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1 Introduction

In this paper, we present a new view of household epidemic models. Moti-
vated by its simplicity, we present it in the particular case of the SIS model,
but the same approach can be developed for other types of epidemic models,
like the SIR, SIRS, SIR model with demography, and others. We recall that
S stands for susceptible, I for infected and R for removed.

Household models, which have been mainly presented in the framework
of the SIR model so far, is a key example of two–level mixing models. A very
natural step in changing homogeneous epidemics models into more realistic
models is to include households, which are small groups of individuals who
interact more frequently within their group than with other individuals in
the population. This describes both the situation of human populations,
but also of many domestic animal populations, where cages/sheds in poultry
farms of pens/fields in sheep/cattle farms play the role of households.

Household models can be roughly described as follows. The total popu-
lation is the union of households of relatively small (and varying) size. Each
infectious individual infects any other individuals in the same household at
a “local rate” λL, and any other individual in the total population at a
“global rate” λG divided by the total population size. In the last sentence,
“any other” means “chosen uniformly at random”. The infectious periods
are i.i.d., in our case exponential with a given parameter γ (since we want to
have a Markov model).

The first papers on epidemics models with two level of mixing go back to
the 1950’s, with Rushton and Mautner [9] who study deterministic models,
Bartlet [3] and Daley [4] who study stochastic models. We refer to Ball, Mol-
lison and Scalia–Tomba [1] who give a deep study of stochastic SIR epidemic
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models with two levels of mixing, as well as to Ball and Sirl [2] for an up–
to–date presentation of stochastic SIR epidemics in structured populations,
and for more references.

Our viewpoint in this paper is to study asymptotic results as the num-
ber of households (and hence also the total population size) tends to infinity,
while the household sizes remain unchanged. It is easy to see that the interac-
tion between the various households in of mean field type. This is reminiscent
of the situation of particle systems which was studied by Sznitman [10]. We
establish a result of propagation of chaos, and prove that in the limit of an
infinite number of households, the typical epidemic in a household is a so–
called nonlinear Markov process, whose transition depends not only upon the
situation of the epidemic in the household, but also upon its probability law
(through its mean, which is the limiting effect of the infections coming from
the other households). Similar non–linear Markov processes have a long his-
tory, with in particular the work of McKean [7]. The SDE of those nonlinear
Markov processes are called McKean–Vlasov SDEs. Most of the literature on
that topic treats Brownian driven SDEs. However, Léonard [6] considers an
epidemic model where the infection is the effect of a mean field interaction,
and he obtains a McKean–Vlasov type SDE of Poissonian type as a law of
large numbers limit.

Should we assume that the household sizes were bounded, then the exis-
tence and uniqueness of the nonlinear Markov process would be very elemen-
tary. Indeed, the Fokker–Planck equation for the evolution of its law would
be a finite dimensional system of ODEs with locally Lipschitz coefficients,
whose solution cannot explode since it is a probability distribution. Once all
the marginal laws of the process are specified, then the SDE for the nonlinear
Markov process becomes a classical easy to solve Poisson driven SDE. How-
ever, we only assume that the household size is a square integrable random
variable. We prove existence and uniqueness of a solution of the nonlinear
Fokker–Planck equation by a fixed point argument and approximation by
both a decreasing sequence of supersolutions, and an increasing sequence of
subsolutions.

We next study the large time behavior of our limiting SDE. We define
the basic reproduction number R0, which is the mean number of households
infected as a result of a local infection in a typical infected household, started
with one infectious. We give an explicit formula for R0. If R0 ≤ 1, then the
number of infectious individuals in a typical household tends to 0 as t→∞,
whereas if R0 > 1, the law of that number converges to an invariant measure
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which is not the Dirac measure at zero. Our results extend well–known
classical results concerning the case where all households have size 1 (the
homogeneous model). Note that we shall study the fluctuations around the
law of large numbers obtained in the present paper in another publication.

The paper is organised as follows. The model is defined precisely in sec-
tion 2. Section 3 states the three main results of the paper, namely Theorem
3.1 which gives the existence and uniqueness of the nonlinear Markov process,
Theorem 3.2 which states the propagation of chaos result (which might be
considered as a law of large numbers), and finally Theorem 3.3 which gives
the large time behavior of the nonlinear Markov process. Section 4 studies
what we call the “forced process”, which is our nonlinear Markov process,
where we replace the unknown quantity IE[X(t)] by a given function m(t).
In particular, we establish the monotonicity property of the forced process
as a function of m. That property is exploited in an essential way in section
5 for the proof of Theorem 3.1. Section 6 is devoted to the proof of Theorem
3.2 and finally section 7 to the definition and computation of R0, and the
proof of Theorem 3.3. In this last section, we use in particular a comparison
with a non–Markov continuous time branching process.

2 Definition of the model

We consider an SIS household epidemic model. In our model, the population
consists of N households, with sizes ν1, ν2, . . . , νN , where the νi’s are i.i.d.
IN–valued random variables. Let XN

i (t) denote the number of infectious
individuals in the i–th household at time t.

We suppose that each infected individual can infect another individual
within the same household at rate λL, for some λL > 0 (the infected indi-
vidual is chosen uniformly from those in the household, and if it is already
infected, nothing happens). Moreover, each infected individual can infect
another individual chosen uniformly from the whole population at rate λG,
for some λG (again, if it is already infected nothing happens). Finally, each
infected individual becomes suceptible at rate γ, for γ > 0. The parameters
λL and λG are the rates of local (respectively global) infections. We note
that, for each global infection, choosing an individual uniformly from the
population is equivalent to first choosing a household from the size-biased
distribution and then choosing an individual uniformly in this household.
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Below is a more formal definition of this process. Let

X = {(n, k) ∈ IN× Z+ : n ≥ 1, 0 ≤ k ≤ n}.
Definition 2.1 (SIS household epidemic model). Fix λL > 0, λG > 0 and
γ > 0. Let {(νi, Xi(0)), i ≥ 1} be i.i.d. X -valued random variables such
that IE[ν21 ] < +∞ and let (Pinf,i(t), t ≥ 0, i ≥ 1) and (Prec,i(t), t ≥ 0, i ≥ 0)
be mutually independent standard Poisson processes, which are also indepen-
dent of {(νi, Xi(0)), i ≥ 1}. We define νN = 1

N

∑N
i=1 νi. For N ≥ 1, let

(XN
1 (t), . . . , XN

N (t), t ≥ 0) be the solution of the following SDE:

(1)

XN
i (t) = Xi(0)+Pinf,i

(∫ t

0

(
1− XN

i (s)

νi

)[
λLX

N
i (s) + λG

νi
νN

1

N

N∑
j=1

XN
j (s)

]
ds

)

− Prec,i
(
γ

∫ t

0

XN
i (s)ds

)
.

We call this process the SIS household model with N households.

The fact that there exists a unique solution to (1) follows from a standard
arguement which exploits the fact that the jumps are isolated, and the process
remains constant between its jumps. The distribution of the νi’s will be fixed
throughout the paper, and we set

π(n) = IP(ν1 = n), π = IE[ν1].

We shall also use the size-biased distribution of the νi’s and its first moment,
which we define as

π+(n) =
nπ(n)

π
, π+ =

∑
n≥1

nπ+(n) =
IE[ν2]

IE[ν]
.

We note that the different households only interact through the mean
number of infected individuals in the N households, i.e. it is a mean-field
interaction. We thus expect that, as the number of households N becomes
very large, any finite subset of households are asymptotically mutually inde-
pendent and each one evolves according to the following SDE:

(2) X(t) = X(0) + Pinf

(∫ t

0

(
1− X(s)

ν

)[
λLX(s) + λG

ν

π
IE[X(s)]

]
ds

)
− Prec

(
γ

∫ t

0

X(s)ds

)
,
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where (ν,X(0)) has the same law as (ν1, X
N
1 (0)) and Pinf and Prec are

two independent standard Poisson processes which are also independent of
(ν,X(0)). This is what is called propagation of chaos [10], and will be made
more precise in Theorem 3.2 below.

This equation is a McKean-Vlasov Poisson driven SDE, because the tran-
sition rates of (X(t), t ≥ 0) depend on the law of X(t) (specifically on its
expectation). We refer to McKean [7] for the study of similar Brownian
driven SDEs. As we will see later, this equation defines a semigroup acting
on probability distributions on IN × Z+ but, contrary to ordinary Markov
processes, this semigroup is non-linear (because of the term IE[X(s)] appear-
ing on the right hand side of (2)). For this reason we will call (X(t), t ≥ 0)
the non-linear Markov process.

3 Main results

Existence and uniqueness of the non-linear process. It is not clear
a priori that there exists a process solving (2), much less that it is unique.

Suppose for a moment that it exists and set

µn,k(t) = IP(X(t) = k, ν = n).

Then, µ(t) = {µn,k(t), (n, k) ∈ X} is the law of (ν,X(t)) and

∀n ≥ 1,
n∑
k=0

µn,k(t) = π(n).(3)

Equation (2) then implies that {µn,k(t), t ≥ 0, (n, k) ∈ X} solves the following
non-linear Fokker-Planck equation:

(4)
dµn,k(t)

dt
= µn,k−1(t)

(
1− k − 1

n

)[
λL(k − 1) + λG

n

π

∞∑
i=1

i∑
j=1

jµi,j(t)

]

−µn,k(t)

{(
1− k

n

)[
λLk + λG

n

π

∞∑
i=1

i∑
j=1

jµi,j(t)

]
+ γk

}
+µn,k+1(t)γ(k+1),

with the convention that µn,−1(t) = µn,n+1(t) = 0. Note that (4) defines an
infinite system of coupled ordinary differential equations. We then have the
following theorem.
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Theorem 3.1. Assume that the second moment of the probability distribution
π is finite. Then, given a probability measure µ(0) = {µn,k(0), (n, k) ∈ X}
satisfying (3), there exists a unique time dependent probability measure
(µ(t), t ≥ 0) on X which solves the system of ODEs (4). Moreover, given a
random variable (ν,X0) which is such that IP(X0 = k, ν = n) = µn,k(0) for
(n, k) ∈ X , the SDE (2) has a unique solution (X(t), t ≥ 0) which is such
that for each t ≥ 0, IP(X(t) = k, ν = n) = µn,k(t) for each (n, k) ∈ X .

We prove this theorem in Section 5.

Propagation of chaos. We now deal with the limiting behaviour of the
household model of Defintion 2.1 as the number of households N tends to
infinity. For T > 0, let P(D([0, T ],X )) denote the space of probability mea-
sures on the sample paths space D([0, T ],X ). Also let µ ∈ P(D([0, T ],X ))
denote the law of the non-linear Markov process ((ν,X(t)), t ∈ [0, T ]), given
by Theorem 3.1.

Theorem 3.2 (Propagation of chaos in the SIS household model). Assume
that {(νi, Xi(0)), i ≥ 1} are independent and identically distributed X -valued
random variables such that IE[ν21 ] < +∞. For all N ≥ 1, let (XN

i (t), t ≥
0, 1 ≤ i ≤ N) be the solution of equation (1). Define µN ∈ P(D([0, T ],X ))
by

µN =
1

N

N∑
i=1

δ(νi,XN
i (·)).

Then the random measure µN converges weakly to µ as N →∞ in probability.
Moreover, for any k ≥ 1,

L
(
(ν1, X

N
1 (·)), . . . , (νk, XN

k (·)
)
⇒ µ⊗k as N →∞

in P
(
D([0, T ],X k)

)
.

We prove Theorem 3.2 in Section 6. Note that by Proposition 2.2 in
[10], the second part of the theorem follows from the convergence of the
empirical measures µN . Theorem 3.2 says two things: as N becomes large,
any finite subset of households behaves asymptotically as independent copies
of the non-linear Markov process (2), and the global epidemic, as measured
through the empirical measure µN , becomes asymptotically deterministic and
equal to the law of the non-linear Markov process. It is then natural to ask
whether the epidemic has an endemic equilibrium and if it is stable in the
non-linear Markov process.
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Large time behaviour of the non-linear Markov process. As is usual
in SIS epidemic models, there is in our model a basic reproduction number
R0 such that if R0 > 1, there exists a unique stable endemic equilibrium (i.e.
the epidemic survives forever) and if R0 ≤ 1, the disease free equilibrium
is globally asymptotically stable (the epidemic eventually dies out). This
number is usually defined as the number of secondary infections produced
by a single infected individual. Here, however, this number will be defined
as the mean number of households which are infected by a single household,
in which there is initially one infected individual and whose size is chosen
according to the size-biased distribution π+.

To do this, let (I(t), t ≥ 0) be the solution to the following SDE:

I(t) = I(0) + Pinf

(∫ t

0

λL

(
1− I(s)

ν

)
I(s)ds

)
− Prec

(∫ t

0

γI(s)ds

)
,(5)

where ν is distributed according to the probability distribution π and Pinf
and Prec are two independent standard Poisson processes, which are inde-
pendent of (ν, I(0)). Then (I(t), t ≥ 0) is the number of infected individuals
in an isolated household.

We then define

R0 =
λG
π

IE

[
ν

∫ ∞
0

I(t)dt

∣∣∣∣ I(0) = 1

]
.(6)

The large time behaviour of the non-linear process (X(t), t ≥ 0) of Theo-
rem 3.1 is then given by the following result.

Theorem 3.3 (Large time behaviour of the non-linear Markov process).
Let (X(t), t ≥ 0) be the unique solution to equation (2), and assume that
IE[ν2] < +∞.

i) If R0 > 1, then there exists a unique probability distribution µ∞ on X
such that, if IP(X(0) ≥ 1) > 0, (ν,X(t)) converges in distribution to µ∞
as t→∞. Moreover µ∞ is non-trivial in the sense that µ∞ 6= π ⊗ δ0.

ii) If R0 ≤ 1, then X(t)→ 0 in probability as t→∞.

We prove Theorem 3.3 in Section 7. This result should be seen as an
analogue of the fact that the solution of the ODE

di(t)

dt
= λi(t)

(
1− i(t)

n

)
− γi(t)(7)

7



converges as t→∞ to n
(
1− γ

λ

)
if λ > γ and to 0 otherwise.

In the proof of Theorem 3.3, we shall also prove the following formula for
R0, which is of independent interest:

R0 =
λG
γ

∞∑
n=1

π+(n)

(
1 +

n−1∑
`=1

(
λL
γ

)` ∏̀
j=1

(
1− j

n

))
,(8)

(see in particular the proof of Lemma 7.4 in Subsection 7.3).

Remark 3.4. a) If π = δ1, every household is of size 1, and (1) reduces to
the homogeneous SIS epidemic model, with parameters λG and γ (see [2]).
We can then check that IE[X(t)] solves the ODE (7) with λ = λG, and
that (6) reduces to R0 = λG/γ, as expected.

b) The same is true if we take λL = 0 and keep π very general, the only
infections in the system are global infections and the model reduces to the
standard SIS epidemic model.

c) Another interesting case is when the size of all the households is very large.
In that case, if we approximate (I(t), t ≥ 0) by a branching process, we
see that R0 should be approximated by +∞ if λL ≥ γ and by λG/(γ − λL)
if λL < γ, and we see that R0 > 1 is equivalent to λG + λL > γ.

4 The forced process

It is worth noting that if we replace IE[X(s)] in (2) by any determinis-
tic measurable function s 7→ m(s), then (X(t), t ≥ 0) becomes a time-
inhomogeneous Markov process.

Definition 4.1 (The forced process). Let m : IR+ → [0, π̄] be a measurable
function, (ν,X0) an X -valued random variable and Pinf and Prec two inde-
pendent standard Poisson processes which are also independent of (ν,X0).
Then the forced process (Xt(m), t ≥ 0) is defined as the solution to

(9) Xt(m) = X0 + Pinf

(∫ t

0

[
λLXs(m) + λG

ν

π
m(s)

](
1− Xs(m)

ν

)
ds

)
− Prec

(∫ t

0

γXs(m)ds

)
.
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We call this process the forced process because we fix the intensity of
global infections to be λGνm(t)/π. The fact that there exists a unique strong
solution to (9) follows from standard arguments similar to that used in (1).

Comparing (2) and (9), we see that solving (2) is equivalent to finding a
measurable function m such that m(t) = IE[Xt(m)] for all t ≥ 0.

4.1 Graphical construction of the forced process

We are going to show that we can construct this process with the following
procedure. Let c(dk) denote the counting measure on IN. Conditionally on
(ν,X0), let Πrec, ΠL and ΠG be three mutually independent Poisson point
processes such that

• Πrec is a Poisson point process on IR+×J1, νK with intensity γdt⊗c(dk),

• ΠL is a Poisson point process on IR+ × J1, νK × J1, νK with intensity
λL
ν
dt⊗ c(dk)⊗ c(dk),

• ΠG is a Poisson point process on IR+ × J1, νK × [0, π] with intensity
λG
π
dt⊗ c(dk)⊗ du.

Let us describe the effect of these different processes before formally con-
structing the forced process. A point (t, i) in Πrec means that if the individ-
ual i was infected at time t−, it becomes suceptible at time t (it undergoes a
remission). A point (t, i, j) in ΠL means that individual i can infect individ-
ual j at time t. This occurs if i is infected while j is suceptible at time t−.
Finally a point (t, i, u) in ΠG means that individual i can be infected from a
global infection. We allow this infection to take place only if i is suceptible
at time t− and if u ≤ m(t).

In fact, we can view the total set of infected individuals at any time as
the union of several local infections, each resulting from a previous global
infection or from the individuals infected at time 0. To do this, note that ΠG

is almost surely locally finite, so we can order its points according to their
time coordinate. Thus let

ΠG = {(tk, ik, uk), k ≥ 1, 0 < t1 < t2 < . . .}.

Let us then define a random set Ik(t) ⊂ J1, νK for all t ≥ 0 as follows.

• For t < tk, I
k(t) = ∅.
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• At t = tk, we set Ik(tk) = {ik}.

• For each (t, i, j) ∈ ΠL, if i ∈ Ik(t−), then Ik(t) = Ik(t−) ∪ {j}.

• For each (t, i) ∈ Πrec, I
k(t) = Ik(t−) ∩ {i}c.

We define in the same way the local infection resulting from the initially
infected individuals (I0(t), t ≥ 0), i.e. I0(0) = {i : 1 ≤ i ≤ X0} and I0

evolves according to the same rules as Ik for k ≥ 1. We note that, for all
k ≥ 0, (Ik(t), t ≥ 0) is right-continuous with left limits.

Proposition 4.2. For all t ≥ 0, let

Xt(m) =

∣∣∣∣∣I0(t) ∪⋃
k≥1

{Ik(t) : uk ≤ m(tk)}

∣∣∣∣∣ ,(10)

where | · | denotes the cardinal of a set. Then the process (Xt(m), t ≥ 0) is a
solution to the SDE (9).

Proof. Clearly X0(m) = |I0(t)| = X0. It remains to check that the waiting
times between upward and downward jumps of Xt(m) are distributed as
exponential variables with the correct rates.

If the current value of Xt(m) is x, then the next remission takes place at
the next point (t, i) ∈ Πrec with i ∈ Ik(t−) for some k ≥ 0 with uk ≤ m(tk)
(we can set u0 = π and t0 = 0). This happens at instantaneous rate γx, as
in (9).

Likewise, the next time an individual currently infected infects a sucep-
tible individual is given by the next point (t, i, j) ∈ ΠL such that i ∈ Ik(t−)
for some k ≥ 0 with uk ≤ m(tk) and j /∈ Ik(t−) for all such k. This happens
at rate λL

ν
x(ν − x), as in (9).

Finally, the next time a suceptible individual becomes infected due to a
global infection is the next (t, i, u) ∈ ΠG such that i /∈ Ik(t−) for all k ≥ 0
such that uk ≤ m(tk) and u ≤ m(t). This happens at instantaneous rate
λG
π

(ν − x)m(t), as in (9).

4.2 Monotonicity of the forced process

With this construction, the next lemma is straightforward.

10



Lemma 4.3 (Monotonicity of the forced process). Suppose that X
(1)
0 and

X
(2)
0 are two random variables such that X

(1)
0 ≤ X

(2)
0 almost surely. Also let

m1 and m2 be two measurable functions from IR+ to [0, π] such that m1(t) ≤
m2(t) for almost every t ≥ 0. Then there exists a process (Xt(m1), t ≥ 0)

solving (9) with m = m1 and X0 = X
(1)
0 , and a process (Xt(m2), t ≥ 0)

solving (9) with m = m2 and X0 = X
(2)
0 , defined on the same probability

space, such that, almost surely,

Xt(m1) ≤ Xt(m2), ∀t ≥ 0.

Proof. We use Proposition 4.2 to construct both processes with the same
Poisson point processes Πrec, ΠL and ΠG. We define (I0,i(t), t ≥ 0) for
i ∈ {1, 2} as above with

I0,i(0) = {k : 1 ≤ k ≤ X
(i)
0 },

so that, almost surely, I0,1(0) ⊂ I0,2(0). Then, from the evolution of
(I0,i(t), t ≥ 0), we deduce that I0,1(t) ⊂ I0,2(t) for all t ≥ 0. Furthermore,
since m1 ≤ m2,

{k : uk ≤ m1(tk)} ⊂ {k : uk ≤ m2(tk)}.

It then follows from equation (10) that Xt(m1) ≤ Xt(m2).

The following lemma will also be useful in the proof of existence and
uniqueness of the non-linear process. For t ≥ 0, m : IR+ → [0, π] measurable
and µ0 a probability measure on X whose first marginal is π, let

µt(m,µ0) = IE[Xt(m)],(11)

where (ν,X0) is distributed according to µ0.

Lemma 4.4. Suppose that µ0 is as above. If m1 and m2 are two measurable
functions from IR+ to [0, π] satisfying m1(t) ≤ m2(t) for almost every t ≥ 0,
then

0 ≤ µt(m2, µ0)− µt(m1, µ0) ≤ π+λG

∫ t

0

(m2(s)−m1(s))ds.
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Proof. The fact that µt(m2)−µt(m1) ≥ 0 follows from Lemma 4.3. To prove
the second inequality, we construct (Xt(m1), t ≥ 0) and (Xt(m2), t ≥ 0) as
in Proposition 4.2. Then

0 ≤ Xt(m2)−Xt(m1) ≤
∣∣∪k≥1{Ik(t) : m1(tk) ≤ uk ≤ m2(tk)}

∣∣ .
Moreover, we can restrict the union to the values of k for which tk ≤ t. Since
|Ik(t)| ≤ ν for all t ≥ 0, we can write

0 ≤ Xt(m2)−Xt(m1) ≤ ν |{k ≥ 1 : m1(tk) < uk ≤ m2(tk), tk ≤ t}| .(12)

Now, by the definition of ΠG, the right hand side is, conditionally on ν, ν
times a Poisson random variable with parameter

λG
ν

π

∫ t

0

(m2(s)−m1(s))ds.

As a result, taking expectations in (12) (first conditionally on ν and then
over the law of ν), we obtain

0 ≤ µt(m2, µ0)− µt(m1, µ0) ≤ λG π
+

∫ t

0

(m2(s)−m1(s))ds,

and the lemma is proved.

We shall come back to the forced process in the proof of Theorem 3.3,
as it will be used to characterize the possible stationary distributions of the
non-linear process.

5 Existence and uniqueness of the non-linear

Markov process

We now set out to prove Theorem 3.1. We note that finding a solution to
(4) is equivalent to finding a fixed point of

m(·) 7→ µ·(m,µ0).(13)

Indeed, if m∗ is a fixed point of this function, then (Xt(m∗), t ≥ 0) is a
solution to (2). We thus need to prove that, given µ0, there exists a unique
fixed point of (13).
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Proof of Theorem 3.1. Fix µ0 and assume that (ν,X0) is distributed accord-
ing to µ0. Let (m+,k, k ≥ 0) and (m−,k, k ≥ 0) be two sequences of functions
defined by

m+,0(t) = π, m+,k+1(t) = µt(m
+,k, µ0),

m−,0(t) = 0, m−,k+1(t) = µt(m
−,k, µ0),

where µt(m,µ0) was defined in (11). Clearly, since 0 ≤ IE[Xt(m)] ≤ π,

m+,1(t) ≤ m+,0(t), m−,1(t) ≥ m−,0(t).

Then by induction, using Lemma 4.3, we obtain that, for all k ≥ 0,

m−,k(t) ≤ m−,k+1(t) ≤ m+,k+1(t) ≤ m+,k(t).

Hence m+,k and m−,k both converge pointwise. Let m+,∞ and m−,∞ be their
respective limits. Then, using Lemma 4.4 with m1 = m+,∞ and m2 = m+,k,∣∣µt(m+,∞)−m+,∞(t)

∣∣ ≤ ∣∣m+,k+1(t)−m+,∞(t)
∣∣+ λG π

+

∫ t

0

(m+,k(s)−m+,∞(s))ds.

The integral on the right hand side vanishes as k →∞ by dominated conver-
gence and the first term vanishes because m+,k converges pointwise to m+,∞.
As a result, m+,∞ (and also m−,∞ by the same argument) is a fixed point of
(13). This shows existence of solutions to (4) (and thus to (2)).

To prove uniqueness, first note that, by induction and using Lemma 4.3,
any fixed point m∗ satisfies

m−,k(t) ≤ m∗(t) ≤ m+,k(t),

for all k ≥ 0 and t ≥ 0. Hence we also have

m−,∞(t) ≤ m∗(t) ≤ m+,∞(t).

To prove uniqueness, it is thus enough to prove that m+,∞(t) = m−,∞(t) for
all t ≥ 0. Using Lemma 4.4 with m1 = m−,0 and m2 = m+,0, we obtain

0 ≤ m+,1(t)−m−,1(t) ≤ π π+λGt,

and by induction, we deduce that, for k ≥ 1,

0 ≤ m+,k(t)−m−,k(t) ≤ π
(π+λGt)

k

k!
.

Leting k → ∞, it follows that m+,∞(t) = m−,∞(t) for all t ≥ 0 and the
theorem is proved.
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6 Propogation of chaos for the SIS household

model

The aim of this section is to prove Theorem 3.2. As we have said before,
using Proposition 2.2 in [10], the second part of the statement follows from the
convergence of the empirical measures µN to the law of the non-linear process
µ. We establish this convergence by showing that the sequence {µN , N ≥ 1}
is tight in P(D([0, T ],X )), and identifying its possible limit points.

Lemma 6.1. The sequence {µN , N ≥ 1} is tight in P(D([0, T ],X )).

Proof. By Proposition 2.2(ii) in [10], the sequence {µN , N ≥ 1} is tight if
and only if the laws of (ν1, X

N
1 (·)) are tight, but this is straightforward from

(1) where we see that the rate of increase is bounded by (λL + λG)νi, while
the rate of decrease is bounded by γνi.

Next we note that equation (1) can be reformulated as follows. Let
{Minf,i, i ≥ 1} and {Mrec,i, i ≥ 1} be mutually independent random Pois-
son measures on IR2

+ with intensity measure the Lebesgue measure, which
are also independent of {(νi, Xi(0)), i ≥ 1}. Then, with the notation

µNt =
1

N

N∑
i=1

XN
i (t) ,

XN
i (t) = Xi(0) +

∫ t

0

∫ ∞
0

1
u≤

(
1−

XN
i

(s−)

νi

)
[λLXN

i (s−)+λG
νi
νN

µN
s− ]
Minf,i(ds du)

−
∫ t

0

∫ ∞
0

1u≤γXN
i (s−)Mrec,i(ds du).

Clearly, for any φ : X 7→ IR,

φ(νi, X
N
i (t)) = φ(νi, X

N
i (0))

+

∫ t

0

[φ(νi, X
N
i (s−)+1)−φ(νi, X

N
i (s−))]

∫ ∞
0

1
u≤

(
1−

XN
i

(s−)

νi

)
[λLXN

i (s−)+λG
νi
νN

µN
s− ]
Minf,i(ds, du)

+

∫ t

0

[φ(νi, X
N
i (s−)− 1)− φ(νi, X

N
i (s−))]

∫ ∞
0

1u≤γXN
i (s−)Mrec,i(ds, du).

14



Let Minf,i and Mrec,i denote the compensated measures

Minf,i(ds, du) =Minf,i(ds, du)− dsdu,
Mrec,i(ds, du) =Mrec,i(ds, du)− dsdu.

Then setting

Mφ
i (t) =

∫ t

0

[φ(νi, X
N
i (s−)−1)−φ(νi, X

N
i (s−))]

∫ ∞
0

1u≤γXN
i (s−)Mrec,i(ds, du)

+

∫ t

0

[φ(νi, X
N
i (s−)+1)−φ(νi, X

N
i (s−))]

∫ ∞
0

1
u≤

(
1−

XN
i

(s−)

νi

)
[λLXN

i (s−)+λG
νi
νN

µN
s− ]
Minf,i(ds, du),

we have

φ(νi, X
N
i (t)) = φ(νi, X

N
i (0))

+

∫ t

0

[φ(νi, X
N
i (s)+1)−φ(νi, X

N
i (s))]

(
1− XN

i (s)

νi

)[
λLX

N
i (s) + λG

νi
νN

µNs

]
ds

+ γ

∫ t

0

[φ(νi, X
N
i (s)− 1)− φ(νi, X

N
i (s))]XN

i (s)ds+Mφ
i (t).

We rewrite this identity in the form

(14) φ(νi, X
N
i (t)) = φ(νi, X

N
i (0)) +

∫ t

0

[Lφ](νi, X
N
i (s), νN , µNs )ds+Mφ

i (t)

where for n ≥ 1, x ∈ {0, 1, . . . , n}, y ≥ 0 and 0 ≤ m ≤ y,

Lφ(n, x, y,m) = [φ(n, x+ 1)− φ(n, x)]
(

1− x

n

)[
λLx+ λG

n

y
m

]
+ [φ(n, x− 1)− φ(n, x)]γx.

Proof of Theorem 3.2. Let µ∞ be a limit point of the sequence µN . First note
that, by the classical law of large numbers, for any bounded and measurable
φ : X → IR,

IEµ∞ [φ(ν,X(0))] = IE[φ(ν1, X1(0))].

In order to identify the possible limit points of µN , we define, for µ ∈
P(D([0, T ],X )) and 0 ≤ s ≤ t ≤ T ,

Φs,t(µ) = IEµ

[(
φ(ν,X(t))− φ(ν,X(s))−

∫ t

s

Lφ(ν,X(r), ν, µr)dr

)
ψs(ν,X(·))

]
,
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where

µt = IEµ [X(t)] , ν = IEµ[ν],

and φ is any bounded function from X to IR and ψs is of the form

ψs(ν,X(·)) = φ1(ν,X(s1)) . . . φk(ν,X(sk))

with 0 ≤ s1 ≤ . . . ≤ sk ≤ s and φ1, . . . , φk are bounded functions from X to
IR. By Theorem 3.1, the result will be proved if we show that

Φs,t(µ∞) = 0,

almost surely for any such function Φs,t.
Using (14),

Φs,t(µ
N) =

1

N

N∑
i=1

(Mφ
i (t)−Mφ

i (s))ψs(νi, X
N
i (·)).

From the definition of Mφ
i ,

〈Mφ
i ,M

φ
j 〉t = 0, ∀i 6= j,

and

〈Mφ
i 〉t =

∫ t

0

Gφ(νi, X
N
i (s), νN , µNs )ds,

where

Gφ(n, x, y,m) = [φ(n, x+ 1)− φ(n, x)]2
(

1− x

n

)[
λLx+ λG

n

y
m

]
+ [φ(n, x− 1)− φ(n, x)]2 γx.

Note that, for m ≤ y

Gφ(n, x, y,m) ≤ 4 sup
X
|φ|2 (λL + λG + γ)n.

As a result,

IE
[
Φs,t(µ

N)2
]

=
1

N2

N∑
i=1

IE
[
(〈Mφ

i 〉t − 〈M
φ
i 〉s)ψs(νi, XN

i (·))2
]

≤ C

N
IE[ν1],

for some C > 0. It follows that

Φs,t(µ
N)→ 0,

in L2 as N → ∞, hence µ∞ is equal to µ, the distribution of the non-linear
process of (2). This proves Theorem 3.2.
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7 Large time behaviour of the non-linear

Markov process

Let us start this section by noting that if the non-linear process of (2) with
initial distribution µ0 is stationary, then the forced process with initial dis-
tribution µ0 and with m(t) = µ0 = IEµ0 [X(0)] is also stationary. Thus to
study the possible stationary distributions of the non-linear process, we first
study the large-time behaviour of the forced process.

7.1 The large-time behaviour of the forced process

Suppose that we take m(t) = m for all t ≥ 0 for some m ∈ [0, π]. Then
(Xt(m), t ≥ 0) becomes a homogeneous continuous-time Markov process.
On the event {ν = n}, it takes values in J1, nK. If m > 0, then it is positive
recurrent on this set, while if m = 0, 0 is the only absorbing state for Xt(m).
As a result, conditionally on ν = n, (Xt(m), t ≥ 0) admits a unique stationary
distribution. It follows that ((ν,Xt(m)), t ≥ 0) admits a unique stationary
distribution µ∞(m).

This distribution can be obtained as in Proposition 4.2 in the following

way. Let
←−
Π rec,

←−
ΠL and

←−
ΠG be independent Poisson point processes as above,

but on IR− instead of IR+ for the first coordinate. We can then order the

points in
←−
ΠG in decreasing order:

←−
ΠG = {(tk, ik, uk), k ≥ 1, 0 > t1 > t2 > . . .}.

The points in
←−
ΠG represent global infection which took place in the past.

We then perform the same construction of Ik(t), this time for t ≤ 0, and we
set

X∞(m) =
∣∣∪k≥1{Ik(0) : uk ≤ m}

∣∣ .
Proposition 7.1. For each m ∈ [0, π], X∞(m) is distributed according to
µ∞(m).

Proof. For t ≥ 0, let

X̃t(m) =
∣∣∪k≥1{Ik(0) : uk ≤ m, tk ≥ −t}

∣∣ .
In other words, we only consider the local epidemics which started after
time −t. Then from Proposition 4.2, we see that for each t ≥ 0, X̃t(m) is
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distributed as Xt(m), where Xt(m) is the solution of (9) with m(t) = m and
X0 = 0. By the ergodic theorem for homogeneous Markov processes, Xt(m),
and hence X̃t(m), converge in distribution as t→∞ to µ∞(m). At the same
time, we see from the definition of X̃t(m) and X∞(m) that

X̃t(m) =
ν∑
i=1

1{∃k≥1:i∈Ik(0),uk≤m,tk≥−t}, X∞(m) =
ν∑
i=1

1{∃k≥1:i∈Ik(0),uk≤m}.

Hence by monotone convergence,

X̃t(m)→ X∞(m) as t→∞,

almost surely, and the lemma is proved.

The next lemma says that m(t) → m∞ as t → ∞ is sufficient for Xt(m)
to converge in distribution to µ∞(m∞).

Lemma 7.2 (Large time behaviour of the forced process). Suppose that
m : IR+ → [0, π] is measurable and that

m∞ = lim
t→∞

m(t)

exists. Then Xt(m) converges in distribution to µ∞(m∞) as t tends to infin-
ity.

Proof. Suppose for now that 0 < m∞ < π. Then for all ε > 0, there exists
tε such that, for all t ≥ tε,

m∞ − ε ≤ m(t) ≤ m∞ + ε.

We choose ε small enough that 0 ≤ m∞−ε and m∞+ε ≤ π. We then define
two functions m+ and m− by

m+(t) = π1{t<tε} + (m∞ + ε)1{t≥tε}, m−(t) = (m∞ − ε)1{t≥tε}.

Then m− ≤ m ≤ m+, so by Lemma 4.3, we can construct jointly the three
processes (Xt(m

−), t ≥ 0), (Xt(m), t ≥ 0) and (Xt(m
+), t ≥ 0) such that,

almost surely,

Xt(m
−) ≤ Xt(m) ≤ Xt(m

+), ∀t ≥ 0.
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It follows that, for each t ≥ 0 and each k ∈ IN,

IP
(
Xt(m

+) ≤ k
)
≤ IP (Xt(m) ≤ k) ≤ IP

(
Xt(m

−) ≤ k
)
.

Since m+ and m− are both constant after time tε (which is deterministic),
as t → ∞, Xt(m

+) and Xt(m
−) respectively converge in distribution to

µ∞(m∞ + ε) and µ∞(m∞ − ε). Thus, letting t→∞ above,

µ∞(m∞ + ε) ({0, . . . , k}) ≤ lim inf
t→∞

IP (Xt(m) ≤ k)

≤ lim sup
t→∞

IP (Xt(m) ≤ k) ≤ µ∞(m∞ − ε) ({0, . . . , k}) .

But, as ε ↓ 0, the measure µ∞(m∞ ± ε) converges weakly to µ∞(m∞) (in
fact the construction in Proposition 7.1 gives a construction of X∞(m ± ε)
and X∞(m) such that X∞(m ± ε) → X∞(m) almost surely as ε ↓ 0, using
monotone convergence as in the proof of Proposition 7.1). Hence letting ε ↓ 0
above, we obtain, for any k ≥ 0,

IP (Xt(m) ≤ k)→ µ∞(m∞) ({0, . . . , k}) as t→∞,

and the lemma is proved. If m∞ = 0, then we can take instead m−(t) = 0,
and if m∞ = π, then we take m+(t) = π, and the rest of the proof is
essentially identical.

7.2 The stationary distribution of the forced process

We now study in more detail the family of distributions µ∞(·). For m ∈ [0, π],
we set

µ∞(m) = IE [X∞(m)] .

Lemma 7.3. The function m 7→ µ∞(m) is continuous, non-decreasing and
strictly concave on [0, π].

Proof. Fix m1 ≤ m2. Then, using the construction in Proposition 7.1, we
have, almost surely,

X∞(m1) ≤ X∞(m2).

Taking expectations, we obtain

µ∞(m1) ≤ µ∞(m2).
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Hence m 7→ µ∞(m) is non-decreasing.
The continuity follows from Proposition 7.1 and the monotone conver-

gence theorem.
To show that it is concave, we will construct two random variables

Xδ
∞(m1) and Xδ

∞(m2) distributed according to µ∞(m1 + δ) and µ∞(m2 + δ)
such that

Xδ
∞(m1)−X∞(m1) ≥ Xδ

∞(m2)−X∞(m2),

almost surely. To do this, we will add the same set of global infections (with
rate λGδν/π) to both processes.

Fix δ > 0 and let Πδ
G be an independent Poisson point process on IR− ×

J1, νK with intensity δ λG
π
dt⊗c(dk). We then order the points in Πδ

G as above,

Πδ
G = {(tδk, iδk) : k ≥ 1, 0 > tδ1 > tδ2 > . . .},

and we define Ik,δ(t) for t ≤ 0 as above, using the same Poisson point pro-

cesses of local infections and remission as before, i.e.
←−
Π rec and

←−
ΠL. We then

define

Xδ
∞(m) =

∣∣∣∪k≥1{Ik(0) : uk ≤ m}
⋃
∪k≥1{Ik,δ(0) : k ≥ 1}

∣∣∣ .
From Proposition 7.1, Xδ

∞(m) is distributed according to µ∞(m + δ). Fur-
thermore,

Xδ
∞(m)−X∞(m) =

∣∣∣∪k≥1{Ik,δ(0), k ≥ 1}
⋂(
∪k≥1{Ik(0) : uk ≤ m}

)c∣∣∣ .
Then, since m1 ≤ m2, we have

∪k≥1{Ik(0) : uk ≤ m1} ⊂ ∪k≥1{Ik(0) : uk ≤ m2},

and we deduce that, almost surely,

Xδ
∞(m1)−X∞(m1) ≥ Xδ

∞(m2)−X∞(m2).

Taking expectations, we obtain, for m1 ≤ m2,

µ∞(m1 + δ)− µ∞(m1) ≥ µ∞(m2 + δ)− µ∞(m2).

This shows that m 7→ µ∞(m) is concave. To show that it is strictly concave,
it is sufficient to show that the above inequality is strict with positive proba-
bility for any δ > 0, which is obvious from our construction. This concludes
the proof of the lemma.
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7.3 The basic reproduction number R0

Since the non-linear process solves (9) with m(t) = IE[Xt(m)], if it admits a
stationary distribution, we expect that it should be of the form µ∞(m) with
m satisfying

µ∞(m) = m.(15)

We note that m = 0 is always a solution to (15), but, given Lemma 7.3,
another solution may exist if

dµ∞
dm

(0) > 1.

Lemma 7.4. Recall the definition of R0 in (6), then

dµ∞
dm

(0) = R0.

Corollary 7.5. If R0 ≤ 1, then m = 0 is the unique solution to (15). If
R0 > 1, then there exists a unique m? ∈ (0, π] satisfying (15).

Proof. This is straightforward from Lemma 7.4 and Lemma 7.3 and the in-
equality X∞(m) ≤ ν.

Let us now prove Lemma 7.4.

Proof of Lemma 7.4. We prove this result by showing that both terms are
equal to the expression given in (8). If we set

µn,k∞ (m) = IP(ν = n,X∞(m) = k),

then the measure µ∞(m) is characterized by

n∑
k=0

Lφ(n, k, π,m)µn,k∞ (m) = 0.

Choosing φ(n, k) = 1{k≤`} for 0 ≤ ` ≤ n− 1 yields(
1− `

n

)[
λL`+ λG

n

π
m
]
µn,`∞ (m) = γ(`+ 1)µn,`+1

∞ (m).
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This, together with the obvious condition
∑n

k=0 µ
n,k
∞ (m) = π(n) (see (3))

leads to the following expression

µn,`∞ (m) = µn,0∞ (m)
1

γ`

`−1∏
k=0

{
1− k

n

k + 1

(
λLk + λG

n

π
m
)}

, 1 ≤ ` ≤ n,

µn,0∞ (m) = π(n)

(
1 +

n∑
`=1

1

γ`

`−1∏
k=0

{
1− k

n

k + 1

(
λLk + λG

n

π
m
)})−1

.

From this we deduce easily that

dµ∞
dm

(0) =
λG
γ

∞∑
n=1

π+(n)

(
1 +

n−1∑
`=1

(
λL
γ

)` ∏̀
j=1

(
1− j

n

))
.

We now turn to the quantity R0 defined in (6). Note that, by the defini-
tion of the process (I(t), t ≥ 0) in (5),

φ(ν, I(t))− φ(ν, I(0))−
∫ t

0

Lφ(ν, I(s), π, 0)ds(16)

is a martingale with respect to the natural filtration of {(ν, I(t)), t ≥ 0}.
Thus if we find a function φ such that Lφ(n, x, π, 0) = x, we will have

IE

[
ν

∫ T

0

I(s)ds

∣∣∣∣ I(0) = 1

]
= IE[ν{φ(ν, 0)− φ(ν, 1)}],(17)

where T = inf{t ≥ 0 : I(t) = 0} (to obtain this, take the expectation
of (16) at time t ∧ T and let t → ∞, using monotone convergence in the
integral and dominated convergence in the other term). Setting ψ(n, x) =
γ(φ(n, x− 1)− φ(n, x)), Lφ(n, x, π, 0) = x translates intoψ(n, x) = 1 +

λL
γ

(
1− x

n

)
ψ(n, x+ 1), 1 ≤ x ≤ n− 1,

ψ(n, n) = 1.

We deduce from this that

ψ(n, 1) = γ(φ(n, 0)− φ(n, 1)) = 1 +
n−1∑
`=1

(
λL
γ

)` ∏̀
j=1

(
1− j

n

)
.

Together with (17), this proves the lemma.
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Let us quickly mention another avenue for proving Lemma 7.4, which
makes use of Proposition 7.1. For ε > 0, let us write

{k ≥ 1 : uk ≤ ε} = {1 ≤ k1(ε) < k2(ε) < . . .}.

Then we write

X∞(ε) =
∣∣Ik1(ε)(0)

∣∣+
∣∣∪j≥2Ikj(ε)(0) ∩ Ik1(ε)(0)c

∣∣ .
Then, noting that −tk1(ε) is distributed as an exponential variable with pa-
rameter λGνε/π, it is possible to see that

IE
[∣∣Ik1(ε)(0)

∣∣∣∣ ν = n
]

= ελG
n

π

∫ ∞
0

IE
[∣∣I1(t1 + t)

∣∣∣∣ ν = n
]
dt+ o(ε),

and that

IE
[∣∣∪j≥2Ikj(ε)(0) ∩ Ik1(ε)(0)c

∣∣∣∣ ν = n
]

= o(ε).

We then finish by noting that I1(t1 + t) is distributed as I(t) conditionally
on I(0) = 1 and that

dµ∞
dm

(0) = lim
ε↓0

1

ε
IE[X∞(ε)].

7.4 Large-time behaviour of the non-linear Markov
process

We now prove Theorem 3.3. We split the proof in two parts, first dealing
with the case R0 ≤ 1 and then with R0 > 1.

Proof of Theorem 3.3, R0 ≤ 1. Let m+
0 (t) = π and set, for k ≥ 0,

m+
k+1(t) = µt(m

+
k , µ0).

Clearly IE[X(t)] ≤ m+
0 (t) for all t ≥ 0. Since (IE[X(t)], t ≥ 0) is a fixed point

of m(·) 7→ µ·(m,µ0) and using Lemma 4.3, for every k ≥ 0,

0 ≤ IE[X(t)] ≤ m+
k (t).(18)

Furthermore, by Lemma 7.2, for all k ≥ 0,

lim
t→∞

m+
k (t) = µ◦k∞(π),
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where µ◦k∞(·) = µ∞(µ∞(. . .)) is the k-th iterate of m 7→ µ∞(m). Letting
t→∞ in (18),

0 ≤ lim inf
t→∞

IE[X(t)] ≤ lim sup
t→∞

IE[X(t)] ≤ µ◦k∞(π).

But, by Lemma 7.3 and Lemma 7.4, since R0 ≤ 1,

µ◦k∞(π)→ 0 as k →∞.

As a result,

lim
t→∞

IE[X(t)] = 0,

and the result follows.

Before proving the result when R0 > 1, we state the following lemma,
whose proof we delay until Subsection 7.5.

Lemma 7.6. Suppose that R0 > 1 and that IE[X(0)] > 0, then

lim inf
t→∞

IE[X(t)] > 0.

Let us now finish the proof of Theorem 3.3.

Proof of Theorem 3.3, R0 > 1. The strategy of the proof is similar to the
case R0 ≤ 1, but we now define two functions

m+
0 (t) = π, m−0 (t) = inf

s≥0
IE[X(s)].

Note that by Lemma 7.6, limt→∞m0(t) > 0. As before, we set, for k ≥ 0,

m+
k+1(t) = µt(m

+
k , µ0), m−k+1(t) = µt(m

−
k , µ0).

By the same argument as before, since m−0 (t) ≤ IE[X(t)] ≤ m+
0 (t), we have,

for every k ≥ 0,

m−k (t) ≤ IE[X(t)] ≤ m+
k (t).

Using Lemma 7.2 and letting t→∞, we obtain

µ◦k∞(inf
t≥0

IE[X(t)]) ≤ lim inf
t→∞

IE[X(t)] ≤ lim sup
t→∞

IE[X(t)] ≤ µ◦k∞(π).(19)
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But, by Lemma 7.3 and the fact that R0 > 1, we have

lim
k→∞

µ◦k∞(inf
t≥0

IE[X(t)]) = lim
k→∞

µ◦k∞(π) = m?,

where m? ∈ (0, π] is defined by Corollary 7.5 (also using Lemma 7.6 and the
fact that IE[X(0)] > 0). Hence, letting k →∞ in (19),

IE[X(t)]→ m?,

as t → ∞. Finally by Lemma 7.2, since the non-linear process is the forced
process with m(t) = IE[X(t)],

(ν,X(t))→ µ∞(m?),

in distribution as t→∞, and the theorem is proved.

Note that, without Lemma 7.6, we would not have been able to bound
IE[X(t)] from below by anything useful, since µ∞(0) = 0.

7.5 Branching process minoration

Proof of Lemma 7.6. Since R0 > 1, we can choose p, q ∈ Q such that 0 <
q < p < 1 and

(1− p)R0 > 1.

Without loss of generality, we can assume that there exist N0, N1 in IN such
that p = 1/N0 and q = 1/N1. For the rest of this proof, we restrict N to
multiples of both N0 and N1.

Let ZN
t denote the process of infections between households:

ZN
t =

N∑
i=1

1XN
i ≥1,

where {XN
i (t), t ≥ 0; 1 ≤ i ≤ N} is the solution of the model (1).

We now define a continuous-time non-Markovian branching process of
infections as follows. Start with Y N

0 = Nq infected households, each with a
single infected individual, and whose sizes are chosen according to the size-
biased distribution π+. If there are currently k infected households with
x1, . . . , xk infected individuals, at rate (1 − p)λG

∑k
i=1 xi, a new household,
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whose size is chosen according to the size-biased distribution π+, is added to
the process with a single infected individual. Apart from this, each household
undergoes a local epidemic with rates λL and γ, independently from the
others. Then Y N

t denotes the number of infected households at time t ≥ 0.
The corresponding discrete time branching process is supercritical, since

the expected number of “offspring” of each household is (1−p)R0 > 1. Then
from Lemma 2.1 in Doney [5], if r > 0 denotes the real number such that

λG
π

(1− p)
∫ ∞
0

e−rtIE1[νI(t)]dt = 1,

where (I(t), t ≥ 0) is the process defined in (5) and IE1 means that we take
the expectation under the initial condition I(0) = 1, then

IE[Y N
t ] ∼ Naert as t→∞,(20)

where a is given by the formula

a = q

∫∞
0
e−rtL(t)dt

λG
π

(1− p)
∫∞
0
te−rtIE1[νI(t)]dt

,

with L(t) = IP(I > t) and I denotes the duration of the infection of a
local household epidemic starting with one infectious, where the size of the
household is chosen according to the size-biased distribution π+.

Suppose that Nq ≤ ZN
0 and define

TN,p = inf

{
t ≥ 0 :

∑N
i=1 1XN

i (t)≥1∑N
i=1 νi

> p

}
.

Then we claim that, on the interval [0, TN,p), Z
N
t stochastically dominates

Y N
t (i.e. we can defined (Y N

t , t ≥ 0) such that Y N
t ≤ ZN

t for t ∈ [0, TN,p)).
To see this, note that Y N

0 ≤ ZN
0 and that, since each household in Y N

t

starts with a single infected individual, the number of infected individuals
in each household is larger in ZN

0 than in Y N
0 . This stays true until the

first time at which a new household is infected in either process, since the
local infection parameters are the same in both processes, and in ZN , there
are additional infections due to global infections between already infected
households. Furthermore, in the process (ZN

t , t ≥ 0), a new household is

26



infected at rate

λG
1

N

N∑
j=1

XN
j (t)

N∑
i=1

νi
νN

1XN
i (t)=0 = λG

(
1−

∑N
i=1 νi1XN

i (t)≥1∑N
i=1 νi

)
N∑
j=1

XN
j (t).

and for t ∈ [0, TN,p), this rate is larger than the rate at which a new household
is infected in the process (Y N

t , t ≥ 0). We can thus couple the two processes
in such a way that

Y N
t ≤ ZN

t , ∀t ∈ [0, TN,p),

almost surely for all N ≥ 1.
Now, by Theorem 3.2, as N →∞, for any T > 0,

ZN
t

N
→ p(t) := IP(Xt ≥ 1),(21)

and ∑N
i=1 νi1XN

i (t)≥1∑N
i=1 νi

→ 1

π
IE[ν1X(t)≥1],(22)

uniformly on [0, T ], in probability. Furthermore, there exists a deterministic
function f : IR+ → IR+ such that

Y N
t

N
→ f(t),

uniformly on [0, T ] as N →∞, in probability. Furthermore, by (20),

f(t) ∼ aert as t→∞.(23)

For any p′ < p, let

Tp′ = inf

{
t ≥ 0 :

1

π
IE[ν1X(t)≥1] > p′

}
.

By (22), choosing T > Tp′ , for any t ≤ Tp′ , t < lim infN→∞ TN,p, and conse-
quently for N large enough,

ZN
t

N
≥ Y N

t

N
, ∀t ≤ Tp′ .
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Letting N →∞, we obtain

p(t) ≥ f(t), ∀t ≤ Tp′ .

Now define

T fb = inf{t ≥ 0 : f(t) > b}.

Then, if T fb < Tp′ , p(T
f
b ) ≥ b. If however Tp′ ≤ T fb , then, by the Cauchy-

Schwarz inequality,

IE[ν1X(t)≥1] ≤
√

IE[ν2]
√
p(t),

and thus,

p(Tp′) ≥ (p′)2
π

π+ .

As a consequence, if for some t ≥ 0, p(t) = q, then p(t + s) reaches b ∧
(p′)2π/π+ for some s ≤ T fb . Moreover, by (23), f is uniformly bounded away
from 0. This proves the Lemma.
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