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Interacting Feller diffusions with logistic drift

dXt(i) =
(∑

j∈Z2

Xt(j)m(j, i)−Xt(i)
)
dt

+
(
cXt(i)− γX2

t (i)
)
dt+

√
βXt(i) dBt(i) i ∈ Z2

More generally: Interacting locally regulated diffusions

dXt(i) =
(∑

j∈Zd

Xt(j)m(j, i)−Xt(i)
)
dt

+µ(Xt(i))dt+
√
σ2(Xt(i)) dBt(i) i ∈ Zd
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Idea for a comparison result:
I If mass is evenly distributed, then competition is low.

I Uniform migration distributes mass evenly.

Uniform migration on Zd ???
Idea: Uniform migration on ΛN ⊂ Zd, #ΛN <∞.

Then ΛN ↑ Zd.
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dXN
t (i) =

(
1
N

N∑
j=1

XN
t (j)−XN

t (i)
)
dt

+ µ
(
XN

t (i)
)
dt+

√
σ2
(
XN

t (i)
)
dBt(i) i ≤ N.

Idea:
(
|Xt| :=

∑
i∈Zd Xt(i)

)
(∣∣Xt

∣∣)
t≥0
≤? lim

N→∞

(∣∣XN
t

∣∣)
t≥0

What is the limit of |XN
t | if XN

0 (i) = x1i=1?

Heuristic: The first emigrant moves to some island. The
probability that a later emigrant moves to the same island is 1

N .
In the limit N →∞ no two emigrants move to the same island.
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The virgin island model

I The population (Yt)t≥0 on island 1 evolves as

dYt = −Yt dt+ µ(Yt) dt+
√
σ2(Yt)dBt Y0 = x ≥ 0,

I Every emigrant migrates to an unpopulated island
I The evolution on a newly populated island is modeled by

excursions from zero of (Yt)t≥0. The excursion measure Q
is defined by

lim
ε→0

1
ε
EεF

(
(Yt)t≥0

)
=:
∫
F
(
(ηt)t≥0

)
Q(dη)

t0

η·
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If the mother island is populated at time s and has population
η(t− s)t≥0, then offspring islands are a Poisson point process Π
with intensity measure

E
[
Π(dt⊗ dψ)

]
= η(t− s) dt⊗Q(dψ)



Theorem: (Comparison)
Let µ be sublinear

(
µ(x+ y) ≤ µ(x) + µ(y)

)
and σ2 be linear.

If X0(i) = x1i=0, then

|Xt| ≤st |Vt| |V0| = x, ∀ t ≥ 0

Corollary: If |Vt|
w−→ 0 as t→∞, then |Xt|

w−→ 0.
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Theorem: (Global Extinction of VIM)

The virgin island process dies out globally for every initial mass
x > 0 if and only if ∫ (∫ ∞

0
ηt dt

)
Q(dη) ≤ 1

Explicit formula for this:∫ (∫ ∞
−∞

ηt dt
)
Q(dη) =

∫
y

∫ ∞
−∞

Q(ηt ∈ dy) dt

=
∫
y m(dy)

=
∫ ∞

0

y

σ2(y)/2
exp

(∫ y

0

−x+ µ(x)
σ2(x)/2

dx
)
dy
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dXt(i) =
(∑

j∈Zd

Xt(j)m(j, i)−Xt(i)
)
dt

+µ
(
Xt(i)

)
dt+

√
σ2(Xt(i)) dBt(i) i ∈ Zd

Corollary: (Global Extinction of X)

If µ is sublinear, σ2 is linear and if∫ ∞
0

y

σ2(y)/2
exp

(∫ y

0

−x+ µ(x)
σ2(x)/2

dx
)
dy ≤ 1,

then every system of interacting locally regulated diffusions dies
out globally (|Xt|

w−→ 0) for every migration kernel m.



There exist comparison results if σ2 is either superlinear or
sublinear. Then the stochastic order is more complicated.

Example: Stepping stone model with selection and mutation

dXt(i) =
(∑

j∈Zd

Xt(j)m(j, i)−Xt(i)
)
dt

+
(
sXt(i)

(
1−Xt(i)

)
− uXt(i)

)
dt+

√
2Xt(i)

(
1−Xt(i)

)
dBt(i)

for i ∈ Zd.

If ∫ 1

0
(1− y)uesy dy < 1

then |Xt| → 0 as t→∞ in L1.
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Theorem: (Convergence to the VIM)
If X0(i) = x1i=0, then

N∑
i=1

XN
t (i) w−−−−→

N→∞
|Vt| ∀ t ≥ 0, |V0| = x
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Consider the one-dimensional diffusion

dY N
t =

(β(t)
N
− Y N

t + µ(Y N
t )
)
dt+

√
σ2
(
Y N

t

)
dBt

where Y N
0 = 0.

Lemma:

lim
N→∞

N E0f
(
Y N

t

)
=
∫ ∫ t

0
f(ηt−s)β(s) dsQ(dη)

if f vanishes in a neighbourhood of zero.



Fancy duality: If µ(z) = γx(K − x) and σ2(x) = 2γx, then

Ex exp(−yMt) = Ey exp(−x|Vt|) ∀ x, y ∈ [0,∞)

where

dMt = (EMt −Mt) dt+ µ(Mt) dt+
√
σ2(Mt) dBt M0 = x

Thank you
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dX
(N,k)
t (i) =α

 1
N

N∑
j=1

X
(N,k−1)
t (j)−X(N,k)

t (i)

 dt

+
X

(N,k)
t (i)∑

m≥0X
(N,m)
t (i)

µ

(∑
m≥0

X
(N,m)
t (i)

)
dt

+

√√√√ X
(N,k)
t (i)∑

m≥0X
(N,m)
t (i)

σ2
(∑

m≥0

X
(N,m)
t (i)

)
dBk

t (i),

where i = 1, ..., N, k ≥ 0 and where X(N,k)
0 (i) = XN

0 (i)1k=0.

dZ
(N,k)
t (i) =α

(
1
N

N∑
j=1

Z
(N,k−1)
t (j)− Z(N,k)

t (i) + µ
(
Z

(N,k)
t (i)

))
dt

+
√
σ2
(
Z

(N,k)
t (i)

)
dBk

t (i) i = 1, ..., N.



Define the scale function of (Yt)t≥0 by

S(y) :=
∫ y

0
s(z) dz s(z) := exp

(
−
∫ z

0

−x+ µ(x)
σ2(x)

dx
)
.

(
S(Yt)

)
t≥0

is a local martingale and

Py(Tb < T0) =
S(y)
S(b)

0 < y < b

where Tb := inf{t > 0: Yt = b}.

The excursion measure Q satisfies

lim
y→0

1
S(y)

EyF (Y ) =
∫
F (η)Q(dη)

for all bounded continuous F : C
(
[0,∞), [0,∞)

)
→ R for which

there exists an ε > 0 such that F (η) = 0 whenever supt≥0 ηt < ε.
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