7=m—v, 7 =n"=v.Thenfor 5in V

(#(t), ﬁ)+J‘I (Aii(s), 0) ds =J'r (Biii(s), D) dWi—l—Jﬂ (7, 7(ds)). (2.25)

We shall now establish a pointwise version of (2.25). A similar result can be
found in [5], but our proof is more direct. Using Fubini’s theorem for the
interchange of the dx and ds integrals, and well-known results on Hilbert-space-
valued stochastic integrals for the interchange of the dx and dW, integrals, we
deduce for almost all ¢

(a(e), ﬁ)+(J”Aﬁ(s) ds, 5) = (J’t Bia(s) AW, 5) +(7'(t), D),

0
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where 7'(¢) stands for #'({0, ¢], ). In other words, we have the following
inequality between continuous L*(O)-valued processes:

t

ﬁ(t)+JtAﬁ(s) ds=f Biii(s) dWi+7'(¢). (2.26)

0 0
Moreover, t |, Bii(s) dW! is a.s. continuous with values in V, hence
t
(£, x)> j Biii(s, x) AW
0

is a.s. continuous. On the other hand, i e C(0) a.s. and

!
t-> J. Aii(s, x) ds
0

is continuous dx dP a.e. Hence it follows from (2.26) that t > %'(¢, x) is continuous
dx dP a.e. and for (x, w) not in some null set

ﬁ(t,x)+J

0

t t

Aﬁ(s, x)ds= J Bii(s, x) dWi+75'(t, x), Ve (2.27)
0

We now apply 1t6’s formula to (2.27) for each x fixed. In one dimension we
have no difficulty with the bounded variation term. Thus for almost all (e, x)

a(t, x)>+2 Jl Aii(s, x)i(s, x) ds

t t

(s, x)n'(ds, x)+Z_ J. [ Bii(s, x)]* ds.

0

=2 J Biii(s, x)ii(s, x) dWi+2 J

0 0

Now integrating over x and using Fubini’s theorem we find

(0 +2 j a(a(s), a(s)) ds
0

=2 J-t (Bii(s), i(s)) dW:+2 Jt (i(s), 7'(ds)) +% “'t |Bii(s)|* ds.
(2.28)
Note that the equality

Jl (J’t [ Bii(s, x)]i(s, x) dW;) dx = Jt(Biﬁ(s), i(s)) dW.

0 0
follows from the properties of Hilbert-space-valued stochastic integrals since
ae L(Q; C(Q)),  Baie L(Q; L*(0, T); H)),
so that
[Bailiae L°(Q; L*((0, T); H))
and 1€ H.

From Definition 2.3(iii) we have

T
J’ (#(s)—u(s), n'(ds))=0 a.e. (2.29)
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for & in C.(Q). Let {w,} be a sequence in C.([0, T]) such that w,(s) increases
to 1;,-,, pointwise and define

iy (s) = u(s)+w,(s)[u(s) —u(s)].

Replacing # by 4, in (2.29) and letting n - o0 yields
J (#(s)—u(s), n'(ds))=0 a.e. (2.30)
0

by the bounded convergence theorem. Now taking (s, x) = v(s, x, w) for o fixed
in (2.29), we find

(1

(v(s)—u(s), n'(ds))=0 a.e.

o

and similarly
1

(u(s)—v(s), v'(ds))=0 a.e.

so that

.

. (a(s), 7'(ds))

=J (u(s)—uv(s), n’(ds))+J‘ (v(s)—u(s), v'(ds))=<0 a.e.

But then (2.28) implies

I3 t t
fﬂ(t)|2+2J- a(i(s), i(s)) dsSZJ (Bi(s), (s)) dW§+ZJ |Bii(s)|? ds.
0 0 i 0
From Lemma 3.5 it follows that

E suplu(t) = v(t)]*=0.
Now (2.27) implies that for almost all (w, x) and all ¢

J’ n(ds, x)‘=0

so that
19'C, X)pn=0  ae (o x)
and hence
E|n-v|5=0.
We are done. 0

Remark 2.9. The above result only gives uniqueness in L*(Qdx (0, T); H*(0)),
whereas the solutions of an S.V.1. are defined as elements of L*(Q; L*((0, T); V))

b
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see Definition 2.3. The problem is that we do not have available an Itd formula
for H-valued semimartingales where the bounded variation term has the form

J‘ v dt+f dv,

with v, assuming values in V’ and v, not absolutely continuous with respect to
dt. The result of Pardoux [11] requires v, =0 and that of Métivier [10] requires
v, to be H-valued with v, to have bounded variation with values in H. Neverthe-
less, we believe that the results of Pardoux could be extended to the case v, #0
to provide uniqueness of solutions u in

L¥(Q; LX(0, T); V) Co(Q)).

Remark 2.10. We have chosen the reflecting boundary at u =0. Suppose we
wish more generally that u(z, x)=¢(t, x) a.s. Then in Definition 2.3 we must
replace C,(Q) by

Cu(Q)={ue C(Q): u(t, x) = ¢(1, x)}.
If ¢ is random-then so is C,(Q). Now assume

dy = fdt+ g dWi+dM,
and let 4 =u—d. If (u, n) satisfies (2.8) with u= ¢, then (4, n) satisfies

dii + Aiidt = (Bai + ) dW' +dM,+ fdt + dn (2.31)
with 7 =0, where

gizgi—g_i—i—Biwa ]:f_f_“A‘ﬁ, MzM_Ma
and vice versa. Consequemly iff, g, = uy—(0) and M satisfy (2.6}, (2.7) and
a, b, ¢ satisfy (2.5), then a unique solution (4, n) of (2.31) exists, and hence
(ti+ ¢, n) is the unique solution of (2.8) with u = . It is necessary that ¢ be
V ~ H*(O)-valued but we can allow ¢ to be piecewise continuous in ¢ by breaking
(0, T) into subintervals, on each of which we solve (2.30). For example, if we
require

’ )>{0 if 0=t1<1,
U= i 1=1s=2,

we solve (2.8) on 0=t=1 to obtain (u', n'). Next we solve (2.8) on 1=t=
with u = 1 and with initial condition u(1, x) =max{1, u'(1, x)}, to obtain (u°, n?).
Then (u, n) solves the original problem where

u'(t, x) if 0<t<1,

w(t, x) if 1=t=2,

dn'(t, x) if 0=t<1,

= e a0 d i 1oiez

Observe that here u and t»jé n'(ds, x) are discontinuous at t=1 so we must
relax slightly Definition 2.3.
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Remark 2.11. Suppose (u, n) is the solution of (2.8) with B;=0, g, =0, and
u = . Define Z=u— M. Then pathwise 7 satisfies

d
(E:,v—z)+(Az,v—z)z(f—AM,v—z), VoeV, o=y,

z=zy—M.

This is a deterministic variational inequality as considered by Bensoussan and
Lions [1] which has a unique minimal weak solution (in their terminology). This
solution is obtained by the same penalization process as is used in our work, so
we can conclude that this minimal solution is Z. But we obtain a strong solution
with an increasing process n(¢) which is in general not absolutely continuous
in t.

Remark 2.12. If M=0and g;=0,i=1,..., d, then 5 is absolutely continuous
in both ¢ and x, i.e., for some 7"

n(dt, dx)=n'(dt, x) dx = n"(t, x} dt dx.

Indeed, from the arguments leading to (2.27) we have that dx dP a.e.

t

u(t, x)+j Au(s, x) ds

0

f

=u0(x)+j Biu(s, x) dWi+Jrf(s, x) ds+7n'(1, x), =0, (2.32)

0

where 7'(¢, x)=7'([0, t], x). Since u(t,x)=0, then Bu(s,x)=0 ae. on
{(s, x): u(s, x) =0}. Therefore (2.32) may be rewritten as

u(t, x)= uo(x)+Jt [f(s, x)—Au(s, x)] ds

t
+J’ I{H(S,x)>0}Biu(s’ x) dW‘s—*—n’(ts x)3 tZO (2.33)

[}

Moreover, it follows easily from (iii) in Definition 2.3 that dx dP a.c.
J‘ [e(s)—u(s, x)]n'(ds, x) =0, Voe C(R,), Vt=0. (2.34)
0

From (2.33) and (2.34), it follows that, for almost all x, {(u(t, x), n'(t, x)): t=0}
is the unique solution of the Skorohod problem (see [8]) associated with the
process

t

{uo(x)+Jt [f(s,x)— Au(s, x)] ds+J Lfus, xy=0y Bitt (s, x) AW IZO}.

0

It is then easily seen that »n'(ds, x) = n"(t, x) dt, with

1"(t, x) =iy n -0 f(4 x) — Au(t, x)]".
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Remark 2.13. The condition {a(x)=0: xe,} is imposed to obtain
|((Bu, w))|=c||u]?

which is used in the proof of Lemma 3.4 in order to estimate the fourth-order
moments which appear in (2.14). We could in fact proceed somewhat differently;
we obtain two estimates:

T

E sup|u*()’+E J us(D]| 72 dt=<c (2.14)
=T

0

which will require no hypothesis on «, and

E suplu®(t)|*+ E{(J u® ()] dt) }s c (2.14)"

which will require that
|(Bu, )| = c|uf?

for which we need {a(x)=0: xeT',}. If @ does not satisfy either of these condi-
tions, the result can still be deduced under an appropriate stronger coercivity
hypothesis. We observe that in both the Neumann and the Dirichlet problem
either I'y or I'; is empty so the condition on « is satisfied.

Remark 2.14. We can obtain our result even with O = (0, 1) replaced by R (now
I'=). There are two arguments which need to be changed. In step 1 of the
existence proof we cannot use the basis {¢;} since (I —A) now has a continuous
spectrum. However, the estimates (2.14) and (2.15) can be obtained using the
coercivity condition on the energy inequality both for u,, see (2.9), and for Vu,
which satisfies the differentiated (with respect to x) equation of (2.9) (see [12]).
Furthermore, (2.21) has been established with the aid of a lemma of Lions which
requires O to be bounded. However, for any 1 >0 there exists a constant ¢(7)
such that for any ue H'(R)

suplu(x)| < nflull+c(n)lul.

This follows readily from

u(x)*= L 2Vu(y)u(y) dy.

3. Technical Lemmas
We now prove some technical results used in Section 2.
Lemma 3.1. Assume u, ve H, and define u" by

u"= T (u¢)e (3.1)
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Then

Ai(v, g)(u, )= (v, u" —Au").
j=1

J

Proof.

3 (8 g)(w 6)= ¥ A6 6)(u" 6)= T (1 ¢)(u", 6)+(Vu", Ve)]

2
=3 (v,¢)(u"—Au", ¢)=(v,u" —Au"),
j=1 .

where the third equality follows since in the integration by parts the boundary
term is zero due to (2.11) and (3.1), and where the last equality follows because
u"—Au" is in Span{e,, ..., e,}. O

Corollary 3.2. Assume u is in H and v is in V. Then
T A(v, ¢)(u, ¢) = ((v, u")),
j=1

where u” is defined by (3.1).

Proof. (v,u”—Au")=(v,u")+(Vo,Vu")=((v, u")) because the boundary terms
in the integration by parts are zero by (2.11), (3.1), and the fact that v is in V.
The result follows from Lemma 3.1. O

Corollary 3.3. Assume that u is in V. Then
T a(n )= |u" < ulf,
=

where u” is defined by (3.1).

Proof. Since (Ve;, Ve;) =0 if i # j, then
(G, u")) = ((u", u")) = ||u"|I" < [Ju]?

and the result follows from Corollary 3 2. O

Lemma 3.4. Assume that ue L*(Q; L*((0, T); V) C([0, T1; H)) satisfies

n

u(t) = _Zl (u(1), ¢)e;, (3:2)

j=
t

(u(e), q)+j a(u(s), ) ds

0
t

= (uo, e,-)+J' (Bu(s)+gi(s), ¢) AW, +(M,, ¢)

0

'*‘L (f(s), &) dS+£J‘ (u(s),e)ds, j=1,...,n (3.3)
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Then there exists a constant ¢ depending only on E(M)%, |uoll*@:v),
1A eoxco,rrsmns 18ill oo, myivys i=1, ..., d, such that

esuplucott+| [ otz } =

E{UOT lu(e)|? dt:r} =&’

Proof. 1t follows from (3.3) and [t&’s lemma that for fixed j =< n
(u(t), ¢ +2 j a(u(s), &)(u(s), &) ds
— (. 6 +2 f (Bu(s)+8.(5), ¢)(u(s), &) dW'
+2 L' (u(s), ¢)d(M,, ¢;)
2 J ((5), €)(uls), ) ds+2 J (u(s)", ¢)(u(s), ¢) ds

+ i J’t (Bu(s)+ gi(s), ej)z ds"'(A’[j)r, (3.4)

i=1J0

where (M), is the quadratic variation of the martingale (M,, ¢;).
Let us multiply (3.4) by A; and sum over j. From Lemma 3.1 and its corollaries
we find that

¥ Au(n), 6 = (),
3 A(Bu(s)+ gi(s), 6)(u(s), &) = (Bas(s) + &(5), u(s)))
T 4 ((5), €)(u(s), €)= (f(5), u(s) - Au(s)), (35)

/\j(Biu(S)+gi(S), ej)2S ”Biu(s) + gi(S)Hz,

Jj=1

s IpMs

_;1 A (u(s)”, ) (u(s), ) =((u(s)™, u(s))) = —[u(s) 7|
Moreover, by Lemma 3.1

Z Aja(u(s), e)(u(s), ) =Z A (=V(aVu(s))+bVu(s)+cu(s), ¢)(u(s), )

=(=V(aVu(s))+bVu(s)+culs), u(s)—Au(s))
=(aVu(s), Vu(s))+(V(aVu(s)), Au(s))
+(bVu(s)+cu(s), u(s)—Au(s)). (3.6)
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Next let
= Z (Ma ej)ej'
ji=1

Then M" is a V-valued martingale—in fact it is H?(O)-valued. If 1=
{to, t1,..., tm} is any partition of [0, ] we set M =M, —M, . Then by
Corollary 3.3,

Y AM;) =Y A; lim Z (8:M, )’ =< lim ¥ |8 M|*=(M),. (3.7)

Jj=1 j -0 i=1 {0 i

Finally, by first working with simple (in s) functions it can be established that

Z A (u(s), ¢)d(M;, ) = ((u(s), dM,)). (3.8)
Note that j((u(s), dM,)) is well defined because

||u(S)||2 (u(S) ;)20 = max Au(s)f®

l=j=n
so that
T T
E j lu(s)|? d(M), = max \E J |u(s)[> d(M),
1=j<n 0

= max Af|ullZxa;cqorm) E(M) .
i=j=n

Combining (3.4)-(3.8) gives
lu(e)|?+2 J (aVu, Vu)+(VaVu, Au)+(aAu, Au) ds
4]
2J- (bVu+cu, u—Au) ds
0
= ||u0||2+2 -[ (Bu+g,u)) dWi+2 j ((u(s), dM;))
0 4]

2 J”(f, u—Au) ds—%J‘I lu™ | ds+{M),

d t
+3 j [(@iAu, Au)+(a;Au, (Voy + B:)Vu+uVB,+Vg,)
=1

+|(Va; + B)Vu+uVB;+Vgl|’] ds,

ie.,

o +0 [ Tl ds+2 [ fut 1
<t + || (B, wy awi+2 [ any) 2 [ o futo) e s

ety e || [ Dbl + e+ + 1 as
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where | - || 52 is the norm in H*(0). If
tn =min{T, inf{tZO: ||u(t)||2+J‘ flu(s)||z2 ds= N}}
0

and if t is a stopping time, t < t, then it follows that

Es:? ]Iu(s)||4+E{(J’O ()] 5 ds) }+s‘2E{(JO |lu(s)_||2ds> }

£
= c,{EH uol*+E ¥ J

4]

(Bt g, w)? ds+ E J Juts) I den),

ve{([ Vol )} son;

+E{<£ ||u1|H2(IIuH+§ ”gf“) ds)z}

vr [ (s al) o} (39)
0 i
We have used the fact that

E J ((Bu+ g, u))* ds < max AE sup ||u(s)||2J (< flull3z+ g l?) ds
0

0=j=<n s=tn 0
=koN(N+1) <o,

Now observe that

(V(a;Vu), Vu)=(Va,Vu, Vu) + {(o;Au, Vu) = (Va,Vu, Vu) — (Vu, V(a;Vu))
since a;(x)Vu(x)=0if xeI, by (2.11) and (3.2). Hence for some c,, ¢,

(V(a;Vu), Vu) =3(Ve;Vu, Vu),

((Bu+ g, w)) = ol uf|(fu] + |1,
¥ J ((Bu+g;,u))ds=¢, J lu()I*+Y llgll* ds.

i 0 0 i

We now require a version of Young’s inequality (see p. 138 of [4]): for any real
positive x, y, m, p, ¢ with p~'+g 7' =1 there exists ¢ <co such that

xy = nx?+ ¢yl (3.10)
Then we can conclude that for ¢, sufficiently large

j )| M), = supllu(s) [+ M),

5=t

o j 6 ) a5 s%(j e ds) +é, [ ol s,

0

e [ v+ s 1a0) )

=A(| ot as) +a | (ol laeor) as
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and hence (3.9) implies

sup a1+ B{( [ putsiie ) J+e8{([ o as) |

t
= E|ugl|*+ E J‘ lus)|* ds+Z lgills+ 1713+ ECM)T,

0 i
where

lgills =gl Lax0,miv) 1A s = 1F1 Locaxco, T

From Gronwall’s lemma we obtain

E{sup ||u(t)]|4+(J ) lu()] %2 dt) }sc,

=<ty 0
N 2
([ ora) }=ee
0
Since it now follows that fy = T a.s. as N - oo then the result follows. O

Lemma 3.5. If veL*Q; C([0, T]; H)nL*(0, T); V)), ®eL'(Qx(0, T); R)
with ®(5)=0 a.e, a.s. and if v satisfies

lo(n)P+2 J" a(v(s), v(s)) ds

=2 J’t (Bw(s), v(s)) dWi+ i JH |Bo(s)] ds+ Il ®(s) ds, (3.11)
0 i=1Jo 0

then there exists ¢ <co depending on T and the coefficient of A, B;, but not on ®
such that

T
E sup |v(t)|’<cE J ®(1) dt.
0

t=T

Proof. There exists a constant c; such that
2a(v,v) =~ |[Bw>= 6|Vo| +2(bVu, v)+2(cv, v) —2(e, Vo, B0) Y |Bof
6
25[Vv[2-—cllv]2.

Moreover,

T 1/2 T 1/2
E{H (Biv(t),v(t))zdt] }SE{SUPlv(t)l[J' lBiv(t)Izdt] }
] t=T 0

T
S%E{sup |v(t)|2} +iE j lo(e)|)? dt <o,
t=T 2 0

i=2,...,d
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It then follows that the stochastic integrals in (3.11) are martingales, and taking
the expectation in (3.11) we obtain

E|v(t)|2+50E J-t lo(s)|)?> ds = c,E Jl |o(s)|* ds+E J‘r ®(s) ds.

From this and Gronwall’s lemma it follows that
T

T
EJ ||v(t)l|2dtS%(clTe”'T-H)EJ d(t) dt.

0 0

Now again from (3.11)

E{suva(t)Iz}Sc,Ej lo(0))? di+EJ &(1) dt

d T 1/2
+c, Z [E{J’ (B (1), v(1))? dt} }

0

j=

s%E{sup|v(t)]2}+E J ®(t) dt+c,E J lo(0)||? dt.

t=T (¢} 0

The result follows from the last two inequalities. O

Lemma 3.6.

lim E sup|u; (1)]*=0.

e->0 t=T

Proof. Choose p in C3(R) such that for some constant ¢ >0
e+’ WMI+1p"()I=c,
p(y)=0, yeR,
p(0)=p'(0)=0,
where p’ and p” stand for the first and second derivatives of p, respectively. Define

(u) =U p(u(x)) dX} ;

0

'(u) = {z J p(u(x)) dx}p'<u< 9,

"(u) = {2 J p(u(x)) dX}p”(u('))+20’(u('))®p’(u('))-

If uisin H, then p'(u(-)) and hence ®'(u) are in H. Observe that v = (®'(u), v)
is the (first) Fréchet derivative of ® at u. Similarly, the bilinear form

[v, W]~ (2 J p(u(x)) dX)(p"(u)v, w)+2(p"(u), v)(p'(u), w)

Q
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is the second Fréchet derivative of @ at u. Note that
IB(u)|=c?,  |®'(u)|=2c,
0" (u)l e =4c?, | ®(w)] =221+ ul).

Moreover, ®(-), ®'(-), and ®"(-) are continuous on H and &' is continuous on
V. We can now apply 1td’s formula to ® and (2.9) (see p. 65 of [11], or Theorem
1.2 of [12] in the case M =0). If we write ¢ (u) =v®(u) we have

D(u.(1))+2 JOI P(u.(5))(Au.(s), p'(u(s))) ds
=®(uo) +2 Lr $(u.(5))(Bu(s)+ gi(s), p'(u.(s))) AW
+2 Jr Y(u.(5))p'(u.(s)), dM,) +2 J’Ot ¥(u())(f(s), p'(u.(s))) ds
J ¥(u.(5))(u; (s), p'(u(s))) ds
(u.(s))(p"(u () Bus(s) + g(5)], Bue(s)+gi(s)) ds
J (Biu (s)+gi(s), p'(uc(s)))* ds

+2
€
t2
J ¥(u, (S)) trfp"(u.(s))g5"1 d{M)]
J’ p'(u:(s)), p'(u.(s))) d(M);". (3.12)

Now observe that

2(Auss pl(us)) - (p"(ue)Bius, Bius) = (p”(us)[za —2 a%]vuea Vus)

+2(bvus + cusa pl(ue)) - (Z B?us +2O.’,-B,-Vu2, p"(ue)us) (3-13)

because u,Vu, =0 on I', see Lemma 2.6, and p'(0) =0. Moreover, for some ¢,
(independent of p)

2 L P(uc(5))(p"(u.(s)) Biu(s), gi(s)) ds
SgL #(ue())([o"(u ())Vue(s), Vu(5)) ds
+e¢ L W(u.())(|p"(ue(s))uc(s), u.(s)) ds

+e L Y(u.())(|o" (1 (5))]gi(5), g:(s)) ds (3.14)
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so that (3.12)-(3.14) yield

¢(ue(t))+gjo W(us())(|p"(u (s)Vie(5), Vi (s)) ds

+260 J d’(us(s))(p"(ue(s))l{p”(ut.(s))<0}vus(s): Vue(s)) dS

(4]

t

=®(ug) -2 J' W (u(s))(bVu(s)+ cu(s), p'(u.(s))) ds

2 f (0 (5)) (@Bt (5)p" (e ), Vit (5))) ds
e [ w0 (51, 090 ds
verx [ o N oo las), ts)) ds
2 W (N(S), o (5))) ds

+2 [ w0z oo s

fr

+3 | (Buo(s)+gi(s), p'(u.(s)))* ds

i J

+J $(u.(s)) tr{ p"(u.(5))qs"] d(M) ]
+L (5" p'(u.(s)), p'(u.(5))) d(M);
+2J P(u.())(Bu.(s) +gi(s), p'(u.(s))) AW

+2 J’o Y (u(s))(p'(uc(s)), dM;), (3.15)

where ¢, is independent of p. We define

y? if y=-—n"!
pa(y) =3 —n’y* =3n’y*—3ny’ if ~nlsu=0,
0 if y=0.
Note that p, is in C*(R),
0=p(y)=7(y7)°,  —26y"=p.(y)=0, 0=p,(y)=74.
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Then p’(y)=2if y<—n"". Define g/ by
p"(y) if y=-n,
pn(y)=12(y+n+1) if —(n+)=y=-n,
pa(y—2n-2) if y=-(n+1),

and let g, be the function whose second derivative is g, and which agrees with
pn on [—n, o). Then j, is in C3(R) and

0=p.(0)=7(y7), =26y <p,(y)=0,
Bi=74 Fi)=0  if y=-n

and, for each y in R,
=7 52T, pn(3)=2 Ly
yon)=>=2y",  ylpnnl=-2y"

as n -, We take p =p, in (3.15) and then we let n - c0. Observe that u, =0.

luc()f*+6 J:)r |uZ ()P (114, <0y Ve (), Vui (s)) ds
=4 L' |uz ()P (BVu.(s)+ cu.(s), uZ(s)) ds
-4 J |uz () (@Biu:(s), Vu(s)) ds
~2¢, J |uz ()P (uz (s), u.(s)) ds

26, f Wz (PS lgu(s)P ds—4 f Wz (PU(s), uZ(s) ds

0 i [

S o ds+ay j (Bite(s)+gi(s), uz(s))* ds

€ J 0

e

+2 | |uz ()P tr{l(y, <qd"} (M)
Jo

(!

+4 | (gus(s), u7(s)) d(M)

-4 | |uZ(s)P(Bu.(s)+g(s), us(s)) dW:
—4 | luz(s)P(uz(s), dM,). (3.16)

JO

Now observe that
(1{u£<0}vus’ Vue) = ,V“e—lz
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and for some constants ¢,, ¢,

7]
HbVu,, u;)=—4(bVu, u)=7 IVu, P+ colucl?,

2+ colu |,

—4(aBu.,Vu,)=4(aBu.,Vu;) Sg IVu;
4y J (Bt (5) +g.(s), u(5))* ds

=8}

1

J’t (2:Vu,(s), u:(s))+ (buc(s)+ gi(5), u; (s)) ds

(j )P ds)2+c3 j uz(s)]* ds

=gsupluc(s)]*+¢;
0

te Z J:) ‘gi(s)lz|us_(5)lz ds,

J 2uz () 1, <ygs" 1+ 4(g u (5), u ()} (M)

<6 J.O luz () d(M)E.

But for some constant «
(Bitte(s), uz(8))* = i fuz ()| |uz ()

and by (3.10) for any 5 > 0 there exists k' <0 such that for any &
t 1/2 t 1/2
(J luZ(s)®||lus ()| ds) Ssup|u;(s)]3<J' luz(s)|? ds)
0 s=t 0

t 2
=7 suplu; (s)]*+ K’(J luz ()| ds) ,
s=t 0

so that for ¢; sufficiently large
t 1/2
4([ luZ()*(Bu.(s)+ gi(s), uz (s))? dS)
0

t 2 H
=jsup Iu;(s)l“+c3(fo luc () ds) +e Y L |g:(s)P|uz (s)] ds.

st

Uz (o)AMY,

0

Similarly,
t 1/2
o[zt aon) " <ysupluc oo |
4]

st
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These last two inequalities and (2.14) and (2.15) imply that the stochastic integrals
in (3.16) are martingales and so (3.16) and the above imply that

E{4suplu (s)*+ J' luz (s)]* ds}

s=t

SCA{E j (s ds+Ej ()P S (o) ds

£ [ il ds+E[(L fuzo) ) |

E J luz ()] d<M>§*}. (3.17)

But (3.10) applied to |u Pl f], and (2.14) and (2.15) as well as the square integrabil-
ity of m(s)=d(M);/ds imply that the right-hand side of (3.17) is bounded by
a constant, hence

E f"u;(s)|4 dt=0(e). (3.18)

From Holder’s inequality and (2.15), (3.17), and (3.18) it now follows that

E suplu,(s)]*=cs(e+ &2+ &%+ &2+ £/?)

5=t

and we are done. |
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